WO2018228566A1 - 随机接入方法、设备及系统 - Google Patents

随机接入方法、设备及系统 Download PDF

Info

Publication number
WO2018228566A1
WO2018228566A1 PCT/CN2018/091661 CN2018091661W WO2018228566A1 WO 2018228566 A1 WO2018228566 A1 WO 2018228566A1 CN 2018091661 W CN2018091661 W CN 2018091661W WO 2018228566 A1 WO2018228566 A1 WO 2018228566A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
uplink frequency
frequency band
terminal
uplink
Prior art date
Application number
PCT/CN2018/091661
Other languages
English (en)
French (fr)
Inventor
酉春华
黄曲芳
戴明增
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18816944.5A priority Critical patent/EP3609281B1/en
Publication of WO2018228566A1 publication Critical patent/WO2018228566A1/zh
Priority to US16/677,304 priority patent/US11116013B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a random access method, device, and system.
  • the fifth-generation mobile communication (5th-generation, 5G) system uses the most advanced mobile communication technology, which provides mobile users with higher bandwidth and more secure communication.
  • the high frequency band with larger available bandwidth becomes the candidate band of the 5G system; at the same time, in order to meet the large Some users (especially edge users) have signal transmission coverage and high communication quality requirements.
  • 5G systems it is also desirable to use low frequency bands for uplink transmission.
  • a fixed low frequency band is usually used for uplink transmission, and the transmission rate is low.
  • the embodiment of the present application provides a random access method, device, and system.
  • a first aspect of the embodiments of the present application provides a random access method, including:
  • the terminal receives the random access configuration corresponding to the at least two uplink frequency bands from the access network device, and initiates random access according to at least one random access configuration in the random access configuration corresponding to the at least two uplink frequency bands;
  • the center frequency points of each of the at least two uplink frequency bands are different.
  • the terminal may initiate random access according to different uplink frequency bands, perform uplink transmission, determine an appropriate uplink frequency band according to different transmission scenarios, improve the transmission rate, and satisfy the user's large Capacity requirements.
  • the at least two uplink frequency bands may belong to the same cell managed by the access network device, and the random access configuration corresponding to each uplink frequency band may include at least one of the following parameters:
  • the root sequence index, the random access time-frequency resource, the power ramp step, the maximum number of transmissions of the preamble sequence, the size of the random access response window, and the duration of the contention resolution information timer is the root sequence index, the random access time-frequency resource, the power ramp step, the maximum number of transmissions of the preamble sequence, the size of the random access response window, and the duration of the contention resolution information timer.
  • the terminal may initiate the random access according to the at least one random access configuration corresponding to the at least two uplink frequency bands.
  • the terminal determines, according to the downlink path loss condition, that the random access is initiated according to one of the random access configurations corresponding to the at least two uplink frequency bands.
  • the terminal determines that the random access according to one of the random access configurations corresponding to the at least two uplink frequency bands may include:
  • the terminal acquires a downlink path loss
  • the terminal may initiate random access according to the random access configuration of the lower frequency band.
  • the random access may be initiated according to the first random access configuration, and the first random The access configuration is corresponding to the first uplink frequency band, where the first uplink frequency band is any uplink frequency band in the first uplink frequency band group, and the first uplink frequency band group includes at least one uplink frequency band, and the center of each uplink frequency band in the first uplink frequency band group The frequency point is less than the first preset threshold;
  • the terminal may initiate random access according to the random access configuration of the higher frequency band, for example, may initiate random access according to the second random access configuration.
  • the second random access configuration corresponds to the second uplink frequency band
  • the second uplink frequency band is any uplink frequency band of the second uplink frequency band group
  • the second uplink frequency band group includes at least one uplink frequency band
  • each of the second uplink frequency band group The center frequency point of the uplink frequency band is greater than a second preset threshold, and the second preset threshold is greater than the first preset threshold.
  • the terminal can obtain the downlink path loss by referring to the prior art.
  • the downlink path loss can be obtained by calculating the received power of the reference signal, which is not limited in this embodiment of the present application.
  • the path loss threshold, the first preset threshold, and the second preset threshold may be set as needed, which is not limited in this embodiment of the present application.
  • the uplink frequency band is a low frequency frequency band
  • the central frequency point of the uplink frequency band is greater than a second preset threshold
  • the uplink frequency band is a high frequency frequency band.
  • the terminal can combine the downlink path loss, and use the random access configuration corresponding to the lower frequency band to initiate random access when the downlink path loss is large, and use the random access configuration corresponding to the higher frequency band when the downlink path loss is small. Random access is initiated to improve the quality of random access and the quality of subsequent uplink transmissions.
  • the method may further include:
  • the terminal performs uplink transmission on the uplink frequency band.
  • the method may further include:
  • the terminal records the number of random access failures and the message transmission and reception during the random access failure process.
  • the terminal sends the number of random access failures to the access network device, and the message transmission and reception during the random access failure.
  • the random access failure may be: the number of random access initiated by the same random access configuration is greater than or equal to the preset number of times in a continuous time, or the duration of the random access initiated by the terminal according to the random access configuration is greater than Or equal to the preset duration, that is, the random access timeout.
  • the preset number of times and the preset duration can be set as required. This embodiment does not limit this.
  • the maximum threshold is determined as random access failure.
  • the duration of the random access is greater than or equal to the preset duration, it indicates that the random access time is relatively long and is in a timeout state, and it is determined that the random access fails.
  • the terminal may send the number of random access failures to the access network device in the minimization of the drive test, and the message sending and receiving conditions during the random access failure process.
  • the terminal may report the random access failure to the access network device, so that the access network device may fail according to the number of random access failures reported by the terminal, and the random access failure.
  • the network planning network is optimized to provide the overall performance of the network.
  • the method may further include:
  • the terminal initiates random access according to the third random access configuration, where the third random access configuration corresponds to the third uplink frequency band, and the third uplink frequency band is any uplink frequency band of the first uplink frequency band group.
  • the terminal may initiate random access by using a random access configuration corresponding to any low frequency band to improve random access quality.
  • the terminal may initiate random access according to at least two random access configurations in the random access configuration corresponding to the at least two uplink frequency bands, so as to initiate random access simultaneously on the two uplink frequency bands to speed up random access of the terminal.
  • the method may further include:
  • the terminal performs uplink transmission according to one uplink frequency band or multiple uplink frequency bands or all uplink frequency bands of at least two uplink frequency bands.
  • the terminal can perform uplink transmission according to the same or different uplink frequency bands as needed, thereby improving the flexibility of uplink transmission.
  • the terminal may determine according to the following manner (1) or mode (2).
  • Uplink transmission according to an uplink frequency band :
  • the method (1) the terminal determines, according to the scrambling information acquired from the access network device, the first identifier from the at least two identifiers, where the scrambling information is scrambled by using any one of the at least two identifiers, at least two Each of the identifiers is different, and at least two identifiers are in one-to-one correspondence with at least two uplink frequency bands, and each of the at least two identifiers is: when the terminal initiates random access according to the random access configuration corresponding to the identifier, The identifier obtained by the access network device; the terminal performs uplink transmission according to the uplink frequency band corresponding to the first identifier.
  • the terminal determines, according to the scrambling information obtained from the access network device, that the first identifier is determined from the at least two identifiers: the terminal uses each of the at least two identifiers to descramble the scrambling information, and The identity of the descrambling success is determined as the first identity.
  • the scrambling and descrambling process in the embodiment of the present application may refer to the scrambling and descrambling process in the prior art, and details are not described herein.
  • Mode (2) The terminal itself determines which uplink frequency band is used for uplink transmission, and sends an indication including an uplink frequency band index to the access network device, indicating the uplink frequency band used by the terminal for uplink transmission.
  • the terminal may report the uplink frequency band 1 to the access network before performing uplink transmission on the uplink frequency band 1.
  • the device so that the access network device knows which uplink frequency band the terminal uses to transmit, and improves the accuracy of the access network device.
  • the terminal may use the following manner to clear the stored and unused in the terminal.
  • the terminal clears other identifiers other than the second identifier that are obtained by the terminal, and the second identifier is an identifier corresponding to the uplink frequency band used by the terminal for uplink transmission;
  • the fourth uplink frequency band is an uplink frequency band used by the terminal for uplink transmission.
  • the time advance corresponding to each uplink frequency band may also be maintained to implement uplink synchronization, and the specific implementation is implemented.
  • the method is as follows:
  • the terminal stores: at least one time group of at least one cell, each time group corresponding to one time amount, one timer, and at least one uplink frequency band, at least one cell is a cell managed by the access network device, and the time quantity is used by the terminal. Uplink synchronization, the timer is used to limit the effective time of the amount of time;
  • the terminal Stop uploading and transmitting on the uplink frequency band corresponding to the time group;
  • the terminal clears the hybrid automatic repeat request buffer corresponding to the cell;
  • the terminal clears the hybrid automatic repeat request buffer corresponding to the other cells in the at least one cell except the primary cell, and determines all the time groups corresponding to the other cells.
  • the timer expires; when the terminal receives the time adjustment command from the access network device, the terminal starts the timer corresponding to the first time group of the first cell according to the time adjustment command; the time adjustment command is used to instruct the terminal to adjust the first The timer corresponding to the first time group of the cell.
  • the time amount may be a timing advance (TA), which may be configured by the access network device to the terminal; the timer may be a timing advance timer (TAT), and the timer may be needed according to requirements.
  • TA timing advance
  • TAT timing advance timer
  • the configuration of the access network device is set to the terminal, and the comparison between the embodiments of the present application is not limited.
  • the serving cell is a cell that can be used to provide radio resources for the connected terminal; if carrier aggregation (CA) or dual connectivity (DC) is not configured, the connection is The terminal of the state has only one serving cell; if the terminal in the connected state is configured with a CA and/or a DC, the serving cell is at least one cell, including a primary cell (PCell) and all secondary cells (SCells).
  • the PCell is operating at the primary frequency, and the terminal may perform an initial connection establishment procedure or initiate a connection re-establishment procedure, or a cell indicated as a primary cell during the handover procedure.
  • the SCell is a cell operating at the secondary frequency and provides additional radio resources for the connected terminal.
  • the activated serving cell is a serving cell available for data transmission.
  • a primary secondary cell (PSCell) is a cell that can initiate random access when the secondary cell of the secondary base station changes.
  • the physical uplink control cHannel (PUCCH) SCell is an SCell configured with a PUCCH.
  • the terminal can implement uplink synchronization between different uplink frequency bands according to the foregoing maintenance of the amount of time corresponding to each uplink frequency band.
  • the uplink transmission may be performed by using resources corresponding to the uplink frequency band according to the indication of the access network device.
  • Specific implementations can include:
  • the terminal receives, from the access network device, a first indication of the transmission resource corresponding to the uplink frequency band of the first uplink frequency band index and the first uplink frequency band index identifier, and performs uplink transmission according to the first indication.
  • the first uplink frequency band may be any one of the at least two uplink frequency bands.
  • the terminal can implement uplink transmission on the transmission resource indicated by the access network device.
  • the power headroom report may also be reported to the access network device. , PHR), so that the access network device selects a reasonable scheduling policy.
  • the implementation manner may include:
  • the terminal When the terminal is in the trigger state of the PHR, the terminal generates a PHR report according to the first indication, and sends a PHR report to the access network device when performing uplink transmission according to the first indication.
  • the PHR report includes: an uplink frequency band index and a power headroom of an uplink frequency band identified by the uplink frequency band index.
  • the terminal enters a trigger state of the power headroom report when the trigger condition is met, and the trigger condition may include any one of the following conditions:
  • the first timer expires, and the path loss change value of the at least one reference service downlink beam of the serving cell of the terminal is greater than the first threshold, and the first timer is used to prevent the terminal from continuously triggering the PHR;
  • the first timer expires, and at least one serving uplink beam power of the serving cell of the terminal is backed off, and the power back-off value exceeds a second threshold, where the first timer is used to prevent the terminal from continuously triggering the PHR;
  • the second timer expires, the second timer is used to periodically trigger the PHR, and the second timer is configured corresponding to the beam of the serving cell of the terminal;
  • At least one serving uplink beam of the serving cell of the terminal is activated.
  • the first threshold and the second threshold may be set by the access network device as required or may be a default value; the duration of the first timer and the duration of the second timer may be Configured by the access network device or default value.
  • At least one serving uplink beam of the serving cell of the terminal is activated, which may be understood as at least one serving uplink beam of the serving cell of the terminal is configured, and may also be understood as adding a serving cell of the terminal. At least one serving uplink beam.
  • the terminal can report the power headroom of the uplink frequency band to the access network device while performing the uplink transmission on the uplink frequency band, so that the access network device performs a reasonable scheduling policy on the uplink frequency band according to the power headroom.
  • the terminal when the terminal performs uplink transmission according to multiple uplink frequency bands, the terminal may further use the transmission block corresponding to the uplink frequency band to perform uplink according to other indications of the access network device. Transmitting, and determining which transport block is used to transmit uplink control information.
  • the implementation manner may include:
  • the terminal receives at least two second indications from the access network device; each of the at least two second indications may include: a second uplink frequency band index and a transport block corresponding to the uplink frequency band identified by the second uplink frequency band index; Uplink transmission is performed according to at least two second indications, and uplink control information (UCI) is transmitted on one of the transport blocks included in the at least two indications according to a preset rule or a configuration of the access network device.
  • UCI uplink control information
  • the transport block may be a medium access control (MAC) packet, for example, may be a MAC protocol data unit (PDU); the UCI may include: a scheduling request (SR), a channel state. At least one of the information, the HARQ feedback, and the beam report, the scheduling request is used to request an uplink transmission resource from the access network device, the channel state information is used to notify the access network device of the channel state, and the HARQ feedback is used to notify the access network. Decoding of downlink data of the device (such as decoding success or failure).
  • MAC medium access control
  • PDU MAC protocol data unit
  • the UCI may include: a scheduling request (SR), a channel state. At least one of the information, the HARQ feedback, and the beam report, the scheduling request is used to request an uplink transmission resource from the access network device, the channel state information is used to notify the access network device of the channel state, and the HARQ feedback is used to notify the access network. Decoding of downlink data of the device (such as decoding success or failure
  • the preset rule is used to determine a transport block for transmitting the UCI, and may be pre-configured to the terminal by the access network device.
  • the preset rule may be: comparing the index sizes of at least two uplink frequency bands, using the largest or smallest index.
  • the transport block corresponding to the uplink frequency band transmits UCI.
  • the terminal can transmit the UCI by using one transport block while transmitting the transport block in two uplink frequency bands.
  • the method may further include:
  • the terminal receives, from the access network device, a power adjustment command including an uplink frequency band index and a power control parameter, where the power adjustment request message is used to request the access network device to perform power adjustment on the uplink frequency band of the uplink frequency band index identifier;
  • the terminal calculates the uplink power of the uplink frequency band identified by the uplink frequency band index based on the power adjustment command, and performs uplink transmission based on the calculated uplink power.
  • the terminal may calculate the uplink power according to the power control parameter, the path loss measured by the terminal, and the existing power control formula.
  • the calculation process may refer to the prior art, and details are not described herein.
  • the terminal can adjust the power of an uplink frequency band under the command of the access network device.
  • the method when the terminal performs uplink transmission according to multiple uplink frequency bands, the method may further include:
  • the terminal receives an activation command from the access network device, where the activation command includes a first uplink frequency band index, and the terminal activates an uplink frequency band of the first uplink frequency band index identifier;
  • the terminal receives a deactivation command from the access network device, where the deactivation command includes a second uplink frequency band index, and the terminal deactivates the uplink frequency band of the second uplink frequency band index identifier.
  • the terminal can determine which uplink frequency band is activated or deactivated according to the activation and deactivation commands sent by the access network device, and which uplink frequency band is not activated or deactivated.
  • the method when the terminal moves, moving from the coverage area of one access network device to the coverage area of another access network device, the method may further include: :
  • the terminal receives a handover command from the access network device, where the handover command is used to indicate the uplink frequency band when the terminal randomly accesses other access network devices, and the random access resource corresponding to the uplink frequency band, and the terminal sends the handover command to other access networks according to the handover command.
  • the device initiates random access.
  • the terminal can implement random access during the mobile process according to the handover command sent by the access network device.
  • the random access in the embodiment of the present disclosure may specifically include:
  • the terminal receives the random access response from the access network device after the terminal sends the preamble sequence for a period of time;
  • the time period depends on the processing speed of the access network device, is configured by the access network device, or is set according to the reference air interface format supported by the serving cell of the terminal, and the time period may be the transmission time interval (TTI) length.
  • TTI transmission time interval
  • An integer multiple such as: for a TTI length of 0.1 ms, the time period may be 25*0.1 ms, and for a TTI length of 1 ms, the time period may be 3*1 ms.
  • the reference air interface format is a parameter set of a sub-carrier interval and a cyclic prefix length.
  • the reference air interface format may be named numerology.
  • the terminal can receive the random access response sent by the access network device after a period of time according to the processing speed of the access network device, thereby improving the receiving accuracy of the random access response.
  • an embodiment of the present invention provides an access network device, including:
  • the access network device configures the terminal with a random access configuration corresponding to at least two uplink frequency bands, and the center frequency points of each of the at least two uplink frequency bands are different.
  • the access network device may configure, for the terminal, a random access configuration corresponding to at least two uplink frequency bands, so that the terminal initiates random access according to the random access configuration corresponding to the at least two uplink frequency bands.
  • the method may further include:
  • the access network device sends the scrambling information to the terminal, where the scrambling information is scrambled by using any one of the at least two identifiers, and the at least two identifiers are corresponding to the at least two uplink frequency bands, and each of the at least two identifiers
  • the identifier obtained by the terminal from the access network device when the terminal initiates random access according to the random access configuration corresponding to the identifier.
  • the access network device can send the scrambling information to the terminal, so that the terminal determines the uplink frequency band of the uplink transmission according to the scrambling information.
  • the method may further include:
  • the access network device sends a time adjustment command to the terminal.
  • the time adjustment command is used to instruct the terminal to adjust the timer corresponding to the first time group of the first cell.
  • the access network device can send a time adjustment command to the terminal, so that the terminal determines the amount of uplink transmission according to the time adjustment command, and implements uplink synchronization.
  • the method further includes:
  • the access network device sends a first indication to the terminal; the first indication includes: a first uplink frequency band index and a transmission resource corresponding to the uplink frequency band of the first uplink frequency band index; the first indication is used to indicate that the terminal performs uplink transmission according to the first indication .
  • the access network device may send an indication to the terminal indicating the transmission resource, so that the terminal determines the transmission resource of the uplink transmission according to the indication.
  • the method further includes:
  • the access network device sends at least two second indications to the terminal; each of the at least two second indications includes: a second uplink frequency band index and a transport block corresponding to the uplink frequency band identified by the second uplink frequency band index.
  • the access network device may send an indication to the terminal indicating the transport block, so that the terminal determines the transport block for the uplink transmission and the transport block for transmitting the UCI according to the indication.
  • the embodiment of the present application provides a terminal, where the terminal may include:
  • the receiving unit receives, from the access network device, a random access configuration corresponding to at least two uplink frequency bands, where the center frequency points of each of the at least two uplink frequency bands are different;
  • a random access unit configured to initiate random access according to at least one random access configuration in the random access configuration corresponding to the at least two uplink frequency bands received by the receiving unit.
