WO2023065892A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023065892A1
WO2023065892A1 PCT/CN2022/118581 CN2022118581W WO2023065892A1 WO 2023065892 A1 WO2023065892 A1 WO 2023065892A1 CN 2022118581 W CN2022118581 W CN 2022118581W WO 2023065892 A1 WO2023065892 A1 WO 2023065892A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit power
uplink transmission
power
transmission resource
available maximum
Prior art date
Application number
PCT/CN2022/118581
Other languages
English (en)
French (fr)
Inventor
刘烨
张茜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2022370958A priority Critical patent/AU2022370958A1/en
Priority to CA3236158A priority patent/CA3236158A1/en
Publication of WO2023065892A1 publication Critical patent/WO2023065892A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a communication method and device.
  • the 3rd generation partnership project (3GPP) network proposed the long term evolution (long term evolution) , Vehicle to everything (V2X) communication technology under the LTE system.
  • V2X communication is aimed at high-speed equipment represented by vehicles. It is the basic technology and key technology applied in scenarios that require very high communication delays in the future, such as smart cars, autonomous driving, and intelligent transportation systems.
  • LTE V2X communication can support communication scenarios with and without network coverage, and its resource allocation method can adopt the network access device scheduling mode, such as the Evolved Universal Terrestrial Radio Access Network Node B (E-UTRAN Node B, eNB) scheduling mode and UE self-selection mode.
  • E-UTRAN Node B, eNB Evolved Universal Terrestrial Radio Access Network Node B
  • V-UE vehicle users
  • V-UE vehicle users
  • V-UE vehicle users
  • V-UE can send some of their own information, such as position, speed, intention (turning, merging, reversing) and other information periodically and some aperiodic event-triggered information to
  • 5G NR V2X will also develop further, such as supporting lower transmission delay, more reliable communication transmission, higher throughput, better user experience, and Meet the needs of a wider range of application scenarios.
  • Embodiments of the present application provide a communication method and device, which can flexibly determine an appropriate maximum available transmit power, reasonably determine transmit power for uplink transmission and/or sidelink transmission, and improve communication success rate.
  • a communication method including: a first device receives first indication information from a network device, where the first indication information is used to indicate a first uplink transmission resource; the first device determines the first uplink transmission resource whether the resource overlaps with the first sidelink transmission resource in the time domain; if the first uplink transmission resource overlaps with the first sidelink transmission resource in the time domain, the first device according to the first power backoff value Determine the first available maximum transmit power, where the first power backoff value is a power backoff value corresponding to the concurrent mode; the first device determines the first uplink transmission transmit power and the first sidelink transmission power according to the first available maximum transmit power The transmit power of the transmission, the sum of the transmit power of the first uplink transmission and the transmit power of the first sidelink transmission does not exceed the first available maximum transmit power, the first uplink transmission is carried on the first uplink transmission resource, the The first sidelink transmission is borne by the first sidelink transmission resource.
  • the first device may be a terminal, a combined device or component having terminal functions, or a communication chip (such as a processor, a baseband chip, or a chip system, etc.) applied to a terminal.
  • a communication chip such as a processor, a baseband chip, or a chip system, etc.
  • the first device uses the power backoff value corresponding to the concurrent mode to determine the available maximum transmit power when the first uplink transmission resource overlaps the first sidelink transmission resource in the time domain, and according to the concurrent The available maximum transmit power determines the transmit power of uplink transmission and the transmit power of sidelink transmission, so that the transmission power in concurrent mode can meet the corresponding spectrum indicators such as spurs and spectrum templates, and improve the quality and success rate of communication.
  • the first device determines the appropriate maximum available transmit power in the concurrent mode when the first uplink resource overlaps with the first sidelink resource, which can effectively improve communication quality and communication success rate.
  • the method further includes: when the first uplink transmission resource and the first sidelink transmission resource do not overlap in time domain, the first device Determine the first available maximum transmit power according to the first power backoff value; the first device determines the transmit power of the first uplink transmission or the transmit power of the first sidelink transmission according to the first available maximum transmit power, the The transmit power of the first uplink transmission or the transmit power of the first sidelink transmission does not exceed the first available maximum transmit power.
  • the method further includes: when the first uplink transmission resource and the first sidelink transmission resource do not overlap in time domain, the first device Determine the second available maximum transmission power according to the second power backoff value, where the second power backoff value is a power backoff value corresponding to the carrier where the first uplink transmission resource is located; the first device transmits The power determines the transmit power of the first uplink transmission, and the transmit power of the first uplink transmission does not exceed the second available maximum transmit power; or, the first device determines a third available maximum transmit power according to a third power backoff value, The third power backoff value is a power backoff value corresponding to the carrier where the first sidelink transmission resource is located; the first device determines the transmit power of the first sidelink transmission according to the third available maximum transmit power, and the second The transmit power of the side-line transmission does not exceed the third maximum available transmit power.
  • the first device uses the power backoff values corresponding to the respective transmissions to determine the respective maximum available transmit powers under the condition that the uplink transmission resources and the sidelink transmission resources do not overlap, and then determines the transmit power of each transmission, reducing the In the scenario where the transmission resources do not overlap in the time domain, the communication quality deteriorates and the communication success rate decreases due to excessive power back-off.
  • the first device flexibly determines the appropriate maximum available transmit power under the condition that the first uplink transmission resource and the first sidelink transmission resource do not overlap, which can effectively improve the communication quality of the first device and improve the communication efficiency. Success rate.
  • the first device determines the first The transmit power of the uplink transmission and the transmit power of the first sidelink transmission include: the first device determines the transmit power of the first uplink transmission, and the transmit power of the first uplink transmission is the transmit power of the first uplink transmission and the first A smaller value of the available maximum transmission power, the transmission power of the first uplink transmission is determined according to the second power backoff value, and the second power backoff value is the power corresponding to the carrier where the first uplink transmission resource is located Backoff value: the first device determines the transmit power of the first sidelink transmission according to the first available maximum transmit power and the transmit power of the first uplink transmission.
  • the first device may consider priorities among overlapping transmission resources, and preferentially determine transmit power for transmissions with higher priorities, so as to ensure the success rate of high-priority transmissions and further improve communication quality.
  • the first device The transmit power determining the transmit power of the first sidelink transmission and the transmit power of the first uplink transmission includes: the first device determines the transmit power of the first sidelink transmission, and the transmit power of the first sidelink transmission is the first side The transmit power of the lateral transmission and the lower value of the first available maximum transmit power, the transmit power of the first lateral transmission is determined according to the third power backoff value, and the third power backoff value is the first A power backoff value corresponding to the carrier where the sidelink transmission resource is located; the first device determines the transmit power of the first uplink transmission according to the first available maximum transmit power and the transmit power of the first sidelink transmission.
  • the first device may consider priorities among overlapping transmission resources, and preferentially determine transmit power for transmissions with higher priorities, so as to ensure the success rate of high-priority transmissions and further improve communication quality.
  • the first power backoff value is determined according to the first uplink transmission resource and the first sidelink transmission resource.
  • the method further includes: the first device receives second indication information from the network device, where the second indication information is used to indicate a second uplink transmission resource; In the case that the second uplink transmission resource overlaps with the first sidelink transmission resource in the time domain, the first device determines a fourth available maximum transmit power according to a fourth power backoff value, and the fourth power backoff value is the power backoff value corresponding to the concurrent mode, and the fourth power backoff value is determined according to the second uplink transmission resource and the first sidelink transmission resource; when the fourth available maximum transmit power is greater than the first available In the case of the maximum transmission power, the first device determines the transmission power of the second uplink transmission according to the first available maximum transmission power, and the sum of the transmission power of the second uplink transmission and the transmission power of the first sidelink transmission is not equal to Exceeding the first available maximum transmit power, the second uplink transmission is carried on the second uplink transmission resource.
  • multiple available maximum transmit powers are determined according to the power backoff values determined for the sidelink transmission resources and each uplink transmission resource, and the multiple The minimum value of the available maximum transmit power is determined as the available maximum transmit power of the first device.
  • the spurious spectrum index can be guaranteed in multiple time domain resources where one sidelink transmission resource overlaps with multiple uplink transmission resources. Satisfying the requirements can further improve the communication quality.
  • the method further includes: the first device determines at least one second sidelink transmission resource; and the second sidelink transmission resource and the first uplink transmission resource In the case of overlap in the time domain, the first device determines the fifth available maximum transmission power according to the fifth power backoff value, the fifth power backoff value is a power backoff value corresponding to the concurrent mode, and the fifth power The backoff value is determined according to the second sidelink transmission resource and the first uplink transmission resource; if the fifth available maximum transmit power is greater than the first available maximum transmit power, the first device The transmit power of the second sidelink transmission can be determined by the maximum transmit power, the sum of the transmit power of the second sidelink transmission and the transmit power of the first uplink transmission does not exceed the first available maximum transmit power, and the second sidelink transmission The transmission is carried on the second sidelink transmission resource.
  • multiple available maximum transmit powers are determined according to the power backoff values determined for the uplink transmission resources and each sidelink transmission resource, and the multiple The minimum value of the available maximum transmit power is determined as the available maximum transmit power of the first device.
  • the spurious spectrum index can be guaranteed in multiple time domain resources where one uplink transmission resource overlaps with multiple sidelink transmission resources. Satisfying the requirements can further improve the communication quality.
  • the first uplink transmission resource and the first sidelink transmission resource are located in the same frequency band.
  • a communication method including: a first device receives first indication information from a network device, where the first indication information is used to indicate a first uplink transmission resource; the first device receives the first indication information from a network device Two indication information, the second indication information is used to indicate the second uplink transmission resource; the first device determines whether the first uplink transmission resource and the second uplink transmission resource overlap in the time domain; on the first uplink transmission resource In the case of overlapping with the second uplink transmission resource in the time domain, the first device determines a first available maximum transmit power according to a first power backoff value, where the first power backoff value is a power backoff corresponding to a concurrent mode value; the first device determines the transmit power of the first uplink transmission and the transmit power of the second uplink transmission according to the first available maximum transmit power, and the sum of the transmit power of the first uplink transmission and the transmit power of the second uplink transmission Not exceeding the first available maximum transmission power, the first uplink transmission is carried on the first uplink transmission resource, and
  • the first device may be a terminal, a combined device or component having terminal functions, or a communication chip (such as a processor, a baseband chip, or a chip system, etc.) applied to a terminal.
  • a communication chip such as a processor, a baseband chip, or a chip system, etc.
  • the first device determines the available maximum transmit power by using the power backoff value corresponding to the concurrent mode when the first uplink transmission resource and the second uplink transmission resource overlap in the time domain, and according to the concurrent
  • the maximum transmission power can be used to determine the transmission power of the uplink transmission and the transmission power of the side transmission, so that the transmission power in the concurrent mode can meet the corresponding spectrum indicators such as spurs and spectrum templates, and improve the quality and success rate of communication.
  • the first device determines the appropriate maximum available transmit power in concurrent mode when the first uplink resource overlaps with the second uplink resource, which can effectively improve communication quality and communication success rate.
  • the method further includes: when the first uplink transmission resource and the second uplink transmission resource do not overlap in the time domain, the first device according to The first power backoff value determines the first available maximum transmit power; the first device determines the transmit power of the first uplink transmission or the transmit power of the second uplink transmission according to the first available maximum transmit power, and the first The transmit power of the uplink transmission or the transmit power of the second uplink transmission does not exceed the first available maximum transmit power.
  • the method further includes: when the first uplink transmission resource and the second uplink transmission resource do not overlap in the time domain, the first device according to The second power backoff value determines the second available maximum transmission power, and the second power backoff value is the power backoff value corresponding to the carrier where the first uplink transmission resource is located; Determine the transmit power of the first uplink transmission, where the transmit power of the first uplink transmission does not exceed the second available maximum transmit power; or, the first device determines a third available maximum transmit power according to a third power backoff value, the The third power backoff value is the power backoff value corresponding to the carrier where the second uplink transmission resource is located; the first device determines the transmission power of the second uplink transmission according to the third available maximum transmission power, and the second uplink transmission The transmit power of does not exceed the third available maximum transmit power.
  • the first device uses the power backoff values corresponding to the respective transmissions to determine the respective maximum available transmit powers when the first uplink transmission resources and the second uplink transmission resources do not overlap, and then determines the transmit powers of the respective transmissions , to reduce the problem of poor communication quality and reduced communication success rate caused by excessive power back-off in the scenario where transmission resources do not overlap in the time domain.
  • the first device flexibly determines the appropriate maximum available transmit power under the condition that the first uplink transmission resource and the second uplink transmission resource do not overlap, which can effectively improve the communication quality of the first device and improve the success of the communication. Rate.
  • a communication method including: a first device receives first indication information from a network device, where the first indication information is used to indicate an uplink transmission resource; the first device determines a sidelink transmission resource; the second A device determines a first available maximum transmit power according to a first power backoff value, where the first power backoff value is a power backoff value corresponding to a concurrent mode; the first device determines an uplink transmission rate according to the first available maximum transmit power The transmission power and the transmission power of the sidelink transmission, the sum of the transmission power of the uplink transmission and the transmission power of the sidelink transmission does not exceed the first available maximum transmission power, the uplink transmission is carried on the uplink transmission resource, and the sidelink transmission carried in the sidelink transmission resource.
  • the first device may be a terminal, a combined device or component having terminal functions, or a communication chip (such as a processor, a baseband chip, or a chip system, etc.) applied to a terminal.
  • a communication chip such as a processor, a baseband chip, or a chip system, etc.
  • the available maximum transmission power is determined using the power backoff value corresponding to the concurrent mode, and the transmission power of the uplink transmission is determined according to the concurrent maximum available transmission power and the transmission power of side transmission, so that the transmission power can meet the corresponding spectrum indicators such as spurious and spectrum templates, and improve the quality and success rate of communication.
  • the first device flexibly determines the appropriate maximum available transmit power when uplink resources and sidelink resources may overlap, which can effectively improve communication quality and communication success rate.
  • a communication device including: a transceiver module, configured to receive first indication information from a network device, where the first indication information is used to indicate a first uplink transmission resource; a processing module, configured to determine the first Whether an uplink transmission resource overlaps with the first sidelink transmission resource in the time domain; if the first uplink transmission resource overlaps with the first sidelink transmission resource in the time domain, the processing module is further configured to: The first power backoff value determines the first available maximum transmission power, and the first power backoff value is a power backoff value corresponding to the concurrent mode; the processing module is also used to determine the first uplink according to the first available maximum transmission power The transmit power of the transmission and the transmit power of the first sidelink transmission, the sum of the transmit power of the first uplink transmission and the transmit power of the first sidelink transmission does not exceed the first available maximum transmit power, and the first uplink transmission bears On the first uplink transmission resource, the first sidelink transmission is carried on the first sidelink transmission resource.
  • the first device uses the power backoff value corresponding to the concurrent mode to determine the available maximum transmit power when the first uplink transmission resource overlaps the first sidelink transmission resource in the time domain, and according to the concurrent The available maximum transmit power determines the transmit power of uplink transmission and the transmit power of sidelink transmission, so that the transmission power in concurrent mode can meet the corresponding spectrum indicators such as spurs and spectrum templates, and improve the quality and success rate of communication.
  • the first device determines the appropriate maximum available transmit power in the concurrent mode when the first uplink resource overlaps with the first sidelink resource, which can effectively improve communication quality and communication success rate.
  • the processing module when the first uplink transmission resource and the first sidelink transmission resource do not overlap in the time domain, the processing module is further configured to: The first power backoff value determines the first available maximum transmit power; the processing module is further configured to determine the transmit power of the first uplink transmission or the transmit power of the first sidelink transmission according to the first available maximum transmit power, The transmit power of the first uplink transmission or the transmit power of the first sidelink transmission does not exceed the first available maximum transmit power.
  • the processing module is further configured to determine a second available maximum transmit power according to a second power backoff value, where the second power backoff value is the first uplink The power backoff value corresponding to the carrier where the transmission resource is located; the processing module is further configured to determine the transmit power of the first uplink transmission according to the second available maximum transmit power, and the transmit power of the first uplink transmission does not exceed the second The available maximum transmit power; or, the processing module is further configured to determine a third available maximum transmit power according to a third power backoff value, where the third power backoff value is the power corresponding to the carrier where the first sidelink transmission resource is located Backoff value; the processing module is further configured to determine the transmit power of the first sidelink transmission according to the third available maximum transmit power, and the transmit power of the first sidelink transmission does not exceed the third available maximum transmit power.
  • the first device uses the power backoff values corresponding to the respective transmissions to determine the respective maximum available transmit powers under the condition that the uplink transmission resources and the sidelink transmission resources do not overlap, and then determines the transmit power of each transmission, reducing the In the scenario where the transmission resources do not overlap in the time domain, the communication quality deteriorates and the communication success rate decreases due to excessive power back-off.
  • the first device flexibly determines the appropriate maximum available transmit power under the condition that the first uplink transmission resource and the first sidelink transmission resource do not overlap, which can effectively improve the communication quality of the first device and improve the communication efficiency. Success rate.
  • the processing module is specifically configured to determine the transmit power of the first uplink transmission, and the transmit power of the first uplink transmission is the difference between the transmit power of the first uplink transmission and the first available maximum The smaller value of the transmission power, the transmission power of the first uplink transmission is determined according to the second power backoff value, and the second power backoff value is the power backoff value corresponding to the carrier where the first uplink transmission resource is located ;
  • the processing module is specifically configured to determine the transmit power of the first sidelink transmission according to the first available maximum transmit power and the transmit power of the first uplink transmission.
  • the first device may consider priorities among overlapping transmission resources, and preferentially determine transmit power for transmissions with higher priorities, so as to ensure the success rate of high-priority transmissions and further improve communication quality.
  • the first uplink transmission resource overlaps with the first sidelink transmission resource in the time domain, and the priority of the first sidelink transmission is higher than that of the first sidelink transmission resource.
  • the processing module is specifically configured to determine the transmit power of the first sidelink transmission, and the transmit power of the first sidelink transmission is the difference between the transmit power of the first sidelink transmission and the first sidelink transmission A smaller value of the available maximum transmit power, the transmit power of the first sidelink transmission is determined according to a third power backoff value, and the third power backoff value corresponds to the carrier where the first sidelink transmission resource is located The power backoff value; the processing module is specifically configured to determine the transmit power of the first uplink transmission according to the first available maximum transmit power and the transmit power of the first sidelink transmission.
  • the first device may consider priorities among overlapping transmission resources, and preferentially determine transmit power for transmissions with higher priorities, so as to ensure the success rate of high-priority transmissions and further improve communication quality.
  • the first power backoff value is determined according to the first uplink transmission resource and the first sidelink transmission resource.
  • the transceiver module is further configured to receive second indication information from the network device, where the second indication information is used to indicate a second uplink transmission resource; in the When the second uplink transmission resource overlaps with the first sidelink transmission resource in the time domain, the processing module is further configured to determine a fourth available maximum transmit power according to a fourth power backoff value, the fourth power backoff value The value is the power backoff value corresponding to the concurrent mode, and the fourth power backoff value is determined according to the second uplink transmission resource and the first sidelink transmission resource; when the fourth available maximum transmit power is greater than the first In the case of the available maximum transmit power, the processing module is further configured to determine the transmit power of the second uplink transmission according to the first available maximum transmit power, the transmit power of the second uplink transmission and the transmit power of the first sidelink transmission The sum of the powers does not exceed the first available maximum transmission power, and the second uplink transmission is carried on the second uplink transmission resource.
  • multiple available maximum transmit powers are determined according to the power backoff values determined for the sidelink transmission resources and each uplink transmission resource, and the multiple The minimum value of the available maximum transmit power is determined as the available maximum transmit power of the first device.
  • the spurious spectrum index can be guaranteed in multiple time domain resources where one sidelink transmission resource overlaps with multiple uplink transmission resources. Satisfying the requirements can further improve the communication quality.
  • the first device determines at least one second sidelink transmission resource; when the second sidelink transmission resource overlaps with the first uplink transmission resource in time domain
  • the processing module is further configured to determine the fifth available maximum transmission power according to the fifth power backoff value, the fifth power backoff value is the power backoff value corresponding to the concurrent mode, and the fifth power backoff value The value is determined according to the second sidelink transmission resource and the first uplink transmission resource; when the fifth available maximum transmit power is greater than the first available maximum transmit power, the processing module is further configured to The transmit power of the second sidelink transmission is determined by the available maximum transmit power, the sum of the transmit power of the second sidelink transmission and the transmit power of the first uplink transmission does not exceed the first available maximum transmit power, and the second sidelink The row transmission is carried on the second side row transmission resource.
  • multiple available maximum transmit powers are determined according to the power backoff values determined for the uplink transmission resources and each sidelink transmission resource, and the multiple The minimum value of the available maximum transmit power is determined as the available maximum transmit power of the first device.
  • the spurious spectrum index can be guaranteed in multiple time domain resources where one uplink transmission resource overlaps with multiple sidelink transmission resources. Satisfying the requirements can further improve the communication quality.
  • the first uplink transmission resource and the first sidelink transmission resource are located in the same frequency band.
  • a communication device including:
  • the transceiver module is configured to receive first indication information from the network device, where the first indication information is used to indicate the first uplink transmission resource; the transceiver module is also configured to receive second indication information from the network device, where the second indication The information is used to indicate the second uplink transmission resource; the processing module is used to determine whether the first uplink transmission resource and the second uplink transmission resource overlap in the time domain; the first uplink transmission resource and the second uplink transmission resource In the case that resources overlap in the time domain, the processing module is further configured to determine a first available maximum transmit power according to a first power backoff value, where the first power backoff value is a power backoff value corresponding to a concurrent mode; the The processing module is further configured to determine the transmit power of the first uplink transmission and the transmit power of the second uplink transmission according to the first available maximum transmit power, and the sum of the transmit power of the first uplink transmission and the transmit power of the second uplink transmission Not exceeding the first available maximum transmission power, the first uplink transmission is carried on the first uplink transmission resource, and the
  • the first device may be a terminal, a combined device or component having terminal functions, or a communication chip (such as a processor, a baseband chip, or a chip system, etc.) applied to a terminal.
  • a communication chip such as a processor, a baseband chip, or a chip system, etc.
  • the first device determines the available maximum transmit power by using the power backoff value corresponding to the concurrent mode when the first uplink transmission resource and the second uplink transmission resource overlap in the time domain, and according to the concurrent
  • the maximum transmission power can be used to determine the transmission power of the uplink transmission and the transmission power of the side transmission, so that the transmission power in the concurrent mode can meet the corresponding spectrum indicators such as spurs and spectrum templates, and improve the quality and success rate of communication.
  • the first device determines the appropriate maximum available transmit power in concurrent mode when the first uplink resource overlaps with the second uplink resource, which can effectively improve communication quality and communication success rate.
  • the processing module when the first uplink transmission resource and the second uplink transmission resource do not overlap in the time domain, the processing module is further configured to: A power backoff value determines the first available maximum transmit power; the processing module is further configured to determine the transmit power of the first uplink transmission or the transmit power of the second uplink transmission according to the first available maximum transmit power, the first The transmit power of an uplink transmission or the transmit power of the second uplink transmission does not exceed the first available maximum transmit power.
  • the processing module is further configured to: The power backoff value determines the second available maximum transmission power, and the second power backoff value is a power backoff value corresponding to the carrier where the first uplink transmission resource is located;
  • the processing module is further configured to determine the transmit power of the first uplink transmission according to the second available maximum transmit power, and the transmit power of the first uplink transmission does not exceed the second available maximum transmit power; or, the processing module is also configured to It is used to determine the third maximum available transmission power according to the third power backoff value, where the third power backoff value is the power backoff value corresponding to the carrier where the second uplink transmission resource is located; the processing module is also used to according to the The third available maximum transmit power determines the transmit power of the second uplink transmission, and the transmit power of the second uplink transmission does not exceed the third available maximum transmit power.
  • the first device uses the power backoff values corresponding to the respective transmissions to determine the respective maximum available transmit powers when the first uplink transmission resources and the second uplink transmission resources do not overlap, and then determines the transmit powers of the respective transmissions , to reduce the problem of poor communication quality and reduced communication success rate caused by excessive power back-off in the scenario where transmission resources do not overlap in the time domain.
  • the first device flexibly determines the appropriate maximum available transmit power under the condition that the first uplink transmission resource and the second uplink transmission resource do not overlap, which can effectively improve the communication quality of the first device and improve the success of the communication. Rate.
  • a communication device including: a first device receives first indication information from a network device, where the first indication information is used to indicate an uplink transmission resource; the first device determines a sidelink transmission resource; the first A device determines a first available maximum transmit power according to a first power backoff value, where the first power backoff value is a power backoff value corresponding to a concurrent mode; the first device determines an uplink transmission rate according to the first available maximum transmit power The transmission power and the transmission power of the sidelink transmission, the sum of the transmission power of the uplink transmission and the transmission power of the sidelink transmission does not exceed the first available maximum transmission power, the uplink transmission is carried on the uplink transmission resource, and the sidelink transmission carried in the sidelink transmission resource.
  • the first device may be a terminal, a combined device or component having terminal functions, or a communication chip (such as a processor, a baseband chip, or a chip system, etc.) applied to a terminal.
  • a communication chip such as a processor, a baseband chip, or a chip system, etc.
  • the available maximum transmission power is determined using the power backoff value corresponding to the concurrent mode, and the transmission power of the uplink transmission is determined according to the concurrent maximum available transmission power and the transmission power of side transmission, so that the transmission power can meet the corresponding spectrum indicators such as spurious and spectrum templates, and improve the quality and success rate of communication.
  • the first device flexibly determines the appropriate maximum available transmit power when uplink resources and sidelink resources may overlap, which can effectively improve communication quality and communication success rate.
  • the communication device in the above aspect may be a terminal, or a chip applied in the terminal, or other combined devices, components, etc. that can realize the functions of the above terminal.
  • the transceiver module may be a transmitter and a receiver, or an integrated transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a baseband chip.
  • the transceiver module may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver module may be an input and output interface of the chip system
  • the processing module may be a processor in the chip system, for example: a central processing unit (central processing unit, CPU).
  • a communication device including one or more processors, the one or more processors are coupled with a memory, and can be used to execute programs or instructions in the memory, so that the device performs any of the above aspects or The method in any possible implementation manner in this aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • a processing device in an eighth aspect, includes a processor and an input-output interface, for example, it is applied in a communication device, and is used to realize the functions or methods involved in the above-mentioned first to third aspects, the The processing device may be, for example, a system on a chip.
  • the system-on-a-chip further includes a memory, and the memory is configured to store program instructions and data necessary to implement functions of the method described in the first aspect above.
  • the chip system in the above aspect can be a system on chip (system on chip, SOC), and can also be a baseband chip, etc., wherein the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • the input signal received by the input interface may be received and input by the receiver, for example but not limited to, and the signal output by the output interface may be output to the transmitter and transmitted by the transmitter, for example but not limited to , and the input interface and the output interface may be the same integrated interface, which is used as the input interface and the output interface respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various interfaces.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program is run on a computer, the computer is made to execute any one of the first to third aspects.
  • the communication method On the one hand the communication method.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to execute any one of the above aspects or one of the aspects in this aspect.
  • a computer program also referred to as code, or an instruction
