WO2022042247A1 - 一种波形指示方法及芯片、系统 - Google Patents

一种波形指示方法及芯片、系统 Download PDF

Info

Publication number
WO2022042247A1
WO2022042247A1 PCT/CN2021/110645 CN2021110645W WO2022042247A1 WO 2022042247 A1 WO2022042247 A1 WO 2022042247A1 CN 2021110645 W CN2021110645 W CN 2021110645W WO 2022042247 A1 WO2022042247 A1 WO 2022042247A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
waveform
message
pusch
network device
Prior art date
Application number
PCT/CN2021/110645
Other languages
English (en)
French (fr)
Inventor
陈岩
彭炳光
郭翱
杨建华
赵治林
丁仁天
严朝译
代西桃
杨盛波
王洲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21860087.2A priority Critical patent/EP4192105A4/en
Publication of WO2022042247A1 publication Critical patent/WO2022042247A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a waveform indication method, chip, and system.
  • DFT-s-OFDM discrete fourier transform-spread-orthogonal frequency division multiplexing
  • CP-OFDM cyclic prefix orthogonal frequency division multiplexing
  • the waveform used for determining the physical uplink shared channel (PUSCH) between the terminal and the base station is achieved through an initial random access (RA) process.
  • RA initial random access
  • Embodiments of the present application provide a waveform indication method, chip, and system, which are used to provide a feasible way of waveform switching after the random access procedure is completed, and help improve the uplink transmit power of the terminal.
  • an embodiment of the present application provides a communication system, which specifically includes a network device and a terminal.
  • the network device is configured to send a first message to the terminal during the random access process, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts the first waveform; after receiving the first message, the terminal meets the predetermined When the conditions are set, send a third message to the network device, where the third message includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal; and the network device is further configured to receive the second message and send it to the network device.
  • the terminal sends a second message, where the second message is used to indicate that the PUSCH of the terminal adopts a second waveform; wherein, the second waveform is a partial capability indicated according to the MPR information of the terminal and/or the capability information of the terminal Determined; the uplink transmit power of the terminal using the second waveform to send the uplink information is greater than the uplink transmit power of the terminal using the first waveform to send the uplink information.
  • the waveform of the PUSCH configured in the random access process is specified by the communication protocol.
  • two waveforms are supported in the NR system.
  • the terminal when the terminal reports the capability information, the MPR information is reported to the network device, and then the network device can use the MPR information and the part of the capability information of the terminal.
  • the terminal determines whether the switching waveform can bring benefits to the terminal's uplink transmit power, and then indicates the waveform switched by the terminal, and then the terminal uses the switched waveform to send uplink information, which can improve the uplink transmit power for sending uplink information and help improve uplink transmission. performance and improve user experience.
  • the second message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform
  • the terminal receives the downlink control message, it can determine the second waveform corresponding to the first BWP according to the correspondence between the first BWP and the second waveform, and then use the second waveform to send uplink information to the network device. Since the time delay of the downlink control message is small and the signaling overhead is small, the use of the downlink control message to indicate the waveform of the PUSCH can reduce signaling overhead and delay.
  • the terminal is further configured to receive configuration information from a network device, where the configuration information is used to configure a correspondence between the waveform supported by the PUSCH of the terminal and the BWP, Different waveforms correspond to different BWPs, and the configuration information includes a correspondence between the first BWP and the second waveform. Further, after receiving the first BWP indicated by the downlink control message, the terminal device may determine the second waveform corresponding to the first BWP according to the configuration information, and then the terminal uses the second waveform to send uplink information.
  • the second message is a radio resource control RRC connection reconfiguration message.
  • the first message may be the message msg2 in the random access procedure.
  • the meeting the preset condition includes: the terminal receives a capability query request from a network device, where the capability query request is used to request to query the capability of the terminal; Or, the triggering condition for triggering the sending of the terminal's capability information message to the network device is satisfied.
  • the terminal may send a capability information message to the network device when receiving a capability query request from the network device.
  • the terminal can satisfy the triggering condition for sending the capability information message of the terminal to the network device, for example, when the random access procedure is determined to be completed or the terminal is attached to the network, the capability query request of the network device is not received, etc.
  • the network device sends the capability information message.
  • the MPR information includes different modulation methods, different resource block RB positions, two waveforms supported by the PUSCH of the terminal, and the correspondence between different MPR values; or , the MPR information includes a plurality of difference values, the difference value is the difference value of the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal under the same modulation mode and the same RB position, wherein the different difference values The corresponding modulation modes or RB positions are different; or, the MPR information includes the difference between the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal under the internal RB position; or, the MPR information includes the modulation of the QPSK In the mode, the difference between the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal.
  • the third message is a terminal capability information (UE Capability Information) message.
  • the third message may also be a message of other protocols.
  • an embodiment of the present application provides a communication system, which specifically includes: a network device configured to send a first message to a terminal during a random access process, where the first message is used to indicate a physical uplink shared channel PUSCH of the terminal adopt the first waveform; the terminal is configured to send a waveform assistance message to the network device, the waveform assistance message indicates that the terminal PUSCH expects to use the second waveform; the network device is further configured to receive the waveform assistance message from the network device, Send a second message to the terminal, where the second message is used to indicate that the PUSCH adopts the second waveform; the terminal is further configured to receive the second message from the network device, according to the first message indicated by the second message. Two waveforms send uplink information to the network device.
  • the network device since the network device configures the waveform of the PUSCH for the terminal in the random access process, the waveform of the PUSCH configured in the random access process is specified by the communication protocol. However, two waveforms are supported in the NR system.
  • the terminal determines the desired waveform, it reports the desired waveform to the network device, and then the network device instructs the terminal to switch the waveform, and the terminal uses the switched waveform. Waveform sends uplink information, providing a way for terminals to participate in waveform switching.
  • the terminal triggers to determine the benefits of the transmit power of the waveform used by the current PUSCH and other supported waveforms, Further, it is determined whether to switch the waveform used by the current PUSCH, and when it is determined that switching is required, the waveform expected to be used by the PUSCH is sent to the network device. Therefore, the uplink transmit power for transmitting uplink information can be improved, which is helpful to improve the uplink transmission performance and improve the user experience.
  • the second message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform
  • the terminal receives the downlink control message, it can determine the second waveform corresponding to the first BWP according to the correspondence between the first BWP and the second waveform, and then use the second waveform to send uplink information to the network device. Since the time delay of the downlink control message is small and the signaling overhead is small, the use of the downlink control message to indicate the waveform of the PUSCH can reduce signaling overhead and delay.
  • the method further includes: the terminal is further configured to receive configuration information from a network device, where the configuration information is used to configure the waveform supported by the PUSCH of the terminal and the BWP Corresponding relationship, different waveforms correspond to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the second message is a radio resource control RRC connection reconfiguration message.
  • the first message may be the message msg2 in the random access procedure.
  • an embodiment of the present application provides a waveform indication method.
  • the waveform indication method specifically includes: the terminal receives a first message from a network device, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts the first waveform; then, the terminal meets a preset condition When , send a third message to the network device, the third message includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal; further, the terminal receives the second message from the network device, the second message The message is used to indicate that the PUSCH of the terminal adopts a second waveform, and the second waveform is obtained from the waveform supported by the physical uplink shared channel PUSCH of the terminal according to the partial capabilities indicated by the MPR information and the capability information of the terminal. Determined; the terminal uses the second waveform to send uplink information
  • the first message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform
  • the first message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform
  • the method further includes: the terminal receives configuration information sent by the network device, where the configuration information is used to configure the correspondence between the waveform supported by the PUSCH of the terminal and the BWP, different from The waveforms corresponding to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the MPR information includes different modulation methods, different resource block RB positions, two waveforms supported by the PUSCH of the terminal, and the correspondence between different MPR values; or , the MPR information includes a plurality of difference values, the difference value is the difference value of the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal under the same modulation mode and the same RB position, wherein the different difference values The corresponding modulation modes or RB positions are different; or, the MPR information includes the difference between the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal under the internal RB position; or, the MPR information includes the modulation of the QPSK In the mode, the difference between the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal.
  • the two waveforms supported by the PUSCH of the terminal include a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform and a discrete Fourier transform spread spectrum orthogonal frequency Division multiplexed DFT-s-OFDM waveforms.
  • the meeting the preset condition includes: the terminal receives a capability query request from a network device, where the capability query request is used to request to query the capability of the terminal; Or, the triggering condition for triggering the sending of the terminal's capability information message to the network device is satisfied.
  • the second waveform is a DFT-s-OFDM waveform
  • the method further includes: the terminal receives a first parameter from the network device, the first parameter
  • the parameters include one or more of channel sounding reference signal SRS resources, SRS ports, or antenna maximum rank.
  • the third message is a terminal capability information (UE Capability Information) message.
  • the third message may also be a message of other protocols.
  • the waveform indication method specifically includes: the terminal receives a first message from a network device, where the first message is used to instruct the physical uplink shared channel PUSCH of the terminal to use the first waveform; the terminal sends a waveform assistance message to the network device, the The waveform auxiliary message is used to indicate that the physical uplink shared channel PUSCH of the terminal expects to adopt the second waveform; the terminal receives a second message from the network device, and the second message is used to indicate that the PUSCH of the terminal adopts the second waveform; The terminal uses the second waveform to send uplink information to the network device.
  • the uplink transmit power when the terminal uses the second waveform to send the uplink information is greater than the uplink transmit power when the terminal uses the first waveform to send the uplink information.
  • the second message is a downlink control message
  • the downlink message indicates that the PUSCH adopts a first bandwidth part BWP
  • the first BWP and the second waveform exist Correspondence.
  • the method further includes: the terminal receives configuration information sent by the network device, where the configuration information is used to configure the correspondence between the waveform supported by the PUSCH of the terminal and the BWP, different from The waveforms corresponding to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the waveform supported by the PUSCH includes a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform or a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT -s-OFDM waveform.
  • the second waveform is a DFT-s-OFDM waveform
  • the method further includes: the terminal receives a first parameter from the network device, the first parameter
  • the parameters include one or more of channel sounding reference signal SRS resources, SRS ports, or antenna maximum rank.
  • the waveform indication method includes: the network device is used to send a first message to the terminal during the random access process, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts the first waveform; The third message of the terminal, where the third message includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal; the network device sends the first message to the terminal, where the first message is used to indicate the
  • the waveform adopted by the PUSCH is the second waveform; the second waveform is determined according to the partial capabilities indicated by the MPR information and/or the capability information of the terminal.
  • the first message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform There is a corresponding relationship.
  • the method further includes:
  • the network device sends configuration information to the terminal, where the configuration information is used to configure the correspondence between the waveform supported by the PUSCH of the terminal and the BWP, different waveforms correspond to different BWPs, and the configuration information includes the first The corresponding relationship between BWP and the second waveform.
  • the waveform supported by the PUSCH includes a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform or a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT -s-OFDM waveform.
  • the second waveform is a DFT-s-OFDM waveform
  • the method further includes:
  • the network device sends a first parameter to the terminal, where the first parameter includes one or more of channel sounding reference signal SRS resources, SRS ports, or a maximum rank of an antenna.
  • the second message is a radio resource control RRC connection reconfiguration message.
  • the first message may be the message msg2 in the random access procedure.
  • the third message is a terminal capability information (UE Capability Information) message.
  • the third message may also be a message of other protocols.
  • an embodiment of the present application provides a waveform indication method. Based on the same inventive concept as the second aspect, an embodiment of the present application provides a waveform indication method. For beneficial effects, refer to the description of the second aspect, which is not repeated here. Repeat.
  • the waveform indication method specifically includes: in the random access process, the network device sends a first message to the terminal, where the first message is used to instruct the terminal to use the first waveform for the physical uplink shared channel PUSCH; the network device receives data from the terminal The waveform assistance message indicates that the terminal PUSCH expects to use the second waveform; the network device sends a second message to the terminal, where the second message is used to instruct the PUSCH to use the second waveform.
  • the second message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform There is a corresponding relationship.
  • the method further includes: the network device sends configuration information to the terminal, where the configuration information is used to configure the waveform supported by the PUSCH of the terminal and the BWP Corresponding relationship, different waveforms correspond to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the waveform supported by the PUSCH includes a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform or a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT -s-OFDM waveform.
  • the second message is a radio resource control RRC connection reconfiguration message.
  • the first message may be the message msg2 in the random access procedure.
  • the second waveform is a DFT-s-OFDM waveform
  • the method further includes: the network device sends a first parameter to the terminal, the first parameter
  • the parameters include one or more of channel sounding reference signal SRS resources, SRS ports, or antenna maximum rank.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface.
  • the chip can be applied to terminals.
  • the communication interface is configured to receive a first message from the network device, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts the first waveform;
  • the processor is configured to determine that the preset condition is met when the , controlling the communication interface to send a third message to the network device, where the third message includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal;
  • the communication interface is also used to receive a second message from the network device.
  • the second message is used to indicate that the PUSCH of the terminal adopts a second waveform, and the second waveform is shared from the physical uplink of the terminal according to the partial capabilities indicated by the MPR information and the capability information of the terminal It is determined in the waveform supported by the channel PUSCH; the processor is further configured to control the communication interface to send uplink information to the network device by using the second waveform.
  • the first message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform There is a corresponding relationship.
  • the communication interface is further configured to receive configuration information sent by the network device, where the configuration information is used to configure the correspondence between the waveform supported by the PUSCH of the terminal and the BWP , different waveforms correspond to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the MPR information includes different modulation methods, different resource block RB positions, two waveforms supported by the PUSCH of the terminal, and the correspondence between different MPR values; or , the MPR information includes a plurality of difference values, the difference value is the difference value of the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal under the same modulation mode and the same RB position, wherein the different difference values The corresponding modulation modes or RB positions are different; or, the MPR information includes the difference between the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal under the internal RB position; or, the MPR information includes the modulation of the QPSK In the mode, the difference between the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal.
  • the two waveforms supported by the PUSCH of the terminal include a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform and a discrete Fourier transform spread spectrum orthogonal frequency Division multiplexed DFT-s-OFDM waveforms.
  • the meeting the preset condition includes: the communication interface receives a capability query request from a network device, where the capability query request is used to request to query the capability of the terminal or, the processor determines that a triggering condition for triggering sending of the capability information message of the terminal to the network device is satisfied.
  • the second waveform is a DFT-s-OFDM waveform
  • the method communication interface is further configured to receive a first parameter from the network device, the first parameter
  • the parameters include one or more of channel sounding reference signal SRS resources, SRS ports, or antenna maximum rank.
  • the third message is a terminal capability information (UE Capability Information) message.
  • the third message may also be a message of other protocols.
  • an embodiment of the present application provides a chip, where the chip includes a communication interface and a processor.
  • the chip can be applied to terminals.
  • the communication interface is used to receive a first message from a network device, where the first message is used to instruct the physical uplink shared channel PUSCH of the terminal to adopt a first waveform;
  • the processor is used to control the communication interface Send a waveform assistance message to the network device, where the waveform assistance message is used to indicate that the physical uplink shared channel PUSCH of the terminal expects to use the second waveform;
  • the communication interface is further configured to receive a second message from the network device, the second waveform The message is used to indicate that the PUSCH of the terminal adopts the second waveform;
  • the processor is further configured to control the communication interface to send uplink information to the network device by using the second waveform.
  • the second message is a downlink control message
  • the downlink message indicates that the PUSCH adopts a first bandwidth part BWP
  • the first BWP and the second waveform exist Correspondence.
  • the communication interface is further configured to receive configuration information sent by a network device, where the configuration information is used to configure the correspondence between the waveform supported by the PUSCH of the terminal and the BWP , different waveforms correspond to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the waveform supported by the PUSCH includes a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform or a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT -s-OFDM waveform.
  • the second waveform is a DFT-s-OFDM waveform
  • the communication interface is further configured to receive a first parameter from the network device, the first parameter It includes one or more of channel sounding reference signal SRS resources, SRS ports, or the maximum rank of the antenna.
  • an embodiment of the present application provides a chip, where the chip includes a communication interface and a processor.
  • the chip can be applied to network equipment.
  • the processor is configured to control the communication interface to send a first message to the terminal during the random access process, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts the first waveform;
  • the communication interface and is further configured to receive a third message from the terminal, where the third message includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal;
  • the processor is further configured to control the communication interface to The terminal sends a first message, where the first message is used to indicate that the waveform used by the PUSCH of the terminal is the second waveform; the second waveform is based on the MPR information and/or the capability information of the terminal The indicated part ability is determined.
  • the first message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform
  • the first message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform
  • the communication interface is further configured to send configuration information to the terminal, where the configuration information is used to configure the correspondence between the waveform supported by the PUSCH of the terminal and the BWP , different waveforms correspond to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the waveform supported by the PUSCH includes a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform or a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT -s-OFDM waveform.
  • the second waveform is a DFT-s-OFDM waveform
  • the communication interface is further configured to send a first parameter to the terminal, where the first parameter includes a channel One or more of sounding reference signal SRS resources, SRS ports, or antenna maximum rank.
  • the second message is a radio resource control RRC connection reconfiguration message.
  • the first message may be the message msg2 in the random access procedure.
  • the third message is a terminal capability information (UE Capability Information) message.
  • the third message may also be a message of other protocols.
  • an embodiment of the present application provides a chip, where the chip includes a communication interface and a processor.
  • the chip can be applied to network equipment.
  • the processor is configured to control the communication interface to send a first message to the terminal during the random access process, where the first message is used to instruct the terminal to use the first waveform of the physical uplink shared channel PUSCH;
  • the communication interface is configured to receive a waveform assistance message from the terminal, where the waveform assistance message indicates that the terminal PUSCH expects to adopt a second waveform;
  • the processor is further configured to control the communication interface to send a second message to the terminal, The second message is used to indicate that the PUSCH adopts the second waveform.
  • the second message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second waveform
  • the second message is a downlink control message
  • the processor is further configured to control the communication interface to send configuration information to the terminal, where the configuration information is used to configure a waveform supported by the PUSCH of the terminal.
  • the corresponding relationship with the BWP is that different waveforms correspond to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the waveform supported by the PUSCH includes a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform or a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT -s-OFDM waveform.
  • the second message is a radio resource control RRC connection reconfiguration message.
  • the first message may be the message msg2 in the random access procedure.
  • the second waveform is a DFT-s-OFDM waveform
  • the processor is further configured to send the first parameter to the terminal through the communication interface, so
  • the first parameter includes one or more of channel sounding reference signal SRS resources, SRS ports or the maximum rank of the antenna.
  • an embodiment of the present application provides a terminal.
  • the terminal includes a receiving module and a sending module.
  • the receiving module is configured to receive the first message from the network device, where the first message is used to instruct the physical uplink shared channel PUSCH of the terminal to adopt the first waveform; then, the sending module sends to the network device when a preset condition is satisfied
  • the capability information message of the terminal, the capability information message of the terminal includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal; further, the receiving module receives a second message from a network device, the second message It is used to indicate that the PUSCH of the terminal adopts a second waveform, and the second waveform is determined from the waveform supported by the physical uplink shared channel PUSCH of the terminal according to the partial capabilities indicated by the MPR information and the capability information of the terminal ; the sending module uses the second waveform to send uplink information to the network device.
  • the first message is a downlink control message
  • the downlink control message indicates that the PUSCH uses a first bandwidth part BWP, the first BWP and the second There is a corresponding relationship between the waveforms.
  • the receiving module is further configured to receive configuration information sent by a network device, where the configuration information is used to configure the correspondence between the waveform supported by the PUSCH of the terminal and the BWP different waveforms correspond to different BWPs, and the configuration information includes a corresponding relationship between the first BWP and the second waveform.
  • the MPR information includes different modulation schemes, different resource block RB positions, two waveforms supported by the PUSCH of the terminal, and the correspondence between different MPR values;
  • the MPR information includes a plurality of difference values, where the difference value is a difference value of MPR values corresponding to two waveforms supported by the PUSCH of the terminal under the same modulation mode and the same RB position, wherein different difference values The corresponding modulation modes or RB positions are different; or, the MPR information includes the difference between the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal under the internal RB position; or, the MPR information is included in the QPSK In the modulation mode, the difference between the MPR values corresponding to the two waveforms supported by the PUSCH of the terminal.
  • the two waveforms supported by the PUSCH of the terminal include a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform and a discrete Fourier transform spread spectrum orthogonal Frequency Division Multiplexing DFT-s-OFDM waveform.
  • the meeting the preset condition includes: the receiving module receives a capability query request from a network device, where the capability query request is used to request to query the terminal's capability; or, a trigger condition for triggering sending of a capability information message of the terminal to the network device is met.
  • the second waveform is a DFT-s-OFDM waveform
  • the receiving module is further configured to receive a first parameter from the network device, the first parameter
  • the parameters include one or more of channel sounding reference signal SRS resources, SRS ports, or antenna maximum rank.
  • an embodiment of the present application provides a terminal.
  • the terminal includes a receiving module and a sending module.
  • the receiving module is configured to receive a first message from the network device, where the first message is used to instruct the physical uplink shared channel PUSCH of the terminal to use the first waveform;
  • the sending module sends a waveform assistance message to the network device, the waveform assistance message used to indicate that the physical uplink shared channel PUSCH of the terminal expects to adopt the second waveform;
  • the receiving module is further configured to receive a second message from the network device, the second message is used to indicate that the PUSCH of the terminal adopts the second waveform; sending
  • the module is further configured to use the second waveform to send uplink information to the network device.
  • the uplink transmit power when the terminal uses the second waveform to send the uplink information is greater than the uplink transmit power when the terminal uses the first waveform to send the uplink information.
  • the second message is a downlink control message
  • the downlink message indicates that the PUSCH uses a first bandwidth part BWP, and the first BWP and the second waveform There is a corresponding relationship.
  • the receiving module is further configured to receive configuration information sent by the network device, where the configuration information is used to configure the correspondence between the waveform supported by the PUSCH of the terminal and the BWP, Different waveforms correspond to different BWPs, and the configuration information includes a correspondence between the first BWP and the second waveform.
  • the waveform supported by the PUSCH includes a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform or a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-s-OFDM waveform.
  • the second waveform is a DFT-s-OFDM waveform
  • the method further includes: the terminal receives a first parameter from the network device, the first parameter A parameter includes one or more of channel sounding reference signal SRS resources, SRS ports, or antenna maximum rank.
  • an embodiment of the present application provides a network device, where the network device includes a sending module and a receiving module.
  • the sending module is configured to send a first message to the terminal during the random access process, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts the first waveform;
  • the receiving module is configured to receive the third message from the terminal.
  • the third message includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal;
  • the sending module is further configured to send a first message to the terminal, where the first message is used to indicate the terminal's
  • the waveform adopted by the PUSCH is the second waveform; the second waveform is determined according to the partial capabilities indicated by the MPR information and/or the capability information of the terminal.
  • the first message is a downlink control message
  • the downlink control message instructs the PUSCH to use a first bandwidth part BWP, the first BWP and the second
  • the sending module is further configured to send configuration information to the terminal, where the configuration information is used to configure the corresponding relationship between the waveform supported by the PUSCH of the terminal and the BWP.
  • the waveforms corresponding to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the waveform supported by the PUSCH includes a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform or a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-s-OFDM waveform.
  • the second waveform is a DFT-s-OFDM waveform
  • the sending module is further configured to send a first parameter to the terminal, where the first parameter includes a channel One or more of sounding reference signal SRS resources, SRS ports, or antenna maximum rank.
  • the second message is a radio resource control RRC connection reconfiguration message.
  • the first message may be the message msg2 in the random access procedure.
  • the third message is a terminal capability information (UE Capability Information) message.
  • the third message may also be a message of other protocols.
  • an embodiment of the present application provides a network device.
  • the network device includes a sending module and a receiving module.
  • the sending module is configured to send a first message to the terminal during the random access process, where the first message is used to instruct the terminal to use the first waveform for the physical uplink shared channel PUSCH;
  • the receiving module is configured to receive a waveform assistance message from the terminal , the waveform assistance message indicates that the terminal PUSCH expects to use the second waveform;
  • the sending module is further configured to send a second message to the terminal, where the second message is used to instruct the PUSCH to use the second waveform.
  • the second message is a downlink control message
  • the downlink control message indicates that the PUSCH uses a first bandwidth part BWP, the first BWP and the second There is a corresponding relationship between the waveforms.
  • the sending module is further configured to send configuration information to the terminal, where the configuration information is used to configure the corresponding relationship between the waveform supported by the PUSCH of the terminal and the BWP.
  • the waveforms corresponding to different BWPs, and the configuration information includes the corresponding relationship between the first BWP and the second waveform.
  • the waveform supported by the PUSCH includes a cyclic prefix orthogonal frequency division multiplexing CP-OFDM waveform or a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-s-OFDM waveform.
  • the second message is a radio resource control RRC connection reconfiguration message.
  • the first message may be the message msg2 in the random access procedure.
  • the second waveform is a DFT-s-OFDM waveform
  • the sending module is further configured to send a first parameter to the terminal, where the first parameter includes channel sounding One or more of reference signal SRS resources, SRS ports, or antenna maximum rank.
  • a fifteenth aspect is a computer-readable storage medium provided in an embodiment of the present application, which stores a computer program, and when the computer program is executed on a computer, enables the computer to execute the third aspect and any possibility of the third aspect.
  • a sixteenth aspect provides a computer program product provided by an embodiment of the present application, including a computer program that, when the computer program runs on a computer, enables the computer to execute the third aspect and any possible implementation manner of the third aspect method, or the method of performing the fourth aspect and any possible implementation of the fourth aspect, or the method of performing the fifth aspect and any possible implementation of the fifth aspect, or the sixth aspect and the sixth aspect A method for any possible implementation.
  • 1 is a schematic flowchart of a method for a traditional contention-based random access procedure
  • FIG. 2 is a schematic flowchart of a method for a 2-step contention-based random access procedure
  • FIG. 3 is a schematic diagram of resource locations in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a static resource allocation manner in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a TDM resource allocation manner in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a shared resource configuration manner in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a network architecture to which an embodiment of the present application is applicable.
  • FIG. 8 is a schematic diagram of a first waveform indication method in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a second waveform indication method in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a third waveform indication method in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a fourth waveform indication method in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a fifth waveform indication method in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a sixth waveform indication method in an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an apparatus 1400 according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another apparatus 1500 according to an embodiment of the present application.
  • DFT-s-OFDM discrete fourier transform-spread-orthogonal frequency division multiplexing
  • NR new radio
  • CP-OFDM cyclic prefix orthogonal frequency division multiplexing
  • OFDM waveform for uplink data transmission is determined between the terminal and the network device through an initial random access (random access, RA) process.
  • the terminal initiates the RA process when it is in the following scenarios: 1), initial access from the radio resource control idle (radio resource control idle, RRC_IDLE) state, that is, the RRC connection is established; 2), radio resource control (radio resource control, RRC) connection re-establishment; 3), cell handover; 4), the synchronization state of the uplink of the terminal is uplink asynchronous.
  • radio resource control idle radio resource control idle, RRC_IDLE
  • RRC radio resource control
  • the terminal when the downlink data arrives, the terminal needs to respond (hybrid automatic repeat request (HARQ) information (such as acknowledgement (ACK), or non-acknowledge, NACK)) and the uplink is not synchronized; Or, when the uplink data arrives, the uplink is not synchronized; 5), switch from the radio resource control inactive state (transition from RRC_INACTIVE); 6), establish time alignment when adding a secondary cell (secondary cell, SCell) (to establish time alignment) at SCell addition); 7), other service information request (request for other SI); 8), beam recovery request (beam recovery Request).
  • HARQ hybrid automatic repeat request
  • ACK acknowledgement
  • NACK non-acknowledge
  • RA procedures are classified into contention-based RA procedures and non-contention-based RA procedures.
  • the network device allocates a dedicated random access channel (RACH) resource for the terminal to access, but when the dedicated RACH resource is insufficient, the network device will instruct the terminal to initiate a random access channel (RACH) resource.
  • RACH random access channel
  • the terminal may initiate a contention-based RA procedure according to its own needs, so as to reduce the possibility of communication failure.
  • the traditional contention-based RA process may include four steps as shown in Figure 1, which are:
  • the terminal sends Msg1 (message1, message 1) to the network device.
  • Msg1 is carried on the RACH and is used to carry a preamble sent by the terminal to the network device.
  • the preamble is randomly selected by the terminal.