  • the specific implementation manner of the terminal may refer to the behavior function of the terminal in the random access method provided by the first aspect or the possible implementation manner of the first aspect, and details are not repeatedly described herein. Therefore, the provided terminal can achieve the same advantageous effects as the first aspect.
  • the embodiment of the present application provides a terminal, where the terminal can implement the functions performed by the terminal element in the foregoing method embodiment, and the function can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the terminal includes a processor and a transceiver configured to support the terminal to perform corresponding functions in the above methods.
  • the transceiver is used to support communication between the terminal and other network elements.
  • the terminal can also include a memory, a display for coupling with the processor, which stores program instructions and data necessary for the terminal, and the display can be used for interaction between the terminal and the user.
  • an embodiment of the present application provides a computer storage medium for storing computer software instructions for use in the terminal, the computer software instructions including a program designed to perform the above aspects.
  • an embodiment of the present application provides a computer program product, where the program product stores computer software instructions for use by the terminal, the computer software instructions including a program designed to perform the above aspects.
  • the embodiment of the present application provides a device, which is in the form of a product of a chip.
  • the device includes a processor and a memory, and the memory is coupled to the processor to save necessary program instructions of the device. And data, the processor is operative to execute program instructions stored in the memory such that the apparatus performs the functions corresponding to the terminal in the above method.
  • the embodiment of the present application provides an access network device, where the access network device may include:
  • the configuration unit is configured to configure, by the access network device, a random access configuration corresponding to the at least two uplink frequency bands, where the center frequency of each of the at least two uplink frequency bands is different.
  • the access network device For a specific implementation manner of the access network device, reference may be made to the behavior of the access network device in the random access method provided by the second aspect or the possible implementation manner of the second aspect, and details are not repeatedly described herein. Therefore, the access network device provided by this aspect can achieve the same beneficial effects as the second aspect.
  • the embodiment of the present application provides an access network device, where the access network device can implement the functions performed by the access network device element in the foregoing method, where the function can be implemented by using hardware or
  • the hardware implements the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the access network device includes a processor and a transceiver configured to support the access network device to perform a corresponding function in the above method.
  • the transceiver is configured to support communication between the access network device and other network elements.
  • the access network device can also include a memory, a display for coupling with the processor, the program instructions and data necessary to store the access network device, the display being operable to interact with the access network device and the user.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the access network device, where the computer software instructions include a program designed to perform the above aspects.
  • an embodiment of the present application provides a computer program product, where the program product stores computer software instructions for use in the access network device, and the computer software instructions include a program designed to perform the above aspects.
  • the embodiment of the present application provides a device, which is in the form of a product of a chip.
  • the device includes a processor and a memory, and the memory is coupled to the processor to save necessary program instructions of the device. And data, the processor is operative to execute program instructions stored in the memory such that the apparatus performs the functions corresponding to the access network device in the above method.
  • the embodiment of the present invention provides a random access system, where the system includes the terminal according to any of the aspects described above and the access network device according to any aspect.
  • FIG. 1 is a simplified schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a user plane protocol stack according to an embodiment of the present application
  • FIG. 1b is still another schematic diagram of a user plane protocol stack according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a composition of a gNB according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a random access method according to an embodiment of the present application.
  • 4a is a schematic diagram of a random access procedure according to an embodiment of the present application.
  • FIG. 5 is a flowchart of still another random access method according to an embodiment of the present application.
  • FIG. 6 is a flowchart of still another random access method according to an embodiment of the present application.
  • FIG. 7 is a flowchart of still another random access method according to an embodiment of the present application.
  • FIG. 8 is a flowchart of still another random access method according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a composition of a gNB according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a composition of a gNB according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the random access method provided by the embodiment of the present invention can be applied to any communication system having two or more uplink frequency bands, for example, a global system of mobile communication (GSM) system, code division multiple access (code) Division multiple access (CDMA) system, wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, long-term evolution (long term evolution, LTE) frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), and other current communication systems And, in particular, it is applied to a future 5G new radio (NR) system or a 5G system or an orthogonal frequency division multiplexing (OFDM) based communication system.
  • the random access method provided by the embodiment of the present invention is applied to the 5G system shown in FIG. 1 as an example for description.
  • the 5G system may include: at least one terminal and an access network device, where the terminal is within the coverage of the access network device, and the access network device may cover and manage multiple cells, and the terminal and the access
  • the network devices perform data transmission through at least two uplink frequency bands and one downlink frequency band, wherein at least two uplink frequency bands belong to the same cell, and the center frequency bands of each of the at least two uplink frequency bands are different, for example, at least:
  • the two uplink frequency bands may include a high frequency band (eg, a frequency band with a center frequency greater than or equal to 6 GHz) and a low frequency band (eg, a frequency band with a center frequency less than 6 GHz).
  • the high frequency band and the low frequency band are relative concepts, and the high frequency band is: a frequency band with a relatively large center frequency point in at least two uplink frequency bands, and the low frequency band is: at least two uplinks. A frequency band with a relatively small center frequency point in the frequency band.
  • FIG. 1 is only an exemplary architecture diagram. For convenience of description, FIG. 1 only shows two uplink frequency bands. It can be understood that the 5G system may include more than two uplink frequency bands, and at the same time, except as shown in FIG. In addition to the functional entity, the 5G system architecture may also include other functional entities, which are not limited in this embodiment of the present application.
  • the terminal in FIG. 1 may be a user equipment (UE), such as a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, and a wireless local loop (wireless local Loop WLL) station, personal digital assistant PDA, laptop computer, handheld communication device, handheld computing device, satellite wireless device, wireless modem card, and/or other communication for communicating over a wireless system device.
  • UE user equipment
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • laptop computer handheld communication device
  • handheld computing device handheld computing device
  • satellite wireless device wireless modem card
  • wireless modem card wireless modem card
  • the access network device may be: a base transceiver station (BTS) in GSM or CDMA, a base station (NodeB) in WCDMA, an evolved base station (evolutional Node B, eNB or eNodeB) in LTE, an access node, and an Generation node B (gNB), transmission receive point (TRP), transmission point (TP) or some other access network device.
  • BTS base transceiver station
  • NodeB base station
  • evolutional Node B evolutional Node B, eNB or eNodeB
  • gNB Generation node B
  • TRP transmission receive point
  • TP transmission point
  • the terminal and the access network device may use the user plane protocol stack as shown in FIG. 1a to transmit data.
  • the terminal and the access network device may respectively include: a packet data convergence protocol (PDCP). Layer, radio link control (RLC) layer, medium access control (MAC) layer, and physical layer (PHY), terminal and access network devices based on these protocol stack data
  • PDCP packet data convergence protocol
  • Layer radio link control
  • MAC medium access control
  • PHY physical layer
  • the terminal and access network devices based on these protocol stack data
  • Processing the transmission for example, the PDCP layer of the access network device performs header compression, security functions (such as integrity protection, encryption) processing on the delivered data, and transmits the processed data to the RLC layer, and the RLC layer receives
  • the received data is segmented and reorganized, so that the size of the segmented and reassembled message is adapted to the actual transmission performed by the wireless interface, and the segmented and reassembled data is transmitted to the MAC layer, and after the MAC layer
  • a service data adaptation protocol (SDAP) layer may be disposed in the terminal and the access network device, as shown in FIG. 1b, and is a terminal and an access.
  • SDAP service data adaptation protocol
  • Another user plane protocol stack diagram between network devices where the terminal and the access network device respectively include: an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer, and the terminal and the access network device are based on the protocol stacks.
  • the data is processed, and the SDAP layer is used to map the delivered data stream to the radio bearer.
  • the PDCP layer, the RLC layer, the MAC layer, and the PHY layer are the same as those shown in FIG. 1a, and details are not described herein again.
  • FIG. 1a and FIG. 1b are only schematic diagrams.
  • the terminal and the access network device may further include other protocol layers, such as radio resource control (radio resource contro, RRC).
  • the layer is not limited in this embodiment of the present application.
  • FIG. 2 is a schematic diagram of a composition of a gNB according to an embodiment of the present application.
  • the gNB may include at least one processor 21, a memory 22, a communication interface 23, and a communication bus 24.
  • the components of the gNB in detail with reference to Figure 2:
  • the processor 21 is a control center of the gNB, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 21 is a central processing unit (CPU), may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application.
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the processor 21 can perform various functions of the gNB by running or executing a software program stored in the memory 22 and calling data stored in the memory 22.
  • processor 21 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the gNB can include multiple processors, such as processor 21 and processor 25 shown in FIG.
  • processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 22 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 22 can exist independently and is coupled to the processor 21 via a communication bus 24.
  • the memory 22 can also be integrated with the processor 21.
  • the memory 22 is used to store a software program that executes the solution provided by the embodiment of the present application, and is controlled by the processor 21.
  • the communication interface 23 is configured to communicate with other devices or communication networks, such as an Ethernet, a radio access network (RAN), a wireless local area network (WLAN), and the like.
  • the communication interface 23 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the communication bus 24 may be an industry standard architecture (ISA) bus, a peripheral component (PCI) bus, or an extended industry standard architecture (EISA) bus.
  • ISA industry standard architecture
  • PCI peripheral component
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 2, but it does not mean that there is only one bus or one type of bus.
  • the gNB shown in FIG. 2 can perform the operations performed by the gNB in the random access method provided by the embodiment of the present application.
  • the processor 21 in the gNB may configure, for the terminal, a random access configuration corresponding to at least two uplink frequency bands.
  • FIG. 3 is a schematic diagram of a composition of a UE according to an embodiment of the present disclosure.
  • the UE may include at least one processor 31, a memory 32, and a transceiver 33.
  • the processor 31 is a control center of the UE, and may be a processor or a collective name of a plurality of processing elements.
  • processor 31 is a CPU, and may be an ASIC, or one or more integrated circuits configured to implement embodiments of the present application, such as one or more DSPs, or one or more FPGAs.
  • the processor 31 can perform various functions of the UE by running or executing a software program stored in the memory 32 and calling data stored in the memory 32.
  • processor 31 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the UE may include multiple processors, such as processor 31 and processor 34 shown in FIG. Each of these processors can be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • Memory 32 may be a ROM or other type of static storage device that may store static information and instructions, RAM or other types of dynamic storage devices that may store information and instructions, or may be EEPROM, CD-ROM or other optical disk storage, optical disk storage. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 32 may be present independently and coupled to processor 31 via communication bus 34.
  • the memory 32 can also be integrated with the processor 31.
  • the memory 32 is used to store a software program that executes the solution of the present application, and is controlled by the processor 31 for execution.
  • the transceiver 33 is configured to communicate with other devices or communication networks, such as Ethernet, RAN, WLAN, and the like.
  • the transceiver 33 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function, and the transceiver 33 may be a radio frequency module.
  • the device structure shown in FIG. 3 does not constitute a limitation to the UE, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the UE may further include a battery, a camera, a Bluetooth module, a global positioning system (GPS) module, and the like, and details are not described herein.
  • GPS global positioning system
  • the UE shown in FIG. 3 can perform the operations performed by the UE in the random access method provided by the embodiment of the present application.
  • the transceiver 33 in the UE can obtain the random access configuration corresponding to the at least two uplink frequency bands from the gNB, in the UE.
  • the processor 31 can initiate random access according to the random access configuration corresponding to the at least two uplink frequency bands acquired by the transceiver 33.
  • the random access provided by the embodiment of the present invention is described below with reference to the 5G system shown in FIG. 1 , with the access network device as the gNB shown in FIG. 2 and the UE as the UE shown in FIG. 3 as an example. It should be noted that although the logical order is shown in the method flow diagrams described below, in some cases, the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 4 is a flowchart of a random access method according to an embodiment of the present disclosure.
  • the UE shown in FIG. 3 and the gNB shown in FIG. 2 are mutually executed. As shown in FIG. 4, the method may include the following steps:
  • Step 401 The gNB configures, for the UE, a random access configuration corresponding to at least two uplink frequency bands.
  • the center frequency band of each of the at least two uplink frequency bands is different, and the at least two uplink frequency bands may belong to the same cell managed by the gNB.
  • the random access configuration of each uplink frequency band may include at least one parameter:
  • Root sequence index the root sequence index is used to generate a preamble sequence
  • Random access time-frequency resources random access time-frequency resources are used to send a preamble sequence
  • the power step is increased, and the power step is used for power control of the preamble sequence
  • the maximum number of transmissions of the preamble sequence, the maximum number of transmissions of the preamble sequence is used to identify the random access problem, and the maximum number of transmissions is reached, and the terminal device determines the random access problem;
  • the random access response window is configured to receive a random access response message
  • the time length of the contention resolution information timer is used to receive the contention resolution information.
  • the gNB can actively configure the random access configuration corresponding to the at least two uplink frequency bands for the UE by using a radio resource control (RRC) message or other message.
  • RRC radio resource control
  • the random access configuration corresponding to the at least two uplink frequency bands may be carried in an RRC message and sent to the UE, or may be carried in two different messages and sent to the UE.
  • Step 402 The UE receives, from the gNB, a random access configuration corresponding to at least two uplink frequency bands.
  • the UE receives, from the gNB, an index of at least two uplink frequency bands and a random access configuration corresponding to an index of at least two uplink frequency bands.
  • Step 403 The UE initiates random access according to at least one random access configuration in the random access configuration corresponding to the at least two uplink frequency bands.
  • the UE may initiate random access according to different uplink frequency bands, perform uplink transmission, determine an appropriate uplink frequency band according to different transmission scenarios, and improve transmission. Efficiency to meet the high capacity needs of users.
  • step 403 the process of the UE initiating the random access may refer to the existing contention-based 4-step random access or the existing non-contention-based 3-step random access or the process shown in FIG. 4a.
  • FIG. 4 is a random access process according to an embodiment of the present invention, which may include the following steps:
  • Step 4031 The UE sends a preamble sequence to the gNB.
  • the preamble sequence can be called msg1 (message1)
  • the UE may generate a preamble sequence according to the root sequence index in the random access configuration, and send the preamble sequence to the gNB by using a random access time-frequency resource.
  • the preamble sequence may also be used for UE capability, where the UE capability is a quantity that the UE can support the uplink frequency band.
  • Step 4032 The gNB receives the preamble sequence from the UE, and sends a random access response (RAR) message to the UE for the preamble sequence.
  • RAR random access response
  • the RAR message may be referred to as: msg2 (message2), and the RAR message may include: an uplink grant and an uplink TA, and may further include a temporary cell radio network temporary identifier (TC-RNTI) and other messages.
  • TC-RNTI is an identifier of the UE in the cell, and is used to identify the UE.
  • Step 4033 After transmitting the preamble sequence for a period of time, the UE receives the RAR message sent by the gNB for the preamble sequence through a random access response window.
  • the time period may depend on the processing speed of the gNB, and may be pre-configured by the gNB to the UE, or a protocol pre-defined. Specifically, the UE is configured according to the reference air interface format supported by the serving cell of the UE. In this embodiment, the time period may be an integer multiple of the transmission time interval (TTI) length, and the TTI is used as the timing. The value of the unit, the timing unit is configured by the protocol, or the minimum TTI is used as the timing unit. For example, for a TTI length of 0.1 ms, the time period may be 25*0.1 ms, and for a TTI length of 1 ms, the time period may be 3*. 1ms.
  • TTI transmission time interval
  • the reference air interface format may be a parameter set of a subcarrier spacing and a cyclic prefix length, and the reference air interface format may be named numerology. It may be understood that the reference air interface format may be, but is not limited to, a numerology naming. Not limited.
  • the subcarrier spacing in the reference air interface format may be any one of the following: the same as the subcarrier spacing of the resource transmitting the RAR message, and the transmission synchronization signal (eg, primary synchronization signal, PSS) or secondary synchronization sequence (eg, primary synchronization sequence, primary synchronization signal, PSS)
  • the subcarrier spacing of the resources of the secondary synchronization signal (SSS) is the same as the resource of the transmission system information (for example, the subcarrier spacing of the physical broadcast channel (PBCH).
  • the reference air interface format may be a protocol pre-defined. , or, gNB pre-configured.
  • Step 4034 The UE sends data to the gNB.
  • the UE may send data to the gNB according to the uplink grant in the RAR message obtained in step 1022.
  • the data may be referred to as msg3 (message3), the data may include contention resolution information, and may further include a capability for indicating the UE, where the UE capability may be the number of uplink frequency bands that the UE can support, where the contention resolution information may be occupied.
  • the contention resolution information may be any one of the following: a random value, a core network identifier S-TMSI of the terminal, and a cell identifier C-RNTI of the terminal.
  • Step 4035 The gNB receives the data and sends the contention resolution information to the UE.
  • the contention resolution information may be referred to as msg4 (message4), the contention resolution information may include contention resolution information and other information, and the contention resolution information in msg4 may occupy the first 48 bits of msg4.
  • Step 4036 The UE receives the contention resolution information from the gNB, and compares the contention resolution information with the contention resolution information included in the data. If the contention resolution information in the contention resolution information is the same as the contention resolution information in the data, the competition is resolved, and the random access is successful. If the contention resolution information in the contention resolution information is different from the contention resolution information in the data, it indicates that the competition is not resolved, the random access fails, and the UE needs to initiate retransmission of the preamble sequence.
  • random access procedure described in FIG. 4a can be applied not only to the 5G system shown in FIG. 1 but also to existing network systems, such as to an LTE system.
  • the UE may determine, according to the transmission scenario, that random access is initiated according to a random access configuration or at least two random access configurations, for example, the UE may be associated according to at least two uplink frequency bands.
  • the downlink path loss condition of the downlink frequency band determines that the random access is initiated according to a random access configuration, or, in order to speed up the random access access, the UE initiates random access according to at least two random access configurations corresponding to at least two uplink frequency bands. .
  • the determining, according to the downlink path loss condition of the downlink frequency band associated with the at least two uplink frequency bands, determining that the random access is initiated according to a random access configuration may include:
  • the UE obtains the downlink path loss and the path loss threshold.
  • the UE initiates random access according to the first random access configuration.
  • the UE performs the second random access according to the second random access. Configure to initiate random access;
  • the first random access configuration corresponds to the first uplink frequency band
  • the first uplink frequency band is any uplink frequency band in the first uplink frequency band group
  • the first uplink frequency band group includes at least one uplink frequency band
  • each uplink in the first uplink frequency band group The center frequency of the frequency band is smaller than the first preset threshold
  • the second random access configuration corresponds to the second uplink frequency band
  • the second uplink frequency band is any uplink frequency band of the second uplink frequency band group
  • the second uplink frequency band group includes at least one In the uplink frequency band
  • the center frequency point of each uplink frequency band in the second uplink frequency band group is greater than a second preset threshold
  • the second preset threshold is greater than the first preset threshold.
  • the downlink path loss may include at least one of the following: a cell path loss and a beam path loss.
  • the UE can calculate the downlink path loss according to the reference signal receiving power (RSRP). Specifically, the calculation process can refer to the prior art, and details are not described herein again.
  • RSRP reference signal receiving power
  • the path loss threshold may be obtained by using a broadcast message, or may be preset and stored in the UE, and the specific value is set as needed, which is not limited in this embodiment of the present application.
  • the downlink path loss When the downlink path loss is greater than the path loss threshold, it indicates that the downlink path loss is relatively large. It is necessary to use the lower frequency band (that is, the uplink frequency band with a smaller path loss) for uplink transmission to ensure the reliability of signal transmission. When the downlink path loss is less than or equal to When the path loss threshold is used, it indicates that the current downlink path loss is relatively small, and adopting a higher frequency band does not affect the signal transmission quality during uplink transmission.