  • a chip system including: a processor, configured to call and run a computer program from a memory, so that a communication device installed with the chip system executes any one of the first to third aspects The communication method.
  • FIG. 1 shows a schematic diagram of a communication architecture of an embodiment of the present application.
  • FIG. 2 shows several possible IoV communication scenarios.
  • FIG. 3 shows a communication method 100 of the present application.
  • FIG. 4 shows a communication method 200 of the present application.
  • Fig. 5 shows a communication method 300 according to the embodiment of the present application.
  • FIG. 6 shows a method 400 for determining power provided by the present application.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication device 20 provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX worldwide interoperability for microwave access
  • NR new radio
  • FIG. 1 shows a schematic diagram of a communication architecture of an embodiment of the present application.
  • the communication system of the present application includes at least one network device and two user equipments.
  • V2X communication can support communication scenarios with and without network coverage.
  • the network device and the two user equipments can communicate through the Uu (UTRAN-to-UE) air interface, for example, the uplink (uplink) between RAN and UE1 or UE2 in Figure 1 , UL) communication and downlink (downlink, DL) communication, the two user equipments can communicate through a sidelink (sidelink, SL) carrier.
  • Uu UTRAN-to-UE
  • UL uplink
  • downlink downlink
  • DL downlink
  • the sidelink SL carrier usually refers to the carrier on the PC5 interface.
  • the sidelink SL is a descriptive limitation on the carrier on the PC5 interface. carrier to be distinguished, but should not cause any substantive limitation.
  • the user equipment in this embodiment of the present application may be a device with a wireless communication sending and receiving function or a device or a chip in a device with a wireless communication sending and receiving function
  • the system, the communication device in the embodiment of the present application supports sidelink communication, and can be deployed on land, including indoors or outdoors, roadside, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control ), wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminal in smart city, wireless terminal in smart home, user equipment (UE), vehicle communication device, vehicle communication chip, roadside unit or communication in roadside unit device etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the radio access network device may be a device that provides wireless communication function services for terminal devices, and is usually located on the network side.
  • exemplary The specific implementation forms include but are not limited to: next-generation base station (g nodeB, gNB) in the fifth generation (5th generation, 5G) communication system, evolved node B (evolved node B, eNB) in the LTE system, wireless Network controller (radio network controller, RNC), node B (node B, NB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile Switching centers, devices in vehicle to everything (V2X) communication (also known as Internet of Vehicles communication) systems that provide wireless communication services for terminal devices, and cloud radio access network (CRAN) scenarios Wireless controllers, relay stations, vehicle-mounted devices, wearable devices, and network devices in future evolution networks.
  • V2X vehicle to everything
  • CRAN cloud radio access network
  • the base station may be a RAN device including a centralized unit (centralized unit, CU) node, or a distributed unit (DU) node, or a CU node and a DU node, or a control plane CU RAN equipment of the node (CU-CP node) and user plane CU node (CU-UP node) and DU node.
  • a centralized unit centralized unit, CU
  • DU distributed unit
  • CU-CP node control plane CU RAN equipment of the node
  • CU-UP node user plane CU node
  • the Uu air interface is used for communication between the terminal device and the access network device, and the Uu air interface may also be referred to as Uu for short.
  • the channel through which an access network device sends information to a terminal device is called a downlink (DL) channel
  • the downlink channel may include a physical downlink shared channel (PDSCH) and a physical downlink control channel (physical downlink control channel, PDCCH) at least one channel.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • the PDCCH is used to carry downlink control information DCI
  • the PDSCH is used to carry downlink data (data).
  • the channel through which the terminal device sends information to the access network device is called an uplink (UL) channel
  • the uplink channel may include a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH). at least one of the channels.
  • PUSCH is used to carry uplink data.
  • the uplink data may also be referred to as uplink data information.
  • PUCCH is used to carry the uplink control information (uplink control information, UCI) fed back by the terminal device, for example, UCI may include channel state information (channel state information, CSI), positive response (acknowledge, ACK) and/or negative feedback from the terminal device Response (negative acknowledgment, NACK) and so on.
  • the transmission of the Uu air interface may include uplink transmission and downlink transmission, wherein the uplink transmission means that the terminal device sends information to the access network device, and the downlink transmission means that the access network device sends information to the terminal device.
  • the information for uplink transmission may be uplink information or uplink signals.
  • the uplink information or uplink signal may include at least one of PUSCH, PUCCH, and sounding reference signal (sounding reference signal, SRS).
  • the information for downlink transmission may be downlink information or downlink signals.
  • the downlink information or downlink signal may include at least one of PDSCH, PDCCH, channel state information reference signal (channel state information reference signal, CSI RS), phase tracking reference signal (phase tracking reference signal, PTRS).
  • SL communication is used for terminal-to-terminal communication.
  • the channel for SL transmission may be carried on an uplink carrier, and the uplink carrier may be an uplink carrier for communication between a network device and a terminal, or may be an independent carrier.
  • the sidelink sidelink may also be called a sidelink, a sidelink, a secondary link, and the like.
  • Sidelink communication can use physical sidelink shared channel (physical sidelink shared channel, PSSCH), physical sidelink control channel (physical sidelink control channel, PSCCH), that is, SL resources include PSCCH resources and PSSCH resources, wherein, PSCCH uses
  • PSSCH is used to carry the first-level sidelink control information (sidelink control information, SCI), and the PSSCH is used to carry the second-level SCI and data.
  • the information in the SCI can also be called scheduling assignment (SA).
  • SA includes relevant information for data scheduling, such as PSSCH resource allocation, modulation and coding methods and other information.
  • the PSSCH and the PSCCH may be channels sent by a transmitting terminal (such as terminal 1 ) to a receiving terminal (such as terminal 2 ).
  • a typical application scenario of Uu air interface communication and SL communication is the Internet of Vehicles.
  • V2X each vehicle is a user equipment, and data transmission between two vehicles can be performed directly through SL, or through the network based on the Uu interface.
  • D2D device-to-device
  • the application of D2D technology can reduce the burden of the cellular network, reduce the battery power consumption of the user equipment, increase the data rate, and can well meet the requirements of proximity services.
  • the D2D technology allows multiple user equipment (user equipment, referred to as UE) supporting the D2D function to perform direct discovery and direct communication with or without network infrastructure.
  • UE user equipment
  • V2X communication refers to Communication between vehicles and anything outside, including vehicle-to-vehicle (V2V) communication (vehicle to vehicle, V2V) as shown in (a) in Figure 2, and vehicle-to-pedestrian communication as shown in (b) in Figure 2 (vehicle to pedestrian, V2P), vehicle to infrastructure communication (vehicle to infrastructure, V2I), such as vehicle to network communication (vehicle to network, V2N) shown in (c) in Figure 2.
  • V2V vehicle-to-vehicle
  • V2V vehicle to vehicle to vehicle
  • V2V vehicle to vehicle to vehicle
  • V2P vehicle-to-pedestrian communication
  • V2P vehicle to pedestrian, V2P
  • V2I vehicle to infrastructure
  • V2N vehicle to network communication
  • V2N vehicle to network communication
  • V2X communication is aimed at high-speed equipment represented by vehicles. It is the basic technology and key technology applied in scenarios that require very high communication delays in the future, such as smart cars, autonomous driving, and intelligent transportation systems.
  • LTE V2X communication can support communication scenarios with and without network coverage, and its resource allocation method can adopt the network access device scheduling mode, such as the Evolved Universal Terrestrial Radio Access Network Node B (E-UTRAN Node B, referred to as eNB) Scheduling mode and UE self-selection mode.
  • E-UTRAN Node B Evolved Universal Terrestrial Radio Access Network Node B
  • eNB Evolved Universal Terrestrial Radio Access Network Node B
  • V-UE vehicle users
  • vehicle UE vehicle UE
  • V-UE vehicle UE
  • the 3GPP standard organization officially released the first-generation LTE V2X standard in early 2017, and the LTE version number is Release 14.
  • LTE V2X solves some basic requirements in V2X scenarios, but for future fully intelligent driving, autonomous driving and other application scenarios, LTE V2X at this stage cannot effectively support it.
  • 5G NR technology in the 3GPP standard organization, 5G NR V2X will also develop further, such as supporting lower transmission delay, more reliable communication transmission, higher throughput, better user experience, and Meet the needs of a wider range of application scenarios.
  • NR V2X may use three different transmission modes when sending channels, and it can send Uu air interface data to network devices in various ways.
  • a single carrier for sending sidelinks (sidelink, SL) to other user equipments For example, a single carrier is sent to the network device only through the Uu air interface, or a single carrier is sent to other user equipment only through the SL carrier, or a single carrier is sent to the network device and other terminal devices through the Uu air interface and the SL carrier respectively.
  • the time period of Uu air interface communication and SL carrier communication may overlap, and the time period of Uu air interface communication and SL carrier communication may also occur non-overlapping cases.
  • the available maximum transmit power (configured maximum output power) suitable for the user equipment is different.
  • the terminal device first determines its available maximum transmit power when transmitting through the SL single carrier and the available maximum transmit power when transmitting through the Uu single carrier.
  • the maximum transmit power and then determine the available maximum transmit power of the terminal device according to the available maximum transmit power of the two transmission modes. It should be understood that determining the available maximum transmit power requires a power backoff value. Among them, only the power backoff value during SL single-carrier transmission is considered when determining the available maximum transmit power during SL single-carrier transmission, and only the power back-off value during Uu single-carrier transmission is considered when determining the available maximum transmit power during Uu single-carrier transmission value.
  • the above-mentioned method for determining the maximum available transmit power of the terminal equipment does not determine whether the time periods of Uu air interface communication and SL carrier communication overlap, and it is impossible to flexibly address whether the time periods of Uu air interface communication and SL carrier communication overlap. Selecting different power backoff values makes it impossible to determine the proper configured transmit power.
  • the UE determines by the UE according to the resource conditions configured by the network, such as the RB allocation position, the length of continuous RB allocation, and the modulation mode.
  • the following formula is an example of the maximum available transmit power of a single carrier during NR V2X transmission on SL, and introduces the existing calculation method of the available maximum transmit power.
  • P CMAX_L,f,c MIN ⁇ P EMAX,c – ⁇ T C,c ,P PowerClass ––MAX(MAX(MPR c ,A-MPR c )+ ⁇ T IB,c + ⁇ T C,c ,P- MPR c ), P Regulatory, c ⁇ ,
  • P CMAX_H,f,c MIN ⁇ P EMAX,c ,P PowerClass ,P Regulatory ⁇ .
  • the upper limit is determined by taking the minimum value of the cell-level power P EMAX,c configured by the network, the transmission power level P PowerClass reported by the UE, and the restriction P Regulatory of regulations in some scenarios.
  • the lower bound is mainly determined by the transmit power class P PowerClass and the maximum power backoff values MPR c and A-MPR c reported by the UE. Considering the general case, only the MPR c power backoff can be considered here.
  • the power fallback value (maximum power reduction, MPR)
  • the power back-off value is based on the resource allocation of the physical channel by the terminal equipment, in order to meet specific radio frequency indicators, such as spurious, spectrum mask, adjacent channel leakage ratio (adjacent channel leakage ratio, ACLR), error vector magnitude (error vector magnitude, EVM ) and other indicators, the power backoff is related to the resource block (resource block, RB) resource allocation position in the carrier, the number of RBs, and the modulation method of communication, such as quadrature phase shift keying (quadrature phase shift keying) keying, QPSK), 16 quadrature amplitude modulation (quadrature amplitude modulation, QAM) and so on.
  • the UE may also need additional maximum power reduction (additional maximum power reduction), that is, A-MPR.
  • FIG. 3 is a schematic flowchart of the method 100 of the present application.
  • the first device receives first indication information from a network device, and correspondingly, the network device sends the first indication information to the first device, where the first indication information is used to indicate a first uplink transmission resource.
  • the first indication information here may be downlink control information, and may also be indication information of semi-persistent scheduling.
  • the first device may be a terminal device, and the first device receives the first indication information through a Uu air interface.
  • the terminal device is in a radio resource control (radioresource control, RRC) connection state.
  • RRC radio resource control
  • the first device determines whether the first uplink transmission resource overlaps with the first sidelink transmission resource in a time domain.
  • the first sidelink transmission resource here may be configured by the network device through indication information (for example, mode1 of sidelink transmission), or may also be pre-configured (for example, mode2 of sidelink transmission).
  • the UE has already obtained the control information of the first uplink transmission resource when obtaining the control information of the first uplink transmission resource, That is, it may be determined according to the control information of the first uplink transmission resource and the control information of the first sidelink transmission resource that the uplink transmission resource overlaps with the multiple sidelink transmission resources in the time domain.
  • the first uplink transmission resource and the first sidelink transmission resource are located in the same frequency band.
  • the method 300 may be in a simultaneous working scenario of uplink transmission (Uu air interface communication) and sidelink transmission (PC5 interface communication), such as a con-current operation scenario.
  • Uu air interface communication uplink transmission
  • PC5 interface communication sidelink transmission
  • the first device determines the first available maximum transmission power according to the judgment result (overlapping or non-overlapping) in S102.
  • the first device determines a first available maximum transmit power according to a first power backoff value.
  • the first available maximum transmit power is the maximum transmit power of the first device when the relevant radio frequency index is met, in other words, when the first uplink transmission resource and the first sidelink transmission resource overlap in the time domain In this case, the sum of available transmit power allocated by the first device on the first uplink transmission resource and the first sidelink transmission resource respectively does not exceed the first available maximum transmit power.
  • the first power backoff value here is a power backoff value corresponding to the concurrent mode.
  • the first power backoff value is determined according to the first uplink transmission resource and the first sidelink transmission resource.
  • the first device preconfigures multiple first mapping relationships or multiple first correspondences, and the multiple mapping relationships or first correspondences may be a mapping relationship between a first power backoff value and a resource configuration situation, where
  • the resource configuration of the resource may be, for example, one or more of the following parameters: resource block (resource block, RB) allocation position, continuous RB allocation length, modulation mode, and the like.
  • the first device may determine the first power backoff value according to the multiple first mapping relationships or the multiple first correspondence relationships.
  • the first mapping relationship or the first corresponding relationship here may be presented in the form of a table, or may also be presented in other ways, which is not limited in this application.
  • the first device may first determine the upper bound and the lower bound of the first available maximum transmit power, and then determine the first available maximum transmit power according to the upper bound and the lower bound. As an example, the first device determines the lower bound according to the first power backoff value. As another example, the first device determines the lower bound according to the first power backoff value and the first power level, and the first device determines the lower bound according to the first power level.
  • the first power level here may also be determined according to the overlapping transmission resource of the first uplink transmission resource and the first side transmission resource, or the first power level here may also be determined according to the first uplink transmission resource and the first side transmission resource. Transmission resources with overlapping transmission resources are determined in combination with pre-configuration information. For details, refer to the description of Example 1 in the first possible implementation manner of the method 300 .
  • the first device determines the transmit power of the first uplink transmission and the transmit power of the first sidelink transmission according to the first available maximum transmit power.
  • the sum of the transmit power of the first uplink transmission and the transmit power of the first sidelink transmission does not exceed the first available maximum transmit power
  • the first uplink transmission is carried on the first uplink transmission resource
  • the first sidelink transmission is carried on the first Sidetracking transfer resources.
  • the first device uses the power backoff value corresponding to the concurrent mode to determine the maximum available transmit power, which reduces the Regardless of the overlapping situation, when the above-mentioned resources overlap, still using the respective power backoff values of different transmission resources to determine the available maximum transmission power may lead to the problem that the radio frequency index cannot be met.
  • the first device uses the power backoff value corresponding to the concurrent mode to determine the available maximum transmit power, and determines the available maximum transmit power according to the concurrent available maximum transmit power.
  • the transmit power of the uplink transmission and the transmit power of the sidelink transmission enable the transmission power in the concurrent mode to meet the corresponding spectrum indicators such as spurs and spectrum templates, improving the quality and success rate of communication.
  • the first device determines the appropriate maximum available transmit power in the concurrent mode when the first uplink resource overlaps with the first sidelink resource, which can effectively improve communication quality and communication success rate.
  • method 100 may also include:
  • the first device may determine the first available maximum transmit power in different ways.
  • the resources sent by the corresponding first device may have multiple situations.
  • the first device may only send uplink transmission resources, or the first device may only send sidelink transmission resources.
  • Manner 1 The first device determines the first available maximum transmit power according to the first power backoff value.
  • the first power backoff value here is as described in S103. And how to determine the first available maximum transmit power according to the first power backoff value may also be as described in S103.
  • the first device determines the first available maximum transmit power according to the second power backoff value, and the second power backoff value is determined according to the first uplink transmission resource; or, the first device determines the maximum transmit power according to the third power backoff value
  • the first available maximum transmit power and the third power backoff value are determined according to the first sidelink transmission resource.
  • the first uplink transmission resource and the first sidelink transmission resource do not overlap in the time domain, it can be understood that, within a certain period of time, the first device only sends sidelink transmission or uplink transmission, then when determining the first The available maximum transmit power of a device is to determine the transmit power corresponding to the currently transmitted transmission resource. Before determining the transmit power corresponding to the currently sent transmission, it is necessary to determine the upper bound and/or lower bound of the transmit power.
  • the method of determining the first maximum available transmit power is described below taking the first device only sending the first sidelink transmission as an example, and the first device calculates the transmit power corresponding to the sidelink transmission resource according to the third power backoff value
  • the lower bound of the maximum available transmit power of the first device or, the first device calculates the lower bound of the transmit power corresponding to the sidelink transmission resource according to the third power backoff value and the third power level, that is, as the lower bound of the transmit power of the first device
  • the lower bound of the available maximum transmit power, where the third power level can be determined according to the sidelink transmission resources or determined according to the sidelink transmission resources and pre-configuration information; or, the third power backoff value here can also be
  • the first power backoff value that is, the first device calculates the lower bound of the transmit power corresponding to the sidelink transmission resource according to the first power backoff value and the third power level, which is used as the lower bound of the maximum available transmit power of the first device.
  • the first device only performs sidelink transmission as an example. The
  • the first device uses the power backoff values corresponding to the respective transmissions to determine the respective maximum available transmit powers under the condition that the uplink transmission resources and the sidelink transmission resources do not overlap, and then determines the transmit power of each transmission, reducing the In the scenario where the transmission resources do not overlap in the time domain, the communication quality deteriorates and the communication success rate decreases due to excessive power back-off.
  • the first device flexibly determines the appropriate maximum available transmit power under the condition that the first uplink transmission resource and the first sidelink transmission resource do not overlap, which can effectively improve the communication quality of the first device and improve the communication efficiency. Success rate.
  • method 100 may also include:
  • the first device may determine the first available maximum transmit power in different ways.
  • the first device determines the first available maximum transmit power according to the first power backoff value; the first device determines the transmit power of the first uplink transmission or the transmit power of the first sidelink transmission according to the first available maximum transmit power, and the first The transmit power of an uplink transmission or the transmit power of the first sidelink transmission does not exceed the first available maximum transmit power.
  • the first device determines the second available maximum transmission power according to the second power backoff value, and the second power backoff value is the power backoff value corresponding to the carrier where the first uplink transmission resource is located; the first device determines the second available maximum transmission power according to the second available The maximum transmit power determines the transmit power of the first uplink transmission, and the transmit power of the first uplink transmission does not exceed the second available maximum transmit power; or, the first device determines the third available maximum transmit power according to the third power backoff value, and the third The power backoff value is the power backoff value corresponding to the carrier where the first sidelink transmission resource is located; the first device determines the transmit power of the first sidelink transmission according to the third maximum available transmit power, and the transmit power of the first sidelink transmission is not The third maximum available transmit power is exceeded.
  • the above solution does not use the power back-off value corresponding to the concurrent mode to determine the maximum available transmit power for all situations where there may be time-domain resource overlap, so as to reduce the communication quality deterioration caused by excessive power back-off in non-concurrent scenarios.
  • the problem of reduced success rate does not use the power back-off value corresponding to the concurrent mode to determine the maximum available transmit power for all situations where there may be time-domain resource overlap, so as to reduce the communication quality deterioration caused by excessive power back-off in non-concurrent scenarios.
  • the first device uses the power back-off value corresponding to each transmission to determine the respective maximum available transmit power, and then determines the transmit power of each transmission, reducing the transmission resources in the time domain.
  • excessive power backoff causes poor communication quality and lower communication success rate.
  • the first device flexibly determines the appropriate maximum available transmit power under the condition that the first uplink transmission resource and the first sidelink transmission resource do not overlap, which can effectively improve the communication quality of the first device and improve the communication efficiency. Success rate.
  • the maximum available transmit power has been determined according to the method in S103, and the sidelink transmission and the uplink transmission respectively The priority of sidelink transmission and uplink transmission can be considered when performing power allocation.
  • the method 100 also includes:
  • the first device determines that the priority of the first uplink transmission is higher than the priority of the first sidelink transmission; the first device determines the second available maximum transmit power, and the second available maximum transmit power is the maximum value of the first uplink transmission. Transmit power: the first device determines a third maximum available transmit power according to the first available maximum transmit power and the second available maximum transmit power, and the third available maximum transmit power is the maximum transmit power of the first sidelink transmission.
  • the first uplink transmission since the first uplink transmission has a higher priority, when power allocation is performed, it is given priority to ensure that the first uplink transmission can use the second available maximum transmit power determined according to the second power backoff value, and then according to the first The third available maximum transmit power is determined by removing the second available maximum transmit power from the available maximum transmit power.
  • the first device determines that the priority of the first sidelink transmission is higher than the priority of the first uplink transmission; the first device determines the third available maximum transmit power, and the third available maximum transmit power is the first side The maximum transmit power of uplink transmission; the first device determines the second available maximum transmit power according to the first available maximum transmit power and the third available maximum transmit power, and the second available maximum transmit power is the maximum transmit power of the first uplink transmission.
  • the priority of the first sideline transmission is higher, when power allocation is performed, it is given priority to ensure that the first sideline transmission can determine the third available maximum transmit power used by it according to the third power backoff value, and then The second available maximum transmit power is determined according to the power of the first available maximum transmit power excluding the third available maximum transmit power.
  • the first uplink transmission resource may also have at least one second sidelink transmission resource other than the first sidelink transmission resource.
  • the at least one second sidelink transmission resource, the at least one second uplink transmission resource, the first uplink transmission resource and the first sidelink transmission resource are located in the same frequency band.
  • power allocation is performed on different transmission resources according to the priorities of different transmission resources, which can further improve the communication quality and ensure the success rate of the communication.
  • the available maximum transmit power has been determined according to the method in S103, and the sidelink transmission and the first sidelink transmission resource respectively Priority of sidelink transmission and uplink transmission may be considered when performing power allocation for uplink transmission.
  • method 100 also includes:
  • the first device determines the transmit power of the first uplink transmission and the transmit power of the first sidelink transmission according to the first available maximum transmit power, including:
  • the first device determines the transmit power of the first uplink transmission, the transmit power of the first uplink transmission is the smaller value of the transmit power of the first uplink transmission and the first available maximum transmit power, and the transmit power of the first uplink transmission is based on the first If two power backoff values are determined, the second power backoff value is the power backoff value corresponding to the carrier where the first uplink transmission resource is located;
  • the first device determines the transmit power of the first sidelink transmission according to the first available maximum transmit power and the transmit power of the first uplink transmission.
  • the first device determines the transmit power of the first sidelink transmission and the transmit power of the first uplink transmission according to the first available maximum transmit power, including:
  • the first device determines the transmit power of the first lateral transmission, where the transmit power of the first lateral transmission is the smaller value of the transmit power of the first lateral transmission and the first available maximum transmit power, and the transmit power of the first lateral transmission
  • the power is determined according to a third power backoff value, where the third power backoff value is a power backoff value corresponding to the carrier where the first sidelink transmission resource is located;
  • the first device determines the transmit power of the first uplink transmission according to the first available maximum transmit power and the transmit power of the first sidelink transmission.
  • the first device may consider priorities among overlapping transmission resources, and preferentially determine transmit power for transmissions with higher priorities, so as to ensure the success rate of high-priority transmissions and further improve communication quality.
  • the method 100 also includes:
  • the first device receives second indication information from the network device, where the second indication information is used to indicate at least one second uplink transmission resource; the first device determines the first sidelink transmission resource and the at least one second uplink transmission resource overlapping.
  • the first sidelink transmission resource overlaps with the first uplink transmission resource and at least one second uplink transmission resource, and the first sidelink transmission resource, the first uplink transmission resource and at least one second uplink transmission resource overlap Among the transmission resources, the first sidelink transmission resource is the longest in the time domain.
  • the subcarrier spacing of the uplink transmission resource and the sidelink transmission resource of the first device is different, which will result in the time slot length or the orthogonal frequency division multiplexing ( Orthogonal frequency division multiplexing, OFDM) symbol length is different.
  • OFDM Orthogonal frequency division multiplexing
  • the longest first sidelink transmission resource in the time domain may be understood as the longest time slot or the longest OFDM symbol occupied by the uplink transmission resource in the time domain.
  • the first device determines the first available maximum transmission power according to the first power backoff value, which may specifically include the following steps:
  • Step 1 The first device determines at least one fourth available maximum transmit power according to at least one fourth power backoff value.
  • the fourth available maximum transmission power is the maximum transmission power of the first sidelink transmission and the second uplink transmission, or the fourth available maximum transmission power is the common maximum transmission power of the first sidelink transmission and the second uplink transmission.
  • the sum of the transmission power of the sidelink transmission and the transmission power of the second uplink transmission does not exceed the fourth maximum available transmission power, and the fourth power backoff value is based on the overlapping of the first sidelink transmission resource and the second uplink transmission resource resources are determined.
  • the first device may respectively determine the upper bound and the lower bound of the maximum transmit power of the first sidelink transmission and each second uplink transmission, wherein the above determined lower bound of each maximum transmit power is based on each fourth power cycle The return value is determined.
  • Step 2 The first device determines the fifth maximum available transmission power according to the first power backoff value, where the fifth maximum available transmission power is the maximum transmission power of the first sidelink transmission and the first uplink transmission.
  • the first power backoff value is determined according to a transmission resource overlapping the first uplink transmission resource and the first sidelink transmission resource.
  • the first device respectively determines an upper bound and a lower bound of the maximum transmit power of the first sidelink transmission and the first uplink transmission, wherein the above determined lower bound of each maximum transmit power is determined according to each first power backoff value.
  • the first device obtains the transmit power corresponding to the overlapping portion of the first uplink transmission resource overlapping the first sidelink transmission resource and at least one second uplink transmission resource.
  • Step 3 The first device determines the first available transmit power according to at least one of the fourth available maximum transmit power and the fifth available maximum transmit power.
  • the first device determines an upper bound and a lower bound of the first available maximum transmit power according to at least one of the fourth available maximum transmit power and the fifth available maximum transmit power, thereby determining the first available maximum transmit power.
  • the first device may use the maximum value of at least one of the fourth available maximum transmit power and the fifth available maximum transmit power as the upper limit of the first available maximum transmit power, and use at least one of the fourth available maximum transmit power and the fifth available maximum transmit power
  • the minimum value of the maximum transmit power is used as a lower bound of the first available maximum transmit power, so as to determine the first available maximum transmit power.
  • the first device determines the upper bound and the lower bound of the first available maximum transmit power according to at least one of the upper bound and lower bound of the fourth available maximum transmit power and the upper bound and lower bound of the fifth available maximum transmit power, thereby determining The first available maximum transmit power.
  • the first device may use the maximum value of the upper bounds of at least one fourth available maximum transmit power and the fifth available maximum transmit power as the upper bound of the first available maximum transmit power, and use at least one of the fourth available maximum transmit power and The minimum value of the fifth available maximum transmit power lower bound is used as the lower limit of the first available maximum transmit power, so as to determine the first available maximum transmit power.
  • the first device receives second indication information from a network device, where the second indication information is used to indicate at least one second sidelink transmission resource; the first device determines the first uplink transmission resource and the at least one second sidelink transmission resource Transmission resources overlap.
  • the first uplink transmission resource overlaps with the first sidelink transmission resource and at least one second sidelink transmission resource, and the first uplink transmission resource, the first sidelink transmission resource and at least one second sidelink transmission resource overlap.
  • the first uplink transmission resource is the longest in the time domain.
  • the subcarrier spacing of the sidelink transmission resource and the uplink transmission resource of the first device are different, which will result in the time slot length or the orthogonal frequency division multiplexing ( Orthogonal frequency division multiplexing, OFDM) symbol length is different.
  • OFDM Orthogonal frequency division multiplexing
  • the longest first uplink transmission resource in the time domain may be understood as the longest time slot occupied by the sidelink transmission resource or the longest OFDM symbol in the time domain.
  • the first device determines the first available maximum transmission power according to the first power backoff value, which may specifically include the following steps:
  • Step 1 The first device determines at least one fourth available maximum transmit power according to at least one fourth power backoff value.
  • the fourth available maximum transmit power is the corresponding maximum transmit power between the first uplink transmission and the second sidelink transmission
  • the fourth power backoff value is based on the overlapping of the first uplink transmission resource and the second sidelink transmission resource resources are determined.