  • the preamble is sent on a physical random access channel (PRACH) resource indicated by a random access radio network temporary identifier (RA-RNTI).
  • PRACH physical random access channel
  • RA-RNTI random access radio network temporary identifier
  • the protocol stipulates that the MSG1 preamble adopts the DFT-s-OFDM waveform fixedly.
  • the network device receives the Msg1 from the terminal, and returns the Msg2 to the terminal.
  • Msg2 can be understood as the response to Msg1 sent by the network device to the terminal, that is, random access response (RAR), which is carried on the physical downlink shared channel (PDSCH)
  • RAR random access response
  • PDSCH physical downlink shared channel
  • the uplink resources allocated for Msg3 are physical uplink shared channel (physical uplink shared channel, PUSCH) resources.
  • the terminal receives the Msg2 from the network device, and the terminal sends the Msg3.
  • Msg3 is carried on the PUSCH, and is used by the terminal to request the network device to establish a radio resource control (radio resource control, RRC) connection.
  • the waveform used by Msg3 is the waveform indicated by Msg2. Subsequently, when sending uplink data to the network device, the terminal continues the waveform indicated by Msg2.
  • the network device receives the Msg3 from the terminal, and returns the Msg4 to the terminal.
  • Msg4 is carried on the PDSCH and is used by the base station to notify the terminal that the random access competition is successful.
  • the terminal sends the MsgA to the network device.
  • MsgA includes the functions of Msg1 and Msg3 in the traditional competition-based SA process.
  • the network device receives the MsgA from the terminal, and sends the MsgB to the terminal.
  • MsgB includes the functions of Msg2 and Msg4 in the traditional competition-based SA process.
  • Msg1, Msg2, Msg3 and Msg4 can refer to the related introduction in FIG. 1 . It can be understood that although Msg1 and Msg3 are sent in parallel, Msg1 is carried on the RACH and Msg3 is carried on the PUSCH. At present, MSG1 preamble adopts fixed DFT-s-OFDM waveform and Msg3 also adopts fixed DFT-s-OFDM waveform. Msg2 carries information used to indicate the waveform used for sending uplink data. After the random access is completed, the waveform indicated by Msg2 may be used to continue sending uplink data subsequently.
  • the terminal uses PUSCH resources to send uplink data.
  • the waveform of the uplink data sent by the terminal that is, the waveform used by the PUSCH.
  • the network device when the network device needs to modify the waveform of the uplink data sent by the terminal, it can be indicated by a radio resource control (radio resource control, RRC) connection reconfiguration (RRC connection reconfiguration) message.
  • RRC radio resource control
  • the modified waveform of the uplink data sent by the terminal can be modified through the waveform setting (transformPrecoder) in the PUSCH control (pusch-config) field in the RRC connection reconfiguration message, enable represents the DFT-s-OFDM waveform, and disable represents the CP-OFDM waveform.
  • the uplink transmit power of the PUSCH can be understood as the transmit power used by the message carried on the PUSCH, which is limited by the upper limit of the transmit power of the PUSCH.
  • the upper limit of the PUSCH transmit power is related to the maximum transmit power capability of the terminal and the maximum transmit power reduction (maximum output power reduction, MPR).
  • MPR maximum output power reduction
  • the MPR is determined according to the waveform adopted by the PUSCH, the modulation method, and the location of the PUSCH resource. Therefore, the waveform adopted by the PUSCH directly affects the maximum uplink transmit power of the PUSCH, and affects the transmission of the terminal's uplink data. For example, a network freeze occurs, which affects the user experience. Further, for a certain terminal, how to determine which waveform should be used for the PUSCH of the terminal plays a crucial role in the uplink maximum transmit power of the PUSCH.
  • an embodiment of the present application provides a waveform indication solution.
  • One way is that the network device determines the waveform used by the PUSCH for the terminal and indicates it to the terminal; another way is that the terminal reports the PUSCH expectation to the network device according to the requirements. The adopted waveform, and then the network device instructs the terminal to switch the waveform.
  • the uplink transmit power of PUSCH can satisfy the following expression:
  • P PUSCH uplink transmission power of PUSCH
  • P cmax,f,c (i) is the upper limit of the PUSCH transmission power (referred to as Pcmax in the subsequent description)
  • P o_PUSCH,b,f,c (j ) is the initial transmit power of PUSCH
  • is the influence factor of transmission bandwidth on transmit power
  • ⁇ b,f,c (j) is the path loss conversion factor
  • PL b,f,c (q d ) is the downlink path loss between the terminal and the network equipment
  • ⁇ TF,b,f,c ( i) is the influence amount of the code rate on the transmit power
  • f b, f, c (i, l) is the power adjustment amount indicated by the network device through the transmit power control (transmit power control, TPC) command.
  • P PUSCH,b,f,c(i,j,qd,l) P o_PUSCH,b,f,c (j), ⁇ , ⁇ b,f,c (j), PL b,f,c (q d ), ⁇ TF,b,f,c (i), f b,f,c (i,l) can be found in 3GPP TS 38.213 V15 .6.0 related introduction.
  • the first item in the parentheses of min is the upper limit P cmax,f,c (i) of the PUSCH transmit power, which is abbreviated as P cmax,f,c below.
  • the second item is the required power calculated by the PUSCH through the power control process. Abbreviated as Pcal.
  • the uplink transmit power of PUSCH is mainly limited by P cmax,f,c .
  • the upper limit of the PUSCH transmission power P cmax,f,c (i) is abbreviated as P cmax,f,c , and the upper limit of the PUSCH transmission power satisfies the following expression:
  • P cmax_H,f,c min ⁇ P EMAX,c ,P powerClass - ⁇ P powerClass ⁇
  • P cmax,f,c is the upper limit of the PUSCH transmission power
  • P cmax_L,f,c is the minimum value of the upper limit of the PUSCH transmission power
  • P cmax_H,f,c is the maximum value of the upper limit of the PUSCH transmission power
  • P EMAX, c is the maximum transmit power indicated by the network device to the terminal through RRC signaling
  • ⁇ T C,c is a constant
  • P powerClass is the maximum transmit power capability of the terminal
  • ⁇ P powerClass is a constant
  • MPR c is the maximum transmit power fallback value
  • A- MPR c is the extra power back-off value
  • ⁇ T IB,c is the extra power offset
  • ⁇ T RxSRS,c is a constant
  • P-MPR c is the maximum power back-off value when the human body absorbs the electromagnetic radiation amount of the terminal.
  • P cmax,f, c , P cmax_L,f,c , P cmax_H,f,c , P EMAX,c , ⁇ T C,c , P powerClass , ⁇ P powerClass , MPR c , A-MPR c , ⁇ T IB,c , ⁇ T RxSRS,c and P-MPR c may refer to the related introduction in 3GPP TS 38.101-1 V15.6.0, and will not be repeated here.
  • P cmax is the abbreviation of the upper limit of PUSCH transmit power
  • P max is the maximum transmit power capability of the terminal
  • MPR is the maximum transmit power back-off value
  • P-MPR is the maximum transmit power back-off value when the human body absorbs the electromagnetic radiation amount of the terminal.
  • the amount of electromagnetic radiation absorbed by the human body can be measured by the specific absorption rate (SAR).
  • SAR refers to the amount of electromagnetic radiation absorbed per kilogram of human tissue in 6 minutes. Generally speaking, the larger the SAR, the greater the amount of electromagnetic radiation that people absorb from the terminal.
  • the Federal Communications Commission (FCC) stipulates that the electromagnetic radiation level of the human body to absorb the terminal is SAR less than 1.6 watts/kg.
  • the standard of electromagnetic radiation for human absorption terminals adopted in Europe and China is that the SAR is not higher than 2 W/kg.
  • the P-MPR is determined by the terminal according to the distance between the mobile phone and the human body and the standard of electromagnetic radiation absorbed by the human body from the terminal.
  • Expression 1 can be further simplified to Expression 2:
  • the expression of the terminal's uplink transmit power can be simplified to Expression 3: pcal needs to be supplemented with a description (such as the green part above)
  • the MPR is determined according to the waveform adopted by the PUSCH, the modulation method and the position of the PUSCH resource.
  • the modulation mode and the PUSCH resource location are indicated to the terminal by the network device.
  • the MPRs of different waveforms, modulation modes and PUSCH resource locations are pre-stored in the terminal before the terminal leaves the factory. Generally speaking, MPR will not exceed the provisions of the communication protocol. For different power levels, the MPR value specified by the communication protocol may be different.
  • the MPR regulation in the NR protocol can be referred to as shown in Table 1.
  • the maximum value of MPR shall not exceed 1.5dB.
  • the maximum transmit power capability of the terminal is 23dB
  • the modulation method is QPSK
  • the PUSCH resource scheduled by the network device for the terminal is Inner RB
  • the terminal backs off at most 1.5dB, Assuming that the backoff value is x, that is, the upper limit of the PUSCH transmit power of the terminal can reach (23-x) dB.
  • the MPR regulation in the NR protocol can be referred to as shown in Table 2.
  • edge resource block in Table 1 and Table 2 refers to the RB located on the frequency band boundary used for NR communication
  • the outer resource block (outere resource block, Outer RB) is located inside Between the resource block (inner resource block, Inner RB) and the Edge RB.
  • the bandwidth of the frequency band used for the NR system as an example of 20M, as shown in Fig.
  • FIG. 3 is a schematic diagram of a frequency band used for NR communication, which is located between the frequency f1 and the frequency f2 or between the frequency f5 and the frequency f6
  • the RB in between is Edge RB
  • the RB between frequency f 2 and frequency f 3 or between frequency f 4 and frequency f 5 is Outer RB
  • the RB between frequency f 3 and frequency f 4 is Inner RB.
  • the values of f1, f2... can refer to the description of the communication protocol for details.
  • the communication protocol has developed different backoff values for the two waveforms mainly because the two waveforms have different peak-to-average ratios.
  • Peak-to-average ratio is a measure of a waveform that is equal to the ratio of the waveform's amplitude divided by the effective value (RMS).
  • RMS effective value
  • the peak-to-average ratio of CP-OFDM is larger than that of DFT-s-OFDM.
  • PA RF power amplifier
  • Independent networking refers to a new 5G network, including new base stations, backhaul links, and core networks.
  • Non-independent networking refers to the use of existing 4G infrastructure for 5G network deployment.
  • the 5G carrier based on the NSA architecture only carries user data, and its control signaling is still transmitted through the 4G network.
  • the LTE standard (LTE for short) and the NR (NR for short) standard work simultaneously, and the current communication protocol only supports PC3 in terms of uplink transmit power.
  • the upper limit of the transmit power of PUSCH is 23dBm. Therefore, the total power of LTE and NR is limited to 23dBm.
  • any one of Mode 1 to Mode 3 may be used.
  • Mode 1 Semi-static mode.
  • LTE power and NR power can be independently controlled, the LTE power is controlled without affecting the NR power, and the NR power is controlled without affecting the LTE power.
  • Mode 2 Time-division multiplexing (TDM) mode.
  • the network side configures a TDM mode and a specific time slot allocation method for the terminal, and the LTE standard and the NR standard use different time slots to transmit data.
  • Mode 3 Dynamic power sharing mode.
  • LTE_P_Max+NR_P_Max ⁇ ENDC_P_Max.
  • ENDC_P_Max represents the maximum total power that can be shared by the LTE system and the NR system.
  • the current communication protocol supports PC2 and PC3.
  • the typical value of the PUSCH transmit power is 26dBm
  • the typical value of the PUSCH transmit power is 23dBm.
  • BWP The concept of BWP is introduced into the NR system, and BWP can be understood as some subsets of the working bandwidth of the system.
  • a BWP is defined as a combination of multiple resource blocks (Resource Blocks, RBs) that are contiguous within a carrier.
  • the communication protocol supports configuring multiple BWPs for the same cell, and each BWP has different uplink and downlink pre-configured parameters.
  • BWP it can be understood that a BWP is equivalent to a virtual cell, and different BWPs can be dynamically switched through downlink control information (DCI) carried by a physical downlink control channel (PDCCH).
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the network side may configure one or more BWPs for the terminal.
  • the NR system may configure four BWPs for the terminal.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one (item) of the following or its similar expression refers to any combination of these items, including any combination of single item (item) or plural item (item).
  • At least one (a) of a, b or c may represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Can be single or multiple.
  • first, second, third, etc. may be used in this application to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information without departing from the scope of the present application.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 7 shows an architecture diagram of a communication system to which the embodiments of the present application are applied.
  • the communication system of the embodiment of the present application includes a network device and a terminal.
  • the communication mode between the terminal and the network device is wireless communication.
  • the terminal in this embodiment of the present application is a device with a wireless transceiver function.
  • a terminal may also be called terminal equipment (terminal equipment), user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), access terminal equipment, vehicle terminal equipment, industrial control Terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE proxy or UE apparatus, etc.
  • the location of the terminal can be fixed or mobile.
  • the terminal may support at least one wireless communication technology, such as long term evolution (long term evolution, LTE), NR, wideband code division multiple access (wideband code division multiple access, WCDMA) and the like.
  • the terminal may be a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a notebook computer, an all-in-one computer, a vehicle-mounted terminal, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, transportation safety ), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop Wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, wearable devices, mobile devices in future mobile communication networks
  • the network device in the embodiment of the present application is a device that provides a wireless access function for a terminal, and may also be referred to as an access network device, a radio access network (radio access network, RAN) device, or the like.
  • the network device may support at least one wireless communication technology, such as LTE, NR, WCDMA, and the like.
  • the network equipment includes, but is not limited to: a next-generation base station (generation nodeB, gNB), an evolved node B (evolved node B, eNB), a wireless network control system in a fifth-generation mobile communication system (5th-generation, 5G) radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, Or home node B, HNB), baseband unit (baseband unit, BBU), transmitting and receiving point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, small station, micro station, etc.
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved node B, Or home node B, HNB
  • baseband unit baseband unit
  • TRP transmitting and
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario, or the network device may It is a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, and a network device in the future mobile communication or a network device in the future evolved PLMN.
  • the network device may also be an apparatus having a function of providing wireless communication for the terminal, such as a chip system.
  • the system-on-chip may include chips, and may also include other discrete devices.
  • the communication system shown in FIG. 7 is only an exemplary illustration, and does not constitute a limitation to the communication system of the embodiment of the present application.
  • the embodiments of the present application do not limit the number of network devices and the number of terminals in the communication system.
  • multi-point coordinated communication may be performed between the network devices and the network devices.
  • the communication system includes multiple macro base stations and multiple micro base stations, wherein the macro base station and the macro base station, the micro base station and the micro base station, and the macro base station and the micro base station can perform multi-point coordinated communication.
  • FIG. 8 is a schematic flowchart of a waveform indication method provided by an embodiment of the present application.
  • FIG. 8 firstly describes the waveform used by the network device for determining the PUSCH for the terminal and indicating it to the terminal.
  • the terminal sends a UE capability information (UE Capability Information) message to the network device.
  • UE Capability Information includes at least the MPR information of the terminal.
  • the terminal may send a UE Capability Information message to the network device during the process of attaching to the network or after the random access process is completed.
  • the terminal may send a UE Capability Information message to the network device, and carry MPR information in the UE Capability Information message.
  • the terminal may also report the MPR information supported by itself to the network device through other RRC signaling messages.
  • the UECapabilityInformation message may also include other capability information of the terminal.
  • the capability information of the terminal may include: frequency bands and frequency band combinations supported by the UE, power levels supported by each frequency band and frequency band combination of the UE, and the like.
  • the terminal when the distance between the terminal and the network device changes, the path loss is large, or the amount of data to be sent on the terminal increases, the terminal can send the MPR information when the network device reports the capability information. to network equipment.
  • the network device indicates to the terminal through Msg2 the waveform adopted by the PUSCH, and the waveform may be specified by a communication protocol, such as the first waveform.
  • the terminal sends the UE capability information message to the network device using the first waveform indicated by Msg2.
  • the terminal when it sends the MPR information of the terminal to the network device, it may not send the MPR information to the network device through the UE Capability Information message, but may send the MPR information to the network device through other protocol messages, or send the MPR information to the network device through a new message.
  • the embodiments of the present application do not specifically limit the message used by the terminal to send the MPR information to the network device.
  • the MPR information of the terminal is used to represent the MPR of the waveform supported by the terminal when sending uplink data under different modulation modes.
  • the MPR information includes different resource block RB positions, different modulation modes, two waveforms supported by the terminal when sending uplink data, and the correspondence between different MPR values.
  • the MPR information includes a plurality of difference values
  • the difference value is a difference value of MPR values corresponding to two waveforms supported by the terminal device when sending uplink data under the same modulation mode and the same RB position.
  • Example 2 can reduce the amount of reported data, reduce resource occupation, and improve the reporting rate.
  • the MPR information includes the difference between the MPR values corresponding to the two waveforms supported by the terminal device when sending uplink data in a modulation mode different from that of inter RB. For example, see Table 5.
  • Example 3 can reduce the amount of reported data, reduce resource occupation, and improve the reporting rate.
  • the MPR information includes the difference between the MPR values corresponding to the two waveforms supported by the terminal device when sending uplink data under the modulation mode of QPSK and inter RB.
  • , inter RB 1.5.
  • Example 4 further reduces the amount of reported data, reduces resource occupation, and increases the reporting rate.
  • the MPR information of the terminal may be used as a capability item of the uplink physical layer, for example, the MPR value may be included in the downlink feature set parameters (Feature Set Uplink parameters).
  • the MPR value may be included in the downlink feature set parameters (Feature Set Uplink parameters).
  • the MPR value supported by the terminal is added. See Table 7.
  • the network device determines the waveform used by the PUSCH according to the MPR information reported by the terminal.
  • the network device can estimate which waveform the terminal adopts according to the MPR information and the power influence parameter that can affect the uplink transmission power, so that the terminal's transmission power gain is higher, and then indicate the waveform adopted by the PUSCH to the terminal.
  • the naming of the power response parameter is not limited in this embodiment of the present application, and other naming manners may also be used.
  • the uplink transmit power of the terminal is different depending on the MPR value. Further, only in this case can waveform switching bring benefits of uplink transmit power.
  • the maximum transmit power capability Pmax of the terminal is 23dBm
  • the MPR value is 1.5dB
  • the required power Pcal calculated by the power control process of the PUSCH is 23dBm. In this case, Pcal>Pmax-MPR is satisfied. If the MPR after the waveform is switched If the value is reduced, the maximum transmit power can be increased, so that waveform switching brings transmit power benefits.
  • the power influence parameter that can influence the uplink transmit power may include the MPR value of the terminal.
  • the power impact parameter may also include the terminal's maximum transmit power capability Pmax.
  • the MPR value is the maximum value specified by the protocol; the power level adopted by the terminal is PC3 as an example. It can be seen from Table 2 that, under the edge RB resource, the value of MPR is the same, and it can be considered that the maximum transmit power corresponding to the DFT-s-OFDM waveform and the CP-s-OFDM waveform are the same. See Table 8 for the power gain value of the DFT-s-OFDM waveform under different modulation modes and two RB allocations: Inner RB/outer RB.
  • the MPR value of the DFT-s-OFDM waveform is less than or equal to the MPR value of the CP-OFDM waveform. Therefore, considering the same modulation scheme and the same PUSCH resource, the use of the DFT-s-OFDM waveform can bring the uplink transmit power gain compared to the use of the CP-OFDM waveform. Since different modulation modes and/or PUSCH resources affect the value of MPR, further, the power influence parameter that can affect the uplink transmit power may also include the modulation mode adopted by the terminal and the PUSCH resources allocated to the terminal by the network device.
  • the maximum allowable transmit power in the NR standard is 20 dBm.
  • the final uplink transmit power used in the NR standard can be expressed by the following Expression 4.
  • Expression 4 can be converted into Expression 5 as follows:
  • Expression 4 can be further simplified to Expression 6:
  • the power influencing parameter that can affect the uplink transmit power may include the maximum uplink transmit power of the terminal allowed by the communication protocol.
  • the maximum uplink transmit power of the terminal allowed by the communication protocol is related to the networking method adopted by the terminal and/or the power distribution method of the terminal. Therefore, it can be said that the networking method adopted by the terminal and/or the power distribution method of the terminal affects the uplink transmission. Power factor.
  • the power allocation mode for the terminal is not an influencing factor that affects the uplink transmit power.
  • the power impact parameter may further include the networking mode adopted by the terminal and/or the power allocation mode of the terminal.
  • the networking mode adopted by the terminal may be NSA by default, and the power influence parameter may only include the power allocation mode of the terminal.
  • the advantages include: flexible allocation; support for data pilot co-symbols without loss of RE resources; support for MIMO transmission.
  • Disadvantages include: the peak average is relatively large, resulting in a large MPR value.
  • the advantages include: the peak average is relatively small, resulting in a small MPR value;
  • Disadvantages include: the allocation method using a common multiple of 2, 3, and 5; the data pilot co-symbol is not supported, and some RE resources are lost; MIMO is not supported, and only a single stream is supported.
  • the CP-OFDM waveform supports the transmission mode of MIMO spatial multiplexing. Therefore, in the case of using the transmission mode of MIMO spatial multiplexing, at least two The ability of the antenna to transmit above the root.
  • the terminal supports 2T4R.
  • 2T means that the transmitting antenna is 2 antennas
  • 4R means that the receiving antenna is 4 antennas.
  • the maximum transmit power capability of the terminal is the sum of the total transmit power capabilities of the two antennas.
  • the maximum transmit power capability of each transmit antenna is 23dBm
  • the maximum transmit power capabilities of the two antennas are different.
  • the maximum transmit power capability of one antenna is 23dBm
  • the maximum transmit power capability of the other antenna is 26dBm
  • the maximum transmit power capability of the terminal is related to the number of transmit antennas on the terminal and/or the maximum transmit power capability of each transmit antenna.
  • the transmit antennas on the terminal may also be considered.
  • the power impact parameter may also include the number of transmit antennas on the terminal and/or the maximum transmit power capability of each transmit antenna.
  • the default maximum transmit power of the antenna may also be used.
  • the power impact parameter may not include the number of transmit antennas on the terminal and/or The maximum transmit power capability of each transmit antenna.
  • the embodiment of the present application can determine the waveform adopted by the PUSCH according to the scene where the terminal is currently located.
  • the current scene of the terminal can be characterized by one or more power response parameters.
  • various scenarios are described. Different scenarios can be determined by networking method, power level, whether MIMO is supported (indirectly indicating the number of transmit antennas), power allocation method, and the maximum transmit power capability of the terminal. .
  • the capability of the terminal's maximum transmit power is characterized by the limit of the maximum transmit power specified in the protocol.
  • PC2 is not supported in the NSA mode.
  • the embodiments of the present application provided in Table 9 are only used as a possible example when the PC2 is supported in the NSA mode.
  • Restricted or unrestricted in Table 9 refers to whether the maximum transmit power capability of the terminal is limited by the maximum transmit power specified by the communication protocol in this scenario.
  • the power level is PC3
  • the number of transmit antennas is 1, and the power allocation method adopts the static allocation method
  • the maximum transmit power allowed by the NR communication protocol is 20dB
  • the terminal's maximum transmit power capability is 23dBm
  • the terminal's maximum transmit power capability is limited by the maximum transmit power specified by the communication protocol, and the limit is 3dB.
  • the power level is PC2
  • the maximum transmit antennas is one
  • the maximum transmit power allowed by the communication protocol is 26dBm.
  • the value of the single-T maximum transmit power capability (26dBm or 23dBm) of the terminal in Table 9 is only an example, and terminals with different technological levels may have different maximum transmit power capabilities.
  • the maximum transmit power capability of the terminal will increase.
  • the 38.101 protocol also introduces a maximum transmit power tolerance (tolerance) for this purpose.
  • Type 1-Type 5 Based on the above Table 9, the embodiments of the present application can summarize different situations into five types, as follows: Type 1-Type 5.
  • Type 1 The number of terminal transmit antennas is one, and the maximum transmit power capability of the terminal is limited by the maximum transmit power specified by the communication protocol in this scenario, which can be simply described as single-T transmit without power limitation.
  • Type 2 The number of terminal transmit antennas is one, and the terminal's maximum transmit power capability is not limited to the maximum transmit power specified by the communication protocol in this scenario. It can be simply described as single-T transmission with power restrictions.
  • Type 3 The number of terminal transmit antennas is more than one, and the maximum transmit power capability of the terminal is limited by the maximum transmit power specified by the communication protocol in this scenario, which can be simply described as multi-T transmission with power limitations.
  • Type 4 The number of terminal transmitting antennas is more than one, and the maximum transmitting power capability of the terminal is not limited by the maximum transmitting power specified by the communication protocol in this scenario, which can be simply described as multi-T transmission without power limitation.
  • Type 5 The number of terminal transmit antennas is more than one, and the maximum transmit power capability of a certain antenna of the terminal is limited by the maximum transmit power specified by the communication protocol in the scenario, which can be simply described as multi-T transmission, with partial power limitation.
  • the DFT-s-ODFM waveform has an uplink transmit power gain, that is, when the DFT-s-OFDM waveform is used, the uplink transmit power of the terminal is higher than that when the CP is used. -The uplink transmit power of the terminal in the OFDM waveform.
  • the networking mode is NSA
  • the power level is PC2
  • the resource allocation mode is mode 1
  • the maximum transmit power capability Pmax of the terminal is 23dBm as an example.
  • the power level is PC3
  • the power allocation mode is mode 1
  • the maximum transmit power capability of the terminal is limited by the maximum transmit power specified in the protocol, that is, Pmax is 23dBm and there is a power of 3dB limit.
  • P PUSCH min(20dBm, Pcal, Pmax ⁇ MPR).
  • P PUSCH min(20dBm, Pcal, Pmax ⁇ MPR).
  • DFT-s-OFDM waveform will have a power gain compared to CP-OFDM only when MPR>3dB.
  • the maximum power of 23dBm has a power limit of 3dB
  • the actual maximum power is 20dBm.
  • the equivalent MPR value after the 3dB power limit can be converted into MPR is shown in Table 11. shown.
  • the DFT-s-OFDM waveform has a power gain compared to the CP-OFDM. In other modulation modes, MPR does not affect the uplink transmit power of the terminal. Based on this, DFT-s-OFDM waveform can be used when the modulation mode adopts 64QAM or 256QAM in the scenario where single T has power limitation.
  • the difference between the multi-T type and the single-T type is that in the multi-T type, spatial multiplexing will affect the PUSCH uplink transmit power of the terminal.
  • the channel conditions satisfy the spatial multiplexing conditions, approximately double the data traffic can be achieved by transmitting different code streams on the two antennas, but only the CP-OFDM waveform supports MIMO, that is, spatial multiplexing. Therefore, under the multi-T type, not only the power gain of the DFT-s-OFDM waveform, but also the spatial multiplexing gain of the CP-OFDM waveform should be considered; the power gain of the DFT-s-OFDM waveform is greater than that of the CP-OFDM waveform.
  • the DFT-s-OFDM waveform can be used in the case of the resulting power gain.
  • the CP-OFDM waveform can be used.
  • Table 11 in the single-T scenario, when the modulation method adopts 64QAM or 256QAM, the DFT-s-OFDM waveform has a power gain compared with the CP-OFDM; but in the multi-T scenario, the modulation of PUSCH
  • the method adopts 64QAM or 256QAM it can be further determined whether the power gain of spatial multiplexing is greater than that of DFT-s-OFDM waveform. If the power gain of spatial multiplexing is greater than that of DFT-s-OFDM waveform, the network The device can configure the terminal for the waveform used by the PUSCH to be the CP-OFDM waveform.
  • multi-T scenarios also need to distinguish whether there is a limit on the maximum transmit power specified by the communication protocol.
  • the power gain can be calculated according to the equivalent MPR after the maximum transmit power limit, and then compare the DFT-s - The power gain of the OFDM waveform and the spatial multiplexing gain of the CP-OFDM waveform to determine the waveform adopted by the PUSCH.
  • the network device can determine the waveform adopted by the PUSCH through Expression 5 and combined with the gain of spatial multiplexing. It is important to understand that in an unrestricted scenario, the limit size is 0.
  • P PUSCH min(Pmax-restriction size, Pcal, Pmax-MPR), one or more of the uplink transmit power of the terminal and the terminal's maximum transmit power capability, MPR value or restriction size can be determined related.
  • the maximum transmit power capability of the terminal device is related to the number of transmit antennas used by the terminal, and the maximum transmit antenna capability of the terminal may be the sum of the transmit powers of multiple antennas.
  • the limit size is related to at least one of the networking mode, power level or resource allocation mode adopted by the terminal.
  • the MPR value is related to at least one of the modulation mode adopted by the terminal and the position of the PUSCH resource.
  • the power influence parameter used to determine the waveform adopted by the PUSCH may include, but is not limited to, one or more of the following parameters:
  • the networking mode of the terminal, the power level of the terminal, the number of power transmitting antennas, the power distribution method of the terminal, the maximum transmission power capability of the terminal, the maximum transmission power specified by the communication protocol, and the maximum transmission power capability of the terminal are limited by The limit size of the maximum transmit power capability specified by the communication protocol, the modulation method used by the terminal, or the PUSCH resource used by the terminal.
  • the network device After receiving the UECapabilityInformation message, the network device determines, according to the MPR information reported by the terminal device, the MPR values respectively corresponding to the two waveforms under the currently used modulation mode and the PUSCH resource location. Then combine one or more of the terminal's maximum transmit power capability, MPR value, limit size, number of transmit antennas used by the terminal, networking mode, power level or resource allocation mode used by the terminal to determine the waveform used by the PUSCH.
  • the network device sends an RRC connection reconfiguration (RRC Connection Reconfiguration) message to the terminal, where the RRC connection reconfiguration message is used to indicate the waveform adopted by the PUSCH.
  • RRC Connection Reconfiguration RRC Connection Reconfiguration
  • the RRC Connnection Reconfiguration message may include waveform indication information, where the waveform indication information is used to indicate the waveform adopted by the PUSCH.
  • the terminal sends uplink information to the network device using the waveform used by the PUSCH indicated by the RRC connection reconfiguration message.
  • the network device indicates to the terminal the waveform adopted by the PUSCH through Msg2, and the waveform may be specified by the communication protocol.
  • the network device can determine, according to the MPR information, which waveform the terminal adopts to make the terminal's transmit power gain higher.
  • the waveform configured by the network device to the terminal through Msg2 is the first waveform (for example, the CP-OFDM waveform).
  • the network device determines that the power gain of the second waveform (such as the DFT-s-OFDM waveform) is higher than that of the first waveform (CP-OFDM waveform) according to the MPR information, and determines that the waveform used by the current PUSCH is the first waveform. If there is a waveform, then step 803 can be executed to send an RRC connection reconfiguration message to the terminal to indicate that the waveform used by PUSCH is the second waveform (the first waveform (CP-OFDM waveform) has no power gain, and the waveform currently used by PUSCH is the first waveform. If there is a waveform (CP-OFDM waveform), 803 may not be performed, and the terminal continues to use the first waveform (CP-OFDM waveform) to send uplink information.
  • the second waveform such as the DFT-s-OFDM waveform
  • step 803 is performed.
  • the network device may not determine whether the current PUSCH waveform used by the terminal is the CP-OFDM waveform, and indicate to the terminal through the RRC connection reconfiguration message that the PUSCH waveform is the DFT-s-OFDM waveform.
  • the terminal receives the waveform used by the PUSCH indicated by the network device through the RRC connection reconfiguration message, it sends the uplink information by using the DFT-s-OFDM waveform.
  • the modulation mode configured by the network device for the terminal is 256QAM
  • the PUSCH resource location configured for the terminal is Outer RB.
  • the DFT-s-OFDM waveform gain is higher than that of the waveform.
  • the network device can further determine whether the power gain of spatial multiplexing is higher than that of using DFT-s-OFDM waveform.
  • the current networking mode corresponding to the terminal is NSA
  • the resource allocation mode configured for the terminal is TDM.
  • the maximum transmit power capability of the terminal is the sum of the maximum transmit power of the two antennas, in this case, due to the MPR value band
  • the power gain of the incoming spatial multiplexing is higher than that of using the DFT-s-OFDM waveform. Therefore, the use of the CP-OFDM waveform can help improve the uplink transmission performance and improve the user experience.
  • the sounding reference signal (SRS) configured for the terminal is ) resources, port numbers or the maximum rank of the antennas used are all configured for the multi-antenna mode. Therefore, in the case where the DFT-s-OFDM waveform supports only a single stream, the sounding reference signal ( sounding reference signal, SRS) resource, SRS port (port) or the maximum rank of the antenna used (maxRank), will cause waste of resources.
  • SRS sounding reference signal
  • the SRS resource, SRS port or antenna can be reconfigured for the terminal through the RRC connection reconfiguration message One or more of the largest ranks.
  • the network device may reconfigure the SRS resource and/or the SRS port for the terminal through the SRS configuration (SRS-Config) in the RRC connection reconfiguration message. For example, configure the number of ports used for the codebook from other values to 1, and the port is port1.
  • the network device may reconfigure the maximum antenna rank for the terminal through PUSCH-Config in the RRC connection reconfiguration message.
  • the SRS resources of CodeBook are reconfigured to a single resource corresponding to port1, which can reduce the occupation of network SRS resources; the SRS resources of CodeBook are reconfigured to port1, which is helpful for the terminal to adopt the small cyclic delay diversity (SCDD) transmission method.
  • SCDD small cyclic delay diversity
  • reconfiguring maxRank to 1 also helps the terminal to adopt SCDD transmission mode to improve the transmission power of SRS.
  • the SRS-related configuration in the RRC connection reconfiguration can also be reconfigured, for example, in the following ways:
  • the first possible way is to use the method of step 803, that is, the network device sends an RRC connection reconfiguration message to the terminal to indicate the waveform used by the PUSCH. waveform.
  • the second possible way is that the network device can directly indicate the waveform used by the PUSCH to the terminal through the downlink control message, that is, step 803 can be replaced with, the network device sends a downlink control message to the terminal, and the downlink control message indicates the waveform used by the PUSCH, such as:
  • the downlink control message includes a waveform indication, and the waveform indication is used to indicate the waveform adopted by the PUSCH, then step 804 may be replaced with the terminal sending the uplink information according to the waveform adopted by the PUSCH indicated by the waveform indication.
  • the network device may indirectly indicate to the terminal the waveform adopted by the PUSCH by indicating the BWP to the terminal. Different waveforms correspond to different BWPs.
  • the network device can determine the BWP corresponding to the waveform used by the PUSCH determined by the terminal, and then can send a downlink control message to the terminal.
  • the downlink control message instructs the terminal to send the BWP of the uplink information.
  • the terminal can determine the waveform adopted by the PUSCH corresponding to the BWP according to the configuration information.
  • the downlink control message may be a downlink control information (downlink control information, DCI) message.
  • the network device may also indicate the waveform adopted by the PUSCH to the terminal through other signaling messages or signaling messages that appear in the future.
  • Waveform switching through RRC signaling requires uplink and downlink signaling, which increases signaling overhead, and the delay of RRC signaling itself is relatively large; while BWP switching has no signaling overhead, and the delay only needs a few milliseconds. More than 1/10 of the RRC signaling delay. Therefore, compared with the way of using the RRC signaling, the way of using the BWP to indicate the waveform can reduce the signaling overhead and reduce the delay.
