WO2022156432A1 - 一种调度请求的传输方法及装置 - Google Patents

一种调度请求的传输方法及装置 Download PDF

Info

Publication number
WO2022156432A1
WO2022156432A1 PCT/CN2021/138238 CN2021138238W WO2022156432A1 WO 2022156432 A1 WO2022156432 A1 WO 2022156432A1 CN 2021138238 W CN2021138238 W CN 2021138238W WO 2022156432 A1 WO2022156432 A1 WO 2022156432A1
Authority
WO
WIPO (PCT)
Prior art keywords
format
scheduling request
terminal device
information
pucch
Prior art date
Application number
PCT/CN2021/138238
Other languages
English (en)
French (fr)
Inventor
薛祎凡
邝奕如
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/261,873 priority Critical patent/US20240080813A1/en
Priority to EP21920806.3A priority patent/EP4262301A1/en
Publication of WO2022156432A1 publication Critical patent/WO2022156432A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and apparatus for transmitting a scheduling request.
  • Terminal equipment supporting the 5th Generation new radio access technology generally needs to support a larger bandwidth (such as 100 megahertz (MHz), etc.) and a larger number of antennas (such as 4 (reception, RX) antennas and 2 transmission (transmission, TX) antennas, etc.), a more complex baseband processing flow (such as polar codes, etc.), which will lead to higher power consumption of the terminal device.
  • a larger bandwidth such as 100 megahertz (MHz), etc.
  • antennas such as 4 (reception, RX) antennas and 2 transmission (transmission, TX) antennas, etc.
  • a more complex baseband processing flow such as polar codes, etc.
  • the present application provides a method and apparatus for transmitting a scheduling request, which are used to propose how to optimize the transmission of a scheduling request to save power consumption of a terminal device.
  • the present application provides a method for transmitting a scheduling request.
  • the method may include: after a terminal device determines that a first uplink channel exists in a first time domain, including the scheduling request and the first uplink channel The information is merged to obtain the first information, and finally the terminal device sends the first information to the network device; wherein, the first time domain range and the physical uplink control channel containing the scheduling request (physical uplink control channel) , PUCCH) is related to the time domain position, and the first uplink channel may be any of the following: a PUCCH including a hybrid automatic repeat request (HARQ) feedback, a PUCCH including channel state information (channel state information, CSI) ) reported PUCCH or physical uplink shared channel (physical uplink shared channel, PUSCH).
  • HARQ hybrid automatic repeat request
  • CSI channel state information
  • PUSCH physical uplink shared channel
  • the number of uplink transmissions can be reduced, thereby reducing the power consumption of the terminal device.
  • the first time domain range is the first time window and/or the second time window; wherein, the starting moment of the first time window may be the physical (physical, The time when the PHY layer receives the trigger of the scheduling request of the media access control (media access control, MAC) layer of the terminal device, and the termination time may be the time domain position of the PUCCH containing the scheduling request;
  • the end time of a time window may be the time domain position of the PUCCH containing the scheduling request, and the time domain length is the first time domain length;
  • the start time of the second time window may be the time domain position of the PUCCH containing the scheduling request The time domain position, and the time domain length is the second time domain length.
  • the first time domain range can be accurately determined, and further it can be accurately determined whether the first uplink channel exists in the first time domain range.
  • the first uplink channel exists in the first time domain, specifically: after the PHY layer of the terminal device receives the trigger of the scheduling request from the MAC layer of the terminal device, and at The first uplink channel exists before the time domain position of the PUCCH containing the scheduling request. In this way, the first uplink channel can exist accurately within the first time domain range.
  • the first uplink channel exists in the first time domain range, which may be specifically: the first uplink channel exists in the first time domain length before the time domain position of the PUCCH including the scheduling request . In this way, the first uplink channel can exist accurately within the first time domain range.
  • the first uplink channel exists in the first time domain range, which may specifically be: the first uplink channel exists in the second time domain length after the time domain position of the PUCCH including the scheduling request , wherein the first uplink channel is a PUCCH including a CSI report. In this way, the first uplink channel can exist accurately within the first time domain range.
  • the first uplink channel exists in the first time domain range, which may specifically be: the first uplink channel exists in the second time domain length after the time domain position of the PUCCH including the scheduling request , and the time domain position of the DCI that schedules or indicates the transmission of the first uplink channel is before the time domain position of the PUCCH containing the scheduling request, wherein the first uplink channel may be the PUCCH containing HARQ feedback or the PUSCH (if not containing uplink data). PUSCH).
  • the first uplink channel can exist accurately within the first time domain range.
  • the first uplink channel when there are multiple uplink channels in the first time domain range, the first uplink channel may be the uplink channel with the earliest time domain position among the multiple uplink channels, or the The first uplink channel may be the uplink channel with the smallest interval between the time domain position of the plurality of uplink channels and the time domain position of the PUCCH containing the scheduling request. In this way, the only location to send the scheduling request can be determined, thereby avoiding misalignment of the network device and the terminal device.
  • the time slot in which the first uplink channel is located includes a scheduling request opportunity. In this way, it can be ensured that the scheduling request is only combined and transmitted in a specific time slot, thereby avoiding that the network device assumes the transmission of the scheduling request for each uplink signal or uplink channel.
  • the terminal device when the format of the PUCCH including the scheduling request is format 0 or format 1, the first uplink channel is the PUCCH including HARQ feedback and the format of the PUCCH including HARQ feedback is format 0, the terminal device combines the scheduling request with the information contained in the first uplink channel to obtain the first information, which may be specifically: the terminal device concatenates the scheduling request and the HARQ feedback, obtain the first information; further, the terminal device sends the first information to the network device, which may specifically be: the terminal device maps the first information to a first cyclic shift value, according to The first cyclic shift value sends the first information to the network device. In this way, the terminal device can successfully combine and transmit the scheduling request and the information in the first uplink channel.
  • the first uplink channel is the PUCCH including HARQ feedback and the format of the PUCCH including HARQ feedback is format 2.
  • the terminal device combines the scheduling request with the information contained in the first uplink channel to obtain the first information, which may be specifically: the terminal device combines the scheduling request with the information contained in the first uplink channel.
  • the HARQ feedback is concatenated to obtain the first information; further, the terminal device sends the first information to the network device, which may specifically be: the terminal device sends the first information to the network device through the first uplink channel.
  • the first information is sent to the network device. In this way, the terminal device can successfully combine and transmit the scheduling request and the information in the first uplink channel.
  • the terminal device when the format of the PUCCH including the scheduling request is format 0 or format 1, the first uplink channel is the PUCCH including the CSI report and the format of the PUCCH including the CSI report is the format 2.
  • the terminal device combines the scheduling request with the information contained in the first uplink channel to obtain the first information, which may be specifically: the terminal device combines the scheduling request with the information contained in the first uplink channel.
  • the CSI reports are concatenated to obtain the first information; further, the terminal device sends the first information to the network device, which may specifically be: the terminal device sends the first information to the network device through the first uplink channel.
  • the first information is sent to the network device. In this way, the terminal device can successfully combine and transmit the scheduling request and the information in the first uplink channel.
  • the first uplink channel is the PUCCH including HARQ feedback
  • the format of the PUCCH including HARQ feedback is format 1
  • the terminal device combines the scheduling request with the information contained in the first uplink channel to obtain the first information, which may be specifically: the terminal device concatenates the scheduling request and the HARQ feedback to obtain the first information.
  • the terminal device sends the first information to the network device, which may specifically be: the terminal device maps the first information to a second cyclic shift value, according to the second cyclic shift value.
  • the cyclic shift value sends the first information to the network device. In this way, the terminal device can successfully combine and transmit the scheduling request and the information in the first uplink channel.
  • the terminal device sends the first information to the network device, which may specifically be: when it is determined that there is a resource of PUCCH format 1 used for transmitting the scheduling request in the time domain position of the first uplink channel, the terminal device The device sends the first information to the network device by means of channel selection. In this way, the terminal device can successfully combine and transmit the scheduling request and the information in the first uplink channel.
  • the terminal device when the format of the PUCCH containing the scheduling request is format 0 or format 1, and the first uplink channel is the PUSCH, the terminal device associates the scheduling request with the first The information contained in the uplink channel is combined to obtain the first information, which may be specifically: the terminal device concatenates the scheduling request and the information contained in the PUSCH to obtain the first information; further, the terminal device obtains the first information through the The first uplink channel sends the first information to the network device. In this way, the terminal device can successfully combine and transmit the scheduling request and the information in the first uplink channel.
  • the terminal device when the format of the PUCCH containing the scheduling request is format 0 or format 1, and the first uplink channel is the PUSCH, the terminal device associates the scheduling request with the first The information contained in the uplink channel is combined to obtain the first information, which may be specifically: the terminal device punctures the PUSCH, maps the scheduling request to the punctured position of the PUSCH, and obtains the first information , and further, the terminal device sends the first information to the network device through the first uplink channel. In this way, the terminal device can successfully combine and transmit the scheduling request and the information in the first uplink channel.
  • the terminal device receives a first message from the network device, where the first message is used to configure or enable the function of the terminal device to combine and transmit the scheduling request and the information contained in the first uplink channel. In this way, the terminal device can combine the scheduling request and the information in the first uplink channel to transmit to the network device.
  • the terminal device sends a second message to the network device, where the second message is used to request to enable the function of combining and transmitting the scheduling request and the information contained in the first uplink channel. In this way, the terminal device can combine the scheduling request and the information in the first uplink channel to transmit to the network device.
  • the terminal device receives a third message from the network device, where the third message is used to instruct the terminal device to combine and transmit the scheduling request and the information contained in the first uplink channel. In this way, the terminal device can combine the scheduling request and the information in the first uplink channel to transmit to the network device.
  • the terminal device determines that after the reference signal is received from the network device , the reference signal received power (reference signal received power, RSRP) sent to the network device is greater than an RSRP threshold, where the RSRP is determined by the terminal device based on the reference signal. In this way, the transmission performance of the terminal equipment can be guaranteed.
  • the reference signal received power reference signal received power, RSRP
  • the terminal device sends the first information to the network device, which may specifically be: the terminal device sends the first information to the network device by using a first transmit power; Wherein, the first transmit power is larger than the original transmit power of the first uplink channel; or the first transmit power is based on the original transmit power of the first uplink channel and the original transmission of the PUCCH containing the scheduling request Power is determined. In this way, the energy allocated to each bit can be increased on average, thereby ensuring the transmission performance of the terminal equipment.
  • the present application provides a method for transmitting a scheduling request.
  • the method may include: a network device determining that a first uplink channel exists within a first time domain; and then the network device receives first information from a terminal device, The first information is obtained by the terminal device combining the scheduling request with the information included in the first uplink channel; wherein the first time domain range is related to the time domain position of the PUCCH including the scheduling request,
  • the first uplink channel is any one of the following: PUCCH including HARQ feedback, PUCCH including CSI report, or PUSCH.
  • the number of uplink transmissions of the terminal device can be reduced, thereby reducing the power consumption of the terminal device.
  • the first time domain range may be the first time window and/or the second time window; wherein, the starting moment of the first time window may be the receiving time of the PHY layer of the terminal device.
  • the termination time may be the starting position of the time domain position of the PUCCH including the scheduling request; or, the termination time of the first time window may be the time that includes all
  • the starting position of the time domain position of the PUCCH of the scheduling request the time domain length may be the first time domain length; the starting moment of the second time window may be the end of the time domain position of the PUCCH containing the scheduling request
  • the start position, and the time domain length may be the second time domain length.
  • the first uplink channel exists in the first time domain, specifically: after the PHY layer of the terminal device receives the trigger of the scheduling request from the MAC layer of the terminal device, and at The first uplink channel exists before the time domain position of the PUCCH containing the scheduling request. In this way, the first uplink channel can exist accurately within the first time domain range.
  • the first uplink channel exists in the first time domain range, which may be specifically: the first uplink channel exists in the first time domain length before the time domain position of the PUCCH including the scheduling request . In this way, the first uplink channel can exist accurately within the first time domain range.
  • the first uplink channel exists in the first time domain range, which may specifically be: the first uplink channel exists in the second time domain length after the time domain position of the PUCCH including the scheduling request , wherein the first uplink channel is a PUCCH including a CSI report. In this way, the first uplink channel can exist accurately within the first time domain range.
  • the first uplink channel exists in the first time domain range, which may specifically be: the first uplink channel exists in the second time domain length after the time domain position of the PUCCH including the scheduling request , and the time domain position of the DCI that schedules or indicates the transmission of the first uplink channel is before the time domain position of the PUCCH containing the scheduling request, wherein the first uplink channel may be the PUCCH containing HARQ feedback or the PUSCH (if not containing uplink data). PUSCH).
  • the first uplink channel can exist accurately within the first time domain range.
  • the first uplink channel when there are multiple uplink channels in the first time domain range, the first uplink channel may be the uplink channel with the earliest time domain position among the multiple uplink channels, or the The first uplink channel may be the uplink channel with the smallest interval between the time domain position of the plurality of uplink channels and the time domain position of the PUCCH containing the scheduling request. In this way, the only location to send the scheduling request can be determined, thereby avoiding misalignment of the network device and the terminal device.
  • the time slot in which the first uplink channel is located includes a scheduling request opportunity. In this way, it can be ensured that the scheduling request is only combined and transmitted in a specific time slot, thereby avoiding that the network device assumes the transmission of the scheduling request for each uplink signal or uplink channel.
  • the first information is obtained by the terminal device concatenating the scheduling request and the HARQ feedback ; the network device receives the first information from the terminal device, specifically: the network device receives the first information sent by the terminal device according to the first cyclic shift value, the first information The cyclic shift value is obtained by mapping the first information by the terminal device. In this way, the network device can successfully receive the information transmitted in combination with the scheduling request and the information in the first uplink channel.
  • the first uplink channel is the PUCCH including HARQ feedback and the format of the PUCCH including HARQ feedback is format 2.
  • the first information is obtained by concatenating the scheduling request and the HARQ feedback by the terminal device; the network device receives the first information from the terminal device.
  • the information may specifically be: the network device receives the first information sent by the terminal device through the first uplink channel. In this way, the network device can successfully receive the information transmitted in combination with the scheduling request and the information in the first uplink channel.
  • the first uplink channel is the PUCCH including the CSI report and the format of the PUCCH including the CSI report is the format 2.
  • the first information is obtained by concatenating the scheduling request and the CSI report by the terminal device; the network device receives the first information from the terminal device.
  • the information may specifically be: the network device receives the first information sent by the terminal device through the first uplink channel. In this way, the network device can successfully receive the information transmitted in combination with the scheduling request and the information in the first uplink channel.
  • the first uplink channel is the PUCCH including HARQ feedback
  • the format of the PUCCH including HARQ feedback is format 1
  • the first information is obtained by the terminal device concatenating the scheduling request and the HARQ feedback; the network device receives the first information from the terminal device, which may specifically be: the network device Receive the first information sent by the terminal device according to a second cyclic shift value, where the second cyclic shift value is obtained by mapping the first information by the terminal device. In this way, the network device can successfully receive the information transmitted in combination with the scheduling request and the information in the first uplink channel.
  • the first uplink channel is the PUCCH including HARQ feedback
  • the format of the PUCCH including HARQ feedback is format 1
  • the network device receiving the first information from the terminal device may specifically be: when there is a resource of PUCCH format 1 used for transmitting a scheduling request in the time domain position of the first uplink channel, receiving the terminal device The first information sent by the device by means of channel selection. In this way, the network device can successfully receive the information transmitted in combination with the scheduling request and the information in the first uplink channel.
  • the network device may receive the first information sent by the terminal device through the first uplink channel. In this way, the network device can successfully receive the information transmitted in combination with the scheduling request and the information in the first uplink channel.
  • the first information is the response of the terminal device to the PUSCH.
  • the network device can receive the first information sent by the terminal device through the first uplink channel by performing puncturing and mapping the scheduling request to the punctured position of the PUSCH. In this way, the network device can successfully receive the information transmitted in combination with the scheduling request and the information in the first uplink channel.
  • the network device sends a first message to the terminal device, where the first message is used to configure a function of the terminal device to combine and transmit the scheduling request and the information contained in the first uplink channel. In this way, the network device can receive the information transmitted by combining the scheduling request and the information in the first uplink channel.
  • the network device receives a second message sent from the terminal device, where the second message is used to request a function of combining and transmitting the scheduling request and the information contained in the first uplink channel. In this way, the network device can receive the information transmitted by combining the scheduling request and the information in the first uplink channel.
  • the network device sends a third message to the terminal device, where the third message is used to instruct the terminal device to combine and transmit the scheduling request and the information contained in the first uplink channel. In this way, the network device can receive the information transmitted by combining the scheduling request and the information in the first uplink channel.
  • the network device determines that the RSRP from the terminal device is greater than an RSRP threshold, where the RSRP is the value of the RSRP from the terminal device.
  • the RSRP is sent by the network device after receiving the reference signal, and the RSRP is determined by the terminal device based on the reference signal. This ensures transmission performance.
  • the present application further provides a communication apparatus, where the communication apparatus may be a terminal device, and the communication apparatus has the function of implementing the terminal device in the first aspect or each possible design example of the first aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver unit and a processing unit, and these units may perform the corresponding functions of the terminal device in the first aspect or each possible design example of the first aspect.
  • these units may perform the corresponding functions of the terminal device in the first aspect or each possible design example of the first aspect.
  • the method The detailed description in the example will not be repeated here.
  • the structure of the communication apparatus includes a transceiver and a processor, and optionally a memory
  • the transceiver is used to send and receive data or information, and to communicate with other devices in the communication system interaction
  • the processor is configured to support the communication apparatus to perform the corresponding functions of the terminal device in the first aspect or each possible design example of the first aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the communication device.
  • the present application further provides a communication apparatus, the communication apparatus may be a network device, and the communication apparatus has the function of implementing the network device in the second aspect or each possible design example of the second aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver unit and a processing unit, and these units may perform the corresponding functions of the network device in the second aspect or each possible design example of the second aspect.
  • these units may perform the corresponding functions of the network device in the second aspect or each possible design example of the second aspect.
  • the method The detailed description in the example will not be repeated here.
  • the structure of the communication apparatus includes a transceiver and a processor, and optionally a memory
  • the transceiver is used to send and receive data or information, and to communicate with other devices in the communication system interaction
  • the processor is configured to support the communication apparatus to perform the corresponding functions of the network device in the second aspect or each possible design example of the second aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the communication device.
  • an embodiment of the present application provides a communication system, which may include the above-mentioned terminal device and network device.
  • a computer-readable storage medium in a sixth aspect, stores a program instruction, and when the program instruction is executed on a computer, makes the computer execute the above-mentioned first aspect or Methods of each possible design example of the first aspect or the above-described second aspect or each possible design example of the second aspect.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer.
  • computer readable media may include non-transitory computer readable media, random-access memory (RAM), read-only memory (ROM), electrically erasable Except programmable read only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage medium or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of Any other media accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable Except programmable read only memory
  • CD-ROM or other optical disk storage magnetic disk storage medium or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of Any other media accessed by a computer.
  • the embodiments of the present application provide a computer program product including computer program codes or instructions, which, when run on a computer, enable the computer to implement the first aspect or each possible design example of the first aspect or the above-mentioned first aspect.
  • the present application further provides a chip, which is coupled to a memory and used to read and execute program instructions stored in the memory, so as to implement the first aspect or each possible design of the first aspect Examples or various possible design examples of the above-described second aspect or the second aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by the present application.
  • FIG. 2 is a flowchart of a method for transmitting a scheduling request provided by the present application
  • FIG. 3 is a schematic diagram of a first time window and a second time window provided by the present application.
