WO2020143482A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020143482A1
WO2020143482A1 PCT/CN2019/129300 CN2019129300W WO2020143482A1 WO 2020143482 A1 WO2020143482 A1 WO 2020143482A1 CN 2019129300 W CN2019129300 W CN 2019129300W WO 2020143482 A1 WO2020143482 A1 WO 2020143482A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
frame structure
time unit
structure parameter
terminal device
Prior art date
Application number
PCT/CN2019/129300
Other languages
English (en)
French (fr)
Inventor
王婷
唐浩
李新县
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19909066.3A priority Critical patent/EP3897005A4/en
Publication of WO2020143482A1 publication Critical patent/WO2020143482A1/zh
Priority to US17/370,972 priority patent/US20210337544A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • This application relates to the field of communication technology, and in particular, to a communication method and device.
  • terminal device communication may include sidelink (SL) communication and Uu air interface communication.
  • SL communication is used for communication between terminal devices and terminal devices
  • Uu air interface communication is used for communication between terminal devices and network devices.
  • the network device may configure one or more SL carrier bandwidth parts (BWP) for the terminal device. How to use SLWPB for side link communication is a current research hotspot.
  • BWP SL carrier bandwidth parts
  • the present application provides a communication method and device to implement broadcast side link communication in a system supporting multi-frame structure parameters.
  • a communication method including: performing sidelink communication on a first carrier bandwidth portion BWP in a first time unit; wherein, the sidelink communication in the first time unit uses a first frame Structural parameters.
  • the first frame structural parameter is the same as the public BWP frame structural parameter.
  • the first BWP is a public BWP or a first private BWP.
  • the frame structure parameter of the first dedicated BWP and the frame structure parameter of the common BWP are the same.
  • the bandwidth of the first dedicated BWP includes the bandwidth of the public BWP.
  • broadcast side link communication can be implemented in a system that supports multi-frame structure parameters.
  • Using the first frame structure parameter communication in the first time unit can ensure that the terminal device can perform broadcast side link communication in the first time unit to realize transmission and/or reception of the broadcast side link signal.
  • the bandwidth of the dedicated BWP of the terminal device includes the bandwidth of the public BWP, the terminal device can work in the dedicated BWP to perform broadcast side link communication to avoid BWP reconfiguration or switching, and the implementation is simple.
  • the method further includes: in a second time unit, using a second frame structure parameter for side link communication in a second dedicated BWP; wherein the second frame structure parameter is the first Two special BWP frame structure parameters.
  • the terminal device can use different BWPs to perform side link communication in different time units.
  • the first BWP is used for side link communication
  • the second BWP is used for side link communication. It is possible to realize the side link communication of broadcasting, unicast or group broadcast in the first time unit, and the side link communication of unicast and/or multicast in the second time unit. Furthermore, it can realize broadcast side link communication in a system that supports multi-frame structure parameters.
  • the side link communication of the first time unit includes broadcasting.
  • the side link communication of the second time unit includes unicast and/or multicast.
  • the side link communication of the first time unit further includes unicast and/or multicast.
  • the first BWP is a public BWP
  • the method further includes: determining the first BWP according to the public BWP set.
  • different first BWPs may be selected for side link communication.
  • selecting different BWPs for side-link communication can achieve the maximum resource utilization and reduce the probability of resource conflicts during side-link transmission.
  • the method further includes receiving a first indication, where the first indication is used to indicate the first time unit.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate that during a period of length N time units, the first indication is configured as the first For a time unit of a time unit, the N is a positive integer greater than or equal to 1; or, the first indication is used to indicate at least one of a configuration period, a transmission offset, and/or a number of first time units.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under one or more frame structure parameters, so The method further includes: determining the first time unit under the first frame structure parameter according to the first time unit under the one or more frame structure parameters, the one or more frame structure parameters including The first frame structure parameter, the first frame structure parameter is a frame structure parameter of the first BWP; and/or,
  • the first time unit under the second frame structure parameter is determined according to the first time unit under the one or more frame structure parameters, and the second frame is included in the one or more frame structure parameters
  • the structure parameter, the second frame structure parameter is a frame structure parameter of the second dedicated BWP.
  • the network device may indicate the first time unit under various frame structure parameters, and the terminal device may determine the first time unit according to the currently used frame structure parameter. Since the terminal device is under different frame structure parameters, the corresponding first time unit may be different. With the method of this design, the first time unit under different frame structure parameters can be more accurately indicated.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under the reference frame structure parameter, and the method further includes: According to the reference frame structure parameter, the first frame structure parameter and the first time unit under the reference frame structure parameter, determine the first time unit under the first frame structure parameter, the first frame structure parameter is The frame structure parameter of the first BWP; and/or,
  • the second frame structure parameter and the first time unit under the reference frame structure parameter determine the first time unit under the second frame structure parameter, the second frame structure parameter is The frame structure parameter of the second dedicated BWP.
  • the network device only indicates the first time unit under one frame structure parameter (that is, the reference frame structure parameter), which can save the air interface relative to the first time unit under the multiple frame structure parameters. Overhead.
  • the terminal device can determine the first time unit under the first frame structure parameter and/or the first time unit under the second frame structure parameter according to the first time unit under the reference frame structure parameter, and thus can support multiple frames
  • broadcast side link communication is implemented in the first time unit.
  • a communication method including: sending a first indication to a first terminal device and a second terminal device, where the first indication is used to indicate a first time unit, and the first time unit is used to The first terminal device and the second terminal device perform side link communication, and the side link communication of the first time unit uses the first frame structure parameter, the first frame structure parameter, and the frame of the common carrier bandwidth part BWP
  • the structural parameters are the same.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate that during a period of length N time units, the first indication is configured as the first For a time unit of a time unit, the N is a positive integer greater than or equal to 1; or, the first indication is used to indicate at least one of a configuration period, a transmission offset, and/or a number of first time units.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under one or more frame structure parameters.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under the reference frame structure parameter.
  • an apparatus may be a terminal device, an apparatus in the terminal apparatus, or an apparatus that can be matched with the terminal apparatus.
  • the apparatus may include a communication module, and the communication module may perform the above
  • the communication module is used for side link communication on the first carrier bandwidth part BWP in the first time unit;
  • the side link communication in the first time unit uses a first frame structure parameter
  • the first frame structure parameter is the same as the frame structure parameter of the public BWP
  • the first BWP is a public BWP or a first private BWP .
  • the frame structure parameter of the first dedicated BWP and the frame structure parameter of the common BWP are the same.
  • the bandwidth of the first dedicated BWP includes the bandwidth of the public BWP.
  • the communication module is further used to: in the second time unit, use the second frame structure parameter in the second dedicated BWP for side link communication; wherein, the second frame structure parameter is The frame structure parameter of the second dedicated BWP.
  • the side link communication of the first time unit includes broadcasting.
  • the side link communication of the second time unit includes unicast and/or multicast.
  • the side link communication of the first time unit further includes unicast and/or multicast.
  • the first BWP is a public BWP
  • the device further includes a processing module, configured to determine the first BWP according to the common BWP set.
  • the method further includes: a receiving module, configured to receive a first indication, and the first indication is used to indicate the first time unit.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate that during a period of length N time units, the first indication is configured as the first For a time unit of a time unit, the N is a positive integer greater than or equal to 1; or, the first indication is used to indicate at least one of a configuration period, a transmission offset, and/or a number of first time units.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under one or more frame structure parameters, so The processing module is also used to:
  • the first time unit under the first frame structure parameter is determined according to the first time unit under the one or more frame structure parameters, and the first frame is included in the one or more frame structure parameters Structure parameter, the first frame structure parameter is the frame structure parameter of the first BWP; and/or,
  • the first time unit under the second frame structure parameter is determined according to the first time unit under the one or more frame structure parameters, and the second frame is included in the one or more frame structure parameters
  • the structure parameter, the second frame structure parameter is a frame structure parameter of the second dedicated BWP.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under the reference frame structure parameter, and the processing module also uses Yu: determine the first time unit under the first frame structure parameter according to the reference frame structure parameter, the first frame structure parameter and the first time unit under the reference frame structure parameter, the first frame structure The parameter is a frame structure parameter of the first BWP; and/or, the second frame structure is determined according to the reference frame structure parameter, the second frame structure parameter and the first time unit under the reference frame structure parameter In the first time unit under the parameter, the second frame structure parameter is the frame structure parameter of the second dedicated BWP.
  • a communication device may be a network device, a device in a network device, or a device that can be matched with a network device.
  • the device may include a sending module, and the sending module may perform the above.
  • a sending module configured to send a first indication to a first terminal device and a second terminal device, the first indication is used to indicate a first time unit, and the first time unit is used for the first terminal device and the The second terminal device performs side link communication, and the first time unit's side link communication uses a first frame structure parameter, and the first frame structure parameter is the same as the frame structure parameter of the common carrier bandwidth part BWP.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate that the first time unit is configured as the first time period within a period of N time units For a time unit of a time unit, the N is a positive integer greater than or equal to 1; or, the first indication is used to indicate at least one of a configuration period, a transmission offset, and/or a number of first time units.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under one or more frame structure parameters.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under the reference frame structure parameter.
  • an embodiment of the present application provides an apparatus.
  • the apparatus includes a processor, configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled to the processor.
  • the processor executes the program instructions stored in the memory, the method described in the first aspect may be implemented.
  • the apparatus may further include a communication interface, which is used for the apparatus to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • Other devices may be Network equipment or second terminal equipment, etc.
  • the apparatus includes:
  • Memory used to store program instructions
  • a processor configured to perform side link communication on the first carrier bandwidth part BWP using the communication interface in the first time unit; for example, the processor may use the communication interface to send on the first BWP in the first time unit Sidelink signals or receiving sidelink signals, etc.
  • the side link communication in the first time unit uses a first frame structure parameter, and the first frame structure parameter is the same as the frame structure parameter of the public BWP, and the first BWP is a public BWP or a first private BWP .
  • the frame structure parameter of the first dedicated BWP and the frame structure parameter of the common BWP are the same.
  • the bandwidth of the first dedicated BWP includes the bandwidth of the public BWP.
  • the processor is further configured to use the second frame structure parameter in the second dedicated BWP for side link communication in the second time unit using the communication interface; wherein, the second frame structure The parameter is a frame structure parameter of the second dedicated BWP.
  • the side link communication of the first time unit includes broadcasting.
  • the side link communication of the second time unit includes unicast and/or multicast.
  • the side link communication of the first time unit further includes unicast and/or multicast.
  • the first BWP is a public BWP
  • the processor is further configured to determine the first BWP according to the common BWP set.
  • the communication interface is further used to receive a first indication, and the first indication is used to indicate the first time unit.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate that during a period of length N time units, the first indication is configured as the first For a time unit of a time unit, the N is a positive integer greater than or equal to 1; or, the first indication is used to indicate at least one of a configuration period, a transmission offset, and/or a number of first time units.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under one or more frame structure parameters, so The processor is also used to:
  • the first time unit under the first frame structure parameter is determined according to the first time unit under the one or more frame structure parameters, and the first frame is included in the one or more frame structure parameters Structure parameter, the first frame structure parameter is the frame structure parameter of the first BWP; and/or,
  • the first time unit under the second frame structure parameter is determined according to the first time unit under the one or more frame structure parameters, and the second frame is included in the one or more frame structure parameters
  • the structure parameter, the second frame structure parameter is a frame structure parameter of the second dedicated BWP.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under the reference frame structure parameter, and the processor also uses in:
  • the first frame structure parameter and the first time unit under the reference frame structure parameter determine the first time unit under the first frame structure parameter, the first frame structure parameter is The frame structure parameter of the first BWP; and/or,
  • the second frame structure parameter and the first time unit under the reference frame structure parameter determine the first time unit under the second frame structure parameter, the second frame structure parameter is The frame structure parameter of the second dedicated BWP.
  • an embodiment of the present application provides an apparatus.
  • the apparatus includes a processor, configured to implement the method described in the second aspect above.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled to the processor, and when the processor executes the program instructions stored in the memory, the method described in the second aspect may be implemented.
  • the apparatus may further include a communication interface, which is used for the apparatus to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • Other devices may be Network equipment or second terminal equipment, etc.
  • the apparatus includes:
  • Memory used to store program instructions
  • a processor configured to send a first instruction to the first terminal device and the second terminal device using a communication interface, the first instruction is used to indicate a first time unit, and the first time unit is used for the first terminal device Sidelink communication is performed with the second terminal device, and the sidelink communication of the first time unit uses a first frame structure parameter, and the first frame structure parameter is the same as the frame structure parameter of the common carrier bandwidth part BWP.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate that during a period of length N time units, the first indication is configured as the first For a time unit of a time unit, the N is a positive integer greater than or equal to 1; or, the first indication is used to indicate at least one of a configuration period, a transmission offset, and/or a number of first time units.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under one or more frame structure parameters.
  • the first indication is used to indicate the first time unit, including: the first indication is used to indicate the first time unit under the reference frame structure parameter.
  • an embodiment of the present application further provides a computer-readable storage medium, including instructions, which when executed on a computer, causes the computer to execute the method of the first aspect or the second aspect.
  • an embodiment of the present application further provides a chip system.
  • the chip system includes a processor, and may further include a memory, for implementing the method of the first aspect or the second aspect.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • an embodiment of the present application further provides a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method of the first aspect or the second aspect.
  • an embodiment of the present application provides a system including the device of the third aspect and the device of the fourth aspect, or the device of the fifth aspect and the device of the sixth aspect.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of BWP provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of multicast, broadcast, and unicast provided by an embodiment of the present application.
  • FIG. 5a, FIG. 5b or FIG. 5c is a schematic diagram of a BWP configuration provided by an embodiment of this application;
  • FIG. 6 is another schematic diagram of BWP configuration provided by an embodiment of the present application.
  • 8a, 8b, 8c, 9a, 9b, and 9c are schematic diagrams of time slots provided by embodiments of the present application.
  • FIG. 11 is a schematic diagram of the relationship between BWP and broadcast, multicast and unicast provided by an embodiment of the present application;
  • FIG. 13 is a flowchart of a base station scheduling mode
  • 15 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 it is a schematic diagram of a possible network architecture applicable to the embodiments of the present application, including a first terminal device 101 and a second terminal device 102.
  • the first terminal device 101 and the second terminal device 102 can communicate via a side link (SL), and the communication method may include unicast, multicast, and/or broadcast.
  • the network architecture shown in FIG. 1 may further include: an access network device 103.
  • the access network device 103 may communicate with the first terminal device 101 and/or the second terminal device 102 through the Uu air interface.
  • the network architecture shown in FIG. 1 may further include: a network management system 104.
  • the first terminal device 101 or the second terminal device 102 may communicate with the network management system 104 in a wired or wireless manner.
  • the first terminal device 101 or the second terminal device 102 may communicate with the network management system 104 through the access network device 103.
  • the network management system 104 may be an operator's network management system.
  • the Uu air interface can be understood as the interface between a universal user equipment (UE) and a network (universal UE to network interface).
  • Uu air interface transmission may include uplink transmission and downlink transmission, where uplink transmission may refer to the terminal device transmitting signals to the access network device, and downlink transmission may refer to the access network device transmitting signals to the terminal device.
  • the signal transmitted upstream may be referred to as uplink information, and the signal transmitted downward may be referred to as downlink information.
  • the physical layer only supports broadcasting, and only supports a fixed frame structure parameter (numerology).
  • the fixed frame structure parameter may be that the subcarrier interval is 15 kHz, and the cyclic prefix (CP) is a normal CP or an extended CP.
  • CP cyclic prefix
  • the physical layer supports broadcast, unicast, and multicast. How to realize SL broadcasting under various frame structure parameters is a problem to be solved in the embodiments of the present application.
  • the terminal device may be simply referred to as a terminal, and is a device with wireless transceiver function.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical (remote medical), wireless terminal equipment in smart grid (smart grid), transportation safety (transportation)
  • the wireless terminal equipment in safety the wireless terminal equipment in smart city (smart city), the wireless terminal equipment in smart home (smart home), and may also include user equipment (user equipment, UE), etc.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5th generation (5G) networks or public land mobile communication networks that evolve in the future (public land, mobile network, PLMN) terminal equipment, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • 5G future 5th generation
  • 5G public land mobile communication networks
  • public land mobile communication networks that evolve in the future (public land, mobile network, PLMN) terminal equipment, etc.
  • Terminal equipment may sometimes be called terminal, user equipment (UE), access terminal equipment, in-vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment , Mobile devices, UE terminal devices, terminal devices, wireless communication devices, UE agents or UE devices, etc.
  • the terminal device may also be fixed or mobile. This application example is not limited to this.
  • the device for realizing the function of the terminal may be a terminal; or it may be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the device for implementing the functions of the terminal is a terminal, and the terminal is a UE as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network device may be an access network device, and the access network device may also be referred to as a radio access network (radio access network, RAN) device, which is a device that provides wireless communication functions for terminal devices.
  • Access network equipment includes, for example, but not limited to: 5G next-generation base station (generation nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B ( node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (baseband unit) , BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • 5G next-generation base station generation nodeB, gNB
  • evolved node B evolved node B
  • eNB radio network controller
  • RNC radio network controller
  • node B node B, NB
  • BSC
  • the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario, or a network
  • the device may be a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, a network device in a future 5G network, or a network device in a future evolved PLMN network.
  • the terminal device can communicate with multiple access network devices of different technologies, for example, the terminal device can communicate with an access network device that supports long-term evolution (LTE), and can also communicate with an access network device that supports 5G It can also be dual-connected to access network equipment that supports LTE and access network equipment that supports 5G.
  • LTE long-term evolution
  • 5G It can also be dual-connected to access network equipment that supports LTE and access network equipment that supports 5G.
  • the embodiments of the present application are not limited.