  • the first preset threshold and the second preset threshold may be set as needed, which is not limited in this embodiment of the present application.
  • the uplink frequency band is a low frequency frequency band
  • the first uplink frequency band group where the uplink frequency band is located is a low frequency frequency band group.
  • the uplink frequency band is a high frequency frequency band
  • the second uplink frequency band group where the uplink frequency band is located is a high frequency frequency band group.
  • the two uplink accesses of the uplink band 1 and the uplink band 2 are supported by the gNB and the UE as an example, and the random access method shown in FIG. 4 is further described in detail.
  • the uplink frequency band 1 and the uplink frequency band 2 belong to the same cell, and the center frequency point of the uplink frequency band 1 is lower than the central frequency point of the uplink frequency band 2, that is, the uplink frequency band 1 is a low frequency band, and the uplink frequency band 2 is a high frequency band.
  • FIG. 5 is a flowchart of still another method for random access according to an embodiment of the present disclosure.
  • the UE shown in FIG. 3 and the gNB shown in FIG. 2 are mutually executed. As shown in FIG. 5, the method may include the following steps:
  • Step 501 The gNB configures a random access configuration corresponding to the uplink frequency band 1 and a random access configuration corresponding to the uplink frequency band 2 for the UE.
  • Step 501 is the same as step 401, and details are not repeated herein.
  • Step 502 The UE receives the random access configuration corresponding to the uplink frequency band 1 and the random access configuration corresponding to the uplink frequency band 2 from the gNB.
  • Step 502 is the same as step 402, and details are not repeated herein.
  • Step 503 The UE initiates a random access configuration according to the random access configuration corresponding to the uplink frequency band 1, or initiates random access according to the random access configuration corresponding to the uplink frequency band 2, or according to the random access configuration and the uplink frequency band corresponding to the uplink frequency band 1 2
  • the corresponding random access configuration initiates random access.
  • the process of the UE performing the random access in the step 503 may refer to the existing contention-based 4-step random access or the existing non-contention-based 3-step random access or the process shown in FIG. 4a, and details are not repeated herein.
  • the UE may initiate random access according to a random access configuration according to the scenario shown in FIG. 6 according to the actual transmission scenario, or initiate random access according to the two random access configurations in the manner shown in FIG. 7. .
  • FIG. 6 is a flowchart of still another method for random access according to an embodiment of the present disclosure. The method is performed by the UE shown in FIG. 3 and the gNB shown in FIG. 2, and the method may be used to implement determining, according to the downlink path loss, the UE.
  • a random access configuration initiates random access. As shown in FIG. 6, the method may include the following steps:
  • Step 601 The gNB configures the random access configuration corresponding to the uplink frequency band 1 and the random access configuration corresponding to the uplink frequency band 2 for the UE.
  • Step 501 is the same as step 401, and details are not repeated herein.
  • Step 602 The UE receives the random access configuration corresponding to the uplink frequency band 1 and the random access configuration corresponding to the uplink frequency band 2 from the gNB.
  • Step 502 is the same as step 402, and details are not repeated herein.
  • Step 603 The UE acquires a downlink path loss and a path loss threshold.
  • Step 604 When the downlink path loss is greater than the path loss threshold, the UE initiates random access according to the random access configuration corresponding to the uplink frequency band 1; when the downlink path loss is less than or equal to the path loss threshold, the UE according to the random access configuration corresponding to the uplink frequency band 2 Initiate random access.
  • the process of the UE initiating the random access in step 604 may be performed by referring to the existing contention-based 4-step random access or the existing non-contention-based 3-step random access or the step shown in FIG. 4a, and is not repeated here. Narration.
  • the UE may determine, according to the downlink path loss condition, that the random access configuration is initiated according to one of the random access configurations corresponding to the two uplink frequency bands, and the uplink access quality of the UE is improved.
  • FIG. 7 is a flowchart of still another method for random access according to an embodiment of the present disclosure, which is implemented by the UE shown in FIG. 3 and the gNB shown in FIG. 2, and the method may be used to implement the UE according to two random access configurations. Initiating random access, as shown in FIG. 7, the method may include the following steps:
  • Step 701 The gNB configures the random access configuration corresponding to the uplink frequency band 1 and the random access configuration corresponding to the uplink frequency band 2 for the UE.
  • Step 501 is the same as step 401, and details are not repeated herein.
  • Step 702 The UE receives the random access configuration corresponding to the uplink frequency band 1 and the random access configuration corresponding to the uplink frequency band 2 from the gNB.
  • Step 502 is the same as step 402, and details are not repeated herein.
  • Step 703 The UE initiates random access according to the random access configuration corresponding to the uplink frequency band 1 and the random access configuration corresponding to the uplink frequency band 2.
  • the process of the UE initiating the random access in step 703 may be performed by referring to the existing contention-based 4-step random access or the existing non-contention-based 3-step random access or the step shown in FIG. 4a, and is not repeated here. Narration.
  • the UE can perform random access simultaneously on the two uplink frequency bands when there are two uplinks between the UE and the gNB, which speeds up random access.
  • the method may further include: the UE records the number of random access failures, and the message sending and receiving conditions during the random access failure, and reports the number of random access failures and the random access failure message to the gNB. Send and receive status.
  • the random access failure refers to: the number of random access initiated by the UE according to the same random access configuration is greater than or equal to the preset number of times, or the duration of the random access initiated by the UE according to the random access configuration is greater than or It is equal to the preset duration, that is, the random access timeout.
  • the preset number of times and the preset duration may be set as needed, which is not limited in this embodiment of the present application.
  • the UE may report the number of random access failures and the message sending and receiving conditions during the random access failure in the minimization of drive tests (MDT).
  • the UE may also initiate random access according to the random access configuration corresponding to the low frequency band, so as to improve Random access quality.
  • the process may be performed in combination with the process in which the UE reports the number of random access failures to the gNB and the process of sending and receiving the message in the process of the random access failure, and may be performed separately. limited.
  • the UE when the UE initiates a random access failure according to the random access configuration corresponding to the uplink frequency band 2, the UE may initiate random access according to the random access configuration corresponding to the uplink frequency band 1.
  • the UE may initiate random access according to the third random access configuration, and the third random access configuration corresponds to the third uplink.
  • the third uplink frequency band is any uplink frequency band in the first uplink frequency band group.
  • the UE may perform uplink according to any uplink frequency band according to at least two uplink frequency bands.
  • the transmission is transmitted in the uplink transmission process according to some instructions or commands sent by the gNB, thereby improving the efficiency of the uplink transmission.
  • the method may further include one or more steps in the technical solution shown in FIG. 8, namely, FIG. 4 or FIG. 5 or the technical solution of the technical solution shown in FIG. 6 or FIG. 7 combined with one or more steps in the technical solution shown in FIG. 8 is also within the protection scope of the embodiment of the present invention.
  • FIG. 8 is a flowchart of still another method for random access according to an embodiment of the present disclosure.
  • the UE shown in FIG. 3 and the gNB shown in FIG. 2 are mutually performed.
  • the method may include the following steps:
  • Step 801 The UE determines to perform uplink transmission according to at least one uplink frequency band of the at least two uplink frequency bands.
  • the UE may perform the uplink frequency band according to any of the uplink frequency band 1, the uplink frequency band 2, and the uplink frequency band 3.
  • the UE may determine, according to the uplink frequency band, uplink transmission, for example, in the scenario shown in FIG. 6, the UE is only based on the uplink frequency band 1 or the uplink frequency band 2
  • the random access configuration initiates random access.
  • the UE may determine to perform uplink transmission according to the uplink frequency band in which the random access is initiated; or
  • the UE may determine the first identifier from the at least two identifiers according to the scrambling information obtained from the gNB, and determine the uplink frequency band corresponding to the first identifier to perform uplink transmission.
  • the scrambling information is scrambled by using any one of the at least two identifiers, and the UE may obtain the scrambling message from the cyclic redundancy check of the downlink control information used to indicate the time-frequency resource location of the msg4.
  • At least two identifiers are different, and each of the at least two identifiers is: an identifier obtained by the UE from the gNB when the UE initiates random access according to the random access configuration corresponding to the uplink frequency band of the identifier, for example, the UE may be in Figure 4a.
  • at least two identifiers are obtained from msg2.
  • the UE obtains the identifier corresponding to the uplink frequency band 1 and the identifier corresponding to the uplink frequency band 2.
  • the identifier 3 corresponding to the uplink frequency band 3 after the UE receives the scrambling information, the UE uses the identifier 1, the identifier 2, and the identifier 3 to descramble the scrambling information, because the scrambling information is identified by one of the three identifiers. The scrambling is performed. Therefore, only one identifier can be descrambled successfully. When the descrambling of the identifier 1 is successful, the UE can perform uplink transmission on the uplink frequency band 1.
  • the method may further include:
  • Step 802 The UE cancels the identifiers other than the first identifier of the at least two identifiers that are acquired by the UE, or the UE clears the UE to initiate random access according to the random access configuration corresponding to the uplink frequency bands except the fourth uplink frequency band.
  • the HARQ cache of the HARQ process used by msg3 is transmitted.
  • the first identifier is an identifier corresponding to an uplink frequency band used by the UE for uplink transmission
  • the fourth uplink frequency band is an uplink frequency band used by the UE for uplink transmission.
  • the UE initiates random access according to the random access configuration of the uplink frequency band 1, the uplink frequency band 2, and the uplink frequency band 3, and after the random access, the UE determines to perform uplink transmission on the uplink frequency band 1, and at this time, the UE can cancel the The identifier corresponding to the uplink frequency band 2, the identifier 3 corresponding to the uplink frequency band 3, or the hybrid automatic retransmission buffer used by the UE to initiate random access according to the random access configuration corresponding to the uplink frequency band 2, and the UE according to the uplink
  • the random access configuration corresponding to the frequency band 3 initiates a hybrid automatic retransmission buffer used in random access.
  • the method may further include:
  • Step 803 The UE performs uplink transmission according to the amount of time corresponding to each uplink frequency band in the at least one uplink frequency band.
  • the amount of time may be TA, and may be configured by the gNB to the UE.
  • the TA corresponding to each uplink frequency band is calculated according to the downlink subframe boundary.
  • T_offset is the difference between the time when the gNB sends the downlink subframe and the time when the gNB receives the uplink subframe
  • the TA_PUL is any uplink frequency band other than the uplink frequency band corresponding to the TA_SUL. Upward time advance.
  • the receiving point of any uplink frequency band other than the uplink frequency band corresponding to the TA_SUL of the gNB is co-located (for example, the same or similar) to the transmitting point of the downlink frequency band.
  • the UE may adopt the following manner. Manage and maintain the amount of time in each upstream band.
  • the UE manages and maintains the amount of time of each uplink frequency band by:
  • the UE receives two time groups of at least one cell from the gNB, and stores at least one time group of at least one cell, where at least one time group is in one-to-one correspondence with at least one uplink frequency band, each time group corresponding to one time amount, one timer, and At least one uplink frequency band, at least one uplink frequency band belongs to at least one cell, at least one cell is a cell managed by the gNB, and the time quantity is used for uplink synchronization of the UE, and the timer is used to limit the effective time of the time amount;
  • the UE stops uploading and transmitting on the uplink frequency band corresponding to the time group, where the uplink transmission may refer to: The channel, the uplink transmission of the physical uplink control channel, and the uplink transmission of the SRS sounding reference signal. Does not include uplink transmission of the physical random access channel.
  • the specific embodiment is: whether to release the uplink corresponding PUCCH/SRS/uplink semi-persistent scheduling SPS resource;
  • the UE clears the hybrid automatic repeat request buffer corresponding to the cell;
  • the UE clears the hybrid automatic repeat request buffer corresponding to the other cells in the at least one cell except the primary cell, and determines all time groups of other cells. The corresponding timer expires;
  • the UE After the UE receives the time quantity adjustment command from the gNB, the UE starts or restarts the timer corresponding to the first time group of the first cell according to the time quantity adjustment command, where the time quantity adjustment command is used to instruct the UE to adjust the first time of the first cell.
  • the timer corresponding to the time group After the UE receives the time quantity adjustment command from the gNB, the UE starts or restarts the timer corresponding to the first time group of the first cell according to the time quantity adjustment command, where the time quantity adjustment command is used to instruct the UE to adjust the first time of the first cell.
  • the timer corresponding to the time group After the UE receives the time quantity adjustment command from the gNB, the UE starts or restarts the timer corresponding to the first time group of the first cell according to the time quantity adjustment command, where the time quantity adjustment command is used to instruct the UE to adjust the first time of the first cell.
  • the timer corresponding to the time group After the UE receives the time quantity adjustment command
  • time quantity adjustment command may be transmitted by a medium access control control element (MAC CE) or a random access response message.
  • MAC CE medium access control control element
  • the foregoing timer may be a timing advance timer (TAT), and the duration of the timer may be configured by the gNB to the UE according to requirements.
  • TAT timing advance timer
  • the UE may also use the resource corresponding to the uplink frequency band to perform uplink transmission according to the indication of the gNB, and report the PHR.
  • the method may further include:
  • Step 804 The UE receives the first indication from the gNB, and performs uplink transmission according to the first indication.
  • the first indication includes: the first uplink frequency band index and the transmission resource corresponding to the uplink frequency band identified by the first uplink frequency band index, and the uplink frequency band of the first uplink frequency band index identifier may be used for uplink transmission in at least two uplink frequency bands. Any upstream band.
  • Step 805 When the UE is in the trigger state of the PHR, the UE generates a PHR report according to the first indication, and sends a PHR report to the gNB when performing uplink transmission according to the first indication.
  • the PHR report includes: an uplink frequency band index and a power headroom of an uplink frequency band identified by the uplink frequency band index.
  • step 805 is an optional step, that is, when step 804 is performed, step 805 may be performed to report the PHR report to the gNB, or step 805 may not be performed.
  • the UE may further perform uplink transmission according to other indications of the gNB, and determine which transmission block to use to transmit uplink control information, as shown in FIG. 8. Show, can also include:
  • Step 806 The UE receives at least two second indications from the gNB.
  • Each of the at least two second indications may include: a second uplink frequency band index and a transport block corresponding to the uplink frequency band identified by the second uplink frequency band index.
  • Step 807 The UE performs uplink transmission according to the at least two second indications, and transmits the UCI on one of the transport blocks included in the at least two second indications according to a preset rule or a configuration of the gNB.
  • the UE may further perform uplink power control according to the power adjustment command of the gNB. As shown in FIG. 8, the method may further include:
  • Step 808 The UE receives a power adjustment command from the gNB.
  • the power adjustment command includes a fourth uplink frequency band index and a power control parameter, and the power adjustment command is used to request the gNB to perform power adjustment on the uplink transmission of the uplink frequency band identified by the uplink frequency band index.
  • Step 809 The UE calculates the uplink power of the uplink frequency band identified by the fourth uplink frequency band index based on the power adjustment command, and performs uplink transmission based on the calculated uplink power.
  • the UE may activate any uplink frequency band according to the activation command of the gNB, or activate any uplink frequency band according to the deactivation command of the gNB, as shown in FIG. Can include:
  • Step 810 The UE receives an activation command including an uplink frequency band index from the gNB, and the UE activates an uplink frequency band of the uplink frequency band index according to the activation command.
  • Step 811 The UE receives a deactivation command including an uplink frequency band index from the gNB, and the UE deactivates the uplink frequency band of the uplink frequency band index according to the deactivation command.
  • step 810 and step 811 may be performed sequentially in the sequence shown in FIG. 8 (it is noted that, when executed sequentially, the activated and deactivated uplink frequency bands may not be the same uplink frequency band), or one step may be performed.
  • the specific implementation of the method depends on the command received by the UE from the gNB, which is not limited by the embodiment of the present invention.
  • the UE may also receive the handover command sent by the gNB to access other gNBs after being moved to the coverage area of the other gNB, as shown in FIG.
  • Step 812 The UE receives a handover command from the gNB, where the handover command is used to indicate an uplink frequency band when the UE accesses other gNBs, and a random access resource corresponding to the uplink frequency band.
  • Step 813 The UE initiates random access to other gNBs according to the handover command.
  • the handover command may be a radio resource management RRC connection reconfiguration message.
  • the random access procedure may refer to existing contention based 4-step random access or existing non-contention based 3-step random access or random access as shown in Figure 4a.
  • the UE may perform uplink transmission according to some indications or commands sent by the gNB, and improve the efficiency of the uplink transmission, when the uplink transmission is performed according to the at least one uplink frequency band.
  • each network element such as the UE and the gNB, in order to implement the above functions, includes corresponding hardware structures and/or software modules for performing the respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the algorithmic steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module into the UE according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 9 is a schematic diagram showing a possible composition of the UE involved in the foregoing embodiment.
  • the UE may include: a receiving unit 91, and a random connection.
  • the receiving unit 91 is configured to support the UE to perform step 402, step 4032, step 4033, step 4035, step 502, step 602, step 702, step 804, step 806, step 808, and step 812 in the foregoing method embodiment.
  • the random access unit 92 is configured to support the UE to perform step 403, step 503, step 604, step 703, and step 813 in the foregoing method embodiments.
  • the sending unit 94 is configured to support the UE to perform step 4031, step 4034, and step 805 in the foregoing method embodiment.
  • the determining unit 95 is configured to support the UE to perform step 4036 and step 801 in the foregoing method embodiment.
  • the transmitting unit 96 is configured to support the UE to perform step 803, step 804, step 807, and step 809 in the foregoing method embodiment.
  • the eliminating unit 97 is configured to support the UE to perform step 802 in the foregoing method embodiment.
  • Time management unit 98 A function for supporting the UE to perform TA management and maintenance in the foregoing method embodiments.
  • the recording unit 93 is configured to support the UE to perform the function of recording random access failure in the foregoing method embodiment.
  • the UE provided by the embodiment of the present invention is configured to perform the foregoing random access method, so that the same effect as the random access method described above can be achieved.
  • FIG. 10 shows another possible composition diagram of the UE involved in the above embodiment.
  • the UE may include a processing module 101 and a communication module 102.
  • the processing module 101 is configured to perform control management on the actions of the UE.
  • the communication module 102 is configured to support communication between the UE and other network entities, such as with the functional modules or network entities illustrated in FIG.
  • the UE may further include a storage module 103 for storing program code and data of the server.
  • the processing module 101 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 102 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 103 can be a memory.
  • the server involved in the embodiment of the present invention may be the UE shown in FIG.
  • the embodiment of the present invention further provides a device, which may be in the form of a product of a chip, as shown in FIG. 11, the device may include: a processor 110, a memory 111;
  • the memory 111 is coupled to the processor 110 for storing program instructions and data necessary for the device, and the processor 110 is configured to execute the program instructions stored in the memory 111, so that the device performs the operations in the above method corresponding to the operations performed by the UE.
  • FIG. 12 is a schematic diagram showing a possible composition of the gNB involved in the foregoing embodiment.
  • the gNB may include: a configuration unit 120, and a sending unit. 121.
  • the configuration unit 121 is configured to support the gNB to perform step 401 in FIG. 4, step 501 in FIG. 5, step 601 in FIG. 6, and step 701 in FIG.
  • the sending unit 121 is configured to support the gNB to perform the step of sending a message, data, or command to the UE by the gNB in FIG. 4a and FIG. 8.
  • the gNB provided by the embodiment of the present invention is used to perform the foregoing random access method, so that the same effect as the random access method described above can be achieved.
  • FIG. 13 shows another possible composition diagram of the gNB involved in the above embodiment.
  • the gNB may include a processing module 130 and a communication module 131.
  • the processing module 130 is configured to control and manage the actions of the gNB.
  • the communication module 131 is used to support communication of the gNB with other network entities, such as communication with the functional modules or network entities shown in FIG.
  • the gNB may also include a storage module 132 for storing program code and data of the server.
  • the processing module 130 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 131 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 132 can be a memory.
  • the server involved in the embodiment of the present invention may be the gNB shown in FIG. 2 .
  • the embodiment of the present invention further provides a device, which may be in the form of a product of a chip, as shown in FIG. 14, the device may include: a processor 140, a memory 141;
  • the memory 141 is configured to be coupled to the processor 140 for storing program instructions and data necessary for the device, and the processor 140 is configured to execute the program instructions stored in the memory 141, so that the device performs the operations in the above method corresponding to the operations performed by the gNB.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present application may be embodied in the form of a software product in the form of a software product in essence or in the form of a contribution to the prior art, and the software product is stored in a storage medium.
  • a number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了随机接入方法、设备及系统,涉及通信技术领域,解决了5G系统中存在两个或多个上行频段的情况下,如何实现网络接入的问题。具体方案为:终端从接入网设备接收至少两个上行频段对应的随机接入配置,根据至少两个上行频段对应的随机接入配置中的至少一个随机接入配置发起随机接入。本发明实施例用于随机接入的过程。

