WO2020199846A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020199846A1
WO2020199846A1 PCT/CN2020/078086 CN2020078086W WO2020199846A1 WO 2020199846 A1 WO2020199846 A1 WO 2020199846A1 CN 2020078086 W CN2020078086 W CN 2020078086W WO 2020199846 A1 WO2020199846 A1 WO 2020199846A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frame structure
structure parameter
priority
terminal device
Prior art date
Application number
PCT/CN2020/078086
Other languages
English (en)
French (fr)
Inventor
王婷
唐浩
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020199846A1 publication Critical patent/WO2020199846A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • a communication system such as a new radio (NR) system
  • NR new radio
  • multiple frame structure parameters (numerology) are introduced.
  • how to use different frame structure parameters for signal transmission is a current research hotspot.
  • the present application provides a communication method and device to realize signal transmission using different frame structure parameters.
  • a communication method including: determining the priority of the first signal and the second signal according to a first frame structure parameter of the first signal and/or a second frame structure parameter of the second signal ; According to the priority of the first signal and the second signal, send the first signal and/or the second signal.
  • the priority of the first signal and the second signal is determined according to different frame structure parameters, which can satisfy the determination of the priority of the first signal and the second signal under multiple frame structure parameters. Demand, reduce transmission delay, improve resource utilization and transmission rate, and improve transmission performance.
  • the determining the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal includes : Determine the second signal priority under the second frame structure parameter according to the second frame structure parameter; determine according to the magnitude relationship between the second signal priority under the second frame structure parameter and the priority threshold The priority of the first signal and the second signal.
  • the determining the second signal priority under the second frame structure parameter according to the second frame structure parameter includes: according to the second frame structure parameter and at least one frame The second signal priority under the structure parameter determines the second signal priority under the second frame structure parameter, and the at least one frame structure parameter includes the second frame structure parameter.
  • the second signal priority under different frame structure parameters is specified through signaling or protocol, which can satisfy the determination of the first signal and the second signal priority under multiple frame structure parameters. Demand to improve transmission performance.
  • the determining the second signal priority under the second frame structure parameter according to the second frame structure parameter includes: according to the second frame structure parameter and a reference frame structure parameter The second signal priority under the second frame structure parameter determines the second signal priority under the second frame structure parameter.
  • signaling the second signal priority under the reference frame structure parameter through signaling can reduce signaling overhead compared to signaling the second signal priority under multiple frame structure parameters through signaling.
  • the determining the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal includes : Determine the priority threshold under the second frame structure parameter according to the second frame structure parameter; determine the first signal according to the second signal priority and the priority threshold under the second frame structure parameter And the priority of the second signal.
  • the determining the priority threshold under the second frame structure parameter according to the second frame structure parameter includes: according to the second frame structure parameter and the at least one frame The priority threshold under the structure parameter determines the priority threshold under the second frame structure parameter, and the at least one frame structure parameter includes the second frame structure parameter.
  • the priority thresholds under different frame structure parameters can be specified through signaling or agreement to meet the requirements for determining the priority of the first signal and the second signal under different frame structure parameters, and improve transmission performance.
  • the determining the priority threshold under the second frame structure parameter according to the second frame structure parameter includes: according to the second frame structure parameter and the reference frame structure parameter The lower priority threshold determines the priority threshold under the second frame structure parameter.
  • the determining the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal includes : Determine the priority of the first signal and the second signal according to the corresponding relationship between the first frame structure parameter combination and the priority.
  • the first frame structure parameter combination includes the first frame structure parameter and the priority.
  • the second frame structure parameters include: Determine the priority of the first signal and the second signal according to the corresponding relationship between the first frame structure parameter combination and the priority.
  • the correspondence between at least one frame structure parameter combination and priority can be notified by predefined or signaling, which can meet the needs of determining the priority of the first signal and the second signal under multiple frame structure parameters, and improve the transmission performance. .
  • the determining the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal includes : Determine the priority of the first signal and the second signal according to the corresponding relationship between the first subcarrier spacing combination and the priority, and the first subcarrier spacing combination includes the first frame structure parameter The first subcarrier interval and the second subcarrier interval in the second frame structure parameter.
  • the first subcarrier spacing combination may also include other parameters, which are not limited in the embodiment of the present application.
  • the correspondence between at least one subcarrier spacing combination and priority can be notified by predefined or signaling to meet the requirements for determining the priority of the first signal and the second signal under multiple frame structure parameters, and improve the transmission performance.
  • the determining the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal includes : Determine the priority of the first signal and the second signal according to the relationship between the first subcarrier interval in the first frame structure parameter and the second subcarrier interval in the second frame structure parameter .
  • the priority of the first signal and the second signal is determined through the subcarrier spacing of different frame structure parameters, which meets the requirements of determining the priority of the first signal and the second signal under different frame structure parameters, and improves the transmission performance .
  • the determining the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal includes : Determine the second signal priority under the second frame structure parameter and the priority threshold under the second frame structure parameter according to the second frame structure parameter; according to the second signal priority under the second frame structure parameter The priority of the second signal and the priority threshold under the second frame structure parameter determine the priority of the first signal and the second signal.
  • a communication device may be a terminal device, or a device in a terminal device, or a device that can be matched and used with a terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a determining module and a sending module, and the determining module and the sending module may perform the corresponding functions in any of the design examples in the first aspect, specifically:
  • a determining module configured to determine the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal;
  • the sending module is configured to send the first signal and/or the second signal according to the priority of the first signal and the second signal.
  • the method for determining the priority of the first signal and the second signal by the determining module may refer to the first aspect, which will not be repeated here.
  • an embodiment of the present application provides a device, the device includes a processor, and is configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and/or data.
  • the memory is coupled with the processor, and when the processor executes the program instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the device may be a network device or a second terminal device, etc.
  • the device includes:
  • Memory used to store program instructions
  • a processor configured to determine the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal;
  • the processor uses a communication interface to send the first signal and/or the second signal according to the priority of the first signal and the second signal.
  • the method for the processor to determine the priority of the first signal and the second signal may refer to the first aspect, which is not repeated here.
  • embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the first aspect or any one of the possible design methods of the first aspect.
  • an embodiment of the present application further provides a chip system.
  • the chip system includes a processor and may also include a memory for implementing the first aspect or any one of the possible design methods of the first aspect.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the first aspect or any one of the possible design methods of the first aspect.
  • an embodiment of the present application provides a system that includes the device described in the second aspect or the third aspect, and other devices for receiving the first signal and/or the second signal (for example, the second signal). Terminal, network equipment, etc.).
  • Figure 1 is a schematic diagram of a communication architecture provided by an embodiment of the application.
  • Figure 2 is a schematic diagram of a communication process provided by an embodiment of the application.
  • 3a and 3b are schematic diagrams of transmission delay provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of the length of a time slot under different subcarrier intervals according to an embodiment of the application.
  • 5a, 5b, and 5c are schematic diagrams of RF switching provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 1 it is a schematic diagram of a possible network architecture to which the embodiment of this application is applicable, including a terminal device 10.
  • the number of terminal devices 10 is two or more, and different terminal devices can perform sidelink communication through sidelink (SL) to transmit sidelink information.
  • the side link information may include one or more of data (data) and scheduling allocation (scheduling assistance, SA), data may also be referred to as data information, and scheduling allocation may also be referred to as scheduling allocation information.
  • the side link information may also include side link feedback information.
  • the sidelink feedback information may include one or more of channel state information (CSI) and hybrid automatic repeat request (HARQ) information.
  • CSI channel state information
  • HARQ hybrid automatic repeat request
  • the HARQ information may specifically include acknowledgement information (acknowledgement, ACK) or negative acknowledgement (negtive acknowledgement, NACK), etc.
  • a network device 20 may also be included.
  • the terminal device 10 and the network device 20 can communicate with the Uu air interface.
  • the Uu air interface communication may include uplink transmission and downlink transmission.
  • Uplink transmission may refer to the terminal device 10 sending uplink signals or uplink information to the network device 20, and downlink transmission may refer to the network device 20 sending downlink signals or downlink information to the terminal device 10.
  • the Uu air interface can be understood as a universal UE to network interface (universal UE to network interface).
  • the network device 20 may be an access network device.
  • a network management system 30 may also be included.
  • the terminal device 10 and the network management system 30 may communicate through a wired interface or a wireless interface.
  • the terminal device 10 and the network management system 30 can communicate through the network device 20, or the terminal device 10 and the network management system 30 can communicate directly.
  • the network management system 30 may be a network management system operated by an operator.
  • a terminal device can be referred to as a terminal for short, which is a device with a wireless transceiver function.
  • Terminal devices can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water (such as ships); they can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in unmanned driving (self-driving), wireless terminal equipment in remote medical (remote medical), wireless terminal equipment in smart grid (smart grid), transportation safety (transportation) Wireless terminal equipment in safety), wireless terminal equipment in a smart city (smart city), wireless terminal equipment in a smart home (smart home), and may also include user equipment (UE), etc.
  • UE user equipment
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5th generation (5G) network, or future evolution of public land mobile communication networks (public land mobile communication network) Land mobile network, PLMN) terminal equipment, etc.
  • 5G future 5th generation
  • PLMN public land mobile communication network
  • Terminal equipment can sometimes also be called terminal, access terminal equipment, vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, terminal Equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile. The embodiment of the application does not limit this.
  • the device used to implement the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal, and the terminal is a UE as an example to describe the technical solutions provided in the embodiments of the present application.
  • the network device may be an access network device, and the access network device may also be called a radio access network (RAN) device, which is a device that provides wireless communication functions for terminal devices.
  • the access network equipment includes, for example, but is not limited to: the next generation base station (gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B ( node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit) , BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • gNB next generation base station
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • baseband unit
  • the access network equipment can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the device may be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • the terminal device can communicate with multiple access network devices of different technologies.
  • the terminal device can communicate with an access network device that supports long term evolution (LTE), or can communicate with an access network device that supports 5G. , It can also be dual-connected with LTE-enabled access network equipment and 5G-enabled access network equipment.
  • LTE long term evolution
  • 5G 5G-enabled access network equipment
  • the embodiments of the present application are not limited.
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is the network equipment, and the network equipment is a base station as an example to describe the technical solutions provided in the embodiments of the present application.
  • the side link is used for the communication between the terminal device and the terminal device.
  • the channels involved in the side link communication can include the physical sidelink shared channel (PSSCH) and the physical sidelink control channel (physical sidelink control). channel, PSCCH).
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • the PSSCH is used to carry sidelink data (SL data)
  • PSCCH is used to carry sidelink control information (SCI).
  • SCI may also be called sidelink scheduling assistance (SL). SA).
  • SA sidelink scheduling assistance
  • SL SA is information related to data scheduling, such as resource allocation and/or modulation and coding scheme (MCS) information used to carry PSSCH.
  • MCS modulation and coding scheme
  • the channels involved in the sidelink communication may also include: a physical sidelink feedback channel (PSFCH).
  • the physical side link feedback channel can also be referred to as a side link feedback channel for short.
  • the physical sidelink feedback channel may be used to transmit sidelink feedback control information (SFCI), and the sidelink feedback control information may also be referred to as sidelink feedback information for short.
  • the side link feedback control information may include one or more of channel state information (channel state information, CSI) and hybrid automatic repeat request (HARQ) information.
  • the HARQ information may include acknowledgement information (acknowledgement, ACK) or negative acknowledgement (negtive acknowledgement, NACK), etc.
  • the Uu air interface can be referred to as Uu for short, and the Uu air interface is used for communication between terminal equipment and network equipment.
  • Uu air interface transmission can include uplink transmission and downlink transmission.
  • the uplink transmission refers to the terminal device sending information to the network device, and the information transmitted in the uplink may be referred to as uplink information or uplink signal.
  • the uplink information or uplink signal may include one or more of an uplink data signal, an uplink control signal, and a sounding reference signal (sounding reference signal, SRS).
  • the channel used to transmit uplink information or uplink signals is called the uplink channel.
  • the uplink channel may include one or more of the physical uplink shared channel (PUSCH) and the physical uplink control channel (PUCCH). kind.
  • the PUSCH is used to carry uplink data, and the uplink data may also be referred to as uplink data information.
  • PUCCH is used to carry uplink control information (UCI) fed back by terminal equipment.
  • the UCI may include one or more of channel state information (CSI), ACK, and NACK fed back by the terminal device.
  • Downlink transmission means that a network device sends information to a terminal device, and the information that is downlinked can be downlink information or downlink signals.
  • the downlink information or downlink signal may include one or more of downlink data signal, downlink control signal, channel state information reference signal (CSI-RS), phase tracking reference signal (PTRS) kind.
  • the channel used to transmit downlink information or downlink signals is called a downlink channel.
  • the downlink channel may include one or more of a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH).
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • the PDCCH is used to carry downlink control information (DCI)
  • the PDSCH is used to carry downlink data (data)
  • the downlink data may also be referred to as downlink data information.
  • Frame structure parameters can also be referred to as system parameters or configuration parameters.
  • the frame structure parameters may include one or more of sub-carrier spacing, cyclic prefix (CP) type, and time slot length.
  • CP type can also be called CP length, or CP for short.
  • the CP type may be extended CP (ECP) or normal (normal) CP (NCP).
  • ECP extended CP
  • NCP normal (normal) CP
  • the next time slot of the extended CP may include 12 time domain symbols
  • the next time slot of the normal CP may include 14 time domain symbols.
  • Time domain symbols can be referred to simply as symbols.
  • the time-domain symbols can be orthogonal frequency division multiplexing (OFDM) symbols, or discrete fourier transform spread orthogonal frequency division multiplexing (DFT-s-s- OFDM) symbol.
  • the time domain symbol may be an OFDM symbol as an example for description.
  • the frame structure parameters corresponding to number 0 are: the subcarrier interval is 15kHz, CP is the normal CP, the frame structure parameters corresponding to number 1 are: the subcarrier interval is 30kHz, CP is the normal CP, and the frame structure parameter corresponding to number 2
  • the subcarrier interval is 60kHz
  • CP is normal CP or extended CP
  • the frame structure parameter corresponding to number 3 is: subcarrier interval is 120kHz
  • CP is normal CP
  • the frame structure parameter corresponding to number 4 is: subcarrier interval 240kHz
  • CP is normal CP.
  • one time slot can be 1 millisecond (ms); when the subcarrier interval is 30kHz, one time slot can be 0.5ms.
  • a slot can include one or more symbols.
  • the next time slot of the normal cyclic prefix (CP) may include 14 symbols, and the next time slot of the extended CP may include 12 symbols.
  • Mini-slot also called mini-slot, can be a unit smaller than a slot, and a mini-slot can include one or more symbols.
  • a mini-slot may include 2 symbols, 4 symbols or 7 symbols, etc.
  • One slot may include one or more mini-slots.
  • the time slot characteristics under different frame structure parameters are shown in Table 2. among them, Indicates the number of symbols included in a slot, and the symbol number (or index) in the slot can be For example, there can be 14 symbols under the normal CP, and 12 symbols under the extended CP.
  • One radio frame may include 10 subframes, one radio frame may be 10ms, and one subframe may be 1ms.
  • Represents the number of time slots included in a wireless frame under the frame structure parameter ⁇ , and the number of time slots in a wireless frame (or called index) Can be Represents the number of time slots included in a subframe under the frame structure parameter ⁇ , and the number of time slots in a subframe can be
  • the bandwidth part of the carrier can be referred to as the bandwidth part (BWP) for short.
  • a BWP is a group of continuous frequency domain resources on the carrier.