  • the apparatus for implementing the function of the network device may be a network device; or may be an apparatus capable of supporting the network device to achieve the function, such as a chip system, and the apparatus may be installed in the network device.
  • the device for realizing the function of the network device is a network device, and the network device is a base station as an example to describe the technical solutions provided by the embodiments of the present application.
  • Side links may also be called side links or side links.
  • the side link is used for communication between the terminal device and the terminal device, and may include a physical side link shared channel (physical side link shared channel, PSSCH) and a physical side link control channel (physical side link control channel, PSCCH).
  • PSSCH can be used to carry side link data (SL) data
  • PSCCH can be used to carry side link control information (sidelink control information, SCI)
  • SCI sidelink scheduling assignment
  • SL SA is used for data scheduling related information.
  • SL SA includes PSSCH resource allocation and/or modulation coding scheme (MCS) and other information.
  • MCS modulation coding scheme
  • the side link communication may further include: a physical side link uplink control channel (physical side link up control channel, PSUCCH).
  • the physical side-link uplink control channel may also be simply referred to as the side-link uplink control channel.
  • the physical sidelink uplink control channel may also be called a physical sidelink feedback channel (physical sidelink feedback channel, PSFCH).
  • the physical side link feedback channel may also be referred to simply as the side link feedback channel.
  • the sidelink uplink control channel or the sidelink feedback channel can be used to transmit sidelink feedback control information (sidelink feedback control information (SFCI)).
  • Sidelink feedback control information may also be referred to as sidelink feedback information for short, and may also be referred to as sidelink uplink control information (sidelinkuplinkcontrolinformation, SLUCI).
  • the side link feedback control information may include at least one of channel state information (channel state information (CSI), hybrid automatic repeat request (HARQ) information, etc.
  • the HARQ information may include acknowledgement information (acknowledgement, ACK) or negative acknowledgement (negtive acknowledgement, NACK), etc.
  • acknowledgement information acknowledgement, ACK
  • negative acknowledgement negative acknowledgement
  • at least one may be 1, 2, 3 or more, and the embodiments of the present application are not limited.
  • the unit of the time unit may be a unit such as a radio frame, a subframe, a slot, a mini-slot, and a symbol.
  • one time unit may include 2 time slots and so on.
  • One radio frame may include one or more subframes, and one subframe may include one or more time slots.
  • a time slot may include one or more symbols.
  • next time slot of the normal cyclic prefix may include 14 time domain symbols
  • the next time slot of the extended CP may include 12 time domain symbols.
  • Time domain symbols can be referred to simply as symbols.
  • Time domain symbols can be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, or they can be orthogonal frequency division multiplexing based on discrete Fourier transform expansion (discrete fourier transform transform orthogonal frequency division multiplexing, DFT-s- OFDM) symbol, in the embodiment of the present application, the time domain symbol may be an OFDM symbol as an example for description.
  • Mini-slots also known as mini-slots, can be smaller units than slots, and a mini-slot can include one or more symbols.
  • a mini-slot may include 2 symbols, 4 symbols, or 7 symbols.
  • a time slot may include one or more mini-slots.
  • the carrier bandwidth part can be simply referred to as the bandwidth part (BWP).
  • BWP is a continuous set of frequency domain resources on the carrier.
  • BWP is a continuous set of resource blocks (RB) on the carrier, or BWP is on the carrier.
  • a group of consecutive subcarriers, or BWP is a group of consecutive resource blocks (RBG) on the carrier.
  • one RBG includes at least one RB, such as 1, 2, 4, 6, or 8, etc.
  • one RB may include at least one subcarrier, such as 12, etc.
  • the method shown in NR version 15 (release 15, Rel-15) in a cell, for a terminal device, the network can configure up to 4 BWPs for the terminal device.
  • 4 BWPs can be configured for uplink and downlink, and under time division duplexing (TDD), 4 BWPs can be configured for uplink and downlink.
  • the network device may configure the terminal device with a frame structure parameter including a subcarrier interval and/or a CP length for each BWP.
  • a frame structure parameter including a subcarrier interval and/or a CP length for each BWP.
  • only one BWP can be activated in a cell, and terminal devices and network devices send and receive data on the activated BWP.
  • the existing BWP is defined on a given carrier, that is, the resources of one BWP are located in one carrier resource.
  • the bandwidth of the BWP is less than or equal to the UE bandwidth capability, and the UE bandwidth capability is less than or equal to Carrier bandwidth (carrier BW).
  • two BWPs can be configured for one UE, namely BWP1 and BWP2, and the bandwidths of BWP1 and BWP2 overlap.
  • two BWPs can be configured for one UE, namely BWP1 and BWP2, and BWP1 and BWP2 do not overlap.
  • the frame structure parameters of BWP1 and BWP2 may be the same frame structure parameter, or may be different frame structure parameters.
  • the configuration of the BWP (for example, the configuration of the number, position, and/or frame structure parameters of the BWP) may also be other configurations, which are not limited in the embodiments of the present application.
  • SL under NR can also adopt the design of BWP to configure SL resources.
  • the network device may configure SL BWP through pre-configuration methods or public signaling such as system messages.
  • the configured SL BWP may be a common BWP (common BWP) of the cell.
  • the common BWP is the BWP configured for all UEs in the cell.
  • the public BWP may be a BWP used for broadcast side link communication, or the public BWP may be a non-link state user (such as an idle state user, an inactive state user, or an out-of-coverage user, etc.) performing side link communication.
  • the BWP, or the public BWP may also be a BWP for side-link communication between the link state user and the user outside the coverage.
  • the network device may also configure the SL and BWP to the UE through UE-specific signaling, and the configured SL and BWP may be the dedicated BWP of the UE.
  • the configuration of the carrier bandwidth part may include the frequency starting position of the carrier bandwidth part (such as a resource block (RB)), bandwidth (BW), and corresponding frame structure parameter (numerology).
  • RB resource block
  • BW bandwidth
  • the frame structure parameter may include subcarrier spacing and/or CP type.
  • 3GPP 3rd Generation Partnership Project
  • the SL resource in the embodiment of the present application may refer to SL BWP, may also refer to a resource pool, or may refer to resources in the SL resource pool used for side link communication.
  • the SL resource pool may also be simply referred to as a resource pool.
  • Frame structure parameters may include subcarrier spacing and/or cyclic prefix (CP) type.
  • the CP type may also be called CP length, or simply CP.
  • the CP type may be an extended CP, or a normal (normal) CP.
  • the next time slot of the extended CP may include 12 time domain symbols, and the next time slot of the normal CP may include 14 time domain symbols.
  • one slot may correspond to different slot lengths. For example, at a subcarrier interval of 15 kHz, one slot may be 1 ms, and at a subcarrier interval of 30 kHz, one slot may be 0.5 ms. Under different subcarrier intervals, a time slot may include the same number of time domain symbols, such as 12 or 14, etc.
  • the base station scheduling mode of the side link SL may also be referred to as a base station assisted scheduling mode, or simply referred to as a base station scheduling mode.
  • the network device may configure SL resources for the sending-end UE and/or the receiving-end UE through configuration information, and the SL resources may include one or more resource pools.
  • the plurality may be 2, 3, 4 or more, and the embodiments of the present application are not limited.
  • the network device may indicate the resources used for side link communication in the SL resource pool to the sending UE through downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the sending UE may use the DCI
  • the resources in the indicated resource pool send SL information to the receiving end UE.
  • the SL information may include SL and/or SCI.
  • the receiving end UE may receive the SL information.
  • the receiving UE may send SFCI to the transmitting UE, and the SFCI may include ACK/NACK for SL data.
  • the sending-end UE and the receiving-end UE may be for SL data.
  • the receiving UE for SL data can be described as the transmitting UE, and the transmitting UE for SL data can be described as the receiving UE.
  • the network device may be a base station or a network management system operated by an operator.
  • the SL resource of the sending end UE may be the SL resource configured by the base station for the sending end UE, and the SL resource of the receiving end UE may be the SL resource configured by the network management system for the receiving end UE.
  • the SL resource of the receiving end UE may be the SL resource configured by the base station for the receiving end UE, and the SL resource of the sending end UE may be the SL resource configured by the network management system for the sending end UE.
  • the network device may configure SL resources for UE1 and UE2, the network device may send DCI to UE1, and UE1 may determine the SL transmission resource according to the indication of the DCI, and send SCI and/or SL data on the SL transmission resource.
  • the UE2 determines the SL receiving resource according to the configured SL resource, receives the SCI on the SL receiving resource, and receives the SL data on the receiving resource according to the SCI.
  • UE2 may send 1 to the UE to send SFCI.
  • the SFCI may include a positive acknowledgement ACK, otherwise, the SFCI may include a negative acknowledgement NACK, and so on.
  • the network device may configure SL resources for UE1, UE2, and UE3, and the network device may allocate SL transmission resources for UE3 and UE1 through DCI.
  • UE3 may send an SL signal to UE1.
  • the SL signal may include SCI and/or SL data.
  • UE1 may send SFCI to UE3.
  • UE1 may send an SL signal to UE2 on the SL transmission resources.
  • the SL signal may include SCI and/or SL data.
  • UE2 may send SFCI to UE1.
  • the UE's autonomous selection mode may also be referred to as the UE's active selection mode.
  • the network device may configure SL resources for the sending UE and/or the receiving UE through configuration information.
  • the SL resources include one or Multiple resource pools.
  • the UE at the sending end senses in the configured SL resources, and if it senses that there are available resources in the SL resources, it sends the SL information in the available resources.
  • the UE at the receiving end receives the SL information in the SL resources.
  • the SL resource of the sending end UE may be the SL resource configured by the base station for the sending end UE, and the SL resource of the receiving end UE may be the SL resource configured by the network management system for the receiving end UE.
  • the SL resource of the receiving end UE may be the SL resource configured by the base station for the receiving end UE, and the SL resource of the sending end UE may be the SL resource configured by the network management system for the sending end UE.
  • the network device may configure SL resources for UE1 and UE2.
  • UE1 senses SL transmission resources among the configured SL resources, and transmits SCI and/or SL data in the SL transmission resources.
  • UE2 receives SCI and/or SL data according to the configured SL resources.
  • UE2 may perceive SL transmission resources among the configured SL resources, and send SFCI to UE1 on the SL transmission resources.
  • UE1 when UE1 is the sending end and sends SL data information to UE2 on the SL transmission resource, UE1 can also serve as the receiving end to receive the SL data information sent by UE3.
  • UE1 may send SFCI to UE3 on the SL transmission resources.
  • base station scheduling mode of the sidelink SL which will not be described here.
  • transmission may include data transmission and/or reception, and/or control information transmission and/or reception.
  • Words such as “first” and “second” are only used for the purpose of distinguishing descriptions, and cannot be understood as indicating or implying relative importance, nor as indicating or implying order.
  • a flow of a communication method is provided, and the execution subject in the flow may be the sending-side terminal device 101 or the receiving-side terminal device 102 in FIG.
  • the process includes:
  • the terminal device performs side link communication on the first BWP in the first time unit.
  • the side link communication of the first time unit may include broadcast.
  • it may also include groupcast and/or unicast. That is, the side link communication of the first time unit may include "broadcast”, “broadcast and unicast", “broadcast and multicast”, or “broadcast, unicast and multicast” and so on.
  • broadcasting may refer to communication between one terminal device and multiple terminal devices.
  • broadcasting may refer to communication between one terminal device and all terminal devices in a cell. Therefore, broadcasting requires that all terminal devices Acceptable.
  • the purpose of broadcasting is to allow all terminal devices to receive broadcast messages, but in reality, one or more terminal devices can receive the broadcast message.
  • Multicast can refer to the communication between a terminal device and a group of terminal devices.
  • the purpose of multicast is to allow all terminal devices in a group of terminal devices to receive multicast messages. However, in reality, it is one or more terminal devices in a group of terminal devices that receive multicast messages.
  • Unicast can refer to the communication between one terminal device and another terminal device. The purpose of unicast is to allow a terminal device to receive a unicast message, but in practical applications, the terminal device may or may not receive the above unicast message.
  • the first terminal device may send the side link signal on the first BWP in the first time unit.
  • the second terminal device receives the sidelink signal on the first BWP in the first time unit, and the sidelink signal may include data and/or sidelink control information (SCI), etc.
  • the side link signal may also include side link feedback information. or,
  • the side link communication in the first time unit uses a first frame structure parameter, which is the same as a frame structure parameter of a common BWP, and the first BWP is a public BWP or a first private BWP.
  • the frame structure parameter of the first dedicated BWP is the same as the frame structure parameter of the common BWP.
  • the bandwidth of the first dedicated BWP includes the bandwidth of the public BWP. or,
  • the first BWP is a public BWP or a first private BWP
  • the first time unit is a time unit used for broadcast side link communication.
  • the frame structure parameter of the first dedicated BWP is the same as the frame structure parameter of the common BWP.
  • the bandwidth of the first dedicated BWP includes the bandwidth of the public BWP.
  • the first BWP is a public BWP or a first private BWP
  • the frame structure parameters of the first private BWP and the public BWP are the same
  • the side link communication in the first time unit is used
  • the first frame structure parameter which is the same as the frame structure parameter used for broadcast side link communication.
  • the bandwidth of the first dedicated BWP includes the bandwidth of the public BWP. or,
  • the first frame structure parameter is used for side link communication on the first BWP.
  • the first BWP is a public BWP or a first private BWP.
  • the frame structure parameter of the first dedicated BWP and the The frame structure parameters of the common BWP are the same, and the first frame structure parameter and the frame structure parameter used for broadcast side link communication are the same.
  • the bandwidth of the dedicated BWP includes the bandwidth of the public BWP. or,
  • the first frame structure parameter is used for side link communication on the first BWP.
  • the first BWP is a public BWP or a first private BWP.
  • the frame structure parameter of the first dedicated BWP and the The frame structure parameters of the common BWP are the same, and the frame structure parameters of the first frame and the common BWP are the same.
  • the bandwidth of the first dedicated BWP includes the bandwidth of the public BWP.
  • the frame structure parameter A and the frame structure parameter B being the same can also be described as: the frame structure parameter A is the frame structure parameter B.
  • the first frame structure parameter is the same as the common BWP frame structure parameter, and it can also be described as: the first frame structure parameter is the common BWP frame structure parameter.
  • the bandwidth of the first dedicated BWP may include the bandwidth of the public BWP.
  • the BWP configuration of the terminal device in time slot 1 the first dedicated BWP is BWP4, including resource pools 2 to 5
  • the common BWP is BWP0, including resource pools 3 and 4, and the BWP4 and BWP0
  • the frame structure parameters are the same and are the first frame structure parameters.
  • the bandwidth of the first dedicated BWP (ie BWP4) includes the bandwidth of the public BWP (ie BWP0).
  • the subcarrier spacing of the first frame structure parameter is 30 kHz as an example for description, and is not intended to limit the present application.
  • the subcarrier spacing of the first frame structure parameter may be 15 kHz, 30 kHz, 60 kHz, etc.
  • the terminal device can work in the first dedicated BWP in time slot 1, specifically, the terminal device can broadcast, multicast in the part where the public BWP overlaps with the broadband of the first dedicated BWP (that is, resource pool 3 and resource pool 4), At least one of the unicast, and/or, the terminal device may perform multicast and/or unicast on the non-overlapping part of the public BWP and the first private BWP (ie, resource pool 2 and resource pool 5).
  • the bandwidth of the first dedicated BWP and the public BWP may partially overlap.
  • BWP0 is a public BWP, including resource pools 0 to 2
  • BWP1 is the first
  • the dedicated BWP includes resource pools 2 to 4, and the frame structure parameters of BWP0 and BWP1 are the same, and are the first frame structure parameters.
  • the bandwidth of BWP0 and BWP1 partially overlap, that is, resource pool 2.
  • the terminal device may work in the first dedicated BWP.
  • the terminal device may perform broadcast, multicast, or single broadcast in a portion where the public BWP overlaps the broadband of the first dedicated BWP (that is, resource pool 2). At least one of the broadcasts, and/or, the terminal device may perform multicast and/or unicast on the non-overlapping part of the public BWP and the first private BWP (ie, resource pool 3 and resource pool 4).
  • the sub-carrier interval of the first frame structure parameter is 15 kHz as an example for description, and is not intended to limit the embodiment of the present application.
  • the subcarrier spacing of the first frame structure parameter may be 15 kHz, 30 kHz, 60 kHz, etc.
  • the bandwidth of the first private BWP and the public BWP may not overlap at all.
  • BWP0 is a public BWP, including resource pools 0 to 2
  • BWP1 is a private BWP , Including resource pools 4 to 6, the frame structure parameters of BWP0 and BWP1 are the same, and are the first frame structure parameters.
  • the bandwidth of the public BWP (ie BWP0) and the first dedicated BWP (ie BWP1) do not overlap at all.
  • the terminal device may perform multicast and/or unicast on the first dedicated BWP, and/or, perform at least one of multicast, unicast or broadcast on the public BWP.
  • the subcarrier spacing of the first frame structure parameter is 60 kHz for illustration, and is not intended to limit the embodiment of the present application.
  • the subcarrier spacing of the first frame structure parameter may be 15 kHz, 30 kHz, 60 kHz, etc.
  • one resource pool may include one or more consecutive subcarriers, RBs, or RBGs.
  • One BWP may include one or more resource pools.
  • the bandwidth of different resource pools can be the same or different.
  • the numbering sequence of the resource pools in the embodiment of the present application may be numbered from top to bottom (such as from high to low according to the frequency domain position), or may be numbered from bottom to top (such as from low to high according to the frequency domain position).
  • the resource pools are numbered in order from top to bottom. If the resource pools shown in FIG. 5a are numbered in the order from bottom to top, then the number of resource pool 0 shown in FIG.