Description

随机接入方法、设备及系统
本申请要求于2017年06月16日提交中国专利局、申请号为201710459722.7、申请名称为“随机接入方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及随机接入方法、设备及系统。
背景技术
第五代移动通信(5th-generation,5G)系统采用最为先进的移动通信技术,它能够为移动用户提供更高的带宽和更安全的通信。
移动通信技术发展至今,当前的频谱资源已经难以满足用户对容量需求的增长,在频段资源匮乏的情况下,具有更大的可用带宽的高频频段成为5G系统的候选频段;同时,为了满足大部分用户(尤其是边缘用户)信号传输覆盖性以及高通信质量的需求,在5G系统中,又希望采用低频频段进行上行传输。但是,现有技术中,通常采用固定的低频频段来进行上行传输,传输速率低。
发明内容
本申请实施例提供一种随机接入方法、设备及系统。
本申请实施例的第一方面,提供一种随机接入方法,包括:
终端从接入网设备接收至少两个上行频段对应的随机接入配置,根据至少两个上行频段对应的随机接入配置中的至少一个随机接入配置发起随机接入;
其中,至少两个上行频段中各个上行频段的中心频点均不同。
在本申请实施例提供的随机接入方法中,终端可以根据不同的上行频段发起随机接入,并进行上行传输,根据不同的传输场景确定合适的上行频段,提升了传输速率,满足用户的大容量需求。
其中,上述至少两个上行频段可以属于接入网设备管理的同一小区,每个上行频段对应的随机接入配置可以包括下述至少一种参数:
根序列索引、随机接入时频资源、功率攀升步长、前导序列的最大传输次数、随机接入响应窗口的大小、竞争解决信息定时器的时长。
结合第一方面,在一种可能的实现方式中,终端根据至少两个上行频段对应的随机接入配置中的至少一个随机接入配置发起随机接入可以包括:
终端根据下行路损的情况,确定根据至少两个上行频段对应的随机接入配置中的一个随机接入配置发起随机接入。
具体的,终端根据下行路损的情况,确定根据至少两个上行频段对应的随机接入配置中的一个随机接入配置发起随机接入可以包括:
终端获取下行路损;
当下行路损大于路损阈值时,表示下行路损比较大,终端可以根据较低频段的随 机接入配置发起随机接入,如:可以根据第一随机接入配置发起随机接入,第一随机接入配置与第一上行频段对应,第一上行频段为第一上行频段组中的任一上行频段,第一上行频段组包含至少一个上行频段,第一上行频段组中每个上行频段的中心频点小于第一预设阈值;
或者,当下行路损小于或等于路损阈值时,表示下行路损比较小,终端可以根据较高频段的随机接入配置发起随机接入,如:可以根据第二随机接入配置发起随机接入,第二随机接入配置与第二上行频段对应,第二上行频段为第二上行频段组中的任一上行频段,第二上行频段组包含至少一个上行频段,第二上行频段组中每个上行频段的中心频点大于第二预设阈值,第二预设阈值大于第一预设阈值。
其中,终端可以参照现有技术获取下行路损,如:可以通过计算参考信号接收功率来获取下行路损,本申请实施例对此不进行限定。
路损阈值、第一预设阈值、第二预设阈值可以根据需要进行设置,本申请实施例对此不进行限定。可选的,当上行频段的中心频点小于第一预设阈值,则表示该上行频段为低频频段,当上行频段的中心频点大于第二预设阈值,则表示该上行频段为高频频段。
如此,终端可以结合下行路损,在下行路损较大的情况下采用较低频段对应的随机接入配置发起随机接入,在下行路损较小的情况下采用较高频段对应的随机接入配置发起随机接入,以此提高随机接入的质量,以及后续上行传输的质量。
结合上述可能的实现方式,在另一种可能的实现方式中,当终端根据任一上行频段对应的随机接入配置发起随机接入成功后,所述方法还可以包括:
终端在该上行频段上进行上行传输。
结合上述可能的实现方式,在另一种可能的实现方式中,当终端根据任一上行频段对应的随机接入配置发起随机接入失败后,所述方法还可以包括:
终端记录随机接入失败的次数、以及随机接入失败过程中消息发送和接收情况,
终端向接入网设备发送随机接入失败的次数、以及随机接入失败过程中消息发送和接收情况。
其中,随机接入失败可以指:在连续时间内,根据同一随机接入配置发起的随机接入的次数大于或等于预设次数,或者,终端根据随机接入配置发起的随机接入的时长大于或等于预设时长,即随机接入超时。预设次数、预设时长可以根据需要进行设置,本申请实施例对此不进行限定,当随机接入重新发起的次数大于或等于预设次数,则表示本次随机接入重复发起的次数达到最大门限值,判定为随机接入失败,当随机接入的时长大于或等于预设时长,则表示本次随机接入的时间比较长,处于超时状态,判定为随机接入失败。
可选的,终端可以在最小化路测中向接入网设备发送随机接入失败的次数、以及随机接入失败过程中消息发送和接收情况。
如此,对于任一随机接入失败过程,终端可以向接入网设备上报随机接入失败的相关情况,以便接入网设备根据终端上报的随机接入失败的次数、以及所述随机接入失败过程中消息发送和接收情况后,进行网规网优,提供网络的整体性能。
结合上述可能的实现方式,在另一种可能的实现方式中,当终端根据第二随机接 入配置发起随机接入失败后,所述方法还可以包括:
终端根据第三随机接入配置发起随机接入,第三随机接入配置对应第三上行频段,第三上行频段为第一上行频段组中的任一上行频段。
即终端在根据高频频段对应的随机接入配置发起随机接入失败后,终端可以采用任一低频频段对应的随机接入配置发起随机接入,以提高随机接入质量。
结合第一方面,在一种可能的实现方式中,
终端可以根据至少两个上行频段对应的随机接入配置中的至少两个随机接入配置发起随机接入,实现在两个上行频段上同时发起随机接入,以加快终端的随机接入。
结合上述可能的实现方式,在另一种可能的实现方式中,当终端根据至少两个随机接入发起随机接入均成功后,所述方法还可以包括:
终端根据至少两个上行频段中的一个上行频段或多个上行频段或全部上行频段进行上行传输。
如此,终端可以根据需要根据同一或者不同的上行频段进行上行传输,提高了上行传输的灵活性。
结合上述可能的实现方式,在另一种可能的实现方式中,当终端根据至少两个随机接入配置发起的随机接入成功后,终端可以按照下述方式(1)或方式(2)确定根据一个上行频段进行上行传输:
方式(1):终端根据从接入网设备获取的加扰信息,从至少两个标识中确定出第一标识,加扰信息采用至少两个标识中的任一标识进行加扰,至少两个标识中每个标识是不同的,至少两个标识与至少两个上行频段一一对应,至少两个标识中每个标识为:终端根据与标识对应的随机接入配置发起随机接入时,从接入网设备获取的标识;终端根据第一标识对应的上行频段进行上行传输。
可选的,终端根据从接入网设备获取的加扰信息,从至少两个标识中确定出第一标识可以为:终端采用至少两个标识中的每个标识去解扰加扰信息,将解扰成功的标识确定为第一标识。其中,本申请实施例中的加扰和解扰过程可以参照现有技术中的加扰和解扰过程,在此不再详述。
方式(2):终端自身确定采用哪个上行频段进行上行传输,并向接入网设备发送包含上行频段索引的指示,指示终端上行传输时使用的上行频段。
例如,当终端根据上行频段1、上行频段2、上行频段3的随机接入配置发起随机接入均成功后,终端可以在上行频段1上进行上行传输前,将上行频段1上报给接入网设备,以便接入网设备获知终端采用哪个上行频段传输,提高接入网设备接收的准确性。
结合上述可能的实现方式,在另一种可能的实现方式中,为了降低终端的存储负担,当终端确定采用哪个上行频段进行上行传输后,终端可以采用下述方式清空终端内存储的与其他不用作上行传输的上行频段相关的一些信息:
终端消除(clear)终端获取到的除第二标识之外的其他标识,第二标识为终端上行传输采用的上行频段对应的标识;
或者,终端清空(fiush)终端根据除第四上行频段之外的其他上行频段对应的随机接入配置发起随机接入时使用的混合自动重传请求(hybrid automatic repeat quest, HARQ)进程的HRAQ缓存,第四上行频段为终端进行上行传输采用的上行频段。
结合上述可能的实现方式,在另一种可能的实现方式中,在终端根据多个上行频段进行上行传输时,还可以维护每个上行频段对应的时间提前量,以实现上行同步,其具体实现方法如下所示:
终端存储有:至少一个小区的至少一个时间组,每个时间组对应一个时间量、一个定时器、以及至少一个上行频段,至少一个小区为接入网设备管理的小区,时间量用于终端进行上行同步,定时器用于限定时间量的有效时间;
对于至少一个小区中的任一小区,当小区的任一个时间组对应的定时器超时,则表示该时间组对应的时间量失效,终端不能根据该时间量进行上行传输实现上行同步,因此,终端停止在该时间组对应的上行频段上进行上传传输;或者,
对于至少一个小区中的任一小区,当小区的所有时间组对应的定时器超时,表示该小区的所有时间组对应的时间量均不可用,需要防止终端根据该小区的时间组对应的时间量进行上行传输时对其他上行传输的干扰,因此,终端清空小区对应的混合自动重传请求缓存;或者,
当至少一个小区中主小区的所有时间组对应的定时器超时,终端清空至少一个小区中除主小区之外的其他小区对应的混合自动重传请求缓存,并确定其他小区的所有时间组对应的定时器超时;当终端从接入网设备接收时间量调整命令后,终端才根据时间量调整命令启动第一小区的第一时间组对应的定时器;时间量调整命令用于指示终端调整第一小区的第一时间组对应的定时器。
其中,上述时间量可以为时间提前量(timing advance,TA),可以由接入网设备配置给终端;定时器可以为时间提前量定时器(timing advance timer,TAT),该定时器可以根据需要由接入网设备配置给终端进行设置,本申请实施例对比不进行限定。
需要说明的是,在本发明实施例中,服务小区为可用于为连接态的终端提供无线资源的小区;如果没有配置载波聚合(carrier aggregation,CA)或双连接(dual connectivity,DC),连接态的终端只有一个服务小区;如果连接态的终端配置了CA和/或DC,服务小区为至少一个小区,包括主小区(primary cell,PCell)和所有的辅小区(secondary cell,SCell)。PCell为工作在主频率,终端可以执行初始连接建立过程或发起连接重建立过程,或在切换过程被指示为主小区的小区。SCell为工作在辅频率的小区,为连接态终端提供额外的无线资源。激活的服务小区为可用于数据传输的服务小区。主辅小区(primary secondary cell,PSCell)为当辅基站的辅小区发生改变,可以发起随机接入的小区。物理上行链路控制信道(physical uplink control cHannel,PUCCH)SCell为配置了PUCCH的SCell。
如此,终端可以根据上述对每个上行频段对应的时间量的维护,实现不同上行频段间的上行同步。
结合上述可能的实现方式,在另一种可能的实现方式中,在终端根据多个上行频段进行上行传输时,还可以根据接入网设备的指示采用与上行频段对应的资源进行上行传输,其具体实现方式可以包括:
终端从接入网设备接收包含:第一上行频段索引以及第一上行频段索引标识的上行频段对应的传输资源的第一指示,根据第一指示进行上行传输。
其中,第一上行频段可以为至少两个上行频段中的任一上行频段。
如此,终端可以在接入网设备指示的传输资源上实现上行传输。
结合上述可能的实现方式,在另一种可能的实现方式中,当终端在接入网设备指示的传输资源上实现上行传输时,还可以向接入网设备上报功率余量报告(power headroom report,PHR),以便接入网设备选择合理的调度策略,具体的,其实现方式可以包括:
当终端处于PHR的触发状态时,终端根据第一指示生成PHR报告,并在根据第一指示进行上行传输时向接入网设备发送PHR报告。
其中,PHR报告包含:上行频段索引、以及上行频段索引标识的上行频段的功率余量。可选的,终端在满足触发条件时进入功率余量报告的触发状态,其触发条件可以包括下述任意一个条件:
第一定时器超时,且终端的服务小区的至少一个参考服务下行波束的路损变化值大于第一门限值,第一定时器用于防止终端持续触发PHR;
第一定时器超时,且终端的服务小区的至少一个服务上行波束发生功率回退,且功率回退的回退值超过第二门限值,其中,第一定时器用于防止终端持续触发PHR;
第二定时器超时,第二定时器用于周期性触发PHR,第二定时器与终端的服务小区的波束对应配置;
终端的服务小区的至少一个服务上行波束被激活。
其中,在本申请实施例中,第一门限值、第二门限值可以根据需要由接入网设备进行设置或者为缺省值;第一定时器的时长、第二定时器的时长可以由接入网设备配置或者为缺省值。
需要解释的是,在本申请实施例中,终端的服务小区的至少一个服务上行波束被激活可以理解为终端的服务小区的至少一个服务上行波束被配置,还可以理解为增加了终端的服务小区的至少一个服务上行波束。
如此,终端可以在上行频段上进行上行传输的同时,向接入网设备上报该上行频段的功率余量,以便接入网设备根据该功率余量对该上行频段执行合理的调度策略。
结合上述可能的实现方式,在另一种可能的实现方式中,在终端根据多个上行频段进行上行传输时,终端还可以根据接入网设备的其他指示采用与上行频段对应的传输块进行上行传输、以及确定采用哪个传输块捎带传输上行控制信息,具体的,其实现方式可以包括:
终端从接入网设备接收至少两个第二指示;至少两个第二指示中每个第二指示可以包含:第二上行频段索引以及第二上行频段索引标识的上行频段对应的传输块;终端根据至少两个第二指示进行上行传输,以及根据预设规则或者接入网设备的配置在至少两个指示包含的传输块中的一个传输块上传输上行控制信息(uplink control information,UCI)。
其中,传输块可以为媒体接入控制(medium access control,MAC)包,如:可以为MAC协议数据单元(protocol data unit,PDU);UCI可以包括:调度请求(scheduling request,SR)、信道状态信息、HARQ反馈、波束(beam)报告的至少一种,调度请求用于向接入网设备请求上行传输资源,信道状态信息用于通知接入网设备信道状态, HARQ反馈用于通知接入网设备下行数据的解码情况(如:解码成功或失败)。
预设规则用于确定出一个传输UCI的传输块,可以由接入网设备预先配置给终端,如:该预设规则可以为:比较至少两个上行频段的索引大小,采用索引最大或最小的上行频段对应的传输块传输UCI。
如此,终端可以在两个上行频段发传输块的同时,采用一传输块传输UCI。
结合上述可能的实现方式,在另一种可能的实现方式中,所述方法还可以包括:
终端从接入网设备接收包含上行频段索引、以及功率控制参数的功率调整命令,功率调整请求消息用于请求接入网设备对上行频段索引标识的上行频段进行功率调整;
终端基于功率调整命令,计算上行频段索引标识的上行频段的上行功率,并基于计算出的上行功率进行上行传输。
可选的,终端可以根据功率控制参数、终端测量的路损以及现有功率控制公式计算上行功率,具体的,其计算过程可以参考现有技术,在此不再详述。
如此,终端可以在接入网设备的命令下针对某个上行频段的功率进行调整。
结合上述可能的实现方式,在另一种可能的实现方式中,当终端根据多个上行频段进行上行传输时,所述方法还可以包括:
终端从接入网设备接收激活命令,激活命令包含第一上行频段索引,终端激活第一上行频段索引标识的上行频段;
或者,终端从接入网设备接收去激活命令,去激活命令包含第二上行频段索引,终端去激活第二上行频段索引标识的上行频段。
如此,终端可以根据接入网设备发送的激活和去激活命令,确定哪个上行频段被激活或去激活,哪个上行频段没有被激活或去激活。
结合上述可能的实现方式,在另一种可能的实现方式中,当终端发生移动,从一个接入网设备的覆盖区域移动到另一个接入网设备的覆盖区域时,所述方法还可以包括:
终端从接入网设备接收切换命令,切换命令用于指示终端随机接入其他接入网设备时的上行频段、以及与该上行频段对应的随机接入资源,终端根据切换命令向其他接入网设备发起随机接入。
如此,终端可以根据接入网络设备发出的切换命令,很好的实现移动过程中的随机接入。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,本申请实施例所述的随机接入具体可以包括:
终端在终端发出前导序列的一时间段后,从接入网设备接收随机接入响应;
其中,时间段取决于接入网设备的处理速度,由接入网设备配置,或者根据终端的服务小区支持的参考空口格式进行设置,时间段可以为传输时间间隔(transmission time interval,TTI)长度的整数倍,如:对于TTI长度0.1ms,该时间段可能为25*0.1ms,对于TTI长度为1ms,该时间段可能为3*1ms。
参考空口格式为子载波间隔和循环前缀长度的参数集合,在本申请实施例中,参考空口格式可以命名为numerology。
如此,终端可以根据接入网设备的处理速度,在一时间段后再接收接入网设备发 送的随机接入响应,提高了随机接入响应的接收准确性。
第二方面,本发明实施例提供了一种接入网设备,包括:
接入网设备为终端配置至少两个上行频段对应的随机接入配置,至少两个上行频段中各个上行频段的中心频点均不同。
如此,接入网设备可以为终端配置至少两个上行频段对应的随机接入配置,以便终端根据至少两个上行频段对应的随机接入配置发起随机接入。
结合第二方面,在另一种可能的实现方式中,所述方法还可以包括:
接入网设备向终端发送加扰信息,加扰信息采用至少两个标识中的任一标识进行加扰,至少两个标识与至少两个上行频段一一对应,至少两个标识中每个标识为:终端根据与标识对应的随机接入配置发起随机接入时,从接入网设备获取的标识。
如此,接入网设备可以为终端发送加扰信息,以便终端根据该加扰信息确定上行传输的上行频段。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,所述方法还可以包括:
接入网设备向终端发送时间量调整命令;时间量调整命令用于指示终端调整第一小区的第一时间组对应的定时器。
如此,接入网设备可以为终端发送时间量调整命令,以便终端根据该时间量调整命令确定上行传输的时间量,实现上行同步。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,所述方法还包括:
接入网设备向终端发送第一指示;第一指示包含:第一上行频段索引以及第一上行频段索引标识的上行频段对应的传输资源;第一指示用于指示终端根据第一指示进行上行传输。
如此,接入网设备可以为终端发送指示传输资源的指示,以便终端根据该指示确定上行传输的传输资源。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,方法还包括:
接入网设备向终端发送至少两个第二指示;至少两个第二指示中每个第二指示包含:第二上行频段索引以及第二上行频段索引标识的上行频段对应的传输块。
如此,接入网设备可以为终端发送指示传输块的指示,以便终端根据该指示确定上行传输的传输块、以及传输UCI的传输块。
又一方面,本申请实施例提供了一种终端,该终端可以包括:
接收单元,从接入网设备接收至少两个上行频段对应的随机接入配置,至少两个上行频段中各个上行频段的中心频点均不同;
随机接入单元,用于根据接收单元接收到的至少两个上行频段对应的随机接入配置中的至少一个随机接入配置发起随机接入。
其中,终端的具体实现方式可以参考第一方面或第一方面的可能的实现方式提供的随机接入方法中终端的行为功能,在此不再重复赘述。因此,该提供的终端可以达到与第一方面相同的有益效果。
又一方面,本申请实施例提供了一种终端,该终端可以实现上述方法实施例中终 端元所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该终端的结构中包括处理器和收发器,该处理器被配置为支持该终端执行上述方法中相应的功能。该收发器用于支持该终端与其他网元之间的通信。该终端还可以包括存储器、显示器,该存储器用于与处理器耦合,其保存该终端必要的程序指令和数据,该显示器可以用于终端与用户间进行交互。
又一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,该计算机软件指令包含用于执行上述方面所设计的程序。
又一方面,本申请实施例提供了一种计算机程序产品,该程序产品储存有上述终端所用的计算机软件指令,该计算机软件指令包含用于执行上述方面所设计的程序。
又一方面,本申请实施例提供了一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中与终端相应的功能。
再一方面,本申请实施例提供了一种接入网设备,该接入网设备可以包括:
配置单元,用于接入网设备为终端配置至少两个上行频段对应的随机接入配置,所述至少两个上行频段中各个上行频段的中心频点均不同。
其中,接入网设备的具体实现方式可以参考第二方面或第二方面的可能的实现方式提供的随机接入方法中接入网设备的行为功能,在此不再重复赘述。因此,该方面提供的接入网设备可以达到与第二方面相同的有益效果。
再一方面,本申请实施例提供了一种接入网设备,该接入网设备可以实现上述方法实施例中接入网设备元所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该接入网设备的结构中包括处理器和收发器,该处理器被配置为支持该接入网设备执行上述方法中相应的功能。该收发器用于支持该接入网设备与其他网元之间的通信。该接入网设备还可以包括存储器、显示器,该存储器用于与处理器耦合,其保存该接入网设备必要的程序指令和数据,该显示器可以用于接入网设备与用户间进行交互。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述接入网设备所用的计算机软件指令,该计算机软件指令包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种计算机程序产品,该程序产品储存有上述接入网设备所用的计算机软件指令,该计算机软件指令包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中与接入网设备相应的功能。
再一方面,本发明实施例提供了一种随机接入系统,该系统包括上述任一方面所述的终端和任一方面所述的接入网设备。
附图说明
图1为本申请实施例提供的一种系统架构的简化示意图;
图1a为本申请实施例提供的一种用户面协议栈示意图;
图1b为本申请实施例提供的又一种用户面协议栈示意图;
图2为本申请实施例提供的一种gNB的组成示意图;
图3为本申请实施例提供的一种UE的组成示意图;
图4为本申请实施例提供的一种随机接入方法流程图;
图4a为本申请实施例提供的一种随机接入过程示意图;
图5为本申请实施例提供的又一种随机接入方法流程图;
图6为本申请实施例提供的又一种随机接入方法流程图;
图7为本申请实施例提供的再一种随机接入方法流程图;
图8为本申请实施例提供的再一种随机接入方法流程图;
图9为本申请实施例提供的一种UE的组成示意图;
图10为本申请实施例提供的一种UE的组成示意图;
图11为本申请实施例提供的一种装置的组成示意图;
图12为本申请实施例提供的一种gNB的组成示意图;
图13为本申请实施例提供的一种gNB的组成示意图;
图14为本申请实施例提供的一种装置的组成示意图。
具体实施方式
下面将结合附图对本申请实施例的实施方式进行详细描述。
本发明实施例提供的随机接入方法可以应用于任意一个具有两个或两个以上上行频段的通信系统,例如:全球移动通讯(global System of Mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple Access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、长期演进(long term evolution,LTE)频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、等目前的通信系统,以及,尤其应用于未来的5G新无线(new radio,NR)系统或5G系统或基于正交频分多路复用技术(orthogonal frequency division multiplexing,OFDM)的通信系统。下面以本发明实施例提供的随机接入方法应用于图1所示的5G系统为例进行说明。
如图1所示,该5G系统可以包括:至少一个终端、以及接入网设备,终端在接入网设备的覆盖范围内,接入网设备可以覆盖和管理多个小区,且终端和接入网设备之间通过至少两个上行频段和一个下行频段进行数据传输,其中,至少两个上行频段属于同一小区,且至少两个上行频段中每个上行频段的中心频段是不同的,如:至少两个上行频段中可以包含高频频段(如:中心频点大于或等于6GHz的频段)以及低频频段(如:中心频点小于6GHz的频段)。需要说明的是,在本申请实施例中,高频频段与低频频段为相对概念,高频频段为:至少两个上行频段中中心频点相对较大的频段,低频频段为:至少两个上行频段中中心频点相对较小的频段。此外,图1仅为示 例性架构图,为了便于描述,图1仅示出了两个上行频段,可理解的是,该5G系统可以包含两个以上的上行频段,同时,除图1所示功能实体之外,该5G系统架构还可以包括其他功能实体,本申请实施例对此不进行限定。
其中,图1中的终端可以为用户设备(user equipment,UE),如:可以为蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、智能电话、无线本地环路(wireless local loop WLL)站、个人数字助理(personal digital assistant PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它设备。接入网设备可以为:GSM或CDMA中的基站(base transceiver station,BTS)、WCDMA中的基站(NodeB)、LTE中的演进型基站(evolutional Node B,eNB或eNodeB)、接入节点、下一代基站(generation nodeB,gNB)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)或某种其它接入网设备。
其中,终端和接入网设备可以采用如图1a所示的用户面协议栈传输数据,如图1a所示,终端和接入网设备分别可以包含:分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层以及物理层(Physical layer,PHY),终端和接入网设备基于这些协议栈对数据处理传输,例如:接入网设备的PDCP层对下发的数据进行报头压缩、安全性功能(如:完整性保护、加密)处理,并将处理后的数据传输给RLC层,RLC层收到数据后,对收到的数据进行分割与重组,使得分割与重组后的消息大小适应于无线接口进行的实际传输,并将分割与重组后的数据传输给MAC层,MAC层收到数据后,进行逻辑信道到传输信道的映射,并通过传输信息将数据发送至PHY层,PHY层将收到的数据通过传输信道传输给终端,终端接收到数据后,通过自身的协议栈进行处理,其中,终端协议栈的处理过程与接入网设备雷同,在此不再重复赘述。
在本申请实施例的又一可实现方案中,终端和接入网设备内还可以设置有业务数据适配层(service data adaptation protocol,SDAP)层,如图1b所示,为终端和接入网设备之间的又一种用户面协议栈示意图,其中,终端和接入网设备分别包含:SDAP层、PDCP层、RLC层、MAC层以及PHY层,终端和接入网设备基于这些协议栈对数据进行处理,其中,SDAP层用于将下发的数据流映射到无线承载上,PDCP层、RLC层、MAC层以及PHY层与图1a所示各层相同,在此不再重复赘述。需要说明的是,图1a和图1b仅为示意图,除图1a和图1b所示协议栈之外,终端和接入网设备还可以包括其他协议层,如无线资源控制(radio resource contro,RRC)层,本申请实施例对此不进行限定。
下面仅以终端为UE、接入网设备为gNB为例,对本申请实施例提供的随机接入方法进行介绍。具体的,图2为本申请实施例提供的一种gNB的组成示意图,如图2所示,gNB可以包括至少一个处理器21,存储器22、通信接口23、通信总线24。下面结合图2对gNB的各个构成部件进行具体的介绍:
处理器21是gNB的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申 请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行gNB的各种功能。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。在具体实现中,作为一种实施例,gNB可以包括多个处理器,例如图2中所示的处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器22可以独立存在,通过通信总线24与处理器21相连接。存储器22也可以和处理器21集成在一起。其中,所述存储器22用于存储执行本申请实施例提供的方案的软件程序,并由处理器21来控制执行。
通信接口23,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口23可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线24,可以是工业标准体系结构(industry standard architecture,ISA)总线、外部设备互连(peripheral component,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2所示的gNB可以执行本申请实施例提供的随机接入方法中gNB执行的操作。如:gNB中的处理器21可以为终端配置至少两个上行频段对应的随机接入配置。
图3为本申请实施例提供的一种UE的组成示意图,如图3所示,该UE可以包括至少一个处理器31、存储器32、收发器33。下面结合图3对UE的各个构成部件进行具体的介绍:
处理器31是UE的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器31是一个CPU,也可以是ASIC,或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。其中,处理器31可以通过运行或执行存储在存储器32内的软件程序,以及调用存储在存储器32内的数据,执行UE的各种功能。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU,例如 图3中所示的CPU0和CPU1。在具体实现中,作为一种实施例,UE可以包括多个处理器,例如图3中所示的处理器31和处理器34。这些处理器中的每一个可以是一个single-CPU处理器,也可以是一个multi-CPU处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器32可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器32可以是独立存在,通过通信总线34与处理器31相连接。存储器32也可以和处理器31集成在一起。其中,所述存储器32用于存储执行本申请方案的软件程序,并由处理器31来控制执行。
收发器33,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。收发器33可以包括接收单元实现接收功能,以及发送单元实现发送功能,该收发器33可以为一个射频模块。
图3中示出的设备结构并不构成对UE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,UE还可以包括电池、摄像头、蓝牙模块、全球定位系统(global positioning system,GPS)模块等,在此不再赘述。
图3所示的UE可以执行本申请实施例提供的随机接入方法中UE执行的操作,如:UE中的收发器33可以从gNB获取至少两个上行频段对应的随机接入配置,UE中的处理器31可以根据收发器33获取到的至少两个上行频段对应的随机接入配置发起随机接入。
下面结合图1所示的5G系统,以接入网设备为图2所示的gNB、UE为图3所示的UE为例,对本发明实施例提供的随机接入进行介绍。需要说明的是,虽然在下述方法流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图4为本申请实施例提供的一种随机接入方法流程图,由图3所示的UE和图2所示的gNB交互执行,如图4所示,该方法可以包括以下步骤:
步骤401:gNB为UE配置至少两个上行频段对应的随机接入配置。
其中,至少两个上行频段中每个上行频段的中心频段是不同的,且该至少两个上行频段可以属于gNB管理的同一小区。
每个上行频段的随机接入配置可以包括下至少一种参数:
根序列索引,根序列索引用于生成前导序列;
随机接入时频资源,随机接入时频资源用于发送前导序列;
功率攀升步长,功率攀升步长用于前导序列的功率控制;
前导序列的最大传输次数,前导序列的最大传输次数用于识别随机接入问题,达到最大传输次数,终端设备确定随机接入问题;
随机接入响应窗口的大小,随机接入响应窗口用于接收随机接入响应消息;
竞争解决信息定时器的时长,竞争解决信息定时器用于接收竞争解决信息。
可选的,gNB可以通过无线资源控制(radio resource control,RRC)消息或其他消息主动为UE配置至少两个上行频段对应的随机接入配置。其中,至少两个上行频段对应的随机接入配置可以携带在一条RRC消息中下发给UE,也可以分别携带在两条不同的消息中下发给UE。
步骤402:UE从gNB接收至少两个上行频段对应的随机接入配置。
例如,UE从gNB接收至少两个上行频段的索引和至少两个上行频段的索引对应的随机接入配置。
步骤403:UE基于至少两个上行频段对应的随机接入配置中的至少一个随机接入配置发起随机接入。
与现有技术相比,在图4所示的随机接入方法中,UE可以根据不同的上行频段发起随机接入,并进行上行传输,根据不同的传输场景确定合适的上行频段,提升了传输效率,满足用户的大容量需求。
其中,步骤403中,UE发起随机接入的过程可参照现有基于竞争的4步随机接入或现有基于非竞争的3步随机接入或如图4a所示过程。图4a为本发明实施例提供的一种随机接入过程,可以包括以下步骤:
步骤4031:UE向gNB发送前导序列。
其中,前导序列可以称为msg1(message1)
可选的,UE可以根据随机接入配置中的根序列索引生成前导序列,并通过随机接入时频资源向gNB发送前导序列。
可选地,所述前导序列还可以用于UE能力,所述UE能力为UE能支持上行频段的数量。
步骤4032:gNB从UE接收前导序列,向UE发送针对所述前导序列的随机接入响应(random access response,RAR)消息。
其中,该RAR消息可以称为:msg2(message2),该RAR消息可以包含:上行授权和上行TA,还可以包括小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI)及其他消息,该TC-RNTI为UE在小区内的标识,用于标识该UE。
步骤4033:UE在发送前导序列的一时间段后,通过随机接入响应窗口接收gNB发送的针对所述前导序列的RAR消息。
其中,所述时间段可以取决于gNB的处理速度,可以由gNB预先配置给UE,或协议预先规定的。具体而言,由UE根据UE的服务小区支持的参考空口格式进行设置,在本申请实施例中,该时间段可以为传输时间间隔(transmission time interval,TTI)长度的整数倍,以TTI作为定时单位,定时单位的数值由协议配置,或者使用最小的TTI作为定时单位,如:对于TTI长度0.1ms,该时间段可能为25*0.1ms,对于TTI长度为1ms,该时间段可能为3*1ms。
所述参考空口格式可以为子载波间隔和循环前缀长度的参数集合,所述参考空口格式可以命名为numerology,可以理解的是,参考空口格式可以但不限于采用numerology命名,本申请实施例对此不进行限定。所述参考空口格式中的子载波间隔 可以为以下任意一种:与传输RAR消息的资源的子载波间隔相同、与传输同步信号(如:主同步序列primary synchronization signal,PSS)或辅同步序列(secondary synchronization signal,SSS)的资源的子载波间隔相同、与传输系统信息的资源(例如,物理广播信道(physical broadcast channel,PBCH)的子载波间隔相同。所述参考空口格式可以是协议预先规定的,或,gNB预先配置的。
步骤4034:UE向gNB发送数据。
可选的,UE可以根据步骤1022中获取到的RAR消息中的上行授权,向gNB发送数据。
所述数据可以称为msg3(message3),该数据可以包含竞争解决信息,还可以包括用于指示UE的能力,所述UE能力可以为UE能支持上行频段的数量,其中,竞争解决信息可以占用msg3的前X位,指示UE的能力的信息可以占用其他msg3的其他bit位。其中,所述竞争解决信息可以为一下任意一种:随机值、终端的核心网标识S-TMSI、终端的小区标识C-RNTI。
步骤4035:gNB接收数据,向UE发送竞争解决信息。