  • BWP is a group of continuous resource blocks (RB) on the carrier, or BWP is the carrier
  • the previous group of continuous subcarriers, or BWP is a group of continuous resource block groups (RBG) on the carrier.
  • one RBG includes at least one RB, such as 1, 2, 4, 6, or 8, etc.
  • one RB may include at least one subcarrier, such as 6 or 12, etc.
  • the network in a cell, for a terminal device, can configure a maximum of 4 BWPs for the terminal device.
  • 4 BWPs Under frequency division duplexing (FDD), 4 BWPs can be configured for the uplink and downlink, and 4 BWPs can be configured for the uplink and downlink under TDD (time division duplexing).
  • 4 in this method can also be replaced with other positive integer values, such as 3, 6, etc., which are not limited in the embodiment of the present application.
  • the network device may configure the terminal device with frame structure parameters including subcarrier spacing and/or CP length for each BWP.
  • a terminal device can only activate one uplink BWP and one downlink BWP, and the terminal device and network device send and receive data on the activated BWP.
  • BWP can be defined on a given carrier, that is, a BWP resource is located in a carrier resource.
  • one BWP may include multiple frequency domain resources discrete on a carrier, such as multiple subcarriers or multiple RBs.
  • the discrete frequency domain resources include at least two adjacent frequency domain resources in the BWP, and the two frequency domain resources are not continuous on the carrier.
  • the unit of the time unit may be a radio frame (radio frame), subframe (subframe), time slot (slot), mini-slot (mini-slot), and symbol (symbol).
  • a time unit may include one or more time unit units. For example, in a specific implementation, a time unit may include 2 time slots and so on.
  • One radio frame may include one or more subframes, and one subframe may include one or more time slots.
  • a slot can include one or more symbols.
  • next time slot of the normal cyclic prefix may include 14 time domain symbols
  • the next time slot of the extended CP may include 12 time domain symbols.
  • Time domain symbols can be referred to simply as symbols.
  • the time-domain symbols can be orthogonal frequency division multiplexing (OFDM) symbols, or discrete fourier transform spread orthogonal frequency division multiplexing (DFT-s-s- OFDM) symbol.
  • the time domain symbol may be an OFDM symbol as an example for description.
  • Mini-slot also called mini-slot, can be a unit smaller than a slot, and a mini-slot can include one or more symbols.
  • a mini-slot may include 2 symbols, 4 symbols or 7 symbols, etc.
  • One slot may include one or more mini-slots.
  • the embodiments of this application are applicable to both homogeneous and heterogeneous network scenarios, and there are no restrictions on transmission points. They can be macro base stations and macro base stations, micro base stations and micro base stations, and multiple base stations between macro base stations and micro base stations. Point cooperative transmission.
  • the application is applicable to both low-frequency scenarios (for example, sub 6G) and high-frequency scenarios (above 6G).
  • transmission involved in this application may include sending and/or receiving (of data and/or control information).
  • the verb "transmit” referred to in this application may include sending and/or receiving.
  • uplink transmission refers to a terminal device sending an uplink signal or uplink information to a network device
  • a side link transmission refers to a terminal device sending a side link signal or side link information to other terminal devices
  • a side link transmission refers to a terminal device receiving Side-link signals or side-link information sent by other terminal devices.
  • Words such as “first” and “second” are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance, nor as indicating or implying order.
  • the first terminal device and the second terminal device may be the terminal device 10 in FIG. 1, and the network device may be the network device 20 in FIG. .
  • This process can include:
  • the first terminal device determines the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal;
  • the first terminal device sends the first signal and/or the second signal according to the priority of the first signal and the second signal.
  • the first frame structure reference of the first signal may be described as the frame structure parameter of the BWP where the first signal is located
  • the second frame structure parameter of the second signal may be described as the frame structure parameter of the BWP where the second signal is located.
  • the priority of the first signal and the second signal can also be described as the transmission priority of the first signal and the second signal. For example, when the priority of the first signal is higher, the transmission of the first signal is guaranteed first; when the priority of the second signal is higher, the transmission of the second signal is guaranteed first.
  • the process shown in FIG. 2 above can be applied to both the side link and Uu air interface scenarios.
  • the first signal may be an uplink signal
  • the second signal may be a side link signal.
  • the above process of S202 may be: the first terminal device sends a first signal to the network device, and the network device receives the first signal. And/or, the first terminal device may send a side link signal to the second terminal device, and the second terminal device receives the side link signal.
  • the first frame structure reference of the first signal can be described as the frame structure parameter of the uplink BWP (UL BWP)
  • the second frame structure parameter of the second signal can be described as the frame of the side link BWP (SL BWP) Structural parameters.
  • the priority of the uplink signal and the side link signal may also be referred to as the priority of uplink transmission and side link transmission, or may also be referred to as the priority of uplink signal transmission and side link signal transmission , Or can also be called the priority of Uu air interface and side link air interface.
  • the process shown in Figure 2 above can only be applied to a side link scenario, and the first signal can be one or more of a side link data signal, a side link feedback signal, and a side link control signal.
  • the second signal can be one or more of the side link data signal, the side link feedback signal, and the side link control signal, or it can be described as: the first signal can be the signal carried by the PSSCH, and the PSCCH carries Signal, one or more of the signals carried by the PSFCH, the second signal can be the signal carried by the PSSCH, the signal carried by the PSCCH, one or more of the signals carried by the PSFCH, the first terminal device can send the signal to the second The terminal device sends the first signal and/or sends the second signal to the third terminal device, correspondingly, the second terminal device receives the first signal, and/or the third terminal device receives the second signal.
  • the second terminal device and the third terminal device may be the same or different, which is not limited in the embodiment of the present application.
  • the types of the first signal and the second signal are different; when the second terminal device and the third terminal device are different, the types of the first signal and the second signal can be the same , Can also be different.
  • the first frame structure reference of the first signal may be described as the frame structure parameter of the first SL BWP
  • the second frame structure parameter of the second signal may be described as the frame structure parameter of the second SL BWP.
  • the first SL BWP and the second SL BWP may be the same or different.
  • the first signal can be one or more of the uplink data signal, the uplink feedback signal, and the uplink control signal
  • the second signal can be One or more of uplink data signal, uplink feedback signal, and uplink control signal, or can be described as:
  • the first signal can be a signal carried by PUSCH, one or more of the signals carried by PUCCH, and the second signal It can be one or more of the signal carried by PUSCH and the signal carried by PUCCH.
  • the first terminal device sends the first signal to the first network device, and/or the second terminal device sends the second signal to the second network device. Yes, the network device receives the first signal and/or the second signal.
  • the first network device and the second network device may be the same or different, which is not limited in the embodiment of the present application.
  • the types of the first signal and the second signal are different; when the first network device and the second network device are different, the types of the first signal and the second signal can be the same , Can also be different.
  • the access technologies supported by the first network device and the second network device may be the same or different.
  • the first frame structure reference of the first signal may be described as the frame structure parameter of the first UL BWP
  • the second frame structure parameter of the second signal may be described as the frame structure parameter of the second UL BWP.
  • the first UL BWP and the second UL BWP may be the same or different.
  • a specific implementation of S201 may be: the first terminal device determines the second signal priority under the second frame structure parameter according to the second frame structure parameter of the second signal.
  • the first terminal device determines the priority of the first signal and the second signal according to the priority of the second signal and the priority threshold under the second frame structure parameter.
  • the above priority threshold may be applicable to all frame structure parameters, that is, the priority thresholds under different frame structure parameters may be the same, and the above priority threshold may be notified by the network device to the terminal device through signaling, or, According to the agreement.
  • a specific implementation of S201 may be: the first terminal device determines the first signal priority under the first frame structure parameter according to the first frame structure parameter of the first signal.
  • the first terminal device determines the priority of the first signal and the second signal according to the priority of the first signal and the priority threshold under the first frame structure parameter.
  • the foregoing process of determining the priority of the first signal and the second signal based on the second frame structure parameter of the second signal is the same as the foregoing process of determining the first signal and the second signal based on the first frame structure parameter of the first signal.
  • the process of priority of the two signals is similar.
  • the determination of the priority of the first signal and the second signal according to the second frame structure parameter of the second signal is taken as an example for description, and it is not taken as a limitation to the embodiment of the present application.
  • the first signal priority may refer to the priority of the data packet in which the first signal is located; when the second signal is a data signal, the second signal has priority The level may refer to the priority of the data packet where the second signal is located.
  • the first terminal device may determine the second signal priority under at least one frame structure parameter, and the second signal priority under the at least one frame structure parameter may be notified by the network device to the terminal device through signaling, or, According to the agreement.
  • the at least one frame structure parameter includes a second frame structure parameter.
  • the first terminal device determines the second signal priority under the second frame structure parameter according to the second frame structure parameter and the second signal priority under the at least one frame structure parameter.
  • the network device may notify the second signal priority under one or more frame structure parameters. For example, the network device may notify that the second signal priority under frame structure parameter A is Pd1, the second signal priority under frame structure parameter B is Pd2, and the second signal priority under frame structure parameter C is Pd3.
  • the values of Pd1, Pd2, and Pd3 may be real numbers, and the real numbers include positive integers or integers. Alternatively, the values of Pd1, Pd2, and/or Pd3 may also be infinite or infinitely small.
  • the terminal device uses the frame structure parameter A to transmit the second signal, the priority of the first signal and the second signal can be determined according to Pd1 and the priority threshold.
  • the priority threshold when Pd1 is less than (or, less than or equal to) the priority threshold, it may be determined that the priority of the second signal is higher; otherwise, it may be determined that the priority of the first signal is higher. For another example, when Pd1 is greater than (or, greater than or equal to) the priority threshold, it may be determined that the priority of the second signal is higher; otherwise, it may be determined that the priority of the first signal is higher.
  • the terminal device uses the frame structure parameter B to transmit the second signal, the priority of the first signal and the second signal may be determined according to Pd2 and the priority threshold.
  • the terminal device uses the frame structure parameter C to transmit the second signal, the process is similar to the above, and will not be repeated.
  • the second signal priority under one or more frame structure parameters can be predefined through the protocol.
  • the data packet priority under the frame structure parameter A can be predefined as Pd1
  • the data packet priority under the frame structure parameter B is Pd2
  • the superior packet priority under the frame structure parameter C is Pd3.
  • the priority of the first signal and the second signal can be determined according to Pd1 and the priority threshold.
  • the priority of the first signal and the second signal can be determined according to Pd2 and the priority threshold.
  • the terminal device uses the frame structure parameter C to transmit the second signal the process is similar to the above, and will not be repeated.
  • Example 1.1 the second signal priority under different frame structure parameters is specified through signaling or protocol, which can meet the requirements for determining the priority of the first signal and the second signal under multiple frame structure parameters, and improve the transmission performance.
  • the first terminal device may determine the priority of the second signal under the reference frame structure parameter.
  • the second signal priority under the reference frame structure parameter may be notified by the network device through signaling, or may be specified by the protocol. Determine the second signal priority under the second frame structure parameter according to the second signal priority under the reference frame structure parameter and the second frame structure parameter.
  • the reference signal in the second frame structure parameters ⁇ f priority P 'F, a second frame structure parameter [mu] is the second priority signal P'
  • the P 'F and P' may be a corresponding relationship exists between
  • the corresponding relationship may be defined by the protocol, or notified by the network equipment through signaling.
  • the optional ⁇ - ⁇ f can also be replaced with
  • the values of P′ f and P′ can be real numbers, and the real numbers include positive integers or integers.
  • signaling the second signal priority under the reference frame structure parameter can reduce the signaling overhead.
  • the requirements for determining the priority of the first signal and the second signal under different frame structure parameters can be met, and the transmission performance can be improved.
  • a specific implementation of S201 may be: the first terminal device determines the priority threshold under the second frame structure parameter according to the second frame structure parameter of the second signal.
  • the first terminal device determines the priority of the first signal and the second signal according to the priority of the second signal and the priority threshold under the second frame structure parameter.
  • the foregoing second signal priority may be applicable to all frame structure parameters, that is, the second signal priority is the same for all frame structure parameters, and the second signal priority may be specified by the protocol, or ,
  • the network equipment is configured to the terminal equipment through signaling.
  • a specific implementation of S201 may be: the first terminal device determines the priority threshold under the first frame structure parameter according to the first frame structure parameter of the first signal. The first terminal device determines the priority of the first signal and the second signal according to the priority of the first signal and the priority threshold under the first frame structure parameter.
  • the foregoing process of determining the priority of the first signal and the second signal based on the second frame structure parameter of the second signal is the same as the foregoing process of determining the first signal and the second signal based on the first frame structure parameter of the first signal.
  • the process of priority of the two signals is similar.
  • the determination of the priority of the first signal and the second signal according to the second frame structure parameter of the second signal is taken as an example for description, and it is not taken as a limitation to the embodiment of the present application.
  • the first terminal device may determine a priority threshold under at least one frame structure parameter, and the at least one frame structure parameter includes a second frame structure parameter.
  • the priority threshold under the at least one frame structure parameter may be signaled by the network equipment, or specified by the protocol.
  • the first terminal device determines the priority threshold under the second frame structure parameter according to the priority threshold under the at least one frame structure parameter and the second frame structure parameter.
  • the network device may notify the priority threshold under one or more frame structure parameters.
  • the network device may notify that the priority threshold under frame structure parameter A is P1, the priority threshold under frame structure parameter B is P2, and the priority threshold under frame structure parameter C is P3.
  • the values of P1, P2, and P3 may be real numbers, or at least one of them may be infinite or infinitely small, and the real numbers may include positive integers or integers.
  • the priority threshold P1 corresponding to the frame structure parameter A is used to determine the priority of the first signal and the second signal, for example, if the priority of the second signal is less than (Or, less than or equal to) P1, it is determined that the priority of the second signal is higher; otherwise, it is determined that the priority of the first signal is higher. For another example, when the priority of the second signal is greater than (or, greater than or equal to) P1, it may be determined that the priority of the second signal is higher; otherwise, it may be determined that the priority of the first signal is higher.
  • the frame structure parameter B or C is used to transmit the second signal, it is similar to the above-mentioned process of using the frame structure parameter A to transmit the second signal, and will not be repeated. or,
  • one or more priority thresholds under frame structure parameters can be predefined through the protocol.
  • the protocol may specify that the priority threshold under frame structure parameter A is P1, the priority threshold under frame structure parameter B is P2, and the priority threshold under frame structure parameter C is P3.
  • the method for determining the priority of the first signal and the second signal is similar to the method notified by the network device described above, and will not be described in detail.
  • the network device may configure the priority threshold corresponding to the frame structure parameter of the BWP when configuring the BWP of the second signal.
  • the configuration information may include the priority threshold corresponding to the frame structure parameter of the BWP.
  • the terminal device can determine the priority threshold corresponding to the frame structure parameter of the BWP according to the configuration information of the SL BWP, that is, the terminal device can determine the priority threshold under the second frame structure parameter of the second signal.
  • the priority thresholds under different frame structure parameters are specified through signaling or protocol, which can meet the requirements for determining the priority of the first signal and the second signal under different frame structure parameters, and improve transmission performance.
  • the first terminal device may determine the priority threshold under the reference frame structure parameter, and the first terminal device may determine the priority threshold under the second frame structure parameter according to the second frame structure parameter and the priority threshold under the reference frame structure parameter The priority threshold.
  • the priority threshold under the reference frame structure parameter may be notified by the network device through signaling, or specified by the protocol.
  • the priority threshold value under the reference frame structure parameter ⁇ f is P f
  • the priority threshold value under the second frame structure parameter ⁇ is P
  • the foregoing corresponding relationship may be predefined by the protocol, or notified by the network equipment through signaling.