  • the numbering method of the resource pool in the embodiment of the present application may be a unified number within the carrier or a unified number within the SLBWP. For example, in the example of FIG. 5a, if the unified number is within the carrier, the number of the resource pool is 0 ⁇ 6.
  • the resource pool number in BWP0 is 0,1; the resource pool number in BWP4 is 0 ⁇ 3, and the sequence of resource pool numbers in BWP can also be numbered from top to bottom ( For example, according to the frequency domain position from high to low) or from bottom to top (such as according to the frequency domain position from low to high).
  • this application does not limit the numbering method and order of resource pools.
  • the number of the resource pool may start from 0 or 1; specifically, this application does not limit this.
  • the number of the BWP may start from 0 or 1; specifically, this application does not limit this.
  • the common BWP may be a pre-configured side link BWP.
  • a network management system operated by an operator may configure a side link BWP for a terminal device through pre-configured signaling or pre-configured parameters, and the side link BWP may be referred to as a pre-configured side link BWP.
  • the pre-configured side link BWP may also be simply referred to as the pre-configured BWP.
  • the sending resource pool and/or the receiving resource pool configured in the pre-configured BWP may be called a pre-configured resource pool.
  • the pre-configured resource pool may include a pre-configured sending resource pool and/or a pre-configured receiving resource pool.
  • the network management system can write pre-configured parameters in the subscriber identification (SIM) card of the terminal device or the universal subscriber identification (USIM) card, and the terminal device can read the SIM card or the USIM card
  • SIM subscriber identification
  • USIM universal subscriber identification
  • the pre-configuration parameters in obtain the configuration information of the pre-configured side link BWP, and then determine the pre-configured side link BWP.
  • the network management system may also send pre-configured parameters to the mobile equipment (ME) of the terminal device, and the terminal device may determine the pre-configured side link BWP through the pre-configured parameters.
  • the SIM card is also called a user identification card, a smart card, and so on. USIM can also be called to upgrade SIM and so on.
  • the pre-configuration parameters may also be called pre-configuration signaling, pre-configuration information, or other names.
  • the common BWP may be a system common side link BWP.
  • the access network device may configure the side link BWP for the terminal device through system information or cell-level public information, and the side link BWP may be referred to as a system common side link BWP.
  • the system common side link BWP may also be simply referred to as the system common BWP.
  • the sending resource pool and/or receiving resource pool configured in the system common BWP may be referred to as a system common resource pool, or a common resource pool.
  • the common resource pool may include a common sending resource pool and/or a common receiving resource pool.
  • the dedicated BWP may be called a user-specific side link BWP, or a user-specific side link BWP, or simply a user-specific BWP, or simply a user-specific BWP, or simply a specific BWP.
  • the BWP may be configured by the network device to the terminal device through UE-specific signaling, or the BWP may be configured by the access network device to the terminal device through dedicated radio resource control (RRC) signaling Side link BWP etc.
  • RRC radio resource control
  • the sending resource pool and/or the receiving resource pool configured in the dedicated BWP may be called a dedicated resource pool.
  • the dedicated resource pool may include a dedicated sending resource pool and/or a dedicated receiving resource pool.
  • the state of the terminal device may include at least one of inside coverage, outside coverage, connected state, idle state, and inactive state.
  • the terminal device under coverage may refer to a terminal device whose received signal power is greater than or equal to the first threshold within the coverage of the access network device.
  • the first threshold may be -3dB.
  • the terminal in the coverage may refer to a terminal that can receive the system message of the access network device, or the terminal in the coverage refers to a terminal that can receive the RRC message of the access network device, for example, a terminal in an idle state, It may also be a terminal in a linked state or a terminal in an inactive state.
  • a terminal in an idle state or an inactive state may be a terminal that receives a system message of an access network device.
  • the terminal in the linked state may be a terminal having an RRC link with the access network device, and the terminal may receive the RRC message of the access network device.
  • the out-of-coverage terminal device may refer to a terminal that is not within the coverage of the access network device.
  • the received signal power may be less than or equal to the first threshold.
  • the first threshold may be -3 dB.
  • the terminal equipment outside the coverage may refer to the terminal equipment in the idle state, or the terminal equipment in the coverage may also refer to the terminal equipment in the inactive state.
  • the sidelink resource of the terminal device outside the coverage may be a sidelink resource configured through pre-configured parameters.
  • the BWP of the terminal equipment outside the coverage may be a pre-configured BWP. That is, the working BWP of the terminal outside the coverage is a pre-configured BWP.
  • the terminal in the coverage and in the idle or inactive state cannot receive RRC dedicated signaling sent by the access network device, so the sidelink resources of the terminal in the coverage and in the idle or inactive state may be Sidelink resources configured through pre-configured parameters and/or sidelink resources configured through system information.
  • the BWP of the terminal in the coverage and in the idle state or inactive state may be a pre-configured BWP and/or a system common BWP.
  • the terminal in the coverage and in the link state can receive the system information sent by the access network device and also receive the RRC dedicated signaling sent by the access network device, so the terminal in the coverage and in the link state
  • the side link resources may be side link resources configured through pre-configured parameters and/or side link resources configured through system information and/or side link resources configured through RRC dedicated signaling.
  • the BWP of the terminal in the coverage and in the link state may be a pre-configured BWP and/or a system public BWP and/or a dedicated BWP.
  • the network device may independently configure the start position and bandwidth of the BWP for the terminal device.
  • the network device may configure N BWP for the terminal device, and the number of the BWP may be 0 to N-1, where N is less than or It is equal to the maximum number of side links BWP that the network device can configure for the terminal device.
  • N takes the value 2
  • the network device can independently configure BWP0 and BWP1 for terminal device 1 (such as BWP0 and BWP1 of slot 1 in FIG.
  • the network device may independently configure BWP0, BWP1, BWP2, and BWP3 for the terminal device 4 (such as BWP0, BWP1, BWP2, and BWP3 shown in slot 1 and slot n in FIG. 5a).
  • the network device can independently configure BWP0, BWP1, BWP2, BWP3, BWP4, etc. for the terminal device 1.
  • the network device and the terminal device may use the same BWP for data transmission, or may use different BWP for data transmission, which is not limited in the embodiment of the present application.
  • the frame structure parameters corresponding to the BWP can be independently configured for each BWP.
  • the frame structure parameters of any two BWPs can be the same or different.
  • the network device may configure multiple BWPs on the CC for the terminal device, and the frame structure parameters of different BWPs may be the same or different.
  • the multiple BWPs May include public BWP (common BWP) and/or private BWP (dedicated BWP).
  • the network device may be a base station or a network management system operated by an operator.
  • the CC may include 7 resource pools (resource pools) with numbers of 0 to 6, respectively.
  • the network device may configure 5 BWPs for the terminal device, and the numbers may be 0 to 4, respectively, where BWP0 may be a public BWP, and BWP1, BWP2, BWP3, and BWP4 may be dedicated BWPs.
  • the frame structure parameters of BWP0 and BWP4 are the first frame structure parameters, and the first frame structure parameters include a subcarrier interval of 30 kHz, and the CP is a normal CP or an extended CP.
  • the frame structure parameters of BWP1 and BWP2 are the second frame structure parameters.
  • the second frame structure parameters include the subcarrier spacing of 15 kHz, and the CP is an extended CP or a normal CP.
  • the frame structure parameter of BWP3 is a third frame structure parameter, and the third frame structure parameter includes a subcarrier spacing of 60 kHz, and CP is an extended CP or a normal CP.
  • BWP0 may be configured to the terminal device through a network management system operated by an operator, and BWP1 to BWP4 may be configured for the terminal device through an access network device.
  • the resource pool in the embodiments of the present application may refer to time-frequency resources for side link communication.
  • the resource pool may correspond to one or more time units, such as time slots, symbols, subframes, and so on.
  • the resource pool may correspond to a continuous or non-continuous frequency domain resource.
  • the resource pool may be configured in SL BWP.
  • the resource pool may be configured for the cell or for the terminal device.
  • the resource pool configured by the pre-configuration parameters may be configured for the cell, and the terminal device obtains the same pre-configuration parameters;
  • the resource pool configured by the system information may be configured for the cell, and the terminal device receives the same system information;
  • the resource pool configured by the RRC specific information may be configured for the terminal device, and specifically, for example, may be configured for the SLWP of the terminal device.
  • the division of the resource pool on one carrier may be aligned by all UEs.
  • the network device may divide 7 resource pools for the CC, and for a terminal device, it may be configured to include one or more resource pools in the BWP of the terminal device. Different terminal devices can be configured with corresponding resource pools under different resource pool numbers.
  • the resource pool may include a sending resource pool and a receiving resource pool.
  • the transmission resource pool refers to resources used for the terminal device to transmit sidelink signals
  • the reception resource pool refers to resources used for the terminal device to receive sidelink signals.
  • the terminal device may send the sidelink signal on the transmission resource pool, and/or, receive the sidelink signal on the reception resource pool.
  • the definition of the resource pool in this application may be the description in the LTE protocol, or the definition of the resource pool in the NR, or the definition of the future network, which is not limited in this application.
  • the first time unit includes slot 1 (slot1).
  • the terminal device can perform side link communication on public BWP0 or private BWP4.
  • the dedicated BWP4 includes resource pool 2, resource pool 3, resource pool 4, and resource pool 5, and the public BWP0 includes resource pool 3 and resource pool 4, that is, the bandwidth of the dedicated BWP4 may include the bandwidth of the public BWP0.
  • the terminal device may no longer need to perform the operation of activating the public BWP0 or private BWP4, Directly perform side link communication on public BWP0 or private BWP4. If the terminal device works on a BWP other than the public BWP0 or private BWP4 before the time slot 1 (such as time slot 0), the terminal device needs to perform the operation of activating the public BWP0 or private BWP4 in the first time unit, and The activated BWP0 or BWP4 performs side link communication.
  • a common BWP set may be configured for the terminal device.
  • the public BWP set may include one or more public BWPs.
  • the one or more public BWPs may be referred to as candidate public BWP.
  • the candidate public BWP may include a configured public BWP and/or a possible public BWP predefined by the protocol.
  • the terminal device may determine the first BWP according to one or more candidate public BWPs in the public BWP set.
  • the terminal device may determine a public BWP in the public BWP set according to the radio frequency capability of the terminal device (also known as the radio frequency capability of the UE), and perform side link communication on the public BWP in the first time unit .
  • the bandwidth of the public BWP determined by the UE may be less than or equal to the radio frequency capability of the UE.
  • the public BWP determined by the UE is any BWP in the public BWP set whose bandwidth is less than or equal to the radio frequency capability of the UE, or the public BWP determined by the UE is the maximum bandwidth BWP in the public BWP set whose bandwidth is less than or equal to the radio frequency capability of the UE .
  • the radio frequency capability of the terminal device may also be referred to as channel bandwidth capability, radio frequency bandwidth capability, bandwidth capability, and so on.
  • the radio frequency capability may include a transmission radio frequency bandwidth capability, and/or a receive radio frequency bandwidth capability, and so on.
  • the bandwidth capability may include transmission bandwidth capability, and/or, reception bandwidth capability, and so on.
  • the terminal device can support 10M, 20M, 50M, 100M, 200M, 400M and other radio frequency capabilities with different bandwidths.
  • the terminal device does not need to activate the public BWP in the first time unit, and directly performs side link communication on the public BWP That's it. If the terminal device works in a BWP other than the above-mentioned public BWP in the first time unit, the terminal device needs to activate the above-mentioned public BWP in the first time unit and perform side link communication on the activated public BWP.
  • the terminal device may determine the public BWP for side link communication in the first time unit according to the radio frequency capability.
  • the first time unit may include time slot 1, and the network device may configure the terminal device with 4 common BWPs or predefined 4 common BWPs, and the multiple common BWPs may have the same frame structure parameter.
  • the numbers of the four public BWPs are BWP0, BWP1, BWP2 and BWP3.
  • the terminal device may determine the BWP that performs the side link communication in the first time unit according to the radio frequency capability.
  • the terminal device may determine that the BWP for side link communication in the first time unit is BWP0. If the radio frequency bandwidth capability of the terminal device is 50M, the terminal device may determine that the BWP for side link communication in the first time unit is BWP1 or BWP0. If the radio frequency bandwidth capability of the terminal device is 100M, the terminal device may determine that the BWP for side link communication in the first time unit is BWP3, BWP2, BWP1, or BWP0. Alternatively, the terminal device may determine the BWP for the side link communication in the first time unit according to the maximum supported bandwidth.
  • the terminal device may determine that the BWP for side link communication in the first time unit is BWP 0. If the maximum radio frequency bandwidth capability supported by the terminal device is 50M, the terminal device determines that the BWP for side link communication in the first time unit is BWP1. If the maximum radio frequency bandwidth capability supported by the terminal device is 100M, the terminal device determines that the BWP for side link communication in the first time unit is BWP3.
  • the BWP for side link communication in the first time unit may be less than or equal to the BWP corresponding to the maximum bandwidth of the radio frequency bandwidth capability, or it is determined that the BWP for side link communication in the first time unit is less than Or equal to the BWP corresponding to the maximum bandwidth of the radio frequency bandwidth capability, or determine that the BWP of the unit terminal device operating at the first time is the BWP corresponding to the maximum bandwidth of the radio frequency bandwidth capability.
  • the activated BWP may also be called a working BWP.
  • the radio frequency capability of the terminal device may be considered to realize side link communication and improve performance. Terminal equipment can receive signals on more resources to avoid missed detection of side-link signals. At the same time, activating BWP according to the capabilities of the terminal equipment can achieve maximum resource utilization and reduce the probability of resource collision during side link transmission.
  • a dedicated BWP set may be configured for the terminal device.
  • One or more dedicated BWPs may be included in the dedicated BWP set.
  • the one or more dedicated BWPs may be referred to as candidate dedicated BWP.
  • the candidate dedicated BWP may include a configured dedicated BWP and/or a possible dedicated BWP predefined by the protocol.
  • the terminal device may determine the first dedicated BWP according to one or more candidate dedicated BWP in the dedicated BWP set according to the frame structure parameter of the common BWP.
  • the frame structure parameters are the same as those of the common BWP. For example, as shown in FIG.
  • the dedicated BWP set includes four dedicated BWPs, numbered as dedicated BWP1, dedicated BWP2, dedicated BWP3, and dedicated BWP4.
  • the frame structure parameters of the dedicated BWP1 and the dedicated BWP2 are the second frame structure parameters
  • the frame structure parameters of the dedicated BWP3 are the third frame structure parameters
  • the frame structure parameters of the dedicated BWP4 are the first frame structure parameters
  • the frame structure parameters are the same.
  • the terminal device may determine that the dedicated BWP4 is the above-mentioned first BWP, and in the first time unit, perform side link communication on the BWP4.
  • the terminal device does not need to activate the first dedicated BWP anymore in the first time unit, but directly on the first dedicated BWP Only need to carry on the side link communication. If the terminal device works in a BWP other than the first dedicated BWP in the first time unit, the terminal device needs to activate the first dedicated BWP in the first time unit and perform on the activated first dedicated BWP Sidelink communication.
  • the terminal device uses the second frame structure parameter to perform side link communication in the second dedicated BWP in the second time unit.
  • the side link communication of the second time unit may include unicast and/or multicast, that is, the side link communication of the second time unit may include "unicast", "multicast", or "unicast and multicast” Wait.
  • the second frame structure parameter is a frame structure parameter of the second dedicated BWP.
  • the second time unit includes a time slot n (slot), the terminal device is in the time slot n, and the dedicated BWP1 uses the second frame structure parameter for side link communication, or the terminal device is in In time slot n, the second frame structure parameter is used in the dedicated BWP2 for side link communication, or the terminal device uses the third frame structure parameter in the dedicated BWP 3 in the time slot n for side link communication.
  • n is 0 or an integer greater than 0.
  • integers greater than 0 include 1, 2, 3 or greater integers, and the embodiments of the present application are not limited.
  • the network device may configure a dedicated BWP set for the terminal device.
  • One or more dedicated BWPs may be included in the dedicated BWP set.
  • the one or more dedicated BWPs may be referred to as candidate dedicated BWP.
  • the candidate dedicated BWP may include a configured dedicated BWP and/or a possible dedicated BWP predefined by the protocol.
  • the terminal device may determine a dedicated BWP in the dedicated BWP set, and use the dedicated BWP for side link communication in the second time unit. For example, the terminal device may select a dedicated BWP among the candidate dedicated BWPs based on the radio frequency capability, and then, in the second time unit, use the dedicated BWP for side link communication.
  • the network device instructs the terminal device from the candidate dedicated BWP for the second dedicated BWP used by the second time unit; in the second time unit, the terminal device uses the second frame structure parameter for the side link communication in the second dedicated BWP .
  • the BWP that performs side link communication in S301 and S302 in FIG. 3 may be called a side chain.
  • Road BWP sidelink BWP, SL BWP
  • simply BWP simply BWP.
  • the first BWP may also Called the first SL BWP
  • the second dedicated BWP may also be referred to as the second dedicated SL BWP.
  • Example 1 Based on the downlink control information (down control information, DCI), the SL BWP activation or deactivation is implemented.
  • DCI down control information
  • the network device may configure the SL and BWP flag for each SL and BWP.
  • the network device may send DCI to the terminal device, and the SL BWP indication field of the DCI may indicate the SL BWP identifier.
  • the SL BWP indicated by the SL BWP identifier is to activate SL BWP, and the other SL BWP is to deactivate SL BWP.
  • the network device is configured with 4 SL BWPs for the terminal, namely SL BWP0, SL BWP1, SL BWP2, SL BWP3.
  • the currently activated SL BWP is BWP0. If the SL BWP indication field in DCI indicates SL BWP1, it indicates that SL BWP1 is the activated SL BWP, and SL BWP0, SL BWP2 and SL BWP3 are the deactivated SL BWP.
  • 2 bits can be used to indicate SL BWP logo.