其中,该竞争解决信息可以称为msg4(message4),该竞争解决信息可以包含竞争解决信息及其他信息,msg4中的竞争解决信息可以占用msg4的前48bit位。
步骤4036:UE从gNB接收竞争解决信息,比较竞争解决信息与数据包含的竞争解决信息,若竞争解决信息中的竞争解决信息与数据中的竞争解决信息相同,则表示竞争解决,随机接入成功;若竞争解决信息中的竞争解决信息与数据中的竞争解决信息不相同,则表示竞争没解决,随机接入失败,UE需要发起前导序列的重传。
需要说明的是,图4a所述的随机接入过程不仅可以应用于图1所示的5G系统,还可以与现有网络系统兼容,如可以应用到LTE系统中。
可选的,在图4所示步骤403中,UE可以根据传输场景确定根据一个随机接入配置或者至少两个随机接入配置发起随机接入,如:UE可以根据至少两个上行频段关联的下行频段的下行路损情况,确定根据一个随机接入配置发起随机接入,或者,为了加快随机接入接入,UE根据至少两个上行频段对应的至少两个随机接入配置发起随机接入。
其中,UE根据至少两个上行频段关联的下行频段的下行路损情况,确定根据一个随机接入配置发起随机接入可以包括:
UE获取下行路损和路损阈值,当下行路损大于路损阈值时,UE根据第一随机接入配置发起随机接入;当下行路损小于或等于路损阈值时,UE根据第二随机接入配置发起随机接入;
第一随机接入配置与第一上行频段对应,第一上行频段为第一上行频段组中的任一上行频段,第一上行频段组包含至少一个上行频段,第一上行频段组中每个上行频段的中心频点小于第一预设阈值,第二随机接入配置与第二上行频段对应,第二上行频段为第二上行频段组中的任一上行频段,第二上行频段组包含至少一个上行频段,第二上行频段组中每个上行频段的中心频点大于第二预设阈值,第二预设阈值大于第一预设阈值。
其中,下行路损可以包括以下至少一项:小区路损和波束路损。UE可以根据参考 信号接收功率(reference signal receiving power,RSRP)计算出下行路损,具体的,其计算过程可以参照现有技术,在此不再详细赘述。路损阈值可以通过广播消息获取、或者预先设定并存储在UE内,其具体取值根据需要进行设置,本申请实施例对此不进行限定。
当下行路损大于路损阈值时,表示下行链路路损比较大,需要采用较低频段(即路损比较小的上行频段)进行上行传输才能保证信号传输的可靠性,当下行路损小于或者等于路损阈值时,表示当前下行链路路损比较小,采用较高频段不会影响上行传输时的信号传输质量。
第一预设阈值、第二预设阈值可以根据需要进行设置,本申请实施例对此不进行限定。当上行频段的中心频点小于第一预设阈值,表示该上行频段为低频频段,该上行频段所在的第一上行频段组为低频频段组。当上行频段的中心频点大于第二预设阈值,表示该上行频段为高频频段,该上行频段所在的第二上行频段组为高频频段组。
下面结合图5、图6、图7,以gNB和UE间支持上行频段1、上行频段2两个上行接入为例,对图4所示随机接入方法进一步详细介绍。其中,上行频段1和上行频段2属于同一小区,上行频段1的中心频点低于上行频段2的中心频点,即上行频段1为低频频段,上行频段2为高频频段。
图5为本申请实施例提供的又一种随机接入方法流程图,由图3所示的UE和图2所示的gNB交互执行,如图5所示,该方法可以包括以下步骤:
步骤501:gNB为UE配置上行频段1对应的随机接入配置、以及上行频段2对应的随机接入配置。
其中,步骤501与步骤401相同,在此不再重复赘述。
步骤502:UE从gNB接收上行频段1对应的随机接入配置、以及上行频段2对应的随机接入配置。
其中,步骤502与步骤402相同,在此不再重复赘述。
步骤503:UE根据上行频段1对应的随机接入配置发起随机接入配置、或者根据上行频段2对应的随机接入配置发起随机接入、或者根据上行频段1对应的随机接入配置和上行频段2对应的随机接入配置发起随机接入。
其中,步骤503中UE发起随机接入的过程可参照现有基于竞争的4步随机接入或现有基于非竞争的3步随机接入或图4a所示过程,在此不再重复赘述。
具体的,在步骤503中UE可以根据实际传输场景,采用图6所示方案根据一个随机接入配置发起随机接入,或者采用图7所示的方式根据两个随机接入配置发起随机接入。
图6为本申请实施例提供的又一种随机接入方法流程图,由图3所示的UE和图2所示的gNB交互执行,该方法可以用于实现UE根据下行路损,确定根据一个随机接入配置发起随机接入,如图6所示,该方法可以包括以下步骤:
步骤601:gNB为UE配置上行频段1对应的随机接入配置、以及上行频段2对应的随机接入配置。
其中,步骤501与步骤401相同,在此不再重复赘述。
步骤602:UE从gNB接收上行频段1对应的随机接入配置、以及上行频段2对 应的随机接入配置。
其中,步骤502与步骤402相同,在此不再重复赘述。
步骤603:UE获取下行路损和路损阈值。
其中,UE获取下行路损和路损阈值的过程可参照上述方法实施例中的过程,在此不再重复赘述。
步骤604:当下行路损大于路损阈值时,UE根据上行频段1对应的随机接入配置发起随机接入;当下行路损小于或等于路损阈值时,UE根据上行频段2对应的随机接入配置发起随机接入。
其中,步骤604中UE发起随机接入的过程可以参考现有基于竞争的4步随机接入或现有基于非竞争的3步随机接入或图4a所示步骤来执行,在此不再重复赘述。
如此,UE可以根据下行路损情况,确定根据两个上行频段对应的随机接入配置中的一个随机接入配置发起随机接入,提高了UE的上行接入质量。
图7为本申请实施例提供的又一种随机接入方法流程图,由图3所示的UE和图2所示的gNB交互执行,该方法可以用于实现UE根据两个随机接入配置发起随机接入,如图7所示,该方法可以包括以下步骤:
步骤701:gNB为UE配置上行频段1对应的随机接入配置、以及上行频段2对应的随机接入配置。
其中,步骤501与步骤401相同,在此不再重复赘述。
步骤702:UE从gNB接收上行频段1对应的随机接入配置、以及上行频段2对应的随机接入配置。
其中,步骤502与步骤402相同,在此不再重复赘述。
步骤703:UE根据上行频段1对应的随机接入配置和上行频段2对应的随机接入配置发起随机接入。
其中,步骤703中UE发起随机接入的过程可以参照现有基于竞争的4步随机接入或现有基于非竞争的3步随机接入或图4a所示步骤来执行,在此不再重复赘述。
如此,UE可以在UE和gNB之间具有两个上行的情况下,在两个上行频段上同时进行随机接入,加快了随机接入。
进一步的,在本发明实施例中,在上述步骤403或步骤503或者步骤604或者步骤703之后,如果UE根据任一上行频段的随机接入配置发起随机接入失败,为了便于gNB侧进行网规优化,所述方法还可以包括:UE记录随机接入失败的次数、以及随机接入失败过程中消息发送和接收情况,并向gNB上报随机接入失败的次数、以及随机接入失败过程中消息发送和接收情况。
其中,随机接入失败是指:在连续时间内,UE根据同一随机接入配置发起的随机接入的次数大于或等于预设次数,或者UE根据随机接入配置发起随机接入的时长大于或等于预设时长,即随机接入超时。在本申请实施例中,预设次数、预设时长可以根据需要进行设置,本申请实施例对此不进行限定。可选的,UE可以在最小化路测(minimization of drive tests,MDT)中上报随机接入失败的次数、以及随机接入失败过程中消息发送和接收情况。
进一步的,在本发明实施例中,当UE根据高频频段对应的随机接入配置发起随 机接入失败后,所述UE还可以根据低频频段对应的随机接入配置发起随机接入,以提高随机接入质量。其中,该过程可以与上述UE向gNB上报随机接入失败的次数、以及随机接入失败过程中消息发送和接收情况的过程结合在一起执行,也可以单独执行,本发明实施例对此不进行限定。
例如:在图6所示方案中,当UE根据上行频段2对应的随机接入配置发起随机接入失败时,UE可以根据上行频段1对应的随机接入配置发起随机接入。
或者,在图4所示方案中,当UE根据第二随机接入配置发起随机接入失败后,UE可以根据第三随机接入配置发起随机接入,第三随机接入配置对应第三上行频段,第三上行频段为第一上行频段组中的任一上行频段。
进一步的,在本发明实施例中,在上述步骤403或步骤503或者步骤604或者步骤703之后,如果UE发起随机接入成功,UE可以根据根据至少两个上行频段中的任一上行频段进行上行传输,并在上行传输过程中,根据gNB下发的一些指示或者命令进行传输,以此提升上行传输的效率。具体的,在步骤403或步骤503或者步骤604或者步骤703之后,如果UE发起随机接入成功,所述方法还可以包括图8所示技术方案中的一个或多个步骤,即图4或图5或图6或图7所示技术方案与图8所示技术方案中一个或多个步骤的结合后的技术方案也在本发明实施例的保护范围之内。
图8为本申请实施例提供的再一种随机接入方法流程图,由图3所示的UE和图2所示的gNB交互执行,该方法可以包括以下步骤:
步骤801:UE确定根据至少两个上行频段中的至少一个上行频段进行上行传输。
例如:当UE根据上行频段1、上行频段2、上行频段3的随机接入配置发起随机接入均成功后,UE可以根据上行频段1、上行频段2、上行频段3中的任一上行频段进行上行传输,或者根据上行频段1、上行频段2、上行频段3中的任两个上行频段进行上行传输,或者根据上行频段1、上行频段2、上行频段3这三个上行频段进行上行传输。
可选的,对于至少一个上行频段中的任一上行频段,UE可以自己确定根据该上行频段进行上行传输,例如:在图6所示方案中,因UE仅根据上行频段1或上行频段2的随机接入配置发起随机接入,自然的,在随机接入成功后,UE可以自己确定根据发起随机接入的上行频段进行上行传输;或者,
UE可以根据从gNB获取的加扰信息,从至少两个标识中确定出第一标识,确定第一标识对应的上行频段进行上行传输。
其中,加扰信息采用至少两个标识中的任一标识进行加扰,UE可以从用于指示msg4的时频资源位置的下行控制信息的循环冗余码校验中获取到加扰消息。至少两个标识各不相同,至少两个标识中每个标识为:UE根据与标识对应上行频段的随机接入配置发起随机接入时,从gNB获取的标识,如:UE可以在图4a所示的随机接入过程中,从msg2中获取到至少两个标识。
例如:当UE根据上行频段1、上行频段2、上行频段3的随机接入配置发起随机接入均成功后,UE获取到与上行频段1对应的标识1、与上行频段2对应的标识2、与上行频段3对应的标识3,当UE接收到加扰信息后,UE采用标识1、标识2、标识3去解扰该加扰信息,因该加扰信息由这三个标识中的一个标识进行加扰,因此, 只能有一个标识可以解扰成功,当标识1解扰成功时,UE可以在上行频段1上进行上行传输。
进一步的,为了降低UE的存储负担,当UE确定根据至少一个上行频段进行上行传输后,如图8所示,所述方法还可以包括:
步骤802:UE消除UE获取到的至少两个标识中除第一标识之外的其他标识,或者UE清空UE根据除第四上行频段之外的其他上行频段对应的随机接入配置发起随机接入时传输msg3所使用的HARQ进程的HARQ缓存。
其中,第一标识为UE上行传输采用的上行频段对应的标识;第四上行频段为UE进行上行传输采用的上行频段。
例如,UE根据上行频段1、上行频段2、上行频段3的随机接入配置发起随机接入,且在随机接入后,UE确定在上行频段1上进行上行传输,此时,UE可以消除与上行频段2对应的标识2、与上行频段3对应的标识3;或者,消除UE根据与上行频段2对应的随机接入配置发起随机接入时使用的混合自动重传缓存、以及UE根据与上行频段3对应的随机接入配置发起随机接入时使用的混合自动重传缓存。
进一步的,为了在上行传输过程中实现上行频段间的上行同步,如图8所示,所述方法还可以包括:
步骤803:UE根据至少一个上行频段中每个上行频段对应的时间量进行上行传输。
其中,时间量可以为TA,可以由gNB配置给UE,每个上行频段对应的TA都是根据下行子帧边界计算的,如:可以根据公式:TA_SUL=2*T_offset-TA_PUL计算出TA,TA_SUL为任一上行频段的上行时间提前量,T_offset为gNB发出下行子帧的时刻与gNB接收到上行子帧的时刻的差值,TA_PUL为除TA_SUL对应的上行频段之外的其他任一上行频段的上行时间提前量。需要说明的是,gNB的除TA_SUL对应的上行频段之外的其他任一上行频段的接收点与下行频段的发送点共站(例如,位置相同或相近),具体的,UE可以通过下述方式管理和维护各个上行频段的时间量。
在本发明实施例中,UE通过下述方式对每个上行频段的时间量进行管理和维护:
UE从gNB接收至少一个小区的两个时间组,存储至少一个小区的至少一个时间组,至少一个时间组与至少一个上行频段一一对应,每个时间组对应一个时间量、一个定时器、以及至少一个上行频段,至少一个上行频段属于至少一个小区,至少一个小区为gNB管理的小区,时间量用于UE进行上行同步,定时器用于限定时间量的有效时间;
对于至少一个小区中的任一小区,当小区的任一个时间组对应的定时器超时,UE停止在该时间组对应的上行频段上进行上传传输,其中,该上行传输可以指:通过物理上行共享信道,物理上行控制信道的上行传输,SRS探测参考信号的上行传输。不包括物理随机接入信道的上行传输。具体体现为:是否释放该上行对应的PUCCH/SRS/上行半静态调度SPS资源;
或者,对于至少一个小区中的任一小区,当小区的所有时间组对应的定时器超时,UE清空小区对应的混合自动重传请求缓存;
或者,当至少一个小区中主小区的所有时间组对应的定时器超时,UE清空至少一个小区中除主小区之外的其他小区对应的混合自动重传请求缓存,并确定其他小区的 所有时间组对应的定时器超时;
当UE从gNB接收时间量调整命令后,UE才根据时间量调整命令启动或重启第一小区的第一时间组对应的定时器,该时间量调整命令用于指示UE调整第一小区的第一时间组对应的定时器。
需要说明的,所述时间量调整命令可以通过媒体接入控制元素(medium access control control elements,MAC CE)或随机接入响应消息进行传输。
其中,上述定时器可以为时间提前量定时器(timing advance timer,TAT),该定时器的时长可以根据需要由gNB配置给UE进行设置,本申请实施例对比不进行限定。
进一步的,为了配合gNB的资源调度,UE还可以根据gNB的指示采用与上行频段对应的资源进行上行传输,并上报PHR,如图8所示,还可以包括:
步骤804:UE从gNB接收第一指示,根据第一指示进行上行传输。
其中,第一指示包含:第一上行频段索引以及第一上行频段索引标识的上行频段对应的传输资源的,第一上行频段索引标识的上行频段可以为至少两个上行频段中用于上行传输的任一上行频段。
步骤805:当UE处于PHR的触发状态时,UE根据第一指示生成PHR报告,并在根据第一指示进行上行传输时向gNB发送PHR报告。
其中,PHR报告包含:上行频段索引、以及上行频段索引标识的上行频段的功率余量。
需要说明的是,步骤805为可选步骤,即在执行步骤804时,可以执行步骤805,向gNB上报PHR报告,也可以不执行步骤805。
进一步的,在多个上行频段同时进行上行传输时,UE还可以根据gNB的其他指示采用与上行频段对应的传输块进行上行传输、以及确定采用哪个传输块捎带传输上行控制信息,如图8所示,还可以包括:
步骤806:UE从gNB接收至少两个第二指示。
所述至少两个第二指示中每个第二指示可以包含:第二上行频段索引以及第二上行频段索引标识的上行频段对应的传输块。
步骤807:UE根据至少两个第二指示进行上行传输,以及根据预设规则或者gNB的配置在至少两个第二指示包含的传输块中的一个传输块上传输UCI。
进一步的,为了提高UE上行信号的传输质量,UE还可以根据gNB的功率调整命令进行上行功率控制,如图8所示,还可以包括:
步骤808:UE从gNB接收功率调整命令。
功率调整命令包含第四上行频段索引、以及功率控制参数,功率调整命令用于请求gNB对上行频段索引标识的上行频段的上行传输进行功率调整。
步骤809:UE基于功率调整命令,计算第四上行频段索引标识的上行频段的上行功率,并基于计算出的上行功率进行上行传输。
进一步的,为了提高上行频段的资源利用率,UE还可以根据gNB的激活命令,激活任一上行频段,也可以根据gNB的去激活命令,去激活任一上行频段,如图8所示,还可以包括:
步骤810:UE从gNB接收包含上行频段索引的激活命令,UE根据激活命令激活 上行频段索引标识的上行频段。
步骤811:UE从gNB接收包含上行频段索引的去激活命令,UE根据去激活命令去激活上行频段索引标识的上行频段。
需要说明的是,步骤810和步骤811可以按照图8所示顺序先后执行(需要注意的是,先后执行时,激活和去激活的上行频段可能不是同一上行频段),也可以选择一个步骤执行,具体如何执行,取决于UE从gNB接收到的命令,本发明实施例对此不进行限定。
进一步的,为了提高UE的上行传输质量,UE还可以在移动到其他gNB的覆盖区域后,接收gNB下发的切换命令,接入其他gNB,如图8所示,还可以包括:
步骤812:UE从gNB接收切换命令,切换命令用于指示UE接入到其他gNB时的上行频段、以及与该上行频段对应的随机接入资源。
步骤813:UE根据切换命令向其他gNB发起随机接入。
其中,所述切换命令可以为无线资源管理RRC连接重配置消息。随机接入的步骤可以参照现有基于竞争的4步随机接入或现有基于非竞争的3步随机接入或图4a所示的随机接入。
如此,UE可以在随机接入之后,根据至少一个上行频段进行上行传输时,根据gNB下发的一些指示或者命令进行上行传输,提升上行传输的效率。
此外,在执行本发明实施例提供的技术方案中,上述各方法实施例之间的相同步骤可以相互参考。
上述主要从UE和gNB交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如UE和gNB为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对UE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中涉及的UE的一种可能的组成示意图,如图9所示,该UE可以包括:接收单元91、随机接入单元92、记录单元93、发送单元94、确定单元95、传输单元96、消除单元97、时间管理单元98。
其中,接收单元91,用于支持UE执行上述方法实施例中的步骤402、步骤4032、步骤4033、步骤4035、步骤502、步骤602、步骤702、步骤804、步骤806、步骤808、步骤812。
随机接入单元92,用于支持UE执行上述方法实施例中的步骤403、步骤503、步 骤604、步骤703、步骤813。
发送单元94,用于支持UE执行上述方法实施例中的步骤4031、步骤4034、步骤805。
确定单元95:用于支持UE执行上述方法实施例中的步骤4036、步骤801。
