WO2024032216A1 - 传输信息的方法和装置 - Google Patents

传输信息的方法和装置 Download PDF

Info

Publication number
WO2024032216A1
WO2024032216A1 PCT/CN2023/103839 CN2023103839W WO2024032216A1 WO 2024032216 A1 WO2024032216 A1 WO 2024032216A1 CN 2023103839 W CN2023103839 W CN 2023103839W WO 2024032216 A1 WO2024032216 A1 WO 2024032216A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
antenna panel
terminal device
antenna
transmit power
Prior art date
Application number
PCT/CN2023/103839
Other languages
English (en)
French (fr)
Inventor
李铁
杨培
刘晓晴
余政
杨育波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032216A1 publication Critical patent/WO2024032216A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present application relates to the field of communications, and specifically, to a method and device for transmitting information.
  • 5G NR new radio, NR
  • 4G LTE long term evolution, LTE
  • high-frequency bands usually considered 6G or above
  • 4G LTE long term evolution, LTE
  • 5G NR uses low-frequency bands compared to 4G LTE (long term evolution, LTE), and adds new high-frequency bands (usually considered 6G or above), such as 28GHz, 39GHz or 60GHz bands .
  • 6G or above new high-frequency bands
  • 6G or above long term evolution
  • 6G or above long term evolution
  • 6G NR long term evolution
  • 5G NR uses beamforming (BF) technology to obtain good directional gain to increase the directional power in the transmitting direction and improve the signal to interference plus noise radio (SINR) at the receiving end, thereby improving system performance.
  • BF beamforming
  • DBF digital beamforming
  • ABF analog beamforming
  • HBF hybrid beamforming
  • the antenna panel is the core component. Beams are sent or received through the antenna panel.
  • both base stations and terminals are deployed using multi-antenna panels. Especially for terminals, in order to meet the coverage requirements, and in the case of limited space and cost savings, the deployment of antenna panels has a more important impact on performance.
  • terminal equipment equipped with multiple antenna panels may consider different ways of using multiple antenna panels. For example, if the terminal equipment is configured with 5 antenna panels, when the terminal is in the center of the cell, all 5 antenna panels may be used to transmit different data, which can improve the throughput of the terminal and the system; when the terminal is at the edge of the cell, due to limited power, The five antenna panels can form different antenna panel combinations according to different power requirements. The same combination sends the same data, and different combinations send different data. By increasing the power, the cell coverage is expanded, and the robustness of edge cells can also be improved.
  • This application provides a method and device for transmitting information.
  • the terminal equipment can enable the network equipment to determine the working status of the antenna panel on the terminal equipment, thereby facilitating the reasonable use of multiple devices on the terminal equipment.
  • the antenna panel transmits information, which is beneficial to improving system efficiency.
  • an information transmission method is provided.
  • the method is applied to a terminal device.
  • the terminal device includes a first antenna panel.
  • the terminal device sends a first message.
  • the first message is used to indicate the power of the first antenna panel. margin.
  • the terminal device before the terminal device sends the first message, the terminal device generates the first message based on information such as the calculation power of the first antenna panel and the maximum transmission power of the first antenna panel.
  • the terminal device can report the power headroom of the first antenna panel, and the network device that receives the power headroom of the first antenna panel can determine the working status of the first antenna panel based on the power headroom, thereby It is conducive to realizing the scheduling of the first antenna panel by the network equipment. Compared with the method of determining the power margin of the terminal equipment, this technical solution is conducive to realizing the dispatching of the antenna panel on the terminal equipment by the network equipment, and is conducive to improving the efficiency of multiple antenna panels. utilization and improve system efficiency.
  • the terminal device includes a plurality of antenna panels, the plurality of antenna panels include a second antenna panel and the first antenna panel, and the first message is also used to indicate One or more of the following: the maximum transmit power of the first antenna panel, the power headroom of the second antenna panel, the maximum transmit power of the second antenna panel, the power headroom of the terminal device, or the terminal device the maximum transmit power.
  • multiple antenna panels on the terminal device can send or receive data of different cells.
  • the different cells can be cells with different physical cell identifiers (PCI), or they can be serving cells. and neighboring cells, or it can also be the serving cell and a cell with a different PCI from the serving cell.
  • PCI physical cell identifier
  • the first message may also be used to indicate information such as the power headroom of the second antenna panel and the power headroom of the terminal device.
  • the network device that receives the first message can further determine a power allocation scheme for the first antenna panel of the terminal device based on this information, which is beneficial to reducing communication problems caused by the sum of the transmit power of multiple antenna panels being greater than the maximum transmission power of the terminal device.
  • the probability of problems such as malfunctions and data loss during the process will also help reduce the adverse impact of scheduling one antenna panel on another antenna panel and improve the stability of communication between terminal equipment and network equipment.
  • the terminal device includes a plurality of antenna panels, the plurality of antenna panels include a second antenna panel and the first antenna panel, and the method is also used to indicate: sending The second message is used to indicate the power headroom of the second antenna panel.
  • the terminal device can respectively send information related to the working status of the first antenna panel and information related to the working status of the second antenna panel. Since there is a corresponding relationship between the antenna panel and the channel, different antenna panels are used to send information of different antenna panels. Information is helpful for network equipment to determine the status of a specific antenna panel based on the corresponding relationship between the antenna panel and the channel. It is also helpful for further operations such as power allocation and scheduling for the determined antenna panel. It is also helpful for improving the control of multiple terminal devices. Efficiency of antenna panel scheduling.
  • the second message is also used to indicate one or more of the following: the power headroom of the first antenna panel, the maximum power of the first antenna panel.
  • the transmit power the maximum transmit power of the second antenna panel, the power headroom of the terminal device, or the maximum transmit power of the terminal device.
  • Information such as the power headroom of the multiple antenna panels and the power headroom of the terminal device can also be included in the second message.
  • This technical solution provides another way of reporting the working status of multiple antenna panels on the terminal device and the status of the terminal device. Information about work status.
  • the implementation of this technical solution is conducive to improving the stability and reporting efficiency of information reported by terminal equipment, and is conducive to improving system efficiency.
  • the terminal device sends a third message, where the third message is used to indicate the power headroom of the terminal device and/or the maximum transmit power of the terminal device.
  • the terminal device may also independently report the power headroom of the terminal device and/or the maximum transmit power of the terminal device.
  • reporting the working status information of the terminal device separately will help the network device distinguish the power headroom of the terminal device from multiple information, and will help the network device to realize Reasonable allocation of power of terminal equipment is conducive to improving the power utilization of terminal equipment and improving system efficiency.
  • one or more of the power headroom of the first antenna panel, the power headroom of the second antenna panel, or the power headroom of the terminal device is used by the network device to determine the first The transmission power of the antenna panel and/or the second antenna panel.
  • the transmission power may include sending power and receiving power. Determining the transmission power of the antenna panel here can be understood as the network device can schedule the antenna panel to send and receive information after receiving the above information.
  • the information reported by the terminal device to the network device can be used by the network device to determine the power distribution of multiple antenna panels on the terminal device and the scheduling of the antenna panels, which is beneficial to improving the utilization of multiple antenna panels and realizing the power control of the terminal device. Reasonable allocation to improve system efficiency.
  • the power headroom of the first antenna panel is determined based on a first calculated power and a maximum transmit power of the first antenna panel, and the first calculated power is a first The calculated power of the antenna panel, the first calculated power is related to the maximum transmit power of the terminal device.
  • the power headroom of the second antenna panel is determined based on the second calculation power and the maximum transmission power of the second antenna panel, and the second calculation power is the second The calculated power of the antenna panel, the second calculated power is related to the maximum transmit power of the terminal device.
  • the power headroom of the terminal device is determined according to the maximum transmit power of the terminal device and one or more of the following: the maximum transmit power of the first antenna panel power, the maximum transmission power of the second antenna panel, the first computing power or the second computing power.
  • the power margin of the antenna panel and/or the power margin of the terminal device is determined through parameters such as the calculated power of the antenna panel, the maximum transmit power of the antenna panel, and the maximum transmit power of the terminal device, which is beneficial to determining the terminal device.
  • the power margin of each antenna panel and the power margin of the terminal equipment can be realized to realize the reasonable distribution of the power of the terminal equipment and the reasonable scheduling of multiple antenna panels.
  • the type of the first message and the type of the second message are determined based on one or more of the following information: the first message and the second message Whether to transmit on the same channel; whether to trigger the first antenna panel and/or the second antenna panel to send the first message and/or the second message; or how to send the first message and the second message.
  • the sending mode here may also be called a reporting mode.
  • the reporting mode of the first message and the second message may be divided into joint reporting and separate reporting.
  • the type of the message can be determined through one or more of the above methods, and then the type of calculation power of the antenna panel can be determined, which is beneficial to determining the power margin of the antenna panel, and is beneficial to realizing the control of multiple antenna panels. power distribution.
  • the power headroom of the first antenna panel and/or the second antenna panel is also determined based on one or more of the following information about the different channels: channel priority, channel content, or channel period.
  • the first antenna panel and the second antenna panel are associated with different channels, that is, messages sent by the first antenna panel and messages sent by the second antenna panel are transmitted on different channels.
  • the terminal device can also determine the order or priority of allocating power to each of the multiple antenna panels based on factors such as the priority, content, or cycle of the channel associated with the antenna panel. Since there is a corresponding relationship between the antenna panel and the channel, the priority of the channel can be understood as the priority of the antenna panel.
  • the terminal device only reports the power headroom report of one antenna panel, it is helpful for the network device to determine the power headroom report that corresponds to the reported power headroom report.
  • the corresponding antenna panels are conducive to improving the efficiency of scheduling multiple antenna panels on terminal equipment, and are conducive to improving system efficiency.
  • the first antenna panel and the second antenna panel are two antenna panels that transmit and/or receive simultaneously.
  • the first antenna panel and the second antenna panel are set as two antenna panels for simultaneous transmission and/or simultaneous reception.
  • the two antenna panels can perform operations such as joint transmission and separate transmission.
  • different types of antenna panels are required to perform transmission tasks. Setting up two antenna panels for simultaneous transmission or reception will help increase the rate at which terminal equipment uses the antenna panels to transmit information and improve system efficiency.
  • a method of transmitting information is provided.
  • the method is applied to a terminal device.
  • the terminal device includes a plurality of antenna panels.
  • the plurality of antenna panels include a first antenna panel and a second antenna panel.
  • the terminal device is in the first antenna panel.
  • One antenna panel and/or the second antenna panel transmits a channel, the transmitting power of the first antenna panel is the first transmitting power, and the transmitting power of the second antenna panel is the second transmitting power;
  • the first transmission power is determined according to one or more of the following: the calculation power of the first antenna panel, the maximum transmission power of the terminal device, the maximum transmission power of the first panel or the maximum transmission of the second antenna panel power.
  • the second transmission power is determined according to one or more of the following: the computing power of the second antenna panel, the maximum transmission power of the terminal device, the maximum transmission power of the first panel, or the maximum transmission of the second antenna panel power.
  • the antenna panel transmission channel can also be understood as the content on the antenna panel transmission channel, that is, the antenna panel transmits signals.
  • the terminal equipment can use multiple antenna panels to transmit data and information, and the terminal equipment can also determine the transmission power of each antenna panel based on the maximum transmission power of the terminal equipment and the maximum transmission power of the antenna panel, thereby It can improve the utilization rate of each antenna panel and help improve system efficiency.
  • the first The transmit power is the first calculated power
  • the second transmit power is the second calculated power
  • the transmission of the antenna panel information is performed according to the calculated power of each antenna panel.
  • the first transmit power is equal to the maximum transmit power of the terminal device.
  • the transmission power of the multiple antenna panels can be allocated according to the full power of the terminal equipment for information transmission, which is conducive to improving the efficiency of the terminal equipment.
  • the rate of information transmission between network devices is conducive to improving system efficiency.
  • the first transmit power is less than the maximum transmit power of the terminal device.
  • the transmit power of the multiple antenna panels can be allocated according to the information transmission of the terminal device at less than full power, so that the terminal device A certain amount of power can be reserved to cope with other power-consuming actions, such as sudden information transmission requirements.
  • the implementation of this technical solution is conducive to improving the adaptability of terminal equipment in different data transmission scenarios, and is conducive to improving the stability of communication between terminal equipment and network equipment.
  • the first transmission power is proportional to the first calculation power
  • the second transmission power is proportional to the second calculation power
  • the first transmission power is proportional to the maximum transmission power of the terminal device
  • the second transmission power is proportional to the maximum transmission power of the terminal device
  • neither the first transmission power nor the second transmission power is zero.
  • the first transmission power is the first computing power or the maximum transmission power of the terminal device; or the second transmission power is the second computing power or The maximum transmit power of the terminal device.
  • the first transmission power is the first calculation power, and the second transmission power is greater than or equal to zero; or, the second transmission power is the second calculation power , the first transmission power is greater than or equal to zero.
  • the first transmission power is less than or equal to the maximum transmission power of the first antenna panel
  • the second transmission power is less than or equal to the maximum transmission power of the second antenna panel. power.
  • the terminal equipment can allocate the power for information transmission to multiple antenna panels in different ways, which is conducive to improving the flexibility of the terminal equipment in allocating power to the antenna panels, and is conducive to improving the performance of the terminal equipment in different information transmission scenarios. Adaptability.
  • the first transmit power and the second transmit power are further based on the following: One or more determinations of relevant information for different channels: channel priority, channel content, or channel period.
  • the terminal equipment can also determine the order or priority of allocating power to each of the multiple antenna panels based on factors such as the priority, content, or cycle of the channel associated with the antenna panel, which is beneficial to the terminal equipment.
  • the power can be allocated based on the actual working content or situation of the antenna panel, which is beneficial to improving the efficiency of communication between terminal equipment and network equipment. Different working contents of the antenna panel correspond to different practical application scenarios of the terminal equipment.
  • the implementation of this technical solution is also conducive to improving the actual use experience of terminal equipment users.
  • the power headroom of the antenna panel and the power headroom of the terminal device determined in the second aspect may be used in the first aspect to report to the network device.
  • a method of transmitting information is provided.
  • the method is applied to a network device.
  • the network device receives a first message.
  • the first message is used to indicate the power headroom of the first antenna panel of the terminal device.
  • the terminal device further includes a second antenna panel
  • the first message is also used to indicate one or more of the following: the maximum transmission of the first antenna panel power, the power headroom of the second antenna panel, the maximum transmit power of the second antenna panel, the power headroom of the terminal device, or the maximum transmit power of the terminal device.
  • the network device receives a second message sent by the terminal device, where the second message is used to indicate the power headroom of the second antenna panel of the terminal device.
  • the second message is also used to indicate one or more of the following: the power headroom of the first antenna panel, the maximum power of the first antenna panel.
  • the transmit power the maximum transmit power of the second antenna panel, the power headroom of the terminal device, or the maximum transmit power of the terminal device.
  • the network device receives a third message sent by the terminal device, the third message is used to indicate the power headroom of the terminal device and/or the maximum transmission of the terminal device power.
  • the network device sends configuration information to the terminal device, and the configuration information is used to schedule the first antenna panel and/or the second antenna panel on the terminal device.
  • the configuration information is also used to determine the transmission power of the first antenna panel and/or the transmission power of the second antenna panel.
  • a fourth aspect provides a method of transmitting information.
  • the method is applied to a network device.
  • the network device sends configuration information to a terminal device.
  • the configuration information is used by the terminal device to determine the computing power of the antenna panel.
  • a communication device in a fifth aspect, includes a first antenna panel.
  • the communication device further includes a transceiver unit.
  • the transceiver unit is used to send a first message.
  • the first message is used to instruct the first antenna panel. power margin.
  • the antenna panel here can also be called an antenna unit, and can be understood as a functional module used to implement the antenna function in the communication device.
  • the communication device includes a plurality of antenna panels, the plurality of antenna panels include a second antenna panel and the first antenna panel, and the first message is also used to indicate One or more of the following: the maximum transmit power of the first antenna panel, the power headroom of the second antenna panel, the maximum transmit power of the second antenna panel, the power headroom of the communication device, or the communication device the maximum transmit power.
  • the communication device includes a plurality of antenna panels, the plurality of antenna panels include a second antenna panel and the first antenna panel, and the transceiver unit is also used to send The second message is used to indicate the power headroom of the second antenna panel.
  • the second message is also used to indicate one or more of the following: the power headroom of the first antenna panel, the maximum power of the first antenna panel The transmission power, the maximum transmission power of the second antenna panel, the power headroom of the communication device, or the maximum transmission power of the communication device.
  • the transceiver unit is further configured to send a third message, the third message being used to indicate the power headroom of the communication device and/or the maximum power of the communication device. Transmit power.
  • one or more of the power headroom of the first antenna panel, the power headroom of the second antenna panel, or the power headroom of the communication device is used by the network device to determine the first The transmission power of the antenna panel and/or the second antenna panel.
  • the power headroom of the first antenna panel is determined based on the first calculated power and the maximum transmit power of the first antenna panel, and the first calculated power is the first The calculated power of the antenna panel, the first calculated power is related to the maximum transmit power of the communication device.
  • the power headroom of the second antenna panel is determined based on the second calculation power and the maximum transmission power of the second antenna panel, and the second calculation power is the second The calculated power of the antenna panel, the second calculated power is related to the maximum transmit power of the communication device.
  • the power headroom of the communication device is determined according to the maximum transmission power of the terminal device and one or more of the following: the maximum transmission of the first antenna panel power, the maximum transmission power of the second antenna panel, the first computing power or the second computing power.
  • the type of the first message and the type of the second message are determined based on one or more of the following information: the first message and the second message Whether to transmit on the same channel; whether to trigger the first antenna panel and/or the second antenna panel to send the first message and/or the second message; or how to send the first message and the second message.
  • the power headroom of the first antenna panel and/or the The power headroom of a two-antenna panel is also determined based on one or more of the following information about the different channels: channel priority, channel content, or channel period.
  • the first antenna panel and the second antenna panel are two antenna panels that transmit and/or receive simultaneously.
  • a communication device in a sixth aspect, includes a processing unit.
  • the communication device includes a plurality of antenna panels.
  • the plurality of antenna panels include a first antenna panel and a second antenna panel.
  • the processing unit is configured to, in the The first antenna panel and/or the second antenna panel transmit a channel, the transmit power of the first antenna panel is the first transmit power, and the transmit power of the second antenna panel is the second transmit power; wherein,
  • the first transmit power is determined according to one or more of the following: the calculated power of the first antenna panel, the maximum transmit power of the communication device, the maximum transmit power of the first panel, or the maximum transmit power of the second antenna panel power.
  • the second transmission power is determined according to one or more of the following: the calculation power of the second antenna panel, the maximum transmission power of the communication device, the maximum transmission power of the first panel, or the maximum transmission of the second antenna panel power.
  • the first transmission power is the first computing power
  • the second transmission power is the second computing power
  • the first transmit power is equal to the maximum transmit power of the communication device.
  • the first transmit power is less than the maximum transmit power of the communication device.
  • the first transmission power is proportional to the first calculation power
  • the second transmission power is proportional to the second calculation power
  • the first transmission power is proportional to the maximum transmission power of the communication device
  • the second transmission power is proportional to the maximum transmission power of the communication device
  • neither the first transmission power nor the second transmission power is zero.
  • the first transmission power is the first calculation power or the maximum transmission power of the communication device; or the second transmission power is the second calculation power or the maximum transmission power of the communication device.
  • the maximum transmit power of the communication device is the first calculation power or the maximum transmission power of the communication device.
  • the first transmission power is the first calculation power, and the second transmission power is greater than or equal to zero; or, the second transmission power is the second calculation power , the first transmission power is greater than or equal to zero.
  • the first transmission power is less than or equal to the maximum transmission power of the first antenna panel
  • the second transmission power is less than or equal to the maximum transmission power of the second antenna panel. power.
  • the first transmit power and the second transmit power are further based on the following: One or more determinations of relevant information for different channels: channel priority, channel content, or channel period.
  • a seventh aspect provides a communication device, which includes a transceiver unit configured to receive a first message, the first message being used to indicate a power headroom of a first antenna panel of a terminal device.
  • the terminal device further includes a second antenna panel
  • the first message is also used to indicate one or more of the following: the maximum transmission of the first antenna panel power, the power headroom of the second antenna panel, the maximum transmit power of the second antenna panel, the power headroom of the terminal device, or the maximum transmit power of the terminal device.
  • the transceiver unit is also configured to receive a second message sent by the terminal device, where the second message is used to indicate the power headroom of the second antenna panel of the terminal device.
  • the second message is also used to indicate one or more of the following: the power headroom of the first antenna panel, the maximum power of the first antenna panel The transmit power, the maximum transmit power of the second antenna panel, the power headroom of the terminal device, or the maximum transmit power of the terminal device.
  • the transceiver unit is further configured to receive a third message sent by the terminal device, where the third message is used to indicate the power headroom of the terminal device and/or the The maximum transmit power of the terminal device.
  • the transceiver unit is also used to send configuration information, and the configuration information is used to schedule the first antenna panel and/or the second antenna panel on the terminal device.
  • the configuration information is also used to determine the transmission power of the first antenna panel and/or the transmission power of the second antenna panel.
  • An eighth aspect provides a communication device, which includes a transceiver unit configured to send configuration information to a terminal device, where the configuration information is used by the terminal device to determine the computing power of the antenna panel of the terminal device.
  • a communication device including a first antenna panel.
  • the communication device includes a processor and a memory.
  • the memory stores one or more computer programs.
  • the one or more computer programs include instructions.
  • the processor is used to: send the first message, the The first message is used to indicate the power headroom of the first antenna panel.
  • the communication device includes a plurality of antenna panels, the plurality of antenna panels include a second antenna panel and the first antenna panel, and the first message is also used to indicate One or more of the following: the maximum transmit power of the first antenna panel, the power headroom of the second antenna panel, the maximum transmit power of the second antenna panel, the power headroom of the communication device, or the communication device the maximum transmit power.
  • the communication device includes a plurality of antenna panels, the plurality of antenna panels include a second antenna panel and the first antenna panel, and the processor is also used to transmit The second message is used to indicate the power headroom of the second antenna panel.
  • the second message is also used to indicate one or more of the following: the power headroom of the first antenna panel, the maximum power of the first antenna panel The transmission power, the maximum transmission power of the second antenna panel, the power headroom of the communication device, or the maximum transmission power of the communication device.
  • the processor is further configured to send a third message, the third message being used to indicate the power headroom of the communication device and/or the maximum power of the communication device. Transmit power.
  • one or more of the power headroom of the first antenna panel, the power headroom of the second antenna panel, or the power headroom of the communication device is used by the network device to determine the first The transmission power of the antenna panel and/or the second antenna panel.