  • the first device respectively determines an upper bound and a lower bound of the maximum transmit power corresponding between the first uplink transmission resource and each second sidelink transmission resource, wherein the above-mentioned determined lower bound of each maximum transmit power is based on each determined by the fourth power backoff value.
  • Step 2 The first device determines the fifth available maximum transmit power according to the first power backoff value, and the fifth available maximum transmit power corresponds to the maximum transmit power between the first uplink transmission resource and the first sidelink transmission resource.
  • the first power backoff value is determined according to a transmission resource overlapping the first sidelink transmission resource and the first uplink transmission resource.
  • the first device respectively determines the upper bound and the lower bound of the maximum transmit power between the first uplink transmission resource and the first sidelink transmission resource, wherein the above determined lower bound of each maximum transmit power is based on each first power return The return value is determined.
  • the first device obtains the transmit power corresponding to the overlapping portion of the first sidelink transmission resource overlapping the first uplink transmission resource and at least one second sidelink transmission resource.
  • Step 3 The first device determines the first available transmit power according to at least one of the fourth available maximum transmit power and the fifth available maximum transmit power.
  • the first device determines an upper bound and a lower bound of the first available maximum transmit power according to at least one of the fourth available maximum transmit power and the fifth available maximum transmit power, thereby determining the first available maximum transmit power.
  • the first device may use the maximum value of at least one of the fourth available maximum transmit power and the fifth available maximum transmit power as the upper limit of the first available maximum transmit power, and use at least one of the fourth available maximum transmit power and the fifth available maximum transmit power
  • the minimum value of the maximum transmit power is used as a lower bound of the first available maximum transmit power, so as to determine the first available maximum transmit power.
  • the first device determines the upper bound and the lower bound of the first available maximum transmit power according to at least one of the upper bound and lower bound of the fourth available maximum transmit power and the upper bound and lower bound of the fifth available maximum transmit power, thereby determining The first available maximum transmit power.
  • the first device may use the maximum value of the upper bounds of at least one fourth available maximum transmit power and the fifth available maximum transmit power as the upper bound of the first available maximum transmit power, and use at least one of the fourth available maximum transmit power and The minimum value of the fifth available maximum transmit power lower bound is used as the lower limit of the first available maximum transmit power, so as to determine the first available maximum transmit power.
  • the available maximum transmit power when one uplink transmission resource overlaps with multiple sidelink transmission resources, or when one sidelink transmission resource overlaps with multiple uplink transmission resources, the available maximum transmit power to determine the range of the maximum available transmit power of the first device to determine the maximum available transmit power of the first device, which further expands the scope of application of the method for increasing power in this application, making the determination of the maximum available transmit power more flexible , to further improve the communication quality and the success rate of communication.
  • the first device receives second indication information from a network device, where the second indication information is used to indicate a second uplink transmission resource; when the second uplink transmission resource overlaps with the first sidelink transmission resource in the time domain
  • the first device determines the fourth available maximum transmission power according to the fourth power backoff value, the fourth power backoff value is the power backoff value corresponding to the concurrent mode, and the fourth power backoff value is based on the second uplink transmission resource and the first sidelink transmission resource; when the fourth available maximum transmit power is greater than the first available maximum transmit power, the first device determines the transmit power of the second uplink transmission according to the first available maximum transmit power, and the second The sum of the transmission power of the uplink transmission and the transmission power of the first sidelink transmission does not exceed the first available maximum transmission power, and the second uplink transmission is carried on the second uplink transmission resource.
  • multiple available maximum transmit powers are determined according to the power backoff values determined for the sidelink transmission resources and each uplink transmission resource, and the multiple The minimum value of the available maximum transmit power is determined as the available maximum transmit power of the first device.
  • the spurious spectrum index can be guaranteed in multiple time domain resources where one sidelink transmission resource overlaps with multiple uplink transmission resources. Satisfying the requirements can further improve the communication quality.
  • the first device determines at least one second sidelink transmission resource; when the second sidelink transmission resource overlaps with the first uplink transmission resource in the time domain, the first device determines the at least one second sidelink transmission resource according to the fifth power backoff value Determine the fifth available maximum transmission power, the fifth power backoff value is the power backoff value corresponding to the concurrent mode, and the fifth power backoff value is determined according to the second sidelink transmission resource and the first uplink transmission resource; 5.
  • the first device determines the transmit power of the second sidelink transmission according to the first available maximum transmit power, the transmit power of the second sidelink transmission and the transmit power of the first uplink transmission The sum of the transmit powers does not exceed the first available maximum transmit power, and the second sidelink transmission is carried on the second sidelink transmission resource.
  • multiple available maximum transmit powers are determined according to the power backoff values determined for the uplink transmission resources and each sidelink transmission resource, and the multiple The minimum value of the available maximum transmit power is determined as the available maximum transmit power of the first device.
  • the spurious spectrum index can be guaranteed in multiple time domain resources where one uplink transmission resource overlaps with multiple sidelink transmission resources. Satisfying the requirements can further improve the communication quality.
  • the communication method 200 provided by this application will be introduced below with reference to FIG. 4 .
  • the first device receives first indication information from a network device, and correspondingly, the network device sends the first indication information to the first device, where the first indication information is used to indicate a first uplink transmission resource.
  • the first indication information here may be downlink control information, and may also be indication information of semi-persistent scheduling.
  • the first device may be a terminal device, and the first device receives the first indication information through a Uu air interface.
  • the terminal device is in a radio resource control (radioresource control, RRC) connection state.
  • RRC radio resource control
  • the first device receives second indication information from a network device, and correspondingly, the network device sends the second indication information to the first device, where the first indication information is used to indicate a second uplink transmission resource.
  • the first device determines whether the first uplink transmission resource overlaps with the second uplink transmission resource in the time domain.
  • the first device determines a first available maximum transmit power according to a first power backoff value.
  • the first available maximum transmit power is the maximum transmit power for the first device to send the first uplink transmission and the second uplink transmission, in other words, when the first uplink transmission resource and the second uplink transmission resource are in the time domain
  • the sum of the available transmit power allocated by the terminal device on the first uplink transmission resource and the second uplink transmission resource respectively is the first available maximum transmit power.
  • the first power backoff value here is a power backoff value corresponding to the concurrent mode.
  • the first device preconfigures multiple first mapping relationships or multiple first correspondences, and the multiple mapping relationships or first correspondences may be the resource configuration of the first power backoff value and the above-mentioned overlapping transmission resources
  • the mapping relationship of the situation, the resource configuration situation here can be, for example, one or more of the following parameters: resource block (resource block, RB) allocation position, continuous RB allocation length, modulation mode, etc.
  • the first device may determine the first power backoff value according to the multiple first mapping relationships or the multiple first correspondence relationships.
  • the first device first determines the upper and lower bounds of the first available maximum transmission power, and then determines the first available maximum transmission power according to the upper and lower bounds. power. As an example, the first device determines the lower bound according to the first power backoff value. As another example, the first device determines the lower bound according to the first power backoff value and the first power level, and the first device determines the lower bound according to the first power level.
  • the first power level here may also be determined according to the overlapping transmission resources of the first uplink transmission resource and the second uplink transmission resource, or the first power level here may also be determined according to the first uplink transmission resource and the second uplink transmission resource Transmission resources with overlapping resources are determined in combination with pre-configuration information.
  • the first device determines whether the first uplink transmission resource and the second uplink transmission resource overlap in the time domain, and further determines the appropriate time domain overlap between the first uplink transmission resource and the second uplink transmission resource Maximum transmit power available.
  • the power back-off value corresponding to the concurrent mode is used to determine the maximum available transmit power, which reduces the situation in the prior art that does not consider whether the overlap occurs, resulting in the use of different transmission resources when the above-mentioned resources overlap.
  • the power backoff value determines the possible failure to meet RF specifications due to the maximum transmit power available.
  • the above solution can effectively improve the communication quality of the first device and increase the success rate of communication by flexibly determining the appropriate maximum available transmit power according to resource overlapping conditions.
  • method 200 may also include:
  • the first device may determine the first available maximum transmit power in different ways.
  • the first device may only send uplink transmissions, or the first device may only send second uplink transmissions, or the first device may also send The second uplink transmission and the uplink transmission may be sent.
  • Manner 1 The first device determines the first available maximum transmit power according to the first power backoff value.
  • the first power backoff value here is as described in S203. And how to determine the first available maximum transmit power according to the first power backoff value may also be as described in S203.
  • the first device determines the first available maximum transmit power according to the second power backoff value, and the second power backoff value is determined according to the first uplink transmission resource; or, the first device determines the maximum transmit power according to the third power backoff value
  • the first available maximum transmit power and the third power backoff value are determined according to the second uplink transmission resource.
  • the first uplink transmission resource and the second uplink transmission resource do not overlap in the time domain, it can be understood that within a certain period of time, the first device only sends the second uplink transmission or uplink transmission, then when determining the first uplink transmission resource
  • the available maximum transmit power of a device is to determine the transmit power corresponding to the current transmission. Before determining the transmit power corresponding to the currently sent transmission, it is necessary to determine the upper bound and/or lower bound of the transmit power.
  • the method of determining the first maximum available transmit power is described below by taking the first device only sending the first uplink transmission as an example, and the first device calculates the transmit power corresponding to the second uplink transmission resource according to the second power backoff value The lower bound of the maximum available transmit power of the first device; or, the first device calculates the lower bound of the transmit power corresponding to the second uplink transmission resource according to the second power backoff value and the second power level, that is, as the first The lower bound of the maximum available transmit power of the device, where the second power level available is determined according to the second uplink transmission resource or determined according to the second uplink transmission resource and pre-configuration information; or, the second power backoff value here It may also be the first power backoff value, that is, the first device calculates the lower bound of the transmit power corresponding to the second uplink transmission resource according to the first power backoff value and the second power level, that is, the lower bound of the available maximum transmit power of the first device Nether.
  • the first device only sends the second uplink transmission as an
  • the power backoff value corresponding to the concurrent mode is not used to determine the maximum available transmit power for all situations where time domain resources may overlap, so as to reduce the occurrence of excessive power backoff in scenarios where time domain resources do not overlap.
  • the communication quality becomes worse and the communication success rate decreases. Therefore, the embodiment of the present application can effectively improve the communication quality of the first device and improve the communication success rate by flexibly determining the appropriate maximum available transmit power according to resource overlapping conditions.
  • the method of determining the maximum available transmit power by the first device above by overlapping or non-overlapping the first uplink transmission resource and the second uplink transmission resource can also be used in the carrier aggregation scenario, that is, the first uplink transmission resource and the second uplink transmission resource
  • the transmission resources are all determined by the indication information of the network equipment.
  • FIG. 2 is a schematic flowchart of a method 300 of the present application.
  • NR V2X has two working modes on the sidelink, namely mode1 (mode 1) and mode2 (mode 2): mode1 is the base station scheduling method; mode2 is the UE itself selects resources according to the channel monitoring results, in other words, SL The resources are preconfigured.
  • mode1 is the base station scheduling method
  • mode2 is the UE itself selects resources according to the channel monitoring results, in other words, SL The resources are preconfigured.
  • the Uu air interface communication between the UE and the network device may also be in the IDLE (idle) state, the INACTIVE (inactive) state and the CONNECTED (connected) state of the radio resource control (radioresource control, RRC).
  • the UE uses mode2 on the sidelink, that is, SL resources are pre-configured.
  • the UE determines that the Uu air interface communication is in the connected state, and the UE performs SL transmission in the SL pre-configured resource pool.
  • the possible implementation mode- is specifically implemented through the following possible situations.
  • Example 1 the UE determines that the uplink transmission resource and the sidelink transmission resource overlap in the time domain.
  • the UE determines whether to send uplink transmission and/or sidelink transmission.
  • the UE determines to send the sidelink transmission and the uplink transmission.
  • the UE determines that the uplink transmission resource and the sidelink transmission resource overlap in time domain.
  • the UE determines that the uplink transmission resource and the sidelink transmission resource overlap in the time domain
  • the control information of the sidelink transmission resource determines that the uplink transmission resource and the sidelink transmission resource overlap in the time domain.
  • the UE determines the available maximum transmit power according to the judgment result.
  • this embodiment of the present application may consider using the common maximum power backoff value of uplink transmission resources and sidelink transmission resources to calculate the maximum available transmit power when calculating the lower limit of the available maximum transmit power. transmit power.
  • the UE when calculating the maximum available transmit power, the UE first calculates the upper bound and the lower bound of the maximum available transmit power, wherein the UE calculates the lower bound according to the maximum power fallback value, where the maximum power fallback value may be MAX(MPR con -current , A-MPR con-current ), or, it can also be MPR con-current , MPR con-current and A-MPR con-current can be determined by the UE according to the resource conditions configured by the network, and it uses SL with the UE
  • the power backoff value during single carrier transmission and the power backoff value when the UE uses Uu single carrier transmission are determined in different ways.
  • the following describes specific implementations of determining the available maximum transmit power according to the fact that the uplink transmission resource and the sidelink transmission resource have the same subcarrier spacing or different subcarrier spacing.
  • the subcarriers are equally spaced:
  • P CMAX_L MIN ⁇ 10log 10 ⁇ p EMAX,c - ⁇ T C ,P PowerClass,con-current –MAX(MAX(MPR con-current ,A-MPR con-current )+ ⁇ T IB,c + ⁇ T C ,P- MPR) ⁇ ;
  • P CMAX_H MIN ⁇ 10log 10 ⁇ p EMAX,c ,P PowerClass,con-current ⁇ .
  • p EMAX,c is the linear value of P EMAX,c , which is given by IE P-Max of Uu serving cell c or IE slmaxTxPower of SL;
  • P PowerClass, con-current is the power level when Uu and SL work simultaneously The corresponding maximum UE power can be predefined;
  • ⁇ T IB,c is the maximum allowable configured output power relaxation, which can be referred to in Section 6.2.4 of 3GPP TS 38.101-1.
  • P-MPR is used by UE for power management
  • ⁇ T C,c is the allowed relaxation of transmission power at the edge of the working frequency band of serving cell c
  • ⁇ T C is the highest value among ⁇ T C,c of all serving cells c.
  • the subcarriers are spaced differently:
  • P CMAX,c(i),i (p) is the available maximum output power corresponding to time slot p of serving cell c(i) using subcarrier spacing type i, where subcarrier spacing type i can be 15kHz, 30kHz or 60kHz.
  • PCMAX_L, f, c(i), i (p) and PCMAX_H, f, c(i), i (p) can refer to section 6.2E or section 6.2.4 in GPP TS 38.101-1 for details.
  • P CMAX_L (p,q) MIN ⁇ 10log 10 [p CMAX_L,f,c(i),Uu,i (p)+p CMAX_L,f,c(i),V2X,j (q)],P PowerClass ,con-current ⁇
  • P CMAX_H (p,q) MIN ⁇ 10log 10 [p CMAX_H,f,c(i),Uu,i (p)+p CMAX_H,f,c(i),V2X,j (q)],P PowerClass ,con-current ⁇
  • P PowerClass, con-current is the maximum UE power corresponding to the power class when Uu and SL work simultaneously, and may be predefined.
  • Example 2 the UE determines that the uplink transmission resource and the sidelink transmission resource do not overlap in time domain.
  • the UE determines whether to send uplink transmission and/or sidelink transmission.
  • the UE determines to send the sidelink transmission and the uplink transmission.
  • the UE determines that the uplink transmission resource and the sidelink transmission resource do not overlap in time domain.
  • the UE determines the available maximum transmit power according to the judgment result.
  • the UE determines the corresponding transmit power according to the corresponding transmission resources according to the transmission sent by the UE in each time domain, which is the maximum available transmit power of the UE. For example, within a certain period of time, or within a certain time domain resource, if the UE only sends uplink transmission, the UE determines the lower bound of the transmit power corresponding to the uplink transmission resource according to the second power backoff value corresponding to the uplink transmission resource , and then determine the lower bound of the transmit power corresponding to the uplink transmission resource, so as to determine the transmit power corresponding to the uplink transmission resource, which is the maximum available transmit power of the UE.
  • the second power backoff value corresponding to the resource determines the lower bound of the transmit power corresponding to the sidelink transmission resource, and then determines the lower bound of the transmit power corresponding to the sidelink transmission resource, so as to determine the transmit power corresponding to the sidelink transmission resource, which is the UE’s available Maximum transmit power.
  • the maximum available transmit power of the UE is the transmit power corresponding to the sidelink transmission resource.
  • P CMAX_L,c,SL MIN ⁇ P EMAX,c – ⁇ T C,c ,P PowerClass ––MAX(MAX(MPR c ,A-MPR c )+ ⁇ T IB,c + ⁇ T C,c ,P- MPR c ), P Regulatory, c ⁇ ,
  • P CMAX_H,c,SL MIN ⁇ P EMAX,c ,P PowerClass ,P Regulatory ⁇ .
  • the upper bound P CMAX_H,c, SL is determined by taking the minimum value of the cell-level power P EMAX,c configured by the network, the transmit power level P PowerClass reported by the UE, and the regulatory limit P Regulatory in some scenarios.
  • P CMAX_H,c, the lower bound of SL is mainly determined by the transmission power level P PowerClass reported by the UE and the maximum power backoff values MPR c and A-MPR c . Considering the general case, only the MPR c power backoff can be considered here. In other words, the UE determines the lower bound according to MAX(MPR c , A-MPR c ) corresponding to the sidelink transmission.
  • MAX(MPR c , A-MPR c ) can also be replaced by MPR c .
  • MPR c can refer to Table 1.
  • Table 1 shows the MPR at power level 3.
  • QAM is quadrature amplitude modulation
  • QPSK is quadrature phase shift keying
  • CP-OFDM is cyclic prefix orthogonal frequency division multiplexing.
  • the maximum available transmit power of the UE is the transmit power corresponding to the uplink transmission resource.
  • P CMAX_H,c,Uu MIN ⁇ P EMAX,c ,P PowerClass - ⁇ P PowerClass ⁇ .
  • the upper bound P CMAX_H,c, Uu is determined by taking the minimum value of the cell-level power P EMAX,c configured by the network and the transmit power class P PowerClass reported by the UE.
  • the lower bounds of P CMAX_H,c and Uu are mainly determined by the transmission power class P PowerClass reported by the UE and the maximum power backoff values MPR c and A-MPR c . Considering the general case, only the MPR c power backoff can be considered here.
  • the UE determines the lower bound according to MAX(MPR c + ⁇ MPR c , A ⁇ MPR c ) corresponding to the uplink transmission.
  • MAX(MPR c + ⁇ MPR c , A-MPR c ) can also be replaced by MPR c .
  • MPR c can refer to Table 2.
  • Table 2 shows the MPR at power level 2.
  • QAM is quadrature amplitude modulation
  • QPSK is quadrature phase shift keying
  • CP-OFDM is cyclic prefix orthogonal frequency division multiplexing.
  • the UE when the UE sends uplink transmission and sidelink transmission, by determining whether the uplink transmission resource and the sidelink transmission resource overlap in the time domain, and further according to the time domain of the uplink transmission resource and the sidelink transmission resource determine the appropriate maximum transmit power available.
  • the power back-off value corresponding to the concurrent mode is used to determine the maximum available transmit power, which reduces the situation in the prior art that does not consider whether the overlap occurs, resulting in the use of different transmission resources when the above-mentioned resources overlap.
  • the power fallback value calculation may cause the problem that the radio frequency index cannot be met due to the maximum available transmit power.
  • the embodiment of the present application can effectively improve the communication quality of the terminal device and improve the success rate of communication by flexibly determining the appropriate maximum available transmit power according to resource overlapping conditions.
  • Example 3 On the basis of Example 1, the UE further determines the allocation of available maximum transmit power on the sidelink transmission resource and the uplink transmission resource according to the priorities of the sidelink transmission and the uplink transmission.
  • the UE determines the maximum available transmit power according to the implementation of Example 1. For example, the priority of the sidelink transmission is higher than that of the uplink transmission, and the UE can first calculate the power backoff value of the sidelink transmission Transmit power, use the maximum available transmit power except the transmit power for sidelink transmission for uplink transmission.
  • the lower bound of the transmission power allocated by the UE to the sidelink transmission can be calculated according to the power backoff value corresponding to the sidelink transmission, and the calculation method of the transmission power of the sidelink transmission can refer to the calculation method in Example 2.
  • the UE determines the available maximum transmit power according to the implementation of Example 1, for example, the priority of uplink transmission is higher than that of sidelink transmission, and the UE can first calculate the maximum transmission power of uplink transmission according to the power backoff value corresponding to uplink transmission. Transmit power, use the maximum available transmit power except the transmit power for uplink transmission for sidelink transmission.
  • the lower bound of the transmission power allocated by the UE to the uplink transmission may be calculated according to the power backoff value corresponding to the uplink transmission, and the calculation of the transmission power of the uplink transmission may refer to the calculation method in Example 2.
  • power allocation is performed on different transmission resources according to the priorities of different transmission resources, which can further improve the communication quality and ensure the success rate of the communication.
  • the UE does not judge or cannot judge whether the uplink transmission resource and the sidelink transmission resource overlap in the time domain.
  • Example 4 the UE determines whether to send uplink transmission and/or sidelink transmission.
  • the UE determines to send the sidelink transmission and the uplink transmission.
  • the UE determines the available maximum transmit power according to the judgment result.
  • the fallback value may be MAX(MPR con-current , A-MPR con-current ), or MPR con-current , and the specific determination process may refer to S302 in Example 1 of the above possible case 1.
  • the sidelink transmission resource, the uplink transmission resource, and the overlapping resources of the sidelink transmission resource and the last transmission resource correspond to three different tables respectively.
  • the mapping relationship between the power backoff value and the resource conditions configured by the network may be indicated in the table.
  • the power backoff value corresponding to the concurrent mode is used to determine the maximum available transmit power, which reduces the need for existing technologies. Due to the fact that overlapping is not considered, when the above-mentioned resources overlap, still using the respective power back-off values of different transmission resources to calculate the available maximum transmission power may cause the problem that the radio frequency index cannot be met.
  • the embodiment of the present application can flexibly determine the appropriate maximum available transmit power, effectively improve the quality of the terminal equipment, and increase the success rate of communication.
  • the second possible implementation manner is that the UE determines that the Uu air interface communication is in an idle state, and the UE performs SL transmission in the SL pre-configured resource pool.
  • the UE determines whether to send uplink transmission and/or sidelink transmission.
  • the UE determines to send only the sidelink transmission.
  • the UE determines the available maximum transmit power according to the judgment result.
  • the UE first determines the upper bound and the lower bound of the maximum available transmit power, wherein the lower bound is determined according to MAX(MPR c , A-MPR c ) corresponding to the sidelink transmission.
  • MAX(MPR c , A-MPR c ) can also be replaced by MPR c .
  • P CMAX_L,c,SL MIN ⁇ P EMAX,c – ⁇ T C,c ,P PowerClass ––MAX(MAX(MPR c ,A-MPR c )+ ⁇ T IB,c + ⁇ T C,c ,P- MPR c ), P Regulatory, c ⁇ ,
  • P CMAX_H,c,SL MIN ⁇ P EMAX,c ,P PowerClass ,P Regulatory ⁇ .
  • the upper bound P CMAX_H,c, SL is determined by taking the minimum value of the cell-level power P EMAX,c configured by the network, the transmit power level P PowerClass reported by the UE, and the regulatory limit P Regulatory in some scenarios.
  • P CMAX_H,c, the lower bound of SL is mainly determined by the transmission power level P PowerClass reported by the UE and the maximum power backoff values MPR c and A-MPR c . Considering the general case, only the MPR c power backoff can be considered here. In other words, the UE determines the lower bound according to MAX(MPR c , A-MPR c ) corresponding to the sidelink transmission.
  • MAX(MPR c , A-MPR c ) can also be replaced by MPR c .
  • MPR c can refer to Table 1.
  • Table 1 shows the MPR at power level 3.
  • QAM is quadrature amplitude modulation
  • QPSK is quadrature phase shift keying
  • CP-OFDM is cyclic prefix orthogonal frequency division multiplexing.
  • a third possible implementation manner is that the UE determines that the Uu air interface communication is in an inactive state.
  • the second possible manner can be divided into two possible situations according to whether the UE supports PUSCH transmission.
  • the UE determines whether to send uplink transmission and/or sidelink transmission.
  • the UE determines to send only the sidelink transmission.
  • the UE determines the available maximum transmit power according to the judgment result.
  • the UE determines whether to send uplink transmission and/or sidelink transmission.
  • the UE determines that uplink transmission and sidelink transmission can be sent.
  • the UE determines the available maximum transmit power according to the judgment result.
  • Example 5 the UE may determine that the uplink transmission resource and the sidelink transmission resource overlap in the time domain.
  • Example 6 the UE may determine that the uplink transmission resource and the sidelink transmission resource do not overlap in time domain.
  • Example 7 the UE does not judge or cannot judge whether the uplink transmission resource and the sidelink transmission resource overlap in the time domain.
  • the UE uses mode1 on the sidelink, that is, SL resources are configured by network equipment.
  • the RRC of the UE is in the connected state, and for specific implementation, please refer to Possible Implementation Mode 1 in Configuration Situation 1 of Sidelink Transmission Resources.
  • the maximum available transmit power of the UE is flexibly determined according to whether the UE sends uplink transmission and/or sidelink transmission, and further, when the UE sends uplink transmission and sidelink transmission, according to the uplink transmission and sidelink transmission Whether or not to overlap in the time domain flexibly determines the maximum available transmit power of the UE, which can effectively improve the communication quality of the terminal equipment and improve the success rate of communication.
  • the method 400 for determining power provided by the present application is introduced below with reference to FIG. 6 .
  • the UE determines that the uplink transmission resource overlaps with multiple sidelink transmission resources.
  • the UE determines that the uplink transmission resources overlap with multiple sidelink transmission resources in the time domain
  • the UE has already obtained the control information of the multiple sidelink transmission resources when obtaining the control information of the uplink transmission resources, that is, it can
  • the control information of the resource and the control information of the plurality of sidelink transmission resources determine that the uplink transmission resource and the plurality of sidelink transmission resources overlap in the time domain.
  • the UE respectively determines the available maximum transmit power corresponding to the uplink transmission resource and the multiple sidelink transmission resources.
  • the UE may respectively determine multiple available maximum transmit powers according to the method described in Example 1 of Possible Case 1 in Possible Implementation Mode 1 in method 300 .
  • the length of the uplink transmission resource is the longest, and the multiple sidelink transmission resources overlap with the uplink transmission resource in different time domains respectively.
  • the UE determines the available maximum transmit power according to the available maximum transmit power corresponding to the uplink transmission resource and the multiple sidelink transmission resources.
  • an upper bound PCMAX_H and a lower bound PCMAX_L of the maximum available transmit power of the UE are determined according to the multiple available maximum transmit powers, so that the range of the available maximum transmit power can be determined.
  • PCMAX_H may be the maximum value among the multiple available maximum transmit powers
  • PCMAX_L may be the minimum value among the multiple available maximum transmit powers.
  • the UE determines that the sidelink transmission resource overlaps with multiple uplink transmission resources.
  • the UE respectively determines the available maximum transmit power corresponding to the sidelink transmission resource and the multiple uplink transmission resources.
  • the UE determines the available maximum transmit power according to the available maximum transmit power corresponding to the sidelink transmission resource and the multiple uplink transmission resources.
  • the available maximum transmit Power to determine the range of the maximum available transmit power of the UE to determine the maximum available transmit power of the UE, which further expands the application range of the method for increasing power in this application, making the determination of the maximum available transmit power more flexible, and further improving communication Quality, improve the success rate of communication.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 10 may include a transceiver module 11 and a processing module 12 .
  • the transceiver module 11 can be used for receiving information sent by other devices, and can also be used for sending information to other devices. For example, receiving the first number or sending PUSCH.
  • the processing module 12 may be used to perform content processing of the device, eg, determine the number of time units included in the time window.
  • the communication device 10 may correspond to the terminal device in the foregoing method embodiments.
  • the communication device 10 may correspond to the first device or UE in any one of the methods 100 to 400 according to the embodiments of the present application, and the communication device 10 may include The modules of the operations performed, and each unit in the communication device 10 is respectively for implementing the operations performed by the first device in the corresponding method.
  • the transceiver module 11 is configured to execute step S101
  • the processing module 12 is configured to execute S102, S103, and S104.
  • the transceiving module 11 is used to perform steps S201 and S202
  • the processing module 12 is used to perform steps S203 and S204.
  • the processing module 12 is configured to execute S301 and S302.
  • the processing module 12 is configured to execute S401a-S403a, S401b-402b.
  • FIG. 8 is a schematic diagram of a communication device 20 provided by an embodiment of the present application.
  • the device 20 may be a terminal device including various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of A terminal, mobile station, terminal, user equipment, soft terminal, etc. may also be a chip or a chip system on a terminal device.
  • the device 20 may include a processor 21 (ie, an example of a processing module) and a memory 22 .
  • the memory 22 is used to store instructions
  • the processor 21 is used to execute the instructions stored in the memory 22, so that the device 20 realizes the execution of the equipment in the above-mentioned various possible designs in the corresponding methods as shown in Fig. 3 to Fig. 6 step.
  • the device 20 may also include an input port 23 (ie, an example of a transceiver module) and an output port 24 (ie, another example of a transceiver module).
  • the processor 21 , the memory 22 , the input port 23 and the output port 24 can communicate with each other through internal connection paths, and transmit control and/or data signals.
  • the memory 22 is used to store a computer program, and the processor 21 can be used to call and run the computer program from the memory 22, to control the input port 23 to receive signals, and to control the output port 24 to send signals, so as to complete the terminal equipment or Steps of the radio access network device or UE or base station.
  • the memory 22 can be integrated in the processor 21 or can be set separately from the processor 21 .
  • the input port 23 is a receiver
  • the output port 24 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 23 is an input interface
  • the output port 24 is an output interface
  • the functions of the input port 23 and the output port 34 may be realized by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 21 may be realized by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer to implement the device provided in the embodiment of the present application.
  • the program codes to realize the functions of the processor 21 , the input port 23 and the output port 24 are stored in the memory 22 , and the general processor realizes the functions of the processor 21 , the input port 23 and the output port 24 by executing the codes in the memory 22 .
  • each module or unit in the apparatus 20 can be used to execute each action or process performed by the device (for example, terminal device) performing random access in the above method, and here, in order to avoid redundant description, its detailed description is omitted.
  • the processor may be a central processing unit (CPU, central processing unit), and the processor may also be other general-purpose processors, digital signal processors (DSP, digital signal processor), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the first device or the UE in the foregoing method embodiments are stored.
  • the computer program when executed by a computer, the computer can implement the method executed by the first device or UE in the foregoing method embodiments.
  • the embodiment of the present application further provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the first device or the UE in the foregoing method embodiments are stored.
  • the computer program when executed by a computer, the computer can implement the method executed by the first device or UE in the foregoing method embodiments.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法和装置,该方法包括:第一装置确定该第一上行传输资源与第一侧行传输资源在时域上是否重叠;在该第一上行传输资源与该第一侧行传输资源在时域上重叠的情况下,该第一装置根据第一功率回退值确定第一可用最大发射功率,该第一功率回退值为并发模式对应的功率回退值;所述第一装置根据所述第一可用最大发射功率确定第一上行传输的发射功率和第一侧行传输的发射功率。本申请实施例的方法和装置,在第一上行传输资源与第一侧行传输资源在时域上重叠的情况下,确定并发模式下合适的可用最大发射功率,能够有效提升通信的质量,提高通信的成功率。