  • the values of P f and P can be real numbers, and the real numbers include positive integers or integers.
  • ⁇ - ⁇ f can also be replaced with
  • signaling the priority threshold under the reference frame structure parameter can reduce the signaling overhead.
  • the priority thresholds under different frame structure parameters can be determined to meet the requirements for determining the priority of the first signal and the second signal under multiple frame structure parameters, and improve transmission performance.
  • a specific implementation of S201 may be: the first terminal device determines the second signal priority and the second signal priority under the second frame structure parameter according to the second frame structure parameter. Priority threshold under two frame structure parameters; the first terminal device determines the first signal and the priority threshold according to the second signal priority under the second frame structure parameter and the priority threshold under the second frame structure parameter The priority of the second signal.
  • a specific implementation of S201 may be: the first terminal device determines the priority of the first signal and the priority under the first frame structure parameter according to the first frame structure parameter of the first signal. The priority threshold under the first frame structure parameter. The first terminal device determines the priority of the first signal and the second signal according to the priority of the first signal under the first frame structure parameter and the priority threshold under the first frame structure parameter.
  • the foregoing process of determining the priority of the first signal and the second signal based on the second frame structure parameter of the second signal is the same as the foregoing process of determining the first signal and the second signal based on the first frame structure parameter of the first signal.
  • the process of priority of the two signals is similar.
  • the determination of the priority of the first signal and the second signal according to the second frame structure parameter of the second signal is taken as an example for description, and it is not taken as a limitation to the embodiment of the present application.
  • the priority of the second signal under different frame structure parameters and the priority threshold under different frame structure parameters can be determined to meet the requirements for determining the priority of the first signal and the second signal under multiple frame structures. Improve transmission performance.
  • the first signal priority may include the service requirement (quality of service, QoS) parameter of the first signal.
  • the priority of the second signal may include the QoS parameter of the second signal.
  • the QoS parameter may be a short-distance service packet priority (proSe per-packet priority, PPPP), 5G QoS identifier (5G QoS identifier, 5QI), or V2X 5QI (may be referred to as VQI) and other parameters.
  • the short distance service may also be referred to as short distance communication or side link communication, and the short distance service or side link communication refers to communication between a terminal device and a terminal device.
  • the second signal priority can be represented by a numerical value
  • the numerical value can be a real number
  • the real number includes an integer or a positive integer
  • the numerical value It can be infinite or infinite.
  • a positive integer 1 to 8 is used to characterize the priority of the second signal.
  • the priority threshold can be represented by a numerical value
  • the numerical value can be a real number
  • the real number includes an integer or a positive integer
  • the numerical value can be Infinite or infinitely small.
  • a positive integer 1 to 8 is used to characterize the priority threshold.
  • a specific implementation of S201 may be: the first terminal device determines the priority of the first signal and the second signal according to the corresponding relationship between the first frame structure parameter combination and the priority.
  • the first frame structure parameter combination includes the first frame structure parameter and the second frame structure parameter.
  • the first terminal device may determine the correspondence between at least one frame structure parameter combination and priority, and the at least one frame structure parameter combination includes the first frame structure parameter combination.
  • the correspondence between at least one frame structure parameter combination and priority may be notified by the network device to the terminal device through signaling, or specified by the protocol.
  • the first terminal device determines the priority corresponding to the first frame structure parameter combination composed of the first frame structure parameter and the second frame structure parameter in the corresponding relationship between the at least one frame structure parameter combination and the priority.
  • the corresponding priority can be configured, for example: the priority of the first signal is higher than the priority of the second signal, or the priority of the second signal is higher than the priority of the first signal. The priority of the signal.
  • the correspondence relationship between at least one frame structure parameter combination and priority is notified by predefined or signaling, which can meet the requirements for determining the priority of the first signal and the second signal under multiple frame structure parameters, and improve Transmission performance.
  • a specific implementation of S201 may be: the first terminal device determines the priority of the first signal and the second signal according to the corresponding relationship between the first subcarrier spacing combination and the priority.
  • the first subcarrier interval combination includes the first subcarrier interval in the first frame structure parameter and the second subcarrier interval in the second frame structure parameter.
  • the first terminal device may determine the correspondence between at least one subcarrier spacing combination and priority, and the at least one subcarrier spacing combination includes the first subcarrier spacing and the second frame structure included in the first frame structure parameter The combination of the second subcarrier interval included in the parameter.
  • the correspondence between at least one combination of subcarrier spacing and priority may be notified by the network equipment through signaling, or specified by the protocol.
  • one subcarrier spacing combination may include two subcarriers, three subcarriers or more, which is not limited in the embodiment of the present application. In this embodiment, two subcarriers can be included in one subcarrier spacing combination as an example for description.
  • 16 sub-carrier spacing combinations can be defined.
  • the defined 16 sub-carrier spacing combinations can be numbered from 0 to 15 from left to right, top to bottom, first row and then column:
  • the network equipment may notify or pre-define the priorities of combinations in different subcarrier intervals through signaling. For example, in the combination of subcarrier spacing 1, 2, 3, 6, 7, and 11, the priority of the second signal is higher than the priority of the first signal. In subcarrier spacing combinations 4, 8, 9, 12, 13, 14, the priority of the second signal is lower than the priority of the first signal.
  • the priority corresponding to the foregoing subcarrier spacing combination may also be another specific example, which is not limited in the embodiment of the present application.
  • the correspondence relationship between at least one subcarrier spacing combination and priority is notified by predefined or signaling, which can meet the requirements of determining the priority of the first signal and the second signal under multiple frame structure parameters, and improve transmission performance.
  • the first terminal device may determine the priority of the first signal and the second signal according to priority rules in one or more combinations.
  • the priority rule under the one or more combinations may be notified by the network device through signaling, or specified by the protocol.
  • the one or more combinations may be a combination of different or the same frame structure parameters, or the one or more combinations may be a combination of different or the same subcarrier spacing, etc.
  • the first subcarrier interval in the first frame structure parameter of the first signal and the second subcarrier interval in the second frame structure parameter of the second signal can form a combination
  • the priority rule corresponding to the combination can be It is: determining the priority of the first signal and the second signal according to the size relationship between the first subcarrier interval and the second subcarrier interval.
  • a specific implementation of S201 may be: the first terminal device according to the first subcarrier interval in the first frame structure parameter and the second subcarrier in the second frame structure parameter The size relationship of the interval determines the priority of the first signal and the second signal.
  • the first subcarrier interval is greater than (or, greater than or equal to) the second subcarrier interval, it is determined that the priority of the first signal is higher; otherwise, it is determined that the priority of the second signal is higher.
  • the first subcarrier interval is smaller than (or, less than or equal to) the second subcarrier interval, it is determined that the priority of the second signal is high; otherwise, it is determined that the priority of the first signal is high.
  • the priority of the first signal and the second signal is determined according to the first subcarrier interval and the second subcarrier interval as an example for description, and is not intended as a limitation to the embodiment of the present application.
  • other rules may be predefined or signaled to determine the priority of the first signal and the second signal.
  • the priority of the first signal and the second signal is determined by the subcarrier spacing of different frame structure parameters, which meets the requirements of determining the priority of the first signal and the second signal under different frame structure parameters, and improves Transmission performance.
  • the specific implementation process for the foregoing S202 may be: the first terminal device determines the first transmission power of the first signal and/or the second transmission power of the second signal according to the priorities of the first signal and the second signal; The first terminal device transmits the first signal according to the first transmission power, and/or the first terminal device transmits the second signal according to the second transmission power.
  • the specific implementation process for the foregoing S202 may be: the first terminal device determines to send only the first signal or only the second signal according to the priority of the first signal and the second signal.
  • the first terminal device may determine whether the first terminal device supports simultaneous transmission of the first signal and the second signal. For example, since at a time, on a radio frequency (RF) link, the terminal device can only support the transmission of one frame structure parameter signal. Therefore, if the transmission of the first signal and the transmission of the second signal are shared For an RF link, and the frame structure parameters of the first signal and the second signal are different, it can be determined that the terminal device does not support the simultaneous transmission of the first signal and the second signal. If the transmission of the first signal and the transmission of the second signal use different radio frequency links, no matter whether the frame structure parameters of the first signal and the second signal are the same, it can be determined that the terminal device supports the first signal and the second signal at the same time. transmission.
  • RF radio frequency
  • the first transmission power of the first signal and the second transmission power of the second signal are determined according to the priority of the first signal and the second signal. That is, the first terminal device transmits the first signal with the first transmission power, and/or, the first terminal device transmits the second signal with the second transmission power.
  • the second transmission power of the second signal can be adjusted according to the first transmission power of the first signal, that is, the first transmission power of the first signal is guaranteed first and reduced The second transmission power of the second signal or abandon the transmission of the second signal. It can be understood that when the second transmission power of the second signal is adjusted to zero, it can be regarded as giving up the transmission of the second signal or not sending the second signal. If the priority of the second signal is higher than that of the first signal, the first transmission power of the first signal can be adjusted according to the second transmission power of the second signal, that is, the second transmission power of the second signal is guaranteed first, and the first transmission power is adjusted. The first transmission power of the signal or abandon the transmission of the first signal.
  • the abandonment of the transmission of the signal or information may also be regarded as the abandonment of the signal or information.
  • abandoning the transmission of the second signal can also be called discarding the second signal.
  • Abandoning the transmission of the first signal may also be referred to as discarding the first signal.
  • adjusting the second transmission power of the second signal according to the transmission power of the first signal or adjusting the first transmission power of the first signal according to the transmission power of the second signal includes: making the transmission power of the terminal device Do not exceed the maximum transmit power.
  • the method for terminal equipment to adjust the transmission power of another signal according to one signal is similar to the method of adjusting the transmission power of PUSCH according to the transmission power of PUCCH in LTE protocol 36.213 or NR protocol 38.213, or the method of adjusting the transmission power of PUCCH according to the transmission power of PUSCH Or, the method of adjusting the transmission power of the PSSCH according to the transmission power of the PSCCH, or the method of adjusting the transmission power of the PSCCH according to the transmission power of the PSSCH, or other adjustment methods, which are not limited in the embodiment of the present application.
  • the simultaneous transmission of the first signal and the second signal is not supported, it is determined to send the first signal or the second signal according to the priority of the first signal and the second signal. For example, if the priority of the first signal is higher than the second signal, the first terminal device may only transmit the first signal, otherwise, the first terminal device only transmits the second signal.
  • the first terminal device does not support simultaneous transmission of the first signal and the second signal.
  • the first signal is an uplink signal
  • the first signal corresponds to the first frame structure parameter
  • the subcarrier interval in the first frame structure parameter is 15 kHz.
  • the duration of one time slot is 1ms.
  • the second signal is a side link signal
  • the second signal corresponds to the second frame structure parameter
  • the subcarrier interval in the second frame structure parameter is 60 kHz.
  • the duration of one time slot is approximately 0.25 ms. It can be seen from Fig. 3a or Fig. 3b that the length of one time slot under the sub-carrier interval of 15 kHz is equal to the length of 4 time slots under the sub-carrier interval of 60 kHz.
  • the terminal device can first use the 60kHz subcarrier interval to send the side link signal, and then proceed RF switching (RF switching) may refer to switching from a sub-carrier interval of 60 kHz to a sub-carrier interval of 15 kHz, and then sending an uplink signal at a sub-carrier interval of 15 kHz. Wherein, the RF switching requires three time slots with a 60kHz subcarrier interval. It can be seen from Fig. 3b that the transmission delay of the uplink signal is one time slot under the 15kHz subcarrier interval, which is 1ms.
  • the terminal device can first use the 15kHz subcarrier interval to send the uplink signal for RF Switching, the RF switching refers to switching from a sub-carrier interval of 15 kHz to a sub-carrier interval of 60 kHz, and then sending a side link signal at a sub-carrier interval of 60 kHz. It can be seen from Figure 3a that the transmission delay of the side link signal is approximately 1.75 ms.
  • the method further includes: the first terminal device performs RF switching (for example, switching from the RF for transmitting the first signal to the RF for transmitting the second signal; or from the RF for transmitting
  • the RF switching of the second signal is the RF used to transmit the first signal
  • the value of the RF switching may be equal to the BWP switching delay.
  • the BWP switching delay may refer to the time required for BWP switching. Within the BWP switching delay, the terminal device cannot send and receive signals. As shown in Table 3, under different frame structure parameters ⁇ , the BWP switching delay is different.
  • the BWP switching delay is 1 time slot.
  • the time delay of BWP switching in 2 times is 3 time slots.
  • the value of the frame structure parameter ⁇ is 1, it corresponds to the subcarrier interval of 30kHz, and the length of a time slot is 0.5ms.
  • the BWP switching delay in Type 1 is 2 timeslots, and the BWP switching delay in Type 2 is 5 time slots.
  • the value of the frame structure parameter ⁇ is 2 it corresponds to the subcarrier interval of 60kHz, and the length of a time slot is approximately 0.25ms.
  • the BWP switching delay in Type 1 is 3 timeslots, and the BWP switching delay in Type 2 is For 9 time slots.
  • the value of the frame structure parameter ⁇ is 3, corresponding to the 120kHz subcarrier interval, the length of a time slot is approximately 0.125ms, and the BWP switching delay in Type 1 is 6 timeslots, and the BWP switching delay in Type 2 is For 17 time slots.
  • the value of the BWP handover delay is the BWP handover delay corresponding to Type 1.
  • the value of the BWP handover delay is the BWP handover delay corresponding to Type 2.
  • the terminal device switches from BWP1 to BWP2, and the frame structure parameters ⁇ of BWP1 and BWP2 are the same, and the BWP switching delay can be determined according to the BWP switching delay shown in Table 3. For example, if the value of the frame structure parameter ⁇ of BWP1 and BWP2 is 0, and the terminal device supports the type 1 BWP switching delay, the BWP switching delay is 1 time slot under the 15kHz subcarrier interval, Corresponds to 1ms.
  • the terminal device switches from BWP1 to BWP2, and the frame structure parameters ⁇ of BWP1 and BWP2 are different.
  • the frame structure parameter of BWP1 is set as the first frame structure parameter, and the first frame structure parameter corresponds to the first subcarrier interval.
  • the frame structure parameter of BWP2 is the second frame structure parameter, and the second frame structure parameter corresponds to the second subcarrier interval. If the first subcarrier interval is greater than the second subcarrier interval, the BWP handover delay is determined according to the first frame structure parameter. If the second subcarrier interval is greater than the first subcarrier interval, the BWP handover delay is determined according to the second frame structure parameter. Specifically, if the BWP switching delay is determined according to the first frame structure parameter or the second frame structure parameter, refer to the description in Table 3 above.
  • the switching delay from BWP1 to BWP2 is the corresponding switching delay of 60kHz
  • the BWP switching delay under Type 1 is 3 time slots under the sub-carrier interval of 60 kHz
  • the BWP switching delay under Type 2 is 9 time slots under the sub-carrier interval of 60 kHz.
  • the length of the time slot is different.
  • 1 time slot at a subcarrier interval of 15kHz is equal to 2 time slots at a subcarrier interval of 30kHz
  • 4 time slots at a subcarrier interval of 60kHz is equal to 120kHz. 8 time slots under sub-carrier spacing.
  • the specific implementation process of the foregoing S202 may be: the first terminal device transmits the first signal at the first transmission power, and/or transmits the second signal at the second transmission power.
  • the first terminal device may transmit the first signal at the first transmission power and the second transmission power on the first carrier and the first time unit.
  • the second signal may also be said that the first terminal device simultaneously transmits the first signal and the second signal on the first carrier.