  • the power headroom of the first antenna panel is determined based on the first calculated power and the maximum transmit power of the first antenna panel, and the first calculated power is the first The calculated power of the antenna panel, the first calculated power is related to the maximum transmit power of the communication device.
  • the power headroom of the second antenna panel is determined based on the second calculation power and the maximum transmission power of the second antenna panel, and the second calculation power is the second The calculated power of the antenna panel, the second calculated power is related to the maximum transmit power of the communication device.
  • the power headroom of the communication device is determined according to the maximum transmission power of the communication device and one or more of the following: the maximum transmission of the first antenna panel power, the maximum transmission power of the second antenna panel, the first computing power or the second computing power.
  • the type of the first message and the type of the second message are determined based on one or more of the following information: the first message and the second message Whether to transmit on the same channel; whether to trigger the first antenna panel and/or the second antenna panel to send the first message and/or the second message; or how to send the first message and the second message.
  • the power headroom of the first antenna panel and/or the The power headroom of a two-antenna panel is also determined based on one or more of the following information about the different channels: channel priority, channel content, or channel period.
  • the first antenna panel and the second antenna panel are two antenna panels that transmit and/or receive simultaneously.
  • a communication device including a plurality of antenna panels, the plurality of antenna panels including a first antenna panel and a second antenna panel.
  • the communication device includes a processor and a memory.
  • the memory stores one or more computer programs.
  • the one or more computer programs include instructions. When the instructions are executed by the processor, the processor is used to:
  • the first antenna panel and/or the second antenna panel transmit a channel, the transmit power of the first antenna panel is the first transmit power, and the transmit power of the second antenna panel is the second transmit power;
  • the first transmit power is determined according to one or more of the following: the calculated power of the first antenna panel, the maximum transmit power of the communication device, the maximum transmit power of the first panel, or the maximum transmit power of the second antenna panel power.
  • the second transmission power is determined according to one or more of the following: the computing power of the second antenna panel, the maximum transmission power of the communication device, the maximum transmission power of the first panel, or the maximum transmission of the second antenna panel power.
  • the first The transmit power is the first calculated power
  • the second transmit power is the second calculated power
  • the first transmit power is equal to the maximum transmit power of the communication device.
  • the first transmit power is less than the maximum transmit power of the communication device.
  • the first transmission power is proportional to the first calculation power
  • the second transmission power is proportional to the second calculation power
  • the first transmission power is proportional to the maximum transmission power of the communication device
  • the second transmission power is proportional to the maximum transmission power of the communication device
  • neither the first transmission power nor the second transmission power is zero.
  • the first transmission power is the first computing power or the maximum transmission power of the communication device; or the second transmission power is the second computing power or The maximum transmit power of the communication device.
  • the first transmission power is the first calculation power
  • the second transmission power is greater than or equal to zero
  • the second transmission power is the second calculation power.
  • the first transmission power is greater than or equal to zero.
  • the first transmission power is less than or equal to the maximum transmission power of the first antenna panel
  • the second transmission power is less than or equal to the maximum transmission power of the second antenna panel. power.
  • the first transmit power and the second transmit power are further based on the following: One or more determinations of relevant information for different channels: channel priority, channel content, or channel periodicity.
  • a communication device in an eleventh aspect, includes a processor and a memory.
  • the memory stores one or more computer programs.
  • the one or more computer programs include instructions.
  • the processor is configured to: receive a first message, the first message being used to indicate a power headroom of a first antenna panel of the terminal device.
  • the terminal device further includes a second antenna panel
  • the first message is further used to indicate one or more of the following: The maximum transmit power, the power headroom of the second antenna panel, the maximum transmit power of the second antenna panel, the power headroom of the terminal device, or the maximum transmit power of the terminal device.
  • the processor is further configured to receive a second message sent by the terminal device, where the second message is used to indicate the power of the second antenna panel of the terminal device. margin.
  • the second message is also used to indicate one or more of the following: the power headroom of the first antenna panel, the power margin of the first antenna panel The maximum transmit power of the second antenna panel, the power headroom of the terminal device, or the maximum transmit power of the terminal device.
  • the processor is further configured to receive a third message sent by the terminal device, where the third message is used to indicate the power headroom and/or the terminal device. Or the maximum transmit power of the terminal device.
  • the processor is also used to send configuration information, and the configuration information is used to schedule the first antenna panel and/or the second antenna panel on the terminal device. .
  • the configuration information is also used to determine the transmission power of the first antenna panel and/or the transmission power of the second antenna panel.
  • a communication device in a twelfth aspect, includes a processor and a memory.
  • the memory stores one or more computer programs.
  • the one or more computer programs include instructions.
  • the processor is configured to: send configuration information to the terminal device, where the configuration information is used by the terminal device to determine the computing power of the antenna panel of the terminal device.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the method of the first aspect is executed.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the method of the second aspect is executed.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the method of the third aspect is executed.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the method of the fourth aspect is executed.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions. When the computer instructions are run on a computer, the method of the first aspect is executed.
  • the present application provides a computer-readable storage medium.
  • Computer instructions are stored in the computer-readable storage medium.
  • the method of the second aspect is executed.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions. When the computer instructions are run on a computer, the method of the third aspect is executed.
  • the present application provides a computer-readable storage medium that stores computer instructions, When the computer instructions are run on the computer, the method of the fourth aspect is caused to be executed.
  • a twenty-first aspect provides a chip, including a processor for reading instructions stored in a memory.
  • the processor executes the instructions, the chip implements the method of the first aspect to be executed.
  • a twenty-second aspect provides a chip, including a processor for reading instructions stored in a memory.
  • the processor executes the instructions, the chip implements the method of the second aspect to be executed.
  • a chip including a processor for reading instructions stored in a memory.
  • the processor executes the instructions, the chip implements the method of the third aspect to be executed.
  • a twenty-fourth aspect provides a chip, including a processor for reading instructions stored in a memory.
  • the processor executes the instruction, the chip implements the method of the fourth aspect to be executed.
  • the above-mentioned processor may be a processor specifically designed to perform these methods, or may be a processor that executes computer instructions in a memory to perform these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transient memory, such as a read-only memory, which can be integrated on the same chip as the processor, or can be respectively provided on different chips.
  • the embodiment of the present application does not specify the type of memory and the relationship between the memory and the processor.
  • the setting method is not limited.
  • Figure 1 is a schematic diagram of an application scenario suitable for embodiments of the present application.
  • Figure 2 is a schematic diagram of another application scenario applicable to the embodiment of the present application.
  • Figure 3 is a schematic diagram of an information transmission method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of another information transmission method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a PHR type determination method provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of yet another information transmission method provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of yet another information transmission method provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a PHR format provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another PHR format provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another PHR format provided by an embodiment of the present application.
  • FIG 11 is a schematic diagram of another PHR format provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of another PHR format provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another PHR format provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of an information transmission method provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • communication devices are included, and air interface resources can be used for wireless communication between communication devices.
  • communication equipment may include network equipment and terminal equipment, and network equipment may also be called base station equipment.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources and space resources. In the embodiment of this application, at least one can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • the terminal device involved in the embodiment of the present application can also be called a terminal, and can be a device with wireless transceiver functions. It can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as Ships, etc.); can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal device may be a user equipment (UE), where the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with wireless communication functions.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver functions.
  • the terminal device can also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in driverless driving, a wireless terminal in telemedicine, or a smart terminal.
  • the device used to implement the function of the terminal may be a terminal; it may also be a device that can support the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device for realizing the function of the terminal is a terminal, and the terminal is a UE as an example to describe the technical solution provided by the embodiment of the present application.
  • the network equipment involved in the embodiments of this application includes access network equipment, such as a base station (BS).
  • the BS may be a device deployed in a wireless access network and capable of wireless communication with terminals.
  • base stations may come in many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station involved in the embodiments of this application may be a base station in 5G or an evolved node B (eNB) in LTE.
  • the base station in 5G may also be called a transmission reception point (transmission reception point). , TRP) or 5G base station (next-generation node B, gNB).
  • the device used to implement the function of the network device may be a network device; it may also be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device for realizing the functions of the network device is a network device, and the network device is a base station as an example to describe the technical solution provided by the embodiment of the present application.
  • Wireless communication between communication devices may include: wireless communication between network devices and terminals, wireless communication between network devices and network devices, and wireless communication between terminals.
  • wireless communication can also be referred to as “communication”
  • communication can also be described as "data transmission”, “information transmission” or “transmission”.
  • Figure 1 shows a schematic diagram of a communication scenario suitable for embodiments of the present application.
  • FIG. 1 is a schematic diagram of a communication system used in this application. It should be noted that Figure 1 is only exemplary and does not limit the network architecture applicable to this application. Furthermore, this application does not limit uplink, downlink, and access links. , backhaul link, sidelink and other transmissions.
  • Figure 2 shows a schematic diagram of another communication scenario applicable to the embodiment of the present application.
  • the terminal device may include multiple antenna panels. According to the requirements of the terminal device, the multiple antenna panels may be used to implement data transmission in different scenarios. For example, when the communication environment between the terminal device and the network device is good, multiple antenna panels of the terminal device can be used to transmit different data, thereby improving the throughput of the terminal device and the system. When the communication environment between the terminal device and the network device is not good, multiple antenna panels of the terminal device can be used to form different antenna panel combinations to improve the power of data transmission between the terminal device and the network device in a specific direction, improving the terminal Stability of communication with network devices.
  • Multiple antenna panels of terminal equipment can transmit data to either a single transmission reception point (sTRP) or a multi-transmission reception point (mTRP).
  • the multiple antenna panels of the terminal equipment can be used for simultaneous transmission of single-channel multiple antenna panels, or for simultaneous transmission of multi-channel multiple antenna panels.
  • multiple antenna panels can also be used in application scenarios such as transmit diversity and space division multiplexing.
  • the terminal equipment For the transmission and reception of a single antenna panel, the terminal equipment is simple to implement, and the power consumption and heat dissipation are low.
  • the management of the antenna panel is also relatively simple. However, in order to switch between antenna panels, it is necessary to reserve the corresponding activation and switching time of the panel. , reducing system efficiency. Simultaneous transmission and reception of multiple antenna panels can not only enhance the robustness of the system, but also improve the efficiency of the system.
  • the terminal equipment is relatively complex to implement and will cause large power consumption and heat dissipation problems.
  • Power headroom refers to the difference between the maximum transmission power allowed by the terminal and the currently evaluated physical uplink shared channel (PUSCH) transmission power. In addition to the used transmission power, how much transmission power can the terminal use.
  • PUSCH physical uplink shared channel
  • the unit of PH is dB, and the range is [-23,40]dB. If it is a negative value, it means that the network device has scheduled a data transmission rate for the terminal device that is higher than what the available transmit power at that time can support.
  • One of the motivations for defining PH is that it can be used as a reference for network equipment to allocate uplink resources, and it can also provide a basis for uplink power control. How the specific network device uses the PH value reported by the terminal depends on the algorithm design of the network device. For example, if the PH value is positive, then more resources will be allocated to the terminal for transmission in the future; if the PH value is negative, during the next scheduling Allocate fewer resources to the terminal for transmission.
  • the negative value shown in PH is because the "evaluated PUSCH transmission power" is calculated based on the actual channel, not the actual transmission power, nor does it depend on the maximum transmission power limit.
  • Power headroom report refers to the process of terminal equipment reporting power headroom to the network side. This process can be specifically divided into reporting triggering, PH calculation and reporting.
  • Different types of PHR can be used to target different channels.
  • type 1 PHR (type 1PHR) can mainly target PUSCH channels
  • type 2 PHR (type 2PHR) can mainly target PUSCH or PUSCH in multiple connection (multiple radio dual connection, MRDC) scenarios.
  • Physical uplink control channel (PUCCH) channel the three types of PHR can mainly target the sounding reference signal (SRS).
  • SRS sounding reference signal
  • PHR reporting triggering methods can be divided into periodic reporting and event reporting, or time triggering and event triggering, which are introduced in detail below.
  • the PHR reporting triggering method provided by the embodiment of the present application can be applied to both terminal equipment and the antenna panel on the terminal equipment.
  • the prohibitPHR timer (prohibitPHR-Timer) has expired or has expired, and after the last transmission power headroom report, the change value of path loss has exceeded the downlink path loss change (downlink pathloss change,dl-PathlossChange)dB.
  • the road loss change value evaluation considers the road loss calculated at the current time and the comparison with the road loss at the time when the PHR was last reported, and does not consider the road loss changes in the intervening time period.
  • the periodic PHR timer (PeriodicPHR-Timer) timed out.
  • radio resource control (RRC) layer configures or reconfigures PHR functions or parameters (for example, RRC reconfigures the timer value), and this configuration or reconfiguration does not prohibit PHR.
  • RRC radio resource control
  • the secondary cell (secondary cell, Scell) is activated, and the identity identifier of the first active downlink bandwidth part-identification (fisrt active downlink bandwidth part-identification, firstActiveDownlinkBWP-Id) is not set to dormant (dormant) BWP.
  • PSCell primary secondary cell
  • the prohibitPHR-Timer timer has expired or has expired, there are uplink resource allocations or PUCCH transmission, and since the last PHR transmission to the present, the maximum allowed power attenuation of the terminal device for serving cell c (maximum allowed UE output power reduction for serving cell c, P-MPRc) changes beyond phr-Tx-PowerFactorChange.
  • Non-dormant DL BWP Activate BWP to convert from dormant BWP to non-dormant downlink bandwidth part (non-dormant downlink bandwidth part, non-dormant DL BWP).
  • the maximum permissible exposure reporting frequency range 2 (mpe-Reporting-FR2) is configured and the maximum permissible exposure reporting prohibition timer (mpe-ProhibitTimer) is not enabled; or , since the last PHR transmission to now, the measured P-MPR is greater than or equal to the threshold maximum allowable exposure threshold (mpe-Threshold); or since the last reported PHR is greater than or equal to the threshold mpe-Threshold, the measured PHR The P-MPR changes beyond phr-Tx-PowerFactorChange.
  • PHR can be divided into actual power headroom report (actual PHR) and virtual power headroom report (virtual PHR). It is generally believed that at a specific moment, if it can be determined that there is an actual target channel or target signal (such as a type 1PHR PUSCH (type 1PHR PUSCH) or a type 3 PHR SRS (type 3PHR SRS)) being sent at the time the PHR is reported, then the actual PHR is calculated. If there is no actual target channel or target signal to transmit, a virtual PHR is used for calculations.
  • actual target channel or target signal such as a type 1PHR PUSCH (type 1PHR PUSCH) or a type 3 PHR SRS (type 3PHR SRS)
  • the aforementioned specific time may refer to: when the PHR is transmitted on the dynamically scheduled PUSCH, the first time when the downlink control information (DCI) scheduled by the initial uplink PUSCH is received; or, the first time when there is available (Capable of carrying the current PHR) A period of time before the start transmission time of the initial uplink PUSCH. Or, when PHR is transmitted on semi-statically configured PUSCH, the moment of PUSCH preparation time (T proc time) before actual PUSCH transmission.
  • DCI downlink control information
  • antenna panel 1 calculates the actual PHR.
  • antenna panel 2 From the PDCCH time of antenna panel 1 or a period of time before the PUSCH transmission time, it is judged that antenna panel 2 has no actual PUSCH transmission, so antenna panel 2 calculates the virtual PHR.
  • antenna panel 3 Calculate the actual PHR.
  • antenna panel 1, antenna panel 2 and antenna panel 3 in Figure 3 can be replaced by carrier units (component carrier, CC) 1, CC2 and CC3 respectively.
  • carrier units component carrier, CC
  • the PHR is calculated for CC1. From the PDCCH time or a period of time before the PUSCH transmission time, it can be judged that CC3 has a semi-static PUSCH at the time when CC1 transmits the PUSCH. (config grant PUSCH) transmission (RRC configuration), therefore, CC1 calculates the actual PHR.
  • CC2 For CC2, from the PDCCH time of CC1 or a period of time before the PUSCH transmission time, it is judged that CC2 has no actual PUSCH transmission, so CC2 calculates a virtual PHR. Similarly, for CC3, the actual PHR is calculated.
  • Figure 4 shows a method for reporting PHR using a multi-antenna panel provided by an embodiment of the present application.
  • the terminal device can use different antenna panels for repeated transmission.
  • the repetition mode includes cyclic repetition ((a) in Figure 4) and sequence repetition ((b) in Figure 4).
  • Cyclic repetition here may mean that two antenna panels send two PHRs in sequence and repeat according to the rules of sending in sequence.
  • Sequence repetition can mean that two PHRs or two antenna panels repeat the transmission of the first PHR and then the second PHR in sequence, or the antenna panel 1 (or the first antenna panel) repeats the transmission first, and then the antenna panel 2 (or called the second antenna panel) is sent repeatedly.
  • Figure 5 shows the possible types of two PHRs when the terminal device uses two antenna panels to report two PHRs at the same time.
  • the type of PHR sent by the antenna panel 1 can be determined using the method mentioned above (for details, please refer to relevant standards).
  • the PHR sent by antenna panel 1 is the actual PHR
  • the PUSCH corresponding to antenna panel 2 and the PUSCH corresponding to antenna panel 1 are on the same time slot
  • the PHR sent by antenna panel 2 is the actual PHR.
  • the PHR sent by antenna panel 1 is a virtual PHR or the PUSCH corresponding to antenna panel 2 and the PUSCH corresponding to antenna panel 1 are not in the same time slot
  • the PHRs sent by antenna panel 2 are all virtual PHRs.
  • the two antenna panels are co-transmitting antenna panels (for example, two antenna panels transmit PHR at the same time), and the path loss of the two antenna panels transmitting information (path loss) If the difference is less than or equal to the first threshold, a PHR may be reported, and the PHR may be the PHR of antenna panel 1 or the PHR of antenna panel 2. If the path loss difference between the two antenna panels transmitting information is greater than the first threshold, two PHRs can be reported, namely the PHR of antenna panel 1 and the PHR of antenna panel 2.
  • the simultaneous transmission or reception of antenna panels can be understood as: multiple antenna panels transmit or receive at the same time, or the terminal equipment has There is the ability for multiple antenna panels to transmit simultaneously or receive simultaneously. It can also be understood as: data or reference signals are sent or received on multiple antenna panels at the same time, or the terminal device measures on multiple antenna panels at the same time.
  • the terminal device may also determine to report one or two PHRs based on the triggered object of the PHR reporting event. Specifically, if the PHR reporting trigger event triggers the antenna panel to report, two PHRs can be reported, and the two PHRs can be the PHR of antenna panel 1 and the PHR of antenna panel 2. If the PHR reporting trigger event triggers the terminal device to report, a PHR can be reported, and this PHR can be the PHR of the terminal device.
  • the two PHRs when two PHRs are transmitted on a single channel, if the two antenna panels corresponding to the two PHRs are two antenna panels transmitting at the same time, the two PHRs are of the same type, that is, they are both actual PHRs. Or both are virtual PHRs. Specifically, the actual PHR or the virtual PHR can be determined according to the relevant content of the embodiment shown in FIG. 3 .
  • the type of reported PHR can be determined according to the following method.
  • the terminal device can determine the number and type of PHR to report based on the triggered object of the PHR reporting event.
  • the number and type of reported PHR may be determined according to the relevant content of the embodiment shown in FIG. 3 .
  • the terminal device can also determine the number and type of PHRs to report based on the triggered objects and reporting methods of the PHR reporting events.
  • both antenna panels report two PHRs, and the antenna panel that is triggered to report corresponds to
  • the PHR is the actual PHR, and the PHR corresponding to the antenna panel that has not been triggered to report is the virtual PHR.
  • both antenna panels will report two actual PHRs.
  • a PHR reporting event triggers one of the two antenna panels to report, and the two antenna panels perform separate reporting, then the triggered antenna panel reports an actual PHR corresponding to the antenna panel, and the other Antenna panels that are not triggered do not report.
  • both antenna panels report an actual PHR, that is, antenna panel 1 reports the PHR corresponding to antenna panel 1, and antenna panel 2 reports the antenna Panel 2 corresponds to PHR.
  • PH type1,b,f,c (i,j,q,l) is used to represent the calculated value of the actual PH
  • P CMAX,f,c (i) is used to represent the maximum transmit power of the antenna panel, Used to represent the calculated power of the antenna panel.
  • the calculated power of the antenna panel may also be called the transmit power associated with the antenna panel.
  • the calculated power of the antenna panel is related to the maximum transmit power of the terminal device. in,
  • P O_PUSCH,b,f,c (i) can be determined according to the terminal equipment access mode and PUSCH transmission configuration mode, Used to represent the value of the part related to the PUSCH resource bandwidth, ⁇ b, f, c (j) ⁇ PL b, f, c (q d ) used to represent the value of the part related to the downlink path loss, ⁇ TF, b, f, c (i) are used to represent the values related to the uplink bandwidth part of the carrier and the modulation and coding scheme of the serving cell, f b, f, c (i, l) are used to represent the PUSCH power control adjustment status The value of the relevant part.
  • the parameters in the above formula can be calculated according to the actual power control parameters for sending PUSCH.
  • the parameters please refer to relevant standards.
  • PH type1,b,f,c (i,j,q,l) is used to represent the calculated value of virtual PH, Used to indicate the maximum emission of the antenna panel Send power, ⁇ P O_PUSCH,b,f,c (j)+ ⁇ b,f,c (j) ⁇ PL b,f,c (q d )+f b,f,c (i,l) ⁇ use Yu represents the calculated power of the antenna panel.
  • the calculated power of the antenna panel may also be called the transmit power associated with the antenna panel.
  • the calculated power of the antenna panel is related to the maximum transmit power of the terminal device. in,
  • P O_PUSCH,b,f,c (j) can be determined according to the terminal equipment access mode and PUSCH transmission configuration mode, ⁇ b,f,c (j) ⁇ PL b,f,c (q d ) is used to express the following
  • the value of the part related to the line loss, f b, f, c (i, l) is used to represent the value of the part related to the PUSCH power control adjustment state.
  • PH type3,b,f,c (i,q s ) is used to represent the calculated value of the actual PH
  • P CMAX,f,c (i) is used to represent the maximum transmit power of the antenna panel, Used to represent the calculated power of the antenna panel.
  • the calculated power of the antenna panel may also be called the transmit power associated with the antenna panel.
  • the calculated power of the antenna panel is related to the maximum transmit power of the terminal device. in,
  • P O_SRS,b,f,c (q s ) is used to represent the value related to the uplink activation bandwidth part
  • 10log 10 (2 ⁇ ⁇ M SRS,b,f,c (i)) is used to represent the value related to the SRS bandwidth
  • ⁇ SRS,f,c (q s ) ⁇ PL b,f,c (q d ) is used to represent the value of the part related to the downlink path loss
  • h b,f,c (i) is used to represent The value of the part related to the transmission power control command value.
  • the parameters in the above formula can be calculated according to the power control parameters of the actual SRS transmission.
  • the parameters please refer to relevant standards.
  • PH type3,b,f,c (i,q s ) is used to represent the calculated value of virtual PH, Used to represent the maximum transmit power of the antenna panel, ⁇ P O_SRS,b,f,c (q s )+ ⁇ SRS,f,c (q s ) ⁇ PL b,f,c (q d )+h b,f ,c (i) ⁇ is used to represent the calculated power of the antenna panel.
  • the calculated power of the antenna panel may also be called the transmit power associated with the antenna panel.
  • the calculated power of the antenna panel is related to the maximum transmit power of the terminal device. in,
  • P O_SRS,b,f,c (q s ) is used to represent the value related to the uplink activation bandwidth part
  • ⁇ SRS,f,c (q s ) ⁇ PL b,f,c (q d ) is used to represent the The value of the downlink path loss related part, h b, f, c (i) is used to represent the value of the part related to the transmission power control command value.
  • PH is used to represent the actual PH value of the terminal device or the virtual PH value.
  • P UEmax is used to represent the maximum transmit power of the terminal device.
  • P1 and P2 are used to represent the actual PH value of the terminal device.
  • P1 and P2 are used to represent the virtual computing power of the first antenna panel and the second antenna panel of virtual computing power.
  • the transmit power of each antenna panel is related to the maximum transmit power of the antenna panel, the maximum transmit power of the terminal device and other information.
  • the maximum transmit power of the antenna panel or the maximum transmit power of the terminal device can be determined through configuration information or calculated based on relevant parameters. It can be the maximum power of the antenna panel or terminal device for performing a specific action (for example, using The maximum transmit power calculated based on the PHR), or the total power of the antenna panel or terminal equipment.