  • 00 means SL BWP0
  • 01 means SL BWP1
  • 10 means SL BWP2
  • 11 means SL BWP4. That is, when 2 bits in DCI is 01, it means that the activated SL BWP is SL BWP1, and the other SL BWP is deactivated SL BWP.
  • Example two the activation or deactivation of SL BWP is implemented based on radio resource control RRC signaling.
  • the network device may send RRC signaling to the terminal device, and the network device configures the terminal device with one or more SL BWPs through the RRC signaling, and the SL BWP at this time is the SL SL BWP configuration.
  • the activated SL can also be indicated in the RRC signaling, such as the SL (Bidentifier, ID) indicating the activated SL, BWP, and the terminal device can determine the activated SL according to the signaling after receiving the RRC signaling BWP, and the other SL BWP of the terminal device as the deactivated SL BWP.
  • Example three the activation or deactivation of SL BWP is realized based on a timer.
  • the network device may send RRC signaling to the terminal device, and configure one or more SL BWPs for the terminal device through the RRC signaling.
  • the SL BWP is configured SL BWP.
  • the RRC signaling may further include a timer indication. After receiving the RRC signaling, the terminal device can determine the timing of the currently activated BWP according to the timer indication in the signaling. If no DCI is detected in the activated BWP within the timing, the timer expires After that, the activated BWP will be deactivated, and the predefined BWP or the initially accessed BWP will be activated.
  • the specific activated BWP may be predefined by the protocol, or the base station informs the terminal device through signaling.
  • the currently activated BWP is BWP1
  • the pre-defined BWP is BWP2
  • the timer is 20ms. If the downlink control information DCI is not detected within 20ms on the activated BWP1, BWP1 will be deactivated and BWP2 will be activation.
  • the network device in the process shown in FIG. 7 may be the wireless access network device 103 or the network management system 104 in FIG. 1 described above, and the first terminal device may be shown in FIG.
  • the sending-side terminal device 101, the second terminal device may be the receiving-side terminal device 102 in FIG.
  • the process includes:
  • the network device sends a first indication, where the first indication is used to indicate the first time unit.
  • the network device may indicate the absolute time position of the first time unit or the position of the first time unit, for example, the unit of the absolute time position may be milliseconds (ms), etc.
  • the position of the first time unit may be within a length of In a period of N time units, the position occupied by the first time unit or the position where it is located, etc.
  • the unit of the first time unit may be a subframe, time slot, mini-slot, mini-slot, sub-slot, symbol, etc., and the first time unit may include one or more time units of the above units.
  • N is a positive integer.
  • the positive integer may be 1, 2, 3, 4 or a larger integer.
  • the first terminal device receives the first indication.
  • the second terminal device receives the first indication.
  • the network device in the process shown in FIG. 7 may be an access network device, and the access network device may send a first indication to the first terminal device and the second terminal device, respectively.
  • the network device may be a network management system operated by an operator, and the network management system may separately send the first indication to the first terminal device and the second terminal device.
  • the network device may be a network management system and an access network device operated by an operator.
  • the network management system may send a first indication to the first terminal device, and the access network device may send the first indication to the second terminal device.
  • the network management system may send the first indication to the second terminal device, and the access network device may send the first indication to the first terminal device.
  • the first indication may also be referred to as first indication information.
  • the first indication received by the first terminal device and the first indication received by the second terminal device may be sent by different signaling, or may be sent by the same signaling. Specifically, this application does not limit this.
  • the first indication in the process shown in FIG. 7 may be indicated by, but not limited to, the following example:
  • the first indication is used to indicate a time unit configured as the first time unit in a period of length N time units, where N is a positive integer greater than or equal to 1.
  • the size N of the period may be indicated by the network device for the terminal device, or may be predefined.
  • the network device indicates to the terminal device the first time unit within a period of length N time units through a bitmap.
  • the bitmap includes N bits, and the N bits correspond to the N time units in one-to-one correspondence. If the value of a bit in the bitmap is t1, it means that the time unit corresponding to the bit is included in the first time unit; if the value of a bit in the bitmap is t2 or not t1, it means the first The time unit does not include the time unit corresponding to the bit.
  • t1 and t2 are integers, for example, t1 is equal to 1, and t2 is equal to 0.
  • the network device can indicate the first time unit to the terminal device with 5 bits, one bit corresponds to 1 time slot, if the value of this bit is 1, it means that the network device indicates the time slot, that is, the first time unit includes the time slot. If the value of this bit is 0, it means that the network device does not indicate the time slot, that is, the time slot is not included in the first time unit. Among them, the value and meaning of 0 or 1 can be changed.
  • a 5-bit bitmap is 1 0, 0, 0, which means that the network device indicates the first time slot in every 5 time slots, that is, the first time unit includes every 5 time slots.
  • the other 4 time slots in every 5 time slots are not included in the first time unit.
  • the other 4 time slots are the second time unit, or the other 4 time slots include the second time unit.
  • Example 1.2 The network device indicates to the terminal device the first time unit within a period of N milliseconds through a bitmap.
  • the bitmap includes N bits, and the N bits correspond to N milliseconds. If the value of a bit in the bitmap is t3, it means that the first time unit includes the millisecond corresponding to the bit; if the value of a bit in the bitmap is t4 or not t3, it means the first The time unit does not include the millisecond corresponding to this bit.
  • t3 and t4 are integers, for example, the value of t3 can be 1, and the value of t4 can be 0
  • N it can be indicated by 5 bits, one bit corresponding to 1 ms. If the value of the bit is 1, it means that the first time unit includes the 1 millisecond corresponding to the bit. If the value of this bit is 0, it means that the first time unit does not include the 1 millisecond corresponding to this bit.
  • the value and meaning of 0 or 1 can be changed.
  • a 5-bit bitmap bitmap is 1 0 0 0 0, it means that the first time unit includes the first millisecond in every 5 milliseconds, and the first time unit does not include the other 4 milliseconds in every 5 milliseconds.
  • the other 4 milliseconds are the second time unit, or the other 4 milliseconds include the second time unit.
  • the number of bits included in the first indication in the above example may be determined according to the period. For example, if the period length is N, the number of bits included in the first indication may be N.
  • a predefinable period N may be adopted, that is, the network device may not indicate the period.
  • the terminal device and/or the network device may determine the period according to a predefined method, and then determine the first time unit within the period.
  • the cycle in the above example may be configured by the network device to the terminal device.
  • the period corresponding to different subcarrier intervals can be independently configured.
  • the periods corresponding to different subcarrier intervals are the same or different.
  • a subcarrier interval of 15 kHz, a period of N1, a subcarrier interval of 30 kHz, a period of N2, a subcarrier interval of 60 kHz, a period of N3, a subcarrier interval of 120 kHz, a period of N4, etc. may be predefined.
  • the first indication is used to indicate at least one of a configuration period, a transmission offset, and/or a number of first time units.
  • the transmission offset may also be simply referred to as an offset, an offset of the first time unit in a cycle, and so on.
  • the transmission offset may include a first transmission offset and a second transmission offset, and the first transmission offset and the second transmission offset are described in detail in Example 2.1 and Example 2.2 described below, respectively.
  • the network device may send the first instruction to the terminal device, and the terminal device may receive the first instruction sent by the network device.
  • the terminal device may determine at least one of the configuration period, the transmission offset, and/or the number of first time units according to the first indication sent by the network device, or the terminal device may determine the first time unit according to the first indication sent by the network device.
  • the configuration period may also be simply referred to as a period.
  • the number of first time units may also be referred to as the number of first time units, the number of first time units in a cycle, and so on.
  • the network device may indicate to the terminal device the configuration period and the first transmission offset (offset) through the first indication.
  • the terminal device may determine the period N of the first time unit and the first transmission offset according to the first indication; or may determine the first time unit according to the first indication.
  • the number of the N time units with a configuration period of N may be 0 to N-1, or, N to 2N-1, or the like; or the number of the N time units with the configuration period of N may be 1 ⁇ N, or, N+1 ⁇ 2N, or, and so on. For example, as shown in FIG.
  • the configuration period is defined as 10 time units, the index of the 10 time units may be 0 to 9, and the first transmission offset is ⁇ 0,1,2,3 ⁇ , then
  • the first time unit included in each cycle is a time unit that is shifted from 0 to time unit 0 (that is, time unit 0), and a time unit that is shifted from time unit 0 by 1 (that is, time unit 1), relative to Time unit 0 is offset by a time unit of 2 (ie, time unit 2), and time unit is offset by 3 from time unit 0 (ie, time unit 3).
  • the network device may indicate the configuration period and the first transmission offset, that is, the first indication may include the configuration period and the first transmission offset.
  • the first indication may include the configuration period and the first transmission offset.
  • multiple configuration periods and transmission offsets can be defined in advance, and an index is set for each configuration period and transmission offset.
  • the network device can indicate the index of the configuration period and the first transmission offset, that is, the first indication can include the configuration Index of period and transmission offset.
  • the corresponding relationship between the configuration period and the transmission offset and index may be pre-defined or the network device informs the terminal device through signaling.
  • the network device may send a first indication, and the first indication is used to indicate the index.
  • the terminal device may receive the first indication information.
  • the terminal device may determine the index according to the first indication, and determine the configuration period and the transmission offset according to the index and the corresponding relationship; or the terminal device may determine the first time unit according to the first indication sent by the network device.
  • 16 configuration periods and transmission offsets can be predefined, and indexes are set for the 16 configuration periods and transmission offsets, and the indexes can be 0 to 15, respectively.
  • the value of the first indication is 0000.
  • the terminal device may determine that the configuration period indicated by the first indication is 2 time units according to the correspondence between the index and the configuration period and the transmission offset.
  • the first transmission offset is 0, and the terminal device may It is determined that the first time unit in the time unit of each cycle is 2 is the first time unit. For example, as shown in FIG.
  • the indexes of time units with a period of 2 can be 0 and 1; 2 and 3; 4 and 5 and so on.
  • the first time unit in this cycle includes a time unit that is offset by 0 from time unit 0 (that is, time unit 0), and does not include a time that is offset from time unit 0 by 0
  • the unit of the first time unit may be a time slot or a millisecond.
  • the first time unit indicated by the first indication see the oblique line filling part shown in FIG. 8a.
  • the value of the first indication is 0001.
  • the terminal device may determine that the configuration period of the first time unit is 2 time units and the transmission offset is 1 according to the correspondence between the index and the configuration period and the transmission offset.
  • the terminal device may determine that the second time unit in every 2 time units is the first time unit.
  • the indexes of time units with period 2 can be 0 and 1; 2 and 3; 4 and 5 and so on. Take the cycle including time units 0 and 1 as an example.
  • the first time unit includes a time unit that is offset by 1 from time unit 0 (that is, time unit 1), and does not include a time that is offset by 0 from time unit 0.
  • the unit of the first time unit may be a time slot or a millisecond.
  • the first time unit refer to the hatched portion shown in FIG. 8b.
  • the terminal device may determine that the configuration period of the first time unit is 10 time units according to the correspondence between the index and the configuration period and the transmission offset, and the transmission offset is ⁇ 0, 1, 2, 3 ⁇ .
  • the terminal device may determine that every ten time units, the first to fourth time units are the first time units. For example, as shown in FIG.
  • the index of 10 time units with a period of 10 is 0 to 9
  • the index of the 1st to 4th time units is 0 to 3, that is, every 10 time units
  • the time unit whose middle index can be 0 to 3 is the first time unit.
  • the index of the time unit with a period of 10 may be 0 to 9, respectively, and the first transmission offset is ⁇ 0,1,2,3 ⁇ .
  • the first time unit includes The time unit of is the time unit with index 0 (the offset is 0 relative to the time unit with index 0), the time unit with index 1 (the offset is 0 relative to the time unit with index 0), and the index is 2 Time unit (offset 2 from the unit with index 0), time unit with index 3 (offset from the time unit with index 0).
  • the network device may indicate to the terminal device a configuration period, a second transmission offset, and the number of first time units through a first indication, where the second transmission offset is used to indicate the start of the first time unit within the period The offset from the starting time unit in the cycle.
  • the terminal device may determine the first time unit according to the first indication. For example, the terminal device may determine the configuration period according to the first indication, determine N time units with a configuration period of N, and according to the second transmission offset (ie, the first first time unit in the period, relative to the first time unit in N time units Time unit offset) to determine the first time unit in the cycle, and the first time unit in the cycle according to the number of the first time unit in the cycle and the number of first time units in the cycle.
  • the second transmission offset ie, the first first time unit in the period, relative to the first time unit in N time units Time unit offset
  • the number of the N time units with a configuration period of N may be 0 to N-1, or, N to 2N-1, or the like; or the number of the N time units with the configuration period of N may be 1 ⁇ N, or, N+1 ⁇ 2N, or, and so on.
  • the network device may indicate to the terminal device that the configuration period is 10, the second transmission offset is 0, and the number of first time units is 4.
  • the terminal device may determine that the time unit numbered 0 to 9 is a cycle according to the configuration period, and determine the starting first time unit in the period to be the time unit with index 0 according to the transmission offset 0.
  • the four first time units included in the first time unit can be specifically referred to the oblique line filling part in FIG. 8c.
  • the first indication may directly indicate the configuration period, the second transmission offset, and the number of first time units.
  • an index is set in advance for the indication configuration period, the second transmission offset, and the number of first time units.
  • the first indication may indicate the configuration period, the second transmission offset, and the index corresponding to the number of first time units.
  • the corresponding relationship between the configuration period, the transmission offset, the number of time units and the index may be predefined, the terminal device may determine the index according to the first indication, and determine the configuration period, the transmission offset and the time according to the index and the corresponding relationship Number of units.
  • the network device may indicate the configuration period and the second transmission offset to the terminal device through the first indication. Similar to the above example 2.2, the difference is that the number of first time units is pre-defined and no indication is required from the network device. For example, it is possible to predefine only one first time unit per week period, or it can also be pre-defined A plurality of consecutive time units in a weekly period may be defined as the first time unit, or it may be pre-defined that the time units of the plurality of time units at preset intervals in the weekly period are the first time unit, etc.
  • the network device may indicate to the terminal device that the period of the first time unit is 10 ms or 10 time slots, and the offset is 0.
  • the number of the first time unit may be predefined, for example, there is only one first time unit in the period, or may be predefined as a plurality of consecutive time units as the first time unit, or may also be predefined
  • the time unit of the plurality of spaced time units is the first time unit.
  • the network device may indicate the configuration period to the terminal device through the first indication.
  • the process is similar to the above example 2.1 and example 2.2.
  • the difference is that a transmission offset may be predefined, and the transmission offset may be the above-mentioned first transmission offset and second transmission offset.
  • the transmission offset is the above-mentioned second transmission offset, the number of first time units may also be predefined.
  • the network device indicates to the terminal device that the period of the first time unit is 10 ms or 10 time slots.
  • the offset may be predefined by the protocol, for example, the offset is 0.
  • the number of first time units may be pre-defined, for example, there is only one first time unit in a period, or it may be predefined that multiple consecutive time units are first time units, or it may be The time unit of the plurality of time units of the predefined interval is the first time unit.
  • the network device may indicate the transmission offset to the terminal device through the first indication, and the transmission offset may be the above-mentioned first transmission offset and/or second transmission offset. Similar to the above example 2.1 and example 2.2, except that the configuration period and the number of first time units can be predefined, for example, the pre-defined configuration period is 10 time units, and the time unit The unit is time slot or millisecond.
  • the network device indicates to the terminal device the transmission offset of the first time unit within the period.
  • the period may be predefined as N, for example, N is 10 ms or 10 time slots.
  • the first indication is used to indicate the transmission offset.
  • the number of first time units may be pre-defined, for example, there is only one first time unit in a period, or it may be predefined that multiple consecutive time units are first time units, or it may be The time unit of the plurality of time units of the predefined interval is the first time unit.
  • the network device may indicate the first time unit quantity to the terminal device through the first indication. Similar to Example 2.2 above, except that the transmission offset and configuration period can be predefined. Optionally, the transmission offset may be the above-mentioned second transmission offset.
  • the network device indicates to the terminal device the number of the first time unit within the period of the first time unit.
  • the period may be predefined as N, for example, N is 10 ms or 10 time slots.
  • the first indication is used to indicate the number of first time units in the cycle.
  • the offset may be predefined, for example, the offset is 0, that is, the first time unit starts from the first time unit in the period.
  • the first time unit corresponding to the number of first time units may be a plurality of consecutive time units as the first time unit, or a time unit of a plurality of time units with a predefined interval may be the first time unit.
  • the time unit separated by 1 time unit is the first time unit.
  • the time unit other than the first time unit in the period is the second time unit.
  • the network device indicating the first time unit is equivalent to indicating the second time unit.
  • the cycle includes a first time unit and a second time unit.
  • different terminal devices may support different frame structure parameters.
  • the frame structure parameters include subcarrier spacing and/or CP, and different frame structure parameters may include different subcarrier spacing.
  • the length of the time domain symbol can be different.
  • the first subcarrier interval is k times the second subcarrier interval, then the sum of the time domain symbol lengths of the k first subcarrier intervals is equal to the time domain symbol length of one second subcarrier interval.
  • the length of one time domain symbol of the second subcarrier interval is k times the length of one time domain symbol of the first subcarrier interval.
  • the number of time domain symbols included in each time slot may be the same or different, the number of included time slots in each subframe may be different, and the number of included time slots in each frame may be different.
  • the number of time-domain symbols included in each slot under different frame structure parameters The number of time slots included in each subframe The number of time slots included in each frame See Table 3 below.
  • the length corresponding to each time unit may be different.
  • the first frame structure parameter includes a subcarrier interval of 15 kHz
  • the second frame structure parameter includes a subcarrier interval of 30 kHz
  • the length of a time unit of the first frame structure parameter can be It is twice the length of one time unit of the second frame structure parameter. Since the terminal device supports different frame structure parameters, how to indicate the first time unit of different frame structure parameters at this time is a problem to be solved by the present application.