  • the first terminal device may transmit the first signal with the first transmission power on the first carrier and the first time unit, and when the second carrier and the first time unit The unit transmits the second signal with the second transmit power. Or, it can also be called that the first terminal device sends the first signal on the first carrier and sends the second signal on the second carrier.
  • the first terminal device may transmit the second signal with the second transmission power on the first carrier and the first time unit. Or, it can also be said that the first terminal device only sends the second signal on the first carrier.
  • the first terminal device may transmit the first signal with the first transmission power on the first carrier and the first time unit. Or, it can also be said that the first terminal device only sends the first signal on the first carrier.
  • the CA may include a primary cell (primary cell, PCell) and a secondary cell (secondary cell, SCell).
  • primary cell primary cell
  • secondary cell secondary cell
  • the first terminal device may And the priority of the secondary cell to determine the priority of the first signal and the second signal. That is, in the process shown in FIG. 2 above, S201 can be replaced with: the first terminal device determines the priority of the first signal and the second signal according to the priority of the primary cell and the secondary cell.
  • the priority of the primary cell is higher than the priority of the secondary cell
  • the priority of the first signal is higher than that of the second signal.
  • priority is higher than the priority of the first signal.
  • the embodiment of the present application can also determine the priority in combination with the cell identity. For example, when the priority of the small cell identity is higher than the priority of the large cell identity, if the first signal is transmitted on the cell with the small cell identity, the cell with the large identity If the second signal is transmitted on the cell, the priority of the first signal is higher than the priority of the second signal. Similarly, if the second signal is transmitted on a cell with a small cell identity and the first signal is transmitted on a cell with a large cell identity, the priority of the second signal is higher than the priority of the first signal.
  • the embodiment of the present application may also determine the priority in combination with the cell identity. For example, when the priority of a large cell identity is higher than the priority of a small cell identity, if the first signal is transmitted on a cell with a large cell identity, the cell identity with a small If the second signal is transmitted on the cell, the priority of the first signal is higher than the priority of the second signal. Similarly, if the second signal is transmitted on a cell with a large cell identity and the first signal is transmitted on a cell with a small cell identity, the priority of the second signal is higher than the priority of the first signal.
  • the cell of the terminal device may include a master cell group (master cell group, MCG) and a secondary cell group (secondary cell group, SCG).
  • the primary cell in the primary cell group is called the primary cell PCell, and the remaining cells are secondary cells SCell.
  • the primary cells in the secondary cell group are called primary and secondary cells (primary and secondary cells, PSCell), and the remaining cells are secondary cells, SCells.
  • S201 can be replaced by: the first terminal device according to the primary cell PCell, primary and secondary cell PSCell and/or secondary cell
  • the priority of the SCell determines the priority of the first signal and the second signal.
  • the priority of the primary cell PCell is higher than the priority of the primary and secondary cell PSCell, and the priority of the primary and secondary cell PSCell is higher than the priority of the secondary cell SCell
  • the primary cell is used to transmit the first signal
  • the priority of the first signal is higher than the priority of the second signal. If the primary cell is used to transmit the second signal, and the primary and secondary cell and/or the secondary cell are used to transmit the first signal, the priority of the second signal is higher than the priority of the first signal.
  • the priority of the first signal and the second signal can be determined according to whether the cell is configured with PUCCH.
  • the first cell is configured with PUCCH, and the second cell is not configured with PUCCH.
  • the priority of the first cell is higher than the priority of the second cell. If the first cell is used to transmit the first signal, the second cell is used to transmit the second signal. , The priority of the first signal is higher than the priority of the second signal. If the first cell is used to transmit the second signal and the second cell is used to transmit the first signal, the priority of the second signal is higher than the priority of the first signal.
  • the network equipment is notified through signaling, which may include: the network equipment may use system information, high-level signaling (such as radio resource control, RRC) signaling ), physical layer signaling (such as downlink control information (DCI) signaling), media access control control element ((media access control control element, MAC CE), etc.) notify the terminal equipment.
  • high-level signaling such as radio resource control, RRC
  • RRC radio resource control
  • DCI downlink control information
  • MAC CE media access control element
  • the network equipment is notified by signaling, which can also be replaced by the operator notifying by signaling.
  • the operator can notify the terminal device through pre-configuration signaling, or the operator can write the pre-configuration signaling in the subscriber identification module (SIM) of the terminal or the universal subscriber identity module (USIM).
  • SIM subscriber identification module
  • USIM universal subscriber identity module
  • the terminal can obtain pre-configured signaling and so on by reading the SIM or USIM.
  • the SIM may be a user identification card, also called a user identification card, a smart card, etc.
  • USIM can be the abbreviation of Global User Identification, or it can be called Upgrade SIM.
  • the terminal device can receive multiple configuration signaling, such as pre-configuration signaling, system information, public RRC signaling, UE-specific RRC signaling, DCI signaling, etc.
  • multiple configuration signaling such as pre-configuration signaling, system information, public RRC signaling, UE-specific RRC signaling, DCI signaling, etc.
  • One or more of the multiple configuration signaling may be covered by other signaling, for example, signaling coverage is performed according to the following rules:
  • DCI signaling can cover pre-configuration signaling, system information, public RRC signaling, and UE-specific RRC signaling;
  • UE-specific RRC signaling can cover pre-configuration signaling, system information, and public RRC signaling;
  • Common RRC signaling can cover pre-configuration signaling and system information; system information can cover pre-configuration signaling.
  • the terminal device uses the parameters in the DCI signaling The value shall prevail; if the terminal device can receive UE-specific RRC signaling and pre-configuration signaling, and the two signaling configures the same parameters, the terminal device shall use the parameter value in the UE-specific RRC signaling to prevail ; If the terminal device can receive the system information and the pre-configuration signaling, and the two signaling configures the same parameters, the UE takes the parameter value in the system information as the standard.
  • this application provides an application scenario, which is not a limitation to the embodiment of the application.
  • the first signal is an uplink signal, which corresponds to uplink transmission
  • the second signal is a side link signal, which corresponds to side link transmission, as an example for description.
  • uplink signals are transmitted in UL BWP
  • side link signals are transmitted in SL BWP.
  • the terminal device may only send uplink signals or send side-link signals. If another signal needs to be sent, a radio frequency switch needs to be performed, and the switch requires a certain delay. Within this delay, the terminal device cannot send and receive signals. If the priority under the frame structure parameters is not considered, the transmission delay will be large, the available transmission resources will be reduced, and the signal transmission performance will be affected.
  • the communication method provided in Figure 2 of the embodiment of the present application considers determining the priority of the uplink signal and the side link signal according to different frame structure parameters, thereby reducing transmission delay, improving transmission resource utilization, and improving signal transmission performance .
  • the RF switching provided in the seventh embodiment of the present application may include one or more of the following RF switching.
  • the radio frequency bandwidth position is switched from a bandwidth position that includes SL BWP to a bandwidth position that includes UL BWP, or a bandwidth position that includes UL BWP is switched to a bandwidth position that includes SL BWP.
  • SL BWP is 60kHz subcarrier spacing
  • UL BWP is 60kHz subcarrier spacing, because there is only one BWP resource in the radio frequency bandwidth. Therefore, in the same time unit, the terminal equipment cannot transmit uplink and sidelink signals at the same time. For example, in time slot n, the terminal equipment transmits uplink signals in the UL BWP. In order to transmit the side link signal on time slot m, the radio frequency bandwidth needs to be switched from the position of time slot n to the position of time slot m. Radio frequency bandwidth switching requires a certain delay, within which the terminal device cannot receive and send.
  • SL BWP is 30 kHz sub-carrier spacing
  • UL BWP is 60 kHz sub-carrier spacing
  • the terminal equipment at the same time unit may only support signal transmission of one frame structure parameter. Therefore, in the same time unit, the terminal equipment cannot transmit the uplink signal and the side link signal at the same time. For example, in time slot n, the terminal equipment transmits uplink signals in UL BWP.
  • the subcarrier spacing needs to be switched from 60kHz to 30kHz.
  • the subcarrier spacing change may require a certain time delay, within which the terminal device cannot transmit and receive.
  • the radio frequency bandwidth position is switched from the bandwidth position that includes SL BWP to the bandwidth position that includes UL BWP, the frame structure parameter of SL BWP is switched to the frame structure parameter of UL BWP; or the bandwidth position that includes UL BWP is switched to include SL BWP
  • the bandwidth position is switched from the frame structure parameter of UL BWP to the frame structure parameter of SL BWP.
  • SL BWP is 30kHz subcarrier spacing
  • UL BWP is 60kHz subcarrier spacing
  • the terminal device may only support the transmission of signals with one frame structure parameter, and there is only A BWP resource. Therefore, in the same time unit, the terminal device cannot transmit the uplink signal and the side link signal at the same time.
  • the terminal equipment transmits uplink signals in UL BWP.
  • the subcarrier spacing needs to be switched from 60kHz to 30kHz, and the radio frequency bandwidth needs to be switched from the position of time slot n to time. The position of the gap m. Radio frequency conversion requires a certain delay, within which the terminal device cannot receive and send.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of network equipment, terminal, interaction between network equipment and terminal, and interaction between terminal and terminal.
  • the network device and the terminal may include hardware structures and/or software modules, and the above functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application further provides an apparatus 500 for implementing the function of the first terminal device in the foregoing method.
  • the device can be a terminal device or a device in a terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 500 may include:
  • the determining module 501 is configured to determine the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal.
  • the sending module 502 is configured to send the first signal and/or the second signal according to the priority of the first signal and the second signal.
  • the determining module 501 and the sending module 502 refer to the record in the above method embodiment.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device or module, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an embodiment of the present application provides a device 600 for implementing the function of the first terminal device in the above method.
  • the device may be a terminal device or a device in a terminal device.
  • the apparatus 600 includes at least one processor 601, configured to implement the function of the first terminal device in the foregoing method.
  • the processor 601 may determine the priority of the first signal and the second signal according to the first frame structure parameter of the first signal and/or the second frame structure parameter of the second signal. For details, refer to the method The detailed description is omitted here.
  • the device 600 may also include at least one memory 602 for storing program instructions and/or data.
  • the memory 602 is coupled with the processor 601.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 601 may cooperate with the memory 602 to operate.
  • the processor 601 may execute program instructions stored in the memory 602. At least one of the at least one memory may be included in the processor.
  • the apparatus 600 may further include a communication interface 603 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 600 can communicate with other devices.
  • the communication interface 603 may be a transceiver, circuit, bus, module, pin, or other type of communication interface, and the other device may be a second terminal device or a network device.
  • the processor 601 uses the communication interface 603 to send and receive data, and is used to implement the method in the foregoing embodiment.
  • the embodiment of the present application does not limit the connection medium between the aforementioned communication interface 603, the processor 601, and the memory 602.
  • the memory 602, the processor 601, and the communication interface 603 are connected by a bus 604 in FIG. 7.
  • the bus is represented by a thick line in FIG. 7, and the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only a thick line is used in FIG. 7, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • the embodiments can be mutually cited.
  • methods and/or terms between method embodiments can be mutually cited, such as functions and/or functions between device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.