Description

通信方法及装置
本申请要求于2021年10月22日提交中国国家知识产权局、申请号为202111235354.0、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种通信方法及装置。
背景技术
为了提高车联网应用场景下用户设备的安全性,需要减少该场景下用户设备之间通信的时延,第三代合作伙伴计划(3rd generation partnership project,3GPP)网络提出了长期演进(long term evolution,LTE)系统下的车辆与万物(vehicle to everything,V2X)通信的车联网技术。
V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。LTE V2X通信可以支持有网络覆盖和无网络覆盖的通信场景,其资源分配方式可以采取网络接入设备调度模式,如演进通用陆地无线接入网节点B(E-UTRAN Node B,eNB)调度模式和UE自选模式。基于V2X技术,车辆用户(Vehicle UE,V-UE)能将自身的一些信息,例如位置、速度、意图(转弯、并线、倒车)等信息周期性以及一些非周期性的事件触发的信息向周围的V-UE发送,同样地V-UE也会实时接收周围用户的信息。
随着5G NR技术在3GPP标准组织中的开发,5G NR V2X也将进一步发展,比如可以支持更低的传输时延,更可靠的通信传输,更高的吞吐量,更好的用户体验,以满足更加广泛的应用场景需求。
发明内容
本申请实施例提供一种通信方法及装置,可以灵活地确定合适的可用最大发射功率,合理地确定上行传输和/或侧行传输的发射功率,提高通信的成功率。
第一方面,提供了一种通信方法,包括:第一装置接收来自网络设备的第一指示信息,该第一指示信息用于指示第一上行传输资源;该第一装置确定该第一上行传输资源与第一侧行传输资源在时域上是否重叠;在该第一上行传输资源与该第一侧行传输资源在时域上重叠的情况下,该第一装置根据第一功率回退值确定第一可用最大发射功率,该第一功率回退值为并发模式对应的功率回退值;该第一装置根据该第一可用最大发射功率确定第一上行传输的发射功率和第一侧行传输的发射功率,该第一上行传输的发射功率和该第一侧行传输的发射功率之和不超过该第一可用最大发射功率,该第一上行传输承载于该第一上行传输资源,该第一侧行传输承载于该第一侧行传输资源。
应理解,第一装置可以是终端,也可以是具备终端功能的组合器件或部件,也可以是应用于终端中的通信芯片(例如处理器、基带芯片、或芯片系统等)。
上述第一方面中,第一装置在第一上行传输资源与第一侧行传输资源在时域上的重叠的情况下,采用并发模式对应的功率回退值确定可用最大发射功率,并根据并发的可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,使得并发模式下的传输功率能够满足杂散、频谱模板等对应的频谱指标,提升通信的质量和成功率。
上述实现方式中,第一装置在第一上行资源与第一侧行资源重叠的情况下,确定并发模式下合适的可用最大发射功率,能够有效提升通信的质量,提高通信的成功率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:在该第一上行传输资源与该第一侧行传输资源在时域上不重叠的情况下,该第一装置根据该第一功率回退值确定该第一可用最大发射功率;该第一装置根据该第一可用最大发射功率确定该第一上行传输的发射功率或该第一侧行传输的发射功率,该第一上行传输的发射功率或该第一侧行传输的发射功率不超过该第一可用最大发射功率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:在该第一上行传输资源与该第一侧行传输资源在时域上不重叠的情况下,该第一装置根据第二功率回退值确定第二可用最大发射功率,该第二功率回退值为该第一上行传输资源所在的载波对应的功率回退值;该第一装置根据该第二可用最大发射功率确定该第一上行传输的发射功率,该第一上行传输的发射功率不超过该第二可用最大发射功率;或者,该第一装置根据第三功率回退值确定第三可用最大发射功率,该第三功率回退值为该第一侧行传输资源所在的载波对应的功率回退值;该第一装置根据该第三可用最大发射功率确定该第一侧行传输的发射功率,该第一侧行传输的发射功率不超过该第三可用最大发射功率。
在该实现方式中,第一装置在上行传输资源和侧行传输资源不重叠的情况下采用各自传输对应的功率回退值确定各自的可用最大发射功率,进而确定各个传输的发射功率,减少在传输资源在时域上不重叠场景下功率回退过大而导致的通信质量变差,通信成功率降低的问题。
上述实现方式中,第一装置在第一上行传输资源和第一侧行传输资源不重叠的情况下,灵活地确定合适的可用最大发射功率,能够有效提升第一装置通信的质量,提高通信的成功率。
结合第一方面,在第一方面的某些实现方式中,在该第一上行传输资源与该第一侧行传输资源在时域上重叠的情况下,在该第一上行传输资源与该第一侧行传输资源在时域上重叠,且该第一上行传输的优先级高于该第一侧行传输的优先级的情况下,该第一装置根据该第一可用最大发射功率确定第一上行传输的发射功率和第一侧行传输的发射功率,包括:该第一装置确定该第一上行传输的发射功率,该第一上行传输的发射功率为第一上行传输的发射功率与该第一可用最大发射功率中的较小值,该第一上行传输的发射功率是根据第二功率回退值确定的,该第二功率回退值为该第一上行传输资源所在的载波对应的功率回退值;该第一装置根据该第一可用最大发射功率和该第一上行传输的发射功率确定该第一侧行传输的发射功率。
上述实现方式中,第一装置可以考虑重叠的传输资源之间的优先级,优先为优先级高的传输确定发射功率,保证高优先级传输的成功率,可以进一步提高通信质量。
结合第一方面,在第一方面的某些实现方式中,在该第一上行传输资源与该第一侧行传输资源在时域上重叠的情况下,该第一装置根据该第一可用最大发射功率确定第一侧行传输的发射功率和第一上行传输的发射功率,包括:该第一装置确定该第一侧行传输的发射功率,该第一侧行传输的发射功率为第一侧行传输的发射功率与该第一可用最大发射功率中的较小值,该第一侧行传输的发射功率是根据第三功率回退值确定的,该第三功率回退值为该第一侧行传输资源所在的载波对应的功率回退值;该第一装置根据该第一可用最大发射功率和该第一侧行传输的发射功率确定该第一上行传输的发射功率。
上述实现方式中,第一装置可以考虑重叠的传输资源之间的优先级,优先为优先级高的传输确定发射功率,保证高优先级传输的成功率,可以进一步提高通信质量。
结合第一方面,在第一方面的某些实现方式中,该第一功率回退值是根据该第一上行传输资源与该第一侧行传输资源确定的。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一装置接收来自该网络设备的第二指示信息,该第二指示信息用于指示第二上行传输资源;在该第二上行传输资源与该第一侧行传输资源在时域上重叠的情况下,该第一装置根据第四功率回退值确定第四可用最大发射功率,该第四功率回退值为并发模式对应的功率回退值,且该第四功率回退值是根据该第二上行传输资源与该第一侧行传输资源确定的;在该第四可用最大发射功率大于该第一可用最大发射功率的情况下,该第一装置根据该第一可用最大发射功率确定该第二上行传输的发射功率,该第二上行传输的发射功率和该第一侧行传输的发射功率之和不超过该第一可用最大发射功率,该第二上行传输承载于该第二上行传输资源。
应理解,在一个侧行传输资源与多个上行传输资源重叠的情况下,分别根据侧行传输资源与每个上行传输资源确定的功率回退值确定多个可用最大发射功率,将该多个可用最大发射功率的最小值确定为第一装置的可用最大发射功率。
上述实现方式中,在一个侧行传输资源与多个上行传输资源重叠的情况下,在一个侧行传输资源与多个上行传输资源重叠的多个时域资源内,都可以保证杂散频谱指标满足要求,可以进一步提高通信质量。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一装置确定至少一个第二侧行传输资源;在该第二侧行传输资源与该第一上行传输资源在时域上重叠的情况下,该第一装置根据第五功率回退值确定第五可用最大发射功率,该第五功率回退值为并发模式对应的功率回退值,且该第五功率回退值是根据该第二侧行传输资源与该第一上行传输资源确定的;在该第五可用最大发射功率大于该第一可用最大发射功率的情况下,该第一装置根据该第一可用最大发射功率确定该第二侧行传输的发射功率,该第二侧行传输的发射功率和该第一上行传输的发射功率之和不超过该第一可用最大发射功率,该第二侧行传输承载于该第二侧行传输资源。
应理解,在一个上行传输资源与多个侧行传输资源重叠的情况下,分别根据上行传输资源与每个侧行传输资源确定的功率回退值确定多个可用最大发射功率,将该多个可用最大发射功率的最小值确定为第一装置的可用最大发射功率。
上述实现方式中,在一个上行传输资源与多个侧行传输资源重叠的情况下,在一个上行传输资源与多个侧行传输资源重叠的多个时域资源内,都可以保证杂散频谱指标满足要求,可以进一步提高通信质量。
结合第一方面,在第一方面的某些实现方式中,该第一上行传输资源和该第一侧行传输资源位于同一频段。
第二方面,提供了一种通信方法,包括:第一装置接收来自网络设备的第一指示信息,该第一指示信息用于指示第一上行传输资源;该第一装置接收来自网络设备的第二指示信息,该第二指示信息用于指示第二上行传输资源;该第一装置确定该第一上行传输资源与该第二上行传输资源在时域上是否重叠;在该第一上行传输资源与该第二上行传输资源在时域上重叠的情况下,该第一装置根据第一功率回退值确定第一可用最大发射功率,该第一功率回退值为并发模式对应的功率回退值;该第一装置根据该第一可用最大发射功率确定第一上行传输的发射功率和第二上行传输的发射功率,该第一上行传输的发射功率和该第二上行传输的发射功率之和不超过该第一可用最大发射功率,该第一上行传输承载于该第一上行传输资源,该第二上行传输承载于该第二上行传输资源。
应理解,第一装置可以是终端,也可以是具备终端功能的组合器件或部件,也可以是应用于终端中的通信芯片(例如处理器、基带芯片、或芯片系统等)。
上述第一方面中,第一装置在第一上行传输资源与第二上行传输资源在时域上的重叠的情况下,采用并发模式对应的功率回退值确定可用最大发射功率,并根据并发的可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,使得并发模式下的传输功率能够满足杂散、频谱模板等对应的频谱指标,提升通信的质量和成功率。
上述实现方式中,第一装置在第一上行资源与第二上行资源重叠的情况下,确定并发模式下合适的可用最大发射功率,能够有效提升通信的质量,提高通信的成功率。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:在该第一上行传输资源与该第二上行传输资源在时域上不重叠的情况下,该第一装置根据该第一功率回退值确定该第一可用最大发射功率;该第一装置根据该第一可用最大发射功率确定该第一上行传输的发射功率或该第二上行传输的发射功率,该第一上行传输的发射功率或该第二上行传输的发射功率不超过该第一可用最大发射功率。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:在该第一上行传输资源与该第二上行传输资源在时域上不重叠的情况下,该第一装置根据第二功率回退值确定第二可用最大发射功率,该第二功率回退值为该第一上行传输资源所在的载波对应的功率回退值;该第一装置根据该第二可用最大发射功率确定该第一上行传输的发射功率,该第一上行传输的发射功率不超过该第二可用最大发射功率;或者,该第一装置根据第三功率回退值确定第三可用最大发射功率,该第三功率回退值为该第二上行传输资源所在的载波对应的功率回退值;该第一装置根据该第三可用最大发射功率确定该第二上行传输的发射功率,该第二上行传输的发射功率不超过该第三可用最大发射功率。
在该实现方式中,第一装置在第一上行传输资源和第二上行传输资源不重叠的情况下采用各自传输对应的功率回退值确定各自的可用最大发射功率,进而确定各个传输的发射功率,减少在传输资源在时域上不重叠场景下功率回退过大而导致的通信质量变差,通信成功率降低的问题。
上述实现方式中,第一装置在第一上行传输资源和第二上行传输资源不重叠的情况下,灵活地确定合适的可用最大发射功率,能够有效提升第一装置通信的质量,提高通信的成功率。
第三方面,提供了一种通信方法,包括:第一装置接收来自网络设备的第一指示信息,该第一指示信息用于指示上行传输资源;该第一装置确定侧行传输资源;该第一装置根据第一功率回退值确定第一可用最大发射功率,该第一功率回退值为并发模式对应的功率回退值;该第一装置根据该第一可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,该上行传输的发射功率和该侧行传输的发射功率之和不超过该第一可用最大发射功率,该上行传输承载于该上行传输资源,该侧行传输承载于该侧行传输资源。
应理解,第一装置可以是终端,也可以是具备终端功能的组合器件或部件,也可以是应用于终端中的通信芯片(例如处理器、基带芯片、或芯片系统等)。
上述第一方面中,由于存在侧行传输资源与上行传输资源重叠的可能性,采用并发模式对应的功率回退值确定可用最大发射功率,并根据并发的可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,使得传输功率能够满足杂散、频谱模板等对应的频谱指标,提升通信的质量和成功率。
上述实现方式中,第一装置在上行资源和侧行资源可能重叠的情况下,灵活地确定合适的可用最大发射功率,能够有效提升通信的质量,提高通信的成功率。
第四方面,提供了一种通信装置,包括:收发模块,用于接收来自网络设备的第一指示信息,该第一指示信息用于指示第一上行传输资源;处理模块,用于确定该第一上行传输资源与第一侧行传输资源在时域上是否重叠;在该第一上行传输资源与该第一侧行传输资源在时域上重叠的情况下,该处理模块,还用于根据第一功率回退值确定第一可用最大发射功率,该第一功率回退值为并发模式对应的功率回退值;该处理模块,还用于根据该第一可用最大发射功率确定第一上行传输的发射功率和第一侧行传输的发射功率,该第一上行传输的发射功率和该第一侧行传输的发射功率之和不超过该第一可用最大发射功率,该第一上行传输承载于该第一上行传输资源,该第一侧行传输承载于该第一侧行传输资源。
上述第一方面中,第一装置在第一上行传输资源与第一侧行传输资源在时域上的重叠的情况下,采用并发模式对应的功率回退值确定可用最大发射功率,并根据并发的可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,使得并发模式下的传输功率能够满足杂散、频谱模板等对应的频谱指标,提升通信的质量和成功率。
上述实现方式中,第一装置在第一上行资源与第一侧行资源重叠的情况下,确定并发模式下合适的可用最大发射功率,能够有效提升通信的质量,提高通信的成功率。
结合第四方面,在第四方面的某些实现方式中,在该第一上行传输资源与该第一侧行传输资源在时域上不重叠的情况下,该处理模块,还用于根据该第一功率回退值确定该第一可用最大发射功率;该处理模块,还用于根据该第一可用最大发射功率确定该第一上行传输的发射功率或该第一侧行传输的发射功率,该第一上行传输的发射功率或该第一侧行传输的发射功率不超过该第一可用最大发射功率。
结合第四方面,在第四方面的某些实现方式中,该处理模块,还用于根据第二功率回退值确定第二可用最大发射功率,该第二功率回退值为该第一上行传输资源所在的载波对应的功率回退值;该处理模块,还用于根据该第二可用最大发射功率确定该第一上行传输的发射功率,该第一上行传输的发射功率不超过该第二可用最大发射功率;或者,该处理模块,还用于根据第三功率回退值确定第三可用最大发射功率,该第三功率回退值为该第一侧行传输资源所在的载波对应的功率回退值;该处理模块,还用于根据该第三可用最大 发射功率确定该第一侧行传输的发射功率,该第一侧行传输的发射功率不超过该第三可用最大发射功率。
在该实现方式中,第一装置在上行传输资源和侧行传输资源不重叠的情况下采用各自传输对应的功率回退值确定各自的可用最大发射功率,进而确定各个传输的发射功率,减少在传输资源在时域上不重叠场景下功率回退过大而导致的通信质量变差,通信成功率降低的问题。
上述实现方式中,第一装置在第一上行传输资源和第一侧行传输资源不重叠的情况下,灵活地确定合适的可用最大发射功率,能够有效提升第一装置通信的质量,提高通信的成功率。
结合第四方面,在第四方面的某些实现方式中,在该第一上行传输资源与该第一侧行传输资源在时域上重叠,且该第一上行传输的优先级高于该第一侧行传输的优先级的情况下,该处理模块,具体用于确定该第一上行传输的发射功率,该第一上行传输的发射功率为第一上行传输的发射功率与该第一可用最大发射功率中的较小值,该第一上行传输的发射功率是根据第二功率回退值确定的,该第二功率回退值为该第一上行传输资源所在的载波对应的功率回退值;该处理模块,具体用于根据该第一可用最大发射功率和该第一上行传输的发射功率确定该第一侧行传输的发射功率。
上述实现方式中,第一装置可以考虑重叠的传输资源之间的优先级,优先为优先级高的传输确定发射功率,保证高优先级传输的成功率,可以进一步提高通信质量。
结合第四方面,在第四方面的某些实现方式中,在该第一上行传输资源与该第一侧行传输资源在时域上重叠,且该第一侧行传输的优先级高于该第一上行传输的优先级的情况下,该处理模块,具体用于确定该第一侧行传输的发射功率,该第一侧行传输的发射功率为第一侧行传输的发射功率与该第一可用最大发射功率中的较小值,该第一侧行传输的发射功率是根据第三功率回退值确定的,该第三功率回退值为该第一侧行传输资源所在的载波对应的功率回退值;该处理模块,具体用于根据该第一可用最大发射功率和该第一侧行传输的发射功率确定该第一上行传输的发射功率。
上述实现方式中,第一装置可以考虑重叠的传输资源之间的优先级,优先为优先级高的传输确定发射功率,保证高优先级传输的成功率,可以进一步提高通信质量。
结合第四方面,在第四方面的某些实现方式中,该第一功率回退值是根据该第一上行传输资源与该第一侧行传输资源确定的。
结合第四方面,在第四方面的某些实现方式中,该收发模块,还用于接收来自该网络设备的第二指示信息,该第二指示信息用于指示第二上行传输资源;在该第二上行传输资源与该第一侧行传输资源在时域上重叠的情况下,该处理模块,还用于根据第四功率回退值确定第四可用最大发射功率,该第四功率回退值为并发模式对应的功率回退值,且该第四功率回退值是根据该第二上行传输资源与该第一侧行传输资源确定的;在该第四可用最大发射功率大于该第一可用最大发射功率的情况下,该处理模块,还用于根据该第一可用最大发射功率确定该第二上行传输的发射功率,该第二上行传输的发射功率和该第一侧行传输的发射功率之和不超过该第一可用最大发射功率,该第二上行传输承载于该第二上行传输资源。
应理解,在一个侧行传输资源与多个上行传输资源重叠的情况下,分别根据侧行传输 资源与每个上行传输资源确定的功率回退值确定多个可用最大发射功率,将该多个可用最大发射功率的最小值确定为第一装置的可用最大发射功率。
上述实现方式中,在一个侧行传输资源与多个上行传输资源重叠的情况下,在一个侧行传输资源与多个上行传输资源重叠的多个时域资源内,都可以保证杂散频谱指标满足要求,可以进一步提高通信质量。
结合第四方面,在第四方面的某些实现方式中,该第一装置确定至少一个第二侧行传输资源;在该第二侧行传输资源与该第一上行传输资源在时域上重叠的情况下,该处理模块,还用于根据第五功率回退值确定第五可用最大发射功率,该第五功率回退值为并发模式对应的功率回退值,且该第五功率回退值是根据该第二侧行传输资源与该第一上行传输资源确定的;在该第五可用最大发射功率大于该第一可用最大发射功率的情况下,该处理模块,还用于根据该第一可用最大发射功率确定该第二侧行传输的发射功率,该第二侧行传输的发射功率和该第一上行传输的发射功率之和不超过该第一可用最大发射功率,该第二侧行传输承载于该第二侧行传输资源。
应理解,在一个上行传输资源与多个侧行传输资源重叠的情况下,分别根据上行传输资源与每个侧行传输资源确定的功率回退值确定多个可用最大发射功率,将该多个可用最大发射功率的最小值确定为第一装置的可用最大发射功率。
上述实现方式中,在一个上行传输资源与多个侧行传输资源重叠的情况下,在一个上行传输资源与多个侧行传输资源重叠的多个时域资源内,都可以保证杂散频谱指标满足要求,可以进一步提高通信质量。
结合第四方面,在第四方面的某些实现方式中,该第一上行传输资源和该第一侧行传输资源位于同一频段。
第五方面,提供了一种通信装置,包括:
收发模块,用于接收来自网络设备的第一指示信息,该第一指示信息用于指示第一上行传输资源;该收发模块,还用于接收来自网络设备的第二指示信息,该第二指示信息用于指示第二上行传输资源;该处理模块,用于确定该第一上行传输资源与该第二上行传输资源在时域上是否重叠;在该第一上行传输资源与该第二上行传输资源在时域上重叠的情况下,该处理模块,还用于根据第一功率回退值确定第一可用最大发射功率,该第一功率回退值为并发模式对应的功率回退值;该处理模块,还用于根据该第一可用最大发射功率确定第一上行传输的发射功率和第二上行传输的发射功率,该第一上行传输的发射功率和该第二上行传输的发射功率之和不超过该第一可用最大发射功率,该第一上行传输承载于该第一上行传输资源,该第二上行传输承载于该第二上行传输资源。
应理解,第一装置可以是终端,也可以是具备终端功能的组合器件或部件,也可以是应用于终端中的通信芯片(例如处理器、基带芯片、或芯片系统等)。
上述第一方面中,第一装置在第一上行传输资源与第二上行传输资源在时域上的重叠的情况下,采用并发模式对应的功率回退值确定可用最大发射功率,并根据并发的可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,使得并发模式下的传输功率能够满足杂散、频谱模板等对应的频谱指标,提升通信的质量和成功率。
上述实现方式中,第一装置在第一上行资源与第二上行资源重叠的情况下,确定并发模式下合适的可用最大发射功率,能够有效提升通信的质量,提高通信的成功率。
结合第五方面,在第五方面的某些实现方式中,在该第一上行传输资源与该第二上行传输资源在时域上不重叠的情况下,该处理模块,还用于根据该第一功率回退值确定该第一可用最大发射功率;该处理模块,还用于根据该第一可用最大发射功率确定该第一上行传输的发射功率或该第二上行传输的发射功率,该第一上行传输的发射功率或该第二上行传输的发射功率不超过该第一可用最大发射功率。
结合第五方面,在第五方面的某些实现方式中,在该第一上行传输资源与该第二上行传输资源在时域上不重叠的情况下,该处理模块,还用于根据第二功率回退值确定第二可用最大发射功率,该第二功率回退值为该第一上行传输资源所在的载波对应的功率回退值;
该处理模块,还用于根据该第二可用最大发射功率确定该第一上行传输的发射功率,该第一上行传输的发射功率不超过该第二可用最大发射功率;或者,该处理模块,还用于根据第三功率回退值确定第三可用最大发射功率,该第三功率回退值为该第二上行传输资源所在的载波对应的功率回退值;该处理模块,还用于根据该第三可用最大发射功率确定该第二上行传输的发射功率,该第二上行传输的发射功率不超过该第三可用最大发射功率。
在该实现方式中,第一装置在第一上行传输资源和第二上行传输资源不重叠的情况下采用各自传输对应的功率回退值确定各自的可用最大发射功率,进而确定各个传输的发射功率,减少在传输资源在时域上不重叠场景下功率回退过大而导致的通信质量变差,通信成功率降低的问题。
上述实现方式中,第一装置在第一上行传输资源和第二上行传输资源不重叠的情况下,灵活地确定合适的可用最大发射功率,能够有效提升第一装置通信的质量,提高通信的成功率。
第六方面,提供了一种通信装置,包括:第一装置接收来自网络设备的第一指示信息,该第一指示信息用于指示上行传输资源;该第一装置确定侧行传输资源;该第一装置根据第一功率回退值确定第一可用最大发射功率,该第一功率回退值为并发模式对应的功率回退值;该第一装置根据该第一可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,该上行传输的发射功率和该侧行传输的发射功率之和不超过该第一可用最大发射功率,该上行传输承载于该上行传输资源,该侧行传输承载于该侧行传输资源。
应理解,第一装置可以是终端,也可以是具备终端功能的组合器件或部件,也可以是应用于终端中的通信芯片(例如处理器、基带芯片、或芯片系统等)。
上述第一方面中,由于存在侧行传输资源与上行传输资源重叠的可能性,采用并发模式对应的功率回退值确定可用最大发射功率,并根据并发的可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,使得传输功率能够满足杂散、频谱模板等对应的频谱指标,提升通信的质量和成功率。
上述实现方式中,第一装置在上行资源和侧行资源可能重叠的情况下,灵活地确定合适的可用最大发射功率,能够有效提升通信的质量,提高通信的成功率。
上述方面中的通信装置可以是终端,也可以是应用于终端中的芯片或者其他可实现上述终端功能的组合器件、部件等。当通信装置是终端设备时收发模块可以是发送器和接收器,或整合的收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等。当通信装置是具有上述终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,收发模块可以是芯片系统的输入输出接口,处理 模块可以是芯片系统中的处理器,例如:中央处理单元(central processing unit,CPU)。
第七方面,提供了一种通信装置,包括一个或多个处理器,该一个或多个处理器与存储器耦合,可用于执行存储器中的程序或指令,以使得该装置执行上述任一方面或该方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
第八方面,提供了一种处理装置,该处理装置包括处理器和输入输出接口,例如,应用于通信装置中,用于实现上述第一方面至第三方面中所涉及的功能或方法,该处理装置例如可以是芯片系统。在一种可行的实现方式中,所述芯片系统还包括存储器,所述存储器,用于保存实现上述第一方面所述方法的功能必要的程序指令和数据。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在具体实现过程中,输入接口所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出接口所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入接口和输出接口可以是整合的同一接口,该接口在不同的时刻分别用作输入接口和输出接口。本申请实施例对处理器及各种接口的具体实现方式不做限定。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行如第一方面至第三方面中任一方面该的通信方法。
第十方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述任一方面或该方面中任一种可能实现方式中的方法。
第十一方面,提供了一种芯片系统,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统地通信设备执行如第一方面至第三方面中任一方面该的通信方法。
附图说明
图1示出了本申请实施例的一种通信架构示意图。