  • the network device indicates the first time unit under the reference frame structure parameter, and the terminal device may determine the first time unit under the first frame structure parameter according to the relationship between the first frame structure parameter and the reference frame structure parameter.
  • the network device may send a first indication.
  • the terminal device may receive the first indication.
  • the first indication is used to indicate the first time unit under the reference frame structure parameter.
  • the terminal device may A frame structure parameter and a first time unit under the reference frame structure parameter to determine a first time unit under the first frame structure parameter, where the first frame structure parameter is the frame structure of the first BWP described above parameter.
  • the reference frame structure parameter may be predefined by the protocol or configured by the network device to the terminal device. It can be understood that the manner in which the network device sends the first indication may refer to the above example for indication, or may use other examples than the above example for indication, which is not limited in this application.
  • the terminal device may determine the first time unit under the second frame structure parameter according to the reference frame structure parameter, the second frame structure parameter, and the first time unit under the reference frame structure parameter, where ,
  • the second frame structure parameter is a frame structure parameter of the second dedicated BWP.
  • the following determines the first time unit under the first frame structure parameter as an example for illustration.
  • the process of determining the first time unit under the second frame structure parameter is similar to the first time unit under the first frame structure parameter. This is no longer explained.
  • the first frame structure parameter is represented by ⁇ BWP
  • the reference frame structure parameter is represented by ⁇ reference .
  • the period under the reference frame structure parameter is N slots, then the period under the first frame structure parameter is Time slots.
  • the number of N time slots in the cycle under the reference frame structure parameter is 0 ⁇ N-1, and the Timeslot number is
  • the time slot number i under the reference frame structure parameter corresponds to the number number under the first frame structure parameter Time slot.
  • Example 3.1.1 Take the unit of the first time unit as a time slot as an example.
  • the multiple time slots under the first frame structure parameter corresponding to one time slot in the first time unit under the reference frame structure parameter are all the first time unit under the first frame structure parameter.
  • all time slots under the first frame structure parameter corresponding to a time slot in the first time unit under the reference frame structure parameter are the first time unit under the first frame structure parameter.
  • the time slot t under the reference frame structure parameter corresponds to the Each time slot is the first time unit.
  • the time slot number i under the reference frame structure parameter is the first time unit
  • the number under the first frame structure parameter is Is the first time unit
  • the reference frame structure parameter is 15 kHz
  • the first frame structure parameter is 30 kHz
  • a time slot indicated by the first time unit under the reference frame structure parameter corresponds to 2 hours under the first frame structure parameter Gap.
  • the terminal device may determine the first time slot, the second time slot, and the second time slot under the first frame structure parameter.
  • the seventh time slot and the eighth time slot are the first time unit.
  • the reference frame structure parameter is 30 kHz and the first frame structure parameter is 60 kHz, it is similar to the above process and will not be described here.
  • the first time unit under different frame structure parameters please refer to the hatched part in FIG. 9a.
  • Example 3.1.2 A time slot under the first frame structure parameter corresponding to a time slot in the first time unit under the reference frame structure parameter is the first time unit under the first frame structure parameter.
  • a time slot in the first time unit under the reference frame structure parameter is the first time unit
  • one of the multiple time slots under the first frame structure parameter corresponding to the one time slot of the reference frame structure parameter The time slot is the first time unit under the first frame structure parameter.
  • the following takes the first time slot in multiple time slots as the first time unit for example.
  • the first time unit in other positions is similar, such as the middle time slot, the last time slot, and so on, which will not be repeated here.
  • the position of the first time unit in multiple time slots may be predefined, or the network device notifies the terminal through signaling.
  • this application is not limited herein.
  • the time slot t under the reference frame structure parameter corresponds to the The first time slot in the time slots is the first time unit.
  • the time slot number i under the reference frame structure parameter is the first time unit
  • the number under the first frame structure parameter is Is the first time unit
  • time slot t under the reference frame structure reference is the first time unit
  • time slot t under the reference frame structure parameter corresponds to the The last time slot in the time slots is the first time unit.
  • the time slot number i under the reference frame structure parameter is the first time unit
  • the number under the first frame structure parameter is Is the first time unit
  • the first time slot under the first frame structure parameter corresponding to a time slot in the first time unit under the reference frame structure parameter is the first time unit under the first frame structure parameter.
  • the reference frame structure parameter is 15 kHz
  • the first frame structure parameter is 30 kHz
  • one time slot under the reference frame structure parameter corresponds to two time slots under the first frame structure parameter.
  • the terminal device may determine the first time slot and the seventh time slot under the first frame structure parameter The gap is the first time unit.
  • the terminal device determines that the second time slot and the eighth time slot under the first frame structure parameter are the first time unit.
  • the reference frame structure parameter is 30 kHz and the first frame structure parameter is 60 kHz, it is similar to the above process and will not be described again.
  • the first time unit under different frame structure parameters please refer to the hatched part in FIG. 9b.
  • a slot under the reference frame structure parameter corresponds to a slot in the first frame structure parameter.
  • Example 3.1.3 A time slot under the first frame structure parameter corresponding to a time slot in the first time unit under the reference frame structure parameter is the first time unit under the first frame structure parameter.
  • one time slot under the first frame structure parameter corresponding to the time slot t under the reference frame structure parameter is the first time unit.
  • the time slot number i under the reference frame structure parameter is the first time unit
  • the number under the first frame structure parameter is Is the first time unit
  • the reference frame structure parameter is 60 kHz
  • the first frame structure parameter is 30 kHz.
  • the network device indicates that the first time slot and the thirteenth time slot under the reference frame structure parameter are the first time unit.
  • the terminal device may determine that the first time slot and the seventh time slot under the first frame structure parameter are the first time unit under the first frame structure parameter. If the reference frame structure parameter is 30 kHz and the first frame structure parameter is 15 kHz, it is similar to the above process and will not be described here.
  • the first time unit under different frame structure parameters please refer to the hatched part in FIG. 9c, which will not be described here.
  • the first time unit based on the reference frame structure parameter may indicate the first time unit under different frame structure parameters to reduce signaling overhead.
  • the network device indicates the first time unit under one or more frame structure parameters, where the one or more frame structure parameters include the first frame structure parameter and/or the second frame structure parameter.
  • the network device indicates the first time unit under the first frame structure parameter and/or the first time unit under the second frame structure parameter.
  • the terminal device may determine the first time unit under the first frame structure parameter according to the first time unit under the first frame structure parameter indicated by the network device. And/or, the terminal device may determine the first time unit under the second frame structure parameter according to the first time unit under the second frame structure parameter indicated by the network device.
  • the network device sends a first indication, the first indication is used to indicate a first time unit under one or more frame structure parameters, and the terminal device uses the first time under the one or more frame structure parameters A unit, determining a first time unit under the first frame structure parameter, wherein the one or more frame structure parameters include a first frame structure parameter, and the first frame structure parameter is the first BWP
  • the frame structure parameter of; and/or, the first time unit under the second frame structure parameter is determined according to the first time unit under the one or more frame structure parameters, wherein the one or more The frame structure parameters include a second frame structure parameter, and the second frame structure parameter is a frame structure parameter of the second dedicated BWP.
  • the network device may indicate to the terminal device the first time unit corresponding to 15 kHz.
  • a period can be 5 timeslots, which can be indicated by a bitmap of 5bits.
  • 10010 indicates the first time slot and the fourth time of the 5 time slots in the period
  • the gap is the first time unit.
  • the network device may indicate to the terminal device the first time unit corresponding to 30 kHz.
  • a period can be 10 time slots, which can be indicated by a bitmap of 10 bits.
  • 1001001001 indicates the first time slot of the 10 time slots in the period
  • the fourth time Slot, the seventh slot and the tenth slot are the first time unit.
  • the network device may indicate to the terminal device the first time unit corresponding to 60 kHz.
  • a period may be 4 time slots, which may be indicated by 4 bits.
  • 1000 indicates that the first time slot of the 4 time slots in the period is the first time unit. Considering the characteristics of time units with different frame structure parameters, the indication is more flexible.
  • the first time unit under the frame structure parameter of the SL BWP may be indicated in the signaling configuring the SL BWP.
  • the network device may indicate to the terminal device the first time unit corresponding to 15 kHz.
  • a period can be 5 timeslots, which can be indicated by a bitmap of 5bits.
  • 10010 indicates the first time slot and the fourth time of the 5 time slots in the period
  • the gap is the first time unit.
  • the network device may indicate to the terminal device the first time unit corresponding to 30 kHz.
  • a period can be 10 time slots, which can be indicated by a bitmap of 10 bits.
  • 1001001001 indicates the first time slot of the 10 time slots in the period
  • the fourth time Slot, the seventh slot and the tenth slot are the first time unit.
  • the network device may indicate to the terminal device the first time unit corresponding to 60 kHz.
  • a period can be 4 time slots, which can be indicated by 4 bits.
  • 1000 means that the first time slot of the 4 time slots in the period is the first time unit. Considering the characteristics of time units with different frame structure parameters, the indication is more flexible.
  • the first time unit under the frame structure parameter of the SL BWP may be indicated in the signaling configuring the SL BWP.
  • the frame structure parameters configured on the terminal device side include 15 kHz, 30 kHz, and 60 kHz.
  • the network device may indicate the first time unit separately for different frame structure parameters.
  • a period can be 5 timeslots, which can be indicated by a bitmap of 5bits.
  • 10010 indicates the first time slot and the fourth time of the 5 time slots in the period
  • the slot is the first time unit.
  • a period can be 10 time slots, which can be indicated by a bitmap of 10 bits.
  • 1001001001 indicates the first time slot of the 10 time slots in the period
  • the fourth time slot, the seventh time slot and the tenth time slot are the first time unit.
  • one cycle can be 4 time slots, which can be indicated by 4 bits.
  • 1000 means this
  • the first time slot of the four time slots in the cycle is the first time unit.
  • the indication is more flexible.
  • the first time unit under the frame structure parameter of the SL BWP may be indicated in the signaling configuring the SL BWP.
  • the first terminal device in the flow may be the sending-side terminal device 101 in FIG. 1 described above, and the second terminal device may be the receiving-side terminal device in FIG. 1 described above.
  • the base station may be the access network device 103 or the network management system 104 in FIG. 1, and the process includes:
  • the network device sends a first indication.
  • the first indication is used to indicate a first time unit.
  • the time unit corresponding to the first time unit may also be called a time pattern or a time domain pattern.
  • the time indicated by the first time unit supports only one frame structure parameter, or the time indicated by the first time unit supports only one frame structure parameter communication.
  • the network device may be an access network device.
  • the access network device may configure a first indication for the terminal device through system information, and the first indication is used to indicate the first time unit.
  • the terminal device may determine the first time unit through the first indication in the system information.
  • the network device may be an access network device.
  • the access network device may configure a first indication to the terminal device through RRC dedicated signaling, and the first indication is used to indicate the first time unit.
  • the terminal device may determine the first time unit through the first indication in the RRC dedicated signaling.
  • the terminal device may be subject to the first indication configured by the system information, that is, the system information may cover the pre-configuration Configuration signaling, or, system information has a higher priority than pre-configuration signaling.
  • the terminal device receives both the first indication of system information configuration and the first indication of RRC dedicated signaling configuration, the terminal device is subject to the first indication of dedicated signaling configuration, that is, the RRC dedicated signal
  • the system information can be overwritten, or the RRC dedicated signaling has a higher priority than the system information.
  • the network device may also refer to a special terminal device, and the special terminal device may be a terminal device having a scheduling function and/or an auxiliary scheduling function.
  • the special terminal equipment may also be called a head terminal, an anchor terminal, and the like.
  • the special terminal device may have a terminal device that manages the function of joining or deleting UEs in the group, and/or the special terminal device may be a terminal device that communicates with the base station and interacts with other terminal devices.
  • the special terminal device may be a terminal device that has an RRC link with the base station to actively request as a special terminal device, or may be a special terminal device designated by the base station, or a pre-defined special terminal device, for example, the front of the fleet may be used as a special terminal device Terminal equipment, etc.
  • the first terminal device receives the first instruction, and determines the first BWP for the side link communication in the first time unit according to the first instruction, where the first BWP is a BWP for broadcasting the side link signal.
  • the BWP that performs the broadcast side link signal may also be referred to as the side link communication that performs the broadcast service, or the side link communication that performs the transmission type of broadcast.
  • the second terminal device receives the first instruction, and determines the first BWP for the side link communication in the first time unit according to the first instruction.
  • the terminal device may need to activate the BWP. Specifically: if the terminal device activates the BWP on the time unit before the first time unit If it is not the first BWP, the terminal device needs to activate (or switch) the first BWP to ensure that the first BWP is used for side link communication in the first time unit. There is a delay in activating or switching BWP. For example, under different frame structure parameters, the BWP switching delay may be different. For the BWP switching delay, the terminal device may have two capabilities, one is to support type 1 BWP switching delay, and the other is to support type 2 BWP switching delay. For example, as shown in Table 4 below.
  • the delay of the BWP handover may be based on the maximum value of the subcarrier interval before the BWP handover and the subcarrier interval after the BWP handover determine.
  • the activation of the first BWP may refer to activation of the first BWP for side link communication, that is, the first BWP for terminal-to-terminal communication.
  • activation can be achieved by switching the radio frequency or adjusting the filter tap coefficients.
  • activating BWP may refer to turning on the radio frequency of the corresponding BWP, or activating BWP may refer to adjusting the filter tap coefficient of the corresponding BWP.
  • activating the BWP may refer to activating the BWP sending the side link signal, or activating the BWP receiving the side link signal.
  • the BWP sending the side link signal and the receiving side chain will be activated.
  • the BWP of the channel signal is collectively called the active BWP.
  • the network device and/or the terminal device may determine the first time unit according to the pre-configured parameters, that is, the network device may not send the first indication.
  • the network device may be a network management system.
  • the network management system may write pre-configuration parameters in the SIM/USIM of the terminal device, and the terminal device may obtain the configuration parameters by reading the SIM card.
  • the network management system may also send the pre-configured parameters to the mobile equipment (ME) of the terminal equipment.
  • ME mobile equipment
  • the above S1001 may be replaced by: the network device determines the first time unit according to the pre-configured parameters.
  • the above S1002 may be replaced by: the first terminal device determines the first time unit according to the pre-configured parameters.
  • the above S1003 may be replaced by: the second terminal device determines the first time unit according to the pre-configured parameters.
  • the first terminal device sends a side link signal on the first BWP in the first time unit.
  • the second terminal device receives the side link signal on the first BWP in the first time unit.
  • the first terminal device sends a side link signal to one or more receiver UEs on the first BWP, and the one or more receiver UEs include the second terminal device.
  • the second terminal device may receive, on the first BWP, a side link signal sent by one or more sending end UEs, where the one or more sending ends include the first terminal device, and the side link signal may include a reference At least one of signal, PSSCH, PSCCH, PSDCH, PSBCH, PSUCCH, or the like.
  • the network device may send BWP configuration parameters to the first terminal device and the second terminal device, where the configuration parameters include a frame structure parameter and a waveform used for transmitting a side link signal , One or more of the upstream and downstream configuration, etc.
  • the uplink and downlink configuration refers to the ratio of the time unit used for uplink transmission and the time unit used for downlink transmission within a period of time.
  • terminal devices such as the above-mentioned first terminal device and second terminal device
  • terminal devices support only one type of frame structure parameter transmission and/or reception at a time, if there is a broadcast at that time
  • the frame structure parameters of unicast and multicast must be the same as those of broadcast.
  • the terminal device may perform unicast, multicast, or broadcast communication in the resource pool. That is, unicast, multicast or broadcast resource pools are shared. Alternatively, unicast, multicast or broadcast resource pools can be independent. The terminal device performs unicast in the unicast resource pool, and/or, performs multicast in the multicast resource pool, and/or performs broadcast in the broadcast resource pool.
  • the resource blocks filled in white are the side-link communication resources of the broadcast signal, and the resource blocks filled in the slash are the side-link communication resources of the multicast signal.
  • the resource block is a side link communication resource for unicast signals.
  • the configuration period is N time slots, and the index of the N time slots may be 0 to N-1 in sequence.
  • the time slots included in the first time unit are time slot 0 and time slot N-1, and the time slots included in the second time unit
  • the included time slots are time slot 1 to time slot N-2.
  • the time slot n represents any time slot in time slot 1 to time slot N-2 as an example.
  • the frame structure parameters of all resource pools or BWP are the same as the frame structure parameters of the resources of the broadcast signal, for example, 30 kHz.
  • the terminal device can be configured with one or more resource pools or BWPs of frame structure parameters, and the frame structure parameters can be The frame structure parameters are the same or different.
  • the frame structure parameter of BWP 1 (including resource pool 0, resource pool 1, and resource pool 2) is 15 kHz
  • the frame structure parameter of BWP 2 (including resource pool 3, resource pool 4) is 30 kHz
  • BWP 3 (including resource pool 5)
  • the frame structure parameter of resource pool 6) is 60 kHz and so on.
  • the side link communication can support communication under a variety of frame structure parameters under unicast, multicast, and broadcast to improve transmission performance.
  • the side link communication under NR can meet the needs of various different services, such as unicast, multicast, broadcast, etc., to achieve the transmission of different frame structure parameters.
  • the first terminal device when the first terminal device sends the sidelink signal on the first BWP in the first time unit, the first terminal device needs to determine the SL transmission resource.
  • the first terminal device specifically transmits the SL signal on the SL transmission resource.
  • the terminal device may determine the SL transmission resource based on the UE autonomous selection mode, or the terminal device may determine the SL transmission resource based on the base station scheduling mode, or may determine the SL resource based on other modes.
  • a flow of a communication method is provided.