  • the PHR reporting based on the antenna panel can be based on any information corresponding to the antenna panel. Reporting, for example, based on candidate value (candidate value), candidate value set (candidate value set), panel identification (panel identification, panel ID), SRS resource (SRS resource) or SRS resource set (resource set), etc.
  • the terminal device may include a plurality of antenna panels, the antenna panel including at least a first antenna panel and a second antenna panel, and the terminal device may transmit channels on the first antenna panel and/or the second antenna panel and/or signal, the transmitting power of the first panel is the first transmitting power, and the transmitting power of the second antenna panel is the second transmitting power.
  • the first transmit power is determined based on the calculated power of the first antenna panel and one or more of the following:
  • the maximum transmit power of the terminal device the maximum transmit power of the first panel, or the maximum transmit power of the second antenna panel;
  • the second transmit power is determined based on the calculated power of the second antenna panel and one or more of the following:
  • the maximum transmit power of the terminal device the maximum transmit power of the first panel, or the maximum transmit power of the second antenna panel.
  • the above-mentioned channel or signal may be PUSCH, PUCCH, preamble or SRS, etc.
  • the antenna panel transmitting channel can also be understood as the content of the antenna panel transmitting channel, that is, the signal on the antenna panel transmitting channel.
  • the first transmit power is the first calculated power
  • the second transmit power is the first calculated power
  • the calculated power here can be a value calculated using multiple parameters according to the formula described above.
  • the terminal device can determine the actual transmit power of each antenna panel according to the maximum transmit power of the terminal device. For example, the terminal device can obtain the maximum transmit power Pcmax of the terminal device, and calculate the calculated power P1 of the first antenna panel and the calculated power P2 of the second antenna panel according to the above formula. If the sum of P1 and P2 is less than or equal to Pcmax, That is, the sum of the calculated power of the first antenna panel and the calculated power of the second antenna panel does not exceed the maximum transmit power of the terminal device. Then, the first antenna panel and the second antenna panel can transmit according to the calculated power, that is, the calculated power of the first antenna panel The actual transmit power is the calculated power P1, and the actual transmit power of the second antenna panel is the calculated power P2.
  • the sum of the calculated power of the first antenna panel and the calculated power of the second antenna panel is greater than the maximum transmit power of the terminal device, the sum of the first transmit power and the second transmit power is equal to the maximum transmit power of the terminal device. power.
  • the terminal device can use the antenna panels at full power to transmit channels or signals.
  • the terminal device can obtain the maximum transmit power Pcmax of the terminal device, and calculate the calculated power P1 of the first antenna panel and the calculated power P2 of the second antenna panel according to the above formula. If the sum of P1 and P2 is greater than Pcmax, then, The sum of the actual transmission power P1a of the first antenna panel and the actual transmission power P2a of the second antenna panel may be Pcmax.
  • the first transmission power is proportional to the first calculation power
  • the second transmission power is proportional to the second calculation power
  • P1a is 0.8 times P1
  • P2a is 0.7 times P2
  • the sum of 0.8 times P1 and 0.7 times P2 is Pcmax.
  • the first transmission power is proportional to the maximum transmission power of the terminal device
  • the second transmission power is proportional to the maximum transmission power of the terminal device
  • P1a can be 0.5 times Pcmax and P2a can be 0.5 times Pcmax, or P1a can be 0.6 times Pcmax and P2a can be 0.4 times Pcmax.
  • the first transmission power is the first computing power or the maximum transmission power of the terminal device; or the second transmission power is the second computing power or the maximum transmission power of the terminal device.
  • P1a can be P1
  • P2a can be Pcmax-P1.
  • P1a is Pcmax and P2a is 0.
  • P2a can be P2, and P1a can be Pcmax-P2. Or, P2a is Pcmax and P1a is 0.
  • the sum of the calculated power of the first antenna panel and the calculated power of the second antenna panel is greater than the maximum transmit power of the terminal device, the sum of the first transmit power and the second transmit power is less than the maximum transmit power of the terminal device. power.
  • the terminal device may transmit channels or signals using the antenna panels at less than full power.
  • the terminal device can obtain the maximum transmit power Pcmax of the terminal device, and calculate the calculated power P1 of the first antenna panel and the calculated power P2 of the second antenna panel according to the above formula. If the sum of P1 and P2 is greater than Pcmax, then, The sum of the actual transmission power P1a of the first antenna panel and the actual transmission power P2a of the second antenna panel may be less than Pcmax.
  • the first transmission power is proportional to the first calculation power
  • the second transmission power is proportional to the second calculation power
  • P1a is 0.6 times P1, P2a is 0.4 times P2, and the sum of 0.6 times P1 and 0.4 times P2 is less than Pcmax.
  • P1a is 0.9 times P1 and P2a is 0.
  • the first transmission power is proportional to the maximum transmission power of the terminal device
  • the second transmission power is proportional to the maximum transmission power of the terminal device
  • P1a can be 0.4 times Pcmax and P2a can be 0.4 times Pcmax, or P1a can be 0.6 times Pcmax and P2a can be 0.1 times Pcmax. Alternatively, P1a can be 0 and P2a can be 0.7 times Pcmax.
  • neither the first transmission power nor the second transmission power is zero.
  • the terminal equipment can use two antenna panels for data transmission at the same time, which is beneficial to reducing the vacancy rate of the antenna panels and improving the actual utilization rate of multiple antenna panels.
  • the first transmit power is the first calculated power and the second transmit power is greater than or equal to zero; or the second transmit power is the second calculated power and the first transmit power is greater than or equal to zero.
  • P1a can be P1
  • P2a can be all, part, or zero of Pcmax-P1a.
  • P2a can be P2
  • P1a can be all, part or zero of Pcmax-P2a.
  • the actual transmit power of the first antenna panel and the actual transmit power of the second antenna panel After determining the actual transmit power of the first antenna panel and the actual transmit power of the second antenna panel based on the relationship that the sum of the actual transmit power of the first antenna panel and the actual transmit power of the second antenna panel is less than the maximum transmit power of the terminal device, It can also be further determined that the actual transmission power of the first antenna panel is less than or equal to the maximum transmission power of the first antenna panel and the actual transmission power of the second antenna panel based on the maximum transmission power of the first antenna panel and the maximum transmission power of the second antenna panel. The power is less than or equal to the actual transmit power of the second antenna panel.
  • the maximum transmission power Pcmax of the terminal device when it is determined based on the maximum transmission power Pcmax of the terminal device that the actual transmission power of the first antenna panel is P1a and the actual transmission power of the second antenna panel is P2a, if the maximum transmission power of the first antenna panel is P1max , the maximum transmit power of the second antenna panel is P2max.
  • the first antenna panel can transmit data according to P1a.
  • P1max is less than P1a, the first antenna panel can transmit data with a power not greater than P1max.
  • the first antenna panel can transmit data according to P2a.
  • P2max is less than P2a, the first antenna panel can transmit data with a power not greater than P2max.
  • the first transmit power and the second transmit power are also determined based on one or more of the following information: channel priority, channel content or channel period.
  • multiple antennas can be determined based on factors such as the priority of the channel corresponding to the antenna panel, the content of the channel, and the cycle of the channel. The order or priority in which panels allocate power.
  • the first antenna panel corresponds to the PUCCH
  • the second antenna panel corresponds to the PUSCH.
  • the terminal device can preferentially allocate transmission power to the first antenna panel.
  • the first antenna panel The actual transmit power is set to 0.8 times Pcmax
  • the actual transmit power of the second antenna panel is set to 0.1 times Pcmax.
  • the channel transmitted by the first antenna panel is an aperiodic channel
  • the channel transmitted by the second antenna panel is a semi-persistent channel or a periodic channel.
  • the terminal device can prioritize allocating transmission power to the first antenna panel, for example, setting the actual transmit power of the first antenna panel to Pcmax and setting the actual transmit power of the second antenna panel to 0.
  • the channel content transmitted by the first antenna panel is hybrid automatic repeat request (HARQ) or uplink scheduling request (scheduling request, SR), and the channel content transmitted by the second antenna panel is CSI.
  • HARQ and SR have higher priority than CSI
  • the terminal device can prioritize allocating transmission power to the first antenna panel. For example, set the actual transmit power of the first antenna panel to 0.7 times Pcmax, and set the actual transmit power of the second antenna panel to 0.7 times Pcmax. The actual transmit power is set to 0.3 times Pcmax.
  • the channel content transmitted by the first antenna panel is DG
  • the channel content transmitted by the second antenna panel is CG.
  • the terminal device can allocate transmission power to the first antenna panel first. , for example, set the actual transmission power of the first antenna panel to 0.9 times Pcmax, and set the actual transmission power of the second antenna panel to 0.1 times Pcmax.
  • the terminal device may allocate each of the plurality of antenna panels in the order of priority as follows: power.
  • PRACH Physical random access channel
  • HARQ-ACK hybrid automatic repeat request-acknowledgement
  • SR uplink scheduling request
  • LRP uplink scheduling request
  • SRS transmission in which the priority of aperiodic SRS is higher than the priority of semi-persistent and/or periodic SRS; or the transmission of the physical random access channel (PRACH) of the serving cell other than the primary cell.
  • PRACH physical random access channel
  • the above-mentioned order relationship between the priorities of different channels, the contents of different channels, and the cycles of different channels can be determined by the terminal device based on preconfigured information.
  • PHR can be reported through (media access control-control elements, MAC-CE), and its reporting formats include single CC format and multi-CC format.
  • MAC-CE media access control-control elements
  • the terminal device can report the PHR of one antenna panel at a time, or it can report the PHR of two antenna panels at a time, or the terminal device can also report the PHR of more antenna panels at a time.
  • the terminal device can use one antenna panel to report one or more PHRs, or the terminal device can also use multiple antenna panels to perform joint reporting or separately report multiple PHRs.
  • Figure 8 shows the single CC format MAC-CE when the terminal device reports the PHR of one antenna panel.
  • R reserved bit, can be set to 0;
  • PH Indicates the PH value, the length is 6 bits. One-to-one correspondence is performed through the 6-bit domain PH value level table. Table 1 shows the PH value level and bit coding mapping table.
  • PCMAX,f,c Indicates the maximum transmit power of the terminal for calculating the PH value.
  • the mapping relationship between this field and the achievable maximum transmit power is shown in Table 2.
  • MPE If the MPE value is configured to be reported (that is, mpe-Reporting-FR2 is configured), the MPE value is reported; if the MPE value is not configured (that is, mpe-Reporting-FR2 is not configured), or it is working in the FR1 frequency band, or the P domain is set to 0, this field is reserved.
  • the details can be shown in Table 3.
  • Figures 9 and 10 show the multi-CC format MAC-CE when the terminal device reports the PHR of one antenna panel.
  • Figure 9 shows the reporting format of PHR MAC-CE of multiple CCs configured with a serving cell index less than 8
  • Figure 10 shows the reporting format of PHR MAC-CE of multiple CCs configured with a serving cell index greater than or equal to 8.
  • R reserved bit, set to 0
  • Ci Indicates whether the PH value of the serving cell index i is reported; 1 indicates reporting, 0 indicates not reporting;
  • V Indicates whether the reported PHR value is an actual PH value or a virtual PH value. For Type 1PH and Type 3PH, 0 indicates the actual PH value and 1 indicates the virtual PH value; for Type 2PH, 1 indicates the actual PH value and 0 indicates the virtual PH value. In addition, it is also used to indicate whether the related PCMAX_f_c and MPE domains exist, 0 indicates existence, 1 indicates not exist.
  • PH indicates the reported pH value
  • PCMAX_f_c If present (V field indicates 0), indicates the maximum transmittable power of the terminal of NR, or indicates the maximum transmittable power of the terminal of E-UTRA (LTE).
  • MPE If the MPE value is configured to be reported (that is, mpe-Reporting-FR2 is configured), the MPE value is reported; if the MPE value is not configured (that is, mpe-Reporting-FR2 is not configured), or it is working in the FR1 frequency band, or the P domain is set to 0, this field is reserved.
  • Figure 11 shows the single CC format MAC-CE in the case where the terminal device uses two antenna panels to send two PHRs.
  • R reserved bit, can be set to 0;
  • PH i used to indicate the level of power headroom, i represents the index of the antenna panel.
  • the length of this bit field is 6 bits.
  • One-to-one correspondence is performed through the 6-bit domain PH value level table. Table 1 above shows the pH scale.
  • V Used to indicate whether the PH value of the corresponding antenna panel is based on real transmission or reference format. For the first type of PH, setting this bit field to 0 indicates that there is real transmission on PUSCH, and setting this bit field to 1 indicates that the reference format is used on PUSCH.
  • PCMAX_f_c Indicates the maximum transmit power of the terminal for calculating the PH value.
  • the mapping relationship between this field and the achievable maximum transmit power is as shown in Table 2 above.
  • MPE If the MPE value is configured to be reported (that is, mpe-Reporting-FR2 is configured), the MPE value is reported; if the MPE value is not configured (that is, mpe-Reporting-FR2 is not configured), or it is working in the FR1 frequency band, or the P domain is set to 0, this field is reserved.
  • the details can be shown in Table 3.
  • Figures 12 and 13 show the multi-CC format MAC-CE in the case where the terminal device uses two antenna panels to send PHRs corresponding to the two antenna panels.
  • Figure 12 shows the reporting format of PHR MAC-CE of multiple CCs with a configured serving cell index less than 8
  • Figure 13 shows the reporting format of PHR MAC-CE of multiple CCs with a configured serving cell index greater than or equal to 8.
  • Ci indicates whether there is power headroom in the serving cell, i is used to indicate the index of the serving cell. When this bit field is set to 1, it means that the power headroom of the serving cell with index i is reported. When this bit field is set to 0, it means that the power headroom of the serving cell with index i has not been reported.
  • R reserved bit, can be set to 0;
  • V Used to indicate whether the PH value of the corresponding antenna panel is based on real transmission or reference format.
  • setting this bit field to 0 indicates that there is real transmission on PUSCH, and setting this bit field to 1 indicates that the reference format is used on PUSCH.
  • setting this bit field to 0 indicates that there is real transmission on the PUCCH, and setting this bit field to 1 indicates that the reference format is used on the PUCCH.
  • setting this bit field to 0 indicates that there is real transmission on the SRS, and setting this bit field to 1 indicates that the reference format is used on the SRS.
  • this bit field is set to 0 to indicate that there is an 8-bit byte containing the relevant PCMAX_f_c field and MPE field, and this bit field is set to 1 Indicates that the 8-bit byte containing the relevant PCMAX_f_c field and MPE field is omitted.
  • PH i used to indicate the level of power headroom, i represents the index of the antenna panel.
  • the length of this bit field is 6 bits.
  • One-to-one correspondence is performed through the 6-bit domain PH value level table. Table 1 above shows the pH scale.
  • PCMAX_f_c If this bit field exists, this bit field is used to indicate the PCMAX_f_c of the NR serving cell or to calculate the PCMAX_f_c of the E-UTRA cell in the previous PH domain or The mapping relationship between this domain and the maximum transmit power that may be achieved by the NR serving cell is shown in Table 2 above.
  • MPE If the MPE value is configured to be reported (that is, mpe-Reporting-FR2 is configured), the MPE value is reported; if the MPE value is not configured (that is, mpe-Reporting-FR2 is not configured), or it is working in the FR1 frequency band, or the P domain is set to 0, this field is reserved.
  • the details can be shown in Table 3.
  • the periodic timer (periodicPHR-Timer) is started.
  • the power headroom reporting process determines that at least one PHR has been triggered since the last PHR transmission, or the current PHR is triggered for the first time; at the same time, if during the processing of logical channel priority, the allocated uplink resources can accommodate PHR control
  • the power headroom reporting process determines that at least one PHR has been triggered since the last PHR transmission, or the current PHR is triggered for the first time; at the same time, if during the processing of logical channel priority, the allocated uplink resources can accommodate PHR control The sum of the unit and its corresponding subheader, then continue to follow the steps below:
  • the Type 1 or Type 3 PH value of the activated cell from the physical layer; or, if the MAC is activated for this The cell allocates uplink transmission resources or if other MAC has allocated uplink transmission resources for this activated cell and phr-ModeOtherCG is configured as real, then obtain the corresponding PCMAX, f, c from the physical layer or obtain the MPE from the physical layer (when configured In the case of mpe-Reporting-FR2).
  • the Type 2PH value of the special cell (SpCell) is obtained or the P of SpCell is obtained.
  • CMAX, f, c value when phr-ModeOtherCG is configured as real).
  • Multiple Entry PHR MAC-CE is multiplexed, assembled and transmitted.
  • the Type 1PH value is obtained from the physical layer, and the PCMAX, f, c values are obtained. If mpe-Reporting-FR2 is configured, the MPE is obtained from the physical layer. Or, multiplex, assemble and transmit Single Entry PHR MAC-CE.
  • this PHR report is an MPE P-MPR report, start or restart the mpe-ProhibitTimer, or cancel the triggered MPE P-MPR report reported in the PHR MAC-CE.
  • the following is another information transmission method provided by the embodiment of the present application.
  • Figure 14 shows an information transmission method provided by an embodiment of the present application.
  • the terminal device may include multiple antenna panels, and the multiple antenna panels may include a first antenna panel.
  • the terminal device sends a first message to the network device, and accordingly, the network device receives the first message.
  • the first message is used to indicate the power headroom of the first antenna panel.
  • the first message is also used to indicate one or more of the following: the maximum transmit power of the first antenna panel, the power headroom of the second antenna panel, the maximum transmit power of the second antenna panel, The power headroom of the terminal device or the maximum transmit power of the terminal device.
  • the power headroom of the first antenna panel is determined based on the first calculated power and at least one of: a maximum transmit power of the first antenna panel or a maximum transmit power of the terminal device; wherein, the first calculated power Power is related to the maximum transmit power of the terminal device.
  • the terminal device sends a second message to the network device, and accordingly, the network device receives the second message.
  • the second message is used to indicate the power headroom of the second antenna panel.
  • the second message is also used to indicate one or more of the following: power headroom of the first antenna panel, maximum transmit power of the first antenna panel, maximum transmit power of the second antenna panel, terminal The power headroom of the device or the maximum transmit power of the end device.
  • the power headroom of the second antenna panel is determined according to the second calculated power and at least one of the following: a maximum transmit power of the second antenna panel or a maximum transmit power of the terminal device; wherein, the second calculated power Relevant to the maximum transmit power of the terminal device.
  • the terminal device sends a third message to the network device, and accordingly, the network device receives the third message.
  • the third message is used to indicate the power headroom of the terminal device and/or the maximum transmit power of the terminal device.
  • One or more of the power headroom of the first antenna panel, the power headroom of the second antenna panel, or the power headroom of the terminal device are used to determine the transmission power of the first antenna panel and/or the second antenna panel.
  • the power headroom of the terminal device is determined according to the maximum transmit power of the terminal device and one or more of the following: the maximum transmit power of the first antenna panel, the maximum transmit power of the second antenna panel, the first Transmitting power and second transmitting power; wherein, the first transmitting power is the transmitting power associated with the first antenna panel, and the second transmitting power is the transmitting power associated with the second antenna panel.
  • the type of the first message and the type of the second message are determined according to one or more of the following information: whether the first message and the second message are transmitted on the same channel; whether the first antenna panel and /or the second antenna panel sends the first message and/or the second message; or, the method of sending the first message and the second message.
  • the power headroom of the first antenna panel and/or the power headroom of the second antenna panel is also determined based on one or more of the following: Channel Priority, channel content or channel period.
  • the first antenna panel and the second antenna panel are two antenna panels that transmit and/or receive at the same time.
  • Simultaneous transmission or simultaneous reception of antenna panels can be understood as: multiple antenna panels transmit or receive at the same time, or the terminal device has the ability of multiple antenna panels to transmit or receive at the same time. It can also be understood as: data or reference signals are sent or received on multiple antenna panels at the same time, or the terminal device measures on multiple antenna panels at the same time.
  • the network device After the network device receives one or more of the first message, the second message or the third message sent by the terminal device, the network device can determine the working status of the terminal device and the work of different antenna panels based on the received message. state.
  • the terminal device transmits information through the first antenna panel and the second antenna panel, and the terminal device reports the first antenna to the network device through one or more of the first message, the second message, or the third message.
  • Panel power margin PH1, second antenna The power headroom PH2 of the panel and the power headroom PHc of the terminal device.
  • the base station can determine whether the terminal device still has excess power for data transmission.
  • the network device can determine whether the first antenna panel reaches the maximum transmit power and whether the second antenna panel reaches the maximum transmit power.
  • the network device determines that it can no longer schedule more additional power from the terminal device for information transmission.
  • the network device may further determine the working status of the two antenna panels. If the power margin of the first antenna panel is greater than zero and the power margin of the second antenna panel is less than or equal to zero, the network device may schedule the third antenna panel. The power of one antenna panel is distributed to the second antenna panel.
  • the calculated power of the first antenna panel is 20dBm
  • the calculated power of the second antenna panel is 20dBm
  • the maximum transmit power of the first antenna panel is 23dBm
  • the maximum transmit power of the second antenna panel is 23dBm
  • the maximum transmit power of the terminal device is 23dBm.
  • the transmit power is 23dBm.
  • the terminal equipment can report the power headroom of the terminal equipment, the power headroom of the first antenna panel and the power headroom of the second antenna panel as: 0dBm, 3dBm and 3dBm respectively.
  • the network device After the network device obtains the above power headroom information, it can determine that the total power of the terminal device has no remaining power, but there is still power remaining on each antenna panel, so power sharing can be performed on multiple antenna panels.
  • the calculated power of the first antenna panel is 20dBm
  • the calculated power of the second antenna panel is 20dBm
  • the maximum transmit power of the first antenna panel is 23dBm
  • the maximum transmit power of the second antenna panel is 23dBm
  • the terminal device The maximum transmit power is 26dBm.
  • the terminal equipment can report the power margin of the first antenna panel and the power margin of the second antenna panel as: 3dBm and 3dBm respectively.
  • the network device After obtaining the above power headroom information, the network device can determine that the power on each antenna panel is still remaining, and thus can share power on multiple antenna panels.
  • S1404 optionally, receive configuration information sent by the network device.
  • the configuration information is used to schedule multiple antenna panels on the terminal device for data transmission.
  • the configuration information is also used to determine the transmission power of multiple antenna panels on the terminal device.
  • the network device that obtains information such as the power headroom of the antenna panel and the power headroom of the terminal device determines the working status of the antenna panel and the terminal device and can send configuration information to the terminal device. This configuration information can be used to request power for the antenna panel.
  • the redistribution can also realize the scheduling of multiple antenna panels on the terminal equipment.
  • the network device may determine that the terminal device currently still has power that can be allocated or scheduled based on the received information about the power headroom of the antenna panels. , that is, if the terminal device only reports the power headroom of the antenna panel, it may implicitly indicate that the power headroom of the terminal device is greater than zero, or it may implicitly indicate that the terminal device still has power to allocate.
  • embodiments of the present application also provide a communication device, which can have the functions of the terminal equipment or network equipment in the above method embodiments, and can be used to execute the above method embodiments.
  • the functions described can be implemented by hardware, or can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1500 shown in Figure 15 can serve as the terminal device involved in the above method embodiment, and perform the steps performed by the terminal device in the above method embodiment.
  • the communication device 1500 may include a communication module 1510 and a processing module 1520, and the communication module 1510 and the processing module 1520 are coupled to each other.
  • the communication module 1510 may be used to support the communication device 1500 to communicate, such as performing sending and/or receiving actions performed by the terminal device in the aforementioned embodiments.
  • the processing module 1520 may be used to support the communication device 1500 in performing the processing actions in the above method embodiments, such as performing the processing actions performed by the terminal device in the foregoing embodiments.
  • the communication device 1500 shown in Figure 15 can be used as the network involved in the above method embodiment. device, and perform the steps performed by the network device in the above method embodiment.
  • the communication device 1500 may include a communication module 1510 and a processing module 1520, and the communication module 1510 and the processing module 1520 are coupled to each other.
  • the communication module 1510 may be used to support the communication device 1500 to communicate, such as performing the sending and/or receiving actions performed by the network device in the foregoing embodiments.
  • the processing module 1520 may be used to support the communication device 1500 in performing the processing actions in the above method embodiments, such as performing the processing actions performed by the network device in the foregoing embodiments.
  • the communication device 1500 may also include a storage module 1530 for storing program codes and data of the communication device 1500 .
  • Figure 16 is a schematic block diagram of a communication device 1600 provided by an embodiment of the present application.
  • the communication device 1600 includes: at least one processor 1610 and a transceiver 1620.
  • the processor 1610 is coupled to the memory and is used to execute instructions stored in the memory to control the transceiver 1620 to send signals and/or receive signals.
  • the communication device 1600 further includes a memory 1630 for storing instructions.
  • the above-mentioned processor 1610 and the memory 1630 can be combined into one processing device, and the processor 1610 is used to execute the program code stored in the memory 1630 to implement the above functions.
  • the memory 1630 may also be integrated in the processing 1610 or independent of the processor 1610.
  • transceiver 1620 may include a receiver and a transmitter.
  • the transceiver 1620 may further include an antenna, and the number of antennas may be one or more.
  • the transceiver 1620 may be a communication interface or an interface circuit.
  • the chip When the communication device 1600 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions for implementing the method executed by the communication device in the above method embodiment are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the communication device in the above method embodiment.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM). For example, RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate Or transistor logic devices, discrete hardware components, memory (memory module) can be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信息的方法和装置,终端设备可以利用多个天线面板同时与网络设备进行数据的传输,每一个天线面板的发送功率可以根据终端设备的最大发送功率以及每一个天线面板对应的最大发送功率等信息确定。终端设备还可以将每一个天线面板的功率余量、最大传送功率以及终端设备的功率余量、终端设备的最大发送功率等信息上报至网络设备,从而网络设备可以利用这些信息来调度终端设备的多个天线面板进行信息的传输。本申请提供的传输信息的方法和装置有利于提高终端设备上多个天线面板的利用率,有利于降低天线面板的功耗,有利于提高系统效率,有利于提升系统性能。