  • FIG. 9 it is a schematic flowchart of another waveform indication method provided by an embodiment of the present application.
  • the network device sets the correspondence between multiple different BWPs and different waveforms.
  • the terminal After the terminal is connected to the network, send configuration information to the terminal, where the configuration information includes BWPs corresponding to different waveforms configured for the terminal.
  • the configuration information includes BWP1 and BWP2.
  • BWP1 corresponds to the CP-OFDM waveform and BWP2 corresponds to the DFT-s-OFDM waveform.
  • the configuration information includes BWP1, BWP2, BWP3, and BWP4.
  • BWP1 corresponds to the CP-OFDM waveform
  • BWP2 corresponds to the DFT-s-OFDM waveform
  • BWP3 corresponds to the CP-OFDM waveform
  • BWP4 corresponds to the CP-OFDM waveform.
  • the terminal sends a UE capability information (UE Capability Information) message to the network device.
  • UE Capability Information may include MPR information of the terminal.
  • step 902 may be prior to the step 903, or the step 903 may be prior to the step 902.
  • the network device indicates to the terminal through Msg2 the waveform adopted by the PUSCH, and the waveform may be specified by a communication protocol, such as the first waveform. Further, the terminal sends the UE Capability Information message to the network device using the first waveform indicated by Msg2.
  • the network device determines the waveform used by the PUSCH according to the MPR information and the power impact parameter reported by the terminal. For how the network device determines the waveform adopted by the PUSCH according to the MPR information, reference may be made to the relevant description of 802, which will not be repeated here.
  • the waveform used by the PUSCH may be determined according to the default value of the MPR specified by the communication protocol and combined with the power influence parameter.
  • the network device sends a downlink control message to the terminal, where the downlink control message indicates the BWP used by the terminal to send the uplink information, that is, the waveform used by the PUSCH is indicated by indicating the BWP.
  • the waveform used by the PUSCH determined by the network device is the second waveform
  • the network device determines the BWP corresponding to the second waveform according to the set correspondence between different BWPs and different waveforms.
  • the second waveform is a DFT-s-OFDM waveform
  • the second waveform corresponds to BWP2 in the BWP configured for the terminal, that is, the second waveform is the uplink waveform configured for BWP2
  • the network device instructs the terminal to switch to use BWP2 to send uplink information, that is Instruct the terminal to use DFT-s-OFDM waveform to send uplink information.
  • the terminal receives the downlink control message, and determines the waveform adopted by the PUSCH according to the BWP indicated by the downlink control message.
  • the BWP indicated by the downlink control information is BWP2
  • the terminal determines that the waveform corresponding to BWP2 is the DFT-s-OFDM waveform according to the configuration information
  • the terminal determines that the waveform used by the PUSCH is the DFT-s-OFDM waveform.
  • the downlink control message may be a downlink control information (downlink control information, DCI) message.
  • DCI downlink control information
  • the 5G protocol introduces the concept of BWP. The protocol supports the configuration of multiple BWPs in the same cell. Each BWP has different uplink and downlink pre-configured parameters. Different BWPs can dynamically carry DCI messages through the physical downlink control channel (PDCCH). switch. If the PUSCH configuration (PUSCH-config) messages of different BWP configurations correspond to different transformPrecoder field parameters, the switching of the DFT-s-OFDM waveform and the CP-OFDM waveform is implied at the same time as the BWP switching.
  • PUSCH configuration (PUSCH-config) messages of different BWP configurations correspond to different transformPrecoder field parameters
  • the network device indicates to the terminal the waveform adopted by the PUSCH through Msg2, and the waveform may be specified by the communication protocol.
  • the network device can determine, according to the MPR information, which waveform the terminal adopts to make the terminal's transmit power gain higher.
  • the waveform configured by the network device to the terminal through Msg2 is the first waveform (for example, the CP-OFDM waveform).
  • the network device determines that the power gain of the second waveform (such as the DFT-s-OFDM waveform) is higher than that of the first waveform (CP-OFDM waveform) according to the MPR information, and determines that the waveform used by the current PUSCH is the first waveform. If there is a waveform, then step 905 can be executed to send an RRC connection reconfiguration message to the terminal to indicate that the waveform used by PUSCH is the second waveform (the first waveform (CP-OFDM waveform) has no power gain, and the waveform currently used by PUSCH is the first waveform. If there is a waveform (CP-OFDM waveform), 905 may not be performed, and the terminal continues to use the first waveform (CP-OFDM waveform) to send uplink information.
  • the second waveform such as the DFT-s-OFDM waveform
  • step 905 may be executed.
  • the network device may not determine whether the waveform used by the terminal's current PUSCH is the CP-OFDM waveform.
  • the terminal determines that the waveform used by the PUSCH is the CP-OFDM waveform according to the BWP indicated by the downlink control message, and the terminal uses the CP-OFDM waveform.
  • the waveform sends upstream information.
  • the terminal uses the downlink control message to instruct the waveform used by the PUSCH corresponding to the BWP to send the uplink information. It should be noted that, after determining the waveform used by the PUSCH according to the downlink control message, the terminal can use the waveform when using the PUSCH to send uplink information subsequently until it receives another waveform indicated by the network device again.
  • the uplink information may include: an RRC connection establishment complete message, an RRC connection complete message, and other subsequent uplink information (such as uplink data) and the like.
  • the network device may use different PUSCH resources specified in the protocol and MPR values under different modulation modes as the maximum MPR of the terminal to determine the PUSCH usage for the terminal. waveform.
  • the waveform used by the PUSCH is determined in combination with the way of determining the power gains of different waveforms described in the embodiment corresponding to FIG. 8 , which will not be repeated here.
  • the network device can configure different power influencing parameters and the mapping relationship with the waveform used by the PUSCH of the terminal.
  • the power influencing parameter may include the networking mode of the terminal, the number of transmit antennas on the terminal, the maximum transmit power capability of the terminal, the resource allocation mode, the modulation mode of the PUSCH (or the distance between the terminal and the network device) one or more.
  • the mapping relationship is shown in Table 12.
  • the network device when the terminal is attached to the network, the network device obtains capability information of the terminal, and the capability information may include the networking mode of the terminal, the number of transmit antennas on the terminal, the maximum transmit power capability of the terminal, and the resource allocation mode. one or more.
  • the network device configures the resource used by the PUSCH and the modulation mode of the PUSCH for the terminal.
  • the network device configures the waveform used by the PUSCH for the terminal according to the capability information of the terminal, the resources used for the PUSCH configured for the terminal, and the modulation mode of the PUSCH resources, combined with the mapping relationship. After configuring the waveform used by the PUSCH for the terminal, the network device indicates the waveform used by the PUSCH to the terminal.
  • the network device may determine the waveform used by the PUSCH for the terminal according to the MPR information and the changed power impact parameter. For example, in order to prevent a ping-pong handover waveform from occurring in the terminal, the network device may determine, according to the hysteresis threshold, the timing of determining the waveform used by the PUSCH for the terminal according to the MPR information and the changed power influence parameter.
  • the network device After the network device sends the first message to the terminal, after the duration indicated by the hysteresis threshold, it determines whether the parameter value of the power impact parameter on the terminal changes, and then decides whether to determine the PUSCH used by the terminal according to the MPR information and the changed power impact parameter. waveform. In another example, the terminal device may decide whether to perform handover again according to the hysteresis threshold. For example, after receiving the first message sent by the network device, when the elapsed time does not reach the hysteresis threshold, the terminal receives a message indicating the waveform used by the PUSCH again. When the duration reaches the hysteresis threshold, the terminal can perform the operation of switching waveforms.
  • the terminal After the terminal receives the first message sent by the network device, when the elapsed time does not reach the hysteresis threshold, it receives the message indicating the waveform used by the PUSCH again, and the terminal can discard the re-received message indicating the waveform used by the PUSCH. Waveform message.
  • the following describes in detail the above-mentioned implementation manner in which the network device indicates the waveform used by the PUSCH to the terminal according to the MPR information reported by the terminal in the form of an example in combination with specific application scenarios, as shown in FIG. 10 .
  • an example is taken through the RRC connection reconfiguration message when the network device indicates to the terminal the waveform adopted by the PUSCH.
  • a terminal sends a random access request to a network device.
  • the random access request is used to initiate a contention-based random access procedure.
  • the terminal may send a random access request to the network device after receiving the first indication information of the network device.
  • the first indication information is used to instruct the terminal to initiate a contention-based random access procedure.
  • the terminal may also send a random access request to the network device during initial access.
  • the terminal may trigger initial access when the terminal is powered on or off the airplane mode.
  • the terminal may also send a random access request to the network device during cell handover.
  • the terminal sends a random access request to the network device when the uplink is out of synchronization, or when the RRC connection is reestablished, or when the transition from RRC_INACTIVE occurs.
  • the terminal may also be triggered to send a random access request to the network device in other ways.
  • the network device after receiving the random access request from the terminal, the network device sends a random access response (RAR) to the terminal.
  • RAR random access response
  • the random access response is used to indicate that the waveform used by the PUSCH is the first waveform, such as the CP-OFDM waveform.
  • the random access response includes waveform indication information of the PUSCH.
  • the waveform information of PUSCH is used to indicate the CP-OFDM waveform.
  • the RAR may further include PUSCH modulation information and PUSCH resource information, where the modulation information of the PUSCH is used to indicate the modulation mode of the PUSCH, and the PUSCH resource information is used to indicate the position and size of the PUSCH resource.
  • the random access request may be Msg1 or MsgA.
  • the random access response is Msg2.
  • the random access response is MsgB.
  • the network device may not need to indicate the waveform used by the terminal PUSCH.
  • the waveform supported in LTE is DTF-s-OFDM.
  • the network device does not need to indicate the waveform used by PUSCH to the terminal, and the terminal can default the waveform used by PUSCH to DFT-s-OFDM.
  • the terminal supports multiple waveforms, for example, in NR, both CP-OFDM and DFT-s-OFDM waveforms are supported, and the network device indicates to the terminal by default that the waveform used by the PUSCH is the CP-OFDM waveform.
  • the network device sends a UE capability request to the terminal.
  • the UE capability request is used to request to query the capability information of the terminal.
  • the terminal sends a UE capability information (UE Capability Information) message to the network device by using the first waveform.
  • UE Capability Information includes at least the MPR information of the terminal. For details, refer to step 801, which will not be repeated here.
  • the network device may determine, according to the MPR information and the power influence parameter that can affect the uplink transmit power, the waveform adopted by the PUSCH as the second waveform, such as the DFT-s-OFDM waveform.
  • the network device can estimate which waveform the terminal adopts according to the MPR information and the power influence parameter that can affect the uplink transmit power, so that the terminal's transmit power gain is higher.
  • the DFT-s-OFDM waveform is used. There is a transmit power gain over using the CP-OFDM waveform.
  • step 802 how to determine the waveform adopted by the PUSCH according to the MPR information and the power influence parameter that can affect the uplink transmit power, refer to the relevant description of step 802, which will not be repeated here.
  • the network device sends message 1 to the terminal.
  • the message 1 indicates that the waveform adopted by the PUSCH is the DFT-s-OFDM waveform.
  • Message 1 may be an RRC connection reconfiguration message, and the RRC connection reconfiguration message includes waveform indication information, and the waveform indication information is used to indicate that the waveform adopted by the PUSCH is a DFT-s-OFDM waveform.
  • message 1 is a downlink control message.
  • the downlink control message indicates the BWP adopted by the terminal, and the BWP indicates that the waveform adopted by the PUSCH is the DFT-s-OFDM waveform.
  • Message 1 may also be other protocol messages. In FIG. 10, the downlink control message is taken as an example.
  • the network device in the random access procedure in the NR, indicates to the terminal through Msg2 that the waveform adopted by the PUSCH is the CP-OFDM waveform.
  • the network device determines, according to the MPR information, that the DFT-s-OFDM waveform has a higher power gain than the CP-OFDM waveform, and determines that the current PUSCH used by the terminal is the CP-OFDM waveform, then the network device sends an RRC to the terminal.
  • the connection reconfiguration message indicates that the waveform adopted by the PUSCH is the DFT-s-OFDM waveform.
  • the network device determines, according to the MPR information, that the DFT-s-OFDM waveform has a higher power gain than the CP-OFDM waveform, and may not determine the waveform currently used by the terminal device for the PUSCH, but directly sends an RRC connection to the terminal
  • the reconfiguration message indicates that the waveform adopted by the PUSCH is the DFT-s-OFDM waveform.
  • the terminal sends the uplink information to the network device by using the DFT-s-OFDM waveform.
  • step 804 which is not repeated here.
  • FIG. 11 another possible waveform indication method is provided in this embodiment of the present application.
  • the solution described in FIG. 10 can be summarized as the terminal reports the waveform expected to be used by the PUSCH to the network device, and then the network device indicates to the terminal the waveform used by the PUSCH.
  • the terminal sends a waveform assistance message to the network device, where the waveform assistance message is used to indicate the waveform expected to be used by the terminal PUSCH.
  • the terminal may trigger the determination of the waveform used by the current PUSCH and other supported waveforms when the distance between the terminal and the network device changes, the path loss is large, or the amount of data to be sent on the terminal increases.
  • the gain of the transmit power and then determine whether to switch the waveform adopted by the current PUSCH. For example, when it is determined that the revenue of the currently used CP-OFDM waveform is lower than that of the DFT-s-OFDM waveform, a waveform assistance message may be sent to the network device, and the waveform assistance message indicates that the waveform expected to be used by the terminal PUSCH is DFT-s -OFDM waveform.
  • the terminal receives the PUSCH adoption waveform indicated by the network device through Msg2.
  • the waveform used by the network device through the PUSCH indicated by Msg2 is the first waveform, such as the CP-OFDM waveform, and the terminal may send the waveform assistance message to the network device by using the CP-OFDM waveform.
  • the terminal can trigger the determination of the current CP-OFDM waveform and the current used CP-OFDM waveform when the distance range from the base station changes, the path loss is large, the amount of data to be sent on the terminal increases, or the loss of the terminal equipment is large.
  • DFT-s-OFDM waveform transmit power gain, and then determine whether to switch to use DFT-s-OFDM to transmit uplink information.
  • whether to perform waveform switching may be determined by using the method of determining the waveform switching benefit described in the embodiment corresponding to FIG. 8 .
  • the terminal is configured with different parameters, and the mapping relationship with the waveform adopted by the PUSCH of the terminal.
  • the parameters may include one or more of the terminal's networking mode, the number of transmit antennas on the terminal, the terminal's maximum transmit power capability, resource allocation mode, and PUSCH modulation mode (or the distance between the terminal and the network device).
  • the mapping relationship is shown in Table 12. The mapping relationship may be configured by the network device to the terminal, or specified for the communication protocol.
  • the waveform assistance messages may reuse assistance messages provided by current communication protocols.
  • an auxiliary message includes the following information:
  • waveform assistance messages may be in the format shown in UEAssistanceInformation-vxxx-IEs as follows:
  • the network device after receiving the waveform assistance message, the network device sends an RRC connection reconfiguration message to the terminal, where the RRC connection reconfiguration (RRC Connection Reconfiguration) message is used to indicate the waveform adopted by the PUSCH.
  • the RRC Connnection Reconfiguration message may include waveform indication information, where the waveform indication information is used to indicate the waveform adopted by the PUSCH.
  • the waveform used by the PUSCH indicated by the waveform indication information is the waveform expected to be used by the PUSCH reported by the terminal through the waveform auxiliary message.
  • the terminal receives the RRC connection reconfiguration message from the network device, and the terminal sends uplink information to the network device using the waveform used by the PUSCH indicated by the RRC connection reconfiguration message.
  • the modulation mode configured by the network device for the terminal is 256QAM
  • the PUSCH resource location configured for the terminal is Outer RB.
  • the DFT-s-OFDM waveform gain is higher than that of the waveform.
  • the terminal device supports MIMO, for example, supports using two antennas to send information
  • the terminal can further determine whether the power gain of spatial multiplexing is higher than that of using DFT-s-OFDM waveform.
  • the current networking mode corresponding to the terminal is NSA
  • the resource allocation mode configured by the network device for the terminal is TDM.
  • the maximum transmit power capability of the terminal is the sum of the maximum transmit powers of the two antennas, in this case, due to the MPR
  • the power gain of spatial multiplexing brought by the value is higher than that of using the DFT-s-OFDM waveform. Therefore, the use of the CP-OFDM waveform can help improve the uplink transmission performance and improve the user experience.
  • the network device can also configure the sounding reference for the terminal.
  • the signal (sounding reference signal, SRS) resource, port number or the maximum rank of the antenna used are all configured for the use of multiple antennas. Therefore, in the case where the DFT-s-OFDM waveform only supports a single stream, the multiple antennas are still used. Sounding reference signal (sounding reference signal, SRS) resources, SRS ports (ports), or maximum rank (maxRank) of the antennas used in the antenna configuration will result in waste of resources.
  • the network device when the network device determines that the waveform adopted by the PUSCH reported by the terminal through the waveform assistance message is the DFT-s-OFDM waveform, it can reconfigure the terminal one of SRS resources, SRS ports, or the maximum rank of the antenna or multiple. For example, the network device may configure one or more of SRS resources, SRS ports, or maximum rank of antennas to the terminal through an RRC connection reconfiguration message. As an example, the network device may send one or more of the SRS resource, the SRS port, or the maximum rank of the antenna, and the waveform adopted by the PUSCH to the terminal through a different RRC connection reconfiguration message.
  • the network device may send one or more of the SRS resources, the SRS port, or the maximum antenna rank and the waveform used by the PUSCH to the terminal through the same RRC connection reconfiguration message, that is, the RRC connection in step 1102.
  • the reconfiguration message may also include one or more of SRS resources, SRS ports, or the maximum rank of the antenna.
  • the network device may reconfigure the SRS resource and/or the SRS port for the terminal through the SRS configuration (SRS-Config) in the RRC connection reconfiguration message. For example, configure the number of ports used for the codebook from other values to 1, and the port is port1.
  • the network device may reconfigure the maximum antenna rank for the terminal through PUSCH-Config in the RRC connection reconfiguration message. For example, reconfigure the antenna maximum rank to 1.
  • the SRS resources of CodeBook are reconfigured to a single resource corresponding to port1, which can reduce the occupation of network SRS resources; the SRS resources of CodeBook are reconfigured to port1, which helps the terminal to use SCDD transmission to improve the transmit power of SRS; reconfigure maxRank to 1. It is also helpful for the terminal to adopt the SCDD transmission mode to improve the transmission power of the SRS.
  • the first possible way is to adopt the method of step 1102, that is, the network device sends an RRC connection reconfiguration message to the terminal to indicate the waveform used by the PUSCH. waveform.
  • the second possible way is that the network device can directly indicate the waveform used by the PUSCH to the terminal through the downlink control message, that is, step 1102 can be replaced by: the network device sends a downlink control message to the terminal, and the downlink control message indicates the waveform used by the PUSCH, such as:
  • the downlink control message includes a waveform indication, and the waveform indication is used to indicate the waveform adopted by the PUSCH, and step 1103 may be replaced with the terminal sending the uplink information according to the waveform adopted by the PUSCH indicated by the waveform indication.
  • the third possible way is that the network device may indirectly indicate to the terminal the waveform adopted by the PUSCH by indicating the BWP to the terminal. Different waveforms correspond to different BWPs.
  • the network device can determine the BWP corresponding to the waveform used by the PUSCH determined by the terminal, and then can send a downlink control message to the terminal.
  • the downlink control message instructs the terminal to send the BWP of the uplink information.
  • the terminal can determine the waveform adopted by the PUSCH corresponding to the BWP according to the configuration information.
  • the downlink control message may be a downlink control information (downlink control information, DCI) message.
  • the network device may also indicate the waveform adopted by the PUSCH to the terminal through other signaling messages or signaling messages that appear in the future.
  • Step 1004 is executed when the trigger determines that the waveform adopted by the PUSCH needs to be switched.
  • the change in the distance between the terminal and the network device may be that the distance between the terminal and the network device increases to reach a length threshold.
  • the path loss is relatively large, for example, the terminal may determine that the path loss reaches the path loss threshold.
  • the amount of data to be sent on the terminal increases, for example, it may be that the percentage of the increase in the amount of data to be sent on the terminal reaches a percentage threshold.
  • the terminal sends a waveform assistance message to the network device, where the waveform assistance message is used to indicate the waveform expected to be used by the terminal PUSCH.
  • the waveform assistance message is used to indicate the waveform expected to be used by the terminal PUSCH.
  • the terminal receives the PUSCH adoption waveform indicated by the network device through Msg2.
  • the waveform used by the network device through the PUSCH indicated by Msg2 is the CP-OFDM waveform
  • the terminal may send the waveform assistance message to the network device by using the CP-OFDM waveform.
  • the terminal can trigger to determine the currently used CP-OFDM waveform and DFT-s-OFDM waveform when the distance range from the base station changes, the path loss is large, the amount of data to be sent on the terminal increases, etc. and then determine whether to switch to using the DFT-s-OFDM waveform to transmit uplink information. For example, when it is determined that the gain of the currently used CP-OFDM waveform is less than the gain of the transmit power of the DFT-s-OFDM waveform, the waveform assistance message sent to the network device indicates that the waveform expected by the terminal PUSCU is the DFT-s-OFDM waveform.
  • the network device after receiving the waveform assistance message from the terminal, the network device sends a downlink control message to the terminal, where the downlink control message indicates the BWP used by the terminal to send uplink data.
  • the waveform expected to be used by the PUSCH reported by the terminal is the DFT-s-OFDM waveform
  • the BWP used by the terminal to send the uplink data indicated by the downlink control message is BWP2.
  • BWP2 DFT-s-OFDM waveform
  • the terminal receives the downlink control message, and determines the waveform adopted by the PUSCH according to the BWP indicated by the downlink control message, for example, the DFT-s-OFDM waveform. For example, according to the configuration information, the terminal determines that the waveform corresponding to BWP2 is the DFT-s-OFDM waveform, and the terminal determines that the waveform used by the PUSCH is the DFT-s-OFDM waveform. For details, please refer to 906, which will not be repeated here.
  • the terminal uses the downlink control message to instruct the waveform used by the PUSCH corresponding to the BWP to send uplink information.
  • the terminal uses the downlink control message to instruct the waveform used by the PUSCH corresponding to the BWP to send uplink information.
  • the terminal uses the downlink control message to instruct the waveform used by the PUSCH corresponding to the BWP to send uplink information.
  • the waveform used by the PUSCH corresponding to the BWP to send uplink information.
  • the following describes the waveform used by the PUSCH indicated by the network device according to the waveform expected to be used by the PUSCH reported by the terminal in the form of an example in combination with specific application scenarios, as shown in FIG. 13 .
  • the network device uses the downlink control message as an example to indicate to the terminal the waveform used by the PUSCH.
  • the terminal sends a random access request to a network device.
  • the random access request is used to initiate a contention-based random access procedure. Refer to step 1001, which is not repeated here.
  • the network device may set the correspondence between multiple different BWPs and different waveforms. For details, refer to the relevant description of step 901, which will not be repeated here.
  • the network device after receiving the random access request from the terminal, the network device sends a random access response (RAR) to the terminal.
  • RAR random access response
  • the random access response is used to indicate that the waveform adopted by the PUSCH is the CP-OFDM waveform.
  • S1002 which will not be repeated here.
  • the terminal can trigger to determine whether the waveform used by the PUSCH needs to be switched when the distance between the terminal and the base station changes, the path loss is large, or the amount of data to be sent on the terminal increases.
  • step 1304 is executed. As an example, it is determined that the waveform used for switching the PUSCH is the DFT-s-OFDM waveform.
  • the network device sends configuration information to the terminal, where the configuration information includes BWPs corresponding to different waveforms configured for the terminal.
  • the configuration information includes BWPs corresponding to different waveforms configured for the terminal.
  • the terminal uses the CP-OFDM waveform to send a waveform assistance message to the network device, where the waveform assistance message is used to indicate the waveform expected to be used by the terminal PUSCH.
  • the waveform expected to be used by the terminal PUSCH is the DFT-s-OFDM waveform.
  • the waveform auxiliary message please refer to the relevant description of step 1101, which will not be repeated here.
  • the network device after receiving the waveform assistance message from the terminal, the network device sends a downlink control message to the terminal, where the downlink control message indicates the BWP used by the terminal to send uplink data.
  • the waveform expected to be used by the PUSCH reported by the terminal is the DFT-s-OFDM waveform
  • the BWP used by the terminal to send the uplink data indicated by the downlink control message is BWP2.
  • BWP2 DFT-s-OFDM waveform
  • the terminal receives the downlink control message, and determines the waveform adopted by the PUSCH according to the BWP indicated by the downlink control message, such as a DFT-s-OFDM waveform. For example, according to the configuration information, the terminal determines that the waveform corresponding to the BWP2 is the DFT-s-OFDM waveform, and the terminal determines that the waveform used by the PUSCH is the DFT-s-OFDM waveform. For details, please refer to 906, which will not be repeated here.
  • the terminal uses the downlink control message to instruct the waveform used by the PUSCH corresponding to the BWP to send uplink information.
  • the terminal uses the downlink control message to instruct the waveform used by the PUSCH corresponding to the BWP to send uplink information.
  • the terminal uses the downlink control message to instruct the waveform used by the PUSCH corresponding to the BWP to send uplink information.
  • the waveform used by the PUSCH corresponding to the BWP to send uplink information.
  • the communication methods provided by the embodiments of the present application are respectively introduced from the perspectives of terminals and network devices as execution subjects.
  • the terminal may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the network device may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function of the above functions is implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module, depending on the specific application and design constraints of the technical solution.
  • an embodiment of the present application further provides an apparatus 1400 , where the apparatus 1400 includes a receiving module 1401 and a sending module 1402 .
  • the apparatus 1400 is applied to a terminal.
  • the receiving module 1401 is configured to receive a first message from the network device, where the first message is used to instruct the physical uplink shared channel PUSCH of the terminal to adopt the first waveform; then, the sending module 1402 sends a message to the network when a preset condition is satisfied.
  • the device sends a capability information message of the terminal, the capability information message of the terminal includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal; further, the receiving module 1401 receives the second message from the network device, the The second message is used to indicate that the PUSCH of the terminal adopts a second waveform, and the second waveform is supported from the physical uplink shared channel PUSCH of the terminal according to the partial capabilities indicated by the MPR information and the capability information of the terminal determined in the waveform; the sending module 1402 sends the uplink information to the network device by using the second waveform.
  • the uplink transmit power when the terminal uses the second waveform to send the uplink information is greater than the uplink transmit power when the terminal uses the first waveform to send the uplink information.
  • the device applies network equipment.
  • the sending module 1402 is configured to send a first message to the terminal during the random access process, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts the first waveform;
  • the receiving module 1401 is configured to receive a message from the terminal.
  • capability information message where the capability information message includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal;
  • the sending module 1402 is further configured to send a first message to the terminal, where the first message is used to indicate the The waveform adopted by the PUSCH of the terminal is the second waveform; the second waveform is determined according to the partial capabilities indicated by the MPR information and/or the capability information of the terminal.
  • the apparatus is applied to a terminal.
  • the receiving module 1401 is configured to receive a first message from the network device, where the first message is used to instruct the physical uplink shared channel PUSCH of the terminal to use the first waveform; the sending module 1402 sends a waveform auxiliary message to the network device, the waveform The auxiliary message is used to indicate that the physical uplink shared channel PUSCH of the terminal expects to adopt the second waveform; the receiving module 1401 is further configured to receive a second message from the network device, where the second message is used to indicate that the PUSCH of the terminal adopts the second waveform waveform; the sending module 1402 is further configured to use the second waveform to send uplink information to the network device.
  • the uplink transmit power when the terminal uses the second waveform to send the uplink information is greater than the uplink transmit power when the terminal uses the first waveform to send the uplink information.
  • the apparatus applies network equipment.
  • the sending module 1402 is configured to send a first message to the terminal during the random access process, where the first message is used to instruct the terminal to use the first waveform of the physical uplink shared channel PUSCH;
  • the receiving module 1401 is configured to receive the waveform from the terminal an auxiliary message, where the waveform auxiliary message indicates that the terminal PUSCH expects to adopt a second waveform;
  • the sending module 1402 is further configured to send a second message to the terminal, where the second message is used to indicate that the PUSCH adopts the second waveform.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 1500 .
  • the apparatus 1500 may include at least one processor 1501 and a communication interface 1502 .
  • the communication interface 1502 is used to communicate with other devices through a transmission medium so that the apparatus used in the apparatus 1500 can communicate with other devices.
  • the communication interface 1502 may be a transceiver, circuit, bus, module, or other type of communication interface, and the other device may be other terminal or other network device.
  • the processor 1501 uses the communication interface 1502 to send and receive messages, and is used to implement the method implemented by the terminal or the network device in the foregoing embodiment.
  • the apparatus 1500 is used to implement the functions of the terminal in the above method, and the apparatus may be a terminal, or may be a chip or a chip system in the terminal.
  • At least one processor 1501 is configured to implement the function of the terminal in the above method in combination with the communication interface 1502 .
  • the communication interface 1502 is configured to receive a first message from a network device, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts the first waveform; the processor 1501 is configured to When it is determined that the preset condition is met, the communication interface 1502 is controlled to send a capability information message of the terminal to the network device, where the capability information message of the terminal includes the maximum transmit power fallback MPR information of the terminal and the capability information of the terminal; the communication The interface 1502 is further configured to receive a second message from the network device, where the second message is used to indicate that the PUSCH of the terminal adopts a second waveform, and the second waveform is based on the MPR information and the capability of the terminal The part of the capability indicated by the information is determined from the waveform supported by the physical uplink shared channel PUSCH of the terminal; the processor 1501 is further configured to control the communication interface 1502 to use the second waveform to send the uplink to the network device information.
  • the communication interface 1502 is configured to receive a
  • the communication interface 1502 is configured to receive a first message from a network device, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts a first waveform; the processor 1501 , used to control the communication interface 1502 to send a waveform assistance message to the network device, where the waveform assistance message is used to indicate that the physical uplink shared channel PUSCH of the terminal expects to use the second waveform; the communication interface 1502 is also used to receive data from the network The second message of the device, the second message is used to instruct the PUSCH of the terminal to use the second waveform; the processor 1501 is further configured to control the communication interface 1502 to use the second waveform to the network device Send upstream information.
  • the apparatus 1500 is used to implement the function of the network device in the above method, and the apparatus may be a network device, or may be a chip or a chip system in the network device.
  • At least one processor 1501 is configured to implement the function of the network device in the above method in combination with the communication interface 1502 .
  • the processor 1501 is configured to control the communication interface 1502 to send a first message to the terminal during the random access process, where the first message is used to indicate that the physical uplink shared channel PUSCH of the terminal adopts the first message. a waveform; the communication interface 1502 is further configured to receive a capability information message from the terminal, where the capability information message includes the maximum transmit power backoff MPR information of the terminal and the capability information of the terminal; the processor 1501 is further is used to control the communication interface 1502 to send a first message to the terminal, where the first message is used to indicate that the waveform adopted by the PUSCH of the terminal is the second waveform; the second waveform is based on the MPR The information and/or the part of the capability indicated by the capability information of the terminal is determined.
  • the processor 1501 is configured to control the communication interface 1502 to send a first message to the terminal during the random access process, where the first message is used to instruct the terminal to use the physical uplink shared channel PUSCH to use the first message. a waveform; the communication interface 1502 is further configured to receive a waveform assistance message from the terminal, the waveform assistance message indicating that the terminal PUSCH expects to use the second waveform; the processor 1501 is further configured to control the The communication interface 1502 sends a second message to the terminal, where the second message is used to indicate that the PUSCH adopts the second waveform.
  • apparatus 1500 may also include at least one memory 1503 for storing program computer programs.
  • the memory 1503 is coupled to the processor 1501 .
  • the coupling in the embodiments of the present application is the spaced coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between the devices, units or modules.
  • memory 1503 may also be located outside of device 1500.
  • the processor 1501 may cooperate with the memory 1503 .
  • the processor 1501 may execute computer programs stored in the memory 1503 . At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the connection medium between the communication interface 1502 , the processor 1501 , and the memory 1503 .
  • the memory 1503, the processor 1501, and the communication interface 1502 may be connected by a bus in FIG. 15, and the bus may be divided into an address bus, a data bus, a control bus, and the like.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg coaxial cable, optical fiber, digital subscriber line, DSL for short) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVD)), or semiconductor media (eg, SSDs), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种波形指示方法及芯片、系统,涉及通信技术领域。一方面,终端在随机接入完成后,可以在上报能力信息时向网络设备上报MPR信息。随机接入过程获取网络设备指示的PUSCH采用的波形是通信协议规定。网络设备能够根据MPR信息以及部分能力信息确定是否指示终端切换波形,比如可以通过下行控制消息指示BWP切换来进一步切换PUSCH采用的波形。另一方面,终端在随机接入完成后,可以通过向网络设备发送波形辅助消息,来指示终端的PUSCH期望波形。进而网络设备指示终端PUSCH采用的波形(期望波形)。