  • a SL transmission resource is determined based on a base station scheduling mode.
  • the flow includes:
  • the base station or the operator configures a public BWP and/or private BWP for UE1.
  • the base station or the operator configures a public BWP and/or private BWP for UE2.
  • the common BWP may include a system common BWP and a pre-configured BWP.
  • the base station or operator may configure the system common BWP for UE1 and/or UE2 through system messages, and/or, the base station or operator may configure preconfigured BWP for UE1 and/or UE2 through preconfiguration signaling, and/or, The base station or the operator may configure a dedicated BWP for UE1 and/or UE2 through dedicated signaling.
  • UE1 determines the first BWP according to the first time unit.
  • UE2 determines the first BWP according to the first time unit.
  • the first BWP is a public BWP, or the first BWP is a dedicated BWP, and the frame structure parameter of the dedicated BWP is the same as the frame structure parameter of the public BWP.
  • the base station or the operator determines, according to the first time unit, the first BWP in which the terminal device performs side link communication in the first time unit.
  • UE1 sends an SL resource request to the base station or operator.
  • the base station or operator receives the SL resource request and sends DCI to UE1, where the DCI is used to instruct the network device to send resources for the SL allocated by UE1 in the first BWP.
  • UE1 receives the DCI, and determines the SL transmission resource according to the DCI.
  • the network device can use the radio network temporary identity (RNTI) to scramble the DCI.
  • RNTI radio network temporary identity
  • the terminal device can descramble the DCI according to the RNTI and perform cyclic redundancy check (cyclic redundancy check) check, CRC), if the check succeeds, it indicates that the DCI is the DCI of the terminal device.
  • CRC cyclic redundancy check
  • UE1 sends an SL signal on the SL transmission resource, where the SL signal includes SCI and/or data and/or SFCI.
  • UE2 receives the SL signal on the first BWP in the first time unit.
  • a flow of a communication method is provided.
  • the SL transmission resource is determined based on the UE autonomous selection mode.
  • the flow includes:
  • the base station or the operator configures a public BWP and/or private BWP for UE1.
  • the base station or the operator configures a public BWP and/or private BWP for UE2.
  • UE1 determines the first BWP according to the first time unit.
  • UE2 determines the first BWP according to the first time unit.
  • UE1 perceives the available resources in the first BWP, and sends the SL signal on the available resources of the first BWP in the first time unit.
  • UE2 receives the SL signal in the first BWP in the first time unit.
  • the first terminal device in the process may be the sending-side terminal device 101 in FIG. 1 described above, and the second terminal device may be the receiving-side terminal device 102 in FIG. 1 described above.
  • the network The device may be the above-mentioned access network device 103 or network management system 104 in FIG. 1, and the process is illustrated by activating the first BWP in the first time unit as an example.
  • the process can be specifically:
  • the first terminal device activates the first BWP according to the first time unit.
  • first BWP For the explanation of the first BWP, refer to the foregoing description, and no further description is provided here.
  • the second terminal device activates the first BWP according to the first time unit.
  • activating the BWP according to the first time unit may mean that the BWP activated in the first time unit is the first BWP, if the terminal device activates the BWP on the time unit before the first time unit is not the first BWP, then the terminal device needs to activate (or switch) the BWP to ensure that the activated BWP in the first time unit is the first BWP. That is, the terminal device will activate the BWP according to the first time unit.
  • activating the BWP according to the first time unit may refer to that if the BWP switching delay before the first time unit is delayed by a time unit, and the activated BWP of the terminal device is not the first BWP, the terminal device needs to be activated at this time The first BWP.
  • the terminal device may activate the second BWP.
  • the process shown in FIG. 14 may further include: S142.
  • UE1 and UE2 perform side link communication on the first BWP in the first time unit.
  • the process shown in FIG. 14 can be applied to the UE autonomous selection mode, base station scheduling mode, or other SL resource determination mode, which is not limited here.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of network devices, terminals, and interaction between network devices and terminals, respectively.
  • the network device and the terminal may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application of the technical solution and design constraints.
  • an embodiment of the present application further provides an apparatus 1500 for implementing the function of the terminal device in the above method.
  • the device may be a terminal device or a device in the terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 1500 may include:
  • the communication module 1501 is configured to perform side link communication on the first carrier bandwidth part BWP in the first time unit;
  • the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another way of dividing.
  • the functional modules in the embodiments of the present application may be integrated into one process In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • an embodiment of the present application provides an apparatus 1600 for implementing the functions of the terminal device in the above method.
  • the apparatus may be a terminal device or a device in the terminal device.
  • the apparatus 1600 includes at least one processor 1601, configured to implement the functions of the terminal device in the above method.
  • the processor 1601 may perform side link communication on the first BWP in the first time unit.
  • the processor 1601 may perform side link communication on the first BWP in the first time unit.
  • the device 1600 may further include at least one memory 1602 for storing program instructions and/or data.
  • the memory 1602 and the processor 1601 are coupled.
  • the coupling in the embodiments of the present application is an interval coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1601 may cooperate with the memory 1602.
  • the processor 1601 may execute program instructions stored in the memory 1602. At least one of the at least one memory may be included in the processor.
  • the device 1600 may further include a communication interface 1603 for communicating with other devices through a transmission medium, so that the device used in the device 1600 can communicate with other devices.
  • the communication interface 1603 may be used to send a side link signal to other terminal devices or receive a side link signal sent by other terminal devices on the first BWP in the first time unit.
  • the communication interface 1603 may be a transceiver, circuit, bus, module, or other type of communication interface, and the other device may be a second terminal device or a network device.
  • the processor 1601 uses the communication interface 1603 to send and receive data, and is used to implement the method in the foregoing embodiment.
  • the embodiments of the present application do not limit the connection media between the communication device 1603, the processor 1601, and the memory 1602.
  • the memory 1602, the processor 1601, and the communication interface 1603 are connected by a bus 1604.
  • the bus is shown by a thick line in FIG. 16, and the connection mode between other components is only for schematic illustration. , Not to limit.
  • the bus can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 16, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may be implemented or Perform the disclosed methods, steps, and logical block diagrams in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function, which is used to store program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present invention are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, a network device, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, digital video disc (DVD)), or a semiconductor medium (for example, SSD).
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • “At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one item (a) in a, b, or c can be expressed as: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:在第一时间单元,在第一载波带宽部分BWP上进行边链路通信;其中,所述第一时间单元中的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共BWP的帧结构参数相同,所述第一BWP为公共BWP或者第一专用BWP,所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同,且所述专用BWP的带宽包括所述公共BWP的带宽。采用本申请的方法及装置,可以在支持多帧结构参数的系统中实现广播边链路通信。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年01月10日提交国家知识产权局、申请号为201910021720.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在通信系统中,例如新空口(new radio,NR)系统中,终端设备的通信可包括边链路(sidelink,SL)通信和Uu空口通信。其中,SL通信用于终端设备与终端设备间的通信,Uu空口通信用于终端设备与网络设备间的通信。针对SL通信,网络设备可为终端设备配置一个或多个SL载波带宽部分(carrier bandwidth part,BWP)。如何利用SL BWP进行边链路通信是当前的研究热点。
发明内容
本申请提供一种通信方法及装置,以在支持多帧结构参数的系统中实现广播边链路通信。
第一方面,提供一种通信方法,包括:在第一时间单元,在第一载波带宽部分BWP上进行边链路通信;其中,所述第一时间单元中的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共BWP的帧结构参数相同,所述第一BWP为公共BWP或者第一专用BWP。
在一种可能的设计中,所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同。
在一种可能的设计中,所述第一专用BWP的带宽包括所述公共BWP的带宽。
由上可见,在本申请实施例中,可实现在支持多帧结构参数的系统中进行广播边链路通信。在第一时间单元中使用第一帧结构参数通信,可以保证终端设备可以在该第一时间单元进行广播边链路通信,实现广播边链路信号的发送和/或接收。进一步,如果终端设备的专用BWP的带宽包括公共BWP的带宽,终端设备可以工作在该专用BWP中进行广播边链路通信,避免BWP的重配或切换,实现简单。
在一种可能的设计中,所述方法还包括:在第二时间单元,在第二专用BWP使用第二帧结构参数进行边链路通信;其中,所述第二帧结构参数为所述第二专用BWP的帧结构参数。
由上可见,在本申请实施例中,可实现终端设备在不同的时间单元,利用不同的BWP进行边链路通信。比如,在第一时间单元,利用第一BWP进行边链路通信,在第二时间单元,利用第二BWP进行边链路通信等。可以实现在第一时间单元进行广播,单播或组 播的边链路通信,在第二时间单元进行单播和/或组播的边链路通信。进而可以支持多帧结构参数的系统中实现广播边链路通信。
在一种可能的设计中,所述第一时间单元的边链路通信包括广播。
在一种可能的设计中,所述第二时间单元的边链路通信包括单播和/或组播。
在一种可能的设计中,所述第一时间单元的边链路通信还包括单播和/或组播。
在一种可能的设计中,所述第一BWP为公共BWP,所述方法还包括:根据公共BWP集合,确定所述第一BWP。
比如,可根据终端设备的射频能力不同,在公共BWP集合中,选择不同的第一BWP进行边链路通信。根据终端设备的射频能力,选择不同的BWP进行边链路通信,可以实现最大的资源利用率,降低边链路传输时资源冲突的概率。
在一种可能的设计中,所述方法还包括:接收第一指示,所述第一指示用于指示所述第一时间单元。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在长度为N个时间单元的周期内,被配置为所述第一时间单元的时间单元,所述N为大于或等于1的正整数;或者,所述第一指示用于指示配置周期、传输偏移和/或第一时间单元数量中的至少一个。
由上可见,在第一时间单元的数量较多时,采用该种设计与上述直接指示第一时间单元的方式相比,可节省第一指示的开销。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在一种或多种帧结构参数下的第一时间单元,所述方法还包括:根据所述一种或多种帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第一时间单元,所述一种或多种帧结构参数中包括所述第一帧结构参数,所述第一帧结构参数是所述第一BWP的帧结构参数;和/或,