传输单元96:用于支持UE执行上述方法实施例中的步骤803、步骤804、步骤807、步骤809。
消除单元97:用于支持UE执行上述方法实施例中的步骤802。
时间管理单元98:用于支持UE执行上述方法实施例中TA管理和维护的功能。
记录单元93:用于支持UE执行上述方法实施例中记录随机接入失败的事情的功能。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。本发明实施例提供的UE,用于执行上述随机接入方法,因此可以达到与上述随机接入方法相同的效果。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的UE的另一种可能的组成示意图。如图10所示,该UE可以包括:处理模块101和通信模块102。
处理模块101用于对UE的动作进行控制管理。通信模块102用于支持UE与其他网络实体的通信,例如与图1示出的功能模块或网络实体之间的通信。UE还可以包括存储模块103,用于存储服务器的程序代码和数据。
其中,处理模块101可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块102可以是收发器、收发电路或通信接口等。存储模块103可以是存储器。
当处理模块101为处理器,通信模块102为通信接口,存储模块103为存储器时,本发明实施例所涉及的服务器可以为图3所示的UE。
在采用集成的单元的情况下,本发明实施例还提供了一个装置,该装置可以以芯片的产品形态存在,如图11所示,该装置可以包括:处理器110、存储器111;
存储器111,用于与处理器110耦合,保存该装置必要的程序指令和数据,该处理器110用于执行存储器111中存储的程序指令,使得该装置执行上述方法中与UE执行的操作相应的功能。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中涉及的gNB的一种可能的组成示意图,如图12所示,该gNB可以包括:配置单元120、发送单元121。
其中,配置单元121,用于支持gNB执行图4中的步骤401、图5中的步骤501、图6中的步骤601、图7中的步骤701。
发送单元121,用于支持gNB执行图4a、图8中gNB向UE发送消息、数据或者命令的步骤。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。本发明实施例提供的gNB,用于执行上述随机接入方法,因此可以达到与上述随机接入方法相同的效果。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的gNB的另一种可能的组成示意图。如图13所示,该gNB可以包括:处理模块130和通信模块131。
处理模块130用于对gNB的动作进行控制管理。通信模块131用于支持gNB与其他网络实体的通信,例如与图1示出的功能模块或网络实体之间的通信。gNB还可以包括存储模块132,用于存储服务器的程序代码和数据。
其中,处理模块130可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块131可以是收发器、收发电路或通信接口等。存储模块132可以是存储器。
当处理模块130为处理器,通信模块131为通信接口,存储模块132为存储器时,本发明实施例所涉及的服务器可以为图2所示的gNB。
在采用集成的单元的情况下,本发明实施例还提供了一个装置,该装置可以以芯片的产品形态存在,如图14所示,该装置可以包括:处理器140、存储器141;
存储器141,用于与处理器140耦合,保存该装置必要的程序指令和数据,该处理器140用于执行存储器141中存储的程序指令,使得该装置执行上述方法中与gNB执行的操作相应的功能。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only  Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种随机接入方法,其特征在于,包括:
    终端从接入网设备接收至少两个上行频段对应的随机接入配置,所述至少两个上行频段中各个上行频段的中心频点均不同;
    所述终端根据所述至少两个上行频段对应的随机接入配置中的至少一个随机接入配置发起随机接入。
  2. 根据权利要求1所述的随机接入方法,其特征在于,所述终端根据所述至少两个上行频段对应的随机接入配置中的至少一个随机接入配置发起随机接入包括:
    所述终端根据下行路损的情况,确定根据所述至少两个上行频段对应的随机接入配置中的一个随机接入配置发起随机接入。
  3. 根据权利要求2所述的随机接入方法,其特征在于,所述终端根据下行路损的情况,确定根据所述至少两个上行频段对应的随机接入配置中的一个随机接入配置发起随机接入包括:
    所述终端获取下行路损;
    当所述下行路损大于路损阈值时,所述终端根据第一随机接入配置发起随机接入,所述第一随机接入配置与第一上行频段对应,所述第一上行频段为第一上行频段组中的任一上行频段,所述第一上行频段组包含至少一个上行频段,所述第一上行频段组中每个上行频段的中心频点小于第一预设阈值。
  4. 根据权利要求3所述的随机接入方法,其特征在于,所述方法还包括:
    当所述下行路损小于或等于路损阈值时,所述终端根据第二随机接入配置发起随机接入,所述第二随机接入配置与第二上行频段对应,所述第二上行频段为第二上行频段组中的任一上行频段,所述第二上行频段组包含至少一个上行频段,所述第二上行频段组中每个上行频段的中心频点大于第二预设阈值,所述第二预设阈值大于所述第一预设阈值。
  5. 根据权利要求4所述的随机接入方法,其特征在于,当所述终端根据第二随机接入配置发起随机接入失败后,所述方法还包括:
    所述终端根据第三随机接入配置发起随机接入;
    所述第三随机接入配置对应第三上行频段,所述第三上行频段为所述第一上行频段组中的任一上行频段。
  6. 根据权利要求4所述的随机接入方法,其特征在于,所述方法还包括;
    所述终端记录所述随机接入失败的次数、以及所述随机接入失败过程中消息发送和接收情况,
    所述终端向所述接入网设备发送所述随机接入失败的次数、以及所述随机接入失败过程中消息发送和接收情况。
  7. 根据权利要求1所述的随机接入方法,其特征在于,所述终端根据所述至少两个上行频段对应的随机接入配置中的至少一个随机接入配置发起随机接入包括:
    所述终端根据所述至少两个上行频段对应的随机接入配置中的至少两个随机接入配置发起随机接入。
  8. 根据权利要求7所述的随机接入方法,其特征在于,所述方法还包括:
    所述终端根据从所述接入网设备获取的加扰信息,从至少两个标识中确定出第一标识,所述加扰信息采用所述至少两个标识中的任一标识进行加扰,所述至少两个标识与所述至少两个上行频段一一对应,所述至少两个标识中每个所述标识为:所述终端根据与所述标识对应的随机接入配置发起随机接入时,从所述接入网设备获取的标识;
    所述终端根据所述第一标识对应的上行频段进行上行传输。
  9. 根据权利要求7所述的随机接入方法,其特征在于,当所述随机接入成功之后,所述方法还包括:
    所述终端消除所述终端获取到的除第二标识之外的其他标识,所述第二标识为所述终端上行传输采用的上行频段对应的标识;
    或者,所述终端清空所述终端根据除第四上行频段之外的其他上行频段对应的随机接入配置发起随机接入时使用的混合自动重传请求HRAQ进程的HRAQ缓存,所述第四上行频段为所述终端进行上行传输采用的上行频段。
  10. 根据权利要求1-9任一项所述的随机接入方法,其特征在于,所述终端存储有:至少一个小区的至少一个时间组,每个所述时间组对应一个时间量、一个定时器、以及至少一个上行频段,所述至少一个小区为所述接入网设备管理的小区,所述时间量用于所述终端进行上行同步,所述定时器用于限定所述时间量的有效时间;所述方法还包括:
    对于所述至少一个小区中的任一小区,当所述小区的任一个时间组对应的定时器超时,所述终端停止在所述时间组对应的上行频段上进行上传传输;或者,
    对于所述至少一个小区中的任一小区,当所述小区的所有时间组对应的定时器超时,所述终端清空所述小区对应的混合自动重传请求缓存。
  11. 根据权利要求10所述的随机接入方法,其特征在于,所述方法还包括:
    当所述至少一个小区中主小区的所有时间组对应的定时器超时,所述终端清空所述至少一个小区中除所述主小区之外的其他小区对应的混合自动重传请求缓存,并确定所述其他小区的所有时间组对应的定时器超时;
    所述终端从所述接入网设备接收时间量调整命令,根据所述时间量调整命令启动第一小区的第一时间组对应的定时器;所述时间量调整命令用于指示所述终端调整所述第一小区的所述第一时间组对应的定时器。
  12. 根据权利要求1-11任一项所述的随机接入方法,其特征在于,所述方法还包括:
    所述终端从所述接入网设备接收第一指示,所述第一指示包含:第一上行频段索引以及所述第一上行频段索引标识的上行频段对应的传输资源;
    所述终端根据所述第一指示进行上行传输。
  13. 根据权利要求12所述的随机接入方法,其特征在于,所述方法还包括:
    当所述终端处于功率余量报告PHR的触发状态时,所述终端根据所述第一指示生成PHR报告,并在所述上行传输时向所述接入网设备发送所述PHR报告;
    所述PHR报告包含:所述上行频段索引、以及所述上行频段索引标识的上行频段的功率余量。
  14. 根据权利要求1-13任一项所述的随机接入方法,其特征在于,所述方法还包括:
    所述终端从所述接入网设备接收至少两个第二指示;所述至少两个第二指示中每个第二指示包含:第二上行频段索引以及所述第二上行频段索引标识的上行频段对应的传输块;
    所述终端根据所述至少两个第二指示进行上行传输,以及根据预设规则或者所述接入网设备的配置在所述至少两个第二指示包含的传输块中的一个传输块上传输上行控制信息。
  15. 根据权利要求1-14任一项所述的随机接入方法,其特征在于,所述随机接入配置包括下述至少一种信息:
    根序列索引、随机接入时频资源、功率攀升步长、前导序列的最大传输次数、随机接入响应窗口的大小、竞争解决信息定时器的时长。
  16. 根据权利要求1-15任一项所述的随机接入方法,其特征在于,所述随机接入包括:
    所述终端在前导序列发送一时间段后,从所述接入网设备接收随机接入响应;
    所述时间段由所述接入网设备配置,或者所述时间段根据所述终端的服务小区支持的参考空口格式进行设置,所述参考空口格式为子载波间隔和循环前缀长度的参数集合。
  17. 一种终端,其特征在于,包括:
    接收单元,从接入网设备接收至少两个上行频段对应的随机接入配置,所述至少两个上行频段中各个上行频段的中心频点均不同;
    随机接入单元,用于根据所述接收单元接收到的至少两个上行频段对应的随机接入配置中的至少一个随机接入配置发起随机接入。
  18. 根据权利要求17所述的终端,其特征在于,
    所述随机接入单元,具体用于根据下行路损的情况,确定根据所述接收单元接收到的所述至少两个上行频段对应的随机接入配置中的一个随机接入配置发起随机接入。
  19. 根据权利要求17所述的终端,其特征在于,
    所述随机接入单元,具体用于:
    获取下行路损;
    当所述下行路损大于路损阈值时,根据第一随机接入配置发起随机接入,所述第一随机接入配置与第一上行频段对应,所述第一上行频段为第一上行频段组中的任一上行频段,所述第一上行频段组包含至少一个上行频段,所述第一上行频段组中每个上行频段的中心频点小于第一预设阈值。
  20. 根据权利要求19所述的终端,其特征在于,所述随机接入单元具体用于:
    当所述下行路损小于或等于路损阈值时,根据第二随机接入配置发起随机接入,所述第二随机接入配置与第二上行频段对应,所述第二上行频段为第二上行频段组中的任一上行频段,所述第二上行频段组包含至少一个上行频段,所述第二上行频段组中每个上行频段的中心频点大于第二预设阈值,所述第二预设阈值大于所述第一预设阈值。
  21. 根据权利要求20所述的终端,其特征在于,当所述终端根据第二随机接入配置发起随机接入失败后,所述随机接入单元还用于:
    根据第三随机接入配置发起随机接入;所述第三随机接入配置对应第三上行频段,所述第三上行频段为所述第一上行频段组中的任一上行频段。
  22. 根据权利要求21所述的终端,其特征在于,所述终端还包括:
    记录单元,用于记录所述随机接入失败的次数、以及所述随机接入失败过程中消息发送和接收情况,
    发送单元,用于向所述接入网设备发送所述随机接入失败的次数、以及所述随机接入失败过程中消息发送和接收情况。
  23. 根据权利要求17所述的终端,其特征在于,
    所述随机接入单元,具体用于根据所述至少两个上行频段对应的随机接入配置中的至少两个随机接入配置发起随机接入。
  24. 根据权利要求23所述的终端,其特征在于,所述终端还包括:
    确定单元,用于根据从所述接入网设备获取的加扰信息,从至少两个标识中确定出第一标识,所述加扰信息采用所述至少两个标识中的任一标识进行加扰,所述至少两个标识与所述至少两个上行频段一一对应,所述至少两个标识中每个所述标识为:所述终端根据与所述标识对应的随机接入配置发起随机接入时,从所述接入网设备获取的标识;
    传输单元,用于根据所述第一标识对应的上行频段进行上行传输。
  25. 根据权利要求23所述的终端,其特征在于,当所述随机接入成功之后,所述终端还包括:
    消除单元,用于消除所述终端获取到的除第二标识之外的其他标识,所述第一标识为所述终端上行传输采用的上行频段对应的标识;
    或者,所述消除单元用于清空所述终端根据除第四上行频段之外的其他上行频段对应的随机接入配置发起随机接入时使用的混合自动重传请求HRAQ进程的HRAQ缓存,所述第四上行频段为所述终端进行上行传输采用的上行频段。
  26. 根据权利要求17-25任一项所述的终端,其特征在于,所述终端还包括:时间管理单元,所述时间管理单元存储有:至少一个小区的至少一个时间组,每个所述时间组对应一个时间量、一个定时器、以及至少一个上行频段,所述至少一个小区为所述接入网设备管理的小区,所述时间量用于所述终端进行上行同步,所述定时器用于限定所述时间量的有效时间;
    所述传输单元,还用于对于所述至少一个小区中的任一小区,当所述小区的任一个时间组对应的定时器超时,停止在所述时间组对应的上行频段上进行上传传输;或者,
    所述清除单元,还用于对于所述至少一个小区中的任一小区,当所述小区的所有时间组对应的定时器超时,清空所述小区对应的混合自动重传请求缓存。
  27. 根据权利要求26所述的终端,其特征在于,
    所述清除单元,还用于当所述至少一个小区中主小区的所有时间组对应的定时器超时,清空所述至少一个小区中除所述主小区之外的其他小区对应的混合自动重传请 求缓存,并确定所述其他小区的所有时间组对应的定时器超时;
    所述接收单元,还用于从所述接入网设备接收时间量调整命令;所述时间量调整命令用于指示所述终端调整所述第一小区的所述第一时间组对应的定时器;
    所述时间管理单元,用于根据所述接收单元接收到的时间量调整命令启动第一小区的第一时间组对应的定时器。
  28. 根据权利要求17-27任一项所述的终端,其特征在于,
    所述接收单元,还用于从所述接入网设备接收第一指示,所述第一指示包含:第一上行频段索引以及所述第一上行频段索引标识的上行频段对应的传输资源;
    所述传输单元,还用于根据所述第一指示进行上行传输。
  29. 根据权利要求28所述的终端,其特征在于,
    所述传输单元,还用于当所述终端处于功率余量报告PHR的触发状态时,根据所述第一指示生成PHR报告,并在进行所述上行传输时向所述接入网设备发送所述PHR报告;
    所述PHR报告包含:所述上行频段索引、以及所述上行频段索引标识的上行频段的功率余量。
  30. 根据权利要求17-29任一项所述的终端,其特征在于,
    所述接收单元,用于从所述接入网设备接收至少两个第二指示;所述至少两个第二指示中每个第二指示可以包含:第二上行频段索引以及所述第二上行频段索引标识的上行频段对应的传输块;
    所述传输单元,用于根据至少两个第二指示进行上行传输,以及根据预设规则或者所述接入网设备的配置在所述至少两个第二指示包含的传输块中的一个传输块上传输上行控制信息。
  31. 根据权利要求17-30任一项所述的终端,其特征在于,
    所述随机接入配置包括下述至少一种信息:根序列索引、随机接入时频资源、功率攀升步长、前导序列的最大传输次数、随机接入响应窗口的大小、竞争解决信息定时器的时长。
  32. 根据权利要求17-31任一项所述的终端,其特征在于,所述随机接入包括:
    所述终端在前导序列发送一时间段后,从所述接入网设备接收随机接入响应;所述时间段由所述接入网设备配置,或者所述时间段根据所述终端的服务小区支持的参考空口格式进行设置,所述参考空口格式为子载波间隔和循环前缀长度的参数集合。
PCT/CN2018/091661 2017-06-16 2018-06-15 随机接入方法、设备及系统 WO2018228566A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18816944.5A EP3609281B1 (en) 2017-06-16 2018-06-15 Random access method and device
US16/677,304 US11116013B2 (en) 2017-06-16 2019-11-07 Performing random access procedure via uplink (UL) component carriers in 5G new radio (NR)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459722.7 2017-06-16
CN201710459722.7A CN109152085B (zh) 2017-06-16 2017-06-16 随机接入方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/677,304 Continuation US11116013B2 (en) 2017-06-16 2019-11-07 Performing random access procedure via uplink (UL) component carriers in 5G new radio (NR)