图2示出了几种可能的车联网通信场景。
图3示出了本申请的通信方法100。
图4示出了本申请的通信方法200。
图5示出了对本申请实施例的通信方法300。
图6示出了本申请提供的确定功率的方法400。
图7是本申请实施例提供的通信装置的示意性框图。
图8为本申请实施例提供的通信装置20的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term  evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、新无线(new radio,NR)系统或者未来的其他演进无线通信系统等。
图1示出了本申请实施例的一种通信架构示意图,如图1所示,本申请的通信系统至少包括一个网络设备和两个用户设备。以V2X通信场景为例,V2X通信可以支持有网络覆盖和无网络覆盖的通信场景。在有网络覆盖的通信场景下,该网络设备与该两个用户设备之间可以通过Uu(UTRAN-to-UE)空口进行通信,例如图1中的RAN与UE1或UE2之间的上行(uplink,UL)通信和下行(downlink,DL)通信,该两个用户设备可以通过侧行链路(sidelink,SL)载波进行通信。图1中涉及的网络设备和用户设备在网络覆盖内,可以处于连接态、空闲态或者非激活态。在无网络覆盖的通信场景下,网络设备和用户设备之间不通信,该两个用户设备可以通过SL载波进行通信。需要说明的是,侧行链路SL载波通常指的是PC5接口上的载波,此处的侧行链路SL是对PC5接口上的载波的一种形容性的限定,是为了和Uu接口上的载波进行区分,但并不应造成任何实质性的限定。
作为示例而非限定,在本申请实施例中的用户设备(如图1中的UE1和UE2)可以是一种具有无线通信收发功能的设备或者是具有无线通信收发功能的设备中的装置或芯片系统,本申请实施例中的通信装置支持sidelink通信,可以部署在陆地上,包括室内或室外、道路侧,手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、用户设备(user equipment,UE),车载通信装置、车载通信芯片、路侧单元或路侧单元中的通信装置等。
作为示例而非限定,在本申请实施例中所称的无线接入网设备(radio access network,RAN),可以是一种为终端设备提供无线通信功能服务的设备,通常位于网络侧,示例性的,具体实现形式包括但不限于:第五代(5th generation,5G)通信系统中的下一代基站(g nodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心、车辆与万物(vehicle to everything,V2X)通信(也可以称为车联网通信)系统中的为终端设备提供无线通信服务的装置、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、中继站、车载设备、可穿戴设备以及未来演进网络中的网络设备等。在一种网络结构中,基站可以是包括集中单元(centralized unit,CU)节点、或包括分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备,或者是包括控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
下面对于Uu空口通信和SL通信进行基本介绍。
Uu空口通信
Uu空口用于终端设备与接入网设备之间的通信,Uu空口也可以简称为Uu。在Uu空口通信中,接入网设备向终端设备发送信息的信道称为下行(downlink,DL)信道,下行信道可以包括物理下行数据信道(physical downlink shared channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH)中至少一种信道。所述PDCCH用于承载下行控制信息DCI,PDSCH用于承载下行数据(data)。终端设备向接入网设备发送信息的信道称为上行(uplink,UL)信道,上行信道可以包括物理上行数据信道(physical uplink shared channel,PUSCH)和物理上行控制信道(physical uplink control channel,PUCCH)中至少一种信道。PUSCH用于承载上行数据。其中,上行数据也可以称为上行数据信息。PUCCH用于承载终端设备反馈的上行控制信息(uplink control information,UCI),比如UCI中可以包括终端设备反馈的信道状态信息(channel state information,CSI)、肯定应答(acknowledge,ACK)和/或否定应答(negative acknowledgement,NACK)等。Uu空口的传输可以包括上行传输和下行传输,其中上行传输是指终端设备向接入网设备发送信息,下行传输是指接入网设备向终端设备发送信息。上行传输的信息可以为上行信息或上行信号。其中,上行信息或上行信号可以包括PUSCH、PUCCH、探测参考信号(sounding reference signal,SRS)中至少一种。下行传输的信息可以为下行信息或下行信号。其中,下行信息或下行信号可以包括PDSCH,PDCCH,信道状态信息参考信号(channel state information reference signal,CSI RS),相位跟踪参考信号(phase tracking reference signal,PTRS)中至少一种。
侧行链路(sidelink,SL)通信
SL通信用于终端和终端之间的通信。SL传输的信道可以承载于上行载波中,该上行载波可以是网络设备与终端通信的上行载波,也可以是一个独立的载波。应理解,侧行链路sidelink也可以称为旁链路、边链路、副链路等。sidelink通信可以使用物理侧行链路共享信道(physical sidelink shared channel,PSSCH)、物理侧行链路控制信道(physical sidelink control channel,PSCCH),即SL资源包括PSCCH资源和PSSCH资源,其中,PSCCH用于承载第一级侧行链路控制信息(sidelink control information,SCI),PSSCH用于承载第二级SCI和数据,SCI中的信息也可称为调度分配(scheduling assignment,SA)。SA包含用于数据调度的相关信息,比如PSSCH的资源分配,调制编码方式等信息。PSSCH和PSCCH可以是发送端终端(比如终端1)发送至接收端终端(比如终端2)的信道。
Uu空口通信和SL通信的一个典型应用场景即车联网。在V2X中,每辆车即是一个用户设备,两辆车之间可以通过SL直接进行数据传输,也可以基于Uu接口通过网络进行数据传输。
随着无线通信技术的发展,人们对高数据速率和用户体验的需求日益增长,同时人们对了解周边人或事物并与之通信的邻近服务的需求逐渐增加,因此设备到设备(device-to-device,D2D)技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担、减少用户设备的电池功耗、提高数据速率,并能很好地满足邻近服务的需求。D2D技术允许多个支持D2D功能的用户设备(user equipment,简称为UE)在有网络基础设施或无网 络基础设施的情况下进行直接发现和直接通信。鉴于D2D技术的特点和优势,基于D2D技术的车联网应用场景被提出,但是因涉及安全性的考虑,这种场景下对时延的要求非常高,现有的D2D技术无法实现。
因此在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的LTE技术的网络下,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出,V2X通信是指车辆与外界的任何事物的通信,包括例如图2中的(a)所示的车与车的通信(vehicle to vehicle,V2V)、例如图2中的(b)所示的车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、例如图2中的(c)所示的车与网络的通信(vehicle to network,V2N)。
V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。LTE V2X通信可以支持有网络覆盖和无网络覆盖的通信场景,其资源分配方式可以采取网络接入设备调度模式,如演进通用陆地无线接入网节点B(E-UTRAN Node B,简称为eNB)调度模式和UE自选模式。基于V2X技术,车辆用户(vehicle UE,简称为V-UE)能将自身的一些信息,例如位置、速度、意图(转弯、并线、倒车)等信息周期性以及一些非周期性的事件触发的信息向周围的V-UE发送,同样地V-UE也会实时接收周围用户的信息。3GPP标准组织在2017年初正式发布第一代LTE V2X标准,LTE版本号Release 14。
LTE V2X解决了V2X场景中的一些部分基础性的需求,但对于未来的完全智能驾驶、自动驾驶等应用场景而言,现阶段的LTE V2X还不能有效的支持。随着5G NR技术在3GPP标准组织中的开发,5G NR V2X也将进一步发展,比如可以支持更低的传输时延,更可靠的通信传输,更高的吞吐量,更好的用户体验,以满足更加广泛的应用场景需求。
由上可知,在NR V2X有网络覆盖的场景下,针对一个用户设备而言,它在发送信道时,可能使用三种不同的发送模式,其可以通过多种实现方式分别向网络设备发送Uu空口的单载波和向其他用户设备发送侧行链路(sidelink,SL)的单载波。例如,仅通过Uu空口向网络设备发送单载波,或者,仅通过SL载波向其他用户设备发送单载波,或者,分别通过Uu空口和SL载波向网络设备和其他终端设备发送单载波。对于分别通过Uu空口和SL载波向网络设备和其他终端设备发送单载波的情况,可能出现Uu空口通信和SL载波通信的时间段重叠的情况,也可能出现Uu空口通信和SL载波通信的时间段不重叠的情况。上述不同的实现方式下,适合该用户设备的可用最大发射功率(configured maximum output power)不同。
目前在V2X有网络覆盖场景下,或者,更具体,在Uu和SL同时工作状态下,终端设备先分别确定出其通过SL单载波传输时的可用最大发射功率和通过Uu单载波传输时的可用最大发射功率,再根据这两种传输方式的可用最大发射功率确定终端设备的可用最大发射功率。应理解,确定可用最大发射功率需要用到功率回退值。其中,确定SL单载波传输时的可用最大发射功率时只考虑SL单载波传输时的功率回退值,确定Uu单载波传输时的可用最大发射功率时只考虑Uu单载波传输时的功率回退值。那么,如果在Uu空口通信和SL载波通信的时间段重叠的情况下,如果仍然使用该方法,很可能导致确定的可用最大发射功率不合适,从而存在无法满足射频指标(如杂散发射、频谱模板等)的风险。
由此可见,上述确定终端设备可用最大发射功率的方法并没有判断Uu空口通信和SL载波通信的时间段是否重叠,也就不可能针对Uu空口通信和SL载波通信的时间段是否重叠而灵活地选择不同的功率回退值,从而无法确定合适的配置发射功率。
因此,在有网络覆盖的通信场景下,或者,更具体地,在Uu和SL同时工作状态下,如何灵活地确定合适的可用最大发射功率是亟待解决的问题。
为了更好地理解本申请实施例的技术方案,下面介绍一些相关概念。
一、可用最大发射功率(configured maximum output power)
由UE根据网络配置的资源情况,如RB分配位置,连续RB分配的长度,调制方式等来决定。下面的公式为NR V2X在SL传输时单载波的可用最大发射功率为例,介绍可用最大发射功率现有的计算方式。
该可用最大发射功率存在上下界范围:
P CMAX_L,f,c≤P CMAX,f,c≤P CMAX_H,f,c
其中,P CMAX_L,f,c=MIN{P EMAX,c–ΔT C,c,P PowerClass––MAX(MAX(MPR c,A-MPR c)+ΔT IB,c+ΔT C,c,P-MPR c),P Regulatory,c},
P CMAX_H,f,c=MIN{P EMAX,c,P PowerClass,P Regulatory}。
上界由网络配置的小区级功率P EMAX,c、UE上报的发射功率等级P PowerClass和部分场景下法规的限制P Regulatory取最小值来决定。下界主要由UE上报的发射功率等级P PowerClass和最大功率回退值MPR c、A-MPR c决定。考虑一般情况下,这里可以仅考虑MPR c功率回退。
类似地,对单载波Uu的可用最大发射功率,也可以采用与上述SL相似的可用最大发射功率定义,在此不多赘述。
二、功率回退值(maximum power reduction,MPR)
功率回退值为终端设备根据物理信道的资源分配情况,为满足特定射频指标,如杂散,频谱模板,邻信道泄漏比(adjacent channel leakage ratio,ACLR),误差向量幅度(error vector magnitude,EVM)等指标所需要的功率回退,该功率回退与资源块(resource block,RB)资源在载波内的分配位置,RB数量,通信的调制方式,如正交相移键控(quadrature phase shift keying,QPSK),16正交振幅调制(quadrature amplitude modulation,QAM)等相关。在满足MPR功率回退的基础上,为满足额外的区域法规规定的频谱共存指标,UE还可能需要额外的功率回退(additional maximum power reduction),即A-MPR。
下面结合图3,对本申请实施例的通信方法100进行详细说明。图3是本申请方法100的示意性流程图。
S101,第一装置接收来自网络设备的第一指示信息,相应地,网络设备向第一装置发送该第一指示信息,该第一指示信息用于指示第一上行传输资源。
示例性的,这里的第一指示信息可以是下行控制信息,也可以是半静态调度的指示信息。示例性的,第一装置可以是终端设备,第一装置通过Uu空口接收该第一指示信息。终端设备处于无线资源控制(radioresource control,RRC)连接态。
S102,所述第一装置确定所述第一上行传输资源与第一侧行传输资源在时域上是否重叠。
示例性地,这里的第一侧行传输资源可以是网络设备通过指示信息配置的(例如侧行 传输的mode1),或者也可以是预配置的(例如侧行传输的mode2)。
关于第一装置如何确定第一上行传输资源和第一侧行传输资源在时域上重叠,例如,UE在得到第一上行传输资源的控制信息时已经得到第一侧行传输资源的控制信息,即可以根据第一上行传输资源的控制信息和第一侧行传输资源的控制信息确定上行传输资源和该多个侧行传输资源在时域上重叠。
示例性地,第一上行传输资源和第一侧行传输资源位于同一频段。
示例性地,方法300可以是在上行传输(Uu空口通信)和侧行传输(PC5口通信)的同时工作场景下,例如con-current operation场景。
随后,在后续步骤中,第一装置会根据S102中的判断结果(重叠或不重叠)确定第一可用最大发射功率。
S103,在第一上行传输资源与第一侧行传输资源在时域上重叠的情况下,第一装置根据第一功率回退值确定第一可用最大发射功率。
应理解,这里的第一可用最大发射功率为第一装置在满足相关射频指标下的最大发射功率,换句话说,在第一上行传输资源与第一侧行传输资源在时域上重叠的情况下,第一装置分别在第一上行传输资源和第一侧行传输资源上分配的可用发射功率的总和不超过该第一可用最大发射功率。
还应理解,这里的第一功率回退值是为并发模式对应的功率回退值。示例性地,第一功率回退值是根据第一上行传输资源与第一侧行传输资源确定的。
示例性地,第一装置预配置多个第一映射关系或多个第一对应关系,该多个映射关系或第一对应关系可以是第一功率回退值和资源配置情况的映射关系,这里的资源配置情况例如可以是以下参数中的一个或多个:资源块(resource block,RB)分配位置、连续RB分配长度、调制方式等。第一装置可以根据该多个第一映射关系或多个第一对应关系确定第一功率回退值。示例性地,这里的第一映射关系或第一对应关系可以是以表格的形式呈现,或者也可以是以其他的方式呈现,本申请对此不做限定。
第一装置可以先确定上述第一可用最大发射功率的上界和下界,再根据该上界和下界确定第一可用最大发射功率。作为一个示例,第一装置会根据第一功率回退值确定该下界。作为另一个示例,第一装置根据第一功率回退值和第一功率等级确定该下界,第一装置根据第一功率等级确定下界。这里的第一功率等级也可以是根据第一上行传输资源与第一侧行传输资源重叠的传输资源确定的,或者,这里的第一功率等级也可以是根据第一上行传输资源与第一侧行传输资源重叠的传输资源,结合预配置信息确定的。具体可以参见方法300中可能的实现方式一中的示例一的描述。
S104,第一装置根据第一可用最大发射功率确定第一上行传输的发射功率和第一侧行传输的发射功率。
其中,第一上行传输的发射功率和第一侧行传输的发射功率之和不超过第一可用最大发射功率,第一上行传输承载于第一上行传输资源,第一侧行传输承载于第一侧行传输资源。
通过上述方法,在第一装置在第一上行传输资源与第一侧行传输资源在时域上重叠时,采用并发模式对应的功率回退值确定可用最大发射功率,减少了现有技术中由于不考虑是否重叠的情况,导致在上述资源重叠时,仍然使用不同的传输资源各自的功率回退值确定 可用最大发射功率可能导致的无法满足射频指标的问题。
第一装置在第一上行传输资源与第一侧行传输资源在时域上的重叠的情况下,采用并发模式对应的功率回退值确定可用最大发射功率,并根据并发的可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,使得并发模式下的传输功率能够满足杂散、频谱模板等对应的频谱指标,提升通信的质量和成功率。
本申请实施例,第一装置在第一上行资源与第一侧行资源重叠的情况下,确定并发模式下合适的可用最大发射功率,能够有效提升通信的质量,提高通信的成功率。
可选地,方法100还可以包括:
与S103相对应的,在第一上行传输资源与第一侧行传输资源在时域上不重叠的情况下,第一装置可以通过不同的方式确定第一可用最大发射功率。
应理解,第一上行传输资源与第一侧行传输资源在时域上不重叠时,对应的第一装置发送的资源可能有多种情况。例如,第一装置可以仅发送上行传输资源,或者,第一装置可以仅发送侧行传输资源。
方式一,第一装置根据第一功率回退值确定第一可用最大发射功率。
应理解,这里的第一功率回退值如S103中所述。以及如何而根据第一功率回退值确定第一可用最大发射功率也可以如S103中所述。
方式二,第一装置根据第二功率回退值确定第一可用最大发射功率,第二功率回退值是根据第一上行传输资源确定的;或者,第一装置根据第三功率回退值确定第一可用最大发射功率,第三功率回退值是根据第一侧行传输资源确定的。
应理解,第一上行传输资源与第一侧行传输资源在时域上不重叠时,可用理解为,在某个时间段内,第一装置仅发送侧行传输或上行传输,那么在确定第一装置的可用最大发射功率时,即为确定当前发送的传输资源对应的发射功率。确定当前发送的传输对应的发射功率之前,需要先确定该发射功率的上界和或下界。
示例性地,下面以第一装置仅发送第一侧行传输为例对确定第一可用最大发射功率的方式进行说明,第一装置根据第三功率回退值计算侧行传输资源对应的发射功率的下界,即作为第一装置的可用最大发射功率的下界;或者,第一装置根据第三功率回退值和第三功率等级计算侧行传输资源对应的发射功率的下界,即作为第一装置的可用最大发射功率的下界,这里的第三功率等级可用是根据侧行传输资源确定的或者是根据侧行传输资源和预配置信息确定的;或者,这里的第三功率回退值也可以是第一功率回退值,即第一装置根据第一功率回退值和第三功率等级计算侧行传输资源对应的发射功率的下界,即作为第一装置的可用最大发射功率的下界。示例性地,第一装置仅进行侧行传输为例对确定第一可用最大发射功率的方式与上述示例类似在此不多赘述。
在该实现方式中,第一装置在上行传输资源和侧行传输资源不重叠的情况下采用各自传输对应的功率回退值确定各自的可用最大发射功率,进而确定各个传输的发射功率,减少在传输资源在时域上不重叠场景下功率回退过大而导致的通信质量变差,通信成功率降低的问题。
上述实现方式中,第一装置在第一上行传输资源和第一侧行传输资源不重叠的情况下,灵活地确定合适的可用最大发射功率,能够有效提升第一装置通信的质量,提高通信的成功率。
可选地,方法100还可以包括:
与S103相对应的,在第一上行传输资源与第一侧行传输资源在时域上不重叠的情况下,第一装置可以通过不同的方式确定第一可用最大发射功率。
方式一,第一装置根据第一功率回退值确定第一可用最大发射功率;第一装置根据第一可用最大发射功率确定第一上行传输的发射功率或第一侧行传输的发射功率,第一上行传输的发射功率或第一侧行传输的发射功率不超过第一可用最大发射功率。
方式二,第一装置根据第二功率回退值确定第二可用最大发射功率,第二功率回退值为第一上行传输资源所在的载波对应的功率回退值;第一装置根据第二可用最大发射功率确定第一上行传输的发射功率,第一上行传输的发射功率不超过第二可用最大发射功率;或者,第一装置根据第三功率回退值确定第三可用最大发射功率,第三功率回退值为第一侧行传输资源所在的载波对应的功率回退值;第一装置根据第三可用最大发射功率确定第一侧行传输的发射功率,第一侧行传输的发射功率不超过第三可用最大发射功率。
上述方案并没有对所有可能存在时域资源重叠的情况都采用并发模式对应的功率回退值确定可用最大发射功率,减少在不并发场景下功率回退过大而导致的通信质量变差,通信成功率降低的问题。
第一装置在上行传输资源和侧行传输资源不重叠的情况下采用各自传输对应的功率回退值确定各自的可用最大发射功率,进而确定各个传输的发射功率,减少在传输资源在时域上不重叠场景下功率回退过大而导致的通信质量变差,通信成功率降低的问题。
上述实现方式中,第一装置在第一上行传输资源和第一侧行传输资源不重叠的情况下,灵活地确定合适的可用最大发射功率,能够有效提升第一装置通信的质量,提高通信的成功率。
在S103的基础上,在第一上行传输资源与第一侧行传输资源在时域上重叠的情况下,已经根据S103中的方法确定了可用最大发射功率,在分别对侧行传输和上行传输进行功率分配时可用考虑侧行传输和上行传输的优先级。
可选地,所述方法100还包括:
作为一个示例,第一装置确定第一上行传输的优先级高于第一侧行传输的优先级;第一装置确定第二可用最大发射功率,第二可用最大发射功率为第一上行传输的最大发射功率;第一装置根据第一可用最大发射功率和第二可用最大发射功率确定第三可用最大发射功率,第三可用最大发射功率为第一侧行传输的最大发射功率。
该示例中,由于第一上行传输的优先级更高,因此在进行功率分配时优先保证第一上行传输能够使用按照第二功率回退值确定的第二可用最大发射功率,随后再根据第一可用最大发射功率中除去第二可用最大发射功率部分的功率确定第三可用最大发射功率。
或者,作为另一个示例,第一装置确定第一侧行传输的优先级高于第一上行传输的优先级;第一装置确定第三可用最大发射功率,第三可用最大发射功率为第一侧行传输的最大发射功率;第一装置根据第一可用最大发射功率和第三可用最大发射功率确定第二可用最大发射功率,第二可用最大发射功率为第一上行传输的最大发射功率。
该示例中,由于第一侧行传输的优先级更高,因此在进行功率分配时优先保证第一侧行传输能够按照第三功率回退值确定其使用的第三可用最大发射功率,随后再根据第一可用最大发射功率中除去第三可用最大发射功率部分的功率确定第二可用最大发射功率。
在S103基础上,即在第一上行传输资源与第一侧行传输资源在时域上重叠的情况下,该第一上行传输资源可能还与除了第一侧行传输资源以外至少一个第二侧行传输资源重叠,或者,该第一侧行传输资源可能还除了该第一上行传输资源以外的至少一个第二上行传输资源重叠,那么第一装置可以根据以下方法来实现根据第一功率回退值确定第一可用最大发射功率。示例性地,该至少一个第二侧行传输资源、该至少一个第二上行传输资源、第一上行传输资源与第一侧行传输资源位于同一频段。
本申请实施例,在确定合适的可用最大发射功率之后,根据不同的传输资源的优先级对不同的传输资源进行功率分配,可以进一步提高通信质量,保证通信的成功率。
在S103和S104的基础上,在第一上行传输资源与第一侧行传输资源在时域上重叠的情况下,已经根据S103中的方法确定了可用最大发射功率,在分别对侧行传输和上行传输进行功率分配时可用考虑侧行传输和上行传输的优先级。
可选地,方法100还包括:
可能的情况一,在第一上行传输资源与第一侧行传输资源在时域上重叠,且第一上行传输的优先级高于第一侧行传输的优先级的情况下,
第一装置根据第一可用最大发射功率确定第一上行传输的发射功率和第一侧行传输的发射功率,包括:
第一装置确定第一上行传输的发射功率,第一上行传输的发射功率为第一上行传输的发射功率与第一可用最大发射功率中的较小值,第一上行传输的发射功率是根据第二功率回退值确定的,第二功率回退值为第一上行传输资源所在的载波对应的功率回退值;
第一装置根据第一可用最大发射功率和第一上行传输的发射功率确定第一侧行传输的发射功率。
可能的情况二,在第一上行传输资源与第一侧行传输资源在时域上重叠,且第一侧行传输的优先级高于第一上行传输的优先级的情况下,
第一装置根据第一可用最大发射功率确定第一侧行传输的发射功率和第一上行传输的发射功率,包括:
第一装置确定第一侧行传输的发射功率,第一侧行传输的发射功率为第一侧行传输的发射功率与第一可用最大发射功率中的较小值,第一侧行传输的发射功率是根据第三功率回退值确定的,第三功率回退值为第一侧行传输资源所在的载波对应的功率回退值;
第一装置根据第一可用最大发射功率和第一侧行传输的发射功率确定第一上行传输的发射功率。
上述实现方式中,第一装置可以考虑重叠的传输资源之间的优先级,优先为优先级高的传输确定发射功率,保证高优先级传输的成功率,可以进一步提高通信质量。
可选地,所述方法100还包括:
作为一个示例,第一装置接收来自网络设备的第二指示信息,第二指示信息用于指示至少一个第二上行传输资源;第一装置确定第一侧行传输资源与至少一个第二上行传输资源重叠。应理解,结合步骤S103可知,该第一侧行传输资源与第一上行传输资源、至少一个第二上行传输资源重叠,在第一侧行传输资源、第一上行传输资源和至少一个第二上行传输资源中,第一侧行传输资源在时域上最长。示例性地,第一装置的上行传输资源和侧行传输资源的子载波间隔不同,会导致上述上行传输资源和侧行传输资源在时域上包括 的时隙长度或正交频分复用(orthogonal frequency division multiplexing,OFDM)符号长度不同。例如,当子载波间隔为15kHz,不包括CP的OFDM符号长度为66.67us,当子载波间隔为60kHz,不包括CP的OFDM符号长度为16.67us。这里的第一侧行传输资源在时域上最长可以理解为上行传输资源在时域上占据的时隙最长或者OFDM符号最长。
在上述情况下,第一装置根据第一功率回退值确定第一可用最大发射功率,具体可以包括以下步骤:
步骤一,第一装置根据至少一个第四功率回退值确定至少一个第四可用最大发射功率。
其中,第四可用最大发射功率为第一侧行传输和第二上行传输的最大发射功率,或者说第四可用最大发射功率为第一侧行传输和第二上行传输共同的最大发射功率,第一侧行传输的发射功率和第二上行传输的发射功率之和不超过第四可用最大发射功率,第四功率回退值是根据所述第一侧行传输资源和第二上行传输资源重叠的资源确定的。