根据所述一种或多种帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,所述一种或多种帧结构参数中包括所述第二帧结构参数,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
由上可见,在该设计中,网络设备可以指示多种帧结构参数下的第一时间单元,终端设备可以根据当前所使用的帧结构参数,确定第一时间单元。由于终端设备在不同的帧结构参数下,所对应的第一时间单元可以不同。采用本设计的方法,可较准确的指示不同帧结构参数下的第一时间单元。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示参考帧结构参数下的第一时间单元,所述方法还包括:根据所述参考帧结构参数、第一帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第一时间单元,所述第一帧结构参数是所述第一BWP的帧结构参数;和/或,
根据所述参考帧结构参数、第二帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
由上可见,在该设计中,网络设备仅指示一种帧结构参数(即参考帧结构参数)下的第一时间单元,相对于指示多种帧结构参数下的第一时间单元,可节省空口开销。同时,终端设备根据该参考帧结构参数下的第一时间单元可以确定第一帧结构参数下的第一时 间单元和/或第二帧结构参数下的第一时间单元,进而可以支持在多帧结构参数的系统中实现在第一时间单元进行广播边链路通信。
第二方面,提供一种通信方法,包括:向第一终端设备和第二终端设备发送第一指示,所述第一指示用于指示第一时间单元,所述第一时间单元用于所述第一终端设备和所述第二终端设备进行边链路通信,所述第一时间单元的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共载波带宽部分BWP的帧结构参数相同。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在长度为N个时间单元的周期内,被配置为所述第一时间单元的时间单元,所述N为大于或等于1的正整数;或者,所述第一指示用于指示配置周期、传输偏移和/或第一时间单元数量中的至少一个。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在一种或多种帧结构参数下的第一时间单元。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示参考帧结构参数下的第一时间单元。
第三方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置,该装置可以包括通信模块,且通信模块可以执行上述第一方面任一种设计示例中的相应功能,具体的:
通信模块,用于在第一时间单元,在第一载波带宽部分BWP上进行边链路通信;
其中,所述第一时间单元中的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共BWP的帧结构参数相同,所述第一BWP为公共BWP或者第一专用BWP。
在一种可能的设计中,所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同。
在一种可能的设计中,所述第一专用BWP的带宽包括所述公共BWP的带宽。
在一种可能的设计中,所述通信模块,还用于:在第二时间单元,在第二专用BWP使用第二帧结构参数进行边链路通信;其中,所述第二帧结构参数为所述第二专用BWP的帧结构参数。
在一种可能的设计中,所述第一时间单元的边链路通信包括广播。
在一种可能的设计中,所述第二时间单元的边链路通信包括单播和/或组播。
在一种可能的设计中,所述第一时间单元的边链路通信还包括单播和/或组播。
在一种可能的设计中,所述第一BWP为公共BWP,所述装置还包括处理模块,用于根据公共BWP集合,确定所述第一BWP。
在一种可能的设计中,所述方法还包括:接收模块,用于接收第一指示,所述第一指示用于指示所述第一时间单元。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在长度为N个时间单元的周期内,被配置为所述第一时间单元的时间单元,所述N为大于或等于1的正整数;或者,所述第一指示用于指示配置周期、传输偏移和/或第一时间单元数量中的至少一个。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在一种或多种帧结构参数下的第一时间单元,所述处理模块,还用于:
根据所述一种或多种帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第 一时间单元,所述一种或多种帧结构参数中包括所述第一帧结构参数,所述第一帧结构参数是所述第一BWP的帧结构参数;和/或,
根据所述一种或多种帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,所述一种或多种帧结构参数中包括所述第二帧结构参数,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示参考帧结构参数下的第一时间单元,所述处理模块还用于:根据所述参考帧结构参数、第一帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第一时间单元,所述第一帧结构参数是所述第一BWP的帧结构参数;和/或,根据所述参考帧结构参数、第二帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
第四方面,提供一种通信装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置,该装置可以包括发送模块,且发送模块可以执行上述第二方面任一种设计示例中的相应功能,具体的:
发送模块,用于向第一终端设备和第二终端设备发送第一指示,所述第一指示用于指示第一时间单元,所述第一时间单元用于所述第一终端设备和所述第二终端设备进行边链路通信,所述第一时间单元的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共载波带宽部分BWP的帧结构参数相同。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在长度N个时间单元的周期内,被配置为所述第一时间单元的时间单元,所述N为大于或等于1的正整数;或者,所述第一指示用于指示配置周期、传输偏移和/或第一时间单元数量中的至少一个。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在一种或多种帧结构参数下的第一时间单元。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示参考帧结构参数下的第一时间单元。
第五方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备或第二终端设备等。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口在第一时间单元,在第一载波带宽部分BWP上进行边链路通信;比如,所述处理器可利用通信接口在第一时间单元,在第一BWP上发送边链路信号或接收边链路信号等。其中,所述第一时间单元中的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共BWP的帧结构参数相同,所述第一BWP为公共BWP或者第一专用BWP。
在一种可能的设计中,所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参 数相同。
在一种可能的设计中,所述第一专用BWP的带宽包括所述公共BWP的带宽。
在一种可能的设计中,所述处理器,还用于利用通信接口在第二时间单元,在第二专用BWP使用第二帧结构参数进行边链路通信;其中,所述第二帧结构参数为所述第二专用BWP的帧结构参数。
在一种可能的设计中,所述第一时间单元的边链路通信包括广播。
在一种可能的设计中,所述第二时间单元的边链路通信包括单播和/或组播。
在一种可能的设计中,所述第一时间单元的边链路通信还包括单播和/或组播。
在一种可能的设计中,所述第一BWP为公共BWP,所述处理器还用于:根据公共BWP集合,确定所述第一BWP。
在一种可能的设计中,所述通信接口还用于:接收第一指示,所述第一指示用于指示所述第一时间单元。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在长度为N个时间单元的周期内,被配置为所述第一时间单元的时间单元,所述N为大于或等于1的正整数;或者,所述第一指示用于指示配置周期、传输偏移和/或第一时间单元数量中的至少一个。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在一种或多种帧结构参数下的第一时间单元,所述处理器还用于:
根据所述一种或多种帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第一时间单元,所述一种或多种帧结构参数中包括所述第一帧结构参数,所述第一帧结构参数是所述第一BWP的帧结构参数;和/或,
根据所述一种或多种帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,所述一种或多种帧结构参数中包括所述第二帧结构参数,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示参考帧结构参数下的第一时间单元,所述处理器还用于:
根据所述参考帧结构参数、第一帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第一时间单元,所述第一帧结构参数是所述第一BWP的帧结构参数;和/或,
根据所述参考帧结构参数、第二帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
第六方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第二方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备或第二终端设备等。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口向第一终端设备和第二终端设备发送第一指示,所述第一 指示用于指示第一时间单元,所述第一时间单元用于所述第一终端设备和所述第二终端设备进行边链路通信,所述第一时间单元的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共载波带宽部分BWP的帧结构参数相同。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在长度为N个时间单元的周期内,被配置为所述第一时间单元的时间单元,所述N为大于或等于1的正整数;或者,所述第一指示用于指示配置周期、传输偏移和/或第一时间单元数量中的至少一个。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在一种或多种帧结构参数下的第一时间单元。
在一种可能的设计中,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示参考帧结构参数下的第一时间单元。
第七方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面的方法。
第八方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面或第二方面的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第二方面的方法。
第十方面,本申请实施例提供一种系统,所述系统包括第三方面的装置和第四方面的装置,或者,第五方面的装置和第六方面的装置。
附图说明
图1为本申请实施例提供的网络架构的一示意图;
图2为本申请实施例提供的BWP的一示意图;
图3为本申请实施例提供的通信方法的一流程图;
图4为本申请实施例提供的组播、广播和单播的一示意图;
图5a、图5b或图5c为本申请实施例提供的BWP配置的一示意图;
图6为本申请实施例提供的BWP配置的另一示意图;
图7为本申请实施例提供的通信方法的一流程图;
图8a、图8b、图8c、图9a、图9b以及图9c为本申请实施例提供的时隙的示意图;
图10为本申请实施例提供的通信方法的一流程图;
图11为本申请实施例提供的BWP与广播、组播和单播关系的一示意图;
图12为本申请实施例提供的通信方法的一流程图;
图13为基站调度模式的一流程图;
图14为UE自主选择模式的一流程图;
图15为本申请实施例提供的通信装置的一结构示意图;
图16为本申请实施例提供的通信装置的一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
如图1所示,为本申请实施例适用的一种可能的网络架构示意图,包括第一终端设备101和第二终端设备102。
其中,第一终端设备101与第二终端设备102可通过边链路(sidelink,SL)通信,通信方式可包括单播、组播和/或广播等。可选的,图1所示的网络架构,还可包括:接入网设备103。接入网设备103可通过Uu空口与第一终端设备101和/或第二终端设备102进行通信。可选的,图1所示的网络架构,还可包括:网管系统104。第一终端设备101或第二终端设备102可通过有线或无线方式与网管系统104通信。一种具体实现中,第一终端设备101或第二终端设备102可通过接入网设备103与网管系统104通信。比如,网管系统104可以是运营商的网管系统。
其中,Uu空口可以理解为通用的用户设备(user equipment,UE)和网络之间的接口(universal UE to network interface)。Uu空口的传输可以包括上行传输和下行传输,其中,上行传输可以是指终端设备向接入网设备传输信号,下行传输可以是指接入网设备向终端设备传输信号。上行传输的信号可以称为上行信息,下行传输的信号可称为下行信息。
其中,在例如长期演进(long term evolution,LTE)系统等现有通信系统中,针对SL通信,物理层仅支持广播,且仅支持一种固定的帧结构参数(numerology)。比如,所述固定的帧结构参数可为子载波间隔为15kHz,循环前缀(cyclic prefix,CP)为正常(normal)CP或扩展(extended)CP等。在新空口(new radio,NR)系统中,针对SL通信,支持多种帧结构参数,且物理层支持广播、单播和组播。如何在多种帧结构参数下,实现SL的广播是本申请实施例要解决的问题。
下面对本申请所使用到的一些通信名词或术词进行解释说明,该通信名词或术语也作为本申请实施例发明内容的一部分。
一、终端设备
终端设备可以简称为终端,是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备,以及还可以包括用户设备(user equipment,UE)等。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来第五代(5th generation,5G)网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端设备有时也可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。本申 请实施例对此并不限定。
本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
二、网络设备
网络设备可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持长期演进(long term evolution,LTE)的接入网设备通信,也可以与支持5G的接入网设备通信,还可以与支持LTE的接入网设备以及支持5G的接入网设备的双连接。本申请实施例并不限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
三、边链路(sidelink,SL)
边链路,也可称为旁链路或侧链路等。边链路用于终端设备和终端设备之间的通信,可以包括物理边链路共享信道(physical sidelink shared channel,PSSCH)和物理边链路控制信道(physical sidelink control channel,PSCCH)。其中,PSSCH可以用于承载边链路数据(SL data),PSCCH可以用于承载边链路控制信息(sidelink control information,SCI),所述SCI也可以称为边链路调度分配(sidelink scheduling assigment,SL SA)。SL SA是用于数据调度相关的信息,比如,SL SA中包括PSSCH的资源分配和/或调制编码机制(modulation and coding scheme,MCS)等信息。可选的,边链路通信还可以包括:物理边链路上行控制信道(physical sidelink uplink control channel,PSUCCH)。物理边链路上行控制信道也可以简称为边链路上行控制信道。物理边链路上行控制信道也可以称为物理边链路反馈信道(physical sidelink feedback channel,PSFCH)。物理边链路反馈信道也可以简称为边链路反馈信道。其中,边链路上行控制信道或边链路反馈信道可以用于传输边链路反馈控制信息(sidelink feedback control information,SFCI)。边链路反馈控制信息也可以简称为边链路反馈信息,也可以称为边链路上行控制信息(sidelink uplink control information,SL UCI)。其中,边链路反馈控制信息可以包括信道状态信息(channel state  information,CSI),混合自动重传请求(hybrid automatic repeat request,HARQ)信息等中的至少一种信息。其中,HARQ信息可以包括确认信息(acknowledgement,ACK)或否定性确认(negtive acknowledgement,NACK)等。在本申请实施例中,至少一种可以是1种、2种、3种或更多种,本申请实施例不做限制。
四、时间单元
时间单元的单位可以为无线帧(radio frame)、子帧(subframe)、时隙(slot)、微时隙(mini-slot)和符号(symbol)等单位。例如,一种具体实现中,一个时间单元可包括2个时隙等。一个无线帧可以包括一个或多个子帧,一个子帧可以包括一个或者多个时隙。针对不同的子载波间隔可以有不同的时隙长度。比如子载波间隔为15kHz时,一个时隙可以为1毫秒(ms);子载波间隔为30kHz时,一个时隙可以为0.5ms。一个时隙可以包括一个或多个符号。比如正常循环前缀(cyclic prefix,CP)下一个时隙可以包括14个时域符号,扩展CP下一个时隙可以包括12个时域符号。时域符号可以简称为符号。时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是基于离散傅立叶变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)符号,本申请实施例中可以以时域符号是OFDM符号为例进行说明。微时隙,又称为迷你时隙,可以是比时隙更小的单位,一个微时隙可以包括一个或多个符号。比如一个微时隙可以包括2个符号,4个符号或7个符号等。一个时隙可以包括一个或多个微时隙。
五、载波带宽部分(carrier bandwidth part,BWP)
载波带宽部分可以简称为带宽部分(bandwidth part,BWP),BWP是载波上一组连续的频域资源,例如BWP是载波上一组连续的资源块(resource block,RB),或者BWP是载波上一组连续的子载波,或者BWP是载波上一组连续的资源块组(resource block group,RBG)。其中,一个RBG中包括至少一个RB,例如1个、2个、4个、6个或8个等,一个RB可以包括至少一个子载波,例如12个等。在一种可能的实现中,例如NR的版本15(release 15,Rel-15)所示的方法中,在一个小区中,对于一个终端设备,网络为该终端设备最多可以配置4个BWP,在频分双工(frequency division duplexing,FDD)下,上下行可各配置4个BWP,在时分双工(time division duplexing,TDD)下,上下行可各配置4个BWP。网络设备可以针对每个BWP向终端设备配置包括子载波间隔和/或CP长度的帧结构参数。在任一时刻,在一个小区中,仅能激活一个BWP,终端设备和网络设备在激活的BWP上进行数据的收发。现有BWP是定义在一个给定的载波上的,即一个BWP的资源位于一个载波资源内。
如图2的#1所示,在载波宽带(carrier BW)内,针对一个UE可仅配置一个BWP,所述BWP的带宽小于或等于UE带宽能力(UE bandwidth capability),UE带宽能力小于或等于载波带宽(carrier BW)。如图2的#2所示,在载波带宽中,针对一个UE可配置两个BWP,分别为BWP1和BWP2,且BWP1和BWP2的带宽相重叠。如图2的#3所示,在载波带宽中,针对一个UE可配置两个BWP,分别为BWP1和BWP2,且BWP1和BWP2不重叠。BWP1和BWP2的帧结构参数可以是相同的帧结构参数,或者也可以是不同的帧结构参数。实际中,BWP的配置(例如BWP的个数、位置、和/或帧结构参数等配置)还可以是其它的配置,本申请实施例不做限制。
为了使SL传输相关的设计兼容Uu空口的设计,NR下的SL也可以采用BWP的设计 进行SL资源的配置。对于一个小区,网络设备可通过预配置方式或系统消息等公共信令配置SL BWP,所配置的SL BWP可以是该小区的公共BWP(common BWP)。对于一个小区,公共BWP是针对小区中的所有UE配置的BWP。可选地,公共BWP可以是用于进行广播边链路通信的BWP,或者,公共BWP可以是非链接态用户(比如空闲态用户,非活跃态用户或覆盖外用户等)进行旁链路通信的BWP,或者,公共BWP也可以是链接态用户与覆盖外用户进行旁链路通信的BWP等。网络设备也可以通过UE特定(specific)信令向UE配置SL BWP,所配置的SL BWP可以是该UE的专用BWP。其中,载波带宽部分的配置可以包括该载波带宽部分的频率起始位置(比如起始资源块(resource block,RB))、带宽(bandwidth,BW)和对应的帧结构参数(numerology)等。其中,所述带宽可以是指该载波带宽部分包括的RB数量或者RBG数量,所述帧结构参数可以包括子载波间隔和/或CP类型。针对BWP的具体配置可参考第三代合作伙伴计划(3rd generation partnership project,3GPP)NR协议38.213和38.331中针对BWP的配置流程。
可选的,本申请实施例中的SL资源可以是指SL BWP,也可以是指资源池,或者也可以是指SL资源池中的用于进行边链路通信的资源。可选的,SL资源池也可以简称为资源池。
六、帧结构参数(numerology)
帧结构参数,可包括子载波间隔和/或循环前缀(cyclic prefix,CP)类型等。CP类型也可以称为CP长度,或简称为CP。所述CP类型可为扩展CP,或者为正常(普通)CP。扩展CP下一个时隙可包括12个时域符号,正常CP下一个时隙可包括14个时域符号。其中,在不同的子载波间隔下,一个时隙可以对应不同的时隙长度。比如,在子载波间隔15kHz下,1个时隙可以为1ms,子载波间隔30kHz下,1个时隙可以为0.5ms。在不同的子载波间隔下,一个时隙中可以包括相同个数的时域符号,比如12或14等。
七、边链路SL的基站调度模式