  • FIG. 4 is a schematic diagram of transmission of a scheduling request provided by the present application.
  • 5 is a schematic diagram of transmission of another scheduling request provided by the present application.
  • FIG. 6 is a schematic diagram of transmission of another scheduling request provided by the present application.
  • FIG. 7 is a schematic diagram of transmission of another scheduling request provided by the present application.
  • FIG. 8 is a schematic diagram of transmission of another scheduling request provided by the present application.
  • FIG. 9 is a schematic diagram of transmission of another scheduling request provided by the present application.
  • FIG. 10 is a schematic flowchart of the transmission of a scheduling request provided by the application.
  • 11 is a schematic flowchart of another scheduling request transmission provided by the application.
  • FIG. 13 is a schematic flowchart of another scheduling request transmission provided by the present application.
  • FIG. 14 is a schematic diagram of a time window 1 and a time window 2 provided by the application;
  • 15 is a schematic diagram of the transmission of a kind of SR provided by this application.
  • 16 is a schematic diagram of another SR transmission provided by this application.
  • FIG. 17 is a schematic diagram of another SR transmission provided by this application.
  • FIG. 18 is a schematic diagram of another SR transmission provided by this application.
  • 21 is a schematic flowchart of another SR transmission provided by this application.
  • 24 is a schematic structural diagram of a communication device provided by the application.
  • FIG. 25 is a structural diagram of a communication device provided by this application.
  • Embodiments of the present application provide a method and apparatus for transmitting a scheduling request, which are used to propose how to optimize the transmission of a scheduling request to save power consumption of a terminal device.
  • the methods and devices described in this application are based on the same technical concept. Since the methods and devices have similar principles for solving problems, the implementations of the devices and methods can be referred to each other, and repeated descriptions will not be repeated here.
  • At least one item (a, species) refers to one (a, a species) or a plurality of (a, a species), and a plurality of (a, a species) refers to two (a, a species) species) or two (one, species) or more.
  • FIG. 1 shows an architecture of a communication system involved in an embodiment of the present application.
  • the architecture of the communication system includes a network device and a terminal device, where:
  • the network device is a device with a wireless transceiver function or a chip that can be provided in the network device, and the network device includes but is not limited to: a base station (generation node B, gNB), a radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP) in wireless fidelity (wireless fidelity, Wi-Fi) system Or transmission point, TP), etc., and can also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU), etc.
  • RNC radio network controller
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless chain
  • the functions of the road control radio link control, RLC
  • media access control media access control, MAC
  • physical (physical, PHY) layers The functions of the road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited.
  • the terminal equipment may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( transportation safety), wireless terminals in smart cities, smart wearable devices (smart glasses, smart watches, smart headphones, etc.), wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • Chips or chip modules (or chip systems) that can be installed in the above equipment are collectively referred to as a terminal device.
  • the communication system shown in FIG. 1 can be, but is not limited to, a fourth generation (4th Generation, 4G) system or a fifth generation (5th Generation, 5G) system, such as a new generation wireless access technology (new radio access technology).
  • 4G fourth generation
  • 5G fifth generation
  • NR new radio access technology
  • the methods in the embodiments of the present application are also applicable to various future communication systems, such as a sixth generation (6th Generation, 6G) system or other communication networks.
  • the uplink transmission of NR and related procedures may be as follows:
  • Uplink data carried and transmitted in the physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the time domain position of PUSCH transmission is usually indicated by downlink control information (DCI) sent by the network device to the terminal device. Specifically, if the network device sends a DCI in the time slot n, the DCI will indicate a K2 value, and the terminal device sends the PUSCH in the time slot n+K2.
  • DCI downlink control information
  • Such PUSCH scheduled by DCI is generally referred to as dynamic data scheduling.
  • CG transmission mode of configured grant
  • RRC radio resource control
  • DCI transmission parameters of the PUSCH
  • the terminal device will periodically send according to the configured period value, until the network device sends another DCI to stop the PUSCH sending of the terminal device. Therefore, in the transmission mode of CG, there may be a situation of "only PUSCH without DCI".
  • Hybrid automatic repeat request (HARQ) feedback is usually carried in PUCCH for transmission, and the time domain position of PUCCH carrying HARQ feedback can be indicated by DCI, which is sent by network equipment to terminal equipment of. Specifically, if the network device sends a DCI to schedule the transmission of downlink data in time slot n, a K0 value and a K1 value are indicated in the DCI, and the terminal device receives the physical downlink shared channel (physical downlink shared channel) in time slot n+K0. PDSCH), wherein the PDSCH contains downlink data, and the terminal device sends HARQ feedback corresponding to the PDSCH in time slot n+K0+K1.
  • HARQ feedback may be sent using PUCCH format 0/1/2/3/4.
  • CSI report After the terminal device receives the CSI reference signal (RS) (CSI-RS) sent by the network device, it will send a CSI report to the network device.
  • CSI reports can be divided into the following three categories:
  • Periodic CSI report (periodic CSI report, P-CSI report): Usually transmitted in the PUCCH, once the network device configures a periodic CSI report for the terminal device, the terminal device will send the CSI report according to the configured period. That is, the time domain position of the periodic CSI report is semi-statically configured through RRC signaling. Periodic CSI reports may be sent using PUCCH format 2/3/4.
  • Semi-persistence CSI report Like the periodic CSI report, it is usually transmitted in the PUCCH. However, the difference from periodic CSI reporting is that semi-persistent CSI reporting needs to be activated again after the network device is configured for the terminal device. After activation, its time domain location can be considered to be semi-statically configured through RRC signaling. Semi-persistent CSI reports may be sent using PUCCH format 2/3/4.
  • Aperiodic CSI report (aperiodic CSI report, AP-CSI report): transmitted in PUSCH and triggered by DCI. Specifically, if the network device sends a DCI in time slot n, in addition to indicating the K2 value, the DCI may also include aperiodic CSI trigger information. If the DCI includes aperiodic CSI trigger information, the terminal device will carry the aperiodic CSI report in the scheduled PUSCH.
  • Scheduling request The SR will be carried in the PUCCH and sent, and the network device will configure one or more PUCCH resources for the terminal device to send the SR, and each PUCCH resource appears periodically.
  • the media access control (MAC) layer in the terminal device will determine an SR transmission occasion (SR transmission occasion), and send it to the physical (PHY) in the terminal device.
  • the layer sends an instruction to let the PHY layer send an SR on this SR transmission occurrence.
  • SR can be sent using PUCCH format 0/1.
  • format 0 and format 1 can carry 1 to 2 bits of information
  • format 2/3/4 can carry more than 2 bits of information.
  • Format 0 and format 2 occupy 1 or 2 orthogonal frequency division multiplexing (OFDM) symbols in the time domain, so format 0/2 can be called short PUCCH (short PUCCH)
  • format 1/3 /4 occupies more than or equal to 4 OFDM symbols in the time domain
  • format 1/3/4 can be called long PUCCH (long PUCCH).
  • PUCCH format can be abbreviated as PF.
  • the scheduling request can be a scheduling request (SR) in 5G; in future communication systems or networks, such as 6G, it can still be SR, or can have other names, which this application does not make limited.
  • SR scheduling request
  • the operations implemented by the terminal equipment involved in the following embodiments may also be implemented by a processor in the terminal equipment, or a chip or a chip system, or a functional module, etc.;
  • the operation can also be implemented by a processor in a network device, or a chip or a chip system, or a functional module.
  • a method for transmitting a scheduling request provided by an embodiment of the present application is applicable to the communication system shown in FIG. 1 .
  • the specific flow of the method may include:
  • Step 201 The terminal device determines that a first uplink channel exists in the first time domain range; wherein, the first time domain range is related to the time domain position of the PUCCH including the scheduling request, and the first uplink channel can be any of the following: including HARQ Feedback PUCCH, PUCCH or PUSCH containing CSI reports.
  • the PUSCH may be a PUSCH that does not include uplink data, such as a PUSCH that does not include an uplink shared channel (UL-SCH); the HARQ feedback may be an acknowledgment (ACK) or a negative acknowledgment (NACK) .
  • ACK acknowledgment
  • NACK negative acknowledgment
  • Step 202 The terminal device combines the scheduling request with the information contained in the first uplink channel to obtain the first information.
  • Step 203 The terminal device sends the first information to the network device.
  • the first time domain range may be the first time window (window 1) and/or the second time window (window 2); wherein, the starting moment of the first time window may be the terminal
  • the termination time can be the time domain position of the PUCCH containing the scheduling request (also called the scheduling request occasion (occasion) or the PUCCH containing the scheduling request. resources); or, the termination moment of the first time window may be the time domain position of the PUCCH containing the scheduling request, and the time domain length may be the first time domain length; the start moment of the second time window may be the PUCCH containing the scheduling request.
  • the time domain position of , and the time domain length may be the second time domain length.
  • an example of the first time window and the second time window may be as shown in FIG. 3 .
  • the time domain position of the PUCCH including the scheduling request may specifically be the start position of the time domain position of the PUCCH, or may be the end position of the time domain position of the PUCCH, or may also be the middle position of the time domain position of the PUCCH. etc., which is not limited in this application.
  • the first time domain length or the second time domain length may be one or more symbols (symbols), or one or more time slots (slots), or the like.
  • the first time window and/or the second time window it can be ensured that the scheduling request can be merged into the uplink channel (ie, the first uplink channel) at the nearby time domain position and sent together, thereby reducing the number of uplink transmissions by the terminal equipment and reducing The power consumption of the terminal device for uplink transmission.
  • the first time window may be used to ensure that the uplink channel is within a period of time before the scheduling request.
  • the start time of the first time window may be the time when the PHY layer of the terminal device receives the trigger of the scheduling request from the MAC layer of the terminal device.
  • the terminal device will wait until the time domain position of the PUCCH containing the scheduling request to send the scheduling request after generating the scheduling request. If there are other uplink channels (that is, the first uplink channel) within the first time window, the terminal device can combine the generated scheduling request into the uplink channel without waiting for the time domain position of the PUCCH containing the scheduling request to send it again Schedule request. In this way, on the one hand, the power consumption of the uplink transmission of the terminal device can be reduced, and on the other hand, the scheduling request can be sent in advance to reduce the overall communication delay.
  • the termination moment of the first time window may be the time domain position of the PUCCH containing the scheduling request
  • the time domain length may be the first time domain length. This is because it is unknown to the network device when the MAC layer of the terminal device will trigger the sending of the scheduling request. Therefore, from the perspective of the network device, it can only be calculated from the time domain position of the PUCCH containing the scheduling request.
  • the uplink channel within the length of the time domain may carry the combined scheduling request.
  • the first time domain length can be understood as the maximum value of a time range (that is, a time domain range) in which the MAC layer of the terminal device triggers the sending of the scheduling request.
  • the second time window is located after the time domain position of the PUCCH containing the scheduling request, that is, the second time window can be used to ensure that the uplink channel is within a period of time after the scheduling request.
  • the second time window can ensure that the transmission of the scheduling request will not be delayed too much, that is, the overall communication delay will not increase too much due to the combined transmission method of the present application.
  • the second time domain length can be understood as the time domain length determined according to the maximum data transmission delay (or the data transmission delay budget).
  • time window may also be referred to as a time domain range or a time region, etc., which is not limited in this application.
  • the first time window and the second time window may be predefined in a standard, or may be configured by a network device to a terminal device, or may be determined in other ways, which are not limited in this application.
  • the existence of the first uplink channel in the first time domain may include the following four situations:
  • the first uplink channel exists after the time when the PHY layer of the terminal device receives the trigger of the scheduling request from the MAC layer of the terminal device and before the time domain position of the PUCCH including the scheduling request. That is, the first upstream channel is within the first time window.
  • the transmission of the scheduling request may be as shown in FIG. 4 .
  • Case a2 The first uplink channel exists within the first time domain length before the time domain position of the PUCCH containing the scheduling request. That is, the first upstream channel is within the first time window.
  • the transmission of the scheduling request may be as shown in FIG. 5 .
  • the above-mentioned cases a1 and a2 are related to different interpretations of the above-mentioned first time window.
  • the start time of the first time window corresponding to the above case a1 is the time when the PHY layer of the terminal device receives the trigger of the scheduling request from the MAC layer of the terminal device, and the end time is the time domain position of the PUCCH containing the scheduling request;
  • Case a2 corresponds to the case where the termination time of the first time window is the time domain position of the PUCCH including the scheduling request, and the time domain length may be the first time domain length.
  • Case a3 The first uplink channel exists within the second time domain length after the time domain position of the PUCCH containing the scheduling request. That is, the first upstream channel is within the second time window.
  • the transmission of the scheduling request may be as shown in FIG. 6 .
  • the first uplink channel may be the PUCCH containing the CSI report. Since the PUCCH containing the CSI report is semi-statically configured, the terminal device can prejudge that such a PUCCH (ie, the first uplink channel) must be available within a certain range after the PUCCH requested by the scheduling, and it can be successful The scheduling request is integrated into the PUCCH containing the CSI report and sent.
  • Case a4 The first uplink channel exists within the second time domain length after the time domain position of the PUCCH containing the scheduling request, and the time domain position of the DCI that schedules or indicates the transmission of the first uplink channel is at the time of the PUCCH containing the scheduling request before the domain location. That is, the first upstream channel is within the second time window.
  • the transmission of the scheduling request may be as shown in FIG. 7 .
  • the first uplink channel may be a PUCCH containing HARQ feedback or a PUSCH (eg, a PUSCH not containing uplink data).
  • the transmission of the first uplink channel is not semi-statically configured but dynamically scheduled, the DCI scheduling the transmission of the first uplink channel is located before the PUCCH of the scheduling request.
  • the terminal device can determine whether there is a first uplink channel that can be used in the next second time window, and if there is a first uplink channel that can be used, the terminal device can The scheduling request is merged into the first uplink channel, and if there is no available first uplink channel, the terminal device sends the scheduling request using the PUCCH of the original scheduling request.
  • the first uplink channel when there are multiple uplink channels in the first time domain range, may be the uplink channel with the earliest time domain position among the multiple uplink channels, or the first uplink channel The channel may also be an uplink channel with the smallest interval between the time domain position of the multiple uplink channels and the time domain position of the PUCCH containing the scheduling request. In this way, the only location to send the scheduling request can be determined, thereby avoiding misalignment of the network device and the terminal device.
  • the first uplink channel when there are multiple uplink channels in the first time domain, may be any one of the multiple uplink channels, as shown in FIG. 8 , for example.
  • the time slot in which the first uplink channel is located includes a scheduling request occasion (occasion). That is to say, when there are multiple uplink channels in the first time domain, the uplink channel containing the scheduling request opportunity in the time slot where the multiple uplink channels are located is used as the first uplink channel. For example, as shown in Figure 9.
  • the MAC layer of the terminal device can determine whether the information contained in the scheduling request and the first uplink channel can be combined (that is, determine whether the first uplink channel exists in the first time domain), and the MAC layer indicates The PHY layer of the terminal device transmits the uplink channel of the scheduling request, and then the PHY layer of the terminal device transmits the scheduling request; alternatively, the MAC layer of the terminal device can only indicate the time domain position of the PUCCH of one scheduling request, and then the terminal device transmits the scheduling request. The PHY layer of the device determines whether the information contained in the scheduling request and the first uplink channel can be combined, and transmits the scheduling request.
  • the transmission mode of the scheduling request and the information in the other uplink channels may be as shown in Table 1 below: It is shown in Table 1 that the scheduling request is SR as an example.
  • the terminal device can use the corresponding method in Table 1 above (that is, the method with bold font in the above Table 1) to transmit the scheduling request. Specifically, the following scenarios can be included:
  • Scenario b2 When the format of the PUCCH containing the scheduling request is format 0 or format 1, the first uplink channel is the PUCCH containing HARQ feedback, and the format of the PUCCH containing HARQ feedback is format 2, format 3 or format 4, the terminal device will The scheduling request and the HARQ feedback are concatenated to obtain the first information; then, the terminal device sends the first information to the network device through the first uplink channel.
  • the terminal device concatenates the scheduling request and the HARQ feedback, the bits corresponding to the scheduling request (eg log(K+1) bits) and the bits corresponding to the HARQ feedback are concatenated.
  • Scenario b3 When the format of the PUCCH containing the scheduling request is format 0 or format 1, the first uplink channel is the PUCCH containing the CSI report, and the format of the PUCCH containing the CSI report is format 2, format 3 or format 4, the terminal device will The scheduling request and the CSI report are concatenated to obtain the first information; then, the terminal device sends the first information to the network device through the first uplink channel.
  • the terminal device concatenates the scheduling request and the CSI report, the bits corresponding to the scheduling request (for example, log(K+1) bits) and the bits corresponding to the CSI report are concatenated.
  • the terminal device when the first uplink channel is a PUCCH containing HARQ feedback, and the format of the PUCCH is format 1, or the first uplink channel is a PUSCH (for example, a PUSCH that does not contain uplink data), the terminal device no longer uses the above The corresponding method in Table 1 (that is, the method corresponding to the non-bold font in Table 1). Specifically, the terminal device may adopt methods in the following scenarios:
  • the terminal device can use the following method:
  • Method 1 The terminal device does not combine the scheduling request with the HARQ feedback, that is, the scheduling request cannot be combined and transmitted.
  • Method 2 (1) If the HARQ feedback has only 1 bit (bit) information, the terminal device concatenates the scheduling request and the HARQ feedback to obtain the first information, and then maps the first information to the second cyclic shift value.
  • the 3-bit information composed of the scheduling request and the HARQ feedback can generate an 8-phase shift keying (8PSK) modulation symbol, which is multiplied to a sequence (sequence), for example It can conform to the following formula one:
  • y(n) is the first information, is the sequence, u, v, ⁇ and ⁇ are the sequence generation parameters, is the number of subcarriers included in a resource block (resource block, RB), and its value may be 12, etc.; d(0) is an 8PSK modulation symbol.
  • the terminal device may not combine the scheduling request with the HARQ feedback.
  • Scenario c2 When the format of the PUCCH containing the scheduling request is format 1, the first uplink channel is the PUCCH containing HARQ feedback, and the format of the PUCCH containing HARQ feedback is format 1, when determining the existence of the time domain position of the first uplink channel.
  • the terminal device When transmitting the resources of the PUCCH format 1 of the scheduling request, the terminal device sends the first information to the network device by means of channel selection.
  • the terminal device may not combine the scheduling request with the HARQ feedback.
  • Scenario c3 When the format of the PUCCH containing the scheduling request is format 0 or format 1, and the first uplink channel is a PUSCH (for example, a PUSCH that does not contain uplink data), the terminal device includes the scheduling request and the first uplink channel. The information is merged to obtain the first information, which can include the following two methods:
  • Method 1 The terminal device concatenates the scheduling request and the information contained in the PUSCH to obtain the first information.
  • the scheduling request can be multiplexed into the PUSCH, that is, the information bits of the scheduling request and the uplink data information bits are concatenated, and then modulated and mapped onto the physical resources of the PUSCH, that is, the first information is obtained.
  • Method 2 The terminal device punctures the PUSCH, maps the scheduling request to the punctured position of the PUSCH, and obtains the first information.
  • the first information is a scheduling request mapped to a position where the PUSCH is punctured and information on a position where the PUSCH is not punctured.
  • the terminal device modulates the scheduling request individually, and after the terminal device punctures the PUSCH, modulates the modulation symbols (modulated symbols) on some resource elements (RE) occupied by the punctured PUSCH.
  • the first information is obtained by replacing the modulation symbols modulated by the scheduling request.
  • the location where the PUSCH is punctured may be predefined.
  • the terminal device in the time domain, the terminal device can start puncturing from the first symbol occupied by the PUSCH, or the terminal device can start puncturing from the first symbol in the PUSCH except for the DMRS; in the frequency domain, the terminal device can Puncturing starts at the initial RE occupied by the PUSCH, and h REs may be spaced between the two punctured REs, where h may be predefined.
  • the punctured position of the PUSCH there may be other possibilities for the punctured position of the PUSCH, and it is sufficient to ensure that the information on the punctured position has little influence on data transmission, which is not limited in this application.
  • the terminal device may not associate the scheduling request with the PUSCH. information merged.
  • the terminal device needs to send the signal twice. Although the transmission power consumption of the terminal device is relatively large, the average energy allocated to each bit in the two signals is also relatively low. High, it can resist strong noise, and the coverage of the signal is relatively large.
  • the method of the present application is used to combine and transmit the scheduling request and the information in the first uplink channel, whether it is the scheduling request or the information in the first uplink channel, the average energy allocated to each bit will be relatively low, and the coverage of the signal will be relatively low. Range may be limited and signal transmission reliability may be reduced. In order to solve the problem of signal transmission reliability, this application can ensure the reliability of signal transmission through the following methods:
  • Method d1 After the terminal device receives the reference signal from the network device, the terminal device performs steps 202 and 203 only when the reference signal received power (RSRP) sent to the network device is greater than the RSRP threshold.
  • the RSRP is determined by the terminal device based on the reference signal.
  • the terminal device will be based on the power of the reference signal received from the network device (such as synchronization signal block and broadcast signal block ((synchronization signal block, SSB) and (physical broadcast channel, PBCH) block), or CSI-RS, etc.) Calculate an RSRP value.
  • the RSRP value is larger, it means that the terminal device is closer to the network device.
  • the RSRP threshold is equivalent to an equivalent distance threshold from the network device to the terminal device.
  • the RSRP corresponding to the reference signal received by the terminal device is greater than the RSRP threshold, it means that the terminal device is sufficiently close to the network device.
  • the terminal device can still ensure that the signal can be transmitted correctly.
  • the RSRP reported by the terminal device to the network device is greater than the RSRP threshold, it can be considered that the coverage of the terminal device is not limited, and the scheduling request can be transmitted in the manner in the above steps 202 and 203 .
  • the terminal device can send the scheduling request by using a method commonly used at present, for example, the scheduling request is transmitted separately.
  • the scheduling request will be transmitted in the manner of step 202 and step 203. Therefore, the RSRP sent by the terminal device to the network device can be compared with the RSRP threshold and judged. Both the terminal device and the network device are made to determine whether the condition is satisfied.