Description

一种波形指示方法及芯片、系统
相关申请的交叉引用
本申请要求在2020年08月28日提交中国专利局、申请号为202010889550.9、申请名称为“一种波形指示方法及芯片、系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种波形指示方法及芯片、系统。
背景技术
在长期演进(long term evolution,LTE)系统,上行信息传输时仅支持采用傅里叶扩频正交频分复用(discrete fourier transform-spread-orthogonal frequency division multiplexing,DFT-s-OFDM)波形。在新无线(new radio,NR)系统中,引入了循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)波形,即NR系统支持采用DFT-s-OFDM波形或者CP-OFDM波形进行上行信息传输。
在NR系统,目前无线通信中通过初始随机接入(random access,RA)过程实现终端与基站之间的确定物理上行共享信道(physical uplink shared channel,PUSCH)所采用的波形的。在NR系统中引入CP-OFDM波形后,随机接入流程完成之后,如何实现波形的切换,目前并没有一种可行的方案。
发明内容
本申请实施例提供一种波形指示方法及芯片、系统,用以提供随机接入流程完成之后的波形切换的可行方式,有助于提高终端的上行发射功率。
第一方面,本申请实施例提供一种通信系统,具体包括网络设备和终端。网络设备,用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;终端接收到第一消息后,在满足预设条件时,向网络设备发送第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;进而所述网络设备,还用于接收所述第二消息,向所述终端发送第二消息,所述第二消息用于指示终端的PUSCH采用第二波形;其中,所述第二波形是根据所述终端的MPR信息和/或终端的能力信息指示的部分能力确定的;所述终端采用第二波形发送上行信息的上行发射功率大于所述终端采用第一波形发送上行信息的上行发射功率。
本申请实施例中,由于在随机接入流程中,网络设备为终端配置PUSCH的波形,随机接入流程中配置的PUSCH的波形是通信协议规定。而在NR系统中支持两种波形,通过本申请实施例提供的方案,终端在上报能力信息时,将MPR信息上报给网络设备,进而网络设备可以根据MPR信息和终端的能力信息的部分来为终端确定切换波形是否能够带来终端上行发射功率的收益,进而指示终端所切换的波形,进而终端采用切换后的波形发送上行信息,可以提高发送上行信息的上行发射功率,有助于提高上行发送性能,提升 用户体验。
在第一方面的一种可能的实现方式中,所述第二消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。进一步地,终端接收到下行控制消息时,根据第一BWP与第二波形的对应关系,能够确定第一BWP对应的第二波形,进而采用第二波形向网络设备发送上行信息。由于下行控制消息的时延较小,并且信令开销较小,因此采用下行控制消息来指示PUSCH的波形,能够减少信令开销,降低时延。
在第一方面的另一种可能的实现方式中,所述终端,还用于接收来自网络设备的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。进一步地,终端设备接收到下行控制消息指示的第一BWP后,可以根据配置信息确定第一BWP对应的第二波形,进而终端采用第二波形发送上行信息。
在第一方面的又一种可能的实现方式中,所述第二消息为无线资源控制RRC连接重配置消息。第一消息可以是随机接入过程中的消息msg2。
在第一方面的又一种可能的实现方式中,所述满足预设条件包括:所述终端接收到来自网络设备的能力查询请求,所述能力查询请求用于请求查询所述终端的能力;或者,满足触发向网络设备发送终端的能力信息消息的触发条件。比如,终端可以在接收到来自网络设备的能力查询请求时,向网络设备发送能力信息消息。又比如,终端可以满足触发向网络设备发送终端的能力信息消息的触发条件时,例如确定完成随机接入流程时或者终端附着到网络的过程中,未接收到网络设备的能力查询请求等,向网络设备发送能力信息消息。
在第一方面的又一种可能的实现方式中,所述MPR信息包括不同的调制方式、不同的资源块RB位置、终端的PUSCH支持的两种波形以及不同MPR值之间的对应关系;或者,所述MPR信息包括多个差异值,所述差异值为在同一调制方式和同一RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值,其中不同的差异值所对应的调制方式或RB位置不同;或者,所述MPR信息包括内部RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值;或者,所述MPR信息包括在QPSK的调制方式下,所述终端的PUSCH支持的两种波形对应的MPR值的差值。
在第一方面的又一种可能的实现方式中,第三消息为终端的能力信息(UE Capability Information)消息。第三消息也可以为其它协议的消息。
第二方面,本申请实施例提供一种通信系统,具体包括:网络设备,用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端物理上行共享信道PUSCH采用第一波形;终端,用于向网络设备发送波形辅助消息,所述波形辅助消息指示所述终端PUSCH期望采用第二波形;所述网络设备,还用于接收来自网络设备的波形辅助消息,向所述终端发送第二消息,所述第二消息用于指示所述PUSCH采用第二波形;所述终端,还用于接收来自网络设备的第二消息,根据所述第二消息指示的第二波形向所述网络设备发送上行信息。
本申请实施例中,由于在随机接入流程中,网络设备为终端配置PUSCH的波形,随机接入流程中配置的PUSCH的波形是通信协议规定。而在NR系统中支持两种波形,通过本申请实施例提供的方案,终端确定期望采用的波形时,将期望采用的波形上报给网络 设备,进而网络设备指示终端切换波形,终端采用切换后的波形发送上行信息,提供一种终端参与波形切换的方式。终端可以在与网络设备之间的距离范围发生变化、路径损耗较大或终端上待发送的数据量增多的情况下,终端触发确定当前PUSCH采用的波形与其它支持的波形的发射功率的收益,进而确定是否切换当前PUSCH采用的波形,确定需要切换时,向网络设备发送PUSCH期望采用的波形。从而可以提高发送上行信息的上行发射功率,有助于提高上行发送性能,提升用户体验。
在第二方面的一种可能的实现方式中,所述第二消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。进一步地,终端接收到下行控制消息时,根据第一BWP与第二波形的对应关系,能够确定第一BWP对应的第二波形,进而采用第二波形向网络设备发送上行信息。由于下行控制消息的时延较小,并且信令开销较小,因此采用下行控制消息来指示PUSCH的波形,能够减少信令开销,降低时延。
在第二方面的另一种可能的实现方式中,还包括:所述终端,还用于接收来自网络设备的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第二方面的另一种可能的实现方式中,所述第二消息为无线资源控制RRC连接重配置消息。所述第一消息可以是随机接入过程中的消息msg2。
第三方面,基于第一方面同样的发明构思,本申请实施例提供一种波形指示方法。该方法的有益效果可以参见第一方面的相关描述,此处不再赘述。所述波形指示方法具体包括:终端接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;然后,所述终端在满足预设条件时,向网络设备发送第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;进一步地,所述终端接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形,所述第二波形是根据所述MPR信息和所述终端的能力信息指示的部分能力从所述终端的物理上行共享信道PUSCH支持的波形中确定的;所述终端采用所述第二波形向所述网络设备发送上行信息。终端采用第二波形发送上行信息时的上行发射功率大于终端采用第一波形发送上行信息时的上行发射功率。
在第三方面的一种可能的实现方式中,所述第一消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第三方面的另一种可能的实现方式中,还包括:所述终端接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第三方面的又一种可能的实现方式中,所述MPR信息包括不同的调制方式、不同的资源块RB位置、终端的PUSCH支持的两种波形以及不同MPR值之间的对应关系;或者,所述MPR信息包括多个差异值,所述差异值为在同一调制方式和同一RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值,其中不同的差异值所对应的调制方式或RB位置不同;或者,所述MPR信息包括内部RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值;或者,所述MPR信息包括在QPSK的调制方式下, 所述终端的PUSCH支持的两种波形对应的MPR值的差值。
在第三方面的又一种可能的实现方式中,所述终端的PUSCH支持的两种波形包括循环前缀的正交频分复用CP-OFDM波形和离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第三方面的又一种可能的实现方式中,所述满足预设条件包括:所述终端接收到来自网络设备的能力查询请求,所述能力查询请求用于请求查询所述终端的能力;或者,满足触发向网络设备发送终端的能力信息消息的触发条件。
在第三方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述方法还包括:所述终端接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
在第三方面的又一种可能的实现方式中,第三消息为终端的能力信息(UE Capability Information)消息。第三消息也可以为其它协议的消息。
第四方面,基于第二方面同样的发明构思,本申请实施例提供一种波形指示方法。该方法的有益效果可以参见第二方面的相关描述,此处不再赘述。波形指示方法具体包括:终端接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;所述终端向网络设备发送波形辅助消息,所述波形辅助消息用于指示终端的物理上行共享信道PUSCH期望采用第二波形;所述终端接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形;所述终端采用所述第二波形向所述网络设备发送上行信息。终端采用第二波形发送上行信息时的上行发射功率大于终端采用第一波形发送上行信息时的上行发射功率。
在第四方面的一种可能的实现方式中,所述第二消息为下行控制消息,所述下行消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第四方面的另一种可能的实现方式中,还包括:所述终端接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第四方面的又一种可能的实现方式中,所述PUSCH支持的波形包括循环前缀的正交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第四方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述方法还包括:所述终端接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
第五方面,基于与第一方面同样的发明构思,本申请实施例提供一种波形指示方法,有益效果可以参见第一方面的描述,此处不再赘述。波形指示方式包括:网络设备,用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;网络设备接收来自所述终端的第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;网络设备向所述终端发送第一消息,所述第一消息用于指示所述终端的PUSCH采用的波形为所述第二波形;所述第二波形是根据所述MPR信息和/或所述终端的能力信息指示的部分能力确定的。
在第五方面的一种可能的实现方式中,所述第一消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第五方面的另一种可能的实现方式中,所述方法还包括:
所述网络设备向所述终端发送配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第五方面的又一种可能的实现方式中,所述PUSCH支持的波形包括循环前缀的正交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第五方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述方法还包括:
所述网络设备向所述终端发送第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
在第五方面的另一种可能的实现方式中,所述第二消息为无线资源控制RRC连接重配置消息。所述第一消息可以是随机接入过程中的消息msg2。
在第五方面的又一种可能的实现方式中,第三消息为终端的能力信息(UE Capability Information)消息。第三消息也可以为其它协议的消息。
第六方面,本申请实施例提供一种波形指示方法,基于与第二方面同样的发明构思,本申请实施例提供一种波形指示方法,有益效果可以参见第二方面的描述,此处不再赘述。波形指示方法具体包括:网络设备在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端物理上行共享信道PUSCH采用第一波形;所述网络设备接收来自所述终端的波形辅助消息,所述波形辅助消息指示所述终端PUSCH期望采用第二波形;所述网络设备向所述终端发送第二消息,所述第二消息用于指示所述PUSCH采用第二波形。
在第六方面的一种可能的实现方式中,所述第二消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第六方面的另一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端发送配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第六方面的又一种可能的实现方式中,所述PUSCH支持的波形包括循环前缀的正交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第六方面的又一种可能的实现方式中,所述第二消息为无线资源控制RRC连接重配置消息。第一消息可以是随机接入过程中的消息msg2。
在第六方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述方法还包括:所述网络设备向所述终端发送第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
第七方面,本申请实施例提供一种芯片,该芯片包括处理器和通信接口。该芯片可以应用于终端。所述通信接口,用于接收来自网络设备的第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;所述处理器,用于在确定满足预设条件时,控制所述通信接口向网络设备发送第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;所述通信接口,还用于接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形,所述第二波形是根据所述MPR 信息和所述终端的能力信息指示的部分能力从所述终端的物理上行共享信道PUSCH支持的波形中确定的;所述处理器,还用于控制所述通信接口采用所述第二波形向所述网络设备发送上行信息。
在第七方面的一种可能的实现方式中,所述第一消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第七方面的另一种可能的实现方式中,所述通信接口,还用于接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第七方面的又一种可能的实现方式中,所述MPR信息包括不同的调制方式、不同的资源块RB位置、终端的PUSCH支持的两种波形以及不同MPR值之间的对应关系;或者,所述MPR信息包括多个差异值,所述差异值为在同一调制方式和同一RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值,其中不同的差异值所对应的调制方式或RB位置不同;或者,所述MPR信息包括内部RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值;或者,所述MPR信息包括在QPSK的调制方式下,所述终端的PUSCH支持的两种波形对应的MPR值的差值。
在第七方面的又一种可能的实现方式中,所述终端的PUSCH支持的两种波形包括循环前缀的正交频分复用CP-OFDM波形和离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第七方面的又一种可能的实现方式中,所述满足预设条件包括:所述通信接口接收到来自网络设备的能力查询请求,所述能力查询请求用于请求查询所述终端的能力;或者,所述处理器确定满足触发向网络设备发送所述终端的能力信息消息的触发条件。
在第七方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述方法通信接口,还用于接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
在第一方面的又一种可能的实现方式中,第三消息为终端的能力信息(UE Capability Information)消息。第三消息也可以为其它协议的消息。
第八方面,本申请实施例提供一种芯片,该芯片包括通信接口和处理器。该芯片可以应用于终端。所述通信接口,用于接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;所述处理器,用于控制所述通信接口向网络设备发送波形辅助消息,所述波形辅助消息用于指示终端的物理上行共享信道PUSCH期望采用第二波形;所述通信接口,还用于接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形;所述处理器,还用于控制所述通信接口采用所述第二波形向所述网络设备发送上行信息。
在第八方面的一种可能的实现方式中,所述第二消息为下行控制消息,所述下行消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第八方面的另一种可能的实现方式中,所述通信接口,还用于接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第八方面的又一种可能的实现方式中,所述PUSCH支持的波形包括循环前缀的正 交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第八方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述通信接口,还用于接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
第九方面,本申请实施例提供一种芯片,该芯片包括通信接口和处理器。该芯片可以应用于网络设备。所述处理器,用于控制所述通信接口在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;所述通信接口,还用于接收来自所述终端的第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;所述处理器,还用于控制所述通信接口向所述终端发送第一消息,所述第一消息用于指示所述终端的PUSCH采用的波形为所述第二波形;所述第二波形是根据所述MPR信息和/或所述终端的能力信息指示的部分能力确定的。
在第九方面的一种可能的实现方式中,所述第一消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第九方面的另一种可能的实现方式中,所述通信接口,还用于向所述终端发送配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第九方面的又一种可能的实现方式中,所述PUSCH支持的波形包括循环前缀的正交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第九方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述通信接口还用于向所述终端发送第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
在第九方面的另一种可能的实现方式中,所述第二消息为无线资源控制RRC连接重配置消息。所述第一消息可以是随机接入过程中的消息msg2。
在第一方面的又一种可能的实现方式中,第三消息为终端的能力信息(UE Capability Information)消息。第三消息也可以为其它协议的消息。
第十方面,本申请实施例提供一种芯片,该芯片包括通信接口和处理器。该芯片可以应用于网络设备。所述处理器,用于控制所述通信接口在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端物理上行共享信道PUSCH采用第一波形;所述通信接口,用于接收来自所述终端的波形辅助消息,所述波形辅助消息指示所述终端PUSCH期望采用第二波形;所述处理器,还用于控制所述通信接口向所述终端发送第二消息,所述第二消息用于指示所述PUSCH采用第二波形。
在第十方面的一种可能的实现方式中,所述第二消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第十方面的另一种可能的实现方式中,所述处理器,还用于控制所述通信接口向所述终端发送配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第十方面的又一种可能的实现方式中,所述PUSCH支持的波形包括循环前缀的正 交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第十方面的又一种可能的实现方式中,所述第二消息为无线资源控制RRC连接重配置消息。第一消息可以是随机接入过程中的消息msg2。
在第十方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述处理器,还用于通过所述通信接口向所述终端发送第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
第十一方面,基于第一方面同样的发明构思,本申请实施例提供一种终端。终端包括接收模块和发送模块。接收模块用于接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;然后,发送模块在满足预设条件时,向网络设备发送终端的能力信息消息,所述终端的能力信息消息包括终端的最大发射功率回退MPR信息和终端的能力信息;进一步地,所述接收模块接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形,所述第二波形是根据所述MPR信息和所述终端的能力信息指示的部分能力从所述终端的物理上行共享信道PUSCH支持的波形中确定的;所述发送模块采用所述第二波形向所述网络设备发送上行信息。终端采用第二波形发送上行信息时的上行发射功率大于终端采用第一波形发送上行信息时的上行发射功率。
在第十一方面的一种可能的实现方式中,所述第一消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第十一方面的另一种可能的实现方式中,所述接收模块,还用于接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第十一方面的又一种可能的实现方式中,所述MPR信息包括不同的调制方式、不同的资源块RB位置、终端的PUSCH支持的两种波形以及不同MPR值之间的对应关系;或者,所述MPR信息包括多个差异值,所述差异值为在同一调制方式和同一RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值,其中不同的差异值所对应的调制方式或RB位置不同;或者,所述MPR信息包括内部RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值;或者,所述MPR信息包括在QPSK的调制方式下,所述终端的PUSCH支持的两种波形对应的MPR值的差值。
在第十一方面的又一种可能的实现方式中,所述终端的PUSCH支持的两种波形包括循环前缀的正交频分复用CP-OFDM波形和离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第十一方面的又一种可能的实现方式中,所述满足预设条件包括:所述接收模块接收到来自网络设备的能力查询请求,所述能力查询请求用于请求查询所述终端的能力;或者,满足触发向网络设备发送终端的能力信息消息的触发条件。
在第十一方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述接收模块,还用于接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
第十二方面,基于第二方面同样的发明构思,本申请实施例提供一种终端。该终端包 括接收模块和发送模块。接收模块用于接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;发送模块向网络设备发送波形辅助消息,所述波形辅助消息用于指示终端的物理上行共享信道PUSCH期望采用第二波形;接收模块,还用于接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形;发送模块还用于采用所述第二波形向所述网络设备发送上行信息。终端采用第二波形发送上行信息时的上行发射功率大于终端采用第一波形发送上行信息时的上行发射功率。
在第十二方面的一种可能的实现方式中,所述第二消息为下行控制消息,所述下行消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第十二方面的另一种可能的实现方式中,接收模块,还用于接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第十二方面的又一种可能的实现方式中,所述PUSCH支持的波形包括循环前缀的正交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第十二方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,所述方法还包括:所述终端接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
第十三方面,基于与第一方面同样的发明构思,本申请实施例提供一种网络设备,网络设备包括发送模块和接收模块。发送模块用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;接收模块用于接收来自所述终端的第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;发送模块,还用于向所述终端发送第一消息,所述第一消息用于指示所述终端的PUSCH采用的波形为所述第二波形;所述第二波形是根据所述MPR信息和/或所述终端的能力信息指示的部分能力确定的。
在第十三方面的一种可能的实现方式中,所述第一消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第十三方面的另一种可能的实现方式中,发送模块还用于向所述终端发送配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第十三方面的又一种可能的实现方式中,所述PUSCH支持的波形包括循环前缀的正交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第十三方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,发送模块,还用于向所述终端发送第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
在第十三方面的另一种可能的实现方式中,所述第二消息为无线资源控制RRC连接重配置消息。所述第一消息可以是随机接入过程中的消息msg2。
在第十三方面的又一种可能的实现方式中,第三消息为终端的能力信息(UE Capability Information)消息。第三消息也可以为其它协议的消息。
第十四方面,本申请实施例提供一种网络设备。网络设备包括发送模块和接收模块。发送模块用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端物理上行共享信道PUSCH采用第一波形;接收模块用于接收来自所述终端的波形辅助消息,所述波形辅助消息指示所述终端PUSCH期望采用第二波形;发送模块还用于向所述终端发送第二消息,所述第二消息用于指示所述PUSCH采用第二波形。
在第十四方面的一种可能的实现方式中,所述第二消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
在第十四方面的另一种可能的实现方式中,发送模块还用于向所述终端发送配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
在第十四方面的又一种可能的实现方式中,所述PUSCH支持的波形包括循环前缀的正交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
在第十四方面的又一种可能的实现方式中,所述第二消息为无线资源控制RRC连接重配置消息。第一消息可以是随机接入过程中的消息msg2。