Description

传输信息的方法和装置
本申请要求于2022年08月12日提交中国专利局、申请号为202210970373.6、发明名称为“传输信息的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体的,涉及一种传输信息的方法和装置。
背景技术
5G NR(new radio,NR)为了满足三大场景需求,相比于4G LTE(long term evolution,LTE)采用低频频段,新增高频频段(通常认为6G以上),比如28GHz、39GHz或60GHz频段。引入高频来实现更大带宽、更高传输速率。由于频率较高,信号在空间传播过程中会发生严重衰落。因此,5G NR采用波束赋形(beamforming,BF)技术获得良好的定向性增益,以提高发射方向定向功率,改善接收端信干噪比(signal to interference plus noise radio,SINR),进而提升系统性能。通常,采用三种架构实现波束赋形,分别为数字波束赋形(digital beamforming,DBF)、模拟波束赋形(anolog beamforming,ABF)和混合波束赋形(hybrid beamforming,HBF)。在5G NR研究过程中,考虑成本和性能折中,通常采用包含数字波束赋形和模拟波束赋形的混合波束赋形技术。在波束赋形技术实现过程中,天线面板(antenna panel)是核心组件。波束是通过天线面板发送或者接收。在5G NR部署实现中,由于采用定向波束,为了满足广域覆盖,基站和终端均是采用多天线面板部署。尤其终端,为了满足覆盖,且在有限空间并节省成本的情况下,天线面板部署对性能影响更加重要。
在不同场景中,设置有多个天线面板的终端设备,可能考虑多个天线面板不同的使用方式。如终端设备配置5个天线面板,当终端在小区中心时,可能5个天线面板均可以用于传输不同数据,这样可以提升终端和系统吞吐量;当终端在小区边缘时,由于功率受限,5个天线面板可以根据不同功率需要,组成不同的天线面板组合,同一组合发送相同数据,不同组合发送不同数据,通过提升功率,扩展小区覆盖,也可以提升边缘小区鲁棒性。
在终端设备与网络设备通信的过程中,如何使网络设备能够合理利用该终端设备上的多个天线面板进行信息的传输是值得考虑的。
发明内容
本申请提供一种传输信息的方法和装置,终端设备通过上报天线面板的功率余量等信息,可以使得网络设备确定终端设备上天线面板的工作状态,从而有利于合理调用终端设备上的多个天线面板进行信息传输,有利于提高系统效率。
第一方面,提供了一种信息传输的方法,该方法应用于终端设备,该终端设备包括第一天线面板,终端设备发送第一消息,该第一消息用于指示该第一天线面板的功率余量。
在一种可能的实现方式中,终端设备在发送第一消息前,终端设备根据第一天线面板的计算功率和第一天线面板的最大发送功率等信息生成第一消息。
本技术方案中,终端设备可以上报第一天线面板的功率余量,对于接收到该第一天线面板功率余量的网络设备,可以根据该功率余量来确定第一天线面板的工作状态,从而有利于实现网络设备对于第一天线面板的调度,相对于确定终端设备的功率余量的方法,本技术方案有利于实现网络设备针对终端设备上天线面板的调度,有利于提高多个天线面板的利用率,提高系统效率。
结合第一方面,在第一方面的某些实现方式中,该终端设备包括多个天线面板,该多个天线面板包括第二天线面板和该第一天线面板,该第一消息还用于指示以下中的一种或多种:该第一天线面板的最大发送功率、该第二天线面板的功率余量、该第二天线面板的最大发送功率、该终端设备的功率余量或该终端设备的最大发送功率。
在一种可能的实现方式中,终端设备上的多个天线面板可以发送或接收不同小区的数据,该不同小区可以为物理小区标识(physical cell identifier,PCI)不同的小区,也可以是服务小区和邻区,或者也可以是服务小区和与服务小区PCI不同的小区。
本技术方案中,第一消息还可以用于指示第二天线面板的功率余量、终端设备的功率余量等信息。接收该第一消息的网络设备可以根据这些信息进一步确定为终端设备的第一天线面板进行功率分配的方案,有利于降低因多个天线面板的发送功率总和大于终端设备的最大传输功率而引起通信过程中的故障、数据丢失等问题出现的几率,也有利于减少调度一个天线面板对于另一个天线面板的不利影响,有利于提高终端设备与网络设备通信的稳定性。
结合第一方面,在第一方面的某些实现方式中,该终端设备包括多个天线面板,该多个天线面板包括第二天线面板和该第一天线面板,该方法还用于指示:发送第二消息,该第二消息用于指示该第二天线面板的功率余量。
本技术方案中,终端设备可以分别发送第一天线面板的工作状态相关的信息、第二天线面板工作状态相关的信息,由于天线面板与信道存在对应关系,通过不同的天线面板发送不同天线面板的信息,有利于网络设备根据天线面板与信道等存在的对应关系,确定特定天线面板的状态,有利于进一步为确定的天线面板进行功率的分配及调度等操作,有利于提高对终端设备上多个天线面板调度的效率。
结合第一方面,在第一方面的某些实现方式中,该第二消息还用于指示以下中的一种或多种:该第一天线面板的功率余量、该第一天线面板的最大发送功率、该第二天线面板的最大发送功率、该终端设备的功率余量或该终端设备的最大发送功率。
上述多个天线面板的功率余量、终端设备的功率余量等信息也可以包含在第二消息中,本技术方案提供了又一种上报终端设备上多个天线面板的工作状态与终端设备的工作状态相关信息的方式。本技术方案的实施有利于提升终端设备上报信息的稳定性与上报效率,有利于提高系统效率。
结合第一方面,在第一方面的某些实现方式中,终端设备发送第三消息,该第三消息用于指示该终端设备的功率余量和/或该终端设备的最大发送功率。
终端设备也可以单独上报终端设备的功率余量和/或终端设备的最大发送功率。在同时上报多个天线面板的功率余量等信息的情况下,单独上报终端设备的工作状态信息,有利于网络设备在多个信息中区分出终端设备的功率余量,有利于实现网络设备对终端设备的功率的合理分配,有利于提高终端设备功率的利用率,提高系统效率。
在一种可能的实现方式中,该第一天线面板的功率余量、该第二天线面板的功率余量或该终端设备功率余量中的一项或多项用于网络设备确定该第一天线面板和/或该第二天线面板的传输功率。
传输功率可以包括发送功率和接收功率,这里确定天线面板的传输功率可以理解为网络设备接收到上述信息后可以调度天线面板进行信息的发送和接收。
终端设备向网络设备上报的信息可以用于网络设备确定终端设备上多个天线面板的功率的分配及天线面板的调度,有利于提高多个天线面板的利用率,有利于实现对终端设备功率的合理分配,从而提高系统效率。
结合第一方面,在第一方面的某些实现方式中,该第一天线面板的功率余量根据第一计算功率和该第一天线面板的最大发送功率确定,该第一计算功率为第一天线面板的计算功率,该第一计算功率与该终端设备的最大发送功率相关。
结合第一方面,在第一方面的某些实现方式中,该第二天线面板的功率余量根据第二计算功率和该第二天线面板的最大发送功率确定,该第二计算功率为第二天线面板的计算功率,该第二计算功率与该终端设备的最大发送功率相关。
结合第一方面,在第一方面的某些实现方式中,该终端设备的功率余量根据该终端设备的最大发送功率和以下中的一项或多项确定:该第一天线面板的最大发送功率、该第二天线面板的最大发送功率、该第一计算功率或该第二计算功率。
上述技术方案中,通过天线面板的计算功率、天线面板的最大发送功率以及终端设备的最大发送功率等参数来确定天线面板的功率余量和/或终端设备的功率余量,有利于确定终端设备上各个天线面板的功率余量以及终端设备的功率余量,从而实现对于终端设备的功率的合理分配,以及多个天线面板的合理调度。
结合第一方面,在第一方面的某些实现方式中,该第一消息的类型和该第二消息的类型根据以下信息中的一种或多种确定:该第一消息和该第二消息是否在同一信道上传输;是否触发该第一天线面板和/或该第二天线面板发送该第一消息和/或该第二消息;或者,该第一消息和该第二消息的发送方式。
这里发送方式也可以称为上报方式,当第一消息和第二消息在不同信道上传输时,第一消息和第二消息的上报方式可以分为联合上报和分别上报。
本技术方案中,可以通过上述方式中的一种或多种确定消息的类型,进而可以确定天线面板的计算功率的类型,有利于确定天线面板的功率余量,有利于实现对多个天线面板的功率分配。
结合第一方面,在第一方面的某些实现方式中,在该第一天线面板和该第二天线面板与不同信道关联的情况下,该第一天线面板的功率余量和/或该第二天线面板的功率余量还根据以下不同信道的相关信息中的一项或多项确定:信道优先级、信道内容或信道周期。
第一天线面板和第二天线面板与不同信道关联,即第一天线面板发送的消息和第二天线面板发送的消息在不同信道上传输。
本技术方案中,终端设备还可以根据天线面板关联的信道的优先级、内容或周期等因素来确定为多个天线面板中每一个天线面板分配功率的先后次序或优先级。由于天线面板与信道存在对应关系,信道的优先级可以理解为天线面板的优先级,当终端设备只上报一个天线面板的功率余量报告时,有利于网络设备确定与该上报的功率余量报告对应的天线面板,有利于提高对终端设备上多个天线面板调度的效率,有利于提升系统效率。
结合第一方面,在第一方面的某些实现方式中,该第一天线面板和该第二天线面板为同发和/或同收的两个天线面板。
本技术方案中,将第一天线面板和第二天线面板设置为同发和/或同收的两个天线面板,两个天线面板可以执行联合发送、分别发送等操作,对于不同类型的信息传输,需要不同类型的天线面板的执行传输任务。设置同发或这同收的两个天线面板,有利于提升终端设备利用天线面板传输信息的速率,提升系统效率。
第二方面,提供了一种传输信息的方法,该方法应用于终端设备,该终端设备包括多个天线面板,该多个天线面板包括第一天线面板和第二天线面板,终端设备在该第一天线面板和/或该第二天线面板发送信道,该第一天线面板的发送功率为第一发送功率,该第二天线面板的发送功率为第二发送功率;其中,
该第一发送功率根据以下中的一项或多项确定:该第一天线面板的计算功率、该终端设备的最大发送功率、该第一面板的最大发送功率或该第二天线面板的最大发送功率。该第二发送功率根据以下中的一项或多项确定:该第二天线面板的计算功率、该终端设备的最大发送功率、该第一面板的最大发送功率或该第二天线面板的最大发送功率。
天线面板发送信道也可以理解为天线面板发送信道上的内容,即天线面板发送信号。
本技术方案中,终端设备可以利用多个天线面板进行数据和信息的传输,并且终端设备还可以根据终端设备的最大发送功率、天线面板的最大发送功率来确定每一个天线面板的传输功率,从而可以提高每一个天线面板的利用率,有利于提高系统效率。
结合第二方面,在第二方面的某些实现方式中,如果该第一天线面板的计算功率与该第二天线面板的计算功率的和小于或者等于该终端设备的最大发送功率,该第一发送功率为该第一计算功率,该第二发送功率为该第二计算功率。
本技术方案中,在满足不超出终端设备的最大功率的前提下,按照每一个天线面板的计算功率来执行天线面板的信息的传输,无需再对多个天线面板的功率进行重新分配,有利于提高网络设备对终端设备上多个天线面板调度的效率,也有利于提高网络设备对于终端设备上报信息的处理效率。
结合第二方面,在第二方面的某些实现方式中,如果该第一天线面板的计算功率与该第二天线面板的计算功率的和大于该终端设备的最大发送功率,该第一发送功率与该第二发送功率的和等于该终端设备的最大发送功率。
本技术方案中,在多个天线面板的计算功率之和超出终端设备的最大发送功率的情况下,可以按照终端设备满功率进行信息传输来分配多个天线面板的发送功率,有利于提高终端设备与网络设备之间信息传输的速率,有利于提高系统效率。
结合第二方面,在第二方面的某些实现方式中,如果该第一天线面板的计算功率与该第二天线面板的计算功率的和大于该终端设备的最大发送功率,该第一发送功率与该第二发送功率的和小于该终端设备的最大发送功率。
本技术方案中,在多个天线面板的计算功率之和超出终端设备的最大发送功率的情况下,可以按照终端设备非满功率进行信息传输来分配多个天线面板的发送功率,以使得终端设备可以预留出一定的功率来应对其他消耗功率的动作,例如应对突发的信息传输需求。本技术方案的实施有利于提高终端设备在不同数据传输场景的适应性,有利于提高终端设备与网络设备通信的稳定性。
结合第二方面,在第二方面的某些实现方式中,该第一发送功率与该第一计算功率成正比,该第二发送功率与该第二计算功率成正比。
结合第二方面,在第二方面的某些实现方式中,该第一发送功率与该终端设备的最大发送功率成正比,该第二发送功率与该终端设备的最大发送功率成正比。
结合第二方面,在第二方面的某些实现方式中,该第一发送功率和该第二发送功率均不为零。
结合第二方面,在第二方面的某些实现方式中,该第一发送功率为该第一计算功率或该终端设备的最大发送功率;或者,该第二发送功率为该第二计算功率或该终端设备的最大发送功率。
结合第二方面,在第二方面的某些实现方式中,该第一发送功率为该第一计算功率,该第二发送功率大于或等于零;或者,该第二发送功率为该第二计算功率,该第一发送功率大于或等于零。
结合第二方面,在第二方面的某些实现方式中,该第一发送功率小于或等于该第一天线面板的最大发送功率,该第二发送功率小于或等于该第二天线面板的最大发送功率。
上述技术方案中,终端设备可以依据不同的方式来为多个天线面板分配信息传输的功率,有利于提高终端设备为天线面板分配功率的灵活性,有利于提高终端设备在不同信息传输场景下的适应性。
结合第二方面,在第二方面的某些实现方式中,在该第一天线面板和该第二天线面板与不同信道关联的情况下,该第一发送功率和该第二发送功率还根据以下不同信道的相关信息中的一种或多种确定:信道优先级、信道内容或信道周期。
本技术方案中,终端设备还可以根据天线面板关联的信道的优先级、内容或周期等因素来确定为多个天线面板中每一个天线面板分配功率的先后次序或优先级,有利于使得终端设备能够结合实际的天线面板的工作内容或情况来分配功率,有利于提高终端设备与网络设备通信的效率。天线面板的不同工作内容对应着终端设备的不同的实际应用场景,本技术方案的实施还有利于提高终端设备用户的实际使用体验。
需要说明的是,上述第二方面确定的天线面板的功率余量、终端设备的功率余量可以用于第一方面上报至网络设备。
以下技术方案的相关解释和对应的有益效果可以参考第一方面和/或第二方面,为了简洁,以下不再赘述。
第三方面,提供一种传输信息的方法,该方法应用于网络设备,网络设备接收第一消息,该第一消息用于指示终端设备的第一天线面板的功率余量。
结合第三方面,在第三方面的某些实现方式中,终端设备还包括第二天线面板,该第一消息还用于指示以下中的一种或多种:该第一天线面板的最大发送功率、该第二天线面板的功率余量、该第二天线面板的最大发送功率、该终端设备的功率余量或该终端设备的最大发送功率。
结合第三方面,在第三方面的某些实现方式中,网络设备接收终端设备发送的第二消息,该第二消息用于指示终端设备的第二天线面板的功率余量。
结合第三方面,在第三方面的某些实现方式中,该第二消息还用于指示以下中的一种或多种:该第一天线面板的功率余量、该第一天线面板的最大发送功率、该第二天线面板的最大发送功率、该终端设备的功率余量或该终端设备的最大发送功率。
结合第三方面,在第三方面的某些实现方式中,网络设备接收终端设备发送的第三消息,该第三消息用于指示该终端设备的功率余量和/或该终端设备的最大发送功率。
结合第三方面,在第三方面的某些实现方式中,网络设备向终端设备发送配置信息,该配置信息用于调度终端设备上的第一天线面板和/或第二天线面板。
结合第三方面,在第三方面的某些实现方式中,该配置信息还用于确定第一天线面板的传输功率 和/或第二天线面板的传输功率。
第四方面,提供一种传输信息的方法,该方法应用于网络设备,网络设备向终端设备发送配置信息,该配置信息用于终端设备确定天线面板的计算功率。
第五方面,提供一种通信装置,该通信装置包括第一天线面板,该通信装置还包括收发单元,该收发单元,用于发送第一消息,该第一消息用于指示该第一天线面板的功率余量。
需要说明的是,这里天线面板也可以称为天线单元,可以理解为通信装置中用于实现天线功能的功能模块。
结合第五方面,在第五方面的某些实现方式中,该通信装置包括多个天线面板,该多个天线面板包括第二天线面板和该第一天线面板,该第一消息还用于指示以下中的一种或多种:该第一天线面板的最大发送功率、该第二天线面板的功率余量、该第二天线面板的最大发送功率、该通信装置的功率余量或该通信装置的最大发送功率。
结合第五方面,在第五方面的某些实现方式中,该通信装置包括多个天线面板,该多个天线面板包括第二天线面板和该第一天线面板,该收发单元,还用于发送第二消息,该第二消息用于指示该第二天线面板的功率余量。
结合第五方面,在第五方面的某些实现方式中,该第二消息还用于指示以下中的一种或多种:该第一天线面板的功率余量、该第一天线面板的最大发送功率、该第二天线面板的最大发送功率、该通信装置的功率余量或该通信装置的最大发送功率。
结合第五方面,在第五方面的某些实现方式中,该收发单元,还用于发送第三消息,该第三消息用于指示该通信装置的功率余量和/或该通信装置的最大发送功率。
在一种可能的实现方式中,该第一天线面板的功率余量、该第二天线面板的功率余量或该通信装置功率余量中的一项或多项用于网络设备确定该第一天线面板和/或该第二天线面板的传输功率。
结合第五方面,在第五方面的某些实现方式中,该第一天线面板的功率余量根据第一计算功率和该第一天线面板的最大发送功率确定,该第一计算功率为第一天线面板的计算功率,该第一计算功率与该通信装置的最大发送功率相关。
结合第五方面,在第五方面的某些实现方式中,该第二天线面板的功率余量根据第二计算功率和该第二天线面板的最大发送功率确定,该第二计算功率为第二天线面板的计算功率,该第二计算功率与该通信装置的最大发送功率相关。
结合第五方面,在第五方面的某些实现方式中,该通信装置的功率余量根据该终端设备的最大发送功率和以下中的一项或多项确定:该第一天线面板的最大发送功率、该第二天线面板的最大发送功率、该第一计算功率或该第二计算功率。
结合第五方面,在第五方面的某些实现方式中,该第一消息的类型和该第二消息的类型根据以下信息中的一种或多种确定:该第一消息和该第二消息是否在同一信道上传输;是否触发该第一天线面板和/或该第二天线面板发送该第一消息和/或该第二消息;或者,该第一消息和该第二消息的发送方式。
结合第五方面,在第五方面的某些实现方式中,在该第一天线面板和该第二天线面板与不同信道关联的情况下,该第一天线面板的功率余量和/或该第二天线面板的功率余量还根据以下不同信道的相关信息中的一项或多项确定:信道优先级、信道内容或信道周期。
结合第五方面,在第五方面的某些实现方式中,该第一天线面板和该第二天线面板为同发和/或同收的两个天线面板。
第六方面,提供一种通信装置,该通信装置包括处理单元,该通信装置包括多个天线面板,该多个天线面板包括第一天线面板和第二天线面板,该处理单元用于,在该第一天线面板和/或该第二天线面板发送信道,该第一天线面板的发送功率为第一发送功率,该第二天线面板的发送功率为第二发送功率;其中,
该第一发送功率根据以下中的一项或多项确定:该第一天线面板的计算功率、该通信装置的最大发送功率、该第一面板的最大发送功率或该第二天线面板的最大发送功率。该第二发送功率根据以下中的一项或多项确定:该第二天线面板的计算功率、该通信装置的最大发送功率、该第一面板的最大发送功率或该第二天线面板的最大发送功率。
结合第六方面,在第六方面的某些实现方式中,如果该第一天线面板的计算功率与该第二天线面 板的计算功率的和小于或者等于该通信装置的最大发送功率,该第一发送功率为该第一计算功率,该第二发送功率为该第二计算功率。
结合第六方面,在第六方面的某些实现方式中,如果该第一天线面板的计算功率与该第二天线面板的计算功率的和大于该通信装置的最大发送功率,该第一发送功率与该第二发送功率的和等于该通信装置的最大发送功率。
结合第六方面,在第六方面的某些实现方式中,如果该第一天线面板的计算功率与该第二天线面板的计算功率的和大于该通信装置的最大发送功率,该第一发送功率与该第二发送功率的和小于该通信装置的最大发送功率。
结合第六方面,在第六方面的某些实现方式中,该第一发送功率与该第一计算功率成正比,该第二发送功率与该第二计算功率成正比。
结合第六方面,在第六方面的某些实现方式中,该第一发送功率与该通信装置的最大发送功率成正比,该第二发送功率与该通信装置的最大发送功率成正比。
结合第六方面,在第六方面的某些实现方式中,该第一发送功率和该第二发送功率均不为零。
结合第六方面,在第六方面的某些实现方式中,该第一发送功率为该第一计算功率或该通信装置的最大发送功率;或者,该第二发送功率为该第二计算功率或该通信装置的最大发送功率。
结合第六方面,在第六方面的某些实现方式中,该第一发送功率为该第一计算功率,该第二发送功率大于或等于零;或者,该第二发送功率为该第二计算功率,该第一发送功率大于或等于零。
结合第六方面,在第六方面的某些实现方式中,该第一发送功率小于或等于该第一天线面板的最大发送功率,该第二发送功率小于或等于该第二天线面板的最大发送功率。
结合第六方面,在第六方面的某些实现方式中,在该第一天线面板和该第二天线面板与不同信道关联的情况下,该第一发送功率和该第二发送功率还根据以下不同信道的相关信息中的一种或多种确定:信道优先级、信道内容或信道周期。
第七方面,提供一种通信装置,该通信装置包括收发单元,该收发单元,用于接收第一消息,该第一消息用于指示终端设备的第一天线面板的功率余量。
结合第七方面,在第七方面的某些实现方式中,终端设备还包括第二天线面板,该第一消息还用于指示以下中的一种或多种:该第一天线面板的最大发送功率、该第二天线面板的功率余量、该第二天线面板的最大发送功率、该终端设备的功率余量或该终端设备的最大发送功率。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于接收终端设备发送的第二消息,该第二消息用于指示终端设备的第二天线面板的功率余量。