  • Method d2 When the terminal device sends the first information to the network device, the terminal device may send the first information to the network device by using the first transmit power.
  • the first transmit power can be determined in the following two ways:
  • the first way the first transmit power can be obtained by adding X decibels (dB) to the original transmit power of the first uplink channel, where the value of X can be predefined by the standard, or preconfigured by the network device to the terminal device, or It is indicated by the network device through signaling (for example, DCI), which is not limited in this application.
  • dB decibels
  • the first transmit power may be determined based on the original transmit power of the first uplink channel and the original transmit power of the PUCCH containing the scheduling request.
  • the first transmit power may be obtained by adding the original transmit power of the first uplink channel and the original transmit power of the PUCCH, or the first transmit power may be obtained by adding the original transmit power of the first uplink channel and the original transmit power of the PUCCH. Add and then multiply by a factor. For example, if the original transmit power of the PUCCH is 16 milliwatt decibels (dBm) and the original transmit power of the first uplink channel is 16 dBm, the first transmit power may be the sum of the two, that is, 19 dBm, or the two may be added together and then multiplied. Take a factor, 18dBm and so on. Of course, there may also be other methods to obtain the first transmit power, which is not limited in this application.
  • the transmit power of the first uplink channel may be determined according to a path loss value estimated by the terminal device, a transmission parameter configured by the network device, and a transmit power control (TPC) command indicated by the network device in the DCI.
  • TPC transmit power control
  • the method in the above method d2 can be used to increase the transmit power of the first uplink channel, thereby increasing the energy allocated to each bit on average.
  • the terminal device combines the scheduling request and the information contained in the first uplink channel to transmit to the network device, and when the network device receives the scheduling request combined and transmitted by the terminal device and the information contained in the first uplink channel, Both parties need to reach an agreement to jointly enable or disable this function (that is, the function of combining and transmitting the scheduling request and the information contained in the first uplink channel).
  • the enabling of this function can be configured in the following four ways:
  • Manner e1 The terminal device receives a first message from the network device, where the first message is used to configure or enable the function of the terminal device to combine and transmit the scheduling request and the information contained in the first uplink channel.
  • the first message is also the configuration information sent by the network device to the terminal device.
  • the first message may be configured through a radio resource control (radio resource control, RRC) signaling or a medium access control (medium access control, MAC) control unit ( control elements, CE) (MAC CE) transmission.
  • RRC radio resource control
  • MAC medium access control
  • CE control elements
  • the terminal device when the first uplink channel exists in the first time domain, the terminal device can combine and transmit the scheduling request and the information contained in the first uplink channel, and the network device can receive the scheduling request combined and transmitted by the terminal device and transmit it together.
  • the information contained in the first uplink channel for example, the specific process may be as shown in FIG. 10 .
  • Manner e2 The terminal device sends a second message to the network device, where the second message is used to request to enable the function of combining and transmitting the scheduling request and the information contained in the first uplink channel. Then, the terminal device receives the first message from the network device, where the first message is used to configure or enable the function of the terminal device to combine and transmit the scheduling request and the information contained in the first uplink channel. After that, when the first uplink channel exists in the first time domain, the terminal device can combine and transmit the scheduling request and the information contained in the first uplink channel, and the network device can receive the scheduling request combined and transmitted by the terminal device and the first uplink channel.
  • the information contained in the uplink channel for example, the specific process can be shown in FIG. 11 .
  • Manner e3 The terminal device receives the first message from the network device, where the first message is used to configure or enable the terminal device to combine and transmit the scheduling request with the information contained in the first uplink channel; then the terminal device receives the third message from the network device. message, and the third message is used to instruct the terminal device to combine and transmit the scheduling request and the information contained in the first uplink channel.
  • the terminal device can combine and transmit the scheduling request and the information contained in the first uplink channel, and the network device can receive the scheduling request combined and transmitted by the terminal device and the first uplink channel.
  • the information contained in the uplink channel for example, the specific process can be shown in FIG. 12 .
  • the network device after the network device sends the configuration information (ie the first message) to the terminal device, it also needs to send dynamic indication information, that is, the third message (eg DCI) to the terminal device, indicating whether the terminal device can match the scheduling request with the The information contained in the first upstream channel is combined and transmitted.
  • the third message eg DCI
  • a third message may be added to the DCI of the PUSCH/PUCCH scheduled by the network device to indicate whether the scheduling request can be transmitted in combination with the information contained in the first uplink channel.
  • Manner e4 The terminal device sends a second message to the network device, where the second message is used to request to enable the function of combining and transmitting the scheduling request and the information contained in the first uplink channel. Then, the terminal device receives the first message from the network device, where the first message is used to configure or enable the function of the terminal device to combine and transmit the scheduling request and the information contained in the first uplink channel. Afterwards, the terminal device receives a third message from the network device, where the third message is used to instruct the terminal device to combine and transmit the scheduling request and the information contained in the first uplink channel.
  • the terminal device can combine and transmit the scheduling request and the information contained in the first uplink channel, and the network device can receive the scheduling request combined and transmitted by the terminal device and the first uplink channel.
  • the information contained in the uplink channel for example, the specific process can be shown in FIG. 13 .
  • the mode e4 is a combination of the above three modes, and the specific message description can refer to the relevant description in the above mode.
  • the scheduling request transmission method provided by the present application, by combining and transmitting the scheduling request and the information contained in the first uplink channel, the number of uplink transmissions can be reduced, thereby reducing the power consumption of the terminal device.
  • the terminal device is a mobile phone
  • the terminal device is a mobile phone
  • the user will receive downlink data packets (included in PDSCH) when receiving WeChat messages through the mobile phone, and send HARQ feedback (included in the PDSCH) to the network device.
  • PDSCH downlink data packets
  • HARQ feedback included in the PDSCH
  • the mobile phone will send the HARQ feedback and the scheduling request at the two time domain positions respectively. , two uplink signals will be sent. If the solution in the present application is adopted, if the conditions are met, the mobile phone can combine the scheduling request with the information fed back by HARQ, and send it through the PUCCH, and the mobile phone only sends one uplink signal. So as to achieve the effect of mobile phone energy saving.
  • the terminal device is the UE
  • the network device is the base station
  • the scheduling request is the SR as an example for description.
  • this solution is used to realize how to reduce the number of uplink transmissions of the UE, thereby reducing the power consumption of the uplink transmission of the UE.
  • the UE may predict that there are other uplink transmissions (that is, the first uplink channel involved in the above embodiment) near the PUCCH of the SR (also referred to as uplink resources or Uplink signals, etc.), the SR is combined into other uplink transmissions for transmission, thereby reducing the number of uplink signal transmissions (that is, the number of uplink transmissions) and reducing uplink transmission power consumption.
  • the SR is combined into other uplink transmissions for transmission, thereby reducing the number of uplink signal transmissions (that is, the number of uplink transmissions) and reducing uplink transmission power consumption.
  • this solution can be described in the following three aspects: first, under what circumstances does the UE combine and send SRs, that is, how to define "near PUCCH"; second, how to combine SRs into other uplink transmissions transmission; thirdly, how to avoid the impact on transmission performance.
  • PUCCH carrying HARQ feedback such as HARQ-ACK, in the following HARQ feedback is described by taking HARQ-ACK as an example
  • carrying CSI report PUCCH of report
  • not carrying UL-SCH PUSCH that is, PUSCH that does not contain uplink data
  • the SR can be combined into other uplink transmissions for transmission.
  • the vicinity of the PUCCH of the SR may be defined as: within a certain time range before and after the PUCCH (that is, the first time domain range mentioned above), it may be represented by two time windows.
  • Method 1 The methods in some current embodiments can be used, which are applicable to some scenarios, such as the scenario in which the information of PF 0/2/3/4 of HARQ-ACK is sent in combination with SR, or the CSI in PUCCH is sent in combination with SR .
  • Method 2 The method proposed in this application is used for combined transmission, which can be applied to scenarios other than the scenario in method 1, such as the information of PF 1 of HARQ-ACK and SR combined and sent, or the CSI contained in the PUSCH that does not carry uplink data. Combined with SR and sent.
  • the third aspect how to avoid the impact on transmission performance:
  • Solution 1 Introduce an RSRP threshold.
  • the RSRP reported by the UE to the base station is higher than the RSRP threshold, it is considered that the coverage of the UE is not limited, and the combined transmission method in this application can be used at this time. Otherwise, the currently commonly used method is used.
  • Solution 2 Enhance the power control of uplink transmission.
  • the transmit power of other uplink transmissions is added by X dB, and the value of X can be predefined, or configured by the base station, or indicated by the DCI.
  • the final transmit power of other uplink transmissions can be determined by the original SR PUCCH transmit power and the original other uplink transmission transmit power, such as power addition, or power addition. Then multiply by a factor, etc.
  • the uplink transmission (that is, the first uplink channel involved in the above embodiment) may include any one of the following: PUCCH carrying HARQ-ACK, PUCCH carrying CSI report (report), not carrying UL -PUSCH for SCH. That is to say, in this example, the SR can only be combined into the above three uplink transmissions and sent together.
  • the vicinity of the PUCCH of the SR can be defined as time window 1 (window 1) (that is, the first time window involved in the above embodiment) and/or time window 2 (window 2) as shown in FIG. within the range of the second time window (that is, the first time domain range involved in the above-mentioned embodiment), wherein:
  • time window 1 can be: the starting point is "the SR trigger from the PHY layer to the MAC layer” (that is, the starting time is the time when the PHY layer of the UE receives the SR trigger from the MAC layer of the UE), and the end point is "SR timing" (occasion)" (SR opportunity is the PUCCH resource of SR) (that is, the termination time is the time domain position of the PUCCH containing SR); or, the end point is "SR opportunity", and the length is length 1 (length 1) (that is, the above The first time domain length involved in the embodiment), wherein the length 1 may be predefined or configured by the base station.
  • the starting point of the time window 2 is the "SR opportunity", and the length of the time window 2 is length 2 (length 2), where the length 2 may be predefined or configured by the base station.
  • the SR information can be combined into the other uplink transmissions and sent together.
  • the one with the earliest occurrence time that is, the earliest time domain position
  • the one closest to the SR opportunity that is, the above-mentioned embodiment
  • the number of times of UE sending can be reduced, thereby reducing the power consumption of the UE.
  • the uplink transmission is PUCCH carrying HARQ-ACK, or PUCCH carrying CSI report (report), or PUSCH not carrying UL-SCH, and the uplink transmission falls within time window 1, then SR can be combined into the upstream transmission.
  • the above types of uplink transmission can all carry SR information in a certain way, and the above types of uplink transmission are before the PUCCH of the SR and the MAC of the UE triggers the PHY to send the SR (that is, in the above embodiment, the terminal device's After the PHY layer receives the trigger of the scheduling request from the MAC layer of the terminal device) (that is, within the time window 1), as shown in FIG. 15 . Therefore, the UE can determine that there are these uplink transmissions before the PUCCH of the SR, and can combine the transmissions.
  • the SR can be combined into the uplink transmission and sent.
  • the UE since the PUCCH carrying the CSI report is semi-statically configured, the UE can prejudge that there must be a PUCCH within a certain range after the PUCCH of the SR (that is, the second time domain length involved in the above embodiment).
  • the PUCCH of the CSI report can be used, that is, the SR can be successfully combined into the PUCCH that carries the CSI report and sent, for example, as shown in FIG. 16 .
  • the UE can only use the PUCCH of the SR to send the SR, which cannot achieve the purpose of UE energy saving.
  • the uplink transmission is a PUSCH without UL-SCH or a PUCCH with HARQ-ACK
  • the uplink transmission falls within time window 2
  • the DCI that schedules the PUSCH or PUCCH is located before the PUCCH of the SR
  • the SR can be merged into
  • the uplink transmission is transmitted within the transmission, for example, as shown in FIG. 17 .
  • the uplink transmission is not semi-statically configured but dynamically scheduled
  • the DCI that schedules the uplink transmission is located before the PUCCH of the SR. That is to say, before the PUCCH of the SR, the UE can determine that there may be available uplink transmission in the following time window 2, so the UE can incorporate the SR into the uplink transmission. If there is no available uplink transmission, the UE sends the SR using the PUCCH of the SR.
  • the time slots in which other uplink transmissions are located must have SR opportunities before combined transmission, as shown in FIG. 19 .
  • the MAC layer of the UE can determine whether the combination can be performed, and instruct the PHY layer of the UE on which SR resource to transmit the SR, and the PHY of the UE multiplexes and transmits the SR according to the currently commonly used method; or the UE
  • the MAC layer of the UE only indicates an SR opportunity, and the PHY layer of the UE determines whether it can be combined and transmits the SR.
  • the practices corresponding to the combinations shown in bold fonts in Table 1 can all be applied. into this example. That is, when it is judged that the SR can be incorporated into the PUCCH format (PF) 0/2/3/4 carrying the HARQ-ACK in the manner in the first specific example or the second specific example, or the SR can be incorporated into the PUCCH format (PF) 0/2/3/4 that carries the HARQ-ACK
  • the method in the current embodiment may be adopted.
  • the method of the combination corresponding to the part of the font that is not bolded in the above Table 1 may need to be enhanced. Specifically, there are the following scenarios:
  • Scenario 1 If the PUCCH resource of the SR is in format 0, and the SR is to be merged into the PF1 carrying HARQ-ACK for transmission, there are several possible approaches:
  • Method 1 The combination cannot be combined and transmitted, that is, in this scenario, the SR cannot be combined and sent.
  • Method 2-1 SR cannot be combined into the PUCCH for transmission.
  • Method 2-2 The 3-bit information composed of SR and HARQ-ACK can generate an 8PSK symbol, which is then multiplied to the sequence.
  • d(0) is a complex number symbol, which is generated with information of at most 2 bits.
  • d(0) is an 8PSK symbol.
  • Scenario 2 If the PUCCH resource of the SR is format 1, and the SR is to be merged into PF1 carrying HARQ-ACK for transmission, the following methods can be used:
  • the UE uses the channel selection method (same as the channel selection method in the current embodiment); otherwise, it cannot be combined.
  • Scenario 3 If the SR is to be merged into the PUSCH without UL-SCH for transmission, the following methods can be used:
  • SR can be multiplexed into PUSCH, that is, SR information bits and uplink data bits are concatenated, and then modulated and mapped to the physical resources of PUSCH together;
  • the SR may puncture the PUSCH, that is, the UE modulates the SR separately, and after generating the PUSCH, replaces the modulation symbols of some REs occupied by the PUSCH with the SR-modulated symbols.
  • Method 3 In this scenario, the SR cannot be combined and transmitted.
  • the base station may send configuration information (for example, through RRC signaling (message) or MAC CE) to the UE (that is, the first message involved in the above embodiment), and the configuration information is used to enable this function (that is, SR and uplink transmission).
  • the function of combined transmission that is, the function of combining and transmitting the scheduling request and the information contained in the first uplink channel involved in the above embodiments).
  • both the base station and the UE can determine that the two (that is, the information in the SR and the PUCCH or the PUSCH) can be combined for transmission.
  • An example flow may be shown in FIG. 20 .
  • the UE may send auxiliary information (that is, the second message involved in the above-mentioned embodiment), to request or trigger the enabling (that is, enabling) or disabling of this function.
  • auxiliary information that is, the second message involved in the above-mentioned embodiment
  • the base station after the base station sends the configuration information to the UE, it also needs to send dynamic indication information (for example, DCI) to the UE (that is, the third message involved in the above embodiment), indicating whether the UE can combine transmission (that is, whether enable this feature).
  • indication information is added to the DCI of the scheduled PUSCH or PUCCH to indicate whether the SR can be combined into the current PUSCH or PUCCH for transmission together.
  • An example flow may be shown in FIG. 22 .
  • the example is used to avoid the impact on the transmission performance.
  • the UE needs to send the signal twice.
  • the transmission power consumption of the UE is relatively large, the average energy allocated to each bit in the two signals is also relatively high, which can resist strong Noise, the coverage of the signal is relatively large.
  • the average energy allocated per bit will be relatively low, the coverage of the signal may be limited, and the reliability of signal transmission will be reduced.
  • this example proposes several enhanced methods.
  • Method 1 Introduce a reference signal received power (reference signal received power, RSRP) threshold.
  • RSRP reference signal received power
  • the RSRP reported by the UE to the base station is higher than the RSRP threshold, it can be considered that the coverage of the UE is not limited.
  • the principle is that the UE calculates an RSRP value according to the received power of the reference signal sent by the base station. When the RSRP value is larger, it means that the UE is closer to the base station.
  • An RSRP threshold is equivalent to an equivalent distance threshold from the base station to the UE. When the RSRP received by the UE is higher than the threshold, it means that the UE is close enough to the base station.
  • the condition is "the RSRP reported by the UE to the base station", because the UE and the base station must both know whether the SR is combined with other uplink transmissions, so that they can be transmitted correctly. Therefore, both the UE and the base station must know whether the RSRP condition is satisfied.
  • Method 2 Enhance the power control method.
  • the transmit power of the uplink signal may be based on one or more of the path loss value estimated by the UE, the transmission parameter configured by the base station, or the TPC (transmit power control, transmission power control) command indicated by the base station in the DCI. item determined. If no enhancement is made, the UE will determine the transmit power of the uplink signal according to the method in the current embodiment. If you want to improve the transmission reliability of the combined signal, you can consider increasing the transmit power of the combined signal when the SR and uplink transmission are combined for transmission, thereby increasing the energy allocated to each bit on average. Specifically, the following possible methods can be included:
  • Example 1 When the SR is combined into other uplink transmissions and sent, the transmit power of other uplink transmissions is added X dB, and the value of X can be predefined, or configured by the base station, or indicated by the base station through DCI.
  • the final transmit power of other uplink transmissions can be determined by the PUCCH transmit power of the original SR (that is, the original transmit power of the PUCCH) and the original transmit power of other uplink transmissions.
  • the power (that is, the original transmit power of the first channel) is determined, for example, by adding two powers, or adding two powers and multiplying them by a coefficient. For example, if the original transmit power of the PUCCH of the SR is 16 dBm, and the SR is combined into the PUSCH for transmission, the original transmit power of the PUSCH is 16 dBm.
  • the transmit power of the PUSCH may be the sum of the two, that is, 19 dBm; or the addition of the two and multiplied by a coefficient, which is 18 dBm, and so on.
  • the apparatus 2400 may include a transceiver unit 2401 and a processing unit 2402 .
  • the transceiver unit 2401 is used for the communication device 2400 to transmit information (message or data), that is, receive information (message or data) or send information (message or data), and the processing unit 2402 is used for the The operation of the communication device 2400 is controlled and managed.
  • the processing unit 2402 may also control the steps performed by the transceiver unit 2401 .
  • the communication apparatus 2400 may specifically be the terminal device in the foregoing embodiment, a processor in the terminal device, or a chip or a chip system, or a functional module, etc.; or, the communication apparatus 2400 may specifically be The network device in the foregoing embodiment, the processor of the network device, or a chip or a chip system, or a functional module, etc.
  • the transceiver unit 2401 may implement the function executed by the terminal device in the embodiment shown in FIG. 2 .
  • Transceiver operation or transmission operation
  • the processing unit 2402 may implement other operations except the transceive operation performed by the terminal device in the embodiment shown in FIG. 2 .
  • the transceiver unit 2401 may implement the execution by the network device in the embodiment shown in FIG. 2 .
  • the processing unit 2402 may implement other operations other than the transceiving operation performed by the network device in the embodiment shown in FIG. 2 .
  • each functional unit in the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that makes a contribution, or all or part of the technical solution.
  • the computer software product is stored in a storage medium and includes several instructions. It is used to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .
  • the communication apparatus 2500 may include a transceiver 2501 and a processor 2502 .
  • the communication apparatus 2500 may further include a memory 2503 .
  • the memory 2503 may be disposed inside the communication device 2500 or outside the communication device 2500 .
  • the processor 2502 can control the transceiver 2501 to receive and transmit data (information or messages).
  • the processor 2502 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP), or a combination of CPU and NP.
  • the processor 2502 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL) or any combination thereof.
  • the transceiver 2501, the processor 2502 and the memory 2503 are connected to each other.
  • the transceiver 2501, the processor 2502 and the memory 2503 are connected to each other through a bus 2504;
  • the bus 2504 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 25, but it does not mean that there is only one bus or one type of bus.
  • the memory 2503 is used to store programs and the like.
  • the program may include program code, the program code including computer operation instructions.
  • the memory 2503 may include RAM, and may also include non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 2502 executes the application program stored in the memory 2503 to realize the above-mentioned functions, thereby realizing the functions of the communication device 2500 .
  • the communication apparatus 2500 may be the terminal device in the foregoing embodiment; it may also be the network device in the foregoing embodiment.
  • the transceiver 2501 may implement the transceiving operation (or transmission operation); the processor 2502 may implement other operations performed by the terminal device in the embodiment shown in FIG. 2 except for the transceiving operation.
  • the transceiver 2501 may implement the transceiving operation (or transmission operation); the processor 2502 may implement other operations performed by the terminal device in the embodiment shown in FIG. 2 except for the transceiving operation.
  • the transceiver 2501 may implement the transceiving operation performed by the network device in the embodiment shown in FIG. 2 ; processing The controller 2502 may implement other operations other than the transceiving operations performed by the network device in the embodiment shown in FIG. 2 .
  • the controller 2502 may implement other operations other than the transceiving operations performed by the network device in the embodiment shown in FIG. 2 .
  • the embodiments of the present application further provide a communication system, where the communication system may include a terminal device, a network device, and the like.
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the transmission of the scheduling request provided by the foregoing method embodiments method.
  • Embodiments of the present application further provide a computer program product, where the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the scheduling request transmission method provided by the above method embodiments.
  • Embodiments of the present application further provide a chip, including a processor, which is coupled to a memory and configured to invoke a program in the memory so that the chip implements the scheduling request transmission method provided by the above method embodiments.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Abstract