Abstract

一种通信方法及装置,该方法包括:第一终端设备根据第一信号的第一帧结构参数和第二信号的第二帧结构参数中的至少一个,确定所述第一信号和所述第二信号的优先级;第一终端设备根据所述第一信号和所述第二信号的优先级,发送所述第一信号和/或所述第二信号。采用本申请的方法及装置,可满足多种帧结构参数下,第一信号和第二信号优先级的确定需求,降低传输时延,提高资源利用率和传输速率,提高传输性能。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年03月29日提交国家知识产权局、申请号为201910253335.7、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在通信系统中,例如在新空口(new radio,NR)系统中,为了灵活地支持各种业务类型和/或各种应用场景,引入了多种帧结构参数(numerology)。在支持多种帧结构参数的系统中,如何利用不同的帧结构参数进行信号传输,是当前的研究热点。
发明内容
本申请提供一种通信方法及装置,以实现利用不同的帧结构参数进行信号传输。
第一方面,提供一种通信方法,包括:根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级;根据所述第一信号和所述第二信号的优先级,发送所述第一信号和/或所述第二信号。
由上可见,在本申请实施例中,根据不同的帧结构参数,确定第一信号和第二信号的优先级,可满足多种帧结构参数下,第一信号和第二信号优先级的确定需求,降低传输时延,提高资源利用率和传输速率,提高传输性能。
在一种可能的设计中,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:根据所述第二帧结构参数,确定所述第二帧结构参数下的第二信号优先级;根据所述第二帧结构参数下的第二信号优先级与优先级门限的大小关系,确定所述第一信号和所述第二信号的优先级。
在一种可能的设计中,所述根据所述第二帧结构参数,确定所述第二帧结构参数下的第二信号优先级,包括:根据所述第二帧结构参数以及至少一种帧结构参数下的第二信号优先级,确定所述第二帧结构参数下的第二信号优先级,所述至少一种帧结构参数中包括所述第二帧结构参数。
由上可见,在本申请实施例中,通过信令告知或协议规定不同帧结构参数下的第二信号优先级,可满足多种帧结构参数下,第一信号和第二信号优先级的确定需求,提高传输性能。
在一种可能的设计中,所述根据所述第二帧结构参数,确定所述第二帧结构参数下的第二信号优先级,包括:根据所述第二帧结构参数以及参考帧结构参数下的第二信号优先级,确定所述第二帧结构参数下的第二信号优先级。
由上可见,通过信令告知参考帧结构参数下的第二信号优先级,相对于通过信令告知 多种帧结构参数下的第二信号优先级,可降低信令开销。
在一种可能的设计中,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:根据所述第二帧结构参数,确定所述第二帧结构参数下的优先级门限;根据第二信号优先级以及所述第二帧结构参数下的优先级门限,确定所述第一信号和所述第二信号的优先级。
在一种可能的设计中,所述根据所述第二帧结构参数,确定所述第二帧结构参数下的优先级门限,包括:根据所述第二帧结构参数以及所述至少一种帧结构参数下的优先级门限,确定所述第二帧结构参数下的优先级门限,所述至少一种帧结构参数中包括所述第二帧结构参数。
由上可见,通过信令通知或协议规定不同帧结构参数下的优先级门限,可满足不同帧结构参数下,第一信号和第二信号优先级确定的需求,提高传输性能。
在一种可能的设计中,所述根据所述第二帧结构参数,确定所述第二帧结构参数下的优先级门限,包括:根据所述第二帧结构参数以及所述参考帧结构参数下的优先级门限,确定所述第二帧结构参数下的优先级门限。
由上可见,通过信令告知参考帧结构参数下的优先级门限,可降低信令开销。
在一种可能的设计中,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:根据第一帧结构参数组合与优先级的对应关系,确定所述第一信号和所述第二信号的优先级,所述第一帧结构参数组合中包括所述第一帧结构参数和所述第二帧结构参数。
由上可见,通过预定义或信令通知至少一种帧结构参数组合与优先级的对应关系,可满足多种帧结构参数下,第一信号和第二信号优先级确定的需求,提高传输性能。
在一种可能的设计中,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:根据第一子载波间隔组合与优先级的对应关系,确定所述第一信号和所述第二信号的优先级,所述第一子载波间隔组合中包括所述第一帧结构参数中的第一子载波间隔和所述第二帧结构参数中的第二子载波间隔。可选地,所述第一子载波间隔组合中还可以包括其它参数,本申请实施例不做限制。
由上可见,通过预定义或信令通知至少一种子载波间隔组合与优先级的对应关系,可满足多种帧结构参数下,第一信号和第二信号优先级确定的需求,提高传输性能。
在一种可能的设计中,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:根据所述第一帧结构参数中的第一子载波间隔与所述第二帧结构参数中的第二子载波间隔的大小关系,确定所述第一信号和所述第二信号的优先级。
由上可见,通过不同帧结构参数的子载波间隔,确定第一信号和第二信号的优先级,满足不同帧结构参数下,确定第一信号和第二信号的优先级的需求,提高传输性能。
在一种可能的设计中,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:根据所述第二帧结构参数,确定所述第二帧结构参数下的第二信号优先级和所述第二帧结构参数下的优先级门限;根据所述第二帧结构参数下的第二信号优先级和所述第二帧结构参数下的优先级门限,确定所述第一信号和所述第二信号的优先级。
第二方面,提供一种通信装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。示例性地,该装置可以包括确定模块和发送模块,且确定模块和发送模块可以执行上述第一方面任一种设计示例中的相应功能,具体的:
确定模块,用于根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级;
发送模块,用于根据所述第一信号和所述第二信号的优先级,发送所述第一信号和/或所述第二信号。
所述确定模块确定第一信号和第二信号的优先级的方法可以参考第一方面,这里不再赘述。
第三方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储指令和/或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为网络设备或第二终端设备等。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级;
所述处理器利用通信接口,根据所述第一信号和所述第二信号的优先级,发送所述第一信号和/或所述第二信号。
所述处理器确定第一信号和第二信号的优先级的方法可以参考第一方面,这里不再赘述。
第四方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面任一种可能设计的方法。
第五方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面或第一方面任一种可能设计的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面任一种可能设计的方法。
第七方面,本申请实施例提供了一种系统,所述系统包括第二方面或者第三方面所述的装置、和用于接收第一信号和/或第二信号的其它装置(例如第二终端、网络设备等)。
附图说明
图1为本申请实施例提供的通信架构示意图;
图2为本申请实施例提供的通信流程示意图;
图3a和图3b为本申请实施例提供的传输时延的示意图;
图4为本申请实施例提供的不同子载波间隔下时隙长度的示意图;
图5a、图5b和图5c为本申请实施例提供的RF切换的示意图;
图6为本申请实施例提供的通信装置的一结构示意图;
图7为本申请实施例提供的通信装置的一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
如图1所示,为本申请实施例适用的一种可能的网络架构示意图,包括终端设备10。
其中,终端设备10的数量为两个或两个以上,且不同的终端设备间可以通过旁链路(sidelink,SL)进行旁链路通信,传输旁链路信息。示例的,所述旁链路信息可包括数据(data)和调度分配(scheduling assigment,SA)中一种或多种,数据也可以称为数据信息,调度分配也可以称为调度分配信息。
可选的,旁链路信息中还可以包括旁链路反馈信息。示例的,旁链路反馈信息可以包括信道状态信息(channel state information,CSI)和混合自动重传请求(hybrid automatic repeat request,HARQ)信息等中一种或多种。示例的,HARQ信息中可具体为确认信息(acknowledgement,ACK)或否定性确认(negtive acknowledgement,NACK)等。
可选的,在图1所示的网络架构中,还可包括网络设备20。示例的,终端设备10与网络设备20可进行Uu空口的通信。所述Uu空口的通信可以包括上行传输和下行传输,上行传输可以指终端设备10向网络设备20发送上行信号或上行信息,下行传输可以指网络设备20向终端设备10发送下行信号或下行信息。所述Uu空口可以理解为通用的终端设备和网络之间的接口(universal UE to network interface)。示例的,网络设备20可以为接入网设备。
可选的,在图1所示的网络架构下,还可包括网管系统30。终端设备10与网管系统30可以通过有线接口或无线接口进行通信。比如,终端设备10与网管系统30间可通过网络设备20进行通信,或者,终端设备10与网管系统30间可直接进行通信等。示例的,网管系统30可以为运营商运营的网管系统。
下面对本申请实施例中所使用到的一些通信名词或术语进行解释说明,该通信名词或术语也作为本申请发明内容的一部分。
一、终端设备
终端设备可以简称为终端,是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备,以及还可以包括用户设备(user equipment,UE)等。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来第五代(5th generation,5G)网络中的终端设备或者未来演进的公用陆地移动通信网 络(public land mobile network,PLMN)中的终端设备等。终端设备有时也可以称为终端、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。本申请实施例对此并不限定。
本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
二、网络设备
网络设备可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持长期演进(long term evolution,LTE)的接入网设备通信,也可以与支持5G的接入网设备通信,还可以与支持LTE的接入网设备以及支持5G的接入网设备的双连接。本申请实施例并不限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
三、旁链路(sidelink,SL)
旁链路用于终端设备和终端设备之间的通信,旁链路通信中涉及的信道可以包括物理旁链路共享信道(physical sidelink shared channel,PSSCH)和物理旁链路控制信道(physical sidelink control channel,PSCCH)。其中,PSSCH用于承载旁链路数据(SL data),PSCCH用于承载旁链路控制信息(sidelink control information,SCI),所述SCI也可以称为旁链路调度分配(sidelink scheduling assigment,SL SA)。SL SA是用于数据调度相关的信息,比如,用于承载PSSCH的资源分配和/或调制编码机制(modulation and coding scheme,MCS)等信息。
可选的,旁链路通信中涉及的信道还可以包括:物理旁链路反馈信道(physical sidelink feedback channel,PSFCH)。物理旁链路反馈信道也可以简称为旁链路反馈信道。物理旁链路反馈信道可以用于传输旁链路反馈控制信息(sidelink feedback control information,SFCI),旁链路反馈控制信息也可以简称为旁链路反馈信息。其中,旁链路反馈控制信息 可以包括信道状态信息(channel state information,CSI)和混合自动重传请求(hybrid automatic repeat request,HARQ)等信息中的一个或多个。其中,HARQ信息中可以包括确认信息(acknowledgement,ACK)或否定性确认(negtive acknowledgement,NACK)等。
四、Uu空口
Uu空口可以简称为Uu,Uu空口用于终端设备与网络设备之间的通信。Uu空口的传输可以包括上行传输和下行传输。
其中,上行传输是指终端设备向网络设备发送信息,上行传输的信息可以称为上行信息或上行信号。上行信息或上行信号中可以包括上行数据信号,上行控制信号,探测参考信号(sounding reference signal,SRS)中的一种或多种。用于传输上行信息或上行信号的信道称为上行信道,上行信道可以包括物理上行数据信道(physical uplink shared channel,PUSCH)和物理上行控制信道(physical uplink control channel,PUCCH)中的一种或多种。PUSCH用于承载上行数据,上行数据也可以称为上行数据信息。PUCCH用于承载终端设备反馈的上行控制信息(uplink control information,UCI)。示例的,UCI中可以包括终端设备反馈的信道状态信息(channel state information,CSI)、ACK和NACK等中的一个或多个。
下行传输是指网络设备向终端设备发送信息,下行传输的信息可以为下行信息或下行信号。下行信息或下行信号可以包括下行数据信号,下行控制信号,信道状态信息参考信号(channel state information reference signal,CSI-RS),相位跟踪参考信号(phase tracking reference signal,PTRS)中的一种或多种。用于传输下行信息或下行信号的信道称为下行信道,下行信道可以包括物理下行数据信道(physical downlink shared channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH)中的一种或多种。所述PDCCH用于承载下行控制信息(downlink control information,DCI),PDSCH用于承载下行数据(data),下行数据也可称为下行数据信息。
五、帧结构参数(numerology)
帧结构参数也可以称为系统参数,或配置参数等。帧结构参数可包括子载波间隔、循环前缀(cyclic prefix,CP)类型、和时隙长度等中的一种或多种。CP类型也可以称为CP长度,或简称为CP。所述CP类型可为扩展CP(extended CP,ECP),或者为正常(普通)CP(normal,NCP)。扩展CP下一个时隙可包括12个时域符号,正常CP下一个时隙可包括14个时域符号。时域符号可以简称为符号。时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是基于离散傅立叶变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)符号,本申请实施例中可以以时域符号是OFDM符号为例进行说明。
如表1所示,在NR系统中,可以支持5种帧结构参数,编号分别为0至4。编号0所对应的帧结构参数为:子载波间隔为15kHz,CP为正常CP,编号1所对应的帧结构参数为:子载波间隔为30kHz,CP为正常CP,编号2所对应的帧结构参数为:子载波间隔为60kHz,CP为正常CP或扩展CP,编号3所对应的帧结构参数为:子载波间隔为120kHz,CP为正常CP,编号4所对应的帧结构参数为:子载波间隔为240kHz,CP为正常CP。
表1支持的帧结构参数
Figure PCTCN2020078086-appb-000001
针对不同的子载波间隔可以有不同的时隙长度。比如子载波间隔为15kHz时,一个时隙可以为1毫秒(ms);子载波间隔为30kHz时,一个时隙可以为0.5ms。一个时隙可以包括一个或多个符号。比如,正常循环前缀(cyclic prefix,CP)下一个时隙可以包括14个符号,扩展CP下一个时隙可以包括12个符号。微时隙,又称为迷你时隙,可以是比时隙更小的单位,一个微时隙可以包括一个或多个符号。比如,一个微时隙可以包括2个符号,4个符号或7个符号等。一个时隙可以包括一个或多个微时隙。
不同帧结构参数下的时隙特征如表2所示。其中,
Figure PCTCN2020078086-appb-000002
表示一个时隙slot中包括的符号的个数,且时隙中的符号编号(或称为索引)可以为
Figure PCTCN2020078086-appb-000003
比如正常CP下可以是14个符号,扩展CP下可以是12个符号。一个无线帧可以包括10个子帧,一个无线帧可以是10ms,一个子帧可以为1ms。
Figure PCTCN2020078086-appb-000004
表示在帧结构参数μ下,一个无线帧包括的时隙的个数,且一个无线帧中的时隙编号(或称为索引)
Figure PCTCN2020078086-appb-000005
可以为
Figure PCTCN2020078086-appb-000006
表示在帧结构参数μ下,一个子帧包括的时隙的个数,且一个子帧中的时隙编号可以为
Figure PCTCN2020078086-appb-000007
表2正常CP下的帧结构参数下的时隙特征
Figure PCTCN2020078086-appb-000008
六、载波带宽部分(carrier bandwidth part,BWP)