Publications (1)

Publication Number Publication Date
WO2018228566A1 true WO2018228566A1 (zh) 2018-12-20

Family

ID=64658921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091661 WO2018228566A1 (zh) 2017-06-16 2018-06-15 随机接入方法、设备及系统

Country Status (4)

Country Link
US (1) US11116013B2 (zh)
EP (1) EP3609281B1 (zh)
CN (1) CN109152085B (zh)
WO (1) WO2018228566A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711680A (zh) * 2019-08-02 2021-11-26 Oppo广东移动通信有限公司 随机接入的方法和通信设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020029310A1 (zh) * 2018-08-09 2020-02-13 Oppo广东移动通信有限公司 一种数据传输方法及装置、终端
WO2019032033A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) USE OF CELL-SPECIFIC REFERENCE SIGNALS FOR NR OPEN-LOOP UPLINK POWER CONTROL
US11546941B2 (en) * 2017-08-18 2023-01-03 Qualcomm Incorporated Random access procedure with cross band downlink/uplink pairing
US10779331B2 (en) * 2017-08-21 2020-09-15 Qualcomm Incorporated Random access channel (RACH) transmission with cross-band downlink/uplink (DL/UL) pairing
US10965654B2 (en) 2017-11-28 2021-03-30 Viavi Solutions Inc. Cross-interface correlation of traffic
US10560206B2 (en) 2017-12-12 2020-02-11 Viavi Solutions Inc. Processing a beamformed radio frequency (RF) signal
CN110167133B (zh) * 2018-02-13 2021-08-13 华为技术有限公司 一种上行同步方法及装置
US10979326B2 (en) * 2018-05-11 2021-04-13 Viavi Solutions Inc. Detecting interference of a beam
US10631263B2 (en) 2018-09-14 2020-04-21 Viavi Solutions Inc. Geolocating a user equipment
CN111436155B (zh) * 2019-02-21 2021-09-14 维沃移动通信有限公司 数据传输方法和终端设备
CN110267346B (zh) * 2019-04-29 2021-10-26 华为技术有限公司 一种通信方法、装置及存储介质
CN110337152B (zh) * 2019-06-11 2022-09-23 华为技术有限公司 一种配置sul的方法及通信装置
BR112022005442A2 (pt) * 2019-09-30 2022-06-21 Nokia Technologies Oy Acesso aleatório em sistema de comunicação
US11229012B2 (en) * 2019-11-18 2022-01-18 Verzon Patent and Licensing Inc. Dynamic modification of device band and radio access technology information
CN110913446A (zh) * 2019-12-30 2020-03-24 宇龙计算机通信科技(深圳)有限公司 数据传输方法、装置、存储介质和电子设备
CN115804232A (zh) * 2021-07-07 2023-03-14 北京小米移动软件有限公司 频带分组方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005308A (zh) * 2006-01-17 2007-07-25 上海原动力通信科技有限公司 宽带时分双工移动通信系统的物理层随机接入方法
CN102845015A (zh) * 2010-03-23 2012-12-26 摩托罗拉移动有限责任公司 在通信网络中用于聚合载波的上行链路ack/nack信令
CN103716895A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置
WO2017079057A1 (en) * 2015-11-06 2017-05-11 Qualcomm Incorporated Enhanced licensed assisted access uplink channel access
CN107820728A (zh) * 2017-04-01 2018-03-20 深圳前海达闼云端智能科技有限公司 随机接入的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150181546A1 (en) * 2012-07-23 2015-06-25 Interdigital Patent Holdings, Inc. Methods and apparatus for frequency synchronization, power control, and cell configuration for ul-only operation in dss bands
EP3031283B1 (en) * 2013-08-07 2022-10-05 Interdigital Patent Holdings, Inc. Coverage enhancements of low cost mtc devices in uplink/downlink decoupled scenario
US10419197B2 (en) * 2017-04-27 2019-09-17 Qualcomm Incorporated Sharing of long-term evolution (LTE) uplink spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005308A (zh) * 2006-01-17 2007-07-25 上海原动力通信科技有限公司 宽带时分双工移动通信系统的物理层随机接入方法
CN102845015A (zh) * 2010-03-23 2012-12-26 摩托罗拉移动有限责任公司 在通信网络中用于聚合载波的上行链路ack/nack信令
CN103716895A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置
WO2017079057A1 (en) * 2015-11-06 2017-05-11 Qualcomm Incorporated Enhanced licensed assisted access uplink channel access
CN107820728A (zh) * 2017-04-01 2018-03-20 深圳前海达闼云端智能科技有限公司 随机接入的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3609281A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711680A (zh) * 2019-08-02 2021-11-26 Oppo广东移动通信有限公司 随机接入的方法和通信设备
CN113711680B (zh) * 2019-08-02 2024-03-19 Oppo广东移动通信有限公司 随机接入的方法和通信设备

Also Published As

Publication number Publication date
CN109152085B (zh) 2023-01-13
US20200077451A1 (en) 2020-03-05
EP3609281A1 (en) 2020-02-12
US11116013B2 (en) 2021-09-07
CN109152085A (zh) 2019-01-04
EP3609281B1 (en) 2021-04-28
EP3609281A4 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
WO2018228566A1 (zh) 随机接入方法、设备及系统
US11184140B2 (en) Uplink transmissions using multiple active resources
JP6737923B2 (ja) 二重接続の並列ランダムアクセス手順のためのmac層とphy層との間の通信
US10716142B2 (en) First communication device, second communication device and methods therein, for determining one or more parameters for transmitting on an uplink control channel
JP7074122B2 (ja) 次世代ワイヤレスシステムにおけるランダムアクセス
US11342980B2 (en) Methods and apparatuses for uplink transmission prioritization
JP7020525B2 (ja) 基地局、User Equipment、及びこれらの方法
CN107113886B (zh) 用于以选择的先听后说(lbt)方法执行lbt的第一无线电节点和其中的方法
US11109247B2 (en) Beam failure recovery method, device, and apparatus
JP2021525977A (ja) 広帯域幅のためのセルおよびチャネルアクセス
JP2022173592A (ja) ワイヤレスシステムにおけるサプリメンタリィアップリンクアクセスのための方法
WO2021155853A1 (en) Wireless communication method and user equipment for handling random access operations
US11381300B2 (en) Method and apparatus for performing random access procedure for beam failure recovery
US20230284289A1 (en) Idle/inactive mobility for small data transmission
JPWO2020157994A1 (ja) 端末装置、基地局装置、及び無線通信方法
RU2773225C2 (ru) Способы управления доступом к каналу
WO2024118083A1 (en) Apparatus and method for initial access procedure using prescheduled ul grant for non-access stratum information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018816944

Country of ref document: EP

Effective date: 20191104

NENP Non-entry into the national phase

Ref country code: DE