一种调度请求的传输方法及装置,用于通信系统,如V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M、M2M、物联网等。终端设备确定第一时域范围内存在第一上行信道,将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息,并将所述第一信息发送给网络设备;其中,所述第一时域范围与包含调度请求的物理上行控制信道PUCCH的时域位置相关,所述第一上行信道为以下任一项:包含HARQ反馈的PUCCH、包含CSI报告的PUCCH或者PUSCH。这样可以减少终端设备上行传输的次数,以节省终端设备的功耗。

Description

一种调度请求的传输方法及装置
相关申请的交叉引用
本申请要求在2021年01月19日提交中国专利局、申请号为202110070788.3、申请名称为“一种SR的发送方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年03月16日提交中国专利局、申请号为202110280935.X、申请名称为“一种调度请求的传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种调度请求的传输方法及装置。
背景技术
支持第五代新一代无线接入技术(5th Generation new radio access technology,5G NR)的终端设备,一般需要支持较大的带宽(例如100兆赫兹(MHz)等)、较多的天线数(例如为4个(reception,RX)天线和2个发送(transmission,TX)天线等)、较复杂的基带处理流程(例如极化(polar)码等),这样会导致终端设备的功耗较高。目前,为了降低终端设备的功耗,针对终端设备的功耗节省的研究越来越普遍,但是在目前的研究中,主要针对终端设备的下行传输进行了优化,并未对上行传输进行优化。
发明内容
本申请提供一种调度请求的传输方法及装置,用以提出如何对调度请求的传输进行优化,以节省终端设备的功耗。
第一方面,本申请提供了一种调度请求的传输方法,该方法可以包括:终端设备确定第一时域范围内存在第一上行信道后,将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息,最后所述终端设备将所述第一信息发送给所述网络设备;其中,所述第一时域范围与包含调度请求的物理上行控制信道(physical uplink control channel,PUCCH)的时域位置相关,所述第一上行信道可为以下任一项:包含混合自动重传请求(hybrid automatic repeat request,HARQ)反馈的PUCCH、包含信道状态信息(channel state information,CSI)报告的PUCCH或者物理上行共享信道(physical uplink shared channel,PUSCH)。
在上述方法中,通过将调度请求与第一上行信道包含的信息合并传输,可以减少上行传输的次数,进而降低终端设备的功耗。
在一个可能的设计中,所述第一时域范围为第一时间窗和/或第二时间窗;其中,所述第一时间窗的起始时刻可以为所述终端设备的物理(physical,PHY)层收到所述终端设备的媒体接入控制(media access control,MAC)层的调度请求触发的时刻,终止时刻可以为包含所述调度请求的PUCCH的时域位置;或者,所述第一时间窗的终止时刻可以为包含所述调度请求的PUCCH的时域位置,时域长度为第一时域长度;所述第二时间窗的起 始时刻可以为包含所述调度请求的PUCCH的时域位置,时域长度为第二时域长度。这样可以准确地确定第一时域范围,进而准确地确定在所述第一时域范围内是否存在第一上行信道。
在一个可能的设计中,所述第一时域范围内存在所述第一上行信道,具体可以为:在终端设备的PHY层收到终端设备的MAC层的调度请求触发的时刻之后,且在包含调度请求的PUCCH的时域位置之前存在第一上行信道。这样可以准确地在所述第一时域范围内存在第一上行信道。
在一个可能的设计中,所述第一时域范围内存在所述第一上行信道,具体可以为:在包含调度请求的PUCCH的时域位置之前的第一时域长度内存在第一上行信道。这样可以准确地在所述第一时域范围内存在第一上行信道。
在一个可能的设计中,所述第一时域范围内存在所述第一上行信道,具体可以为:在包含调度请求的PUCCH的时域位置之后的第二时域长度内存在第一上行信道,其中所述第一上行信道为包含CSI报告的PUCCH。这样可以准确地在所述第一时域范围内存在第一上行信道。
在一个可能的设计中,所述第一时域范围内存在所述第一上行信道,具体可以为:在包含调度请求的PUCCH的时域位置之后的第二时域长度内存在第一上行信道,且调度或指示第一上行信道传输的DCI的时域位置在包含调度请求的PUCCH的时域位置之前,其中,第一上行信道可以为包含HARQ反馈的PUCCH或者为PUSCH(如不包含上行数据的PUSCH)。这样可以准确地在所述第一时域范围内存在第一上行信道。
在一个可能的设计中,当所述第一时域范围内存在多个上行信道时,所述第一上行信道可以是所述多个上行信道中时域位置最早的上行信道,或者,所述第一上行信道可以是所述多个上行信道中时域位置与包含所述调度请求的PUCCH的时域位置之间的间隔最小的上行信道。这样可以确定唯一一个发送调度请求的位置,从而避免网络设备和终端设备无法对齐。
在一个可能的设计中,所述第一上行信道所在的时隙包含调度请求时机。这样可以保证调度请求仅在特定的时隙进行合并传输,从而避免网络设备对每个上行信号或上行信道都假设有调度请求的传输。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式0时,所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息,具体可以为:所述终端设备将所述调度请求与所述HARQ反馈级联,得到所述第一信息;进而,所述终端设备将所述第一信息发送给所述网络设备,具体可以为:所述终端设备将所述第一信息映射为第一循环移位值,根据所述第一循环移位值将所述第一信息发送给所述网络设备。这样所述终端设备可以成功地将所述调度请求和所述第一上行信道中的信息合并传输。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式2、格式3或格式4时,所述终端设备将所述调度请求与所述第一上行信道包含的信息合并得到第一信息,具体可以为:所述终端设备将所述调度请求和所述HARQ反馈进行级联,得到所述第一信息;进而,所述终端设备将所述第一信息发送给所述网络设备, 具体可以为:所述终端设备通过所述第一上行信道将所述第一信息发送给所述网络设备。这样所述终端设备可以成功地将所述调度请求和所述第一上行信道中的信息合并传输。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含CSI报告的PUCCH且所述包含CSI报告的PUCCH的格式是格式2、格式3或格式4时,所述终端设备将所述调度请求与所述第一上行信道包含的信息合并得到第一信息,具体可以为:所述终端设备将所述调度请求和所述CSI报告进行级联,得到所述第一信息;进而,所述终端设备将所述第一信息发送给所述网络设备,具体可以为:所述终端设备通过所述第一上行信道将所述第一信息发送给所述网络设备。这样所述终端设备可以成功地将所述调度请求和所述第一上行信道中的信息合并传输。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式1时,所述终端设备将所述调度请求与所述第一上行信道包含的信息合并得到第一信息,具体可以为:所述终端设备将所述调度请求与所述HARQ反馈级联,得到所述第一信息;进而,所述终端设备将所述第一信息发送给所述网络设备,具体可以为:所述终端设备将所述第一信息映射为第二循环移位值,根据所述第二循环移位值将所述第一信息发送给所述网络设备。这样所述终端设备可以成功地将所述调度请求和所述第一上行信道中的信息合并传输。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式1时,所述终端设备将所述第一信息发送给所述网络设备,具体可以为:当确定所述第一上行信道的时域位置存在用于传输调度请求的PUCCH格式1的资源时,所述终端设备通过信道选择的方式将所述第一信息发送给所述网络设备。这样所述终端设备可以成功地将所述调度请求和所述第一上行信道中的信息合并传输。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述PUSCH时,所述终端设备将所述调度请求与所述第一上行信道包含的信息合并得到第一信息,具体可以为:所述终端设备将所述调度请求和所述PUSCH包含的信息进行级联,得到所述第一信息;进而,所述终端设备通过所述第一上行信道将所述第一信息发送给所述网络设备。这样所述终端设备可以成功地将所述调度请求和所述第一上行信道中的信息合并传输。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述PUSCH时,所述终端设备将所述调度请求与所述第一上行信道包含的信息合并得到第一信息,具体可以为:所述终端设备对所述PUSCH进行打孔,将所述调度请求映射到所述PUSCH被打孔的位置上,得到所述第一信息,进而,所述终端设备通过所述第一上行信道将所述第一信息发送给所述网络设备。这样所述终端设备可以成功地将所述调度请求和所述第一上行信道中的信息合并传输。
在一个可能的设计中,所述终端设备接收来自所述网络设备的第一消息,所述第一消息用于配置或启用终端设备将调度请求与第一上行信道包含的信息合并传输的功能。这样可以使终端设备将调度请求和第一上行信道中的信息合并传输给网络设备。
在一个可能的设计中,所述终端设备向所述网络设备发送第二消息,所述第二消息用于请求启用将调度请求与第一上行信道包含的信息合并传输的功能。这样可以使终端设备 将调度请求和第一上行信道中的信息合并传输给网络设备。
在一个可能的设计中,所述终端设备接收来自所述网络设备的第三消息,所述第三消息用于指示所述终端设备将调度请求与第一上行信道包含的信息合并传输。这样可以使终端设备将调度请求和第一上行信道中的信息合并传输给网络设备。
在一个可能的设计中,在所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息之前,所述终端设备确定从所述网络设备接收到参考信号后,发送给所述网络设备的参考信号接收功率(reference signal received power,RSRP)大于RSRP阈值,其中所述RSRP为所述终端设备基于所述参考信号确定的。这样可以保证终端设备的传输性能。
在一个可能的设计中,所述终端设备将所述第一信息发送给所述网络设备,具体可以为:所述终端设备通过第一发射功率将所述第一信息发送给所述网络设备;其中,所述第一发射功率比所述第一上行信道的原始发射功率大;或者所述第一发射功率基于所述第一上行信道的原始发射功率和包含所述调度请求的PUCCH的原始发射功率确定。这样可以提高平均每个比特分到的能量,从而保证终端设备的传输性能。
第二方面,本申请提供了一种调度请求的传输方法,该方法可以包括:网络设备确定第一时域范围内存在第一上行信道;然后所述网络设备接收来自终端设备的第一信息,所述第一信息为所述终端设备将所述调度请求与所述第一上行信道包含的信息合并得到的;其中,所述第一时域范围与包含调度请求的PUCCH的时域位置相关,所述第一上行信道为以下任一项:包含HARQ反馈的PUCCH、包含CSI报告的PUCCH或者PUSCH。
在上述方法中,通过将调度请求与第一上行信道包含的信息合并传输,可以减少终端设备上行传输的次数,进而降低终端设备的功耗。
在一个可能的设计中,所述第一时域范围可以为第一时间窗和/或第二时间窗;其中,所述第一时间窗的起始时刻可以为所述终端设备的PHY层收到所述终端设备的MAC层的调度请求触发的时刻,终止时刻可以为包含所述调度请求的PUCCH的时域位置的起始位置;或者,所述第一时间窗的终止时刻可以为包含所述调度请求的PUCCH的时域位置的起始位置,时域长度可以为第一时域长度;所述第二时间窗的起始时刻可以为包含所述调度请求的PUCCH的时域位置的终止始位置,时域长度可以为第二时域长度。这样可以准确地确定第一时域范围,进而准确地确定在所述第一时域范围内是否存在第一上行信道。
在一个可能的设计中,所述第一时域范围内存在所述第一上行信道,具体可以为:在终端设备的PHY层收到终端设备的MAC层的调度请求触发的时刻之后,且在包含调度请求的PUCCH的时域位置之前存在第一上行信道。这样可以准确地在所述第一时域范围内存在第一上行信道。
在一个可能的设计中,所述第一时域范围内存在所述第一上行信道,具体可以为:在包含调度请求的PUCCH的时域位置之前的第一时域长度内存在第一上行信道。这样可以准确地在所述第一时域范围内存在第一上行信道。
在一个可能的设计中,所述第一时域范围内存在所述第一上行信道,具体可以为:在包含调度请求的PUCCH的时域位置之后的第二时域长度内存在第一上行信道,其中所述第一上行信道为包含CSI报告的PUCCH。这样可以准确地在所述第一时域范围内存在第一上行信道。
在一个可能的设计中,所述第一时域范围内存在所述第一上行信道,具体可以为:在 包含调度请求的PUCCH的时域位置之后的第二时域长度内存在第一上行信道,且调度或指示第一上行信道传输的DCI的时域位置在包含调度请求的PUCCH的时域位置之前,其中,第一上行信道可以为包含HARQ反馈的PUCCH或者为PUSCH(如不包含上行数据的PUSCH)。这样可以准确地在所述第一时域范围内存在第一上行信道。
在一个可能的设计中,当所述第一时域范围内存在多个上行信道时,所述第一上行信道可以是所述多个上行信道中时域位置最早的上行信道,或者,所述第一上行信道可以是所述多个上行信道中时域位置与包含所述调度请求的PUCCH的时域位置之间的间隔最小的上行信道。这样可以确定唯一一个发送调度请求的位置,从而避免网络设备和终端设备无法对齐。
在一个可能的设计中,所述第一上行信道所在的时隙包含调度请求时机。这样可以保证调度请求仅在特定的时隙进行合并传输,从而避免网络设备对每个上行信号或上行信道都假设有调度请求的传输。
在一个可能的设计中,HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式0时,所述第一信息为所述终端设备将所述调度请求与所述HARQ反馈级联得到的;所述网络设备接收来自所述终端设备的所述第一信息,具体可以为:所述网络设备接收所述终端设备根据第一循环移位值发送的所述第一信息,所述第一循环移位值为所述终端设备将所述第一信息映射得到的。这样所述网络设备可以成功地接收所述调度请求和所述第一上行信道中的信息合并传输的信息。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式2、格式3或格式4时,所述第一信息为所述终端设备将所述调度请求和所述HARQ反馈进行级联得到的;所述网络设备接收来自所述终端设备的所述第一信息,具体可以为:所述网络设备接收所述终端设备通过所述第一上行信道发送的所述第一信息。这样所述网络设备可以成功地接收所述调度请求和所述第一上行信道中的信息合并传输的信息。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含CSI报告的PUCCH且所述包含CSI报告的PUCCH的格式是格式2、格式3或格式4时,所述第一信息为所述终端设备将所述调度请求和所述CSI报告进行级联得到的;所述网络设备接收来自所述终端设备的所述第一信息,具体可以为:所述网络设备接收所述终端设备通过所述第一上行信道发送的所述第一信息。这样所述网络设备可以成功地接收所述调度请求和所述第一上行信道中的信息合并传输的信息。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式1时,所述第一信息为所述终端设备将所述调度请求与所述HARQ反馈级联得到的;所述网络设备接收来自所述终端设备的所述第一信息,具体可以为:所述网络设备接收所述终端设备根据第二循环移位值发送的所述第一信息,所述第二循环移位值为所述终端设备将所述第一信息映射得到的。这样所述网络设备可以成功地接收所述调度请求和所述第一上行信道中的信息合并传输的信息。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式 1时,所述网络设备接收来自所述终端设备的所述第一信息,具体可以为:当所述第一上行信道的时域位置存在用于传输调度请求的PUCCH格式1的资源时,接收所述终端设备通过信道选择的方式发送的所述第一信息。这样所述网络设备可以成功地接收所述调度请求和所述第一上行信道中的信息合并传输的信息。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述PUSCH时,所述第一信息为所述终端设备将所述调度请求和所述PUSCH包含的信息进行级联得到的,所述网络设备可以接收所述终端设备通过所述第一上行信道发送的所述第一信息。这样所述网络设备可以成功地接收所述调度请求和所述第一上行信道中的信息合并传输的信息。
在一个可能的设计中,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述PUSCH时,所述第一信息为所述终端设备对所述PUSCH进行打孔,并将所述调度请求映射到所述PUSCH被打孔的位置上得到的,所述网络设备可以接收所述终端设备通过所述第一上行信道发送的所述第一信息。这样所述网络设备可以成功地接收所述调度请求和所述第一上行信道中的信息合并传输的信息。
在一个可能的设计中,所述网络设备向所述终端设备发送第一消息,所述第一消息用于配置终端设备将调度请求与第一上行信道包含的信息合并传输的功能。这样可以使网络设备接收将调度请求和第一上行信道中的信息合并传输的信息。
在一个可能的设计中,所述网络设备接收来自所述终端设备发送第二消息,所述第二消息用于请求将调度请求与第一上行信道包含的信息合并传输的功能。这样可以使网络设备接收将调度请求和第一上行信道中的信息合并传输的信息。
在一个可能的设计中,所述网络设备接向所述终端设备发送第三消息,所述第三消息用于指示所述终端设备将调度请求与第一上行信道包含的信息合并传输。这样可以使网络设备接收将调度请求和第一上行信道中的信息合并传输的信息。
在一个可能的设计中,在所述网络设备接收来自终端设备的第一信息之前,所述网络设备确定来自所述终端设备的RSRP大于RSRP阈值,其中,所述RSRP为所述终端设备从所述网络设备接收到参考信号后发送的,所述RSRP为所述终端设备基于所述参考信号确定的。这样可以保证传输性能。
第三方面,本申请还提供了一种通信装置,所述通信装置可以是终端设备,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中终端设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中可以包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据或信息,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中终端设备的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第四方面,本申请还提供了一种通信装置,所述通信装置可以是网络设备,该通信装 置具有实现上述第二方面或第二方面的各个可能的设计示例中网络设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中可以包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中网络设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据或信息,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中网络设备的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第五方面,本申请实施例提供了一种通信系统,可以包括上述提及的终端设备和网络设备。
第六方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例上述第一方面或第一方面的各个可能的设计示例或上述第二方面或第二方面的各个可能的设计示例的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第七方面,本申请实施例提供一种包括计算机程序代码或指令的计算机程序产品,当其在计算机上运行时,使得计算机实现上述第一方面或第一方面的各个可能的设计示例或上述第二方面或第二方面的各个可能的设计示例的方法。