在第十四方面的又一种可能的实现方式中,所述第二波形为DFT-s-OFDM波形,发送模块还用于向所述终端发送第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
第十五方面,为本申请实施例提供的一种计算机可读存储介质,存储有计算机程序,当所述计算机程序在计算机上执行时,使得计算机执行第三方面以及第三方面任一种可能的实现方式的方法,或执行第四方面以及第四方面任一种可能的实现方式的方法,或执行第五方面以及第五方面任一种可能的实现方式的方法,或执行第六方面以及第六方面任一种可能的实现方式的方法。
第十六方面,为本申请实施例提供的一种计算机程序产品,包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行第三方面以及第三方面任一种可能的实现方式的方法,或执行第四方面以及第四方面任一种可能的实现方式的方法,或执行第五方面以及第五方面任一种可能的实现方式的方法,或执行第六方面以及第六方面任一种可能的实现方式的方法。
另外,第三方面至第十六方面中任一种可能实现方式所带来的技术效果可参见系统部分中不同实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为传统的基于竞争的随机接入过程的方法的流程示意图;
图2为2-step基于竞争的随机接入过程的方法的流程示意图;
图3为本申请实施例中资源位置的示意图;
图4为本申请实施例中静态资源分配方式的示意图;
图5为本申请实施例中TDM资源分配方式的示意图;
图6为本申请实施例中共享资源配置方式的示意图;
图7为本申请实施例适用的一种网络架构示意图;
图8为本申请实施例中第一种波形指示方法示意图;
图9为本申请实施例中第二种波形指示方法示意图;
图10为本申请实施例中第三种波形指示方法示意图;
图11为本申请实施例中第四种波形指示方法示意图;
图12为本申请实施例中第五种波形指示方法示意图;
图13为本申请实施例中第六种波形指示方法示意图;
图14为本申请实施例的一种装置1400的结构示意图;
图15为本申请实施例的另一装置1500的结构示意图。
具体实施方式
在长期演进(long term evolution,LTE)系统,上行数据传输时仅支持采用傅里叶扩频正交频分复用(discrete fourier transform-spread-orthogonal frequency division multiplexing,DFT-s-OFDM)波形。在新无线(new radio,NR)系统中,引入了循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)波形,即NR系统支持采用DFT-s-OFDM波形或者CP-OFDM波形进行上行数据传输。目前无线通信中通过初始随机接入(random access,RA)过程实现终端与网络设备之间的确定传输上行数据所采用的波形的。
通常,终端在处于以下场景时,发起RA过程:1)、从无线资源控制空闲(radio resource control idle,RRC_IDLE)状态初始接入,即RRC连接建立;2)、无线资源控制(radio resource control,RRC)连接重建;3)、小区切换(handover);4)、终端的上行链路的同步状态为上行不同步。例如,终端在下行数据到达时,需要回应(混合自动重传请求(hybrid automatic repeat request,HARQ)信息(如确认(acknowledge,ACK)、或否认(non-acknowledge,NACK))而上行不同步;或者,上行数据到达时,上行不同步;5)、从无线资源控制未激活状态切换(transition from RRC_INACTIVE);6)、在添加辅小区(secondary cell,SCell)时建立时间对齐(to establish time alignment at SCell addition);7)、其他服务信息请求(request for other SI);8)、波束恢复请求(beam recovery Request)。
一般来说,RA过程分为基于竞争的RA过程和基于非竞争的RA过程。其中,在基于非竞争的RA过程中,网络设备为终端分配专用的随机接入信道(random access channel,RACH)资源进行接入,但当专用的RACH资源不足时,网络设备会指示终端发起基于竞争的RA过程。或者,终端可以根据自身需要,发起基于竞争的RA过程,以降低通信失败的可能性。
具体的,传统的基于竞争的RA过程可以如图1所示包括4个步骤,分别为:
101、终端向网络设备发送Msg1(message1,消息1)。Msg1承载在RACH上,用于承载终端发送给网络设备的前导序列(preamble)。其中,对于基于竞争的RA过程来说,preamble是由终端随机选择的。通常,preamble是承载在随机接入无线网络临时标识(random access radio network temporary identifier,RA-RNTI)指示的物理随机接入信道(physical random access channel,PRACH)资源上发送的。目前,协议规定MSG1 preamble固定采用DFT-s-OFDM波形。
102、网络设备接收到来自终端的Msg1,向终端返回Msg2。Msg2可以理解为网络设备发送给终端的对Msg1的响应,即随机接入响应(random access response,RAR),承载在物理下行共享信道(physical downlink shared channel,PDSCH)上,可以包括用于指示 为Msg3分配的上行资源的信息、用于指示发送Msg3所采用的波形的信息等。其中,为Msg3分配的上行资源为物理上行共享信道(physical uplink shared channel,PUSCH)资源。
103、终端接收到来自网络设备的Msg2,终端发送Msg3。Msg3承载在PUSCH上,用于终端向网络设备请求建立无线资源控制(radio resource control,RRC)连接。Msg3所采用的波形是Msg2指示的波形。后续,终端在向网络设备发送上行数据时,延续Msg2指示的波形。
104、网络设备接收到来自终端的Msg3,向终端返回Msg4。Msg4承载在PDSCH上,用于基站通知终端随机接入竞争成功。
随着无线通信技术的发展,为了减少基于竞争的随机接入过程的时延,引入了2步(2-step)的基于非竞争的随机接入过程,具体如图2所示,分别为:
201、终端向网络设备发送MsgA。MsgA包括了传统的基于竞争的SA过程中Msg1和Msg3的功能。
202、网络设备接收到来自终端的MsgA,向终端发送MsgB。MsgB包括了传统的基于竞争的SA过程中Msg2和Msg4的功能。
其中,Msg1、Msg2、Msg3和Msg4可以参见图1中的相关介绍。可以理解的是,Msg1和Msg3虽然是并行发送的,但是Msg1承载在RACH上,Msg3承载在PUSCH上。目前MSG1 preamble固定采用DFT-s-OFDM波形和Msg3也采用固定的DFT-s-OFDM波形。Msg2携带用于指示发送上行数据采用的波形的信息。在随机接入完成后,后续可以采用Msg2指示的波形继续发送上行数据。
需要说明的是,终端发送上行数据采用PUSCH资源。终端发送上行数据的波形,也就是PUSCH采用的波形。
进一步的,在一些实施例中,在建立RRC连接后,网络设备需要修改终端发送上行数据的波形时,可以通过无线资源控制(radio resource control,RRC)连接重配置(RRC connection reconfiguration)消息来指示修改后的终端发送上行数据的波形。比如,可以通过RRC connection reconfiguration消息中PUSCH控制(pusch-config)字段中波形设置(transformPrecoder)来修改波形,enable表示DFT-s-OFDM波形,disable表示CP-OFDM波形。如果RRC connection reconfiguration消息中没有pusch-config消息,或者RRC connection reconfiguration消息有pusch-config字段但是pusch-config字段中没有transformPrecoder,则表示波形没有发生变化,沿用之前的波形。
在NR系统中引入CP-OFDM波形后,仅提出来可以通过RRC连接重配置消息来修改PUSCH采用的波形,但是针对某个终端来说,如何确定PUSCH应该采用哪一种波形,目前并没有一种可行的方案。
应知晓的是,PUSCH的上行发射功率可以理解为承载在PUSCH上的消息所使用的发射功率,受PUSCH发射功率的上限的限制。其中,PUSCH发射功率的上限与终端的最大发射功率能力和最大发射功率回退(maximum output power reduction,MPR)有关。而MPR是根据PUSCH采用的波形、调制方式和PUSCH资源位置确定的。因此,PUSCH采用的波形直接影响PUSCH的上行最大发射功率,影响终端上行数据的传输,比如出现网络卡顿情况,影响用户体验。进一步地,针对某个终端,如何确定该终端的PUSCH应该采用哪一种波形,对PUSCH的上行最大发射功率有着至关重要的作用。
基于此,本申请实施例提供一种波形指示方案,一种方式是,由网络设备为终端确定 PUSCH采用的波形,并指示给终端;另一种方式是,终端根据需求向网络设备上报PUSCH期望采用的波形,进而网络设备指示终端切换波形。
下面在对本申请实施例提供的方案进行详细说明之前,先对本申请实施例涉及到的技术概念以及技术术语进行说明。
1)PUSCH的上行发射功率。
PUSCH的上行发射功率可以满足如下表达式:
Figure PCTCN2021110645-appb-000001
其中,
Figure PCTCN2021110645-appb-000002
为PUSCH的上行发射功率(后续描述时简称为P PUSCH),P cmax,f,c(i)为PUSCH发射功率的上限(后续描述时简称为Pcmax),P o_PUSCH,b,f,c(j)为PUSCH的初始发射功率,μ为传输带宽对发送功率的影响因子,
Figure PCTCN2021110645-appb-000003
为传输带宽,α b,f,c(j)为路损折算因子,PL b,f,c(q d)为终端与网络设备之间的下行路径损耗,Δ TF,b,f,c(i)为码率对发射功率的影响量,f b,f,c(i,l)为网络设备通过发射功率功控(transmit power control,TPC)命令所指示的功率调整量。具体的,关于P PUSCH,b,f,c(i,j,qd,l)、P o_PUSCH,b,f,c(j)、μ、
Figure PCTCN2021110645-appb-000004
α b,f,c(j)、PL b,f,c(q d)、Δ TF,b,f,c(i)、f b,f,c(i,l)可以参见3GPP TS 38.213 V15.6.0中的相关介绍。
min括号中的第一项是PUSCH发射功率的上限P cmax,f,c(i),以下简写为P cmax,f,c,第二项是PUSCH的经过功控流程计算出来的需求功率,后续简写为Pcal。在网络设备覆盖较差的地方,PUSCH的上行发送功率主要受限于P cmax,f,c
示例的,将PUSCH发射功率的上限P cmax,f,c(i)简称为P cmax,f,c,PUSCH发射功率的上限满足下述表达式:
P cmax_L,f,c≤P cmax,f,c≤P cmax_H,f,c
P cmax_H,f,c=min{P EMAX,c-ΔT C,c
(P powerClass-ΔP powerClass)-max(max(MPR c,A-MPR c)+ΔT IB,c+ΔT C,c+ΔT RxSRS,c),P-MPR c)};
P cmax_H,f,c=min{P EMAX,c,P powerClass-ΔP powerClass}
其中,P cmax,f,c为PUSCH发射功率的上限,P cmax_L,f,c为PUSCH发射功率的上限的最小值,P cmax_H,f,c为PUSCH发射功率的上限的最大值,P EMAX,c为网络设备通过RRC信令指示给终端的最大发射功率,ΔT C,c为常数,P powerClass为终端的最大发射功率能力,ΔP powerClass为常数,MPR c为最大发射功率回退值,A-MPR c为额外功率回退值,ΔT IB,c为额外功率偏移量,ΔT RxSRS,c为常数,P-MPR c为满足人体吸收终端的电磁辐射量标准时的最大功率回退值。具体的,关于P cmax,f,c、P cmax_L,f,c、P cmax_H,f,c、P EMAX,c、ΔT C,c、P powerClass、ΔP powerClass、MPR c、A-MPR c、ΔT IB,c、ΔT RxSRS,c和P-MPR c可以参见3GPP TS 38.101-1 V15.6.0中的相关介绍,在此不再赘述。
在忽略上述关于PUSCH发射功率的上限的表达式中一些与场景相关的常量,仅考虑终端的最大发射功率能力、MPR c和P-MPR c的情况下,PUSCH发射功率的上限的表达式可以简化为表达式1:
P cmax=P max-max(MPR,P-MPR)               表达式1
P cmax为PUSCH发射功率的上限的简写,P max为终端的最大发射功率能力,MPR为最大发射功率回退值,P-MPR为满足人体吸收终端的电磁辐射量标准时最大发射功率回退值。
人体吸收终端的电磁辐射量可以通过特殊吸收比率(specific asorption rate,SAR)衡量。SAR指的是6分钟内,每千克人体组织吸收的电磁辐射量。一般来说,SAR越大,表示人吸收终端的电磁辐射量越大。美国联邦通信委员会(federal communications commission,FCC)规定人体吸收终端的电磁辐射量标准为SAR低于1.6瓦/千克。欧洲和中国采用的人体吸收终端的电磁辐射量标准是SAR不高于2瓦/千克。具体的,P-MPR是终端根据手机与人体之间的距离和人体吸收终端的电磁辐射量标准确定的。
进一步的,如果不考虑P-MPR对终端发射功率的上限的影响(即P-MPR为0的场景),表达式1还可以进一步简化为表达式2:
P cmax=P max-MPR                     表达式2
从表达式2可以看出,Pcmax主要由Pmax和MPR决定。表达式2也即印证了前面所说的PUSCH发射功率的上限与终端的最大发射功率能力和MPR有关。
基于表达2,终端的上行发射功率的表达时可以简化为表达式3:pcal需补充描述(如前面标绿色的部分)
P PUSCH=min(Pmax-MPR,Pcal)           表达式3
2)MPR。
MPR是根据PUSCH采用的波形、调制方式和PUSCH资源位置确定的。调制方式和PUSCH资源位置是网络设备指示给终端的。其中,不同的波形、调制方式和PUSCH资源位置的MPR是终端出厂之前预先存储在终端的。一般来说,MPR不会超过通信协议的规定。针对不同的功率等级,通信协议规定的MPR值可能不同。
示例性地,针对功率等级3(power class 3,PC3),在NR协议中关于MPR的规定可以参见表1所示。
表1
Figure PCTCN2021110645-appb-000005
Figure PCTCN2021110645-appb-000006
参见表1,当终端采用的波形为CP-OFDM、调制方式为QPSK、且网络设备为终端调度的PUSCH资源为Inner RB时,MPR的取值最大不得超过1.5dB。比如,终端的最大发射功率能力为23dB,则在终端采用的波形为CP-OFDM、调制方式为QPSK、且网络设备为终端调度的PUSCH资源为Inner RB的情况下,终端最多回退1.5dB,假定该回退值为x,即终端的PUSCH发射功率上限可以达到(23-x)dB。
示例性地,针对功率等级2(power class 2,PC2),在NR协议中关于MPR的规定可以参见表2所示。
表2
Figure PCTCN2021110645-appb-000007
从表1和表2可以看出,通过协议规定的MPR值均为小于或等于,表示终端可以选择合适自身的MPR值,但选择的MPR值不能超过表1或表2的限制。
需要说明的是,表1和表2中边界资源块(edge resource block,Edge RB)指的是位于用于NR通信的频带边界上的RB,外部资源块(outere resource block,Outer RB)位于内部资源块(inner resource block,Inner RB)和Edge RB之间。例如,以用于NR系统的频带的带宽为20M为例,如图3所示为一个用于NR通信的频带的示意图,位于频率f 1和频率f 2之间或频率f 5和频率f 6之间的RB为Edge RB,位于频率f 2和频率f 3之间或频率f 4和频率f 5之间的RB为Outer RB,位于频率f 3和频率f 4之间的RB为Inner RB。f1,f2…的取值具体可参考通信协议描述。
针对两种波形,通信协议之所以制定了不同的回退值,主要是因为两种波形具有不同的峰均比。峰均比是一种对波形的测量参数,等于波形的振幅除以有效值(RMS)所得到的一个比值。一般而言CP-OFDM的峰均比大于DFT-s-OFDM的峰均比,在同样的总功率的情况下,CP-OFDM波形更容易使得射频的功率放大器(power amplifier,PA)进入非线性区域,导致信号畸变,所以在相同的调制方式以及PUSCH资源下,CP-OFDM允许的MPR大于DFT-s-OFDM所允许的MPR。
3)非独立组网(Non-Standalone,NSA)和独立组网(Standalone,SA)。
独立组网是指新建5G网络,包括新基站、回程链路以及核心网。非独立组网是指使用现有的4G基础设施,进行5G网络的部署,基于NSA架构的5G载波仅承载用户数据,其控制信令仍通过4G网络传输。
在采用NSA的方式时,LTE制式(简称LTE)和NR(简称NR)制式同时工作,上行发送功率方面,当前的通信协议仅支持PC3。在采用PC3时,PUSCH的发射功率的上限为23dBm,因此,LTE制式和NR制式的总功率限制为23dBm。针对LTE制式和NR制式分配总功率时可以采用模式1-模式3中的任一种。
模式1:半静态方式。
半静态方式是采用平均分配的方式,LTE的功率的最大值LTE_P_Max=20,NR的功率最大值NR_P_Max=20。参见图4所示,可分别独立控制LTE功率和NR功率,控制LTE功率并不影响NR功率,控制NR功率时并不影响LTE功率。
模式2:时分复用(time-division multiplexing,TDM)方式。
参见图5所示,网络侧为终端配置TDM模式与具体的时隙分配方式,LTE制式与NR制式采用不同的时隙传输数据。
模式3:动态功率共享方式。
LTE制式和NR制式共享总功率,LTE制式和NR制式并发。示例性地,参见图6所示,LTE_P_Max+NR_P_Max<=ENDC_P_Max。ENDC_P_Max表示可供LTE制式和NR制式共享的最大总功率。
在采用SA方式的情况下,当前通信协议支持PC2和PC3。在采用SA方式下,上行发送功率方面,功率等级为PC2时,PUSCH发射功率的典型值为26dBm,功率等级为PC3时,PUSCH的发射功率的典型值为23dBm。
4)带宽部分(bandwidth part,BWP)。
在NR系统中引入BWP的概念,BWP可以理解为是系统的工作带宽的一些子集。BWP定义为一个载波内连续的多个资源块(Resource Block,RB)的组合。通信协议支持针对同一个小区配置多个BWP,每个BWP有不同的上下行预配置参数。针对BWP可以理解为,一个BWP相当于一个虚拟的小区,不同BWP可以通过物理下行控制信道(physical downlink control channel,PDCCH)承载的下行控制信息(downlink control information,DCI)动态切换。网络侧可以为终端配置一个或者多个BWP,作为一种示例,NR系统可以为终端配置4个BWP。
5)本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
应当理解,在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本 申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
另外,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图7示出了本申请实施例适用的一种通信系统的架构图。如图7所示,本申请实施例的通信系统包括网络设备和终端。终端与网络设备之间的通信方式为无线通信。其中,本申请实施例的终端是一种具有无线收发功能的设备。终端也可以称为终端设备(terminal equipment)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端的位置可以是固定的或者移动的。需要说明的是,终端可以支持至少一种无线通信技术,例如长期演进(long term evolution,LTE)、NR、宽带码分多址(wideband code division multiple access,WCDMA)等。例如,终端可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端等。又例如,本申请实施例的终端还可以是具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
本申请实施例的网络设备是一种为终端提供无线接入功能的设备,也可称之为接入网设备、无线接入网(radio access network,RAN)设备等。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR、WCDMA等。示例的,网络设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心、小站、微型站等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的网络设备或者未来演进的PLMN中的网络设备等。在一些实施例中,网络设备还可以为具有为终端提供无线通信功能的装置,例如芯片系统。 示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
应理解,图7所示的通信系统仅是一种示例性说明,并不构成对本申请实施例的通信系统的限定。示例的,本申请实施例不限定通信系统中网络设备的个数、终端的个数。例如,当本申请实施例的通信系统中包括多个网络设备时,网络设备与网络设备之间可以进行多点协同通信。例如,通信系统中包括多个宏基站、多个微基站,其中宏基站与宏基站、微基站与微基站、宏基站与微基站间可以进行多点协同通信。
需要说明的是,本申请实施例描述的通信系统的架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下结合具体实施例对本申请提供的方案进行详细说明。
下面结合图8对本申请实施例提供的波形指示方法进行详细说明。图8为本申请实施例提供的一种波形指示方法流程示意图。图8先对由网络设备为终端确定PUSCH采用的波形,并指示给终端进行详细说明。
801,终端向网络设备发送UE能力信息(UE Capability Information)消息。UE Capability Information消息中至少包括终端的MPR信息。
示例的,终端可以在附着网络的过程中或者随机接入流程完成之后,向网络设备发送UE Capability Information消息。又示例的,终端可以在接收到网络设备发送的UE Capability enquiry(UE能力请求)后,向网络设备发送UE Capability Information消息,并在UE Capability Information消息携带MPR信息。再示例的,终端也可以通过其它RRC信令消息,将自身所支持的MPR信息上报给网络设备。
UECapabilityInformation消息除了包括MPR信息以外,还可以包括终端的其它能力信息。比如终端的能力信息可以包括:UE支持的频段和频段组合,UE各个频段和频段组合支持的功率等级等。
在一些实施例中,终端可以在与网络设备之间的距离范围发生变化、路径损耗较大或终端上待发送的数据量增多的情况下,终端在网络设备上报能力信息时,将MPR信息发送给网络设备。
在一些实施例中,网络设备在随机接入流程中,通过Msg2向终端指示PUSCH采用的波形,该波形可以是通信协议规定的,比如第一波形。终端采用Msg2指示的第一波形向网络设备发送UE能力信息消息。
作为一种可能的实施方式,终端向网络设备发送终端的MPR信息时,也可以不通过UE Capability Information消息向网络设备发送MPR信息,可以通过其它协议消息向网络设备发送MPR信息,或者通过新消息向网络设备发送MPR信息,本申请实施例对终端向网络设备发送MPR信息采用的消息不作具体限定。
终端的MPR信息用于表征终端发送上行数据时支持的波形在不同调制方式下的MPR。
示例1中,MPR信息包括不同的资源块RB位置、不同的调制方式、终端发送上行数据时支持的两种波形以及不同MPR值之间的对应关系。
比如,参见表3所示。
表3
Figure PCTCN2021110645-appb-000008
示例2中,所述MPR信息包括多个差异值,所述差异值为在同一调制方式和同一RB位置下,所述终端设备发送上行数据时支持的两种波形对应的MPR值的差值。
通过表1和表2可知,不同调制方式下、Edge RB allocations资源下两种波形之间的MPR值相同或相差较小,可选地,终端上报MPR信息时可以针对Edge RB allocations资源下的差异值不作上报。示例性地,参见表4所示。
表4
Figure PCTCN2021110645-appb-000009
示例2相比示例1,能够减少上报的数据量,减少资源占用,提高上报速率。
示例3中,所述MPR信息包括和inter RB不同调制方式下,所述终端设备发送上行数据时支持的两种波形对应的MPR值的差值。例如,参见表5所示。
表5
Figure PCTCN2021110645-appb-000010
Figure PCTCN2021110645-appb-000011
示例3相比示例2和示例1,能够减少上报的数据量,减少资源占用,提高上报速率。
示例4中,所述MPR信息包括在QPSK的调制方式和inter RB下,所述终端设备发送上行数据时支持的两种波形对应的MPR值的差值。例如,|CP-OFDM-DFT-s-OFDM|,inter RB:1.5。
示例4相比示例3,更进一步减少了上报的数据量,减少资源占用,提高上报速率。
作为一种示例,终端的MPR信息可以作为上行物理层的能力项,比如MPR值可以包含在下行特征集参数中(Feature Set Uplink parameters)中。
参见表6示意Feature Set Uplink parameters所包括的字段。
表6
Figure PCTCN2021110645-appb-000012
示例性地,本申请实施例中Feature Set Uplink parameters中增加终端所支持的MPR值。参见表7所示。
表7
Figure PCTCN2021110645-appb-000013
802,网络设备根据终端上报的MPR信息确定PUSCH采用的波形。
在一些实施例中,网络设备可以根据MPR信息以及能够影响上行发射功率的功率影响参数估计终端采用何种波形使得终端的发射功率的收益较高,进而向终端指示PUSCH采用的波形。本申请实施例对功率响应参数的命名不作限定,也可以采用其他的命名方式。
一方面,通过表达式3可以看出,在Pcal>Pmax-MPR的情况下,MPR值的不同,终端的上行发射功率不同。进一步地,在该情况下波形切换才有可能带来上行发射功率的收益。例如,终端的最大发射功率能力Pmax为23dBm,MPR值为1.5dB,而PUSCH的经 过功控流程计算出来的需求功率Pcal为23dBm,在该情况下满足Pcal>Pmax-MPR,如果波形切换后MPR值有所减少,则最大发射功率可以提升,从而波形切换带来发射功率收益。
通过上述的表达式3可以看出,能够影响上行发送功率的功率影响参数可以包括该终端的MPR值。功率影响参数还可以包括终端的最大发射功率的能力Pmax。
以终端在不同的调制方式下、不同PUSCH资源下,MPR值均为协议规定的最大值;终端采用的功率等级为PC3为例。从表2可以看出,在边缘RB资源下,MPR的取值相同,可以认为采用DFT-s-OFDM波形和CP-s-OFDM波形对应的最大发射功率相同。参见表8所示为在不同调制方式下,Inner RB/outer RB两种RB分配情况下,采用DFT-s-OFDM波形的功率收益值。
表8
Figure PCTCN2021110645-appb-000014
从表8可以看出,同一调制方式下,同一PUSCH资源下,DFT-s-OFDM波形的MPR值小于等于CP-OFDM波形的MPR值。因此,在考虑同一调制方式和同一PUSCH资源的情况下,采用DFT-s-OFDM波形相比采用CP-OFDM波形能够带来上行发射功率收益。由于不同的调制方式和/或PUSCH资源对MPR的取值产生影响,进一步地,能够影响上行发射功率的功率影响参数还可以包括终端采用的调制方式、网络设备为终端分配的PUSCH资源。
另一方面,通过上述3)对NSA和SA的介绍可知,在针对LTE和NR采用不同的分配总功率的分配方式的情况下,允许终端的最大发射功率存在限制。
在模式1中,NR制式下的允许最大发射功率为20dBm,结合表达式3,NR制式下最终所采用的上行发射功率可以通过如下表达式4来表示。
P PUSCH=min(20dBm,Pcal,Pmax–MPR)            表达式4
进一步地,表达式4可以转换为如下表达式5:
P PUSCH=min(Pmax-限制大小,Pcal,Pmax–MPR)              表达式5
可选地,在Pmax–MPR>=20dBm的情况下,表达式4可以进一步简化为表达式6:
P PUSCH=min(20dBm,Pcal)                表达式6
从表达式4可以看出,在Pmax–MPR<20dBm且Pcal>Pmax-MPR的情况下,MPR 值的不同使得终端的上行发射功率不同,也就是说采用不同的波形时,终端设备的上行发射功率可以不同,波形的切换才有可能带来功率收益。
结合上述表达式4,通信协议允许终端的最大上行发射功率会对终端上行发射功率产生影响。能够影响上行发射功率的功率影响参数可以包括通信协议允许的终端的最大上行发射功率。通信协议允许的终端的最大上行发射功率又与终端采用的组网方式和/或终端的功率分配方式有关,因此,可以说终端采用的组网方式和/或终端的功率分配方式是影响上行发射功率的影响因子。另外,在终端采用的组网方式为SA时,不存在终端的功率分配方式,因此,在该情况下,终端的功率分配方式并不是影响上行发射功率的影响因子。基于此,功率影响参数还可以包括终端采用的组网方式和/或终端的功率分配方式。另外,应理解的是,在功率影响参数包括终端的功率分配方式的情况下,可以默认终端采用的组网方式为NSA,功率影响参数中可以仅包括终端的功率分配方式。