例如,第一装置可以分别确定第一侧行传输和每个第二上行传输的最大发射功率的上界和下界,其中,上述确定的每个最大发射功率的下界是根据每个第四功率回退值确定的。
步骤二,第一装置根据第一功率回退值确定第五可用最大发射功率,第五可用最大发射功率为第一侧行传输和第一上行传输的最大发射功率。
示例的,第一功率回退值是根据所述第一上行传输资源与第一侧行传输资源重叠的传输资源确定的。第一装置分别确定第一侧行传输和第一上行传输的最大发射功率的上界和下界,其中,上述确定的每个最大发射功率的下界是根据每个第一功率回退值确定的。
结合步骤一和步骤二,第一装置获得了与第一侧行传输资源重叠的第一上行传输资源和至少一个第二上行传输资源重叠部分的资源对应的发射功率。
步骤三,第一装置根据至少一个第四可用最大发射功率和第五可用最大发射功率确定第一可用发射功率。
示例性地,第一装置根据至少一个第四可用最大发射功率和第五可用最大发射功率确定出第一可用最大发射功率的上界和下界,从而确定出第一可用最大发射功率。例如,第一装置可以将至少一个第四可用最大发射功率和第五可用最大发射功率中的最大值作为第一可用最大发射功率的上界,将至少一个第四可用最大发射功率和第五可用最大发射功率中的最小值作为第一可用最大发射功率的下界,从而确定出第一可用最大发射功率。
示例性地,第一装置根据至少一个第四可用最大发射功率的上界和下界和第五可用最大发射功率的上界和下界确定出第一可用最大发射功率的上界和下界,从而确定出第一可用最大发射功率。例如,第一装置可以将至少一个第四可用最大发射功率和第五可用最大发射功率的上界中的最大值作为第一可用最大发射功率的上界,将至少一个第四可用最大发射功率和第五可用最大发射功率下界中的最小值作为第一可用最大发射功率的下界,从而确定出第一可用最大发射功率。
具体可参见方法400中的S401b-S403b中的描述。
作为另一个示例,第一装置接收来自网络设备的第二指示信息,第二指示信息用于指示至少一个第二侧行传输资源;第一装置确定第一上行传输资源与至少一个第二侧行传输资源重叠。应理解,结合步骤S103可知,该第一上行传输资源与第一侧行传输资源、至少一个第二侧行传输资源重叠,在第一上行传输资源、第一侧行传输资源和至少一个第二侧行传输资源中,第一上行传输资源在时域上最长。示例性地,第一装置的侧行传输资源 和上行传输资源的子载波间隔不同,会导致上述侧行传输资源和上行传输资源在时域上包括的时隙长度或正交频分复用(orthogonal frequency division multiplexing,OFDM)符号长度不同。例如,当子载波间隔为15kHz,不包括CP的OFDM符号长度为66.67μs,当子载波间隔为60kHz,不包括CP的OFDM符号长度为16.67μs。这里的第一上行传输资源在时域上最长可以理解为侧行传输资源在时域上占据的时隙最长或者OFDM符号最长。
在上述情况下,第一装置根据第一功率回退值确定第一可用最大发射功率,具体可以包括以下步骤:
步骤一,第一装置根据至少一个第四功率回退值确定至少一个第四可用最大发射功率。
其中,第四可用最大发射功率为第一上行传输和第二侧行传输之间对应的最大发射功率,第四功率回退值是根据所述第一上行传输资源和第二侧行传输资源重叠的资源确定的。
应理解,第一装置分别确定第一上行传输资源和每个第二侧行传输资源之间对应的最大发射功率的上界和下界,其中,上述确定的每个最大发射功率的下界是根据每个第四功率回退值确定的。
步骤二,第一装置根据第一功率回退值确定第五可用最大发射功率,第五可用最大发射功率第一上行传输资源和第一侧行传输资源之间对应的最大发射功率。
应理解,第一功率回退值是根据所述第一侧行传输资源与第一上行传输资源重叠的传输资源确定的。第一装置分别确定第一上行传输资源和第一侧行传输资源之间对应的最大发射功率的上界和下界,其中,上述确定的每个最大发射功率的下界是根据每个第一功率回退值确定的。
结合步骤一和步骤二,第一装置获得了与第一上行传输资源重叠的第一侧行传输资源和至少一个第二侧行传输资源重叠部分的资源对应的发射功率。
步骤三,第一装置根据至少一个第四可用最大发射功率和第五可用最大发射功率确定第一可用发射功率。
示例性地,第一装置根据至少一个第四可用最大发射功率和第五可用最大发射功率确定出第一可用最大发射功率的上界和下界,从而确定出第一可用最大发射功率。例如,第一装置可以将至少一个第四可用最大发射功率和第五可用最大发射功率中的最大值作为第一可用最大发射功率的上界,将至少一个第四可用最大发射功率和第五可用最大发射功率中的最小值作为第一可用最大发射功率的下界,从而确定出第一可用最大发射功率。
示例性地,第一装置根据至少一个第四可用最大发射功率的上界和下界和第五可用最大发射功率的上界和下界确定出第一可用最大发射功率的上界和下界,从而确定出第一可用最大发射功率。例如,第一装置可以将至少一个第四可用最大发射功率和第五可用最大发射功率的上界中的最大值作为第一可用最大发射功率的上界,将至少一个第四可用最大发射功率和第五可用最大发射功率下界中的最小值作为第一可用最大发射功率的下界,从而确定出第一可用最大发射功率。
具体可参见方法400中的S401a-S403a中的描述。
本申请实施例,在一个上行传输资源与多个侧行传输资源重叠的情况下,或者,在一个侧行传输资源与多个上行传输资源重叠,通过分别根据两两重叠的资源确定可用最大发射功率从而确定第一装置的可用最大发射功率的范围,来确定第一装置的可用最大发射功率,进一步扩展了本申请提高的功率的方法的应用范围,使得可用最大发射功率的确定方 式更为灵活,进一步提高通信质量,提高通信的成功率。
作为另一个示例,第一装置接收来自网络设备的第二指示信息,第二指示信息用于指示第二上行传输资源;在第二上行传输资源与第一侧行传输资源在时域上重叠的情况下,第一装置根据第四功率回退值确定第四可用最大发射功率,第四功率回退值为并发模式对应的功率回退值,且第四功率回退值是根据第二上行传输资源与第一侧行传输资源确定的;在第四可用最大发射功率大于第一可用最大发射功率的情况下,第一装置根据第一可用最大发射功率确定第二上行传输的发射功率,第二上行传输的发射功率和第一侧行传输的发射功率之和不超过第一可用最大发射功率,第二上行传输承载于第二上行传输资源。
应理解,在一个侧行传输资源与多个上行传输资源重叠的情况下,分别根据侧行传输资源与每个上行传输资源确定的功率回退值确定多个可用最大发射功率,将该多个可用最大发射功率的最小值确定为第一装置的可用最大发射功率。
上述实现方式中,在一个侧行传输资源与多个上行传输资源重叠的情况下,在一个侧行传输资源与多个上行传输资源重叠的多个时域资源内,都可以保证杂散频谱指标满足要求,可以进一步提高通信质量。
作为另一个示例,第一装置确定至少一个第二侧行传输资源;在第二侧行传输资源与第一上行传输资源在时域上重叠的情况下,第一装置根据第五功率回退值确定第五可用最大发射功率,第五功率回退值为并发模式对应的功率回退值,且第五功率回退值是根据第二侧行传输资源与第一上行传输资源确定的;在第五可用最大发射功率大于第一可用最大发射功率的情况下,第一装置根据第一可用最大发射功率确定第二侧行传输的发射功率,第二侧行传输的发射功率和第一上行传输的发射功率之和不超过第一可用最大发射功率,第二侧行传输承载于第二侧行传输资源。
应理解,在一个上行传输资源与多个侧行传输资源重叠的情况下,分别根据上行传输资源与每个侧行传输资源确定的功率回退值确定多个可用最大发射功率,将该多个可用最大发射功率的最小值确定为第一装置的可用最大发射功率。
上述实现方式中,在一个上行传输资源与多个侧行传输资源重叠的情况下,在一个上行传输资源与多个侧行传输资源重叠的多个时域资源内,都可以保证杂散频谱指标满足要求,可以进一步提高通信质量。
下面结合图4介绍本申请提供的通信方法200。
S201,第一装置接收来自网络设备的第一指示信息,相应地,网络设备向第一装置发送该第一指示信息,第一指示信息用于指示第一上行传输资源。
示例性的,这里的第一指示信息可以是下行控制信息,也可以是半静态调度的指示信息。示例性地,第一装置可以是终端设备,第一装置通过Uu空口接收该第一指示信息。终端设备处于无线资源控制(radioresource control,RRC)连接态。
S202,第一装置接收来自网络设备的第二指示信息,相应地,网络设备向第一装置发送该第二指示信息,第一指示信息用于指示第二上行传输资源。
S203,所述第一装置确定所述第一上行传输资源与第二上行传输资源在时域上是否重叠。
S204,在第一上行传输资源与第二上行传输资源在时域上重叠的情况下,第一装置根据第一功率回退值确定第一可用最大发射功率。
应理解,这里的第一可用最大发射功率为第一装置发送第一上行传输与第二上行传输的最大发射功率,换句话说,在第一上行传输资源与第二上行传输资源在时域上重叠的情况下,终端设备分别在第一上行传输资源和第二上行传输资源上分配的可用发射功率的总和为该第一可用最大发射功率。
还应理解,这里的第一功率回退值是为并发模式对应的功率回退值。示例性地,第一装置预配置多个第一映射关系或多个第一对应关系,该多个映射关系或第一对应关系可以是第一功率回退值和上述重叠的传输资源的资源配置情况的映射关系,这里的资源配置情况例如可以是以下参数中的一个或多个:资源块(resource block,RB)分配位置、连续RB分配长度、调制方式等。第一装置可以根据该多个第一映射关系或多个第一对应关系确定第一功率回退值。
关于第一装置根据第一功率回退值确定第一可用最大发射功率,第一装置先确定上述第一可用最大发射功率的上界和下界,再根据该上界和下界确定第一可用最大发射功率。作为一个示例,第一装置会根据第一功率回退值确定该下界。作为另一个示例,第一装置根据第一功率回退值和第一功率等级确定该下界,第一装置根据第一功率等级确定下界。这里的第一功率等级也可以是根据第一上行传输资源与第二上行传输资源重叠的传输资源确定的,或者,这里的第一功率等级也可以是根据第一上行传输资源与第二上行传输资源重叠的传输资源,结合预配置信息确定的。
上述方法中,第一装置确定第一上行传输资源与第二上行传输资源在时域上是否重叠,并进一步根据第一上行传输资源与第二上行传输资源在时域上的重叠情况确定合适的可用最大发射功率。在上述资源重叠时,采用并发模式对应的功率回退值确定可用最大发射功率,减少了现有技术中由于不考虑是否重叠的情况,导致在上述资源重叠时,仍然使用不同的传输资源各自的功率回退值确定可用最大发射功率可能导致的无法满足射频指标的问题。
上述方案,通过根据资源重叠情况灵活地确定合适的可用最大发射功率,能够有效提升第一装置的通信质量,提高通信的成功率。
可选地,方法200还可以包括:
与S203相对应的,在第一上行传输资源与第二上行传输资源在时域上不重叠的情况下,第一装置可以通过不同的方式确定第一可用最大发射功率。
应理解,第一上行传输资源与第二上行传输资源在时域上不重叠时,第一装置可以仅发送上行传输,或者,第一装置可以仅发送第二上行传输,或者,第一装置还可以发送第二上行传输和上行传输。
方式一,第一装置根据第一功率回退值确定第一可用最大发射功率。
应理解,这里的第一功率回退值如S203中所述。以及如何而根据第一功率回退值确定第一可用最大发射功率也可以如S203中所述。
方式二,第一装置根据第二功率回退值确定第一可用最大发射功率,第二功率回退值是根据第一上行传输资源确定的;或者,第一装置根据第三功率回退值确定第一可用最大发射功率,第三功率回退值是根据第二上行传输资源确定的。
应理解,第一上行传输资源与第二上行传输资源在时域上不重叠时,可用理解为,在某个时间段内,第一装置仅发送第二上行传输或上行传输,那么在确定第一装置的可用最 大发射功率时,即为确定当前发送的传输对应的发射功率。确定当前发送的传输对应的发射功率之前,需要先确定该发射功率的上界和或下界。示例性地,下面以第一装置仅发送第一上行传输为例对确定第一可用最大发射功率的方式进行说明,第一装置根据第二功率回退值计算第二上行传输资源对应的发射功率的下界,即作为第一装置的可用最大发射功率的下界;或者,第一装置根据第二功率回退值和第二功率等级计算第二上行传输资源对应的发射功率的下界,即作为第一装置的可用最大发射功率的下界,这里的第二功率等级可用是根据第二上行传输资源确定的或者是根据第二上行传输资源和预配置信息确定的;或者,这里的第二功率回退值也可以是第一功率回退值,即第一装置根据第一功率回退值和第二功率等级计算第二上行传输资源对应的发射功率的下界,即作为第一装置的可用最大发射功率的下界。示例性地,第一装置仅发送第二上行传输为例对确定第一可用最大发射功率的方式与上述示例类似在此不多赘述。
本申请实施例,并没有对所有可能存在时域资源重叠的情况都采用并发模式对应的功率回退值确定可用最大发射功率,减少在时域资源不重叠的场景下功率回退过大而导致的通信质量变差,通信成功率降低的问题。因此,本申请实施例通过根据资源重叠情况灵活地确定合适的可用最大发射功率,能够有效提升第一装置的通信质量,提高通信的成功率。
需要说明的是,以上第一装置通过第一上行传输资源和第二上行传输资源重叠和不重叠确定可用最大发射功率的方式还可以用于载波聚合场景,即第一上行传输资源和第二上行传输资源均由网络设备的指示信息确定。
下面结合图5,对本申请实施例的通信方法300进行详细说明。图2是本申请方法300的示意性流程图。
应理解,UE进行侧行链路通信时,存在半双工问题,即UE在侧行链路上不能同时接收和发送。NR V2X在侧行链路上有2种工作方式,分别是mode1(模式1)和mode2(模式2):mode1为基站调度方式;mode2为UE自身根据信道监测结果选择资源,换句话说,SL的资源是预配置的。UE与网络设备之间的Uu空口通信也可能处于无线资源控制(radioresource control,RRC)的IDLE(空闲)态、INACTIVE(非激活)态和CONNECTED(连接)态。
对于上述UE进行上行传输和侧行传输的不同情况,分别介绍方法300的几种具体的实现方式。
侧行传输资源的配置情况一,UE在侧行链路上使用mode2,即SL的资源是预配置的。
可能的实现方式一,UE确定Uu空口通信处于连接态,UE在SL预配置资源池进行SL传输。
其中,可能的实现方式一具体通过以下几种可能的情况进行实现。
可能的情况一,根据上行传输资源和侧行传输资源在时域上是否重叠,可以有不同的具体实现方式。
示例一,UE确定上行传输资源和侧行传输资源在时域上重叠。
S301,UE判断是否发送上行传输和/或侧行传输。
UE确定发送侧行传输和上行传输。
进一步地,UE确定上行传输资源和侧行传输资源在时域上重叠。
关于UE如何确定上行传输资源和侧行传输资源在时域上重叠,例如,UE在得到上 行传输资源的控制信息时已经得到侧行传输资源的控制信息,即可以根据上行传输资源的控制信息和侧行传输资源的控制信息确定上行传输资源和侧行传输资源在时域上重叠。
S302,UE根据判断结果确定可用最大发射功率。
由于上行传输资源和侧行传输资源在时域上重叠,本申请实施例可以考虑在计算可用最大发射功率的下限时采用上行传输资源和侧行传输资源的共同的最大功率回退值计算可用最大发射功率。
具体地,UE在计算可用最大发射功率是先计算出可用最大发射功率的上界和下界,其中,UE会根据最大功率回退值计算下界,这里的最大功率回退值可以是MAX(MPR con-current,A-MPR con-current),或者,也可以是MPR con-current,MPR con-current和A-MPR con-current可以是UE根据网络配置的资源情况来确定的,其与UE使用SL单载波传输时的功率回退值和UE使用Uu单载波传输时的功率回退值是通过不同的方式确定的。
下面分别根据上行传输资源和侧行传输资源的子载波间隔相同和子载波间隔不同分别介绍确定可用最大发射功率的具体实现方式。
子载波间隔相同:
P CMAX_L≤P CMAX≤P CMAX_H
P CMAX_L=MIN{10log 10∑p EMAX,c-ΔT C,P PowerClass,con-current–MAX(MAX(MPR con-current,A-MPR con-current)+ΔT IB,c+ΔT C,P-MPR)};
P CMAX_H=MIN{10log 10∑p EMAX,c,P PowerClass,con-current}。
其中,p EMAX,c是P EMAX,c的线性值,它由Uu服务小区c的IE P-Max或SL的IE slmaxTxPower给出;P PowerClass,con-current为Uu和SL同时工作时的功率等级对应的最大UE功率,可以是预定义的;ΔT IB,c为允许的最大配置输出功率放宽,可以参见3GPP TS 38.101-1中第6.2.4节的规定,P-MPR是UE用于功率管理的最大回退值,ΔT C,c是服务小区c的允许工作频带边缘传输功率放宽,ΔT C是所有服务小区c的ΔT C,c中的最高值。
子载波间隔不同:
P CMAX,c(i),i(p)为采用子载波间隔类型i的服务小区c(i)的时隙p对应的可用最大输出功率,其中,子载波间隔类型i可以为15kHz,30kHz或者60kHz。
P CMAX,c(i),i(p)满足以下约束:
P CMAX_L,f,c(i),i(p)≤P CMAX,f,c(i),i(p)≤P CMAX_H,f,c(i),i(p)
其中P CMAX_L,f,c(i),i(p)和P CMAX_H,f,c(i),i(p)具体可以参照GPP TS 38.101-1中第6.2E节或第6.2.4节。
在时间上重叠的时隙p和时隙q对应的总的可用配置最大功率P CMAX(p,q)满足以下约束:
P CMAX_L(p,q)≤P CMAX(p,q)≤P CMAX_H(p,q)
当时隙p和q具有不同的传输长度并且属于同一频段上的不同小区时:
P CMAX_L(p,q)=MIN{10log 10[p CMAX_L,f,c(i),Uu,i(p)+p CMAX_L,f,c(i),V2X,j(q)],P PowerClass,con-current}
P CMAX_H(p,q)=MIN{10log 10[p CMAX_H,f,c(i),Uu,i(p)+p CMAX_H,f,c(i),V2X,j(q)],P PowerClass,con-current}
其中p CMAX_L,f,c(i),i和p CMAX_H,f,c(i),i分别是对应P CMAX_L,f,c(i),i和P CMAX_H,f,c(i),i的线性值。P PowerClass,con-current为Uu和SL同时工作时的功率等级对应的最大UE功率,可以是预定义的。
示例二,UE确定上行传输资源和侧行传输资源在时域上不重叠。
S301,UE判断是否发送上行传输和/或侧行传输。
UE确定发送侧行传输和上行传输。
进一步地,UE确定上行传输资源和侧行传输资源在时域上不重叠。
S302,UE根据判断结果确定可用最大发射功率。
具体地,UE根据每段时域上UE发送传输,分别根据相应的传输资源确定对应的发射功率,即为UE的可用最大发射功率。例如,在某段时间内,或者,在某个时域资源内,如果UE仅发送上行传输,则UE根据该上行传输资源对应的第二功率回退值确定上行传输资源对应的发射功率的下界,再确定上行传输资源对应的发射功率的下界,从而确定上行传输资源对应的发射功率,即为UE的可用最大发射功率,类似的,如果UE仅发送侧行传输,则UE根据该侧行传输资源对应的第二功率回退值确定侧行传输资源对应的发射功率的下界,再确定侧行传输资源对应的发射功率的下界,从而确定侧行传输资源对应的发射功率,即为UE的可用最大发射功率。
例如,UE仅发送侧行传输的情况下,UE的可用最大发射功率为侧行传输资源对应的发射功率。
P CMAX_L,c,SL≤P CMAX,c,SL≤P CMAX_H,c,SL
其中,P CMAX_L,c,SL=MIN{P EMAX,c–ΔT C,c,P PowerClass––MAX(MAX(MPR c,A-MPR c)+ΔT IB,c+ΔT C,c,P-MPR c),P Regulatory,c},
P CMAX_H,c,SL=MIN{P EMAX,c,P PowerClass,P Regulatory}。
上界P CMAX_H,c,SL由网络配置的小区级功率P EMAX,c、UE上报的发射功率等级P PowerClass和部分场景下法规的限制P Regulatory取最小值来决定。P CMAX_H,c,SL下界主要由UE上报的发射功率等级P PowerClass和最大功率回退值MPR c、A-MPR c决定。考虑一般情况下,这里可以仅考虑MPR c功率回退。换句话说,UE根据侧行传输对应的MAX(MPR c,A-MPR c)确定下界。这里的MAX(MPR c,A-MPR c)还可以替换为MPR c
示例性地,MPR c的取值可用参考表1。表1示出了功率等级为3时的MPR。其中,QAM是正交振幅调制,QPSK是正交相移键控。CP-OFDM是循环前缀正交频分复用。
表1
Figure PCTCN2022118581-appb-000001
例如,UE仅发送上行传输的情况下,UE的可用最大发射功率为上行传输资源对应的发射功率。
P CMAX_L,c,Uu≤P CMAX,c,Uu≤P CMAX_H,c,Uu
其中,P CMAX_L,c,Uu
MIN{P EMAX,c–ΔT C,c,(P PowerClass–ΔP PowerClass)–MAX(MAX(MPR c+ΔMPR c,A-MPR c)+ ΔT IB,c+ΔT C,c+ΔT RxSRS,P-MPR c)},
P CMAX_H,c,Uu=MIN{P EMAX,c,P PowerClass–ΔP PowerClass}。
上界P CMAX_H,c,Uu由网络配置的小区级功率P EMAX,c、UE上报的发射功率等级P PowerClass取最小值来决定。P CMAX_H,c,Uu下界主要由UE上报的发射功率等级P PowerClass和最大功率回退值MPR c、A-MPR c决定。考虑一般情况下,这里可以仅考虑MPR c功率回退。换句话说,UE根据上行传输对应的MAX(MPR c+ΔMPR c,A-MPR c)确定下界。这里的MAX(MPR c+ΔMPR c,A-MPR c)还可以替换为MPR c
示例性地,MPR c的取值可用参考表2。表2示出了功率等级为2时的MPR。其中,QAM是正交振幅调制,QPSK是正交相移键控。CP-OFDM是循环前缀正交频分复用。
表2
Figure PCTCN2022118581-appb-000002
本申请实施例,在UE发送上行传输和侧行传输的情况下,通过确定上行传输资源与侧行传输资源在时域上是否重叠,并进一步根据上行传输资源与侧行传输资源在时域上的重叠情况确定合适的可用最大发射功率。在上述资源重叠时,采用并发模式对应的功率回退值确定可用最大发射功率,减少了现有技术中由于不考虑是否重叠的情况,导致在上述资源重叠时,仍然使用不同的传输资源各自的功率回退值计算可用最大发射功率可能导致的无法满足射频指标的问题。同时,并没有对所有存在并发可能的情况都采用并发模式对应的功率回退值确定可用最大发射功率,减少在不并发场景下功率回退过大而导致的通信质量变差,通信成功率降低的问题。因此,本申请实施例通过根据资源重叠情况灵活地确定合适的可用最大发射功率,能够有效提升终端设备的通信质量,提高通信的成功率。
示例三,在示例一的基础上,UE进一步根据侧行传输和上行传输的优先级确定可用最大发射功率在侧行传输资源和上行传输资源上的分配。
具体地,UE按照示例一的实现方式确定可用最大发射功率,例如侧行传输的优先级高于上行传输的优先级,UE可以先根据侧行传输对应的功率回退值计算出侧行传输的发射功率,将可用最大发射功率中除去侧行传输的发射功率以外的功率用于上行传输。其中,UE分配给侧行传输的发射功率的下界可以根据侧行传输对应的功率回退值计算,侧行传输的发射功率的计算可参见示例二中的计算方式。
或者,具体地,UE按照示例一的实现方式确定可用最大发射功率,例如上行传输的优先级高于侧行传输的优先级,UE可以先根据上行传输对应的功率回退值计算出上行传输的发射功率,将可用最大发射功率中除去上行传输的发射功率以外的功率用于侧行传输。其中,UE分配给上行传输的发射功率的下界可以根据上行传输对应的功率回退值计算,上行传输的发射功率的计算可参见示例二中的计算方式。
本申请实施例,在确定合适的可用最大发射功率之后,根据不同的传输资源的优先级对不同的传输资源进行功率分配,可以进一步提高通信质量,保证通信的成功率。
可能的情况二,UE不判断或者无法判断上行传输资源和侧行传输资源在时域上是否重叠。
示例四,S301,UE判断是否发送上行传输和/或侧行传输。
UE确定发送侧行传输和上行传输。
S302,UE根据判断结果确定可用最大发射功率。
由于在S301中,UE发送侧行传输和上行传输,即存在上行传输资源和侧行传输资源在时域上重叠的可能性,在本申请实施例中用于计算可用最大发射功率的下界的功率回退值可以是MAX(MPR con-current,A-MPR con-current),或者,也可以是MPR con-current,具体的确定过程可以参见上述可能的情况一中的示例一的S302。
示例性地,对于本申请中发送侧行传输和上行传输的UE而言,侧行传输资源、上行传输资源、侧行传输资源与上次传输资源的重叠资源分别对应3种不同的表格,该表格中可以指示功率回退值和网络配置的资源情况的映射关系。
应理解,在发送侧行传输和上行传输情况下,由于存在侧行传输资源与上行传输资源重叠的可能性,因此采用并发模式对应的功率回退值确定可用最大发射功率,减少了现有技术中由于不考虑是否重叠的情况,导致在上述资源重叠时,仍然使用不同的传输资源各自的功率回退值计算可用最大发射功率可能导致的无法满足射频指标的问题。
本申请实施例,能够灵活地确定合适的可用最大发射功率,能够有效提升终端设备的质量,提高通信的成功率。
可能的实现方式二,UE确定Uu空口通信处于空闲态,UE在SL预配置资源池进行SL传输。
S301,UE判断是否发送上行传输和/或侧行传输。
UE判断仅发送侧行传输。
S302,UE根据判断结果确定可用最大发射功率。
UE先确定可用最大发射功率的上界和下界,其中,根据侧行传输对应的MAX(MPR c,A-MPR c)确定下界。这里的MAX(MPR c,A-MPR c)还可以替换为MPR c
P CMAX_L,c,SL≤P CMAX,c,SL≤P CMAX_H,c,SL
其中,P CMAX_L,c,SL=MIN{P EMAX,c–ΔT C,c,P PowerClass––MAX(MAX(MPR c,A-MPR c)+ΔT IB,c+ΔT C,c,P-MPR c),P Regulatory,c},
P CMAX_H,c,SL=MIN{P EMAX,c,P PowerClass,P Regulatory}。
上界P CMAX_H,c,SL由网络配置的小区级功率P EMAX,c、UE上报的发射功率等级P PowerClass和部分场景下法规的限制P Regulatory取最小值来决定。P CMAX_H,c,SL下界主要由UE上报的发射功率等级P PowerClass和最大功率回退值MPR c、A-MPR c决定。考虑一般情况下,这里可 以仅考虑MPR c功率回退。换句话说,UE根据侧行传输对应的MAX(MPR c,A-MPR c)确定下界。这里的MAX(MPR c,A-MPR c)还可以替换为MPR c
示例性地,MPR c的取值可用参考表1。表1示出了功率等级为3时的MPR。其中,QAM是正交振幅调制,QPSK是正交相移键控。CP-OFDM是循环前缀正交频分复用。
可能的实现方式三,UE确定Uu空口通信处于非激活态。
其中,可能的方式二可以根据UE是否支持PUSCH传输分为两种可能的情况。