第八方面,本申请还提供了一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现上述第一方面或第一方面的各个可能的设计示例或上述第二方面或第二方面的各个可能的设计示例方法。
上述第三方面至第八方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第二方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种通信系统的架构示意图;
图2为本申请提供的一种调度请求的传输方法的流程图;
图3为本申请提供的一种第一时间窗和第二时间窗的示意图;
图4为本申请提供的一种调度请求的传输的示意图;
图5为本申请提供的另一种调度请求的传输的示意图;
图6为本申请提供的另一种调度请求的传输的示意图;
图7为本申请提供的另一种调度请求的传输的示意图;
图8为本申请提供的另一种调度请求的传输的示意图;
图9为本申请提供的另一种调度请求的传输的示意图;
图10为本申请提供的一种调度请求的传输的流程示意图;
图11为本申请提供的另一种调度请求的传输的流程示意图;
图12为本申请提供的另一种调度请求的传输的流程示意图;
图13为本申请提供的另一种调度请求的传输的流程示意图;
图14为本申请提供的一种时间窗1和时间窗2的示意图;
图15为本申请提供的一种SR的传输的示意图;
图16为本申请提供的另一种SR的传输的示意图;
图17为本申请提供的另一种SR的传输的示意图;
图18为本申请提供的另一种SR的传输的示意图;
图19为本申请提供的另一种SR的传输的示意图;
图20为本申请提供的一种SR的传输的流程示意图;
图21为本申请提供的另一种SR的传输的流程示意图;
图22为本申请提供的另一种SR的传输的流程示意图;
图23为本申请提供的另一种SR的传输的流程示意图;
图24为本申请提供的一种通信装置的结构示意图;
图25为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种调度请求的传输方法及装置,用以提出如何对调度请求的传输进行优化,以节省终端设备的功耗。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一项(个,种)”是指一项(个,种)或者多项(个,种),多项(个,种)是指两项(个,种)或者两项(个,种)以上。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的调度请求的传输方法及装置进行详细说明。
图1示出了本申请实施例涉及的通信系统的架构,所述通信系统的架构中包括网络设备和终端设备,其中:
所述网络设备为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:基站(generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如 基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端等等,也可以是能够设置于以上设备的芯片或芯片模组(或芯片系统)等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
需要说明的是,图1所示的通信系统可以但不限于为第四代(4th Generation,4G)系统、第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),可选的,本申请实施例的方法还适用于未来的各种通信系统,例如第六代(6th Generation,6G)系统或者其他通信网络等。
目前,在一些实施例中,NR的上行传输以及相关流程可以如下所述:
1、上行数据:携带在物理上行共享信道(physical uplink shared channel,PUSCH)中传输。
(1)PUSCH传输的时域位置通常通过网络设备发送给终端设备的下行控制信息(downlink control information,DCI)指示。具体的,如果网络设备在时隙n发送一个DCI,DCI中会指示一个K2值,则终端设备在时隙n+K2发送PUSCH。这种通过DCI调度的PUSCH一般被称为动态数据调度。
(2)标准中还存在另一种PUSCH的传输方式,为配置授权(configured grant,CG)的传输方式。CG可以分为两种情况:一种情况下PUSCH的传输参数通过网络设备的无线资源控制(radio resource control,RRC)信令配置给终端设备,当终端设备有上行数据需要发送时,即通过预先配置好的PUSCH发送。另一种情况是PUSCH的部分传输参数通过网络设备的RRC信令配置,剩余传输参数通过DCI指示。当网络设备发送DCI激活PUSCH的发送时,终端设备会根据配置好的周期值进行周期性发送,直到网络设备再发送一个DCI停止终端设备的PUSCH发送。因此,在CG的传输方式下,可能存在“只有PUSCH没有 DCI”的情况。
2、混合自动重传请求(hybrid automatic repeat request,HARQ)反馈:HARQ反馈通常携带在PUCCH中传输,携带HARQ反馈的PUCCH的时域位置可以由DCI指示,该DCI是由网络设备发送给终端设备的。具体的,如果网络设备在时隙n发送一个DCI调度下行数据的传输,DCI中会指示一个K0值和一个K1值,终端设备在时隙n+K0接收物理下行共享信道(physical downlink shared channel,PDSCH),其中PDSCH中包含下行数据,并且终端设备在时隙n+K0+K1发送该PDSCH对应的HARQ反馈。HARQ反馈可以使用PUCCH格式(format)0/1/2/3/4来发送。
3、信道状态信息(channel state information,CSI)报告(CSI report):终端设备接收网络设备发送的CSI参考信号(reference signal,,RS)(CSI-RS)后,会向网络设备发送CSI报告。CSI报告可以分为以下三类:
(1)周期性CSI报告(periodic CSI report,P-CSI report):通常在PUCCH中传输,一旦网络设备为终端设备配置了周期性CSI报告,终端设备就会按照配置的周期发送该CSI报告。即周期性CSI报告的时域位置是通过RRC信令半静态配置的。周期性CSI报告可以使用PUCCH format 2/3/4来发送。
(2)半持续CSI报告(semi-persistence CSI report,SP-CSI report):与周期性CSI报告一样,通常在PUCCH中传输。但是与周期性CSI报告的区别在于,半持续性CSI报告在网络设备为终端设备配置之后,还需要再激活一下。激活后,其时域位置可以认为是通过RRC信令半静态配置的。半持续CSI报告可以使用PUCCH format 2/3/4来发送。
(3)非周期性CSI报告(aperiodic CSI report,AP-CSI report):在PUSCH中传输,通过DCI触发。具体的,如果网络设备在时隙n发送一个DCI,DCI中除了指示K2值之外,还可以包含一个非周期CSI触发信息。若DCI中包含非周期CSI触发信息,则终端设备会在被调度的PUSCH中携带非周期CSI报告。
4、调度请求(scheduling request,SR):SR会携带在PUCCH中发送,网络设备会为终端设备配置一个或多个用于发送SR的PUCCH资源,每个PUCCH资源都是周期性出现的。当终端设备有上行数据需要发送时,终端设备内的媒体接入控制(media access control,MAC)层会确定一个SR发送时机(SR transmission occasion),并向终端设备内的物理(physical,PHY)层发送指示,让PHY层在该SR transmission occasion上发送SR。SR可以使用PUCCH format 0/1来发送。
目前,PUCCH共有5种format,分别是format 0/1/2/3/4。其中format 0和format 1可以携带1~2比特的信息,format 2/3/4可以携带多于2比特的信息。format 0和format 2在时域上占用1或2个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,因此format 0/2可以被称为短PUCCH(short PUCCH),format 1/3/4在时域上占用大于或等于4个OFDM符号,因此format 1/3/4可以被称为长PUCCH(long PUCCH)。其中,PUCCH format可以简写为PF。
本申请中为了节省终端设备的功耗,提出可以对上述上行传输进行优化传输,具体的,在本申请主要对调度请求的传输方法进行了具体描述。需要说明是,调度请求在是5G中可以是调度请求(scheduling request,SR);在以后的通信系统或网络,例如6G等中,仍可以是SR,或者可以有其它名称,本申请对此不作限定。
需要说明的是,下面实施例中涉及的终端设备实现的操作,也可以是通过终端设备中 的处理器,或者是芯片或芯片系统,或者是一个功能模块等来实现;涉及的网络设备实现的操作,也可以通过网络设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等来实现。
基于上述描述,本申请实施例提供的一种调度请求的传输方法,适用于图1所示的通信系统。参阅图2所示,该方法的具体流程可以包括:
步骤201:终端设备确定第一时域范围内存在第一上行信道;其中,第一时域范围与包含调度请求的PUCCH的时域位置相关,第一上行信道可以为以下任一项:包含HARQ反馈的PUCCH、包含CSI报告的PUCCH或者PUSCH。
其中,PUSCH可以为不包含上行数据的PUSCH,例如不包含上行共享信道(uplink shared channel,UL-SCH)的PUSCH;HARQ反馈可以为肯定确认(acknowledgment,ACK)或者否定确认(negative acknowledgment,NACK)。
步骤202:终端设备将调度请求与第一上行信道包含的信息合并,得到第一信息。
步骤203:终端设备将第一信息发送给网络设备。
在一种可选的实施方式中,第一时域范围可以为第一时间窗(window 1)和/或第二时间窗(window 2);其中,第一时间窗的起始时刻可以为终端设备的PHY层收到终端设备的MAC层的调度请求触发的时刻,终止时刻可以为包含调度请求的PUCCH的时域位置(也可以称为调度请求时机(occasion)或者称为包含调度请求的PUCCH资源);或者,第一时间窗的终止时刻可以为包含调度请求的PUCCH的时域位置,时域长度可以为第一时域长度;第二时间窗的起始时刻可以为包含调度请求的PUCCH的时域位置,时域长度可以为第二时域长度。例如,第一时间窗和第二时间窗的一种示例可以如图3所示。
可选的,包含调度请求的PUCCH的时域位置具体可以为PUCCH的时域位置的起始位置,或者可以为PUCCH的时域位置的结束位置,或者还可以是PUCCH的时域位置的中间位置等等,本申请对此不作限定。
一种示例中,第一时域长度或者第二时域长度可以为一个或多个符号(symbol),或者为一个或多个时隙(slot)等。
通过第一时间窗和/或第二时间窗,可以保证调度请求可以合并到附近时域位置的上行信道(也即第一上行信道)中一并发送,从而减少终端设备上行发送的次数,降低终端设备上行传输的功耗。具体的,若第一时间窗位于调度请求的PUCCH的时域位置之前,第一时间窗可以用于保证上行信道在调度请求之前的一段时间内。一种情况下,第一时间窗的起始时刻可以为终端设备的PHY层收到终端设备的MAC层的调度请求触发的时刻。若终端设备按照目前的实施例中的流程,即不将调度请求合并传输,则终端设备会在生成调度请求后,等到包含调度请求的PUCCH的时域位置发送调度请求。如果在第一时间窗内有其他上行信道(也即第一上行信道),终端设备可以将已经生成的调度请求合并到该上行信道中,而不必等到包含调度请求的PUCCH的时域位置再发送调度请求。这样,一方面可以降低终端设备上行传输的功耗,另一方面可以提前发送调度请求,降低整体通信时延。另一种情况下,第一时间窗的终止时刻可以为包含调度请求的PUCCH的时域位置,时域长度可以为第一时域长度。这是因为终端设备的MAC层什么时间会触发调度请求发送对于网络设备是不可知的,因此从网络设备的角度看,只能从包含调度请求的PUCCH的时域位置算起,认为之前第一时域长度内的上行信道可能会携带合并后的调度请求。在这种情况下,第一时域长度可以理解为对终端设备的MAC层触发调度请求发送的一个时 间范围(也即时域范围)的最大值。
第二时间窗位于包含调度请求的PUCCH的时域位置之后,即第二时间窗可以用于保证上行信道在调度请求之后的一段时间内。该第二时间窗可以保证调度请求的发送不会延时太大,即整体通信时延不会由于采用本申请的合并传输方法而增大太多。此时,第二时域长度可以理解为根据数据传输最大时延(或数据传输时延预算)确定的时域长度。
需要说明的是,时间窗也可以称为时域范围或者时间区域等等,本申请对此不作限定。
示例的,第一时间窗和第二时间窗可以在标准中预定义,也可以由网络设备配置给终端设备,或者还可以有其它方式确定,本申请对此不作限定。
具体的,第一时域范围内存在第一上行信道可以包括以下四种情况:
情况a1:在终端设备的PHY层收到终端设备的MAC层的调度请求触发的时刻之后,且在包含调度请求的PUCCH的时域位置之前存在第一上行信道。也即,第一上行信道在第一时间窗内。例如,在该情况a1下,调度请求的传输可以如图4所示。
情况a2:在包含调度请求的PUCCH的时域位置之前的第一时域长度内存在第一上行信道。也即,第一上行信道在第一时间窗内。例如,在该情况a2下,调度请求的传输可以如图5所示。
需要说明的是,上述情况a1和情况a2与上述第一时间窗的不同解释有关。其中,上述情况a1对应第一时间窗的起始时刻为终端设备的PHY层收到终端设备的MAC层的调度请求触发的时刻,终止时刻为包含调度请求的PUCCH的时域位置的情况;上述情况a2对应第一时间窗的终止时刻为包含调度请求的PUCCH的时域位置,时域长度可以为第一时域长度的情况。
情况a3:在包含调度请求的PUCCH的时域位置之后的第二时域长度内存在第一上行信道。也即,第一上行信道在第二时间窗内。例如,在该情况a3下,调度请求的传输可以如图6所示。
例如,在该情况a3中,第一上行信道可以为包含CSI报告的PUCCH。由于包含CSI报告的PUCCH是半静态配置的,因此终端设备可以预先判断,在调度请求的PUCCH之后的一定范围内一定会有这样的PUCCH(也即第一上行信道)可以使用,也就可以成功地把调度请求合并到包含CSI报告的PUCCH中发送。
情况a4:在包含调度请求的PUCCH的时域位置之后的第二时域长度内存在第一上行信道,且调度或指示第一上行信道传输的DCI的时域位置在包含调度请求的PUCCH的时域位置之前。也即,第一上行信道在第二时间窗内。例如,在该情况a4下,调度请求的传输可以如图7所示。
例如,在该情况a4中,第一上行信道可以为包含HARQ反馈的PUCCH或者为PUSCH(如不包含上行数据的PUSCH)。在该情况a4中,虽然第一上行信道的传输不是半静态配置的,而是动态调度的,但是调度该第一上行信道的传输的DCI位于调度请求的PUCCH之前。也就是说,在调度请求的PUCCH之前,终端设备就能够判断在后面的第二时间窗内是否会有可以使用的第一上行信道,如果有可以使用的第一上行信道,终端设备就可以把调度请求合并到该第一上行信道中,如果没有可以使用的第一上行信道,终端设备使用原本调度请求的PUCCH发送调度请求。
当然,第一时域范围内存在第一上行信道还可以有其它情况,上述情况a1~情况a4仅仅是示例,此处不再一一列举。
在一种可选的实施方式中,当第一时域范围内存在多个上行信道时,该第一上行信道可以是多个上行信道中时域位置最早的上行信道,或者,该第一上行信道也可以是多个上行信道中时域位置与包含调度请求的PUCCH的时域位置之间的间隔最小的上行信道。这样可以确定唯一一个发送调度请求的位置,从而避免网络设备和终端设备无法对齐。
在一种可选的实施方式中,当第一时域范围内存在多个上行信道时,第一上行信道可以是多个上行信道中的任一个上行信道,例如图8所示。
在一种可选的实施方式中,第一上行信道所在的时隙包含调度请求时机(occasion)。也就是说,当第一时域范围内存在多个上行信道时,在多个上行信道所在的时隙中包含调度请求时机的上行信道作为该第一上行信道。例如图9所示。
在具体实施时,可以由终端设备的MAC层判断调度请求与第一上行信道包含的信息是否可以进行合并(也即判断第一时域范围内是否存在第一上行信道),并且由MAC层指示终端设备的PHY层传输调度请求的上行信道,然后终端设备的PHY层再进行调度请求的传输;或者,可以由终端设备的MAC层仅指示一个调度请求的PUCCH的时域位置,然后由终端设备的PHY层判断调度请求与第一上行信道包含的信息是否可以合并,并进行调度请求的传输。
目前,在一些实施例中,当包含调度请求的PUCCH与其他上行信道在时域上有部分或者重叠(overlap)时,调度请求和其他上行信道中的信息的传输方式可以如下表1所示,其中在表1中以调度请求为SR为例示出。
表1
Figure PCTCN2021138238-appb-000001
Figure PCTCN2021138238-appb-000002
其中,在上述表1中,m cs为循环移位值的取值,例如m cs=6时,代表使用的循环移位值为6。
一些示例中,当调度请求可以合并到包含HARQ反馈的PUCCH中传输,且包含HARQ反馈的PUCCH的格式为格式0/2/3/4时,或者,调度请求可以合并到包含CSI报告的PUCCH中传输,且包含CSI报告的PUCCH的格式为格式2/3/4时,终端设备均可以采用上述表1中对应的方法(也即上述表1中字体加粗的方法)传输调度请求。具体的,可以包括以下几种场景:
场景b1:当包含调度请求的PUCCH的格式是格式0或格式1,第一上行信道是包含HARQ反馈的PUCCH且包含HARQ反馈的PUCCH的格式是格式0时,终端设备可以将调度请求与HARQ反馈级联,得到第一信息;然后,终端设备将第一信息映射为第一循环移位值,根据第一循环移位值将第一信息发送给网络设备。例如,HARQ反馈为1比特且HARQ反馈比特的取值为ACK时,有调度请求发送(也即当前终端设备向网络设备请求上行数据调度),则m cs=3。此时,终端设备采用第一循环移位值为3的序列生成PUCCH,再将该PUCCH发送给网络设备。
场景b2:当包含调度请求的PUCCH的格式是格式0或格式1,第一上行信道是包含HARQ反馈的PUCCH且包含HARQ反馈的PUCCH的格式是格式2、格式3或格式4时, 终端设备将调度请求和HARQ反馈进行级联,得到第一信息;然后,终端设备通过第一上行信道将第一信息发送给网络设备。其中,在终端设备将调度请求和HARQ反馈进行级联时,是将调度请求对应的比特(例如为log(K+1)个比特)和HARQ反馈对应的比特进行级联。
场景b3:当包含调度请求的PUCCH的格式是格式0或格式1,第一上行信道是包含CSI报告的PUCCH且包含CSI报告的PUCCH的格式是格式2、格式3或格式4时,终端设备将调度请求和CSI报告进行级联,得到第一信息;然后,终端设备通过第一上行信道将第一信息发送给网络设备。其中,在终端设备将调度请求和CSI报告进行级联时,是将调度请求对应的比特(例如为log(K+1)个比特)和CSI报告对应的比特进行级联。
另一些示例中,对于第一上行信道为包含HARQ反馈的PUCCH,且该PUCCH的格式为格式1,或者第一上行信道为PUSCH(例如不包含上行数据的PUSCH)时,终端设备不再采用上述表1中对应的方法(也即表1中非加粗字体对应的方法)。具体的,终端设备可以采用以下几种场景中的方法:
场景c1:当包含调度请求的PUCCH的格式是格式0,第一上行信道是包含HARQ反馈的PUCCH且包含HARQ反馈的PUCCH的格式是格式1时,终端设备可以采用如下方法:
方法一:终端设备不将调度请求与HARQ反馈合并,也即调度请求不可以合并传输。
方法二:(1)若HARQ反馈仅有1比特(bit)信息,终端设备将调度请求与HARQ反馈级联,得到第一信息,然后将第一信息映射为第二循环移位值,根据第二循环移位值将第一信息发送给网络设备。也即终端设备通过PUCCH的循环移位携带调度请求,即若无调度请求(也即当前终端设备不向网络设备请求上行数据调度),则m CS=0/6(即第二循环移位值);若有调度请求(也即当前终端设备向网络设备请求上行数据调度),则m CS=3/9(即第二循环移位值)。
(2)若HARQ反馈有2比特信息,则调度请求和HARQ反馈组成的3比特信息可以生成一个八相移键控(8phase shift keying,8PSK)调制符号,乘到一个序列(sequence)上,例如可以符合以下公式一:
Figure PCTCN2021138238-appb-000003
其中,y(n)为第一信息,
Figure PCTCN2021138238-appb-000004
为序列,u、v、α以及δ为序列生成参数,