结合第七方面,在第七方面的某些实现方式中,该第二消息还用于指示以下中的一种或多种:该第一天线面板的功率余量、该第一天线面板的最大发送功率、该第二天线面板的最大发送功率、该终端设备的功率余量或该终端设备的最大发送功率。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于接收终端设备发送的第三消息,该第三消息用于指示该终端设备的功率余量和/或该终端设备的最大发送功率。
结合第七方面,在第七方面的某些实现方式中,该收发单元,还用于发送配置信息,该配置信息用于调度终端设备上的第一天线面板和/或第二天线面板。
结合第七方面,在第七方面的某些实现方式中,该配置信息还用于确定第一天线面板的传输功率和/或第二天线面板的传输功率。
第八方面,提供一种通信装置,该通信装置包括收发单元,该收发单元用于向终端设备发送配置信息,该配置信息用于终端设备确定终端设备的天线面板的计算功率。
第九方面,提供一种通信设备,该通信设备包括第一天线面板。该通信设备包括处理器和存储器,该存储器存储有一个或者多个计算机程序,该一个或多个计算机程序包括指令,当该指令被处理器执行时,该处理器用于:发送第一消息,该第一消息用于指示该第一天线面板的功率余量。
结合第九方面,在第九方面的某些实现方式中,该通信设备包括多个天线面板,该多个天线面板包括第二天线面板和该第一天线面板,该第一消息还用于指示以下中的一种或多种:该第一天线面板的最大发送功率、该第二天线面板的功率余量、该第二天线面板的最大发送功率、该通信设备的功率余量或该通信设备的最大发送功率。
结合第九方面,在第九方面的某些实现方式中,该通信设备包括多个天线面板,该多个天线面板包括第二天线面板和该第一天线面板,该处理器,还用于发送第二消息,该第二消息用于指示该第二天线面板的功率余量。
结合第九方面,在第九方面的某些实现方式中,该第二消息还用于指示以下中的一种或多种:该第一天线面板的功率余量、该第一天线面板的最大发送功率、该第二天线面板的最大发送功率、该通信设备的功率余量或该通信设备的最大发送功率。
结合第九方面,在第九方面的某些实现方式中,该处理器,还用于发送第三消息,该第三消息用于指示该通信设备的功率余量和/或该通信设备的最大发送功率。
在一种可能的实现方式中,该第一天线面板的功率余量、该第二天线面板的功率余量或该通信设备功率余量中的一项或多项用于网络设备确定该第一天线面板和/或该第二天线面板的传输功率。
结合第九方面,在第九方面的某些实现方式中,该第一天线面板的功率余量根据第一计算功率和该第一天线面板的最大发送功率确定,该第一计算功率为第一天线面板的计算功率,该第一计算功率与该通信设备的最大发送功率相关。
结合第九方面,在第九方面的某些实现方式中,该第二天线面板的功率余量根据第二计算功率和该第二天线面板的最大发送功率确定,该第二计算功率为第二天线面板的计算功率,该第二计算功率与该通信设备的最大发送功率相关。
结合第九方面,在第九方面的某些实现方式中,该通信设备的功率余量根据该通信设备的最大发送功率和以下中的一项或多项确定:该第一天线面板的最大发送功率、该第二天线面板的最大发送功率、该第一计算功率或该第二计算功率。
结合第九方面,在第九方面的某些实现方式中,该第一消息的类型和该第二消息的类型根据以下信息中的一种或多种确定:该第一消息和该第二消息是否在同一信道上传输;是否触发该第一天线面板和/或该第二天线面板发送该第一消息和/或该第二消息;或者,该第一消息和该第二消息的发送方式。
结合第九方面,在第九方面的某些实现方式中,在该第一天线面板和该第二天线面板与不同信道关联的情况下,该第一天线面板的功率余量和/或该第二天线面板的功率余量还根据以下不同信道的相关信息中的一项或多项确定:信道优先级、信道内容或信道周期。
结合第九方面,在第九方面的某些实现方式中,该第一天线面板和该第二天线面板为同发和/或同收的两个天线面板。
第十方面,提供一种通信设备,该通信设备包括多个天线面板,该多个天线面板包括第一天线面板和第二天线面板。该通信设备包括处理器和存储器,该存储器存储有一个或者多个计算机程序,该一个或多个计算机程序包括指令,当该指令被处理器执行时,该处理器用于:
在该第一天线面板和/或该第二天线面板发送信道,该第一天线面板的发送功率为第一发送功率,该第二天线面板的发送功率为第二发送功率;其中,
该第一发送功率根据以下中的一项或多项确定:该第一天线面板的计算功率、该通信设备的最大发送功率、该第一面板的最大发送功率或该第二天线面板的最大发送功率。该第二发送功率根据以下中的一项或多项确定:该第二天线面板的计算功率、该通信设备的最大发送功率、该第一面板的最大发送功率或该第二天线面板的最大发送功率。
结合第十方面,在第十方面的某些实现方式中,如果该第一天线面板的计算功率与该第二天线面板的计算功率的和小于或者等于该通信设备的最大发送功率,该第一发送功率为该第一计算功率,该第二发送功率为该第二计算功率。
结合第十方面,在第十方面的某些实现方式中,如果该第一天线面板的计算功率与该第二天线面板的计算功率的和大于该通信设备的最大发送功率,该第一发送功率与该第二发送功率的和等于该通信设备的最大发送功率。
结合第十方面,在第十方面的某些实现方式中,如果该第一天线面板的计算功率与该第二天线面板的计算功率的和大于该通信设备的最大发送功率,该第一发送功率与该第二发送功率的和小于该通信设备的最大发送功率。
结合第十方面,在第十方面的某些实现方式中,该第一发送功率与该第一计算功率成正比,该第二发送功率与该第二计算功率成正比。
结合第十方面,在第十方面的某些实现方式中,该第一发送功率与该通信设备的最大发送功率成正比,该第二发送功率与该通信设备的最大发送功率成正比。
结合第十方面,在第十方面的某些实现方式中,该第一发送功率和该第二发送功率均不为零。
结合第十方面,在第十方面的某些实现方式中,该第一发送功率为该第一计算功率或该通信设备的最大发送功率;或者,该第二发送功率为该第二计算功率或该通信设备的最大发送功率。
结合第十方面,在第十方面的某些实现方式中,该第一发送功率为该第一计算功率,该第二发送功率大于或等于零;或者,该第二发送功率为该第二计算功率,该第一发送功率大于或等于零。
结合第十方面,在第十方面的某些实现方式中,该第一发送功率小于或等于该第一天线面板的最大发送功率,该第二发送功率小于或等于该第二天线面板的最大发送功率。
结合第十方面,在第十方面的某些实现方式中,在该第一天线面板和该第二天线面板与不同信道关联的情况下,该第一发送功率和该第二发送功率还根据以下不同信道的相关信息中的一种或多种确定:信道优先级、信道内容或信道周期。
第十一方面,提供一种通信设备,该通信设备包括处理器和存储器,该存储器存储有一个或者多个计算机程序,该一个或多个计算机程序包括指令,当该指令被处理器执行时,该处理器用于:接收第一消息,该第一消息用于指示终端设备的第一天线面板的功率余量。
结合第十一方面,在第十一方面的某些实现方式中,终端设备还包括第二天线面板,该第一消息还用于指示以下中的一种或多种:该第一天线面板的最大发送功率、该第二天线面板的功率余量、该第二天线面板的最大发送功率、该终端设备的功率余量或该终端设备的最大发送功率。
结合第十一方面,在第十一方面的某些实现方式中,该处理器,还用于接收终端设备发送的第二消息,该第二消息用于指示终端设备的第二天线面板的功率余量。
结合第十一方面,在第十一方面的某些实现方式中,该第二消息还用于指示以下中的一种或多种:该第一天线面板的功率余量、该第一天线面板的最大发送功率、该第二天线面板的最大发送功率、该终端设备的功率余量或该终端设备的最大发送功率。
结合第十一方面,在第十一方面的某些实现方式中,该处理器,还用于接收终端设备发送的第三消息,该第三消息用于指示该终端设备的功率余量和/或该终端设备的最大发送功率。
结合第十一方面,在第十一方面的某些实现方式中,该处理器,还用于发送配置信息,该配置信息用于调度终端设备上的第一天线面板和/或第二天线面板。
结合第十一方面,在第十一方面的某些实现方式中,该配置信息还用于确定第一天线面板的传输功率和/或第二天线面板的传输功率。
第十二方面,提供一种通信设备,该通信设备包括处理器和存储器,该存储器存储有一个或者多个计算机程序,该一个或多个计算机程序包括指令,当该指令被处理器执行时,该处理器用于:向终端设备发送配置信息,该配置信息用于该终端设备确定终端设备的天线面板的计算功率。
第十三方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得如第一方面的方法被执行。
第十四方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得如第二方面的方法被执行。
第十五方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得如第三方面的方法被执行。
第十六方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得如第四方面的方法被执行。
第十七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面的方法被执行。
第十八方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第二方面的方法被执行。
第十九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第三方面的方法被执行。
第二十方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令, 当计算机指令在计算机上运行时,使得如第四方面的方法被执行。
第二十一方面,提供一种芯片,包括处理器,用于读取存储器中存储的指令,当该处理器执行该指令时,使得该芯片实现第一方面的方法被执行。
第二十二方面,提供一种芯片,包括处理器,用于读取存储器中存储的指令,当该处理器执行该指令时,使得该芯片实现第二方面的方法被执行。
第二十三方面,提供一种芯片,包括处理器,用于读取存储器中存储的指令,当该处理器执行该指令时,使得该芯片实现第三方面的方法被执行。
第二十四方面,提供一种芯片,包括处理器,用于读取存储器中存储的指令,当该处理器执行该指令时,使得该芯片实现第四方面的方法被执行。
对于处理器所涉及的发射、发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性存储器,例如只读存储器,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
附图说明
图1是一种适用于本申请实施例的应用场景示意图。
图2是另一种适用于本申请实施例的应用场景示意图。
图3是本申请实施例提供的一种信息传输方法的示意图。
图4是本申请实施例提供的另一种信息传输方法的示意图。
图5是本申请实施例提供的PHR类型确定方法的示意图。
图6是本申请实施例提供的又一种信息传输方法的示意图。
图7是本申请实施例提供的又一种信息传输方法的示意图。
图8是本申请实施例提供的一种PHR格式示意图。
图9是本申请实施例提供的另一种PHR格式示意图。
图10是本申请实施例提供的又一种PHR格式示意图。
图11是本申请实施例提供的又一种PHR格式示意图。
图12是本申请实施例提供的又一种PHR格式示意图。
图13是本申请实施例提供的又一种PHR格式示意图。
图14是本申请实施例提供的一种信息传输的方法示意图。
图15是本申请实施例提供的一种通信装置示意图。
图16是本申请实施例提供的一种通信设备示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在无线通信系统中,包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备,网络设备还可以称为基站设备。空口资源可以包括时域资源、频域资源、码资源和空间资源中至少一个。在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。
在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service, GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备包括接入网设备,例如基站(base station,BS),BS可以是一种部署在无线接入网中能够和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的演进的基站(evolved node B,eNB),其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或5G基站(next-generation node B,gNB)。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端间的无线通信、网络设备和网络设备间的无线通信以及终端和终端间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
图1所示为适用于本申请实施例的通信场景示意图。
本申请针对5G NR、5G-Advanced等协议框架,可应用于多种移动通信场景,如基站和用户设备之间、发送接收点与用户设备之间或用户设备之间点对点传输、基站和用户设备的多跳/relay传输、多个基站和用户设备的双连接(dual connectivity,DC)或多连接等场景。图1是本申请应用的通信系统的场景示意图,需要注意的是,图1只是示例性的,不对适用于本申请的网络架构产生限制,而且,本申请不限制上行、下行、接入链路、回传(backhaul)链路、侧链路(sidelink)等传输。
图2所示为适用于本申请实施例的另一通信场景示意图。
终端设备可以包含多个天线面板,根据终端设备的需求,该多个天线面板可以用于实现不同场景下的数据传输。例如,当终端设备与网络设备之间的通信环境较好时,该终端设备的多个天线面板可以用于传输不同的数据,从而可以提高终端设备和系统的吞吐量。当终端设备与网络设备之间的通信环境不佳时,该终端设备的多个天线面板可以用于组成不同天线面板组合,以提升终端设备与网络设备在特定方向上数据传输的功率,提升终端与网络设备之间通信的稳定性。
终端设备的多个天线面板既可以与单发送接收点(single transmission reception point,sTRP)之间进行数据传输,也可以与多发送接收点(multi transmission reception point,mTRP)之间进行数据传输。终端设备的多个天线面板既可以用于单信道多天线面板的同时发送,也可以用于多信道多天线面板的同时发送。此外,多个天线面板还可以应用于发送分集、空分复用等应用场景中。
对于单天线面板的收发,终端设备实现简单,且功耗、热散都较低,天线面板的管理也相对简单,但为实现天线面板之间的切换需要预留相应的面板的激活和切换时间,降低了系统效率。对于多个天线面板同时的收发,既可以健壮系统的鲁棒性,也可以提高系统的效率,但终端设备实现起来相对复杂,且会带来较大的功耗和热散问题。
如何实现基站对于终端设备上多个天线面板的合理调度,在满足功耗控制等限制条件下提高多个天线面板的利用率,提高系统效率是值得考虑的。
功控余量(power headroom,PH)是指终端允许的最大传输功率与当前评估得到的物理上行共享信道(physical uplink shared channel,PUSCH)传输功率之间的差值,它表示除了当前PUSCH传输所使用的传输功率之外,终端还有多少传输功率可以使用。
PH的单位为dB,范围是[-23,40]dB。如果是负值则表示网络设备给终端设备调度了一个高于其当时可用发送功率所能支持的数据传输速率。定义PH的动机之一在于它可以作为网络设备分配上行资源的一个参考依据,同时也可为上行功控提供依据。具体网络设备如何使用终端上报的PH值,取决于网络设备的算法设计,例如,如果PH值为正,那么后续分配更多的资源给终端用于传输;如果PH值为负,在下次调度时分配更少的资源给终端用于传输。PH之所示会出现负值,是因为“评估得到的PUSCH传输功率”是根据实际信道计算得到的,不是实际的发送功率,也不依赖于最大发射功率的限制。
功率余量报告(power headroom report,PHR)是指终端设备向网络侧报告功率余量的过程,该过程可以具体分为上报触发、PH计算和上报。不同类型的PHR可以用于针对不同的信道,例如一类PHR(type 1PHR)可以主要针对PUSCH信道,二类PHR(type 2PHR)可以主要针对多连接(multiple radio dual connection,MRDC)场景的PUSCH或物理上行控制信道(physical uplink control channel,PUCCH)信道,三类PHR可以主要针对探测参考信号(sounding reference signal,SRS)。
本申请实施例中,对上述PH和PHR的使用范围、使用对象等进行了扩展,上述对PH和PHR的介绍仅是一些概念性的说明,不应理解为对于本申请的限制。
PHR上报触发的方式可以分为周期性上报和事件上报,或称为时间触发和事件触发,以下进行详细介绍。本申请实施例提供的PHR上报触发的方式既可以适用于终端设备也可以适用于终端设备上的天线面板。
触发方式一
当UE有传输新数据的上行资源,禁止PHR定时器(prohibitPHR-Timer)超时或已经超时,并且在上一次传输功率余量报告之后,路径损耗的变化值已经超过了下行路损变化(downlink pathloss change,dl-PathlossChange)dB。路损变化值评估考虑当前时间计算的路损,和上次上报PHR时刻路损的比较,对于之间时间段路损变化情况都不考虑。
需要说明的是,这里用的是路损的“变化值”,即不区分当前路损是变大还是变小,考虑的是路损的绝对差值。此外,如果定时器prohibitPHR-Timer仍然在运行,无论路损变化多大都不能触发PHR。prohibitPHR-Timer的存在,是为了防止因路损变动频繁或者路损门限设置过低,导致UE频繁发送PHR的情况发生。
触发方式二
周期PHR定时器(PeriodicPHR-Timer)超时。
触发方式三
当无线资源控制(radio resource control,RRC)层配置或重配置PHR功能或参数(例如RRC重新配置了定时器的值),且这种配置或重配置并不是禁止PHR。
触发方式四
辅小区(secondary cell,Scell)的激活,且第一激活下行链路带宽部分的身份标识(fisrt active downlink bandwidth part-identification,firstActiveDownlinkBWP-Id)未被设置为休眠(dormant)BWP。
触发方式五
主辅小区(primary secondary cell,PSCell)的添加。
触发方式六
当终端设备有传输新数据的上行资源,prohibitPHR-Timer定时器超时或已经超时,有上行资源分配或者有PUCCH传输,且自从上次PHR传输到现在,最大允许终端设备对于服务小区c的功率衰减(maximum allowed UE output power reduction for serving cell c,P-MPRc)改变超过phr-Tx-PowerFactorChange。
触发方式七
激活BWP从休眠BWP转换到非休眠下行带宽部分(non-dormant downlink bandwidth part, non-dormant DL BWP)。
触发方式八
当配置最大容许暴露报告频率范围2(maximum permissible exposure reporting frequency range 2,mpe-Reporting-FR2),且最大允许暴露报告禁止定时器(maximum permissible exposure prohibit timer,mpe-ProhibitTimer)未使能时;或者,自从上次PHR传输到现在,测量的P-MPR大于或等于门限最大容许暴露阈值(mpe-Threshold);或者自从上次上报P-PMR大于或等于门限mpe-Threshold的PHR传输到现在,测量的P-MPR改变超过phr-Tx-PowerFactorChange时。
上述PHR上报的触发方式的更多详细内容的介绍可以参考相关的标准、协议。
实际使用过程中,PHR可以分为实际功率余量报告(actual PHR)和虚拟功率余量报告(virtual PHR)。一般认为:在特定的时刻,如果能够判断PHR上报的时刻有实际的目标信道或目标信号(例如一类PHR PUSCH(type 1PHR PUSCH)或三类PHR SRS(type 3PHR SRS))发送,则使用实际PHR进行计算。如果没有实际的目标信道或目标信号发送,则使用虚拟PHR进行计算。
前述特定的时刻可以指:当在动态调度的PUSCH上传输PHR时,在第一次有初始上行PUSCH调度的下行控制信息(downlink control information,DCI)接收时刻;或者,在第一次有可用的(能承载当前PHR)初始上行PUSCH的开始传输时刻之前的一段时间前的时刻。或者,当在半静态配置的PUSCH上传输的PHR时,在实际PUSCH传输之前PUSCH准备时间(Tproc时间)的时刻。
以下结合图3至图7具体说明本申请实施例提供的实际PHR和虚拟PHR的确定方法。
如图3所示,当在天线面板1的PUSCH传输多天线面板的PHR时,对于天线面板1计算PHR,从PDCCH时刻或者PUSCH传输时刻之前的一段时间的时刻,可判断天线面板3在天线面板1传输PUSCH时刻有半静态的PUSCH传输(RRC配置),因此,天线面板1计算实际的PHR。对于天线面板2来说,从天线面板1的PDCCH时刻或者PUSCH传输时刻之前的一段时间的时刻,判断天线面板2没有实际的PUSCH传输,因此天线面板2计算虚拟的PHR,类似的,对于天线面板3计算实际的PHR。