可能的情况一,如果UE不支持PUSCH传输,例如UE不支持小包传输(small data transmission,SDT)。
S301,UE判断是否发送上行传输和/或侧行传输。
UE判断仅发送侧行传输。
S302,UE根据判断结果确定可用最大发射功率。
具体可以参见可能的实现方式二中的S302。
可能的情况二,如果UE支持PUSCH传输,例如UE支持小包传输(small data transmission,SDT)。
S301,UE判断是否发送上行传输和/或侧行传输。
UE判断可以发送上行传输和侧行传输。
S302,UE根据判断结果确定可用最大发射功率。
示例五,UE可以确定上行传输资源和侧行传输资源在时域上重叠。
具体可以参见可能的实现方式一中的可能的情况一的示例一。
示例六,UE可以确定上行传输资源和侧行传输资源在时域上不重叠。
具体可以参见可能的实现方式一中的可能的情况一的示例二。
示例七,UE不判断或者无法判断上行传输资源和侧行传输资源在时域上是否重叠。
具体可以参见可能的实现方式一中的可能的情况二。
侧行传输资源的配置情况二,UE在侧行链路上使用mode1,即SL的资源是网络设备配置的。
应理解,在该情况下,UE的RRC处于连接态,具体实现可以参见侧行传输资源的配置情况一中可能的实现方式一。
本申请实施例,分别根据UE是否发送上行传输和/或侧行传输灵活地确定UE的可用最大发射功率,以及进一步地,在UE发送上行传输和侧行传输时,根据上行传输和侧行传输在时域上是否重叠灵活地确定UE的可用最大发射功率,能够有效提升终端设备的通信质量,提高通信的成功率。
下面结合图6介绍本申请提供的确定功率的方法400。
应理解,侧行传输资源与上行传输资源对应的子载波间隔不同的情况下,UE在确定上行传输资源和侧行传输资源是否重叠时,可能会出现一个上行传输资源与多个侧行传输资源重叠,或者一个侧行传输资源与多个上行传输资源重叠的情况,下面分别结合图6中的(a)和(b)分别进行介绍。
如图6中的(a)所示,S401a,UE确定上行传输资源与多个侧行传输资源重叠。
关于UE如何确定上行传输资源和多个侧行传输资源在时域上重叠,例如,UE在得到上行传输资源的控制信息时已经得到该多个侧行传输资源的控制信息,即可以根据上行 传输资源的控制信息和该多个侧行传输资源的控制信息确定上行传输资源和该多个侧行传输资源在时域上重叠。
S402a,UE分别确定上行传输资源与多个侧行传输资源对应的可用最大发射功率。
对于上行传输资源与每一个侧行传输资源而言,UE可以根据方法300中的可能的实现方式一中的可能的情况一中的示例一所述的方法,分别确定多个可用最大发射功率。
应理解,在上行传输资源与多个侧行传输资源中,该上行传输资源的长度是最长的,该多个侧行传输资源分别在不同的时域和该上行传输资源重叠。
S403a,UE根据上行传输资源与多个侧行传输资源对应的可用最大发射功率确定可用最大发射功率。
随后根据该多个可用最大发射功率确定UE的可用最大发射功率的上界P CMAX_H和下界P CMAX_L,从而可以确定该可用最大发射功率的范围。示例性地,P CMAX_H可以是该多个可用最大发射功率中的最大值,P CMAX_L可以是该多个可用最大发射功率中的最小值。P CMAX_L≤P CMAX≤P CMAX_H
如图6中的(b)所示,S401b,UE确定侧行传输资源与多个上行传输资源重叠。
S402b,UE分别确定侧行传输资源与多个上行传输资源对应的可用最大发射功率。
S403b,UE根据侧行传输资源与多个上行传输资源对应的可用最大发射功率确定可用最大发射功率。
具体实现方式与S401a至S403a类似,在此不多赘述。
本申请实施例,在一个上行传输资源与多个侧行传输资源重叠的情况下,或者,在一个侧行传输资源与多个上行传输资源重叠,通过分别根据两两重叠的资源确定可用最大发射功率从而确定UE的可用最大发射功率的范围,来确定UE的可用最大发射功率,进一步扩展了本申请提高的功率的方法的应用范围,使得可用最大发射功率的确定方式更为灵活,进一步提高通信质量,提高通信的成功率。
以上,结合图1至图6详细说明了本申请实施例提供的方法。以下,结合图7至图8详细说明本申请实施例提供的装置。
图7是本申请实施例提供的通信装置的示意性框图。如图7所示,该通信装置10可以包括收发模块11和处理模块12。
其中,收发模块11可以用于接收其他装置发送的信息,还可以用于向其他装置发送信息。比如,接收第一数量或发送PUSCH。处理模块12可以用于进行装置的内容处理,比如,确定时间窗内包括的时间单元的数量。
在一种可能的设计中,该通信装置10可对应于上述方法实施例中的终端设备。
具体地,该通信装置10可对应于根据本申请实施例的方法100至方法400中任一方法中的第一装置或UE,该通信装置10可以包括用于执行相应方法中由第一装置所执行的操作的模块,并且,该通信装置10中的各单元分别为了实现相应方法中由第一装置所执行的操作。
示例性的,在该通信装置10对应于方法100中的第一装置时,收发模块11用于执行步骤S101,处理模块12用于执行S102、S103、S104。
示例性的,在该通信装置10对应于方法200中的终端设备时,收发模块11用于执行步骤S201、S202,处理模块12用于执行S203、S204。
示例性的,在该通信装置10对应于方法300中的终端设备时,处理模块12用于执行S301和S302。
示例性的,在该通信装置10对应于方法400中的终端设备时,处理模块12用于执行S401a-S403a、S401b-402b。
图8为本申请实施例提供的通信装置20的示意图。
在一种可能的设计中,该装置20可以为终端设备包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端,移动台,终端,用户设备,软终端等等,也可以为位于终端设备上的芯片或芯片系统等。
该装置20可以包括处理器21(即,处理模块的一例)和存储器22。该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以使该装置20实现如图3至图6中对应的方法中上述各种可能的设计中的设备执行的步骤。
进一步地,该装置20还可以包括输入口23(即,收发模块的一例)和输出口24(即,收发模块的另一例)。进一步地,该处理器21、存储器22、输入口23和输出口24可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储器22中调用并运行该计算机程序,以控制输入口23接收信号,控制输出口24发送信号,完成上述方法中终端设备或无线接入网设备或UE或基站的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该报文传输的装置20为通信设备,该输入口23为接收器,该输出口24为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置20为芯片或电路,该输入口23为输入接口,该输出口24为输出接口。
作为一种实现方式,输入口23和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的设备。即将实现处理器21、输入口23和输出口24功能的程序代码存储在存储器22中,通用处理器通过执行存储器22中的代码来实现处理器21、输入口23和输出口24的功能。
其中,装置20中各模块或单元可以用于执行上述方法中进行随机接入的设备(例如,终端设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
应理解,本申请实施例中,该处理器可以为中央处理单元(CPU,central processing unit),该处理器还可以是其他通用处理器、数字信号处理器(DSP,digital signal processor)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例 中由第一装置或UE执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由第一装置或UE执行的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由第一装置或UE执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由第一装置或UE执行的方法。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    第一装置接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一上行传输资源;
    所述第一装置确定所述第一上行传输资源与第一侧行传输资源在时域上是否重叠;
    在所述第一上行传输资源与所述第一侧行传输资源在时域上重叠的情况下,所述第一装置根据第一功率回退值确定第一可用最大发射功率,所述第一功率回退值为并发模式对应的功率回退值;
    所述第一装置根据所述第一可用最大发射功率确定第一上行传输的发射功率和第一侧行传输的发射功率,所述第一上行传输的发射功率和所述第一侧行传输的发射功率之和不超过所述第一可用最大发射功率,所述第一上行传输承载于所述第一上行传输资源,所述第一侧行传输承载于所述第一侧行传输资源。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一上行传输资源与所述第一侧行传输资源在时域上不重叠的情况下,
    所述第一装置根据所述第一功率回退值确定所述第一可用最大发射功率;
    所述第一装置根据所述第一可用最大发射功率确定所述第一上行传输的发射功率或所述第一侧行传输的发射功率,所述第一上行传输的发射功率或所述第一侧行传输的发射功率不超过所述第一可用最大发射功率。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一上行传输资源与所述第一侧行传输资源在时域上不重叠的情况下,
    所述第一装置根据第二功率回退值确定第二可用最大发射功率,所述第二功率回退值为所述第一上行传输资源所在的载波对应的功率回退值;
    所述第一装置根据所述第二可用最大发射功率确定所述第一上行传输的发射功率,所述第一上行传输的发射功率不超过所述第二可用最大发射功率;或者,
    所述第一装置根据第三功率回退值确定第三可用最大发射功率,所述第三功率回退值为所述第一侧行传输资源所在的载波对应的功率回退值;
    所述第一装置根据所述第三可用最大发射功率确定所述第一侧行传输的发射功率,所述第一侧行传输的发射功率不超过所述第三可用最大发射功率。
  4. 根据权利要求1所述的方法,其特征在于,在所述第一上行传输资源与所述第一侧行传输资源在时域上重叠,且所述第一上行传输的优先级高于所述第一侧行传输的优先级的情况下,
    所述第一装置根据所述第一可用最大发射功率确定第一上行传输的发射功率和第一侧行传输的发射功率,包括:
    所述第一装置确定所述第一上行传输的发射功率,所述第一上行传输的发射功率为第一上行传输的发射功率与所述第一可用最大发射功率中的较小值,所述第一上行传输的发射功率是根据第二功率回退值确定的,所述第二功率回退值为所述第一上行传输资源所在的载波对应的功率回退值;
    所述第一装置根据所述第一可用最大发射功率和所述第一上行传输的发射功率确定所述第一侧行传输的发射功率。
  5. 根据权利要求1所述的方法,其特征在于,在所述第一上行传输资源与所述第一侧行传输资源在时域上重叠,且所述第一侧行传输的优先级高于所述第一上行传输的优先级的情况下,
    所述第一装置根据所述第一可用最大发射功率确定第一侧行传输的发射功率和第一上行传输的发射功率,包括:
    所述第一装置确定所述第一侧行传输的发射功率,所述第一侧行传输的发射功率为第一侧行传输的发射功率与所述第一可用最大发射功率中的较小值,所述第一侧行传输的发射功率是根据第三功率回退值确定的,所述第三功率回退值为所述第一侧行传输资源所在的载波对应的功率回退值;
    所述第一装置根据所述第一可用最大发射功率和所述第一侧行传输的发射功率确定所述第一上行传输的发射功率。
  6. 根据权利要求1所述的方法,其特征在于,所述第一功率回退值是根据所述第一上行传输资源与所述第一侧行传输资源确定的。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一装置接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示第二上行传输资源;
    在所述第二上行传输资源与所述第一侧行传输资源在时域上重叠的情况下,所述第一装置根据第四功率回退值确定第四可用最大发射功率,所述第四功率回退值为并发模式对应的功率回退值,且所述第四功率回退值是根据所述第二上行传输资源与所述第一侧行传输资源确定的;
    在所述第四可用最大发射功率大于所述第一可用最大发射功率的情况下,所述第一装置根据所述第一可用最大发射功率确定所述第二上行传输的发射功率,所述第二上行传输的发射功率和所述第一侧行传输的发射功率之和不超过所述第一可用最大发射功率,所述第二上行传输承载于所述第二上行传输资源。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一装置确定至少一个第二侧行传输资源;
    在所述第二侧行传输资源与所述第一上行传输资源在时域上重叠的情况下,所述第一装置根据第五功率回退值确定第五可用最大发射功率,所述第五功率回退值为并发模式对应的功率回退值,且所述第五功率回退值是根据所述第二侧行传输资源与所述第一上行传输资源确定的;
    在所述第五可用最大发射功率大于所述第一可用最大发射功率的情况下,所述第一装置根据所述第一可用最大发射功率确定所述第二侧行传输的发射功率,所述第二侧行传输的发射功率和所述第一上行传输的发射功率之和不超过所述第一可用最大发射功率,所述第二侧行传输承载于所述第二侧行传输资源。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,
    所述第一上行传输资源和所述第一侧行传输资源位于同一频段。
  10. 一种通信方法,其特征在于,包括:
    第一装置接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一上行传输资源;
    所述第一装置接收来自网络设备的第二指示信息,所述第二指示信息用于指示第二上行传输资源;
    所述第一装置确定所述第一上行传输资源与所述第二上行传输资源在时域上是否重叠;
    在所述第一上行传输资源与所述第二上行传输资源在时域上重叠的情况下,所述第一功率回退值为并发模式对应的功率回退值;
    所述第一装置根据所述第一可用最大发射功率确定第一上行传输的发射功率和第二上行传输的发射功率,所述第一上行传输的发射功率和所述第二上行传输的发射功率之和不超过所述第一可用最大发射功率,所述第一上行传输承载于所述第一上行传输资源,所述第二上行传输承载于所述第二上行传输资源。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在所述第一上行传输资源与所述第二上行传输资源在时域上不重叠的情况下,
    所述第一装置根据所述第一功率回退值确定所述第一可用最大发射功率;
    所述第一装置根据所述第一可用最大发射功率确定所述第一上行传输的发射功率或所述第二上行传输的发射功率,所述第一上行传输的发射功率或所述第二上行传输的发射功率不超过所述第一可用最大发射功率。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在所述第一上行传输资源与所述第二上行传输资源在时域上不重叠的情况下,
    所述第一装置根据第二功率回退值确定第二可用最大发射功率,所述第二功率回退值为所述第一上行传输资源所在的载波对应的功率回退值;
    所述第一装置根据所述第二可用最大发射功率确定所述第一上行传输的发射功率,所述第一上行传输的发射功率不超过所述第二可用最大发射功率;或者,
    所述第一装置根据第三功率回退值确定第三可用最大发射功率,所述第三功率回退值为所述第二上行传输资源所在的载波对应的功率回退值;
    所述第一装置根据所述第三可用最大发射功率确定所述第二上行传输的发射功率,所述第二上行传输的发射功率不超过所述第三可用最大发射功率。
  13. 一种通信方法,其特征在于,包括:
    第一装置接收来自网络设备的第一指示信息,所述第一指示信息用于指示上行传输资源;
    所述第一装置确定侧行传输资源;
    所述第一装置根据第一功率回退值确定第一可用最大发射功率,所述第一功率回退值为并发模式对应的功率回退值;
    所述第一装置根据所述第一可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,所述上行传输的发射功率和所述侧行传输的发射功率之和不超过所述第一可用最大发射功率,所述上行传输承载于所述上行传输资源,所述侧行传输承载于所述侧行传输资源。
  14. 一种通信装置,其特征在于,包括:
    收发模块,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一上行传输资源;
    处理模块,用于确定所述第一上行传输资源与第一侧行传输资源在时域上是否重叠;
    在所述第一上行传输资源与所述第一侧行传输资源在时域上重叠的情况下,所述处理模块,还用于根据第一功率回退值确定第一可用最大发射功率,所述第一功率回退值为并发模式对应的功率回退值;
    所述处理模块,还用于根据所述第一可用最大发射功率确定第一上行传输的发射功率和第一侧行传输的发射功率,所述第一上行传输的发射功率和所述第一侧行传输的发射功率之和不超过所述第一可用最大发射功率,所述第一上行传输承载于所述第一上行传输资源,所述第一侧行传输承载于所述第一侧行传输资源。
  15. 根据权利要求14所述的装置,其特征在于,
    在所述第一上行传输资源与所述第一侧行传输资源在时域上不重叠的情况下,
    所述处理模块,还用于根据所述第一功率回退值确定所述第一可用最大发射功率;
    所述处理模块,还用于根据所述第一可用最大发射功率确定所述第一上行传输的发射功率或所述第一侧行传输的发射功率,所述第一上行传输的发射功率或所述第一侧行传输的发射功率不超过所述第一可用最大发射功率。
  16. 根据权利要求14所述的装置,其特征在于,
    所述处理模块,还用于根据第二功率回退值确定第二可用最大发射功率,所述第二功率回退值为所述第一上行传输资源所在的载波对应的功率回退值;
    所述处理模块,还用于根据所述第二可用最大发射功率确定所述第一上行传输的发射功率,所述第一上行传输的发射功率不超过所述第二可用最大发射功率;或者,
    所述处理模块,还用于根据第三功率回退值确定第三可用最大发射功率,所述第三功率回退值为所述第一侧行传输资源所在的载波对应的功率回退值;
    所述处理模块,还用于根据所述第三可用最大发射功率确定所述第一侧行传输的发射功率,所述第一侧行传输的发射功率不超过所述第三可用最大发射功率。
  17. 根据权利要求14所述的装置,其特征在于,
    在所述第一上行传输资源与所述第一侧行传输资源在时域上重叠,且所述第一上行传输的优先级高于所述第一侧行传输的优先级的情况下,
    所述处理模块,具体用于确定所述第一上行传输的发射功率,所述第一上行传输的发射功率为第一上行传输的发射功率与所述第一可用最大发射功率中的较小值,所述第一上行传输的发射功率是根据第二功率回退值确定的,所述第二功率回退值为所述第一上行传输资源所在的载波对应的功率回退值;
    所述处理模块,具体用于根据所述第一可用最大发射功率和所述第一上行传输的发射功率确定所述第一侧行传输的发射功率。
  18. 根据权利要求14所述的装置,其特征在于,在所述第一上行传输资源与所述第一侧行传输资源在时域上重叠,且所述第一侧行传输的优先级高于所述第一上行传输的优先级的情况下,
    所述处理模块,具体用于确定所述第一侧行传输的发射功率,所述第一侧行传输的发射功率为第一侧行传输的发射功率与所述第一可用最大发射功率中的较小值,所述第一侧 行传输的发射功率是根据第三功率回退值确定的,所述第三功率回退值为所述第一侧行传输资源所在的载波对应的功率回退值;
    所述处理模块,具体用于根据所述第一可用最大发射功率和所述第一侧行传输的发射功率确定所述第一上行传输的发射功率。
  19. 根据权利要求14所述的装置,其特征在于,所述第一功率回退值是根据所述第一上行传输资源与所述第一侧行传输资源确定的。
  20. 根据权利要求14所述的装置,其特征在于,
    所述收发模块,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示第二上行传输资源;
    在所述第二上行传输资源与所述第一侧行传输资源在时域上重叠的情况下,所述处理模块,还用于根据第四功率回退值确定第四可用最大发射功率,所述第四功率回退值为并发模式对应的功率回退值,且所述第四功率回退值是根据所述第二上行传输资源与所述第一侧行传输资源确定的;
    在所述第四可用最大发射功率大于所述第一可用最大发射功率的情况下,所述处理模块,还用于根据所述第一可用最大发射功率确定所述第二上行传输的发射功率,所述第二上行传输的发射功率和所述第一侧行传输的发射功率之和不超过所述第一可用最大发射功率,所述第二上行传输承载于所述第二上行传输资源。
  21. 根据权利要求14所述的装置,其特征在于,
    所述第一装置确定至少一个第二侧行传输资源;
    在所述第二侧行传输资源与所述第一上行传输资源在时域上重叠的情况下,所述处理模块,还用于根据第五功率回退值确定第五可用最大发射功率,所述第五功率回退值为并发模式对应的功率回退值,且所述第五功率回退值是根据所述第二侧行传输资源与所述第一上行传输资源确定的;
    在所述第五可用最大发射功率大于所述第一可用最大发射功率的情况下,所述处理模块,还用于根据所述第一可用最大发射功率确定所述第二侧行传输的发射功率,所述第二侧行传输的发射功率和所述第一上行传输的发射功率之和不超过所述第一可用最大发射功率,所述第二侧行传输承载于所述第二侧行传输资源。
  22. 根据权利要求14至21中任一项所述的装置,其特征在于,
    所述第一上行传输资源和所述第一侧行传输资源位于同一频段。
  23. 一种通信装置,其特征在于,包括:
    收发模块,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一上行传输资源;
    所述收发模块,还用于接收来自网络设备的第二指示信息,所述第二指示信息用于指示第二上行传输资源;
    所述处理模块,用于确定所述第一上行传输资源与所述第二上行传输资源在时域上是否重叠;
    在所述第一上行传输资源与所述第二上行传输资源在时域上重叠的情况下,所述第一功率回退值为并发模式对应的功率回退值;
    所述处理模块,还用于根据所述第一可用最大发射功率确定第一上行传输的发射功率 和第二上行传输的发射功率,所述第一上行传输的发射功率和所述第二上行传输的发射功率之和不超过所述第一可用最大发射功率,所述第一上行传输承载于所述第一上行传输资源,所述第二上行传输承载于所述第二上行传输资源。
  24. 根据权利要求23所述的装置,其特征在于,在所述第一上行传输资源与所述第二上行传输资源在时域上不重叠的情况下,
    所述处理模块,还用于根据所述第一功率回退值确定所述第一可用最大发射功率;
    所述处理模块,还用于根据所述第一可用最大发射功率确定所述第一上行传输的发射功率或所述第二上行传输的发射功率,所述第一上行传输的发射功率或所述第二上行传输的发射功率不超过所述第一可用最大发射功率。
  25. 根据权利要求23所述的装置,其特征在于,
    在所述第一上行传输资源与所述第二上行传输资源在时域上不重叠的情况下,
    所述处理模块,还用于根据第二功率回退值确定第二可用最大发射功率,所述第二功率回退值为所述第一上行传输资源所在的载波对应的功率回退值;
    所述处理模块,还用于根据所述第二可用最大发射功率确定所述第一上行传输的发射功率,所述第一上行传输的发射功率不超过所述第二可用最大发射功率;或者,
    所述处理模块,还用于根据第三功率回退值确定第三可用最大发射功率,所述第三功率回退值为所述第二上行传输资源所在的载波对应的功率回退值;
    所述处理模块,还用于根据所述第三可用最大发射功率确定所述第二上行传输的发射功率,所述第二上行传输的发射功率不超过所述第三可用最大发射功率。
  26. 一种通信装置,其特征在于,包括:
    第一装置接收来自网络设备的第一指示信息,所述第一指示信息用于指示上行传输资源;
    所述第一装置确定侧行传输资源;
    所述第一装置根据第一功率回退值确定第一可用最大发射功率,所述第一功率回退值为并发模式对应的功率回退值;
    所述第一装置根据所述第一可用最大发射功率确定上行传输的发射功率和侧行传输的发射功率,所述上行传输的发射功率和所述侧行传输的发射功率之和不超过所述第一可用最大发射功率,所述上行传输承载于所述上行传输资源,所述侧行传输承载于所述侧行传输资源。
  27. 一种通信装置,其特征在于,包括:
    处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至9中任一项所述的通信方法,或执行权利要求10至12中任一项所述的通信方法,或执行权利要求13所述的通信方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至9中任一项所述通信方法,或执行如权利要求10至12中任一项所述的通信方法,或执行权利要求13所述的通信方法。
  29. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统地通信设备执行如权利要求1至9中任一项所述的通信方法,或执行如权利要求10至12中任一项所述的通信方法,或执行权利要求13所述的通信方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,当所述指令被运行时,使得计算机执行如权利要求1至9中任一项所述通信方法,或执行如权利要求10至12中任一项所述的通信方法,或执行权利要求13所述的通信方法。
PCT/CN2022/118581 2021-10-22 2022-09-14 通信方法及装置 WO2023065892A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022370958A AU2022370958A1 (en) 2021-10-22 2022-09-14 Communication method and apparatus
CA3236158A CA3236158A1 (en) 2021-10-22 2022-09-14 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111235354.0A CN116017664A (zh) 2021-10-22 2021-10-22 通信方法及装置
CN202111235354.0 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023065892A1 true WO2023065892A1 (zh) 2023-04-27