Figure PCTCN2021138238-appb-000005
Figure PCTCN2021138238-appb-000006
为一个资源块(resource block,RB)中包含的子载波数量,其取值可以为12等;d(0)是8PSK调制符号。
可选的,在HARQ反馈有2比特信息的情况下,终端设备可以不将调度请求与HARQ反馈合并。
场景c2:当包含调度请求的PUCCH的格式是格式1,第一上行信道是包含HARQ反馈的PUCCH且包含HARQ反馈的PUCCH的格式是格式1时,当确定第一上行信道的时域位置存在用于传输调度请求的PUCCH格式1的资源时,终端设备通过信道选择的方式将第一信息发送给网络设备。
可选的,当确定第一上行信道的时域位置不存在用于传输调度请求的PUCCH格式1的资源时,终端设备可以不将调度请求与HARQ反馈合并。
场景c3:当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是PUSCH(例如不包含上行数据的PUSCH)时,终端设备将调度请求与第一上行信道包含的信息合并,得到第一信息,可以包括以下两种方法:
方法一:终端设备将调度请求和PUSCH包含的信息进行级联,得到第一信息。
该方法一中,调度请求可以复用(multiplexing)到PUSCH中,即将调度请求的信息比特与上行数据信息比特级联,再一起调制映射到PUSCH的物理资源上,即得到第一信息。
方法二:终端设备对PUSCH进行打孔(puncture),将调度请求映射到PUSCH被打孔的位置上,得到第一信息。其中,第一信息为映射到PUSCH被打孔的位置上的调度请求以及PUSCH未被打孔的位置上的信息。
该方法二中,终端设备对调度请求进行单独地调制,待终端设备将PUSCH打孔后,将打孔后的PUSCH占用的某些资源单元(resource element,RE)上的调制符号(modulated symbol)替换为调度请求调制后的调制符号,即得到第一信息。
示例性的,PUSCH被打孔的位置可以是预定义的。例如,在时域上,终端设备可以从PUSCH占用的第一个符号开始打孔,或者终端设备可以在PUSCH中除了DMRS之外的第一个符号开始打孔;在频域上,终端设备可以在PUSCH占用的起始RE开始打孔,被打孔的两个RE之间可以间隔h个RE,其中h可以为预定义的。当然,PUSCH被打孔的位置还可以有别的可能,保证被打孔的位置上的信息对数据传输影响较小即可,本申请对此不作限定。
可选的,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是PUSCH(例如不包含上行数据的PUSCH)时,终端设备可以不将调度请求与PUSCH中的信息合并。
目前,当调度请求与第一上行信道中的信息单独传输时,终端设备需要发送两次信号,虽然终端设备的发射功耗较大,但是两个信号中平均每个比特分到的能量也较高,可以抵抗较强的噪声,信号的覆盖范围比较大。而当采用本申请的方法将调度请求与第一上行信道中的信息合并传输时,无论是调度请求还是第一上行信道中的信息,平均每个比特分到的能量会比较低,信号的覆盖范围可能会受限,信号传输可靠性会降低。为了解决信号传输可靠性的问题,本申请可以通过以下几种方法保证信号传输的可靠性:
方法d1:终端设备从网络设备接收到参考信号后,发送给网络设备的参考信号接收功率(reference signal received power,RSRP)大于RSRP阈值的情况下,终端设备才执行步骤202和步骤203。其中RSRP为终端设备基于参考信号确定的。
其中,终端设备会根据从网络设备接收到的参考信号(如同步信号块和广播信号块((synchronization signal block,SSB)and(physical broadcast channel,PBCH)block),或者CSI-RS等)的功率计算一个RSRP值,当该RSRP值越大,说明终端设备距离网络设备越近。RSRP阈值相当于一个等效的网络设备到终端设备的距离阈值。当终端设备收到的参考信号对应的RSRP大于该RSRP阈值的时候,即说明终端设备距离网络设备足够近。此时终端设备即使将调度请求与第一上行信道中的信息合并发送,也能保证信号可以正确传输。当终端设备上报给网络设备的RSRP大于该RSRP阈值时,可以认为终端设备的覆盖不受限,此时可以采用上述步骤202和步骤203中的方式传输调度请求。
示例性的,当RSRP不满足方法d1中的条件时,终端设备可以采用目前常用的方法发 送调度请求,例如调度请求单独传输的方式等。
需要说明的是,只有终端设备和网络设备均确定RSRP大于RSRP阈值时才会采用步骤202和步骤203的方式传输调度请求,因此,通过终端设备发送给网络设备的RSRP与RSRP阈值比较判断才可以使得终端设备和网络设备均确定条件是否满足。
方法d2:当终端设备将第一信息发送给网络设备时,终端设备可以通过第一发射功率将第一信息发送给网络设备。
其中,第一发射功率可以通过以下两种方式确定:
第一种方式:第一发射功率可以为第一上行信道的原始发射功率加上X分贝(dB)得到,其中X的值可以为标准预定义的,或者网络设备预配置给终端设备的,或者为网络设备通过信令(例如DCI)指示的,本申请对此不作限定。
第二种方式:第一发射功率可以基于第一上行信道的原始发射功率和包含调度请求的PUCCH的原始发射功率确定。示例性的,第一发射功率可以由第一上行信道的原始发射功率和PUCCH的原始发射功率相加得到,或者第一发射功率可以由第一上行信道的原始发射功率和PUCCH的原始发射功率相加后再乘以一个系数得到。例如,若PUCCH的原始发射功率为16毫瓦分贝(dBm),第一上行信道的原始发射功率为16dBm时,第一发射功率可以为二者的和,即19dBm,或者二者相加后乘以一个系数,为18dBm等。当然还可以有其他方法得到第一发射功率,本申请对此不做限定。
应理解,上述两种方式均是为了提高发射功率。在一些实施例中,第一上行信道的发射功率可以根据终端设备估计的路径损耗值、网络设备配置的传输参数、以及网络设备在DCI中指示的传输功率控制(transmit power control,TPC)命令确定。为了提高调度请求和第一上行信道中的信息合并传输的传输可靠性,可以采用上述方法d2中的方式,提高第一上行信道的发射功率,从而提高平均每个比特分到的能量。
在一种可选的实施方式中,终端设备将调度请求与第一上行信道包含的信息合并传输给网络设备,以及网络设备接收终端设备合并传输的调度请求与第一上行信道包含的信息时,双方需要协商一致,共同启用或不启用该功能(也即将调度请求与第一上行信道包含的信息合并传输的功能)。示例性的,该功能的启用可以通过以下四种方式配置:
方式e1:终端设备接收来自网络设备的第一消息,第一消息用于配置或启用终端设备将调度请求与第一上行信道包含的信息合并传输的功能。
其中,第一消息也即网络设备发送给终端设备的配置信息,例如第一消息可以通过无线资源控制(radio resource control,RRC)信令或媒介接入控制(medium access control,MAC)控制单元(control elements,CE)(MAC CE)发送。
通过上述方法,在第一时域范围内存在第一上行信道时,终端设备即可以将调度请求与第一上行信道包含的信息合并传输,以及网络设备即可以接收终端设备合并传输的调度请求与第一上行信道包含的信息,例如具体流程可以如图10所示。
方式e2:终端设备向网络设备发送第二消息,第二消息用于请求启用将调度请求与第一上行信道包含的信息合并传输的功能。然后,终端设备接收来自网络设备的第一消息,第一消息用于配置或启用终端设备将调度请求与第一上行信道包含的信息合并传输的功能。之后,在第一时域范围内存在第一上行信道时,终端设备即可以将调度请求与第一上行信道包含的信息合并传输,以及网络设备即可以接收终端设备合并传输的调度请求与第一上行信道包含的信息,例如具体流程可以如图11所示。
方式e3:终端设备接收来自网络设备的第一消息,第一消息用于配置或启用终端设备将调度请求与第一上行信道包含的信息合并传输的功能;然后终端设备接收来自网络设备的第三消息,第三消息用于指示终端设备将调度请求与第一上行信道包含的信息合并传输。之后,在第一时域范围内存在第一上行信道时,终端设备即可以将调度请求与第一上行信道包含的信息合并传输,以及网络设备即可以接收终端设备合并传输的调度请求与第一上行信道包含的信息,例如具体流程可以如图12所示。
该方式e3中,网络设备向终端设备发送配置信息(即第一消息)后,还需要向终端设备发送动态指示信息,即第三消息(例如为DCI),指示终端设备是否可以将调度请求与第一上行信道包含的信息合并传输。例如,可以在网络设备调度的PUSCH/PUCCH的DCI中加入第三消息,用于指示调度请求是否能够与第一上行信道包含的信息合并传输。
方式e4:终端设备向网络设备发送第二消息,第二消息用于请求启用将调度请求与第一上行信道包含的信息合并传输的功能。然后,终端设备接收来自网络设备的第一消息,第一消息用于配置或启用终端设备将调度请求与第一上行信道包含的信息合并传输的功能。之后终端设备接收来自网络设备的第三消息,第三消息用于指示终端设备将调度请求与第一上行信道包含的信息合并传输。最后,在第一时域范围内存在第一上行信道时,终端设备即可以将调度请求与第一上行信道包含的信息合并传输,以及网络设备即可以接收终端设备合并传输的调度请求与第一上行信道包含的信息,例如具体流程可以如图13所示。
也即方式e4为上述三种方式的结合,具体的消息描述均可以参见上述方式中的相关描述。
采用本申请提供的调度请求的传输方法,通过将调度请求与第一上行信道包含的信息合并传输,可以减少上行传输的次数,进而降低终端设备的功耗。
下面结合实际场景来说明通过采用上述实施例涉及的方法,可以减少上行传输的次数,进而降低终端设备的功耗。具体的,当终端设备为手机时,手机用户在使用手机收发微信消息的场景中,用户通过手机接收微信消息时会接收下行数据包(包含在PDSCH中),并向网络设备发送HARQ反馈(包含在PUCCH中)。用户通过手机发送微信消息时,会先向网络设备发送调度请求。如果采用目前的方法,若手机根据网络设备的配置/指示确定的发送HARQ反馈的时域位置与发送调度请求的时域位置不重叠,手机会在两个时域位置分别发送HARQ反馈以及调度请求,即会发送两个上行信号。若采用本申请中的方案,在满足条件的情况下,手机可以将调度请求与HARQ反馈的信息合并,并通过PUCCH发送,手机仅发送一个上行信号。从而达到手机节能的效果。
基于以上实施例,以一些具体的示例对调度请求的传输方法进行详细说明。在以下的示例中,以终端设备为UE,网络设备为基站,调度请求为SR为例说明。
在以下的示例中,本方案用以实现如何减少UE上行传输的次数,从而降低UE的上行传输功耗。
具体的,在以下的示例中,为了实现减少UE上行传输的次数,UE可以预知SR的PUCCH附近有其他上行传输(也即上述实施例涉及的第一上行信道)(也可以称为上行资源或上行信号等),将SR合并到其他上行传输中发送,从而减少上行信号发送的次数(也即上行传输的次数),降低上行传输功耗。进一步地,本方案可以通过以下三个方面来描述:第一方面,UE在什么情况下对SR进行合并发送,也即如何定义“PUCCH附近”;第 二方面,SR如何合并到其他上行传输中发送;第三方面,如何避免对传输性能的影响。
第一方面,UE在什么情况下对SR进行合并发送,也即如何定义“PUCCH附近”:
其他上行传输可以包括如下任意一种:携带HARQ反馈(如HARQ-ACK,在以下HARQ反馈均以HARQ-ACK为例说明)的PUCCH、携带CSI报告(report的PUCCH)、不携带UL-SCH的PUSCH(也即不包含上行数据的PUSCH)。
进一步的,在其他上行传输所在的时隙也有SR资源时,才可以将SR合并到其他上行传输中发送。
SR的PUCCH附近可以定义为:该PUCCH前后的一定时间范围(也即上述涉及的第一时域范围)内,可以用两个时间窗来表示。
第二方面,SR如何合并到其他上行传输中发送:
方法一:可以采用目前一些实施例中的方法,其中适用于部分场景,例如HARQ-ACK的PF 0/2/3/4的信息与SR合并发送,或PUCCH中的CSI与SR合并发送的场景。
方法二:采用本申请提出的方法进行合并传输,可以适用于方法一中的场景以外的场景,例如HARQ-ACK的PF 1的信息与SR合并发送,或不携带上行数据的PUSCH中包含的CSI与SR合并发送。
第三方面,如何避免对传输性能的影响:
可能的影响:SR合并到其他上行传输中,每个比特的能量(energy per bit)会下降,覆盖性能受影响。
解决方案一:引入一个RSRP阈值,当UE上报给基站的RSRP高于该RSRP阈值时,认为UE的覆盖不受限,此时才能采用本申请中的合并传输方式,否则采用目前常用的方式。
解决方案二:对上行传输的功率控制进行增强。
例如,当SR合并到其他上行传输中发送时,其他上行传输的发射功率加X dB,X的值可以预定义、或基站配置、或由DCI指示。
再例如,当SR合并到其他上行传输中发送时,其他上行传输的最终发射功率,可以通过原始的SR的PUCCH发射功率和原始的其他上行传输发射功率确定,例如功率相加,或者功率相加后乘以一个系数等。
在第一种具体的示例中,上行传输(也即上述实施例涉及的第一上行信道)可以包括如下任意一种:携带HARQ-ACK的PUCCH、携带CSI报告(report)的PUCCH、不携带UL-SCH的PUSCH。也就是说,本示例中,SR只能合并到上述三种上行传输中一起发送。
SR的PUCCH附近可以定义为如图14所示的时间窗1(window 1)(也即上述实施例涉及的第一时间窗)和/或时间窗2(window 2)(也即上述实施例涉及的第二时间窗)的范围内(也即上述实施例涉及的第一时域范围),其中:
时间窗1的定义可以为:起点为“PHY层接到MAC层的SR触发”(也即起始时刻为UE的PHY层收到UE的MAC层的SR触发的时刻),终点为“SR时机(occasion)”(SR时机即SR的PUCCH资源)(也即终止时刻为包含SR的PUCCH的时域位置);或者,终点为“SR时机”,长度为长度1(length 1)(也即上述实施例涉及的第一时域长度),其中,长度1可以预定义或者由基站配置。
时间窗2的起点为“SR时机”,时间窗2的长度为长度2(length 2),其中,长度2可以预定义或者由基站配置。
即,只要在时间窗1和/或时间窗2的范围内存在其他上行传输,就可以把SR信息合并到该其他上行传输中一起发送出去。
可选的,若在时间窗1和/或时间窗2中有多个上行传输,可以选择其中出现时间最早的(也即时域位置最早的),或者距离SR时机最近的(也即上述实施例中涉及的多个上行信道中时域位置与包含调度请求的PUCCH的时域位置之间的间隔最小的)上行传输合并SR。这样可以确定唯一一个发送SR的位置,避免在每个其他上行传输中均携带多余比特。
采用该第一种具体的示例,可以减少UE发送次数,从而降低UE功耗。
在第二种具体的示例中,对SR的PUCCH附近有其他上行传输的判断进行详细描述。具体的,有如下三种可能的情况:
(1)若上行传输为携带HARQ-ACK的PUCCH,或为携带CSI报告(report)的PUCCH,或为不携带UL-SCH的PUSCH时,且上行传输落在时间窗1内,则SR可以合并到该上行传输内发送。在本示例中,上述类型的上行传输都可以通过某种方式携带SR信息,并且上述类型的上行传输在SR的PUCCH之前且在UE的MAC触发PHY发送SR(也即上述实施例中终端设备的PHY层收到终端设备的MAC层的调度请求触发的时刻)之后(即在时间窗1内),如图15所示。因此UE可以在SR的PUCCH之前就判断有这些上行传输,并且可以合并传输。
(2)若上行传输为携带CSI报告的PUCCH,且上行传输落在时间窗2内,则SR可以合并到该上行传输内发送。在本示例中,由于携带CSI报告的PUCCH是半静态配置的,因此UE可以预先判断,在SR的PUCCH之后的一定范围内(也即上述实施例涉及的第二时域长度)一定会有携带CSI报告的PUCCH可以使用,也就可以成功地把SR合并到携带CSI报告的PUCCH中发送,例如图16所示。如果UE无法判断时间窗2中是否一定有可用的上行传输,为了避免没有资源可用导致SR无法发送,UE只能用SR的PUCCH发送SR,也就无法达到UE节能的目的。
(3)若上行传输为不携带UL-SCH的PUSCH或携带HARQ-ACK的PUCCH,上行传输落在时间窗2内,且调度该PUSCH或PUCCH的DCI位于SR的PUCCH之前,则SR可以合并到该上行传输内传输,例如图17所示。在本示例中,虽然上行传输不是半静态配置的,而是动态调度的,但是调度该上行传输的DCI位于SR的PUCCH之前。也就是说,在SR的PUCCH之前,UE就能够判断在后面的时间窗2中可能会有可以使用的上行传输,因此UE可以把SR合并到该上行传输内。如果没有可以使用的上行传输,则UE使用SR的PUCCH发送SR。
另外,在满足上述三种情况之一时,还可以进一步限定能否可以合并传输。例如,只要有上行传输就可以合并,如图18所示。
又例如,其他上行传输所在的时隙必须有SR时机才可以合并传输,如图19所示。
在任何一种场景下,可以由UE的MAC层判断是否可以进行合并,并且指示UE的PHY层在哪个SR资源上传输SR,UE的PHY再根据目前常用的方式进行复用传输SR;或者UE的MAC层仅指示一个SR时机,由UE的PHY层判断是否可以合并,并进行SR的传输。
采用该第二种具体的示例,可以明确判断SR的PUCCH附近有其他上行传输的方法。
在第三种具体的示例中,具体介绍SR如何合并到其他上行传输中发送。
例如图2所示的实施例中表1示出的目前一些实施例中,SR与其他上行传输出现重叠 的时候的做法,表1中字体加粗示出的组合方式对应的做法,都可以应用到本示例中。即按照上述第一种具体的示例或第二中具体的示例中的方式判断SR可以合并到携带HARQ-ACK的PUCCH格式(PF)0/2/3/4中时,或者SR可以合并到携带CSI报告的PF2/3/4时,均可以采用目前实施例中的方法。但是上述表1中字体没有加粗的部分对应的组合的方法,可能需要一定增强。具体的,可以有以下几种场景:
场景一:如果SR的PUCCH资源是格式(format)0,且SR要合并到携带HARQ-ACK的PF1中传输,有如下几种可能的做法:
方法1:该组合不可合并传输,即在这种场景下,SR不能合并发送。
方法2:若HARQ-ACK仅有1比特(bit),则通过PUCCH的循环移位携带SR信息(也UE将SR与HARQ-ACK级联,再将级联后的信息映射为第二循环移位值,根据第二循环移位值发送给网络设备),即若无SR则m CS=0/6,若有SR则m CS=3/9;
若HARQ-ACK有2-bit,则可以有以下两种方法:
方法2-1:SR不能合并到该PUCCH上传输。
方法2-2:SR和HARQ-ACK组成的3bit信息可以生成一个8PSK符号,再乘到序列(sequence)上,例如可以参见上述实施例涉及的公式一,此处不再重复描述。在目前的实施例中,d(0)是一个复数符号,是用最多2bits信息生成的,本方法2-2中d(0)为一个8PSK符号。
场景二:如果SR的PUCCH资源是格式1,且SR要合并到携带HARQ-ACK的PF1中传输,可以有如下做法:
若携带HARQ-ACK的PUCCH所在时隙有用于SR传输的PUCCH格式(format)1资源,则UE使用信道选择的方式(与目前实施例中信道选择的方式相同);否则不可合并。
场景三:如果SR要合并到不携带UL-SCH的PUSCH中传输,可以有如下方法:
方法1:SR可以复用(multiplexing)到PUSCH中,即将SR信息比特与上行数据比特级联,再一起调制映射到PUSCH的物理资源上;
方法2:SR可以对PUSCH做打孔(puncture),即UE将SR进行单独地调制,待生成PUSCH之后,将PUSCH占用的某些RE的调制符号替换为SR调制后的符号。
方法3:该场景下SR不可合并传输。
采用该第三种具体的实施方式,可以明确UE如何将SR合并传输。
在第四种具体的示例中,对上述具体的示例进行了进一步补充。
具体的,基站可以向UE发送配置信息(例如通过RRC信令(消息)或MAC CE)(也即上述实施例涉及的第一消息),该配置信息用启用该功能(也即将SR与上行传输合并传输的功能,也即上述实施例涉及的将调度请求与第一上行信道包含的信息合并传输的功能)。UE被配置了该功能之后,当PUCCH或PUSCH的相对位置满足条件时,基站和UE都可以判断二者(也即SR和PUCCH或PUSCH中的信息)可以合并传输。一种示例的流程可以如图20所示。
另一方面,UE可以发送辅助信息(也即上述实施例涉及的第二消息),请求或触发该功能的开启(即启用)或关闭。一种示例的流程可以如图21所示。
另一种情况下,基站向UE发送配置信息后,还需要向UE发送动态指示信息(例如为DCI)(也即上述实施例涉及的第三消息),指示UE是否可以合并传输(也即是否启用该功能)。例如,在调度PUSCH或PUCCH的DCI中加入指示信息,用于指示SR是否能 够合并到当前PUSCH或PUCCH中一起传输。一种示例的流程可以如图22所示。