或者,图3中的天线面板1、天线面板2和天线面板3可以分别替换为载波单元(component carrier,CC)1、CC2和CC3。在这种情况下,当在CC1的PUSCH传输多CC的PHR时,对于CC1计算PHR,从PDCCH时刻或者PUSCH传输时刻之前的一段时间的时刻,可判断CC3在CC1传输PUSCH时刻有半静态的PUSCH(config grant PUSCH)传输(RRC配置),因此,CC1计算实际的PHR。对于CC2来说,从CC1的PDCCH时刻或者PUSCH传输时刻之前的一段时间的时刻,判断CC2没有实际的PUSCH传输,因此CC2计算虚拟的PHR,类似的,对于CC3计算实际的PHR。
如图4为本申请实施例提供的一种利用多天线面板上报PHR的方式。终端设备可以利用不同的天线面板进行重复发送,重复模式包括循环重复(如图4中的(a))和序列重复(如图4中的(b))。这里循环重复可以指,两个天线面板依次发送两个PHR,并按照依次发送的规则进行重复。序列重复可以指,两个PHR或两个天线面板按照先后顺序,先重复发送第一PHR后重复发送第二PHR,或者先天线面板1(或称第一天线面板)重复发送,后天线面板2(或称第二天线面板)重复发送。
图5示出了,当终端设备利用两个天线面板同时上报两个PHR时,两个PHR可能的类型。
天线面板1发送的PHR的类型可以利用前文述及的方法(详细内容可以参考相关标准)进行判断。在天线面板1发送的PHR为实际PHR的情况下,且天线面板2对应的PUSCH与天线面板1对应的PUSCH在同一个时隙上,则天线面板2发送的PHR为实际PHR。在其他情况下,例如天线面板1发送的PHR为虚拟PHR或者天线面板2对应的PUSCH与天线面板1对应的PUSCH不在同一个时隙上,则天线面板2发送的PHR均为虚拟PHR。
以下结合图6和图7,举例说明本申请提供的基于天线面板的PHR上报过程中PHR类型的确定方法。
如图6所示,当PHR在单个信道上传输,如果两个天线面板为同发的天线面板(例如两个天线面板同时发送PHR),且两个天线面板传输信息的路损(path loss)差值小于或等于第一阈值,则可以上报一个PHR,该一个PHR可以为天线面板1的PHR或者天线面板2的PHR。如果两个天线面板传输信息的路损差值大于第一阈值,则可以上报2个PHR,即天线面板1的PHR和天线面板2的PHR。
天线面板的同发或这同收可以理解为:多个天线面板同时发送或者同时接收,或者,终端设备具 有多个天线面板同时发送或同时接收的能力。也可以理解为:数据或参考信号同时在多个天线面板上发送或接收,或者,终端设备在多个天线面板上同时测量。
终端设备也可以根据PHR的上报事件的被触发对象来确定上报一个或两个PHR。具体的,如果PHR上报触发事件触发天线面板上报,则可以上报两个PHR,这两个PHR可以为天线面板1的PHR和天线面板2的PHR。如果PHR上报触发事件触发终端设备上报,则可以上报一个PHR,这一个PHR可以为终端设备的PHR。
在一个实施例中,当两个PHR在单个信道上传输,如果这两个PHR对应的两个天线面板为同发的两个天线面板,则这两个PHR的类型相同,即均为实际PHR或者均为虚拟PHR。具体为实际PHR或虚拟PHR可以根据图3所示的实施例的相关内容确定。
如图7所示,当PHR在多个信道上传输时,可以根据以下方式来确定上报PHR的类型。
终端设备可以根据PHR的上报事件的被触发对象来确定上报PHR的数量和类型。
示例性的,如果PHR的上报事件触发终端设备上报,则上报PHR的数量和类型可以根据图3所示的实施例的相关内容确定。
终端设备也可以根据PHR的上报事件的被触发对象以及上报方式来确定上报PHR的数量和类型。
示例性的,如果PHR的上报事件触发两个天线面板中的一个天线面板上报,且两个天线面板执行联合上报,则两个天线面板均上报两个PHR,且其中被触发上报的天线面板对应的PHR为实际PHR,未被触发上报的天线面板对应的PHR为虚拟PHR。
如果PHR的上报事件触发两个天线面板均上报,且两个天线面板执行联合上报,则两个天线面板均上报两个实际PHR。
同样示例性的,如果PHR的上报事件触发两个天线面板中的一个天线面板上报,且两个天线面板执行分别上报,则被触发的天线面板上报一个与该天线面板对应的实际PHR,另一个未被触发的天线面板不上报。
如果PHR的上报事件触发两个天线面板均上报,且两个天线面板执行分别上报,则两个天线面板均上报一个实际PHR,即天线面板1上报天线面板1对应的PHR,天线面板2上报天线面板2对应的PHR。
前文所述的一类PHR的实际PH的计算公式如下:
其中,PHtype1,b,f,c(i,j,q,l)用于表示实际PH的计算值,PCMAX,f,c(i)用于表示天线面板的最大发送功率,用于表示天线面板的计算功率。
该天线面板的计算功率也可以称为与天线面板关联的发送功率,对于包含多个天线面板的终端设备,天线面板的计算功率是与终端设备的最大发送功率相关的。其中,
PO_PUSCH,b,f,c(i)可以根据终端设备接入方式和PUSCH传输配置方式确定,用于表示与PUSCH资源带宽相关部分的取值,αb,f,c(j)·PLb,f,c(qd)用于表示与下行路损相关的部分的取值,ΔTF,b,f,c(i)用于表示与载波的上行带宽部分和服务小区的调制编码方案相关部分的取值,fb,f,c(i,l)用于表示与PUSCH功率控制调整状态相关部分的取值。
上述公式中的参数可以按照实际发送PUSCH的功控参数计算,参数的详细含义等内容可以参考相关标准。
前文所述的一类PHR的虚拟PH的计算公式如下:
其中,PHtype1,b,f,c(i,j,q,l)用于表示虚拟PH的计算值,用于表示天线面板的最大发 送功率,{PO_PUSCH,b,f,c(j)+αb,f,c(j)·PLb,f,c(qd)+fb,f,c(i,l)}用于表示天线面板的计算功率。
该天线面板的计算功率也可以称为与天线面板关联的发送功率,对于包含多个天线面板的终端设备,天线面板的计算功率是与终端设备的最大发送功率相关的。其中,
PO_PUSCH,b,f,c(j)可以根据终端设备接入方式和PUSCH传输配置方式确定,αb,f,c(j)·PLb,f,c(qd)用于表示与下行路损相关的部分的取值,fb,f,c(i,l)用于表示与PUSCH功率控制调整状态相关部分的取值。
上述公式中的参数可以按照预定义值进行计算,详细内容可以参考相关标准。
前文所述的三类PHR的实际PH的计算公式如下:
其中,PHtype3,b,f,c(i,qs)用于表示实际PH的计算值,PCMAX,f,c(i)用于表示天线面板的最大发送功率,用于表示天线面板的计算功率。
该天线面板的计算功率也可以称为与天线面板关联的发送功率,对于包含多个天线面板的终端设备,天线面板的计算功率是与终端设备的最大发送功率相关的。其中,
PO_SRS,b,f,c(qs)用于表示与上行激活带宽部分相关的取值,10log10(2μ·MSRS,b,f,c(i))用于表示与SRS带宽相关的取值,αSRS,f,c(qs)·PLb,f,c(qd)用于表示与下行路损相关部分的取值,hb,f,c(i)用于表示与传输功率控制指令值相关部分的取值。
上述公式中的参数可以按照实际发送SRS的功控参数计算,参数的详细含义等内容可以参考相关标准。
前文所述的三类PHR的虚拟PH的计算公式如下:
其中,PHtype3,b,f,c(i,qs)用于表示虚拟PH的计算值,用于表示天线面板的最大发送功率,{PO_SRS,b,f,c(qs)+αSRS,f,c(qs)·PLb,f,c(qd)+hb,f,c(i)}用于表示表示天线面板的计算功率。
该天线面板的计算功率也可以称为与天线面板关联的发送功率,对于包含多个天线面板的终端设备,天线面板的计算功率是与终端设备的最大发送功率相关的。其中,
PO_SRS,b,f,c(qs)用于表示与上行激活带宽部分相关的取值,αSRS,f,c(qs)·PLb,f,c(qd)用于表示与下行路损相关部分的取值,hb,f,c(i)用于表示与传输功率控制指令值相关部分的取值。
上述公式中的参数可以按照预定义值进行计算,参数的详细含义等内容可以参考相关标准。
以包含两个天线面板的终端设备为例,终端设备的功率余量可以利用如下公式计算:
PH=PUEmax-(P1+P2)
其中,PH用于表示终端设备的实际PH的取值或虚拟PH的取值,PUEmax用于表示终端设备的最大发送功率,当PH用于表示实际PH的取值时,P1和P2用于表示第一天线面板的实际计算功率和第二天线面板的实际计算功率;当PH用于表示虚拟PH的取值时,P1和P2用于表示第一天线面板的虚拟计算功率和第二天线面板的虚拟计算功率。
基于天线面板的PHR上报过程,每个天线面板的发送功率与天线面板的最大发送功率、终端设备的最大发送功率等信息有关。
天线面板的最大发送功率或者终端设备的最大发送功率可以是通过配置信息确定的,也可以是根据相关参数计算得到的,可以是天线面板或终端设备的用于执行特定动作的最大功率(例如用于PHR计算的最大发送功率),也可以是天线面板或终端设备的总功率。
需要说明的是,基于天线面板的PHR上报,可以是基于任何与天线面板对应的信息实现的PHR 上报,例如基于候选值(candidate value)、候选值集合(candidate value set)、面板标识(panel identification,panel ID)、SRS资源(SRS resource)或SRS资源集合(resource set)等。
在一些实施例中,终端设备可以包括多个天线面板,该天线面板至少包括第一天线面板和第二天线面板,终端设备可以在第一天线面板和/或第二天线面板发送信道和/或信号,第一面板的发送功率为第一发送功率,第二天线面板的发送功率为第二发送功率。
其中,
第一发送功率根据第一天线面板的计算功率和以下中的一项或多项确定:
终端设备的最大发送功率、第一面板的最大发送功率或第二天线面板的最大发送功率;
第二发送功率根据第二天线面板的计算功率和以下中的一项或多项确定:
终端设备的最大发送功率、第一面板的最大发送功率或第二天线面板的最大发送功率。
上述信道或信号可以为PUSCH、PUCCH、前导码(preamble)或SRS等。
天线面板发送信道也可以理解为天线面板发送信道的内容,即天线面板发送信道上的信号。
在一些实施例中,如果第一天线面板的计算功率与第二天线面板的计算功率的和小于或者等于终端设备的最大发送功率,第一发送功率为第一计算功率,第二发送功率为第二计算功率。
这里的计算功率可以为根据前文记载的公式通过多个参数计算得到的数值。
终端设备可以根据终端设备的最大发送功率确定每一个天线面板的实际发送功率。示例性的,终端设备可以获取终端设备的最大发送功率Pcmax,并根据上述公式计算第一天线面板的计算功率P1、第二天线面板的计算功率P2,如果P1与P2的和小于或等于Pcmax,即第一天线面板的计算功率和第二天线面板的计算之和未超过终端设备的最大发送功率,那么,第一天线面板和第二天线面板可以按照计算功率进行发送,即第一天线面板的实际发送功率为计算功率P1,第二天线面板的实际发送功率为计算功率P2。
在另一些实施例中,如果第一天线面板的计算功率与第二天线面板的计算功率的和大于终端设备的最大发送功率,第一发送功率与第二发送功率的和等于终端设备的最大发送功率。
在终端设备的所有天线面板的计算功率之和大于终端设备的最大发送功率的情况下,终端设备可以满功率利用天线面板发送信道或信号。
示例性的,终端设备可以获取终端设备的最大发送功率Pcmax,并根据上述公式计算第一天线面板的计算功率P1、第二天线面板的计算功率P2,如果P1与P2的和大于Pcmax,那么,第一天线面板的实际发送功率P1a和第二天线面板的实际发送功率P2a的和可以为Pcmax。
在一个示例中,第一发送功率与第一计算功率成正比,第二发送功率与第二计算功率成正比。
例如,P1a为0.8倍的P1,P2a为0.7倍的P2,且0.8倍的P1与0.7倍的P2的和为Pcmax。
又例如,第一发送功率与第二发送功率的比值与第一计算功率与第二计算功率的比值相等。即P1:P2=P1a:P2a,且P1a+P2a=Pcmax。
在另一个示例中,第一发送功率与终端设备的最大发送功率成正比,第二发送功率与终端设备的最大发送功率成正比。
例如,P1a可以为0.5倍的Pcmax,P2a可以为0.5倍的Pcmax,或者,P1a可以为0.6倍的Pcmax,P2a可以为0.4倍的Pcmax。
在又一个示例中,第一发送功率为第一计算功率或终端设备的最大发送功率;或者,第二发送功率为第二计算功率或终端设备的最大发送功率。
例如,P1a可以为P1,P2a可以为Pcmax-P1。或者,P1a为Pcmax,P2a为0。
又例如,P2a可以为P2,P1a可以为Pcmax-P2。或者,P2a为Pcmax,P1a为0。
在又一些实施例中,如果第一天线面板的计算功率与第二天线面板的计算功率的和大于终端设备的最大发送功率,第一发送功率与第二发送功率的和小于终端设备的最大发送功率。
在终端设备的所有天线面板的计算功率之和大于终端设备的最大发送功率的情况下,终端设备可以非满功率利用天线面板发送信道或信号。
示例性的,终端设备可以获取终端设备的最大发送功率Pcmax,并根据上述公式计算第一天线面板的计算功率P1、第二天线面板的计算功率P2,如果P1与P2的和大于Pcmax,那么,第一天线面板的实际发送功率P1a和第二天线面板的实际发送功率P2a的和可以小于Pcmax。
在一个示例中,第一发送功率与第一计算功率成正比,第二发送功率与第二计算功率成正比。
例如,P1a为0.6倍的P1,P2a为0.4倍的P2,且0.6倍的P1与0.4倍的P2的和小于Pcmax。或者,P1a为0.9倍的P1,P2a为0。
在另一个示例中,第一发送功率与终端设备的最大发送功率成正比,第二发送功率与终端设备的最大发送功率成正比。
例如,P1a可以为0.4倍的Pcmax,P2a可以为0.4倍的Pcmax,或者,P1a可以为0.6倍的Pcmax,P2a可以为0.1倍的Pcmax。或者,P1a可以为0,P2a可以为0.7倍的Pcmax。
可选的,第一发送功率和第二发送功率均不为零。
终端设备可以同时利用两个天线面板进行数据的传输,从而有利于降低天线面板的空置率,提高多个天线面板的实际利用率。
在又一个实施例中,第一发送功率为第一计算功率,第二发送功率大于或等于零;或者,第二发送功率为第二计算功率,第一发送功率大于或等于零。
例如,P1a可以为P1,P2a可以为Pcmax-P1a中的全部、部分或零。
又例如,P2a可以为P2,P1a可以为Pcmax-P2a中的全部、部分或零。
在根据第一天线面板的实际发送功率与第二天线面板的实际发送功率之和小于终端设备的最大发送功率的关系确定第一天线面板的实际发送功率和第二天线面板的实际发送功率后,还可以根据第一天线面板的最大发送功率、第二天线面板的最大发送功率,进一步确定第一天线面板的实际发送功率小于或者等于第一天线面板的最大发送功率,第二天线面板的实际发送功率小于或者等于第二天线面板的实际发送功率。
示例性的,在根据终端设备的最大发送功率Pcmax确定第一天线面板的实际发送功率为P1a,第二天线面板的实际发送功率为P2a的情况下,如果第一天线面板的最大发送功率为P1max,第二天线面板的最大发送功率为P2max。
当P1max大于或等于P1a,则第一天线面板可以按照P1a进行数据传输。当P1max小于P1a,则第一天线面板可以按照不大于P1max的功率进行数据传输。
同理,当P2max大于或等于P2a,则第一天线面板可以按照P2a进行数据传输。当P2max小于P2a,则第一天线面板可以按照不大于P2max的功率进行数据传输。
可选的,在第一天线面板和第二天线面板与不同信道对应的情况下,第一发送功率和第二发送功率还根据以下信息中的一种或多种确定:信道优先级、信道内容或信道周期。
由于天线面板与信道存在对应关系,当终端设备的多个天线面板进行数据传输时,可以考虑根据天线面板对应的信道的优先级、信道的内容、信道的周期等因素,来确定为多个天线面板分配功率的先后次序或优先级。
示例性的,第一天线面板对应PUCCH,第二天线面板对应PUSCH,假设PUCCH的优先级高于PUSCH,则,终端设备可以优先为第一天线面板分配传输功率,例如,将第一天线面板的实际发送功率设置为0.8倍的Pcmax,将第二天线面板的实际发送功率设置为0.1倍的Pcmax。
同样示例性的,第一天线面板传输的信道为非周期信道,第二天线面板传输的信道为半持续信道或周期信道,假设,非周期信道的优先级高与半持续信道和周期信道,则,终端设备可以优先为第一天线面板分配传输功率,例如,将第一天线面板的实际发送功率设置为Pcmax,将第二天线面板的实际发送功率设置为0。
同样示例性的,第一天线面板传输的信道内容为混合自动重传请求响应(hybrid automatic repeat request,HARQ)或上行调度请求(scheduling request,SR),第二天线面板传输的信道内容为CSI,假设HARQ和SR的优先级高于CSI,则,终端设备可以优先为第一天线面板分配传输功率,例如,将第一天线面板的实际发送功率设置为0.7倍的Pcmax,将第二天线面板的实际发送功率设置为0.3倍的Pcmax。
同样示例性的,第一天线面板传输的信道内容为DG,第二天线面板传输的信道内容为CG,假设DG的优先级高于CG,则,终端设备可以优先为第一天线面板分配传输功率,例如,将第一天线面板的实际发送功率设置为0.9倍的Pcmax,将第二天线面板的实际发送功率设置为0.1倍的Pcmax。
在一些实施例中,终端设备可以按照如下优先级的顺序为多个天线面板中的每一个天线面板分配 功率。
1、主小区(primary cell,PCell)的物理随机接入信道(physical random access channel,PRACH)传输;
2、在PUCCH上传输以下信息中的一种或多种:混合自动重传请求响应(hybrid automatic repeat request-acknowledgement,HARQ-ACK)信息、上行调度请求(SR)或LRP;或者在PUSCH上传输HARQ-ACK信息;
3、在PUCCH或PUSCH上传输CSI;
4、在PUSCH上传输HARQ-ACK信息或CSI以外的信息,以及用于二类随机接入程序的主小区的PUSCH传输;
5、SRS传输,其中,非周期性的SRS的优先级高于半持续和/或周期性的SRS的优先级;或者,主小区以外的服务小区的物理随机接入信道(PRACH)的传输。
需要说明的是,上述不同信道的优先级、不同信道的内容、不同信道的周期之间的先后次序关系可以是终端设备根据预先配置的信息来确定的。
PHR可以通过(media access control-control elements,MAC-CE)进行上报,其上报格式包括单CC格式和多CC格式。
终端设备可以一次上报一个天线面板的PHR,或者也可以一次上报两个天线面板的PHR,或者终端设备也可以一次上报更多个天线面板的PHR。终端设备可以利用一个天线面板上报一个或多个PHR,或者终端设备也可以利用多个天线面板执行联合上报或分别上报多个PHR。
图8所示为终端设备上报一个天线面板的PHR的情况下,单CC格式MAC-CE。
各比特域表示如下:
R:保留位,可以设置为0;
P:如果配置上报MPE值(即mpe-Reporting-FR2配置),如果计算P-MPR值满足门限,且小于P-MPR_00,则该域将设置为0,其它情况该值设置为1。如果不配置上报MPE值(即mpe-Reporting-FR2不配置)或者配置在FR1频段,这个域指示其它原因产生的功率回退。如果没有其它原因产生的功率回退且相应的PCMAX_f_c有不同的值则该域设置为1。
PH:指示PH值,长度为6比特。通过该6比特域PH值等级表进行一一对应。表1所示为PH值等级和比特编码映射表。
表1 PH等级和比特编码映射表
PCMAX,f,c:指示计算PH值的终端最大发射功率,该域与可实现的最大发射功率映射关系如表2所示。
表2 PCMAX,f,c等级和比特编码映射表
MPE:如果配置上报MPE值(即mpe-Reporting-FR2配置),则上报MPE值;如果配置不上报MPE值(即mpe-Reporting-FR2不配置),或者工作在FR1频段,或者P域设置为0,该域为保留域。具体可以如表3所示。
表3 P-MPR等级和比特编码映射表
图9和图10所示为终端设备上报一个天线面板的PHR的情况下,多CC格式MAC-CE。其中图9为配置的服务小区索引小于8的多CC的PHR MAC-CE的上报格式,图10为配置的服务小区索引大于或者等于8的多CC的PHR MAC-CE的上报格式。
各比特域表示如下:
R:保留位,设置为0;
Ci:指示服务小区索引为i的PH值是否上报;1指示上报,0指示不上报;
V:指示上报的PHR值是实际PH值还是虚拟PH值。对于Type 1PH和Type 3PH,0指示实际PH值,1指示虚拟PH值;对于Type 2PH,1指示实际PH值,0指示虚拟PH值。此外,也用于指示相关的PCMAX_f_c和MPE域是否存在,0指示存在,1指示不存在。
PH:指示上报的PH值;
P:如果配置上报MPE值(即mpe-Reporting-FR2配置),如果计算P-MPR值满足门限,且小于P-MPR_00,则该域将设置为0,其它情况该值设置为1。如果不配置上报MPE值(即mpe-Reporting-FR2不配置)或者配置在FR1频段,这个域指示其它原因产生的功率回退。如果没有其它原因产生的功率回退且相应的PCMAX_f_c有不同的值则该域设置为1。
PCMAX_f_c:如果存在(V域指示0),指示NR的终端最大可发送功率,或者指示E-UTRA(LTE)的终端最大可发送功率。
MPE:如果配置上报MPE值(即mpe-Reporting-FR2配置),则上报MPE值;如果配置不上报MPE值(即mpe-Reporting-FR2不配置),或者工作在FR1频段,或者P域设置为0,该域为保留域。
图11示出了终端设备利用两个天线面板发送两个PHR的情况下,单CC格式MAC-CE。
各比特域表示如下:
R:保留位,可以设置为0;
PH i:用于指示功率余量的等级,i表示天线面板的索引。该比特域的长度为6比特。通过该6比特域PH值等级表进行一一对应。上文中的表1所示为PH值等级表。
P:如果配置上报MPE值(即mpe-Reporting-FR2配置),如果计算P-MPR值满足门限,且小于P-MPR_00,则该域将设置为0,其它情况该值设置为1。如果不配置上报MPE值(即mpe-Reporting-FR2不配置)或者配置在FR1频段,这个域指示其它原因产生的是否功率回退。如果没有其它原因产生的功率回退且相应的PCMAX_f_c有不同的值则该域设置为1。