Family

ID=86021721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118581 WO2023065892A1 (zh) 2021-10-22 2022-09-14 通信方法及装置

Country Status (4)

Country Link
CN (1) CN116017664A (zh)
AU (1) AU2022370958A1 (zh)
CA (1) CA3236158A1 (zh)
WO (1) WO2023065892A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190098580A1 (en) * 2017-09-27 2019-03-28 Alireza Babaei Power Control For Uplink Control Channel
WO2021016638A1 (en) * 2019-07-19 2021-01-28 Qualcomm Incorporated Handling collisions between access link and sidelink
WO2021031090A1 (zh) * 2019-08-19 2021-02-25 华为技术有限公司 一种侧行链路通信方法及装置
WO2021126811A1 (en) * 2019-12-20 2021-06-24 Qualcomm Incorporated Concurrent sidelink and uplink transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190098580A1 (en) * 2017-09-27 2019-03-28 Alireza Babaei Power Control For Uplink Control Channel
WO2021016638A1 (en) * 2019-07-19 2021-01-28 Qualcomm Incorporated Handling collisions between access link and sidelink
WO2021031090A1 (zh) * 2019-08-19 2021-02-25 华为技术有限公司 一种侧行链路通信方法及装置
WO2021126811A1 (en) * 2019-12-20 2021-06-24 Qualcomm Incorporated Concurrent sidelink and uplink transmission

Also Published As

Publication number Publication date
CN116017664A (zh) 2023-04-25
AU2022370958A1 (en) 2024-05-16
CA3236158A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
EP3576452B1 (en) Information transmission method and apparatus for power headroom reporting in a multi-numerology or multi-beam scenario
CN105939538B (zh) 用于允许在电信系统中的phr中功率回退指示的方法和设备
US11564181B2 (en) Method and apparatus for reporting power headroom report, and method and apparatus for obtaining power headroom report
WO2021016973A1 (zh) 一种信息传输方法、电子设备及存储介质
CA2938056C (en) A method, apparatus and computer readable medium for controlling data transmissions in a network
CN106851809B (zh) 确定功率的方法及用户设备
WO2020135273A1 (zh) 一种功率控制方法及装置
CN113875295A (zh) 用于控制nr v2x中的副链路发送功率的方法和装置
WO2021026916A1 (zh) 通信方法、装置及设备
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
WO2021168635A1 (zh) 反馈资源的确定方法和装置
US20220368505A1 (en) Data feedback method and apparatus
WO2022156432A1 (zh) 一种调度请求的传输方法及装置
WO2023065892A1 (zh) 通信方法及装置
WO2019062834A1 (zh) 信息的传输方法和装置
WO2019028709A1 (zh) 上行传输的方法和终端设备
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2020156394A1 (zh) 一种反馈方法及装置
EP3624523B1 (en) Wireless communication method and terminal device
WO2024032216A1 (zh) 传输信息的方法和装置
WO2022156431A1 (zh) 一种上行控制信息的传输方法及装置
US11909539B2 (en) Wireless communication method and apparatus for improving robustness of data transmission
WO2023138295A1 (zh) 一种功率余量上报方法和装置
WO2022150993A1 (zh) 一种无线通信方法、装置、设备及存储介质
WO2022087836A1 (zh) 传输方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882503

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3236158

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024007806

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: AU2022370958

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022370958

Country of ref document: AU

Date of ref document: 20220914

Kind code of ref document: A