进一步地,可以在上述情况下结合UE的请求,来请求或触发该功能的开启或关闭。一种示例的流程可以如图23所示。
在第五种具体的示例中,该示例用以避免对传输性能的影响。当SR的PUCCH与其他上行传输单独传输时,UE需要发送两次信号,虽然UE的发射功耗较大,但是两个信号中平均每个比特分到的能量也较高,可以抵抗较强的噪声,信号的覆盖范围比较大。当SR与其他上行传输合并发送时,无论是SR还是其他上行传输中的信息,平均每个比特分到的能辆会比较低,信号的覆盖范围可能会受限,信号传输可靠性会降低。为了解决信号传输可靠性的问题,本示例提出几种增强的方法。
方法一:引入一个参考信号接收功率(reference signal received power,RSRP)阈值,当UE上报给基站的RSRP高于该RSRP阈值时,可以认为UE的覆盖不受限,此时才能采用本申请中的合并传输方式,否则采用目前常用的方式。其原理是,UE会根据接收到的基站发送的参考信号的功率计算一个RSRP值,当该RSRP值越大,说明UE距离基站越近。一个RSRP阈值,相当于一个等效的基站到UE的距离阈值。当UE收到的RSRP高于该阈值的时候,即说明UE距离基站足够近。此时UE即使将SR与其他上行传输合并发送,也能保证信号可以正确传输。需要注意的是,本方法中,条件是“UE上报给基站的RSRP”,这是因为,必须是UE和基站同时都知道SR与其他上行传输是否合并,才能够正确传输。因此UE和基站必须都知道RSRP条件是否满足。
方法二:对功率控制方式进行增强。目前的一些实施例中,上行信号的发射功率可以根据UE估计的路径损耗值、基站配置的传输参数或基站在DCI中指示的TPC(transmit power control,传输功率控制)命令中的一项或多项确定的。如果不做任何增强,UE会根据目前实施例中的方法确定上行信号的发射功率。如果希望提高合并后信号传输可靠性,可以考虑在SR与上行传输合并传输时,提高合并后信号的发射功率,从而提高平均每个比特分到的能量。具体地,可以包括如下几种可能方法:
示例一:当SR合并到其他上行传输中发送时,其他上行传输的发射功率加X dB,X的值可以预定义、或基站配置、或由基站通过DCI指示。
示例二:当SR合并到其他上行传输中发送时,其他上行传输的最终发射功率,可以通过原定的SR的PUCCH发射功率(也即PUCCH的原始发射功率)和原定的其他上行传输的发射功率(也即第一信道的原始发射功率)确定,例如两个功率相加,或者两个功率相加后乘以一个系数等。举例来说,若SR的PUCCH的原始发射功率为16dBm,SR合并到PUSCH中传输时,PUSCH的原始发射功率为16dBm。SR合并到PUSCH中后PUSCH的发射功率可以为二者的和,即19dBm;或者为二者相加后乘以一个系数,为18dBm等。
该第五种具体的示例,进一步考虑了SR和其他上行传输合并传输的可实施性,尽量减少了合并传输对于传输性能的影响。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图24所示,装置2400可以包括收发单元2401和处理单元2402。其中,所述收发单元2401用于所述通信装置2400传输信息(消息或数据),也即接收信息(消息或数据)或发送信息(消息或数据),所述处理单元2402用于对所述通信装置2400的动作进行控制管理。所述处理单元2402还可以控制所述收发单元2401执行的步骤。
示例性的,该通信装置2400具体可以是上述实施例中的终端设备、所述终端设备中 的处理器,或者芯片或者芯片系统,或者是一个功能模块等;或者,该通信装置2400具体可以是上述实施例中的网络设备、所述网络设备的处理器,或者芯片或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述通信装置2400用于实现上述图2所述的实施例中终端设备的功能时,所述收发单元2401可以实现图2所示的实施例中的由终端设备执行的收发操作(或传输操作);所述处理单元2402可以实现图2所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述通信装置2400用于实现上述图2所述的实施例中网络设备的功能时,所述收发单元2401可以实现图2所示的实施例中的由网络设备执行的收发操作;所述处理单元2402可以实现图2所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2所示的实施例中的相关描述,此处不再详细介绍。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图25所示,通信装置2500可以包括收发器2501和处理器2502。可选的,所述通信装置2500中还可以包括存储器2503。其中,所述存储器2503可以设置于所述通信装置2500内部,还可以设置于所述通信装置2500外部。其中,所述处理器2502可以控制所述收发器2501接收和发送数据(信息或消息)。
具体的,所述处理器2502可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器2502还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器2501、所述处理器2502和所述存储器2503之间相互连接。可选的,所述收发器2501、所述处理器2502和所述存储器2503通过总线2504相互连接;所述总线2504可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工 业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图25中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器2503,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器2503可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器2502执行所述存储器2503所存放的应用程序,实现上述功能,从而实现通信装置2500的功能。
示例性的,该通信装置2500可以是上述实施例中的终端设备;还可以是上述实施例中的网络设备。
在一个实施例中,所述通信装置2500在实现图2所示的实施例中终端设备的功能时,收发器2501可以实现图2所示的实施例中的由终端设备执行的收发操作(或传输操作);处理器2502可以实现图2所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2所示的实施例中的相关描述,此处不再详细介绍。
在一个实施例中,所述通信装置2500在实现图2所示的实施例中网络设备的功能时,收发器2501可以实现图2所示的实施例中的由网络设备执行的收发操作;处理器2502可以实现图2所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2所示的实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例还提供一种通信系统,该通信系统可以包括终端设备和网络设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的调度请求的传输方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的调度请求的传输方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的调度请求的传输方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种调度请求的传输方法,其特征在于,包括:
    终端设备确定第一时域范围内存在第一上行信道;其中,所述第一时域范围与包含调度请求的物理上行控制信道PUCCH的时域位置相关,所述第一上行信道为以下任一项:包含混合自动重传请求HARQ反馈的PUCCH、包含信道状态信息CSI报告的PUCCH或者物理上行共享信道PUSCH;
    所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息;
    所述终端设备将所述第一信息发送给所述网络设备。
  2. 如权利要求1所述的方法,其特征在于,所述第一时域范围为第一时间窗和/或第二时间窗;
    其中,所述第一时间窗的起始时刻为所述终端设备的物理PHY层收到所述终端设备的媒体接入控制MAC层的调度请求触发的时刻,终止时刻为包含所述调度请求的PUCCH的时域位置;或者,所述第一时间窗的终止时刻为包含所述调度请求的PUCCH的时域位置,时域长度为第一时域长度;
    所述第二时间窗的起始时刻为包含所述调度请求的PUCCH的时域位置,时域长度为第二时域长度。
  3. 如权利要求1或2所述的方法,其特征在于,当所述第一时域范围内存在多个上行信道时,所述第一上行信道是所述多个上行信道中时域位置最早的上行信道,或者,所述第一上行信道是所述多个上行信道中时域位置与包含所述调度请求的PUCCH的时域位置之间的间隔最小的上行信道。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一上行信道所在的时隙包含调度请求时机。
  5. 如权利要求1-4任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式0时,
    所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息,包括:
    所述终端设备将所述调度请求与所述HARQ反馈级联,得到所述第一信息;
    所述终端设备将所述第一信息发送给所述网络设备,包括:
    所述终端设备将所述第一信息映射为第一循环移位值,根据所述第一循环移位值将所述第一信息发送给所述网络设备。
  6. 如权利要求1-4任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式2、格式3或格式4时,
    所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息,包括:
    所述终端设备将所述调度请求和所述HARQ反馈进行级联,得到所述第一信息;
    所述终端设备将所述第一信息发送给所述网络设备,包括:
    所述终端设备通过所述第一上行信道将所述第一信息发送给所述网络设备。
  7. 如权利要求1-4任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含CSI报告的PUCCH且所述包含CSI报告的PUCCH的格式是格式2、格式3或格式4时,
    所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息,包括:
    所述终端设备将所述调度请求和所述CSI报告进行级联,得到所述第一信息;
    所述终端设备将所述第一信息发送给所述网络设备,包括:
    所述终端设备通过所述第一上行信道将所述第一信息发送给所述网络设备。
  8. 如权利要求1-4任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式1时,
    所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息,包括:
    所述终端设备将所述调度请求与所述HARQ反馈级联,得到所述第一信息;
    所述终端设备将所述第一信息发送给所述网络设备,包括:
    所述终端设备将所述第一信息映射为第二循环移位值,根据所述第二循环移位值将所述第一信息发送给所述网络设备。
  9. 如权利要求1-4任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式1时,所述终端设备将所述第一信息发送给所述网络设备,包括:
    当确定所述第一上行信道的时域位置存在用于传输调度请求的PUCCH格式1的资源时,所述终端设备通过信道选择的方式将所述第一信息发送给所述网络设备。
  10. 如权利要求1-4任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述PUSCH时,所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息,包括:
    所述终端设备将所述调度请求和所述PUSCH包含的信息进行级联,得到所述第一信息。
  11. 如权利要求1-4任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述PUSCH时,所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息,包括:
    所述终端设备对所述PUSCH进行打孔,将所述调度请求映射到所述PUSCH被打孔的位置上,得到所述第一信息。
  12. 如权利要求1-11任一项所述的方法,其特征在于,在所述终端设备将所述调度请求与所述第一上行信道包含的信息合并,得到第一信息之前,所述方法还包括:
    所述终端设备确定从所述网络设备接收到参考信号后,发送给所述网络设备的参考信号接收功率RSRP大于RSRP阈值,其中所述RSRP为所述终端设备基于所述参考信号确定的。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述终端设备将所述第一信息发送给所述网络设备,包括:
    所述终端设备通过第一发射功率将所述第一信息发送给所述网络设备;其中,所述第一发射功率比所述第一上行信道的原始发射功率大;或者所述第一发射功率基于所述第一上行信道的原始发射功率和包含所述调度请求的PUCCH的原始发射功率确定。
  14. 一种调度请求的传输方法,其特征在于,包括:
    网络设备确定第一时域范围内存在第一上行信道;其中,所述第一时域范围与包含调度请求的物理上行控制信道PUCCH的时域位置相关,所述第一上行信道为以下任一项:包含混合自动重传请求HARQ反馈的PUCCH、包含信道状态信息CSI报告的PUCCH或者物理上行共享信道PUSCH;
    所述网络设备接收来自终端设备的第一信息,所述第一信息为所述终端设备将所述调度请求与所述第一上行信道包含的信息合并得到的。
  15. 如权利要求14所述的方法,其特征在于,所述第一时域范围为第一时间窗和/或第二时间窗;
    其中,所述第一时间窗的起始时刻为所述终端设备的物理PHY层收到所述终端设备的媒体接入控制MAC层的调度请求触发的时刻,终止时刻为包含所述调度请求的PUCCH的时域位置的起始位置;或者,所述第一时间窗的终止时刻为包含所述调度请求的PUCCH的时域位置的起始位置,时域长度为第一时域长度;
    所述第二时间窗的起始时刻为包含所述调度请求的PUCCH的时域位置的终止始位置,时域长度为第二时域长度。
  16. 如权利要求14或15所述的方法,其特征在于,当所述第一时域范围内存在多个上行信道时,所述第一上行信道是所述多个上行信道中时域位置最早的上行信道,或者,所述第一上行信道是所述多个上行信道中时域位置与包含所述调度请求的PUCCH的时域位置之间的间隔最小的上行信道。
  17. 如权利要求14-16任一项所述的方法,其特征在于,所述第一上行信道所在的时隙包含调度请求时机。
  18. 如权利要求14-17任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式0时,所述第一信息为所述终端设备将所述调度请求与所述HARQ反馈级联得到的;
    所述网络设备接收来自所述终端设备的所述第一信息,包括:
    所述网络设备接收所述终端设备根据第一循环移位值发送的所述第一信息,所述第一循环移位值为所述终端设备将所述第一信息映射得到的。
  19. 如权利要求14-17任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式2、格式3或格式4时,所述第一信息为所述终端设备将所述调度请求和所述HARQ反馈进行级联得到的;
    所述网络设备接收来自所述终端设备的所述第一信息,包括:
    所述网络设备接收所述终端设备通过所述第一上行信道发送的所述第一信息。
  20. 如权利要求14-17任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述包含CSI报告的PUCCH且所述包含CSI报告的PUCCH的格式是格式2、格式3或格式4时,所述第一信息为所述终端设备将 所述调度请求和所述CSI报告进行级联得到的;
    所述网络设备接收来自所述终端设备的所述第一信息,包括:
    所述网络设备接收所述终端设备通过所述第一上行信道发送的所述第一信息。
  21. 如权利要求14-17任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式1时,所述第一信息为所述终端设备将所述调度请求与所述HARQ反馈级联得到的;
    所述网络设备接收来自所述终端设备的所述第一信息,包括:
    所述网络设备接收所述终端设备根据第二循环移位值发送的所述第一信息,所述第二循环移位值为所述终端设备将所述第一信息映射得到的。
  22. 如权利要求14-17任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式1,所述第一上行信道是所述包含HARQ反馈的PUCCH且所述包含HARQ反馈的PUCCH的格式是格式1时,所述网络设备接收来自所述终端设备的所述第一信息,包括:
    当所述第一上行信道的时域位置存在用于传输调度请求的PUCCH格式1的资源时,接收所述终端设备通过信道选择的方式发送的所述第一信息。
  23. 如权利要求14-17任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述PUSCH时,所述第一信息为所述终端设备将所述调度请求和所述PUSCH包含的信息进行级联得到的。
  24. 如权利要求14-17任一项所述的方法,其特征在于,当包含所述调度请求的PUCCH的格式是格式0或格式1,所述第一上行信道是所述PUSCH时,所述第一信息为所述终端设备对所述PUSCH进行打孔,并将所述调度请求映射到所述PUSCH被打孔的位置上得到的。
  25. 如权利要求14-24任一项所述的方法,其特征在于,在所述网络设备接收来自终端设备的第一信息之前,所述方法还包括:
    所述网络设备确定来自所述终端设备的参考信号接收功率RSRP大于RSRP阈值,其中,所述RSRP为所述终端设备从所述网络设备接收到参考信号后发送的,所述RSRP为所述终端设备基于所述参考信号确定的。
  26. 一种终端设备,其特征在于,包括存储器和处理器,其中:
    所述存储器用于存储计算机指令;
    所述处理器与存储器耦合,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求1-13任一项所述的方法。
  27. 一种网络设备,其特征在于,包括存储器和处理器,其中:
    所述存储器用于存储计算机指令;
    所述处理器,与存储器耦合,用于调用所述存储器中的计算机指令使得所述网络设备执行如权利要求14-25任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求1-25中任一项所述的方法。
PCT/CN2021/138238 2021-01-19 2021-12-15 一种调度请求的传输方法及装置 WO2022156432A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/261,873 US20240080813A1 (en) 2021-01-19 2021-12-15 Scheduling Request Transmission Method and Apparatus
EP21920806.3A EP4262301A1 (en) 2021-01-19 2021-12-15 Scheduling request transmission method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110070788 2021-01-19
CN202110070788.3 2021-01-19
CN202110280935.XA CN114828237A (zh) 2021-01-19 2021-03-16 一种调度请求的传输方法及装置
CN202110280935.X 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022156432A1 true WO2022156432A1 (zh) 2022-07-28