载波带宽部分可以简称为带宽部分(bandwidth part,BWP),一个BWP是载波上一组连续的频域资源,例如BWP是载波上一组连续的资源块(resource block,RB),或者BWP是载波上一组连续的子载波,或者BWP是载波上一组连续的资源块组(resource block group,RBG)。其中,一个RBG中包括至少一个RB,例如1个、2个、4个、6个或8个等,一个RB可以包括至少一个子载波,例如6个或12个等。在一种可能的实现中,例如NR的版本15(release 15,Rel-15)所示的方法中,在一个小区中,对于一个终端设备,网络为该终端设备最多可以配置4个BWP,在频分双工(frequency division duplexing,FDD)下,上下行可各配置4个BWP,在时分双工(time division duplexing,TDD)下,上下行可各配置4个BWP。可选地,该方法中的4还可以被替换为其它的正整数值,例如3、6等,本申请实施例不做限制。网络设备可以针对每个BWP向终端设备配置包括子载波间隔和/或CP长度的帧结构参数。可选地,在任一时刻,在一个小区中,终端设备可以仅能激活一个 上行BWP和一个下行BWP,终端设备和网络设备在激活的BWP上进行数据的收发。BWP可以定义在一个给定的载波上的,即一个BWP的资源位于一个载波资源内。
可选地,一个BWP可以包括载波上离散的多个频域资源,例如多个子载波或多个RB。在该离散的多个频域资源中至少包括2个在该BWP中的相邻的频域资源,这2个频域资源在载波上不连续。
七、时间单元
时间单元的单位可以为无线帧(radio frame)、子帧(subframe)、时隙(slot)、微时隙(mini-slot)和符号(symbol)等单位。一个时间单元可以包括一个或多个时间单元的单位。例如,一种具体实现中,一个时间单元可包括2个时隙等。一个无线帧可以包括一个或多个子帧,一个子帧可以包括一个或者多个时隙。针对不同的子载波间隔可以有不同的时隙长度。比如子载波间隔为15kHz时,一个时隙可以为1毫秒(ms);子载波间隔为30kHz时,一个时隙可以为0.5ms。一个时隙可以包括一个或多个符号。比如正常循环前缀(cyclic prefix,CP)下一个时隙可以包括14个时域符号,扩展CP下一个时隙可以包括12个时域符号。时域符号可以简称为符号。时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是基于离散傅立叶变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)符号,本申请实施例中可以以时域符号是OFDM符号为例进行说明。微时隙,又称为迷你时隙,可以是比时隙更小的单位,一个微时隙可以包括一个或多个符号。比如一个微时隙可以包括2个符号,4个符号或7个符号等。一个时隙可以包括一个或多个微时隙。
八、“和/或”
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例,对于同构网络与异构网络的场景均适用,同时对于传输点也无限制,可以是宏基站与宏基站、微基站与微基站,和,宏基站与微基站间的多点协同传输。申请既适用于低频场景(例如sub 6G),也适用于高频场景(6G以上)。
需要指出的是,本申请中涉及的名词“传输”可以包括(数据和/或控制信息的)发送和/或接收。本申请中涉及的动词“传输”可以包括发送和/或接收。示例的,上行传输指终端设备向网络设备发送上行信号或上行信息,旁链路传输指终端设备向其它终端设备发送旁链路信号或旁链路信息,或者,旁链路传输指终端设备接收其它终端设备发送的旁链路信号或旁链路信息。“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在支持多种帧结构参数的系统中,如何利用不同的帧结构参数进行信号传输,降低传输时延,提高资源利用率和传输速率,提高传输性能是本申请实施例所关注的问题。
如图2所示,提供一种通信方法的流程,该流程中的第一终端设备和第二终端设备可为上述图1中的终端设备10,网络设备可为上述图1中的网络设备20。该流程可包括:
S201.第一终端设备根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级;
S202.第一终端设备根据所述第一信号和所述第二信号的优先级,发送第一信号和/或第二信号。
其中,第一信号的第一帧结构参考可以描述为第一信号所在的BWP的帧结构参数,第二信号的第二帧结构参数可以描述为第二信号所在的BWP的帧结构参数。
第一信号和第二信号的优先级还可以描述为第一信号和所述第二信号的发送优先级。例如,第一信号优先级较高时,优先保证第一信号的发送;第二信号优先级较高时,优先保证第二信号的发送。
示例的,上述图2所示的流程,可同时应用于旁链路和Uu空口的场景中,第一信号可为上行信号,第二信号可为旁链路信号。上述S202的过程可为:第一终端设备向网络设备发送第一信号,网络设备接收第一信号。和/或,第一终端设备可向第二终端设备发送旁链路信号,第二终端设备接收旁链路信号。
在上述示例中,第一信号的第一帧结构参考可以描述为上行BWP(UL BWP)的帧结构参数,第二信号的第二帧结构参数可以描述为旁链路BWP(SL BWP)的帧结构参数。
可选的,所述上行信号和旁链路信号的优先级,也可以称为上行传输和旁链路传输的优先级,或者,也可以称为上行信号传输和旁链路信号传输的优先级,或者也可以称为Uu空口和旁链路空口的优先级等。
示例的,上述图2所示的流程,可仅应用于旁链路的场景中,第一信号可为旁链路数据信号,旁链路反馈信号,旁链路控制信号中的一种或多种,第二信号可为旁链路数据信号,旁链路反馈信号,旁链路控制信号中的一种或多种,或者,可以描述为:第一信号可为PSSCH携带的信号,PSCCH携带的信号,PSFCH携带的信号中的一种或多种,第二信号可为PSSCH携带的信号,PSCCH携带的信号,PSFCH携带的信号中的一种或多种,第一终端设备可向第二终端设备发送第一信号,和/或向第三终端设备发送第二信号,相应的,第二终端设备接收第一信号,和/或第三终端设备接收第二信号。第二终端设备和第三终端设备可以相同,也可以不同,本申请实施例不做限制。比如,当第二终端设备和第三终端设备相同时,第一信号和第二信号的种类不同;当第二终端设备和第三终端设备不同时,第一信号和第二信号的种类可以相同,也可以不同。
在上述示例中,第一信号的第一帧结构参考可以描述为第一SL BWP的帧结构参数,第二信号的第二帧结构参数可以描述为第二SL BWP的帧结构参数。第一SL BWP和第二SL BWP可以相同,也可以不同。
示例的,上述图2所示的流程,可仅应用于Uu空口的场景中,第一信号可为上行数据信号,上行反馈信号,上行控制信号中的一种或多种,第二信号可为上行数据信号,上行反馈信号,上行控制信号中的一种或多种,或者,可以描述为:第一信号可为PUSCH携带的信号,PUCCH携带的信号中的一种或多种,第二信号可为PUSCH携带的信号,PUCCH携带的信号中的一种或多种,第一终端设备向第一网络设备发送第一信号,和/或第二终端设备向第二网络设备第二信号,相应的,网络设备接收第一信号和/或第二信号。第一网络设备和第二网络设备可以相同,也可以不同,本申请实施例不做限制。比如,当第一网络设备和第二网络设备相同时,第一信号和第二信号的种类不同;当第一网络设备和第二网络设备不同时,第一信号和第二信号的种类可以相同,也可以不同。第一网络设备和第二网络设备支持的接入技术可以相同,也可以不同。
在上述示例中,第一信号的第一帧结构参考可以描述为第一UL BWP的帧结构参数,第二信号的第二帧结构参数可以描述为第二UL BWP的帧结构参数。第一UL BWP和第二UL BWP可以相同,也可以不同。
实施例一
在图2所示的流程中,S201的一种具体实现可为:第一终端设备根据第二信号的第二帧结构参数,确定第二帧结构参数下的第二信号优先级。第一终端设备根据第二帧结构参数下的第二信号优先级和优先级门限,确定第一信号和第二信号的优先级。可选的,上述优先级门限可适用于所有帧结构参数,即不同帧结构参数下的优先级门限可为相同的,上述优先级门限可为网络设备通过信令向终端设备通知的,或者,协议规定的。
或者,在图2所示的流程中,S201的一种具体实现可为:第一终端设备根据第一信号的第一帧结构参数,确定第一帧结构参数下的第一信号优先级。第一终端设备根据第一帧结构参数下的第一信号优先级和优先级门限,确定第一信号和第二信号的优先级。
可以理解的是,上述根据第二信号的第二帧结构参数,确定第一信号和第二信号的优先级的过程,与上述根据第一信号的第一帧结构参数,确定第一信号和第二信号的优先级的过程相似。在以下示例中,以根据第二信号的第二帧结构参数,确定第一信号和第二信号的优先级为例进行说明,并不作为对本申请实施例的限定。
本申请实施例中,可选的,当第一信号为数据信号时,第一信号优先级可以是指第一信号所在数据包的优先级;当第二信号为数据信号时,第二信号优先级可以是指第二信号所在数据包的优先级。
示例1.1
第一终端设备可确定至少一种帧结构参数下的第二信号优先级,所述至少一种帧结构参数下的第二信号优先级可为网络设备通过信令向终端设备通知的,或者,协议规定的。所述至少一种帧结构参数中包括第二帧结构参数。第一终端设备根据第二帧结构参数以及至少一种帧结构参数下的第二信号优先级,确定第二帧结构参数下的第二信号优先级。
网络设备可通知一种或多种帧结构参数下的第二信号优先级。比如,网络设备可通知帧结构参数A下的第二信号优先级为Pd1,帧结构参数B下的第二信号优先级为Pd2,帧结构参数C下的第二信号优先级为Pd3。可选的,Pd1、Pd2和Pd3的取值可为实数,所述实数中包括正整数或整数。或者,Pd1、Pd2和/或Pd3的取值也可为无穷大或无穷小。当终端设备采用帧结构参数A传输第二信号时,可根据Pd1和优先级门限,确定第一信号和第二信号的优先级。比如,当Pd1小于(或,小于等于)优先级门限时,可确定第二信号的优先级较高,否则,确定第一信号的优先级较高。又比如,当Pd1大于(或,大于等于)优先级门限时,可确定第二信号的优先级较高,否则,确定第一信号的优先级较高。或者,当终端设备采用帧结构参数B传输第二信号时,可根据Pd2和优先级门限,确定第一信号和第二信号的优先级。当终端设备采用帧结构参数C传输第二信号时,过程与上述相似,不再赘述。
可以通过协议预定义一种或多种帧结构参数下的第二信号优先级。比如,可预定义帧结构参数A下的数据包优先级为Pd1,帧结构参数B下的数据包优先级为Pd2,帧结构参数C下的优据包优先级为Pd3。在终端设备利用帧结构参数A传输第二信号时,可根据Pd1和优先级门限,确定第一信号和第二信号的优先级。在终端设备利用帧结构参数B传输第二信号时,可根据Pd2和优先级门限,确定第一信号和第二信号的优先级。当终端设备采用帧结构参数C传输第二信号时,过程与上述相似,不再赘述。
在示例1.1中,通过信令告知或协议规定不同帧结构参数下的第二信号优先级,可满足多种帧结构参数下,第一信号和第二信号优先级的确定需求,提高传输性能。
示例1.2
第一终端设备可确定参考帧结构参数下的第二信号优先级。所述参考帧结构参数下的第二信号优先级可为网络设备通过信令通知的,或者,协议规定的。根据参考帧结构参数下的第二信号优先级以及第二帧结构参数,确定第二帧结构参数下的第二信号优先级。
比如,参考帧结构参数μ f下的第二信号优先级P′ f,第二帧结构参数μ的第二信号优先级为P′,所述P′ f与P′间可存在对应关系,所述对应关系可为协议定义的,或者网络设备通过信令告知的。比如,对应关系可以是为
Figure PCTCN2020078086-appb-000009
P′=P′ f/(μ-μ f),或者P′=P′ f·(μ-μ f)等。可选的μ-μ f也可以替代为|μ-μ f|,或μ f-μ等。P′ f和P′取值可为实数,所述实数中包括正整数或整数。
在示例1.2中,通过信令告知参考帧结构参数下的第二信号优先级,可降低信令开销。同时通过参考帧结构参数下的第二信号优先级,即可满足不同帧结构参数下,第一信号和第二信号优先级确定的需求,提高传输性能。
实施例二
在图2所示的流程中,S201的一种具体实现可为:第一终端设备根据第二信号的第二帧结构参数,确定第二帧结构参数下的优先级门限。第一终端设备根据第二信号优先级以及第二帧结构参数下的优先级门限,确定第一信号和第二信号的优先级。可选的,上述第二信号优先级可适用于所有帧结构参数,即所述第二信号优先级对于所有的帧结构参数是相同的,所述第二信号优先级可为协议规定的,或者,网络设备通过信令向终端设备配置的。
或者,在图2所示的流程中,S201的一种具体实现可为:第一终端设备根据第一信号的第一帧结构参数,确定第一帧结构参数下的优先级门限。第一终端设备根据第一信号优先级以及第一帧结构参数下的优先级门限,确定第一信号和第二信号的优先级。
可以理解的是,上述根据第二信号的第二帧结构参数,确定第一信号和第二信号的优先级的过程,与上述根据第一信号的第一帧结构参数,确定第一信号和第二信号的优先级的过程相似。在以下示例中,以根据第二信号的第二帧结构参数,确定第一信号和第二信号的优先级为例进行说明,并不作为对本申请实施例的限定。
示例2.1
第一终端设备可确定至少一种帧结构参数下的优先级门限,所述至少一种帧结构参数中包括第二帧结构参数。所述至少一种帧结构参数下的优先级门限可为网络设备信令通知的,或者,协议规定的。第一终端设备根据至少一种帧结构参数下的优先级门限以及第二帧结构参数,确定所述第二帧结构参数下的优先级门限。
比如,网络设备可通知一种或多种帧结构参数下的优先级门限。比如,网络设备可通知帧结构参数A下的优先级门限为P1,帧结构参数B下的优先级门限为P2,帧结构参数C下的优先级门限为P3。可选的,P1、P2和P3的取值可为实数,或者,其中至少一个可以为无穷大或无穷小,实数中可包括正整数,或整数等。当终端设备采用帧结构参数A传 输第二信号时,以帧结构参数A对应的优先级门限P1为准,确定第一信号和第二信号的优先级,比如,若第二信号的优先级小于(或,小于等于)P1时,则确定第二信号的优先级较高,否则,确定第一信号的优先级较高。又比如,当第二信号的优先级大于(或,大于等于)P1时,可确定第二信号的优先级较高,否则,确定第一信号的优先级较高。当采用帧结构参数B或C传输第二信号时,与上述采用帧结构参数A传输第二信号的过程相似,不再赘述。或者,
比如,可通过协议预定义一种或多种帧结构参数下的优先级门限。比如,协议可规定帧结构参数A下的优先级门限为P1,帧结构参数B下的优先级门限为P2,帧结构参数C下的优先级门限为P3等。确定第一信号和第二信号优先级的方法与上述网络设备通知的方式相似,不再具体赘述。
可选的,网络设备可以在配置第二信号的BWP的时候,配置该BWP的帧结构参数对应的优先级门限。比如以第二信号为旁链路信号为例,在网络设备向终端设备发送SL BWP的配置信息时,可以在该配置信息中包括该BWP的帧结构参数对应的优先级门限。终端设备根据该SL BWP的配置信息可以确定该BWP的帧结构参数对应的优先级门限,即终端设备可以确定第二信号的第二帧结构参数下的优先级门限。
在示例2.1中,通过信令通知或协议规定不同帧结构参数下的优先级门限,可满足不同帧结构参数下,第一信号和第二信号优先级确定的需求,提高传输性能。
示例2.2
第一终端设备可确定参考帧结构参数下的优先级门限,第一终端设备根据所述第二帧结构参数以及所述参考帧结构参数下的优先级门限,确定所述第二帧结构参数下的优先级门限。可选的,参考帧结构参数下的优先级门限可为网络设备通过信令通知的,或协议规定的。
比如,参考帧结构参数μ f下的优先级门限值为P f,第二帧结构参数μ下的优先级门限值为P,P f与P间可存在对应关系。可选的,上述对应关系可以是协议预定义的,或者,网络设备通过信令通知的。P f和P取值可为实数,所述实数中包括正整数或整数。
示例的,上述对应关系可为
Figure PCTCN2020078086-appb-000010
或者
Figure PCTCN2020078086-appb-000011
或者P=P f/(μ-μ f),或者P=P f·(μ-μ f)。可选的,μ-μ f也可替代为|μ-μ f|,或μ f-μ等。
在示例2.2中,通过信令告知参考帧结构参数下的优先级门限,可降低信令开销。同时,通过参考帧结构参数的优先级门限,可确定不同帧结构参数下的优先级门限,满足多种帧结构参数下,第一信号和第二信号优先级确定的需求,提高传输性能。
实施例三
在图2所示的流程中,S201的一种具体实现可为:第一终端设备根据所述第二帧结构参数,确定所述第二帧结构参数下的第二信号优先级和所述第二帧结构参数下的优先级门限;第一终端设备根据所述第二帧结构参数下的第二信号优先级和所述第二帧结构参数下的优先级门限,确定所述第一信号和所述第二信号的优先级。
在图2所示的流程中,S201的一种具体实现可为:第一终端设备根据第一信号的第一帧结构参数,确定所述第一帧结构参数下的第一信号优先级和所述第一帧结构参数下的优 先级门限。第一终端设备根据所述第一帧结构参数下的第一信号优先级以及所述第一帧结构参数下的优先级门限,确定第一信号和第二信号的优先级。
可以理解的是,上述根据第二信号的第二帧结构参数,确定第一信号和第二信号的优先级的过程,与上述根据第一信号的第一帧结构参数,确定第一信号和第二信号的优先级的过程相似。在以下示例中,以根据第二信号的第二帧结构参数,确定第一信号和第二信号的优先级为例进行说明,并不作为对本申请实施例的限定。
关于如何确定第二帧结构参数下的第二信号优先级的过程,可参见上述实施例一的记载。关于确定第二帧结构参数下的优先级门限的过程,可参见上述实施例二的记载。
在实施例三中,可确定不同帧结构参数下的第二信号优先级以及不同帧结构参数下的优先级门限,满足多种帧结构下,第一信号和第二信号优先级确定的需求,提高传输性能。
需要指出的是,在上述实施例一、实施例二和实施例三中,所述第一信号优先级可以包括第一信号的业务需求(quality of service,QoS)参数。第二信号的优先级可以包括第二信号的QoS参数。示例的,所述QoS参数可以是近距离业务包的优先级(proSe per-packet priority,PPPP),5G QoS标识附(5G QoS identifier,5QI),或,V2X 5QI(可简称VQI)等参数。可选的,所述近距离业务也可称为近距离通信或旁链路通信,所述近距离业务或旁链路通信指终端设备和终端设备间的通信。
进一步的,在上述实施例一、实施例二和实施例三中,第二信号优先级可以用一个数值表示,所述数值可以为实数,所述实数包括整数或正整数,或者,所述数值可以为无穷大或无究小。在一示例中,用以用正整数1至8来表征第二信号优先级。
进一步的,在上述实施例一、实施例二和实施例三中,优先级门限可以用一个数值表示,所述数值可以为实数,所述实数包括整数或正整数,或者,所述数值可以为无穷大或无究小。在一示例中,用以用正整数1至8来表征优先级门限。
实施例四
在图2所示的流程中,S201的一种具体实现可为:第一终端设备根据第一帧结构参数组合与优先级的对应关系,确定第一信号和第二信号的优先级,所述第一帧结构参数组合中包括第一帧结构参数和第二帧结构参数。