从上述表达式5可以看出,在采用模式1的情况下,如果Pmax–MPR>=20dBm,MPR并不影响实际的发射功率。如果在模式1下,根据场景进行波形切换,并没有MPR的减少所带来的功率增加的收益。相比较而言,模式2可以在更多场景下获得收益。另外,CP-OFDM波形以及DFT-s-OFDM波形分别具有各自的优缺点,具体如下:
CP-OFDM波形:
优点包括:分配灵活;支持数据导频共符号,且不损失RE资源;支持MIMO传输。
缺点包括:峰均比较大,导致MPR值较大。
DFT-s-OFDM波形:
优点包括:峰均比较小,导致MPR值较小;
缺点包括:以采用2,3,5的公倍数的分配方式;不支持数据导频共符号,且损失部分RE资源;不支持MIMO,仅支持单流。
通过上述CP-OFDM波形和DFT-s-OFDM波形的优缺点可以看出,CP-OFDM波形支持MIMO空间复用的发射方式,因此在采用MIMO空间复用的发射方式的情况下,至少需要两根以上天线发射的能力。比如,终端支持采用2T4R。其中,2T表示发射天线为2根天线,4R表示接收天线为4根天线。在该情况下,终端的最大发射功率能力为两根天线的总的发射功率能力和,比如每根发射天线的最大发射功率能力为23dBm,则双天线的最大发射功率能力可以为23dBm+23dBm=26dBm。再比如,两根天线的最大发射功率的能力不同,比如一根天线的最大发射功率能力为23dBm,另一根天线的最大发射功率能力为26dBm,则双天线的最大发射功率能力可以为23dBm+26dBm=27.76dBm,即双天线的最大发射功率能力为27.76dBm。该情况下,终端的最大发射功率能力与终端上的发射天线的数量和/或每根发射天线的最大发射功率的能力有关,因此,在确定PUSCH的波形时还可以考虑终端上的发射天线的数量和/或每根发射天线的最大发射功率的能力。或者说,功率影响参数还可以包括终端上的发射天线的数量和/或每根发射天线的最大发射功率的能力。另外,应理解的是,每根发射天线的最大发射功率在没有明确规定的情况,还可以采用默认的天线的最大发射功率。功率影响参数中包括终端的最大发射功率能力的情况下,比如多根天线的终端的最大发射功率能力,在该情况下,功率影响参数中也可以不包括终端上的发射天线的数量和/或每根发射天线的最大发射功率的能力。
结合上述一方面和另一方面的描述,本申请实施例可以根据终端当前所处的场景来确定PUSCH所采用的波形。终端当前所处的场景可以通过一个或者多个功率响应参数来表 征。作为一个举例,参见表9所示,描述多种场景,不同的场景可以通过组网方式、功率等级、是否支持MIMO(间接指示发射天线的数量)、功率分配方式、终端的最大发射功率的能力、终端的最大发射功率的能力受限于协议规定的最大发射功率的限制大小来表征。
表9
Figure PCTCN2021110645-appb-000015
需要说明的是,目前通信协议中,NSA的方式下,并不支持采用PC2。表9中为本申 请实施例提供的仅作为在NSA方式下支持采用PC2时的一种可能的示例。
表9中的有限制或者无限制是指:终端的最大发射功率能力是否受限于通信协议在该场景下所规定的最大发射功率。比如,在NSA组网方式下,功率等级为PC3、发射天线的数量为1根、功率分配方式采用静态分配方式的情况下,针对NR通信协议所允许的最大发射功率(即PUSCH发射功率的上限)为20dB,而终端的最大发射功率的能力为23dBm,因此终端的最大发射功率的能力受限于通信协议所规定的最大发射功率,限制的大小为3dB。再比如,SA组网方式,功率等级为PC2,发射天线的数量为1根、通信协议所允许的最大发射功率为26dBm。
需要说明的是,表9中终端的单T的最大发射功率能力的取值(26dBm或23dBm)仅为一种示例,采用不同工艺水平的终端,终端的最大发射功率能力可能不同。另外,随着工艺水平的提高,终端的最大发射功率能力会提高。38.101协议也为此引入了最大发射功率的容差(tolerance)。
基于上述表9,本申请实施例可以将不同的情况总结为5种类型,如下类型1-类型5。
类型1:终端发射天线数量为1根,终端的最大发射功率能力受限于通信协议在该场景下所规定的最大发射功率,可以简单描述为单T发射,无功率限制。
类型2:终端发射天线数量为1根,终端的最大发射功率能力不受限于通信协议在该场景下所规定的最大发射功率,可以简单描述为单T发射,有功率限制。
类型3:终端发射天线数量大于1根,终端的最大发射功率能力受限于通信协议在该场景下所规定的最大发射功率,可以简单描述为多T发射,有功率限制。
类型4:终端发射天线数量大于1根,终端的最大发射功率能力不受限于通信协议在该场景下所规定的最大发射功率,可以简单描述为多T发射,无功率限制。
类型5:终端发射天线数量大于1根,终端的某根天线的最大发射功率的能力受限于通信协议在场景下所规定的最大发射功率,可以简单描述为多T发射,部分功率限制。
一种示例中,以类型1为例,针对终端,不同的资源块RB位置、不同的调制方式、终端发送上行数据时支持的两种波形以及不同MPR值之间的对应关系表3为例。资源块位置以outer RB为例。参见表10所示,表10以PC2为例,示意不同的调制方式下,两种波形分别对应的最大发射功率回退以及采用DFT-s-OFDM波形的收益。表10中以终端的最大发射功率能力Pmax为23dBm,并且以Pmax-MPR>Pcal的情况为例。
表10
Figure PCTCN2021110645-appb-000016
从上述表10可以确定,在单T无限制的场景下,同一条件下,采用DFT-s-ODFM波形具有上行发射功率收益,即采用DFT-s-OFDM波形时终端上行发射功率高于采用CP-OFDM波形时终端上行发射功率。
另一种示例中,以类型2为例,针对终端,不同的资源块RB位置、不同的调制方式、终端发送上行数据时支持的两种波形以及不同MPR值之间的对应关系表3为例。作为一种举例,组网方式为NSA、功率等级为PC2,资源分配方式采用模式1,以终端的最大发射功率能力Pmax为23dBm为例。结合表9,在NSA组网方式下、功率等级为PC3且功率分配方式为模式1时,终端的最大发射功率的能力受限于协议规定的最大发射功率,即Pmax为23dBm且存在3dB的功率限制。结合前述表达式4:P PUSCH=min(20dBm,Pcal,Pmax–MPR)。在单T的最大发射功率为P=23dBm,仅当MPR>3dB的情况下,DFT-s-OFDM波形相比CP-OFDM才会存在有功率收益。单T有发射功率限制的场景,最大功率23dBm有3dB的功率限制,实际最大功率为20dBm,考虑3dB的功率限制,可以将该3dB的功率限制折算到MPR中后的等效MPR值参见表11所示。
表11
Figure PCTCN2021110645-appb-000017
结合表11,当调制方式采用64QAM或者256QAM的情况下,采用DFT-s-OFDM波形相比采用CP-OFDM具有功率收益。而在其它的调制方式下,MPR并未对终端的上行发射功率产生影响。基于此,在单T有功率限制的场景,调制方式采用64QAM或者256QAM的情况下,可以采用DFT-s-OFDM波形。
又一种示例中,多T类型与单T类型的区别在于:多T类型下,空间复用会对终端的PUSCH上行发射功率产生影响。当信道条件满足空间复用条件时,通过在两根天线上发射不同的码流可以实现约翻倍的数据流量,但是仅CP-OFDM波形支持MIMO,即空间复用。所以多T类型下,不仅需要考虑DFT-s-OFDM波形的功率收益,还要考虑CP-OFDM波形的空间复用收益;DFT-s-OFDM波形的功率收益大于CP-OFDM波形的空间复用带来的功率收益的情况下,可以采用DFT-s-OFDM波形。而CP-OFDM波形的空间复用带来的功率收益大于DFT-s-OFDM波形的功率收益的情况下,可以采用CP-OFDM波形。结合表11来说,单T场景下,当调制方式采用64QAM或者256QAM的情况下,采用DFT-s-OFDM波形相比采用CP-OFDM具有功率收益;但在多T场景下,在PUSCH的调制方式采用 64QAM或者256QAM的情况下,可以进一步确定空间复用的功率收益是否大于DFT-s-OFDM波形的功率收益,如果空间复用的功率的收益大于DFT-s-OFDM波形的功率收益,网络设备可以为终端配置PUSCH采用的波形为CP-OFDM波形。
同样,多T场景也需要区分是否有通信协议规定的最大发射功率的限制,当有最大发射功率限制的情况下,可以按照最大发射功率限制后的等效MPR计算功率收益,然后比较DFT-s-OFDM波形的功率收益和CP-OFDM波形的空间复用收益来确定PUSCH采用的波形。
结合以上说明,无论是单T类型或者多T类型,还是功率有限制场景或者功率无限制场景,网络设备可以通过表达式5并结合空间复用的增益共同来确定PUSCH采用的波形。需要理解的是,在无限制的场景下,限制大小为0。结合上述表达式5:P PUSCH=min(Pmax-限制大小,Pcal,Pmax–MPR),可以确定终端的上行发射功率与终端的最大发射功率能力、MPR值或限制大小中的一项或多项相关。终端设备的最大发射功率能力与终端采用的发射天线数量相关,终端的最大发射天线能力可以是多根天线的发射功率之和。限制大小与终端采用的组网方式、功率等级或资源分配方式中的至少一项相关。MPR值与终端采用的调制方式、PUSCH资源位置中的至少一项相关。
作为一种示例,用于确定PUSCH采用的波形的功率影响参数可以但不仅限于包括如下参数中的一项或多项:
终端的组网方式、终端的功率等级、功率的发射天线的数量、终端的功率分配方式、终端的最大发射功率的能力,通信协议规定的最大发射功率,终端的最大发射功率的能力受限于通信协议规定的最大发射功率的能力的限制大小、终端的采用的调制方式或者终端采用的PUSCH资源。
网络设备接收到UECapabilityInformation消息后,根据终端设备上报的MPR信息来确定在当前采用的调制方式以及PUSCH资源位置下两种波形分别对应的MPR值。然后结合终端的最大发射功率能力、MPR值、限制大小、终端采用的发射天线数量、终端采用的组网方式、功率等级或资源分配方式中的一项或多项确定PUSCH采用的波形。
803,网络设备向终端发送RRC连接重配置(RRC Connnection Reconfiguration)消息,所述RRC连接重配置消息用于指示PUSCH采用的波形。示例的,RRC Connnection Reconfiguration消息可以包括波形指示信息,波形指示信息用于指示PUSCH采用的波形。
804,终端使用RRC连接重配置消息指示的PUSCH采用的波形向网络设备发送上行信息。
在一些实施例中,网络设备在随机接入流程中,通过Msg2向终端指示PUSCH采用的波形,该波形可以是通信协议规定的。在随机接入流程完成后,网络设备可以根据MPR信息确定终端采用何种波形使得终端的发射功率的收益较高。比如,随机接入过程中,网络设备通过Msg2向终端配置的波形为第一波形(比如CP-OFDM波形)。随机接入流程完成后,网络设备根据MPR信息确定第二波形(比如DFT-s-OFDM波形)相比第一波形(CP-OFDM波形)的功率收益高时,确定当前PUSCH采用的波形为第一波形,则可以执行步骤803,向终端发送RRC连接重配置消息指示PUSCH采用的波形为第二波形(第一波形(CP-OFDM波形)并没有功率收益,并且当前PUSCH所采用的波形为第一波形(CP-OFDM波形),则可以不再执行803,终端继续采用第一波形(CP-OFDM波形)发送上行信息。
在另一些实施例中,随机接入完成后,网络设备根据MPR信息确定DFT-s-OFDM波形相比CP-OFDM波形的功率收益高时,执行步骤803。在该实施例中,网络设备可以不去判断终端当前PUSCH采用的波形是否为CP-OFDM波形,则通过RRC连接重配置消息向终端指示PUSCH采用的波形为DFT-s-OFDM波形。终端接收到网络设备通过RRC连接重配置消息指示的PUSCH采用的波形时,采用DFT-s-OFDM波形发送上行信息。
举例来说,比如网络设备为终端配置的调制方式为256QAM、并且为终端配置的PUSCH资源位置为Outer RB。结合表11来说,在该情况下,DFT-s-OFDM波形收益高于波形的收益。进一步的,如果终端设备支持MIMO,比如,支持采用两根天线发送信息,网络设备可以进一步确定空间复用的功率收益是否高于采用DFT-s-OFDM波形的功率收益。例如,终端当前对应的组网方式为NSA,为终端配置的资源分配方式为TDM,由于终端的最大发射功率的能力是两根天线的最大发射功率的和,在该情况下,由于MPR值带来的空间复用的功率收益高于采用DFT-s-OFDM波形的功率收益,因此采用CP-OFDM波形有助于提升上行发送性能,提高用户体验。
在一种可能的方式中,由于DFT-s-OFDM波形仅支持单流,在采用CP-OFDM波形切换到采用DFT-s-OFDM波形时,为终端配置的探测参考信号(sounding reference signal,SRS)资源、端口号或者采用的天线最大秩均是针对采用多天线的方式配置的,因此,在DFT-s-OFDM波形仅支持单流的情况下,依然采用为多天线配置的探测参考信号(sounding reference signal,SRS)资源、SRS端口(port)或者采用的天线最大秩(maxRank),会造成资源浪费。基于此,申请实施例中,在由确定终端的PUSCH采用的波形由CP-OFDM波形切换到DFT-s-OFDM波形时,可以通过RRC连接重配置消息为终端重配置SRS资源、SRS端口或者天线最大秩中的一项或多项。一种示例中,网络设备可以通过RRC连接重配置消息中SRS配置(SRS-Config)为终端重配置SRS资源和/或SRS端口。例如,将用于码本(codebook)的端口数从其他值配置为1,端口为port1。另一种示例中,网络设备可以通过RRC连接重配置消息中的PUSCH-Config为终端重配置天线最大秩。例如,将天线最大秩重配置为1。CodeBook的SRS资源重配置为port1对应的单个资源,可以减少网络SRS资源占用;CodeBook的SRS资源重配置为port1,有助于终端采用小循环时延分集(small cyclic delay diversity,SCDD)发送方式,以提升SRS的发射功率;将maxRank重配置为1,也有助于终端采用SCDD发送方式,以提升SRS的发射功率。
RRC连接重配置消息中的PUSCH-Config字段的消息如下:
Figure PCTCN2021110645-appb-000018
Figure PCTCN2021110645-appb-000019
RRC连接重配置中的SRS相关配置也可以重新配置,比如采用如下方式:
Figure PCTCN2021110645-appb-000020
作为一种可能的实施方式,网络设备向终端指示PUSCH采用的波形时,第一种可能的方式是,采用步骤803的方式,即网络设备通过向终端发送RRC连接重配置消息来指示PUSCH采用的波形。第二种可能的方式是,网络设备可以通过下行控制消息直接向终端指示PUSCH采用的波形,即步骤803可以替换为,网络设备向终端发送下行控制消息,下行控制消息指示PUSCH采用的波形,比如下行控制消息包括波形指示,波形指示用于指示PUSCH采用的波形,则步骤804可以替换为,终端根据波形指示所指示的PUSCH采用的波形发送上行信息。第三种可能的方式是,网络设备可以通过向终端指示BWP间接向终端指示PUSCH采用的波形。不同的波形对应不同的BWP。比如,网络设备根据MPR信息为终端确定PUSCH采用的波形后,可以确定为终端确定的PUSCH采用的波形所对应的BWP,进而可以向终端发送下行控制消息,下行控制消息指示终端发送上行信息的BWP, 进一步的,终端接收到下行控制消息,可以根据配置信息确定BWP对应的PUSCH采用的波形。下行控制消息可以是下行控制信息(downlink control information,DCI)消息。
需要说明的是,网络设备还可以通过其它信令消息或者未来出现的信令消息向终端指示PUSCH采用的波形。
通过RRC信令进行波形切换需要上下行信令才能完成,增加了信令开销,RRC信令的时延本身也比较大;而BWP切换没有信令开销,时延也仅需数个毫秒,是RRC信令时延的1/10量级以上。因此,采用BWP指示波形的方式,相比采用RRC信令的方式,能够减少信令开销,降低时延。
下面结合图9对上述第三种可能的方式进行详细说明。
参见图9所示,为本申请实施例提供的另一种波形指示的方法的流程示意图。
901,网络设备设置多个不同BWP与不同的波形的对应关系。
例如,CP-OFDM波形与BWP1的对应关系,以及DFT-s-OFDM波形与BWP2的对应关系。又例如,CP-OFDM波形与BWP1的对应关系,CP-OFDM波形与BWP3的对应关系,DFT-s-OFDM波形与BWP2的对应关系以及DFT-s-OFDM波形与BWP4的对应关系。
902,终端连接到网络后,向终端发送配置信息,配置信息包括为终端配置的对应不同波形的BWP。
例如,配置信息中包括BWP1和BWP2。BWP1对应于CP-OFDM波形,BWP2对应于DFT-s-OFDM波形。又例如,配置信息中包括BWP1、BWP2、BWP3和BWP4,BWP1对应于CP-OFDM波形,BWP2对应于DFT-s-OFDM波形,BWP3对应于CP-OFDM波形,BWP4对应于CP-OFDM波形。
903,终端连接到网络后,终端向网络设备发送UE能力信息(UE Capability Information)消息。UE Capability Information消息中可以包括终端的MPR信息。
上述步骤902和903的先后顺序,本申请不作具体限定,可以是步骤902先于步骤903,也可以为步骤903先于步骤902。
在一些实施例中,网络设备在随机接入流程中,通过Msg2向终端指示PUSCH采用的波形,该波形可以是通信协议规定的,比如第一波形。进一步地,终端采用Msg2指示的第一波形向网络设备发送UE Capability Information消息。
904,网络设备根据终端上报的MPR信息和功率影响参数确定PUSCH采用的波形。网络设备如何根据MPR信息确定PUSCH采用的波形可以参见802的相关描述,此处不再赘述。
作为一种示例,如果UE Capability Information消息不包括MPR信息,可按照通信协议规定的MPR的默认值,再结合功率影响参数确定PUSCH采用的波形。
905,网络设备向终端发送下行控制消息,所述下行控制消息指示终端发送上行信息采用的BWP,即通过指示BWP来指示PUSCH采用的波形。
例如,网络设备确定的PUSCH采用的波形为第二波形,网络设备根据设置的不同的BWP与不同的波形的对应关系确定第二波形对应的BWP。比如第二波形为DFT-s-OFDM波形,第二波形对应于为终端配置的BWP中的BWP2,即第二波形是为BWP2配置的上行波形,网络设备指示终端切换采用BWP2发送上行信息,即指示终端采用DFT-s-OFDM波形发送上行信息。
906,终端接收到下行控制消息,根据下行控制消息指示的BWP确定PUSCH采用的 波形。比如,下行控制信息指示的BWP为BWP2,终端根据配置信息确定BWP2对应的波形为DFT-s-OFDM波形,终端确定PUSCH采用的波形为DFT-s-OFDM波形。
下行控制消息可以是下行控制信息(downlink control information,DCI)消息。5G协议引入BWP的概念,协议支持同一个小区配置多个BWP,每个BWP有不同的上下行预配置参数,不同BWP可以通过物理下行控制信道(physical downlink control channel,PDCCH)承载的DCI消息动态切换。如果不同的BWP配置的PUSCH配置(PUSCH-config)消息对应transformPrecoder字段参数不一样,则BWP切换的同时,隐含了DFT-s-OFDM波形和CP-OFDM波形的切换。
在一些实施例中,网络设备在随机接入流程中,通过Msg2向终端指示PUSCH采用的波形,该波形可以是通信协议规定的。在随机接入流程完成后,网络设备可以根据MPR信息确定终端采用何种波形使得终端的发射功率的收益较高。比如,随机接入过程中,网络设备通过Msg2向终端配置的波形为第一波形(比如CP-OFDM波形)。随机接入流程完成后,网络设备根据MPR信息确定第二波形(比如DFT-s-OFDM波形)相比第一波形(CP-OFDM波形)的功率收益高时,确定当前PUSCH采用的波形为第一波形,则可以执行步骤905,向终端发送RRC连接重配置消息指示PUSCH采用的波形为第二波形(第一波形(CP-OFDM波形)并没有功率收益,并且当前PUSCH所采用的波形为第一波形(CP-OFDM波形),则可以不再执行905,终端继续采用第一波形(CP-OFDM波形)发送上行信息。
在另一些实施例中,随机接入完成后,网络设备根据MPR信息确定DFT-s-OFDM波形相比CP-OFDM波形的功率收益高时,可以执行步骤905。在该实施例中,网络设备可以不去判断终端当前PUSCH采用的波形是否为CP-OFDM波形,终端根据下行控制消息指示的BWP确定PUSCH采用的波形为CP-OFDM波形,则终端采用CP-OFDM波形发送上行信息。
907,终端采用下行控制消息指示BWP对应的PUSCH采用的波形发送上行信息。需要说明的是,终端根据下行控制消息确定PUSCH采用的波形后,后续采用PUSCH发送上行信息时,均可以使用该波形,直到再次接收到网络设备指示的其它波形。上行信息可以包括:RRC连接建立完成消息、RRC连接完成消息、以及后续其它上行信息(比如上行数据)等。
在一种可能的实施中,终端并未向网络设备发送MPR信息的情况下,网络设备可以采用协议规定的不同PUSCH资源、不同调制方式下的MPR值作为终端的最大MPR来为终端确定PUSCH采用的波形。一种方式中,结合图8对应的实施例中描述的确定不同波形的功率收益的方式,来确定PUSCH采用的波形,此处不再赘述。另一种方式中,结合图8对应的实施例中确定不同波形的功率收益的方式,网络设备中可以配置不同的功率影响参数,与终端的PUSCH采用的波形的映射关系。作为一种示例,功率影响参数可以包括终端的组网方式、终端上的发射天线的数量、终端的最大发射功率能力、资源分配方式、PUSCH的调制方式(或者终端与网络设备的距离)中的一项或者多项。例如,映射关系参见表12所示。
表12
Figure PCTCN2021110645-appb-000021
Figure PCTCN2021110645-appb-000022
在一些实施例中,终端附着到网络时,网络设备获取终端的能力信息,能力信息可以包括终端的组网方式、终端上的发射天线的数量、终端的最大发射功率能力、资源分配方式中的一项或者多项。在随机接入过程中,网络设备为终端配置PUSCH采用的资源,PUSCH的调制方式。可选地,终端附着到网络后,网络设备根据终端的能力信息,以及为终端配置的PUSCH采用的资源、PUSCH资源的调制方式,结合映射关系为终端配置PUSCH采用的波形。网络设备为终端配置PUSCH采用的波形后,向终端指示PUSCH采用的波形。
在一些实施例中,网络设备在确定终端上功率影响参数的参数值发生变化的情况下,可以根据MPR信息以及变化后的功率影响参数为终端确定PUSCH采用的波形。示例的,为了防止终端发生乒乓切换波形的情况,网络设备可以根据迟滞门限来确定根据MPR信息以及变化后的功率影响参数为终端确定PUSCH采用的波形的时机。比如网络设备向终端发送第一消息后经历迟滞门限指示的时长时,确定终端上功率影响参数的参数值是否发生变化,进而再决定根据MPR信息以及变化后的功率影响参数为终端确定PUSCH采用的波形。又示例的,终端设备可以根据迟滞门限决定是否再次执行切换。比如,终端接收到网络设备发送的第一消息后,在经历的时间未达到迟滞门限时,再次接收用于指示PUSCH采用的波形的消息,终端可以延迟切换波形,待接收到第一消息后经历的时长达到迟滞门限时,终端可以执行切换波形的操作。再比如,终端接收到网络设备发送的第一消息后,在经历的时间未达到迟滞门限时,再次接收用于指示PUSCH采用的波形的消息,终端可以丢弃再次接收到的用于指示PUSCH采用的波形的消息。
下面结合具体应用场景以举例的形式对上述由网络设备根据终端上报的MPR信息向终端指示PUSCH采用的波形的实施方式进行详细说明,参见图10所示。图10中以网络设备向终端指示PUSCH采用的波形时通过RRC连接重配置消息为例。
1001,终端向网络设备发送随机接入请求。比如,该随机接入请求用于发起基于竞争的随机接入过程。
示例的,终端可以在接收到网络设备的第一指示信息后,向网络设备发送随机接入请 求。第一指示信息用于指示终端发起基于竞争的随机接入过程。又示例的,终端还可以在初始接入时,向网络设备发送随机接入请求。例如,终端可以在开机或关闭飞行模式时,触发初始接入。又示例的,终端还可以在小区切换时,向网络设备发送随机接入请求。或者,终端在上行不同步、或RRC连接重建、或者transition from RRC_INACTIVE等时,向网络设备发送随机接入请求。
需要说明的是,上述仅为触发终端向网络设备发送随机接入请求的举例说明,并不够成对本申请实施例触发终端向网络设备发送随机接入请求的限定。本申请实施例中,还可以通过其它方式触发终端向网络设备发送随机接入请求。
1002,网络设备接收到来自终端的随机接入请求后,向终端发送随机接入响应(RAR)。例如,随机接入响应用于指示PUSCH所采用的波形为第一波形,比如CP-OFDM波形。
示例的,随机接入响应中包括PUSCH的波形指示信息。PUSCH的波形信息用于指示CP-OFDM波形。进一步地,RAR还可以包括PUSCH调制信息和PUSCH资源信息,其中,PUSCH的调制信息用于指示PUSCH的调制方式,PUSCH资源信息用于指示PUSCH资源的位置和大小。
需要说明的是,随机接入请求可以是Msg1或者MsgA。比如,随机接入请求为Msg1时,随机接入响应为Msg2。再比如,随机接入请求为MsgA,则随机接入响应为MsgB。
应理解的是,在无线通信系统仅支持一个波形的情况下,网络设备可以无需指示终端PUSCH所使用的波形。例如,LTE中支持的波形为DTF-s-OFDM,对于终端来说,网络设备可以无需向终端指示PUSCH所使用的波形,终端可以默认PUSCH使用的波形为DFT-s-OFDM。进一步的,在终端支持多个波形的情况下,例如NR中,支持CP-OFDM和DFT-s-OFDM两种波形,网络设备默认向终端指示PUSCH所使用的波形为CP-OFDM波形。
1003,随机接入完成之后,网络设备向终端发送UE能力请求。UE能力请求用于请求查询终端的能力信息。
1004,终端采用第一波形向网络设备发送UE能力信息(UE Capability Information)消息。UE Capability Information消息中至少包括终端的MPR信息。具体参见步骤801,此处不再赘述。
1005,网络设备可以根据MPR信息以及能够影响上行发射功率的功率影响参数确定PUSCH采用的波形为第二波形,比如为DFT-s-OFDM波形。
在一些实施例中,网络设备可以根据MPR信息以及能够影响上行发射功率的功率影响参数估计终端采用何种波形使得终端的发射功率的收益较高,本实施例中以DFT-s-OFDM波形相比采用CP-OFDM波形具有发射功率的收益。
具体的,如何根据MPR信息以及能够影响上行发射功率的功率影响参数确定PUSCH采用的波形,参见步骤802的相关描述,此处不再赘述。
S1006,网络设备向终端发送消息1。所述消息1指示PUSCH采用的波形为DFT-s-OFDM波形。消息1可以为RRC连接重配置消息,RRC连接重配置消息包括波形指示信息,波形指示信息用于指示PUSCH采用的波形为DFT-s-OFDM波形。或者,消息1为下行控制消息。下行控制消息指示终端采用的BWP,通过BWP指示PUSCH采用的波形为DFT-s-OFDM波形。消息1也可以其它协议消息。图10中以下行控制消息为例。
在一些实施例中,在NR中网络设备在随机接入流程中,通过Msg2向终端指示PUSCH 采用的波形为CP-OFDM波形。随机接入流程完成后,网络设备根据MPR信息确定DFT-s-OFDM波形相比CP-OFDM波形的功率收益高,确定终端当前PUSCH采用的波形为CP-OFDM波形,则网络设备向终端发送RRC连接重配置消息指示PUSCH采用的波形为DFT-s-OFDM波形。当网络设备根据MPR信息确定DFT-s-OFDM波形相比CP-OFDM波形并没有功率收益,并且当前PUSCH所采用的波形为CP-OFDM波形,则可以不再执行1006。在又一些实施例中,网络设备根据MPR信息确定DFT-s-OFDM波形相比CP-OFDM波形的功率收益高,可以不去确定终端设备当前PUSCH采用的波形,而是直接向终端发送RRC连接重配置消息指示PUSCH采用的波形为DFT-s-OFDM波形。
1007,终端采用DFT-s-OFDM波形向网络设备发送上行信息。参见步骤804的相关描述,此处不再赘述。
参见图11所示,为本申请实施例提供的另一种可能的波形指示方法。图10描述的方案可以概括为终端向网络设备上报PUSCH期望采用的波形,进而网络设备向终端指示PUSCH采用的波形。
1101,终端向网络设备发送波形辅助消息,波形辅助消息用于指示终端PUSCH期望采用的波形。
在一些实施例中,终端可以在与网络设备之间的距离范围发生变化、路径损耗较大或终端上待发送的数据量增多的情况下,终端触发确定当前PUSCH采用的波形与其它支持的波形的发射功率的收益,进而确定是否切换当前PUSCH采用的波形。比如,在确定当前采用的CP-OFDM波形的收益低于DFT-s-OFDM波形的收益的情况下,可以向网络设备发送波形辅助消息,波形辅助消息指示终端PUSCH期望采用的波形为DFT-s-OFDM波形。
在一些实施例中,终端在完成随机接入流程之后,通过Msg2接收到网络设备指示的PUSCH采用波形。比如网络设备通过Msg2指示的PUSCH采用的波形为第一波形,比如CP-OFDM波形,则终端可以采用CP-OFDM波形向网络设备发送波形辅助消息。进一步地,终端可以在与基站之间的距离范围发生变化、路径损耗较大、终端上待发送的数据量增多或者终端设备的损耗较大的情况下,触发确定当前采用的CP-OFDM波形与DFT-s-OFDM波形的发射功率的收益,进而确定是否切换采用DFT-s-OFDM发送上行信息。
一种方式,可以采用图8所对应的实施例所描述的确定波形切换收益的方式,来确定是否执行波形切换。
另一种方式,终端中配置有不同的参数,与终端的PUSCH采用的波形的映射关系。参数可以包括终端的组网方式、终端上的发射天线的数量、终端的最大发射功率能力、资源分配方式、PUSCH的调制方式(或者终端与网络设备的距离)中的一项或者多项。例如,映射关系参见表12所示。该映射关系可以是由网络设备配置给终端的,或者为通信协议规定的。
在一些实施例中,波形辅助消息可以复用目前通信协议提供的辅助消息。例如,辅助消息包括如下信息:
Figure PCTCN2021110645-appb-000023
Figure PCTCN2021110645-appb-000024
例如,波形辅助消息可以采用如下UEAssistanceInformation-vxxx-IEs所示的格式:
Figure PCTCN2021110645-appb-000025
Figure PCTCN2021110645-appb-000026
1102,网络设备接收到波形辅助消息后,向终端发送RRC连接重配置消息,RRC连接重配置(RRC Connnection Reconfiguration)消息用于指示PUSCH采用的波形。示例的,RRC Connnection Reconfiguration消息可以包括波形指示信息,波形指示信息用于指示PUSCH采用的波形。比如,波形指示信息指示的PUSCH采用的波形为终端通过波形辅助消息上报的PUSCH期望采用的波形。
1103,终端接收来自网络设备的RRC连接重配置消息,终端使用RRC连接重配置消息指示的PUSCH采用的波形向网络设备发送上行信息。
举例来说,比如网络设备为终端配置的调制方式为256QAM、并且为终端配置的PUSCH资源位置为Outer RB。结合表11来说,在该情况下,DFT-s-OFDM波形收益高于波形的收益。进一步的,如果终端设备支持MIMO,比如,支持采用两根天线发送信息,终端可以进一步确定空间复用的功率收益是否高于采用DFT-s-OFDM波形的功率收益。例如,终端当前对应的组网方式为NSA,网络设备为终端配置的资源分配方式为TDM,由于终端的最大发射功率的能力是两根天线的最大发射功率的和,在该情况下,由于MPR值带来的空间复用的功率收益高于采用DFT-s-OFDM波形的功率收益,因此采用CP-OFDM波形有助于提升上行发射性能,提高用户体验。
在一种可能的方式中,由于DFT-s-OFDM波形仅支持单流,在终端设备需要从CP-OFDM波形切换到采用DFT-s-OFDM波形时,网络设备还可以为终端配置的探测参考信号(sounding reference signal,SRS)资源、端口号或者采用的天线最大秩均是针对采用多天线的方式配置的,因此,在DFT-s-OFDM波形仅支持单流的情况下,依然采用为多天线配置的探测参考信号(sounding reference signal,SRS)资源、SRS端口(port)或者采用的天线最大秩(maxRank),会造成资源浪费。基于此,申请实施例中,网络设备确定终端通过波形辅助消息上报的PUSCH采用的波形为DFT-s-OFDM波形时,可以为终端重配置SRS资源、SRS端口或者天线最大秩中的一项或多项。比如,网络设备可以通过RRC连接重配置消息将SRS资源、SRS端口或者天线最大秩中的一项或多项配置给终端。作为一种举例,网络设备可以将SRS资源、SRS端口或者天线最大秩中的一项或多项,与PUSCH采用的波形通过不同的RRC连接重配置消息发送给终端。作为另一种举例,网络设备可以将SRS资源、SRS端口或者天线最大秩中的一项或多项,与PUSCH采用的波形通过同一RRC连接重配置消息发送给终端,即步骤1102中的RRC连接重配置消息中还可以包括SRS资源、SRS端口或者天线最大秩中的一项或多项。
一种示例中,网络设备可以通过RRC连接重配置消息中SRS配置(SRS-Config)为终端重配置SRS资源和/或SRS端口。例如,将用于码本(codebook)的端口数从其他值配置为1,端口为port1。另一种示例中,网络设备可以通过RRC连接重配置消息中的PUSCH-Config为终端重配置天线最大秩。例如,将天线最大秩重配置为1。CodeBook的SRS资源重配置为port1对应的单个资源,可以减少网络SRS资源占用;CodeBook的SRS资源重配置为port1,有助于终端采用SCDD发送方式,以提升SRS的发射功率;将maxRank 重配置为1,也有助于终端采用SCDD发送方式,以提升SRS的发射功率。
作为一种可能的实施方式,网络设备向终端指示PUSCH采用的波形时,第一种可能的方式是,采用步骤1102的方式,即网络设备通过向终端发送RRC连接重配置消息来指示PUSCH采用的波形。第二种可能的方式是,网络设备可以通过下行控制消息直接向终端指示PUSCH采用的波形,即步骤1102可以替换为,网络设备向终端发送下行控制消息,下行控制消息指示PUSCH采用的波形,比如下行控制消息包括波形指示,波形指示用于指示PUSCH采用的波形,则步骤1103可以替换为,终端根据波形指示所指示的PUSCH采用的波形发送上行信息。第三种可能的方式是,网络设备可以通过向终端指示BWP间接向终端指示PUSCH采用的波形。不同的波形对应不同的BWP。比如,网络设备根据MPR信息为终端确定PUSCH采用的波形后,可以确定为终端确定的PUSCH采用的波形所对应的BWP,进而可以向终端发送下行控制消息,下行控制消息指示终端发送上行信息的BWP,进一步的,终端接收到下行控制消息,可以根据配置信息确定BWP对应的PUSCH采用的波形。下行控制消息可以是下行控制信息(downlink control information,DCI)消息。
需要说明的是,网络设备还可以通过其它信令消息或者未来出现的信令消息向终端指示PUSCH采用的波形。
下面结合图12对上述第三种可能的方式进行详细说明。
1201-1202,参阅901-902,具体不再赘述。
1203,终端连接到网络后,终端可以在与基站之间的距离范围发生变化、路径损耗较大或终端上待发送的数据量增多等的情况下,触发确定是否需要切换PUSCH采用的波形。在触发确定需要切换PUSCH采用的波形时,执行步骤1004。
示例的,终端与网络设备之间的距离发生变化可以是终端与网络设备之间的距离增加达到长度阈值。路径损耗较大,比如可以是终端确定路径损耗达到路损阈值。终端上待发送的数据量增多,比如可以是终端上待发送的数据量增加的百分比达到百分比阈值。
1204,终端向网络设备发送波形辅助消息,波形辅助消息用于指示终端PUSCH期望采用的波形。关于波形辅助消息的相关描述参阅步骤1101的相关描述,此处不再赘述。
在一些实施例中,终端在完成随机接入流程之后,通过Msg2接收到网络设备指示的PUSCH采用波形。比如网络设备通过Msg2指示的PUSCH采用的波形为CP-OFDM波形,则终端可以采用CP-OFDM波形向网络设备发送波形辅助消息。
进一步地,终端可以在与基站之间的距离范围发生变化、路径损耗较大、终端上待发送的数据量增多等的情况下,触发确定当前采用的CP-OFDM波形与DFT-s-OFDM波形的发射功率的收益,进而确定是否切换为采用DFT-s-OFDM波形发送上行信息。比如确定当前采用的CP-OFDM波形的收益小于DFT-s-OFDM波形的发射功率的收益时,向网络设备发送的波形辅助消息指示终端PUSCU期望采用的波形为DFT-s-OFDM波形。
1205,网络设备接收到来自终端的波形辅助消息后,向终端发送下行控制消息,所述下行控制消息指示终端发送上行数据采用的BWP。作为一种示例,终端上报的PUSCH期望采用的波形为DFT-s-OFDM波形,下行控制消息指示的终端发送上行数据采用的BWP为BWP2。BWP2与DFT-s-OFDM波形存在对应关系。
1206,终端接收到下行控制消息,根据下行控制消息指示的BWP确定PUSCH采用的波形,例如DFT-s-OFDM波形。比如,终端根据配置信息确定BWP2对应的波形为 DFT-s-OFDM波形,终端确定PUSCH采用的波形为DFT-s-OFDM波形。具体参阅906,此处不再赘述。
1207,终端采用下行控制消息指示BWP对应的PUSCH采用的波形发送上行信息。具体参阅907,此处不再赘述。
下面结合具体应用场景以举例的形式,对上述网络设备根据终端上报的PUSCH期望采用的波形指示PUSCH采用的波形进行详细说明,参见图13所示。图13中以网络设备向终端指示PUSCH采用的波形时通过下行控制消息为例。
1301,终端向网络设备发送随机接入请求。比如,该随机接入请求用于发起基于竞争的随机接入过程。参见步骤1001,此处不再赘述。
示例的,终端向网络设备发送随机接入请求之前,网络设备可以设置多个不同BWP与不同的波形的对应关系,具体参见步骤901的相关描述,此处不再赘述。
1302,网络设备接收到来自终端的随机接入请求后,向终端发送随机接入响应(RAR)。例如,随机接入响应用于指示PUSCH所采用的波形为CP-OFDM波形。具体参见S1002,此处不再赘述。
1303,随机接入完成之后,终端可以在与基站之间的距离范围发生变化、路径损耗较大或终端上待发送的数据量增多等的情况下,触发确定是否需要切换PUSCH采用的波形。在触发确定需要切换PUSCH采用的波形时,执行步骤1304。作为一种举例,确定需要切换PUSCH采用的波形为DFT-s-OFDM波形。
示例的,随机接入完成之后,网络设备向终端发送配置信息,配置信息包括为终端配置的对应不同波形的BWP。具体描述,参见步骤902,此处不再赘述。
1304,终端采用CP-OFDM波形向网络设备发送波形辅助消息,波形辅助消息用于指示终端PUSCH期望采用的波形。终端PUSCH期望采用的波形为DFT-s-OFDM波形。关于波形辅助消息的相关描述参阅步骤1101的相关描述,此处不再赘述。
1305,网络设备接收到来自终端的波形辅助消息后,向终端发送下行控制消息,所述下行控制消息指示终端发送上行数据采用的BWP。作为一种示例,终端上报的PUSCH期望采用的波形为DFT-s-OFDM波形,下行控制消息指示的终端发送上行数据采用的BWP为BWP2。BWP2与DFT-s-OFDM波形存在对应关系。
1306,终端接收到下行控制消息,根据下行控制消息指示的BWP确定PUSCH采用的波形,例如为DFT-s-OFDM波形。比如,终端根据配置信息确定BWP2对应的波形为DFT-s-OFDM波形,终端确定PUSCH采用的波形为DFT-s-OFDM波形。具体参阅906,此处不再赘述。
1307,终端采用下行控制消息指示BWP对应的PUSCH采用的波形发送上行信息。具体参阅907,此处不再赘述。
以上各个实施例可以单独使用,也可以相互结合使用,以实现不同的技术效果。
上述本申请提供的实施例中,分别从终端和网络设备作为执行主体的角度对本申请实施例提供的通信方法进行了介绍。为了实现上述本申请实施例提供的通信方法中的各功能,终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设 计约束条件。
与上述构思相同,如图14所示,本申请实施例还提供一种装置1400,该装置1400包括接收模块1401和发送模块1402。
一种场景中,该装置1400应用于终端。接收模块1401用于接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;然后,发送模块1402在满足预设条件时,向网络设备发送终端的能力信息消息,所述终端的能力信息消息包括终端的最大发射功率回退MPR信息和终端的能力信息;进一步地,所述接收模块1401接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形,所述第二波形是根据所述MPR信息和所述终端的能力信息指示的部分能力从所述终端的物理上行共享信道PUSCH支持的波形中确定的;所述发送模块1402采用所述第二波形向所述网络设备发送上行信息。终端采用第二波形发送上行信息时的上行发射功率大于终端采用第一波形发送上行信息时的上行发射功率。
另一种场景,该装置应用网络设备。发送模块1402用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;接收模块1401用于接收来自所述终端的能力信息消息,所述能力信息消息包括终端的最大发射功率回退MPR信息和终端的能力信息;发送模块1402,还用于向所述终端发送第一消息,所述第一消息用于指示所述终端的PUSCH采用的波形为所述第二波形;所述第二波形是根据所述MPR信息和/或所述终端的能力信息指示的部分能力确定的。
又一种场景,该装置应用于终端。接收模块1401用于接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;发送模块1402向网络设备发送波形辅助消息,所述波形辅助消息用于指示终端的物理上行共享信道PUSCH期望采用第二波形;接收模块1401,还用于接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形;发送模块1402还用于采用所述第二波形向所述网络设备发送上行信息。终端采用第二波形发送上行信息时的上行发射功率大于终端采用第一波形发送上行信息时的上行发射功率。
再一种场景,该装置应用网络设备。发送模块1402用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端物理上行共享信道PUSCH采用第一波形;接收模块1401用于接收来自所述终端的波形辅助消息,所述波形辅助消息指示所述终端PUSCH期望采用第二波形;发送模块1402还用于向所述终端发送第二消息,所述第二消息用于指示所述PUSCH采用第二波形。
关于接收模块1401、发送模块1402的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图15所示,本申请实施例还提供一种装置1500。该装置1500可以包括至少一个处理器1501、通信接口1502。在一些实施例中,通信接口1502,用于通过传输介质和其它设备进行通信,从而用于装置1500中的装置可以和其它设备进行通信。示例性地,通信接口1502可以是收发器、电路、总线、模块或其它类型的通信接口,该其它设备可以是其它终端或其它网络设备。处理器1501利用通信接口1502收发消息,并 用于实现上述实施例中终端或者网络设备实现的方法。
一场景中,该装置1500用于实现上述方法中终端的功能,该装置可以是终端,也可以是终端中的芯片或芯片系统。至少一个处理器1501,用于结合通信接口1502实现上述方法中终端的功能。
一种示例中,所述通信接口1502,用于接收来自网络设备的第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;所述处理器1501,用于在确定满足预设条件时,控制所述通信接口1502向网络设备发送终端的能力信息消息,所述终端的能力信息消息包括终端的最大发射功率回退MPR信息和终端的能力信息;所述通信接口1502,还用于接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形,所述第二波形是根据所述MPR信息和所述终端的能力信息指示的部分能力从所述终端的物理上行共享信道PUSCH支持的波形中确定的;所述处理器1501,还用于控制所述通信接口1502采用所述第二波形向所述网络设备发送上行信息。具体参见方法中的详细描述,此处不再说明。
另一种示例中,所述通信接口1502,用于接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;所述处理器1501,用于控制所述通信接口1502向网络设备发送波形辅助消息,所述波形辅助消息用于指示终端的物理上行共享信道PUSCH期望采用第二波形;所述通信接口1502,还用于接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形;所述处理器1501,还用于控制所述通信接口1502采用所述第二波形向所述网络设备发送上行信息。
又一场景中,该装置1500用于实现上述方法中网络设备的功能,该装置可以是网络设备,也可以是网络设备中的芯片或芯片系统。至少一个处理器1501,用于结合通信接口1502实现上述方法中网络设备的功能。
一种示例中,所述处理器1501,用于控制所述通信接口1502在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;所述通信接口1502,还用于接收来自所述终端的能力信息消息,所述能力信息消息包括终端的最大发射功率回退MPR信息和终端的能力信息;所述处理器1501,还用于控制所述通信接口1502向所述终端发送第一消息,所述第一消息用于指示所述终端的PUSCH采用的波形为所述第二波形;所述第二波形是根据所述MPR信息和/或所述终端的能力信息指示的部分能力确定的。
另一种示例中,所述处理器1501,用于控制所述通信接口1502在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端物理上行共享信道PUSCH采用第一波形;所述通信接口1502,还用于接收来自所述终端的波形辅助消息,所述波形辅助消息指示所述终端PUSCH期望采用第二波形;所述处理器1501,还用于控制所述通信接口1502向所述终端发送第二消息,所述第二消息用于指示所述PUSCH采用第二波形。
在一些实施例中,装置1500还可以包括至少一个存储器1503,用于存储程序计算机程序。存储器1503和处理器1501耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器1503还可以位于装置1500之外。处理器1501可以和存储器1503协同操作。处理器1501可能执行存储器1503中存储的计算机程序。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1502、处理器1501以及存储器1503之间的连接介质。例如,本申请实施例在图15中以存储器1503、处理器1501以及通信接口1502之间可以通过总线连接,所述总线可以分为地址总线、数据总线、控制总线等。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信系统,其特征在于,包括:
    网络设备,用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;
    终端,用于在满足预设条件时,向网络设备发送的第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;
    所述网络设备,还用于接收所述第二消息,向所述终端发送第二消息,所述第二消息用于指示终端的PUSCH采用第二波形;
    其中,所述第二波形是根据所述终端的MPR信息和/或终端的能力信息指示的部分能力确定的;所述终端采用第二波形发送上行信息的上行发射功率大于所述终端采用第一波形发送上行信息的上行发射功率。
  2. 一种通信系统,其特征在于,包括:
    网络设备,用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端物理上行共享信道PUSCH采用第一波形;
    终端,用于向网络设备发送波形辅助消息,所述波形辅助消息指示所述终端PUSCH期望采用第二波形;
    所述网络设备,还用于接收来自网络设备的波形辅助消息,向所述终端发送第二消息,所述第二消息用于指示所述PUSCH采用第二波形;
    所述终端,还用于接收来自网络设备的第二消息,根据所述第二消息指示的第二波形向所述网络设备发送上行信息。
  3. 一种波形指示方法,其特征在于,包括:
    终端接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;
    所述终端在满足预设条件时,向网络设备发送第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;
    所述终端接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形,所述第二波形是根据所述MPR信息和所述终端的能力信息指示的部分能力从所述终端的物理上行共享信道PUSCH支持的波形中确定的;
    所述终端采用所述第二波形向所述网络设备发送上行信息。
  4. 如权利要求3所述的方法,其特征在于,所述第一消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    所述终端接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
  6. 如权利要求3-5任一项所述的方法,其特征在于,所述MPR信息包括不同的调制方式、不同的资源块RB位置、终端的PUSCH支持的两种波形以及不同MPR值之间的对应关系;或者,
    所述MPR信息包括多个差异值,所述差异值为在同一调制方式和同一RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值,其中不同的差异值所对应的调制方式或RB位置不同;或者,
    所述MPR信息包括内部RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值;或者,
    所述MPR信息包括在QPSK的调制方式下,所述终端的PUSCH支持的两种波形对应的MPR值的差值。
  7. 如权利要求6所述的方法,其特征在于,所述终端的PUSCH支持的两种波形包括循环前缀的正交频分复用CP-OFDM波形和离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
  8. 如权利要求3-7任一项所述的方法,其特征在于,所述满足预设条件包括:
    所述终端接收到来自网络设备的能力查询请求,所述能力查询请求用于请求查询所述终端的能力;或者,
    满足触发向网络设备发送终端的能力信息消息的触发条件。
  9. 如权利要求3-8任一项所述的方法,其特征在于,所述第二波形为DFT-s-OFDM波形,所述方法还包括:
    所述终端接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
  10. 如权利要求3-9任一项所述的方法,其特征在于,所述第三消息为终端的能力信息消息。
  11. 一种波形指示方法,其特征在于,包括:
    终端接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;
    所述终端向网络设备发送波形辅助消息,所述波形辅助消息用于指示终端的物理上行共享信道PUSCH期望采用第二波形;
    所述终端接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形;
    所述终端采用所述第二波形向所述网络设备发送上行信息。
  12. 如权利要求11所述的方法,其特征在于,所述第二消息为下行控制消息,所述下行消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    所述终端接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
  14. 如权利要求13所述的方法,其特征在于,所述PUSCH支持的波形包括循环前缀的正交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述第二波形为DFT-s-OFDM波形,所述方法还包括:
    所述终端接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS 资源、SRS端口或者天线最大秩中的一项或多项。
  16. 一种波形指示方法,其特征在于,包括:
    网络设备,用于在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;
    网络设备接收来自所述终端的第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;
    网络设备向所述终端发送第一消息,所述第一消息用于指示所述终端的PUSCH采用的波形为所述第二波形;所述第二波形是根据所述MPR信息和/或所述终端的能力信息指示的部分能力确定的。
  17. 一种波形指示方法,其特征在于,包括:
    网络设备在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端物理上行共享信道PUSCH采用第一波形;
    所述网络设备接收来自所述终端的波形辅助消息,所述波形辅助消息指示所述终端PUSCH期望采用第二波形;
    所述网络设备向所述终端发送第二消息,所述第二消息用于指示所述PUSCH采用第二波形。
  18. 一种芯片,其特征在于,包括:处理器和通信接口;
    所述通信接口,用于接收来自网络设备的第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;
    所述处理器,用于在确定满足预设条件时,控制所述通信接口向网络设备发送第三消息,所述第三消息包括终端的最大发射功率回退MPR信息和终端的能力信息;
    所述通信接口,还用于接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形,所述第二波形是根据所述MPR信息和所述终端的能力信息指示的部分能力从所述终端的物理上行共享信道PUSCH支持的波形中确定的;
    所述处理器,还用于控制所述通信接口采用所述第二波形向所述网络设备发送上行信息。
  19. 如权利要求18所述的芯片,其特征在于,所述第一消息为下行控制消息,所述下行控制消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
  20. 如权利要求19所述的芯片,其特征在于,所述通信接口,还用于接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
  21. 如权利要求18-20任一项所述的芯片,其特征在于,所述MPR信息包括不同的调制方式、不同的资源块RB位置、终端的PUSCH支持的两种波形以及不同MPR值之间的对应关系;或者,
    所述MPR信息包括多个差异值,所述差异值为在同一调制方式和同一RB位置下,所述终端的PUSCH支持的两种波形对应的MPR值的差值,其中不同的差异值所对应的调制方式或RB位置不同;或者,
    所述MPR信息包括内部RB位置下,所述终端的PUSCH支持的两种波形对应的MPR 值的差值;或者,
    所述MPR信息包括在QPSK的调制方式下,所述终端的PUSCH支持的两种波形对应的MPR值的差值。
  22. 如权利要求21所述的芯片,其特征在于,所述终端的PUSCH支持的两种波形包括循环前缀的正交频分复用CP-OFDM波形和离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
  23. 如权利要求18-22任一项所述的芯片,其特征在于,所述满足预设条件包括:
    所述通信接口接收到来自网络设备的能力查询请求,所述能力查询请求用于请求查询所述终端的能力;或者,
    所述处理器确定满足触发向网络设备发送所述终端的能力信息消息的触发条件。
  24. 如权利要求18-23任一项所述的芯片,其特征在于,所述第二波形为DFT-s-OFDM波形,所述方法通信接口,还用于接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
  25. 如权利要求18-24任一项所述的方法,其特征在于,所述第三消息为终端的能力信息消息。
  26. 一种芯片,其特征在于,包括通信接口和处理器;
    所述通信接口,用于接收来自网络设备的第一消息,所述第一消息用于指示所述终端的物理上行共享信道PUSCH采用第一波形;
    所述处理器,用于控制所述通信接口向网络设备发送波形辅助消息,所述波形辅助消息用于指示终端的物理上行共享信道PUSCH期望采用第二波形;
    所述通信接口,还用于接收来自网络设备的第二消息,所述第二消息用于指示所述终端的PUSCH采用第二波形;
    所述处理器,还用于控制所述通信接口采用所述第二波形向所述网络设备发送上行信息。
  27. 如权利要求26所述的芯片,其特征在于,所述第二消息为下行控制消息,所述下行消息指示所述PUSCH采用第一带宽部分BWP,所述第一BWP与所述第二波形存在对应关系。
  28. 如权利要求26所述的芯片,其特征在于,所述通信接口,还用于接收网络设备发送的配置信息,所述配置信息用于配置所述终端的PUSCH支持的波形与BWP的对应关系,不同的波形对应不同的BWP,所述配置信息包括所述第一BWP与所述第二波形的对应关系。
  29. 如权利要求27所述的芯片,其特征在于,所述PUSCH支持的波形包括循环前缀的正交频分复用CP-OFDM波形或者离散傅里叶变换扩频的正交频分复用DFT-s-OFDM波形。
  30. 如权利要求26-29任一项所述的芯片,其特征在于,所述第二波形为DFT-s-OFDM波形,所述通信接口,还用于接收来自所述网络设备第一参数,所述第一参数包括信道探测参考信号SRS资源、SRS端口或者天线最大秩中的一项或多项。
  31. 一种芯片,其特征在于,包括通信接口和处理器;
    所述处理器,用于控制所述通信接口在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端的物理上行共享信道PUSCH采用第一波形;
    所述通信接口,还用于接收来自所述第三消息,所述第三消息包括终端的最大发射功 率回退MPR信息和终端的能力信息;
    所述处理器,还用于控制所述通信接口向所述终端发送第一消息,所述第一消息用于指示所述终端的PUSCH采用的波形为所述第二波形;所述第二波形是根据所述MPR信息和/或所述终端的能力信息指示的部分能力确定的。
  32. 一种芯片,其特征在于,包括通信接口和处理器;
    所述处理器,用于控制所述通信接口在随机接入过程中,向终端发送第一消息,所述第一消息用于指示终端物理上行共享信道PUSCH采用第一波形;
    所述通信接口,还用于接收来自所述终端的波形辅助消息,所述波形辅助消息指示所述终端PUSCH期望采用第二波形;
    所述处理器,还用于控制所述通信接口向所述终端发送第二消息,所述第二消息用于指示所述PUSCH采用第二波形。
  33. 一种计算机可读存储介质,其特征在于,存储有计算机程序,所述计算机程序被计算机执行时,使得所述计算机执行如权利要求3至10任一项所述的方法、或者执行如权利要求11-15任一项所述的方法,或者执行如权利要求16所述的方法、或者执行如权利要求17所述的方法。
PCT/CN2021/110645 2020-08-28 2021-08-04 一种波形指示方法及芯片、系统 WO2022042247A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21860087.2A EP4192105A4 (en) 2020-08-28 2021-08-04 WAVEFORM INDICATION METHOD, CHIP, AND SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010889550.9A CN114125955B (zh) 2020-08-28 2020-08-28 一种波形指示方法及芯片、系统
CN202010889550.9 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022042247A1 true WO2022042247A1 (zh) 2022-03-03