Family

ID=82525763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138238 WO2022156432A1 (zh) 2021-01-19 2021-12-15 一种调度请求的传输方法及装置

Country Status (4)

Country Link
US (1) US20240080813A1 (zh)
EP (1) EP4262301A1 (zh)
CN (1) CN114828237A (zh)
WO (1) WO2022156432A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117793788A (zh) * 2022-09-29 2024-03-29 华为技术有限公司 一种信息传输方法以及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035535A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种上行控制信息的传输方法、接入网设备以及终端设备
WO2019237259A1 (zh) * 2018-06-12 2019-12-19 华为技术有限公司 传输信息的方法和装置
CN111971919A (zh) * 2018-04-05 2020-11-20 高通股份有限公司 用于pusch上的csi报告的冲突处理

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035535A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种上行控制信息的传输方法、接入网设备以及终端设备
CN111971919A (zh) * 2018-04-05 2020-11-20 高通股份有限公司 用于pusch上的csi报告的冲突处理
WO2019237259A1 (zh) * 2018-06-12 2019-12-19 华为技术有限公司 传输信息的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Handling of PUCCH transmission with partial overlap", 3GPP DRAFT; R1-1802690, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051398123 *
LG ELECTRONICS: "Remaining issues on short-duration PUCCH", 3GPP DRAFT; R1-1806620, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051441822 *

Also Published As

Publication number Publication date
EP4262301A1 (en) 2023-10-18
US20240080813A1 (en) 2024-03-07
CN114828237A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
EP3866364A1 (en) Method for sending data, apparatus for sending data, and terminal device
WO2018121293A1 (zh) 免授权传输的方法、终端和网络设备
CN110621075B (zh) 一种传输数据的方法和装置
WO2018133669A1 (zh) 一种资源调度方法以及无线接入网设备和终端设备
CN111786756B (zh) 发送数据的方法、通信装置、计算机存储介质
TW201916706A (zh) 用於資源選擇的方法和設備
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2021161861A1 (ja) 端末及び通信方法
WO2022156432A1 (zh) 一种调度请求的传输方法及装置
WO2021244299A1 (zh) 通信方法及通信设备
US20240098766A1 (en) Data sending method, data receiving method, resource indication method, apparatus, and system
WO2020192444A1 (zh) 一种数据传输方法及设备
CN114342535B (zh) 上行信号的发送和接收方法以及装置
US20210376968A1 (en) Feedback method and apparatus
WO2022074884A1 (ja) 端末、基地局及び通信方法
WO2022156431A1 (zh) 一种上行控制信息的传输方法及装置
WO2021203999A1 (zh) 一种通信方法及装置
CN111885715B (zh) 信道传输方法及相关设备
EP4099598A1 (en) User equipment, scheduling node, method for user equipment, and method for scheduling node
WO2023065892A1 (zh) 通信方法及装置
WO2023011372A1 (zh) 数据传输方法及装置
WO2022041138A1 (zh) 一种通信的方法及装置
WO2021138955A1 (zh) 通知发送时间信息的方法以及装置
WO2023040688A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18261873

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021920806

Country of ref document: EP

Effective date: 20230710

NENP Non-entry into the national phase

Ref country code: DE