示例的,第一终端设备可确定至少一种帧结构参数组合与优先级的对应关系,所述至少一种帧结构参数组合中包括第一帧结构参数组合。可选的,至少一种帧结构参数组合与优先级的对应关系可为网络设备通过信令向终端设备通知的,或者,协议规定的。第一终端设备在至少一种帧结构参数组合与优先级的对应关系中,确定第一帧结构参数和第二帧结构参数组成的第一帧结构参数组合所对应的优先级。示例性地,对于一个给定的帧结构参数组合,可以配置其对应的优先级,例如:第一信号的优先级高于第二信号的优先级,或者第二信号的优先级高于第一信号的优先级。
在实施例四中,通过预定义或信令通知至少一种帧结构参数组合与优先级的对应关系,可满足多种帧结构参数下,第一信号和第二信号优先级确定的需求,提高传输性能。
实施例五
在图2所示的流程中,S201的一种具体实现可为:第一终端设备根据第一子载波间隔组合与优先级的对应关系,确定第一信号和第二信号的优先级,所述第一子载波间隔组合 中包括第一帧结构参数中的第一子载波间隔和第二帧结构参数中的第二子载波间隔。
示例的,第一终端设备可确定至少一种子载波间隔组合与优先级的对应关系,所述至少一种子载波间隔组合中包括第一帧结构参数所包括的第一子载波间隔和第二帧结构参数所包括的第二子载波间隔所组成的组合。可选的,至少一种子载波间隔组合与优先级的对应关系可为网络设备通过信令通知的,或者,协议规定的。可选地,一个子载波间隔组合中可以包括两个子载波、三个子载波或者更多个,本申请实施例不做限制。本实施例中以一个子载波间隔组合中可以包括两个子载波为例进行说明。
示例的,可定义16种子载波间隔组合。示例的,所定义的16种子载波间隔组合,从左至右,从上至下,先行后列可以依次编号为0至15:
{15kHz,15kHz};{15kHz,30kHz};{15kHz,60kHz};{15kHz,120kHz}
{30kHz,15kHz};{30kHz,30kHz};{30kHz,60kHz};{30kHz,120kHz}
{60kHz,15kHz};{60kHz,30kHz};{60kHz,60kHz};{60kHz,120kHz}
{120kHz,15kHz};{120kHz,30kHz};{120kHz,60kHz};{120kHz,120kHz}
可选的,网络设备可通过信令通知或预定义,在不同子载波间隔组合的优先级。比如,在子载波间隔组合1,2,3,6,7,11下,第二信号的优先级高于第一信号的优先级。子载波间隔组合4,8,9,12,13,14下,第二信号的优先级低于第一信号的优先级。上述子载波间隔组合所对应的优先级还可以是别的具体示例,本申请实施例不做限制。
在实施例五中,通过预定义或信令通知至少一种子载波间隔组合与优先级的对应关系,可满足多种帧结构参数下,第一信号和第二信号优先级确定的需求,提高传输性能。
实施例六
在本申请实施例中,第一终端设备可根据一种或多种组合下的优先级规则,确定第一信号和第二信号的优先级。所述一种或多种组合下的优先级规则,可为网络设备通过信令通知的,或者,协议规定的。所述一种或多种组合可为不同或相同帧结构参数的结合,或者,所述一种或多种组合可为不同或相同子载波间隔的结合等。
比如,对于第一信号的第一帧结构参数中的第一子载波间隔和第二信号的第二帧结构参数中的第二子载波间隔可组成一组合,该组合所对应的优先级规则可为:根据第一子载波间隔和第二子载波间隔的大小关系,确定第一信号和第二信号的优先级。
相应的,在图2所示的流程中,S201的一种具体实现可为:第一终端设备根据第一帧结构参数中的第一子载波间隔与第二帧结构参数中的第二子载波间隔的大小关系,确定第一信号和第二信号的优先级。
比如,若第一子载间隔大于(或,大于等于)第二子载波间隔,则确定第一信号的优先级较高,否则,确定第二信号的优先级较高。或者,若第一子载波间隔小于(或,小于等于)第二子载波间隔,则确定第二信号的优先级高,否则,确定第一信号的优先级高。
可选的,在上述实施例中,以根据第一子载波间隔和第二子载波间隔,确定第一信号和第二信号的优先级为例,进行说明,并不作为对本申请实施例的限定。比如,在本申请实施例中,可预定义或信令通知其它规则,确定第一信号和第二信号的优先级。
在实施例六中,通过不同帧结构参数的子载波间隔,确定第一信号和第二信号的优先级,满足不同帧结构参数下,确定第一信号和第二信号的优先级的需求,提高传输性能。
实施例七
示例的,针对上述S202的具体实现过程可为:第一终端设备根据第一信号和第二信号的优先级,确定第一信号的第一发送功率和/或第二信号的第二发送功率;第一终端设备根据第一发送功率,发送第一信号,和/或,第一终端设备根据第二发送功率,发送第二信号。
示例的,针对上述S202的具体实现过程可为:第一终端设备根据第一信号和第二信号的优先级,确定仅发送第一信号,或仅发送第二信号。
示例的,第一终端设备可确定第一终端设备是否支持第一信号和第二信号的同时传输。示例的,由于在一个时刻,在一个射频(radio frequency,RF)链路上,终端设备仅能支持一种帧结构参数信号的传输,因此,若第一信号的传输和第二信号的传输共享一个RF链路,且第一信号和第二路信号的帧结构参数不同,则可确定终端设备不支持第一信号和第二信号的同时传输。若第一信号的传输和第二信号的传输各自用不同射频链路,则无论第一信号和第二信号的帧结构参数是否相同,均可确定终端设备支持第一信号和第二信号的同时传输。
如果支持第一信号和第二信号的同时传输,则根据第一信号和第二信号的优先级,确定第一信号的第一发送功率和第二信号的第二发送功率。即第一终端设备以第一发送功率发送第一信号,和/或,第一终端设备以第二发送功率发送第二信号。
比如,若第一信号的优先级高于第二信号,则可根据第一信号的第一发送功率,调整第二信号的第二发送功率,即优先保证第一信号的第一发送功率,减少第二信号的第二发送功率或放弃第二信号的发送。可以理解的是,当将第二信号的第二发送功率调整为零时,即可认为是放弃第二信号的发送或者不发送第二信号。若第二信号的优先级高于第一信号,则可根据第二信号的第二发送功率,调整第一信号的第一发送功率,即优先保证第二信号的第二发送功率,调整第一信号的第一发送功率或放弃第一信号的发送。可以理解的是,当将第一信号的第一发送功率调整为零时,即可认为是放弃第一信号的发送或不发送第一信号。可选的,在本申请实施例中,放弃信号或信息的发送,也可认称为放弃信号或信息。比如,放弃第二信号的发送,也可以称丢弃第二信号。放弃第一信号的发送,也可以称为丢弃第一信号。
在本申请实施例中,根据第一信号的发送功率调整第二信号的第二发送功率,或者根据第二信号的发送功率调整第一信号的第一发送功率,包括:使得终端设备的发送功率不超过最大发射功率。终端设备根据一个信号调整另一个信号的发送功率的方法类似LTE的协议36.213或NR协议38.213中根据PUCCH的发送功率调整PUSCH的发送功率的方法,或者根据PUSCH的发送功率调整PUCCH的发送功率的方法,或者,根据PSCCH的发送功率调整PSSCH的发送功率的方法,或者,根据PSSCH的发送功率调整PSCCH的发送功率的方法,或者其它调整方法,本申请实施例不做限制。
如果不支持第一信号和第二信号的同时传输,则根据第一信号和第二信号的优先级,确定发送第一信号或者发送第二信号。比如,若第一信号的优先级高于第二信号,则第一终端设备可仅传输第一信号,否则,第一终端设备仅传输第二信号。
示例的,如图3a和图3b所示,设定第一终端设备不支持第一信号和第二信号的同时传输。第一信号为上行信号,第一信号对应第一帧结构参数,第一帧结构参数中的子载波间隔为15kHz。在15kHz的子载波间隔下,1个时隙的时长为1ms。第二信号为旁链路信 号,第二信号对应第二帧结构参数,第二帧结构参数中的子载波间隔为60kHz。在60kHz下,1个时隙的时长近似为0.25ms。通过图3a或图3b可以看出,在15kHz的子载波间隔下1个时隙的长度,等于60kHz的子载波间隔下的4个时隙的长度。
如图3b所示,采用上述图2流程所示的方法,确定上行信号的优先级高于旁链路信号的优先级,终端设备可先采用60kHz的子载波间隔发送旁链路信号,然后进行RF切换(RF switching),所述RF切换可指由60kHz的子载波间隔切换到15kHz的子载波间隔,随后以15kHz的子载波间隔发送上行信号。其中,所述RF切换需要3个60kHz子载波间隔下的时隙。通过图3b可以看出,上行信号的传输时延(transmission delay)为15kHz子载波间隔下的一个时隙,为1ms。
如图3a所示,如果未采用图2流程所公示的方法,固定认为上行信号的优先级高于旁链路信号的优先级,终端设备可先采用15kHz的子载波间隔发送上行信号,进行RF切换,所述RF切换指由15kHz的子载波间隔切换到60kHz的子载波间隔,随后以60kHz的子载波间隔发送旁链路信号。通过图3a可以看出,旁链路信号的传输时延近似为1.75ms。
通过图3a与图3b对比可以看出,采用本申请图2流程所公开的方法,可减小传输时延。
可选的,在图2所示的方法中,还包括:第一终端设备进行RF切换(例如从用于发送第一信号的RF切换为用于发送第二信号的RF;或者从用于发送第二信号的RF切换为用于发送第一信号的RF),所述RF切换的取值可以等于BWP切换时延。所述BWP切换时延可指BWP切换所需要的时间,在BWP切换时延内,终端设备不能收发信号。如表3所示,在不同的帧结构参数μ下,BWP切换时延不同。
仍可参照表3所示,当帧结构参数μ取值为0时,对应15kHz的子载波间隔,一个时隙的长度为1ms,在类型1下BWP切换时延为1个时隙,在类型2下BWP切换时延为3个时隙。当帧结构参数μ取值为1时,对应30kHz的子载波间隔,一个时隙的长度为0.5ms,在类型1下BWP切换时延为2个时隙,在类型2下BWP切换时延为5个时隙。当帧结构参数μ取值为2时,对应60kHz的子载波间隔,一个时隙的长度近似为0.25ms,在类型1下BWP切换时延为3个时隙,在类型2下BWP切换时延为9个时隙。当帧结构参数μ取值为3时,对应120kHz的子载波间隔,一个时隙的长度近似为0.125ms,在类型1下BWP切换时延为6个时隙,在类型2下BWP切换时延为17个时隙。可选的,当终端设备的能力支持类型1时,所述BWP切换时延的取值为类型1所对应的BWP切换时延。当终端设备的能力支持类型2时,所述BWP切换时延的取值为类型2所对应的BWP切换时延。
示例的,终端设备从BWP1切换至BWP2,BWP1和BWP2的帧结构参数μ相同,可根据表3所示的BWP切换时延,确定BWP的切换时延。比如,如果BWP1和BWP2的帧结构参数μ的取值为0,且终端设备支持类型1的BWP切换时延时,则所述BWP的切换时延为15kHz子载波间隔下的1个时隙,对应1ms。
示例的,终端设备从BWP1切换到BWP2,BWP1和BWP2的帧结构参数μ不同。设定BWP1的帧结构参数为第一帧结构参数,第一帧结构参数对应第一子载波间隔。BWP2的帧结构参数为第二帧结构参数,第二帧结构参数对应第二子载波间隔。若第一子载波间隔大于第二子载波间隔,则根据第一帧结构参数,确定BWP切换时延。若第二子载波间隔大于第一子载波间隔,则根据第二帧结构参数,确定BWP切换时延。具体如果根据第一帧结构参数或第二帧结构参数,确定BWP切换时延,可参见上述表3的描述。
比如,如果BWP1的子载波间隔为15kHz(μ的取值为0),BWP2的子载波间隔为60kHz(μ的取值为2),则BWP1到BWP2的切换时延为60kHz对应的切换时延,比如类型1下BWP切换时延为60kHz的子载波间隔下的3个时隙,类型2下BWP切换时延为60kHz的子载波间隔下的9个时隙。
表3BWP切换时延(单位:时隙)
Figure PCTCN2020078086-appb-000012
进一步,需要说明的是,在不同子载波间隔下,时隙的长度不同。例如,如图4所示,在15kHz的子载波间隔下的1个时隙,等于30kHz的子载波间隔下的2个时隙,等于60kHz的子载波间隔下的4个时隙,等于120kHz的子载波间隔下的8个时隙。
实施例八
示例的,上述S202的具体实现过程可为:第一终端设备,以第一发送功率发送第一信号,和/或,以第二发送功率发送第二信号。
示例的,当第一发送功率和第二发送功率均非零时,第一终端设备可在第一载波和第一时间单元上,以第一发送功率发送第一信号和以第二发送功率发送第二信号。或者,也可称为,第一终端设备在第一载波上,同时发送第一信号和第二信号。
示例的,当第一发送功率和第二发送功率非零时,第一终端设备可在第一载波和第一时间单元上以第一发送功率发送第一信号,在第二载波和第一时间单元上以第二发送功率发送第二信号。或者,也可称为,第一终端设备在第一载波上发送第一信号,在第二载波上发送第二信号。
示例的,当第一发送功率为零,第二发送功率非零时,第一终端设备可在第一载波和第一时间单元上,以第二发送功率发送第二信号。或者,也可称为第一终端设备在第一载波上,仅发送第二信号。
示例的,当第一发送功率非零,第二发送功率为零时,第一终端设备可在第一载波和第一时间单元上,以第一发送功率发送第一信号。或者,也可称为第一终端设备在第一载波上,仅发送第一信号。
实施例九
本申请实施例所提供的方案,可应用于载波聚合(carrier aggregation,CA)的场景。示例的,在CA中可以包括主小区(primary cell,PCell)和辅小区(secondary cell,SCell),当第一信号和第二信号在不同的载波中传输时,第一终端设备可根据主小区和辅小区的优先级,确定第一信号与第二信号的优先级。即在上述图2所示的流程中,S201可替换为: 第一终端设备根据主小区和辅小区的优先级,确定第一信号和第二信号的优先级。
示例性地,当主小区的优先级高于辅小区的优先级时,若主小区用于传输第一信号,辅小区用于传输第二信号,则第一信号的优先级高于第二信号的优先级。同理,若主小用于传输第二信号,辅小区用于传输第一信号,则第二信号的优先级高于第一信号的优先级。
示例性地,本申请实施例也可以结合小区标识确定优先级,比如小区标识小的优先级高于小区标识大的优先级时,如果小区标识小的小区上传输第一信号,小区标识大的小区上传输第二信号,则第一信号的优先级高于第二信号的优先级。同理,如果小区标识小的小区上传输第二信号,小区标识大的小区上传输第一信号,则第二信号的优先级高于第一信号的优先级。
示例性地,本申请实施例也可以结合小区标识确定优先级,比如小区标识大的优先级高于小区标识小的优先级时,如果小区标识大的小区上传输第一信号,小区标识小的小区上传输第二信号,则第一信号的优先级高于第二信号的优先级。同理,如果小区标识大的小区上传输第二信号,小区标识小的小区上传输第一信号,则第二信号的优先级高于第一信号的优先级。
可以理解的是,在本示例中,确定第一信号和第二信号的优先级后,如何传输第一信号和第二信号,可参见上述图2所示流程的记载,不此不再说明。
实施例十
本申请实施例所提供的方案,可应用于双链接(dual-connectivity,DC)的场景。示例的,针对DC场景,终端设备的小区可以包括主小区组(master cell group,MCG)和辅小区组(secondary cell group,SCG)。主小区组中的主小区称为主小区PCell,剩余小区为辅小区SCell。辅小区组中的主小区称为主辅小区(primary secondary cell,PSCell),剩余小区为辅小区SCell。当第一信号和第二信号在不同的小区中传输时,即在上述图2所示的流程中,S201可替换为:第一终端设备根据主小区PCell、主辅小区PSCell和/或辅小区SCell的优先级,确定第一信号和第二信号的优先级。
比如,当主小区PCell的优先级高于主辅小区PSCell的优先级,主辅小区PSCell的优先级高于辅小区SCell的优先级时,若主小区用于传输第一信号时,主辅小区和/或辅小区用于传输第二信号时,所述第一信号的优先级高于第二信号的优先级。若主小区用于传输第二信号,主辅小区和/或辅小区用于传输第一信号,则第二信号的优先级高于第一信号的优先级。
针对上述DC的场景,可能会出现有些小区配置PUCCH,有些小区不配置PUCCH的情况,针对该情况,可根据小区是否配置PUCCH确定第一信号和第二信号的优先级。比如,第一小区配置PUCCH,第二小区未配置PUCCH,第一小区的优先级高于第二小区的优先级,若第一小区用于传输第一信号,第二小区用于传输第二信号,则第一信号的优先级高于第二信号的优先级。若第一小区用于传输第二信号,第二小区用于传输第一信号,则第二信号的优先级高于第一信号的优先级。
可以理解的是,在本示例中,确定第一信号和第二信号的优先级后,如何传输第一信号和第二信号,可参见上述图2所示流程的记载,不此不再说明。
需要说明的是,在本申请实施例中的上述描述中,网络设备通过信令通知,可包括:网络设备可以通过系统信息,高层信令(比如无线资源控制(radio resource control,RRC) 信令),物理层信令(比如下行控制信息(downlink control information,DCI)信令),媒体接入控制控制元素((media access control control element,MAC CE)等通知终端设备。
示例的,在本申请实施例中的上述描述中,网络设备通过信令通知,也可以替换为运营商通过信令通知。比如,运营商可以通过预配置信令通知终端设备,或者运营商可以在终端的用户识别(subscriber identification module,SIM)或全球用户识别(universal subscriber identity module,USIM)中写入预配置信令,终端可以通过读取SIM或USIM,获取预配置信令等。
其中,SIM可以是用户识别卡,也称为用户身份识别卡、智能卡等。USIM可以是全球用户识别的缩写,也可以叫做升级SIM。
可选的,如果终端设备可以接收多个配置信令,比如包括预配置信令,系统信息,公共RRC信令,UE专用RRC信令,DCI信令等。所述多个配置信令中的一个或多个信令可以被其他信令覆盖,比如根据如下规则进行信令覆盖:
DCI信令可以覆盖预配置信令,系统信息,公共RRC信令,UE专用RRC信令;
UE专用RRC信令可以覆盖预配置信令,系统信息,公共RRC信令;
公共RRC信令可以覆盖预配置信令,系统信息;系统信息可以覆盖预配置信令。
示例的,根据上述信令覆盖规则:比如,如果终端设备接收到DCI信令和预配置信令,且该两个信令对相同的参数进行了配置,则终端设备以DCI信令中的参数值为准;如果终端设备可以接收到UE专用RRC信令和预配置信令,且该两个信令对相同的参数进行了配置,则终端设备以UE专用RRC信令中的参数值为准;如果终端设备可以接收到系统信息和预配置信令,且该两个信令对相同的参数进行了配置,则UE以系统信息中的参数值为准等。
实施例十一
针对图2所示提供的通信方法的流程,本申请提供一应用场景,该应用场景并不作为对本申请实施例的限定。在该应用场景中,以第一信号为上行信号,对应上行传输,第二信号为旁链路信号,对应旁链路传输为例,进行说明。