V:用于指示对应天线面板的PH值是否基于真实传输或参考格式。对于第一类型的PH,该比特域设置为0表示在PUSCH上存在真实传输,该比特域设置为1表示在PUSCH上使用的是参考格式。
PCMAX_f_c:指示计算PH值的终端最大发射功率,该域与可实现的最大发射功率映射关系如前文中的表2所示。
MPE:如果配置上报MPE值(即mpe-Reporting-FR2配置),则上报MPE值;如果配置不上报MPE值(即mpe-Reporting-FR2不配置),或者工作在FR1频段,或者P域设置为0,该域为保留域。具体可以如表3所示。
图12和图13示出了终端设备利用两个天线面板发送两个天线面板对应的PHR的情况下,多CC格式MAC-CE。其中,图12为配置的服务小区索引小于8的多CC的PHR MAC-CE的上报格式,图13为配置的服务小区索引大于或者等于8的多CC的PHR MAC-CE的上报格式。
各比特域表示如下:
Ci:指示服务小区是否存在功率余量,i用于表示服务小区的索引。当该比特域设置为1,则表示索引为i的服务小区的功率余量被上报。当该比特域设置为0,则表示索引为i的服务小区的功率余量没有被上报。
R:保留位,可以设置为0;
V:用于指示对应天线面板的PH值是否基于真实传输或参考格式。对于第一类型的PH,该比特域设置为0表示在PUSCH上存在真实传输,该比特域设置为1表示在PUSCH上使用的是参考格式。对于第二类型的PH,该比特域设置为0表示在PUCCH上存在真实传输,该比特域设置为1表示在PUCCH上使用的是参考格式。对于第三类型的PH,该比特域设置为0表示在SRS上存在真实传输,该比特域设置为1表示在SRS上使用的是参考格式。进一步的,对于第一类型的PH、第二类型的PH和第三类型的PH,该比特域设置为0表示存在包含相关PCMAX_f_c域和MPE域的8位字节,该比特域设置为1表示包含相关PCMAX_f_c域和MPE域的8位字节被省略。
PH i:用于指示功率余量的等级,i表示天线面板的索引。该比特域的长度为6比特。通过该6比特域PH值等级表进行一一对应。上文中的表1所示为PH值等级表。
P:如果配置上报MPE值(即mpe-Reporting-FR2配置),如果计算P-MPR值满足门限,且小于P-MPR_00,则该域将设置为0,其它情况该值设置为1。如果不配置上报MPE值(即mpe-Reporting-FR2不配置)或者配置在FR1频段,这个域指示其它原因产生的是否功率回退。如果没有其它原因产生的功率回退且相应的PCMAX_f_c有不同的值则该域设置为1。
PCMAX_f_c:如果该比特域存在,则该比特域用于指示NR服务小区的PCMAX_f_c或者用于计算在先的PH域的E-UTRA小区的PCMAX_f_c该域与NR服务小区可能实现的最大发送功率的映射关系如前文中的表2所示。
MPE:如果配置上报MPE值(即mpe-Reporting-FR2配置),则上报MPE值;如果配置不上报MPE值(即mpe-Reporting-FR2不配置),或者工作在FR1频段,或者P域设置为0,该域为保留域。具体可以如表3所示。
以下介绍本申请实施例提供的PHR的上报方法。
如果这是MAC复位之后第一次为新传数据分配资源,那么启动周期定时器(periodicPHR-Timer)。
如果功率余量上报过程判断自从上次传输PHR之后至少触发了一个PHR,或者当前本身就是第一次触发PHR;同时,如果在逻辑信道优先级的处理过程中,分配的上行资源可以容纳PHR控制单元与其对应的子头之和,那么继续按照下面的步骤执行:
在一些实施例中,如果配置multiplePHR为true,对于每一个没有配置激活DL BWP为dormant BWP的激活服务小区,从物理层获取这个激活小区Type 1or Type 3PH值;或者,如果这个MAC有为这个激活小区分配上行传输资源或如果其它MAC有为这个激活小区分配上行传输资源且phr-ModeOtherCG配置为real,则,从物理层获得相应的PCMAX,f,c或从物理层获得MPE(在配置了mpe-Reporting-FR2的情况下)。
在另一些实施例中,如果配置multiplePHR为true,且phr-Type2OtherCell配置为true,当其它MAC是E-UTRA MAC,则,获得特殊小区(special cell,SpCell)的Type 2PH值或获得SpCell的PCMAX,f,c值(在phr-ModeOtherCG配置为real的情况下)。
在又一些实施例中,如果配置multiplePHR为true,则复用组装并传输Multiple Entry PHR MAC-CE。
在又一些实施例中,对于其他,如Single Entry PHR format,则从物理层获得Type 1PH值,获得PCMAX,f,c值,如果配置了mpe-Reporting-FR2,从物理层获得MPE。或者,复用组装并传输Single Entry PHR MAC-CE。
在又一些实施例中,如果这个PHR上报是MPE P-MPR上报,则开始或者重启mpe-ProhibitTimer,或者,取消在PHR MAC-CE上报的已触发的MPE P-MPR上报。
在又一些实施例中,开始或者重启phr-PeriodicTimer,或者,开始或者重启phr-ProhibitTimer,或者,取消所有已触发的PHR。
以下为本申请实施例提供的另一种信息传输的方法。
如图14为本本申请实施例提供的一种信息传输的方法。
本申请实施例中,终端设备可以包括多个天线面板,该多个天线面板可以包括第一天线面板。
S1401,终端设备向网络设备发送第一消息,相应地,网络设备接收第一消息。
该第一消息用于指示第一天线面板的功率余量。
在一些实施例中,该第一消息还用于指示以下中的一种或多种:第一天线面板的最大发送功率、第二天线面板的功率余量、第二天线面板的最大发送功率、终端设备的功率余量或终端设备的最大发送功率。
在一些实施例中,第一天线面板的功率余量根据第一计算功率和以下中的至少一项确定:第一天线面板的最大发送功率或和终端设备的最大发送功率;其中,第一计算功率与终端设备的最大发送功率相关。
S1402,可选的,终端设备向网络设备发送第二消息,相应地,网络设备接收第二消息。
该第二消息用于指示第二天线面板的功率余量。
在一些实施例中,第二消息还用于指示以下中的一种或多种:第一天线面板的功率余量、第一天线面板的最大发送功率、第二天线面板的最大发送功率、终端设备的功率余量或终端设备的最大发送功率。
在一些实施例中,第二天线面板的功率余量根据第二计算功率和以下中的至少一项确定:第二天线面板的最大发送功率或终端设备的最大发送功率;其中,第二计算功率与终端设备的最大发送功率相关。
S1403,可选的,终端设备向网络设备发送第三消息,相应地,网络设备接收第三消息。
该第三消息用于指示终端设备的功率余量和/或终端设备的最大发送功率。
上述第一天线面板的功率余量、第二天线面板的功率余量或终端设备功率余量中的一项或多项用于确定第一天线面板和/或第二天线面板的传输功率。
在一些实施例中,终端设备的功率余量根据终端设备的最大发送功率和以下中的一项或多项确定:第一天线面板的最大发送功率、第二天线面板的最大发送功率、第一发送功率、第二发送功率;其中,第一发送功率为第一天线面板关联的发送功率,第二发送功率为第二天线面板关联的发送功率。
在一些实施例中,第一消息的类型和第二消息的类型根据以下信息中的一种或多种确定:第一消息和第二消息是否在同一信道上传输;是否触发第一天线面板和/或第二天线面板发送第一消息和/或第二消息;或者,第一消息和第二消息的发送方式。
在第一天线面板和第二天线面板与不同信道关联的情况下,第一天线面板的功率余量和/或第二天线面板的功率余量还根据以下中的一项或多项确定:信道优先级、信道内容或信道周期。
可选的,第一天线面板和第二天线面板为同发和/或同收的两个天线面板。
天线面板的同发或这同收可以理解为:多个天线面板同时发送或者同时接收,或者,终端设备具有多个天线面板同时发送或同时接收的能力。也可以理解为:数据或参考信号同时在多个天线面板上发送或接收,或者,终端设备在多个天线面板上同时测量。
网络设备在接收到上述终端设备发送的第一消息、第二消息或第三消息中的一种或多种后,网络设备可以根据接收到的消息确定终端设备的工作状态以及不同天线面板的工作状态。
示例性的,终端设备通过第一天线面板和第二天线面板进行信息传输,终端设备通过上述第一消息、第二消息或第三消息中的一种或多种向网络设备上报了第一天线面板的功率余量PH1、第二天线 面板的功率余量PH2以及终端设备的功率余量PHc。
基于终端设备的功率余量PHc,基站可以确定终端设备是否还有多余的功率可以进行数据传输。
上述第一天线面板的功率余量PH1、第二天线面板的功率余量PH2以及终端设备的功率余量PHc中的一项或多项之间可以存在关联关系。通过该关联关系并根据第一天线面板的功率余量PH1、第二天线面板的功率余量PH2,网络设备可以确定第一天线面板是否达到最大发送功率、第二天线面板是否达到最大发送功率。
在终端设备的功率余量小于或者等于零的情况下,网络设备确定无法再从终端设备调度更多额外的功率用于信息传输。
在一些实施例中,网络设备可以进一步判断两个天线面板的工作状态,如果第一天线面板的功率余量大于零,而第二天线面板的功率余量小于或者等于零,则网络设备可以调度第一天线面板的功率分配给第二天线面板。
示例性的,第一天线面板的计算功率为20dBm,第二天线面板的计算功率为20dBm,第一天线面板的最大发送功率为23dBm,第二天线面板的最大发送功率为23dBm,终端设备的最大发送功率为23dBm。
终端设备可以上报终端设备的功率余量、第一天线面板的功率余量和第二天线面板的功率余量分别为:0dBm、3dBm和3dBm。
网络设备在获取上述功率余量信息后,可以确定终端设备的总功率无剩余,但每个天线面板上的功率仍有剩余,因而可以在多个天线面板上进行功率共享。
同样示例性的,第一天线面板的计算功率为20dBm,第二天线面板的计算功率为20dBm,第一天线面板的最大发送功率为23dBm,第二天线面板的最大发送功率为23dBm,终端设备的最大发送功率为26dBm。
终端设备可以上报第一天线面板的功率余量和第二天线面板的功率余量分别为:3dBm和3dBm。
网络设备在获取上述功率余量信息后,可以确定每个天线面板上的功率仍有剩余,因而可以在多个天线面板上进行功率共享。
S1404,可选的,接收网络设备发送的配置信息。
在一些实施例中,该配置信息用于调度终端设备上的多个天线面板进行数据传输。
在另一些实施例中,该配置信息还用于确定终端设备上多个天线面板的传输功率。
获取天线面板的功率余量、终端设备的功率余量等信息的网络设备在确定天线面板和终端设备的工作状态和可以向终端设备发送配置信息,该配置信息可以用于请求对天线面板的功率的重新分配,也可以实现对终端设备上多个天线面板的调度等。
在一些实施例中,当终端设备仅上报两个天线面板的功率余量的情况下,网络设备可以根据接收的与天线面板的功率余量的信息,确定终端设备当前还有功率可以分配或调度,即,如果终端设备仅上报天线面板的功率余量,则可以隐含指示终端设备的功率余量大于零,或隐含指示终端设备还有功率可以分配。
基于与以上方法实施例相同的发明构思,本申请实施例还提供了一种通信装置,该通信装置可具备上述方法实施例中的终端设备或网络设备的功能,并可用于执行上述方法实施例中由终端设备或网络设备的功能执行的步骤。所述功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图15所示的通信装置1500可作为上述方法实施例所涉及的终端设备,并执行上述方法实施例中由终端设备执行的步骤。
如图15所示,该通信装置1500可包括通信模块1510和处理模块1520,以上通信模块1510和处理模块1520之间相互耦合。
通信模块1510可用于支持通信装置1500进行通信,例如执行前述实施例中终端设备执行的发送和/或接收的动作。
处理模块1520可用于支持所述通信装置1500执行上述方法实施例中的处理动作,例如执行前述实施例中由终端设备执行的处理动作。
在另一种可能的实现方式中,如图15所示的通信装置1500可作为上述方法实施例所涉及的网络 设备,并执行上述方法实施例中由网络设备执行的步骤。
如图15所示,该通信装置1500可包括通信模块1510和处理模块1520,通信模块1510和处理模块1520之间相互耦合。
通信模块1510可用于支持通信装置1500进行通信,例如执行前述实施例中由网络设备执行的发送和/或接收的动作。
处理模块1520可用于支持所述通信装置1500执行上述方法实施例中的处理动作,例如执行前述实施例中由网络设备执行的处理动作。
可选的,通信装置1500还可以包括存储模块1530,用于存储通信装置1500的程序代码和数据。
图16是本申请实施例提供的通信设备1600的示意性框图。如图所示,该通信设备1600包括:至少一个处理器1610和收发器1620。该处理器1610与存储器耦合,用于执行存储器中存储的指令,以控制收发器1620发送信号和/或接收信号。
可选地,该通信设备1600还包括存储器1630,用于存储指令。
在一些实施例中,上述处理器1610和存储器1630可以合成一个处理装置,处理器1610用于执行存储器1630中存储的程序代码来实现上述功能。具体实现时,该存储器1630也可以集成在处理1610中,或者独立于处理器1610。
在一些实施例中,收发器1620可以包括接收器(或者称,接收机)和发射器(或者称,发射机)。
收发器1620还可以进一步包括天线,天线的数量可以为一个或多个。收发器1620有可以是通信接口或者接口电路。
当该通信设备1600为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由通信设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由通信设备执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门 或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种信息传输的方法,其特征在于,终端设备包括第一天线面板,所述方法包括:
    发送第一消息,所述第一消息用于指示所述第一天线面板的功率余量。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备包括多个天线面板,所述多个天线面板包括第二天线面板和所述第二天线面板,所述第一消息还用于指示以下中的一种或多种:
    所述第一天线面板的最大发送功率、所述第二天线面板的功率余量、所述第二天线面板的最大发送功率、所述终端设备的功率余量或所述终端设备的最大发送功率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备包括多个天线面板,所述多个天线面板包括第二天线面板和所述第一天线面板,所述方法还包括:
    发送第二消息,所述第二消息用于指示所述第二天线面板的功率余量。
  4. 根据权利要求3所述的方法,其特征在于,所述第二消息还用于指示以下中的一种或多种:
    所述第一天线面板的功率余量、所述第一天线面板的最大发送功率、所述第二天线面板的最大发送功率、所述终端设备的功率余量或所述终端设备的最大发送功率。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括,
    发送第三消息,所述第三消息用于指示所述终端设备的功率余量和/或所述终端设备的最大发送功率。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一天线面板的功率余量根据第一计算功率和所述第一天线面板的最大发送功率确定,所述第一计算功率为所述第一天线面板的计算功率。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述第二天线面板的功率余量根据第二计算功率和所述第二天线面板的最大发送功率确定,所述第二计算功率为所述第二天线面板的计算功率,。
  8. 根据权利要求5所述的方法,其特征在于,所述终端设备的功率余量根据所述终端设备的最大发送功率和以下中的一项或多项确定:
    所述第一天线面板的最大发送功率、所述第二天线面板的最大发送功率、所述第一计算功率或所述第二计算功率。
  9. 根据权利要求3或4所述的方法,其特征在于,所述第一消息的类型和所述第二消息的类型根据以下信息中的一种或多种确定:
    所述第一消息和所述第二消息是否在同一信道上传输;
    是否触发所述第一天线面板和/或所述第二天线面板发送所述第一消息和/或所述第二消息;或者,
    所述第一消息和所述第二消息的发送方式。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,在所述第一天线面板和所述第二天线面板与不同信道关联的情况下,所述第一天线面板的功率余量和/或所述第二天线面板的功率余量还根据以下所述不同信道的相关信息中的一项或多项确定:信道优先级、信道内容或信道周期。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一天线面板和所述第二天线面板为同发和/或同收的两个天线面板。
  12. 一种传输信息的方法,其特征在于,所述方法应用于终端设备,所述终端设备包括多个天线面板,所述多个天线面板包括第一天线面板和第二天线面板,所述方法包括:
    在所述第一天线面板和/或所述第二天线面板发送信道,所述第一天线面板的发送功率为第一发送功率,所述第二天线面板的发送功率为第二发送功率;
    其中,
    所述第一发送功率根据以下中的一项或多项确定:
    所述第一天线面板的计算功率、所述终端设备的最大发送功率、所述第一面板的最大发送功率或所述第二天线面板的最大发送功率;
    所述第二发送功率根据以下中的一项或多项确定:
    所述第二天线面板的计算功、所述终端设备的最大发送功率、所述第一面板的最大发送功率或所述第二天线面板的最大发送功率。
  13. 根据权利要求12所述的方法,其特征在于,如果所述第一天线面板的计算功率与所述第二天线面板的计算功率的和小于或者等于所述终端设备的最大发送功率,所述第一发送功率为所述第一计算功率,所述第二发送功率为所述第二计算功率。
  14. 根据权利要求12所述的方法,其特征在于,如果所述第一天线面板的计算功率与所述第二天线面板的计算功率的和大于所述终端设备的最大发送功率,所述第一发送功率与所述第二发送功率的和等于所述终端设备的最大发送功率。
  15. 根据权利要求12所述的方法,其特征在于,如果所述第一天线面板的计算功率与所述第二天线面板的计算功率的和大于所述终端设备的最大发送功率,所述第一发送功率与所述第二发送功率的和小于所述终端设备的最大发送功率。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一发送功率与所述第一计算功率成正比,所述第二发送功率与所述第二计算功率成正比。
  17. 根据权利要求14或15所述的方法,其特征在于,所述第一发送功率与所述终端设备的最大发送功率成正比,所述第二发送功率与所述终端设备的最大发送功率成正比。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一发送功率和所述第二发送功率均不为零。
  19. 根据权利要求14所述的方法,其特征在于,
    所述第一发送功率为所述第一计算功率或所述终端设备的最大发送功率;或者,
    所述第二发送功率为所述第二计算功率或所述终端设备的最大发送功率。
  20. 根据权利要求15所述的方法,其特征在于,
    所述第一发送功率为所述第一计算功率,所述第二发送功率大于或等于零;或者,
    所述第二发送功率为所述第二计算功率,所述第一发送功率大于或等于零。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述第一发送功率小于或等于所述第一天线面板的最大发送功率,所述第二发送功率小于或等于所述第二天线面板的最大发送功率。
  22. 根据权利要求12至20中任一项所述的方法,其特征在于,在所述第一天线面板和所述第二天线面板与不同信道关联的情况下,所述第一发送功率和所述第二发送功率还根据以下所述不同信道的相关信息中的一种或多种确定:信道优先级、信道内容或信道周期。
  23. 一种通信设备,其特征在于,包括处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述程序指令来执行权利要求1至11中任一项所述的方法。
  24. 一种通信设备,其特征在于,包括处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述程序指令来执行权利要求12至22中任一项所述的方法。
  25. 一种通信装置,其特征在于,包括用于实现权利要求1至11或者权利要求12至22中任一项所述的方法的模块。
  26. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现权利要求1至11或者权利要求12至22中任一项所述的方法。
  27. 一种芯片产品,其特征在于,包括:处理器,用于读取存储器中存储的指令,当所述处理器执行所述指令时,使得所述芯片实现权利要求1至11或者权利要求12至22中任一项所述的方法。
PCT/CN2023/103839 2022-08-12 2023-06-29 传输信息的方法和装置 WO2024032216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210970373.6 2022-08-12
CN202210970373.6A CN117641557A (zh) 2022-08-12 2022-08-12 传输信息的方法和装置