Family

ID=80352662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110645 WO2022042247A1 (zh) 2020-08-28 2021-08-04 一种波形指示方法及芯片、系统

Country Status (3)

Country Link
EP (1) EP4192105A4 (zh)
CN (1) CN114125955B (zh)
WO (1) WO2022042247A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198009A1 (zh) * 2022-04-16 2023-10-19 华为技术有限公司 一种通信方法及装置
WO2024011483A1 (zh) * 2022-07-14 2024-01-18 Oppo广东移动通信有限公司 通信方法、终端设备及网络设备
WO2024046227A1 (zh) * 2022-08-30 2024-03-07 北京紫光展锐通信技术有限公司 一种波形配置方法、芯片和电子设备
WO2024068750A1 (en) * 2022-09-30 2024-04-04 Sony Group Corporation Methods, communications devices, and infrastructure equipment
WO2024065533A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 一种上行波形配置方法、装置及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118140451A (zh) * 2022-01-11 2024-06-04 Oppo广东移动通信有限公司 信息处理方法、终端设备、网络设备、芯片和存储介质
CN118120195A (zh) * 2022-09-29 2024-05-31 北京小米移动软件有限公司 一种上行波形的配置方法、装置及存储介质
CN118120324A (zh) * 2022-09-29 2024-05-31 北京小米移动软件有限公司 一种上行波形配置方法、装置及存储介质
WO2024065806A1 (zh) * 2022-09-30 2024-04-04 Oppo广东移动通信有限公司 无线通信的方法、终端设备及网络设备
CN118042582A (zh) * 2022-11-03 2024-05-14 维沃移动通信有限公司 信息传输方法、装置、终端及网络侧设备
CN116709542B (zh) * 2022-11-14 2024-05-14 荣耀终端有限公司 波形切换方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108271214A (zh) * 2017-01-04 2018-07-10 华为技术有限公司 一种通信方法及其终端设备、网络设备
US20190261315A1 (en) * 2018-02-22 2019-08-22 Qualcomm Incorporated Methods and apparatuses for waveform indication in high-frequency bands
US20190261284A1 (en) * 2016-11-02 2019-08-22 Ntt Docomo, Inc. User equipment, base station, and transmission power control method
US20190274158A1 (en) * 2016-11-02 2019-09-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication Method, Terminal Device and Network Device
US20200267660A1 (en) * 2017-09-08 2020-08-20 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, communication method, and integrated circuit
WO2020167178A1 (en) * 2019-02-15 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmission in radio access network

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10397947B2 (en) * 2016-08-12 2019-08-27 Qualcomm Incorporated Adaptive waveform selection in wireless communications
US10477592B2 (en) * 2016-11-16 2019-11-12 Qualcomm Incorporated UL waveform during RACH procedure and autonomous UL transmission
WO2018173230A1 (ja) * 2017-03-23 2018-09-27 株式会社Nttドコモ ユーザ装置、及びランダムアクセスプリアンブル送信方法
KR102353168B1 (ko) * 2017-05-04 2022-01-19 삼성전자 주식회사 통신 시스템에서 단말 파워 헤드룸 정보의 전송 방법 및 장치
JP2019050470A (ja) * 2017-09-08 2019-03-28 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261284A1 (en) * 2016-11-02 2019-08-22 Ntt Docomo, Inc. User equipment, base station, and transmission power control method
US20190274158A1 (en) * 2016-11-02 2019-09-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication Method, Terminal Device and Network Device
CN108271214A (zh) * 2017-01-04 2018-07-10 华为技术有限公司 一种通信方法及其终端设备、网络设备
US20200267660A1 (en) * 2017-09-08 2020-08-20 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, communication method, and integrated circuit
US20190261315A1 (en) * 2018-02-22 2019-08-22 Qualcomm Incorporated Methods and apparatuses for waveform indication in high-frequency bands
WO2020167178A1 (en) * 2019-02-15 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmission in radio access network

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.101-1
CATT: "Further details on NR 4-step RA Procedure", 3GPP DRAFT; R1-1702066, vol. RAN WG1, 7 February 2017 (2017-02-07), Athens, Greece, pages 1 - 6, XP051220980 *
LG ELECTRONICS: "Discussion on UL power control for NR", 3GPP DRAFT; R1-1715902 NR UL PC_FINAL, vol. RAN WG1, 11 September 2017 (2017-09-11), Nagoya, Japan, pages 1 - 8, XP051329293 *
See also references of EP4192105A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198009A1 (zh) * 2022-04-16 2023-10-19 华为技术有限公司 一种通信方法及装置
WO2024011483A1 (zh) * 2022-07-14 2024-01-18 Oppo广东移动通信有限公司 通信方法、终端设备及网络设备
WO2024046227A1 (zh) * 2022-08-30 2024-03-07 北京紫光展锐通信技术有限公司 一种波形配置方法、芯片和电子设备
WO2024065533A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 一种上行波形配置方法、装置及存储介质
WO2024068750A1 (en) * 2022-09-30 2024-04-04 Sony Group Corporation Methods, communications devices, and infrastructure equipment

Also Published As

Publication number Publication date
CN114125955B (zh) 2023-08-22
CN114125955A (zh) 2022-03-01
EP4192105A4 (en) 2024-01-24
EP4192105A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2022042247A1 (zh) 一种波形指示方法及芯片、系统
CN109937605B (zh) 一种随机接入的方法和装置
US11910213B2 (en) Method and apparatus for uplink transmission in wireless communication system
JP7288403B2 (ja) 電力配分方法及び装置
US10602460B2 (en) Terminal device, base station device, and communication method
WO2018228566A1 (zh) 随机接入方法、设备及系统
KR20190113399A (ko) 무선통신시스템에서 랜덤엑세스를 수행하는 방법 및 장치
US11212756B2 (en) Method and apparatus for supporting power backoff report while performing power headroom report in wireless communication system
WO2013023496A1 (zh) 一种功率控制方法及装置
WO2021092820A1 (en) Random access based on half-duplex random access resources and full-duplex random access resources
US11399350B2 (en) Method of controlling terminal output power during carrier aggregation and apparatus therefor
WO2022001177A1 (zh) 一种上行功率控制方法、终端及芯片
WO2018141258A1 (zh) 通信节点之间的信息交互方法及装置
WO2024032216A1 (zh) 传输信息的方法和装置
WO2023008324A1 (ja) 通信装置、基地局、及び通信方法
WO2024068750A1 (en) Methods, communications devices, and infrastructure equipment
CN117939608A (zh) 功率余量指示信息上报方法、电子设备和存储介质
CN116074970A (zh) 无线通信的方法及装置
CN114902796A (zh) 用于根据无线通信系统中的bwp类型来驱动定时器的方法和装置
CN116506930A (zh) 一种功率余量上报方法和装置
KR20210056197A (ko) 무선통신 시스템에서 파워헤드룸 보고 시 파워백오프 보고를 지원하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021860087

Country of ref document: EP

Effective date: 20230302

NENP Non-entry into the national phase

Ref country code: DE