针对上行传输和旁链路传输,可能会存在如下的场景:上行信号在UL BWP中传输,旁链路信号在SL BWP中传输。当两者的子载波间隔不同或传输带宽不在终端设备的射频带宽内时,在一个时刻,终端设备有可能只能发送上行信号或发送旁链路信号。而如果需要发送另一个信号,需要进行射频的切换,切换需要一定的时延,在该时延内,终端设备不能进行信号的收发。如果不考虑帧结构参数下的优先级,会导致传输时延较大,可用传输资源降低,影响信号的传输性能。而本申请实施例图2所提供的通信方法,考虑根据不同帧结构参数,确定上行信号和旁链路信号的优先级,从而可减少传输时延,提高传输资源利用率,提高信号的传输性能。
示例中,本申请上述实施例七中提供的RF切换,可包括以下RF切换中的一种或多个。
情况1:仅切换射频带宽位置
比如,射频带宽位置从包含SL BWP的带宽位置切换到包含UL BWP的带宽位置,或者从包含UL BWP的带宽位置切换到包含SL BWP的带宽位置。
如图5a所示,SL BWP为60kHz子载波间隔,UL BWP为60kHz子载波间隔,因为射频带宽内仅有一个BWP的资源。因此在同一时间单元内,终端设备不能同时传输上行 和旁链路信号。比如在时隙n,终端设备在UL BWP中传输上行信号,为了在时隙m上传输旁链路信号,射频带宽需要从时隙n的位置切换到时隙m的位置。射频带宽切换需要一定的时延,在该时延内,终端设备不能收发。
情况2:仅切换帧结构参数(比如子载波间隔)
比如,从SL BWP的帧结构参数切换到UL BWP的帧结构参数,或者从UL BWP的帧结构参数切换到SL BWP的帧结构参数。
如图5b所示,SL BWP为30kHz子载波间隔,UL BWP为60kHz子载波间隔,因为同一时间单元终端设备有可能仅支持一种帧结构参数的信号的传输。因此在同一时间单元,终端设备不能同时传输上行信号和旁链路信号。比如在时隙n,终端设备在UL BWP中传输上行信号,为了在时隙m上传输旁链路,子载波间隔需要从60kHz切换到30kHz。子载波间隔变换可能需要一定的时延,在该时延内,终端设备不能收发。
情况3:切换射频带宽位置以及帧结构参数
比如,射频带宽位置从包含SL BWP的带宽位置切换到包含UL BWP的带宽位置,从SL BWP的帧结构参数切换到UL BWP的帧结构参数;或者从包含UL BWP的带宽位置切换到包含SL BWP的带宽位置,从UL BWP的帧结构参数切换到SL BWP的帧结构参数。
如图5c所示,SL BWP为30kHz子载波间隔,UL BWP为60kHz子载波间隔,因为同一时间单元内,终端设备有可能仅支持一种帧结构参数的信号的传输,且射频带宽内仅有一个BWP的资源。因此在同一时间单元内,终端设备不能同时传输上行信号和旁链路信号。比如在时隙n,终端设备在UL BWP中传输上行信号,为了在时隙m上传输旁链路信号,子载波间隔需要从60kHz切换到30kHz,射频带宽需要从时隙n的位置切换到时隙m的位置。射频变换需要一定的时延,在该时延内,终端设备不能收发。
关于上述情况1至情况3中的切换时延,可具体参见上述实施例七中的表3所示,在此不再说明。
上述本申请提供的实施例一至实施例十一中,分别从网络设备、终端、网络设备和终端之间交互、以及终端和终端交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
实施例十二
与上述构思相同,如图6所示,本申请实施例还提供一种装置500用于实现上述方法中第一终端设备的功能。该装置可以是终端设备,也可以是终端设备中的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置500可以包括:
确定模块501,用于根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级。
发送模块502,用于根据所述第一信号和所述第二信号的优先级,发送所述第一信号和/或所述第二信号。
关于确定模块501和发送模块502的具体执行过程,可参见上方法实施例中的记载。 本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器或模块中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
实施例十三
与上述构思相同,如图7所示,本申请实施例提供一种装置600,用于实现上述方法中第一终端设备的功能,该装置可以是终端设备,也可以是终端设备中的装置。
装置600包括至少一个处理器601,用于实现上述方法中第一终端设备的功能。示例地,处理器601可根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,具体参见方法中的详细描述,此处不再说明。
装置600还可以包括至少一个存储器602,用于存储程序指令和/或数据。存储器602和处理器601耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器601可以和存储器602协同操作。处理器601可能执行存储器602中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置600还可以包括通信接口603,用于通过传输介质和其它设备进行通信,从而用于装置600中的装置可以和其它设备进行通信。示例性地,通信接口603可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,该其它设备可以是第二终端设备或网络设备。处理器601利用通信接口603收发数据,并用于实现上述实施例中的方法。
本申请实施例中不限定上述通信接口603、处理器601以及存储器602之间的连接介质。本申请实施例在图7中以存储器602、处理器601以及通信接口603之间通过总线604连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为了便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、 专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。

Claims (16)

  1. 一种通信方法,其特征在于,包括:
    根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级;
    根据所述第一信号和所述第二信号的优先级,发送所述第一信号和/或所述第二信号。
  2. 如权利要求1所述的方法,其特征在于,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:
    根据所述第二帧结构参数,确定所述第二帧结构参数下的第二信号优先级;
    根据所述第二帧结构参数下的第二信号优先级与优先级门限的大小关系,确定所述第一信号和所述第二信号的优先级。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述第二帧结构参数,确定所述第二帧结构参数下的第二信号优先级,包括:
    根据所述第二帧结构参数以及至少一种帧结构参数下的第二信号优先级,确定所述第二帧结构参数下的第二信号优先级,所述至少一种帧结构参数中包括所述第二帧结构参数。
  4. 如权利要求2所述的方法,其特征在于,所述根据所述第二帧结构参数,确定所述第二帧结构参数下的第二信号优先级,包括:
    根据所述第二帧结构参数以及参考帧结构参数下的第二信号优先级,确定所述第二帧结构参数下的第二信号优先级。
  5. 如权利要求1所述的方法,其特征在于,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:
    根据所述第二帧结构参数,确定所述第二帧结构参数下的优先级门限;
    根据第二信号优先级以及所述第二帧结构参数下的优先级门限,确定所述第一信号和所述第二信号的优先级。
  6. 如权利要求5所述的方法,其特征在于,所述根据所述第二帧结构参数,确定所述第二帧结构参数下的优先级门限,包括:
    根据所述第二帧结构参数以及所述至少一种帧结构参数下的优先级门限,确定所述第二帧结构参数下的优先级门限,所述至少一种帧结构参数中包括所述第二帧结构参数。
  7. 如权利要求5所述的方法,其特征在于,所述根据所述第二帧结构参数,确定所述第二帧结构参数下的优先级门限,包括:
    根据所述第二帧结构参数以及所述参考帧结构参数下的优先级门限,确定所述第二帧结构参数下的优先级门限。
  8. 如权利要求1所述的方法,其特征在于,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:
    根据第一帧结构参数组合与优先级的对应关系,确定所述第一信号和所述第二信号的优先级,所述第一帧结构参数组合中包括所述第一帧结构参数和所述第二帧结构参数。
  9. 如权利要求1所述的方法,其特征在于,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:
    根据第一子载波间隔组合与优先级的对应关系,确定所述第一信号和所述第二信号的优先级,所述第一子载波间隔组合中包括所述第一帧结构参数中的第一子载波间隔和所述 第二帧结构参数中的第二子载波间隔。
  10. 如权利要求1所述的方法,其特征在于,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:
    根据所述第一帧结构参数中的第一子载波间隔与所述第二帧结构参数中的第二子载波间隔的大小关系,确定所述第一信号和所述第二信号的优先级。
  11. 如权利要求1所述的方法,其特征在于,所述根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级,包括:
    根据所述第二帧结构参数,确定所述第二帧结构参数下的第二信号优先级和所述第二帧结构参数下的优先级门限;
    根据所述第二帧结构参数下的第二信号优先级和所述第二帧结构参数下的优先级门限,确定所述第一信号和所述第二信号的优先级。
  12. 一种装置,其特征在于,用于实现如权利要求1至11任一项所述的方法。
  13. 一种装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求1至11任一项所述的方法。
  14. 一种装置,其特征在于,包括处理器和通信接口,
    所述处理器用于根据第一信号的第一帧结构参数和/或第二信号的第二帧结构参数,确定所述第一信号和所述第二信号的优先级;
    所述处理器用于根据所述第一信号和所述第二信号的优先级,利用所述通信接口发送所述第一信号和/或所述第二信号。
  15. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至11任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至11任一项所述的方法。
PCT/CN2020/078086 2019-03-29 2020-03-05 一种通信方法及装置 WO2020199846A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253335.7A CN111756508B (zh) 2019-03-29 2019-03-29 一种通信方法及装置
CN201910253335.7 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199846A1 true WO2020199846A1 (zh) 2020-10-08

Family

ID=72664896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078086 WO2020199846A1 (zh) 2019-03-29 2020-03-05 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN111756508B (zh)
WO (1) WO2020199846A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784403A (zh) * 2021-08-18 2021-12-10 中国联合网络通信集团有限公司 一种小区切换方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230422291A1 (en) * 2020-11-27 2023-12-28 Beijing Xiaomi Mobile Software Co., Ltd. Method for wireless transmission, communication device and non-transitory computer storage medium
CN117322108A (zh) * 2021-05-27 2023-12-29 株式会社Ntt都科摩 终端、无线通信系统以及无线通信方法
WO2023216246A1 (en) * 2022-05-13 2023-11-16 Zte Corporation Systems and methods for sidelink transmission or reception
CN117640006A (zh) * 2022-08-10 2024-03-01 维沃移动通信有限公司 帧结构确定方法、装置、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602017A (zh) * 2004-09-02 2005-03-30 上海交通大学 与以太网兼容的实时介质访问控制方法
CN107295567A (zh) * 2017-07-21 2017-10-24 重庆邮电大学 一种基于帧结构的无限资源冲突检测方法
CN108023671A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520984B2 (en) * 2013-01-03 2016-12-13 Lg Electronics Inc. Method and apparatus for transmitting uplink signals in wireless communication system
CN107889230B (zh) * 2016-09-29 2022-11-29 中兴通讯股份有限公司 信号发送、接收发送及装置
CN107889157B (zh) * 2016-09-30 2023-07-28 北京三星通信技术研究有限公司 功率控制的方法及设备
CN108282882B (zh) * 2017-01-06 2021-06-22 华为技术有限公司 信息传输方法、终端设备及接入网设备
CN111148237B (zh) * 2018-11-02 2022-12-30 华为技术有限公司 一种通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602017A (zh) * 2004-09-02 2005-03-30 上海交通大学 与以太网兼容的实时介质访问控制方法
CN108023671A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统
CN107295567A (zh) * 2017-07-21 2017-10-24 重庆邮电大学 一种基于帧结构的无限资源冲突检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO, 3GPP TSG RAN WG1 #96 R1-1901698, 16 February 2019 (2019-02-16), DOI: 20200417102905Y *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784403A (zh) * 2021-08-18 2021-12-10 中国联合网络通信集团有限公司 一种小区切换方法及装置
CN113784403B (zh) * 2021-08-18 2023-06-23 中国联合网络通信集团有限公司 一种小区切换方法及装置

Also Published As

Publication number Publication date
CN111756508B (zh) 2023-04-18
CN111756508A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2020199846A1 (zh) 一种通信方法及装置
WO2020164445A1 (zh) 一种通信方法及装置
WO2020143482A1 (zh) 一种通信方法及装置
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
WO2020200017A1 (zh) 一种通信方法及装置
US20230189225A1 (en) Method for Enhancing Physical Downlink Control Channel, Communication Apparatus, and System
WO2020143804A1 (zh) 一种旁链路资源的配置方法及装置
CN115242364B (zh) 用于监控的方法和设备
WO2016000368A1 (zh) 上行控制信道的配置和发送方法、装置及基站和用户设备
WO2021032065A1 (zh) 一种资源复用方法及装置
CN111385862A (zh) 一种功率控制方法及装置
EP4096318A1 (en) Resource configuration method and network device
WO2019101184A1 (zh) 一种信息接收方法及装置
WO2022027308A1 (en) Enhanced configured grants
WO2021008378A1 (zh) 一种通信方法及装置
CN112584518A (zh) 一种资源确定方法及装置
CN112997433B (zh) 用于harq传输的方法以及通信设备
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
CN114451017A (zh) 一种激活和释放非动态调度传输的方法及装置
WO2022188638A1 (zh) 一种数据传输方法及装置
WO2021259138A1 (zh) 上行信号的发送方法、装置及系统
WO2020164392A1 (zh) 一种通信方法及装置
US20220304042A1 (en) Enhanced Configured Grants
WO2020164391A1 (zh) 一种通信方法及装置
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782567

Country of ref document: EP

Kind code of ref document: A1