Publications (1)

Publication Number Publication Date
WO2024032216A1 true WO2024032216A1 (zh) 2024-02-15

Family

ID=89850714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103839 WO2024032216A1 (zh) 2022-08-12 2023-06-29 传输信息的方法和装置

Country Status (2)

Country Link
CN (1) CN117641557A (zh)
WO (1) WO2024032216A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972288A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 传输信号的方法和通信装置
WO2021022894A1 (zh) * 2019-08-06 2021-02-11 华为技术有限公司 一种天线面板状态的通知方法、设备、芯片及存储介质
CN113365336A (zh) * 2020-03-06 2021-09-07 维沃移动通信有限公司 功率余量报告上报方法及终端
US20210377876A1 (en) * 2019-02-14 2021-12-02 Ofinno, Llc Power Headroom Report For Multiple Antenna Groups
CN114374403A (zh) * 2019-03-22 2022-04-19 成都华为技术有限公司 通信方法和通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972288A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 传输信号的方法和通信装置
US20210377876A1 (en) * 2019-02-14 2021-12-02 Ofinno, Llc Power Headroom Report For Multiple Antenna Groups
CN114374403A (zh) * 2019-03-22 2022-04-19 成都华为技术有限公司 通信方法和通信设备
WO2021022894A1 (zh) * 2019-08-06 2021-02-11 华为技术有限公司 一种天线面板状态的通知方法、设备、芯片及存储介质
CN113365336A (zh) * 2020-03-06 2021-09-07 维沃移动通信有限公司 功率余量报告上报方法及终端

Also Published As

Publication number Publication date
CN117641557A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2020063923A1 (zh) 信号传输方法、相关设备及系统
WO2020029756A1 (zh) 资源分配方法、终端、网络设备和计算机存储介质
US11564181B2 (en) Method and apparatus for reporting power headroom report, and method and apparatus for obtaining power headroom report
US20190261291A1 (en) Power allocation method, power adjustment method, terminal, and access network device
CN114499803B (zh) 发送数据的方法、通信装置、计算机存储介质
CN114503692A (zh) 用于无线通信系统中的功率控制的装置和方法
US11445450B2 (en) Uplink data transmission method, terminal device, and base station
WO2019192308A1 (zh) 无线通信的方法和装置
CN113875295A (zh) 用于控制nr v2x中的副链路发送功率的方法和装置
KR20190127724A (ko) 업링크 전송 방법, 장치, 단말 장치, 접속 네트워크 장치 및 시스템
CN113950856A (zh) 一种通信方法、通信装置和系统
CN114175760A (zh) 通信方法、装置及设备
WO2020156412A1 (zh) 一种上行信号发送方法、接收方法、装置及系统
CN113545137A (zh) 对终端请求的功率降低的控制
WO2024032216A1 (zh) 传输信息的方法和装置
WO2022148236A1 (zh) 功率控制方法和相关设备
WO2021129120A1 (zh) 通信方法以及终端设备
CN114747260B (zh) 上行发射功率控制方法及装置
WO2023065892A1 (zh) 通信方法及装置
JP2022503933A (ja) 信号送信方法、アンテナパネル情報の指示方法、装置及びシステム
WO2023202530A1 (zh) 一种功率确定方法、装置、芯片及模组设备
WO2023138295A1 (zh) 一种功率余量上报方法和装置
WO2023160386A1 (zh) 一种功率余量传输方法、装置和系统
WO2023130328A1 (zh) 通信方法、终端设备及网络设备
WO2023039805A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851443

Country of ref document: EP

Kind code of ref document: A1