边链路SL的基站调度模式也可以称为基站辅助调度模式,或者简称为基站调度模式。在基站调度模式下,网络设备可通过配置信息,为发送端UE和/或接收端UE配置SL资源,所述SL资源中可以包括一个或多个资源池。在本申请实施例中,多个可以是2个、3个、4个或更多个,本申请实施例不做限制。网络设备可通过下行控制信息(downlink control information,DCI)向发送端UE指示SL资源池中的用于进行边链路通信的资源,发送端UE在接收到所述DCI时,可利用所述DCI所指示的资源池中的资源,向接收端UE发送SL信息,所述SL信息可包括SL data、和/或SCI,相应的,接收端UE可接收SL信息。接收到SL data后,接收端UE可向发送端UE发送SFCI,SFCI中可以包括针对SL data的ACK/NACK。在本申请实施例中,发送端UE和接收端UE可以是针对SL data而言。如果针对SFCI而言,针对SL data的接收端UE可以描述为发送端UE,针对SL data的发送端UE可以描述为接收端UE。其中,所述网络设备可为基站,或者为运营商运营的网管系统等。可选的,发送端UE的SL资源可以是基站为发送端UE配置的SL资源,接收端UE的SL资源可以是网管系统为接收端UE配置的SL资源。或者,接收端UE的SL资源可以是基站为接收端UE配置的SL资源,发送端UE的SL资源可以是网管系统为发送端UE配置的SL资源等。
一示例中,网络设备可为UE1和UE2配置SL资源,网络设备可发送DCI至UE1,UE1可根据DCI的指示,确定SL发送资源,在SL发送资源上发送SCI和/或SL data。 UE2根据配置的SL资源,确定SL接收资源,在SL接收资源上接收SCI,并根据SCI在接收资源上接收SL data。可选的,UE2在接收到SL data后,可向UE发送1发送SFCI。例如,如果UE2正确接收SL data,则所述SFCI中可包括肯定确认ACK,否则,所述SFCI中可包括否定确认NACK等。
在一示例中,网络设备可以为UE1、UE2和UE3配置SL资源,网络设备可通过DCI为UE3和UE1分配SL发送资源。UE3在SL发送资源上,可向UE1发送SL信号,比如,所述SL信号可包括SCI和/或SL data等。UE1在接收到所述SL信号后,UE1可向UE3发送SFCI。可选地,同时,UE1在SL发送资源上,可向UE2发送SL信号,比如,所述SL信号可包括SCI和/或SL data等。UE2在接收到所述SL信号后,UE2可向UE1发送SFCI。
八、边链路SL的UE自主选择模式
UE的自主选择模式,也可称为UE的主动选择模式,在UE自主选择模式下,网络设备可通过配置信息,为发送UE和/或接收UE配置SL资源,所述SL资源中包括一个或多个资源池。发送端UE在所配置的SL资源中进行感知,如果感知到SL资源中有可用资源,则在该可用资源中发送SL信息,相应的,接收端UE在SL资源中接收SL信息。可选的,发送端UE的SL资源可以是基站为发送端UE配置的SL资源,接收端UE的SL资源可以是网管系统为接收端UE配置的SL资源。或者,接收端UE的SL资源可以是基站为接收端UE配置的SL资源,发送端UE的SL资源可以是网管系统为发送端UE配置的SL资源。
一示例中,网络设备可为UE1和UE2配置SL资源,UE1在配置的SL资源中,感知SL发送资源,在SL发送资源中发送SCI和/或SL data。相应的,UE2根据配置的SL资源,接收SCI和/或SL data。可选的,UE2在接收到SL data后,可在配置的SL资源中,感知SL发送资源,且在SL发送资源上向UE1发送SFCI等。
与上述旁链路SL的基站调度模式相似,UE1在作为发送端,在SL发送资源上向UE2发送SL data信息时,UE1也可作为接收端,接收UE3发送的SL data信息。可选地,同时,UE1可以在SL发送资源上向UE3发送SFCI,详细说明可参见上述旁链路SL的基站调度模式的记载,在此不再说明。
需要指出的是,本申请中涉及的名词“传输”可以包括数据的发送和/或接收,和/或控制信息的发送和/或接收。“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
如图3所示,提供一种通信方法的流程,该流程中的执行主体可为图1中的发送侧终端设备101或接收侧终端设备102。该流程包括:
S301.终端设备在第一时间单元,在第一BWP上进行边链路通信。所述第一时间单元的边链路通信可以包括广播(broadcast)。可选的,还可包括组播(groupcast)和/或单播(unicast)。即第一时间单元的边链路通信可包括“广播”、“广播和单播”、“广播和组播”,或者,“广播、单播和组播”等。其中,如图4所示,广播可以是指一个终端设备与多个终端设备的通信,比如,广播可以是指一个终端设备与小区中的所有终端设备的通信,因此,广播需要所有终端设备均可接收。广播的目的是可以让所有的终端设备都可以接收到广播消息,但实际中接收到广播消息的可以是一个或多个终端设备。组播可以指一个终端设备与一组终端设备的通信。组播的目的是可以让一组终端设备中的所有的终端设备都可 能接收到组播消息,但实际中接收到组播消息的可以是一组终端设备中的一个或多个终端设备。单播可以指一个终端设备与另一个终端设备的通信。单播的目的是可以让一个终端设备接收到单播消息,但在实际应用中,该终端设备可以接收到或者未接收到上述单播消息。
示例的,第一终端设备可在第一时间单元,在第一BWP上发送边链路信号。相应的,第二终端设备在第一时间单元,在第一BWP上接收边链路信号,边链路信号可包括数据(data)和/或边链路控制信息(sidelink control information,SCI)等。可选的,边链路信号还可以包括边链路反馈信息。或者,
所述第一时间单元中的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共BWP的帧结构参数相同,所述第一BWP为公共BWP或者第一专用BWP。所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同。可选地,所述第一专用BWP的带宽包括所述公共BWP的带宽。或者,
所述第一BWP为公共BWP或者第一专用BWP,所述第一时间单元是用于进行广播边链路通信的时间单元。所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同。可选地,所述第一专用BWP的带宽包括所述公共BWP的带宽。
或者,所述第一BWP为公共BWP或者第一专用BWP,所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同,所述第一时间单元中的边链路通信使用第一帧结构参数,所述第一帧结构参数和用于进行广播边链路通信的帧结构参数相同。可选地,所述第一专用BWP的带宽包括所述公共BWP的带宽。或者,
在第一时间单元,在第一BWP上使用第一帧结构参数进行边链路通信,所述第一BWP为公共BWP或者第一专用BWP,所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同,所述第一帧结构参数和用于进行广播边链路通信的帧结构参数相同。可选地,且所述专用BWP的带宽包括所述公共BWP的带宽。或者,
在第一时间单元,在第一BWP上使用第一帧结构参数进行边链路通信,所述第一BWP为公共BWP或者第一专用BWP,所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同,所述第一帧结构参数和所述公共BWP的帧结构参数相同。可选地,所述第一专用BWP的带宽包括所述公共BWP的带宽。
在本申请实施例中,帧结构参数A和帧结构参数B相同还可以描述为:帧结构参数A是帧结构参数B。比如,第一帧结构参数和公共BWP的帧结构参数相同,还可以描述为:第一帧结构参数是公共BWP的帧结构参数。
上述方法中,可选的,所述第一专用BWP的带宽可以包括所述公共BWP的带宽。比如,如图5a所示中的时隙1的终端设备的BWP配置,第一专用BWP为BWP4,包括资源池2至5,公共BWP为BWP0,包括资源池3和4,且BWP4与BWP0的帧结构参数相同,均为第一帧结构参数,第一专用BWP(即BWP4)的带宽包括公共BWP(即BWP0)的带宽。
可以理解的是,在上述图5a所示的示例中,以第一帧结构参数的子载波间隔为30kHz为例进行说明,并不作为对本申请的限定。比如,第一帧结构参数的子载波间隔可以为15kHz,30kHz,60kHz等。
终端设备在时隙1时可以工作在第一专用BWP,具体的,终端设备可以在公共BWP与第一专用BWP的宽带重叠的部分(即资源池3和资源池4)进行广播,组播,单播中的 至少一个,和/或,终端设备可以在公共BWP与第一专用BWP的非重叠部分(即资源池2和资源池5)进行组播和/或单播。
上述方法中,可选的,第一专用BWP与公共BWP的带宽可存在部分重叠,如图5b所示,在第一时间单元,BWP0为公共BWP,包括资源池0至2,BWP1为第一专用BWP,包括资源池2至4,且BWP0与BWP1的帧结构参数相同,均为第一帧结构参数。BWP0与BWP1的带宽存在部分重叠,即资源池2。在本申请实施例中,终端设备可以工作在第一专用BWP,具体的,终端设备可以在公共BWP与第一专用BWP的宽带重叠的部分(即资源池2)进行广播,组播,或单播中的至少一个,和/或,终端设备可以在公共BWP与第一专用BWP的非重叠部分(即资源池3和资源池4)进行组播和/或单播。
可以理解的是,在图5b所示的示例中,以第一帧结构参数的子载波间隔为15kHz为例进行说明,并不作为对本申请实施例的限定。比如,第一帧结构参数的子载波间隔可以为15kHz,30kHz,60kHz等。
上述方法中,可选的,第一专用BWP与公共BWP的带宽可完全不重叠,如图5c所示,在第一时间单元,BWP0为公共BWP,包括资源池0至2,BWP1为专用BWP,包括资源池4至6,BWP0与BWP1的帧结构参数相同,均为第一帧结构参数。公共BWP(即BWP0)与第一专用BWP(即BWP1)的带宽完全不重叠。终端设备可在第一专用BWP上进行组播和/或单播,和/或,在公共BWP上进行组播、单播或广播的至少一个。
可以理解的是,在图5c所示的示例中,以第一帧结构参数的子载波间隔为60kHz为例进行说明,并不作为对本申请实施例的限定。比如,第一帧结构参数的子载波间隔可以为15kHz,30kHz,60kHz等。
可以理解的是,本申请实施例中,一个资源池中可以包括一个或多个连续的子载波、RB或RBG。一个BWP中可以包括一个或多个资源池。不同资源池的带宽可以相同,也可以不同。本申请实施例中的资源池的编号顺序可以是从上往下编号(比如按照频域位置从高到低),也可以是从下往上编号(比如按照频域位置从低到高)。比如,在图5a中的示例中,资源池是按照从上往下的编号顺序进行编号的。如果在图5a所示的资源池中,按照从下往上的编号顺序进行编号,那么,图5a所示的资源池0的编号替换为编号6,资源池1的编号替换为资源池5,依次类推,资源池6的编号替换为编号0。另外,本申请实施例中的资源池的编号方式可以是载波内统一编号,也可以是SL BWP内统一编号,比如在图5a的示例中,如果按照载波内统一编号,资源池的编号为0~6。也可以按照对应的SL BWP内统一编号,比如BWP0中的资源池编号为0,1;BWP4中的资源池编号为0~3,BWP中的资源池编号顺序也可以是从上往下编号(比如按照频域位置从高到低)或者从下往上编号(比如按照频域位置从低到高)。需要说明的是,本申请对资源池的编号方式和顺序并不做限制。可选的,资源池的编号可以从0开始,也可以从1开始,具体的,本申请对此不作限定。可选的,BWP的编号可以从0开始,也可以从1开始,具体的,本申请对此不作限定。
一示例中,所述公共BWP可以是预配置边链路BWP。比如,运营商运营的网管系统可以通过预配置信令或预配置参数为终端设备配置边链路BWP,该边链路BWP可以称为预配置边链路BWP。可选的,预配置边链路BWP也可以简称为预配置BWP。可选的,在预配置BWP中配置的发送资源池和/或接收资源池,可以称为预配置资源池。预配置资源池可以包括预配置发送资源池和/或预配置接收资源池。
比如,网管系统可以在终端设备的用户识别(subscriber identification module,SIM)卡或全球用户识别(universal subscriber identity module,USIM)卡中写入预配置参数,终端设备可以通过读取SIM卡或USIM卡中的预配置参数获取预配置边链路BWP的配置信息,进而确定预配置边链路BWP。或者,网管系统也可以向终端设备的移动设备(mobile equipment,ME)发送预配置参数,终端设备可以通过预配置参数确定预配置边链路BWP。可选的,SIM卡也称为用户身份识别卡、智能卡等。USIM也可称为升级SIM等。可选的,本申请实施例中,预配置参数也可以称为预配置信令、预配置信息或者其它名称。
一示例中,所述公共BWP可以是系统公共边链路BWP。比如,接入网设备可以通过系统信息或小区级公共信息为终端设备配置边链路BWP,该边链路BWP可以称为系统公共边链路BWP。可选的,系统公共边链路BWP也可以简称为系统公共BWP。在系统公共BWP中配置的发送资源池和/或接收资源池,可以称为系统公共资源池,或公共资源池。公共资源池可以包括公共发送资源池和/或公共接收资源池。
一示例中,专用BWP可以称为用户专用边链路BWP,或者称为用户特定边链路BWP,或者简称为用户专用BWP,或者简称为用户特定BWP,或者简称为特定BWP。比如,该BWP可以是网络设备通过UE特定(specific)信令配置给终端设备的,或者,该BWP可以是接入网设备通过专用无线资源控制(radio resource control,RRC)信令向终端设备配置的边链路BWP等。可选的,在专用BWP中配置的发送资源池和/或接收资源池,可以称为专用资源池。专用资源池可以包括专用发送资源池和/或专用接收资源池。
一示例中,终端设备的状态可以包括覆盖内、覆盖外、连接(connected)态、空闲(idle)态,不活跃(inactive)态中的至少一项。
一示例,覆盖内的终端设备可以指在接入网设备的覆盖范围内,接收信号的功率大于或等于第一门限的终端设备。比如,第一门限可为-3dB等。或者,覆盖内的终端可以指可接收到接入网设备的系统消息的终端,或者,覆盖内的终端指可接收到接入网设备的RRC消息的终端,比如可以是处于空闲态的终端,也可以是处于链接态的终端,或者也可以是处于不活跃态的终端。
具体的,比如处于空闲态或不活跃态的终端可以是接收到接入网设备的系统消息的终端。处于链接态的终端可以是与接入网设备有RRC链接的终端,该终端可以接收到接入网设备的RRC消息。
一示例,覆盖外的终端设备可以是指不在接入网设备的覆盖范围内的终端,比如可以是接收信号的功率小于或等于第一门限,比如第一门限可为-3dB等。或者,覆盖外的终端设备可以指处于空闲态的终端设备,或者,覆盖处的终端设备也可以指处于不活跃态的终端设备。
可选的,因为覆盖外的终端设备接收不到接入网设备发送的信号或者接收性能较差,因此覆盖外的终端设备的旁链路资源可以是通过预配置参数配置的旁链路资源。比如覆盖外的终端设备的BWP可为预配置BWP。即覆盖外的终端的工作BWP为预配置BWP。
可选的,覆盖内且为空闲态或不活跃态的终端接收不到接入网设备发送的RRC专用信令,因此覆盖内且为空闲态或不活跃态的终端的旁链路资源可以是通过预配置参数配置的旁链路资源和/或通过系统信息配置的旁链路资源。比如覆盖内且为空闲态或不活跃态的终端的BWP可以为预配置BWP和/或系统公共BWP。
可选的,覆盖内且为链接态的终端因为即可以接收到接入网设备发送的系统信息,也 可以接收到接入网设备发送的RRC专用信令,因此覆盖内且为链接态的终端的旁链路资源可以是通过预配置参数配置的旁链路资源和/或通过系统信息配置的旁链路资源和/或通过RRC专用信令配置的旁链路资源。比如覆盖内且为链接态的终端的BWP可以为预配置BWP和/或系统公共BWP和/或专用BWP。
一示例中,网络设备可以独立的为终端设备配置BWP的起始位置和带宽,比如,网络设备可为终端设备配置N个BWP,所述BWP的编号可以为0~N-1,N小于或等于网络设备可以为终端设备配置的边链路BWP的最大个数。示例的,当N取值2时,网络设备可以为终端设备1独立配置BWP0和BWP1(比如图5a中的时隙1的BWP0和BWP1),可以为终端设备2独立配置BWP0和BWP1(比如图5b中的BWP0和BWP1),可以为终端设备3独立配置BWP0和BWP1(比如图5c中的BWP0和BWP1)。当N取值4时,网络设备可以为终端设备4独立配置BWP0,BWP1,BWP2和BWP3(比如图5a中的时隙1和时隙n中示出的BWP0,BWP1,BWP2,BWP3)。当N取值5时,网络设备可为终端设备1独立配置BWP0、BWP1、BWP2、BWP3以及BWP4等。在不同的时隙,网络设备和终端设备可以使用相同的BWP进行数据传输,也可以使用不同的BWP进行数据传输,本申请实施例不做限制。
可选的,可以针对每个BWP独立配置该BWP对应的帧结构参数。任意两个BWP的帧结构参数可以相同,也可以不同。
在本申请实施例中,针对一个载波单元(carrier component,CC),网络设备可为终端设备在该CC上配置多个BWP,不同BWP的帧结构参数可相同或不同,所述多个BWP中可包括公共BWP(common BWP)和/或专用BWP(dedicated BWP)。可选的,网络设备可为基站,或者为运营商运营的网管系统等。比如,如图5a所示,针对一个CC,该CC可以包括7个资源池(resource pool),编号分别为0至6。其中,网络设备针对该CC,可为终端设备配置5个BWP,编号可以分别为0至4,其中,BWP0可为公共BWP,BWP1、BWP2、BWP3和BWP4可为专用BWP。且BWP0和BWP4的帧结构参数为第一帧结构参数,所述第一帧结构参数包括子载波间隔30kHz,CP为正常CP或扩展CP。BWP1和BWP2的帧结构参数为第二帧结构参数,第二帧结构参数包括子载波间隔15kHz,CP为扩展CP或正常CP。BWP3的帧结构参数为第三帧结构参数,所述第三帧结构参数包括子载波间隔60kHz,CP为扩展CP或正常CP。可选的,BWP0可以是通过运营商运营的网管系统配置给终端设备的,BWP1~BWP4可以是通过接入网设备为终端设备配置的。
可选的,本申请实施例中的资源池可以是指进行旁链路通信的时频资源。在时域上,该资源池可以是对应一个或多个时间单元,比如时隙,符号,子帧等。在频域上,该资源池可以是对应一段连续或非连续的频域资源。在频域上,资源池可以是配置在SL BWP中。
可选的,资源池可以是针对小区配置的,也可以是针对终端设备配置的。具体的,比如预配置参数配置的资源池可以是针对小区配置的,终端设备获得相同的预配置参数;比如系统信息配置的资源池可以是针对小区配置的,终端设备接收到相同的系统信息;比如RRC专用信息配置的资源池可以是针对该终端设备配置的,具体的,比如可以是针对该终端设备的SL BWP配置的。
可选的,针对一个载波上的资源池的划分可以是所有的UE都对齐的。比如图5a所示,网络设备可以针对该CC划分7个资源池,针对一个终端设备可以配置在该终端设备的BWP中包括一个或多个资源池。不同的终端设备可以配置不同的资源池编号下对应的资源 池。
可选的,资源池可以包括发送资源池和接收资源池。其中发送资源池是指用于终端设备进行旁链路信号的发送的资源,接收资源池是指用于终端设备进行旁链路信号的接收的资源。终端设备可以在发送资源池上发送旁链路信号,和/或,在接收资源池上接收旁链路信号。
可选的,本申请中的资源池的定义可以是沿用LTE协议中的描述,也可以是NR中的资源池的定义,或者是未来网络的定义,本申请不做限制。
如图5a所示,设定第一时间单元包括时隙1(slot1)。在时隙1,终端设备可在公共BWP0或专用BWP4上进行边链路通信。通过图5a可以看出,专用BWP4包括资源池2、资源池3、资源池4和资源池5,公共BWP0包括资源池3和资源池4,即专用BWP4的带宽可以包括公共BWP0的带宽。
可以理解的是,如果终端设备在时隙1之前(比如时隙0)已经工作在公共BWP0或专用BWP4,则在时隙1,该终端设备可以无需再执行激活公共BWP0或专用BWP4的操作,直接在公共BWP0或专用BWP4上进行边链路通信即可。如果终端设备在时隙1之前(比如时隙0)工作在除公共BWP0或专用BWP4外的其它BWP上,则终端设备在第一时间单元,需执行激活公共BWP0或专用BWP4的操作,且在激活的BWP0或BWP4执行边链路通信。
可选的,在本申请实施例中,针对一个CC,可为终端设备配置公共BWP集合。所述公共BWP集合中可以包括一个或多个公共BWP。所述一个或多个公共BWP可以称为候选公共BWP。候选公共BWP可以包括配置的公共BWP和/或协议预定义的可能的公共BWP。当上述第一BWP为公共BWP时,终端设备可根据公共BWP集合中的一个或多个候选公共BWP,确定第一BWP。
示例性的,终端设备可以根据终端设备的射频能力(又称为UE的射频能力),在公共BWP集合中,确定一个公共BWP,在第一时间单元,在该公共BWP上进行边链路通信。UE所确定的公共BWP的带宽可以小于或等于UE的射频能力。例如UE所确定的公共BWP是公共BWP集合中带宽小于或等于UE的射频能力的任一个BWP,或者,UE所确定的公共BWP是公共BWP集合中带宽小于或等于UE的射频能力的最大带宽BWP。其中,终端设备的射频能力也可以称为信道带宽能力,射频带宽能力,带宽能力等。射频能力可以包括传输射频带宽能力,和/或,接收射频带宽能力等。带宽能力可以包括传输带宽能力,和/或,接收带宽能力等。比如终端设备可以支持10M,20M,50M,100M,200M,400M等不同的带宽的射频能力。
可以理解的是,如果终端设备在第一时间单元之前,已经工作在上述公共BWP上,则终端设备在第一时间单元,无需再激活上述公共BWP,直接在该公共BWP上进行边链路通信即可。如果终端设备在第一时间单元,工作在除上述公共BWP外的其它BWP,则终端设备在第一时间单元,需激活上述公共BWP,并在该激活的公共BWP上进行边链路通信。
比如,针对网络设备配置给终端设备的多个公共BWP或者预定义的多个公共BWP,终端设备可以根据射频能力,确定在第一时间单元进行边链路通信的公共BWP。例如,如图6所示,第一时间单元可以包括时隙1,网络设备可为终端设备配置4个公共BWP或者预定义4个公共BWP,该多个公共BWP可以具有相同的帧结构参数。假设4个公共BWP 的编号分别为BWP0,BWP1,BWP2和BWP3。设定BWP 0对应的带宽为20M,BWP 1对应的带宽为40M,BWP 2对应的带宽为60M,BWP 3对应的带宽为80M。则终端设备可以根据射频能力确定在第一时间单元进行边链路通信的BWP。
比如,如图6所示,如果终端设备的射频带宽能力为20M,则终端设备可以确定在第一时间单元进行边链路通信的BWP为BWP 0。如果终端设备的射频带宽能力为50M,则终端设备可以确定在第一时间单元进行边链路通信的BWP为BWP 1或BWP0。如果终端设备的射频带宽能力为100M,则终端设备可以确定在第一时间单元进行边链路通信的BWP为BWP3、BWP2、BWP1或BWP0。或者,终端设备可以按照最大的支持的带宽确定在第一时间单元进行边链路通信的BWP。比如如果终端设备所支持的最大射频带宽能力为20M,则终端设备可以确定在第一时间单元进行边链路通信的BWP为BWP 0。如果终端设备所支持的最大射频带宽能力为50M,则终端设备确定在第一时间单元进行边链路通信的BWP为BWP 1。如果终端设备所支持的最大射频带宽能力为100M,则终端设备确定在第一时间单元进行边链路通信的BWP为BWP3。
可选的,所述在第一时间单元进行边链路通信的BWP可以是小于或等于该射频带宽能力的最大带宽对应的BWP,或确定在第一时间单元进行边链路通信的BWP为小于或等于该射频带宽能力的最大带宽对应的BWP,或确定在第一时间单元终端设备工作的BWP为小于或等于该射频带宽能力的最大带宽对应的BWP。可选的,本申请中,激活的BWP也可以称为工作的BWP。在本申请实施例中,可考虑终端设备的射频能力,实现边链路通信,提升性能。终端设备可接收更多的资源上的信号,避免边链路信号漏检。同时,根据终端设备的能力激活BWP,可以实现最大的资源利用率,降低边链路传输时资源冲突的概率。
可选的,在本申请实施例中,针对一个CC,可为终端设备配置专用BWP集合。所述专用BWP集合中可以包括一个或多个专用BWP。所述一个或多个专用BWP可以称为候选专用BWP。候选专用BWP可以包括配置的专用BWP和/或协议预定义的可能的专用BWP。当上述第一BWP为第一专用BWP时,终端设备可根据公共BWP的帧结构参数,在专用BWP集合中的一个或多个候选专用BWP,确定第一专用BWP,所述第一专用BWP的帧结构参数与公共BWP的帧结构参数相同。比如,如图5a所示,专用BWP集合中包括4个专用BWP,编号分别为专用BWP1、专用BWP2、专用BWP3以及专用BWP4。其中,专用BWP1和专用BWP2的帧结构参数为第二帧结构参数,专用BWP3的帧结构参数为第三帧结构参数,专用BWP4的帧结构参数为第一帧结构参数,专用BWP4与公共BWP的帧结构参数相同。终端设备可确定专用BWP4为上述第一BWP,且在第一时间单元,在BWP4上进行边链路通信。
可以理解的是,如果终端设备在第一时间单元之前,已经工作在上述第一专用BWP上,则终端设备在第一时间单元,无需再激活上述第一专用BWP,直接在该第一专用BWP上进行边链路通信即可。如果终端设备在第一时间单元,工作在除上述第一专用BWP外的其它BWP,则终端设备在第一时间单元,需激活上述第一专用BWP,并在该激活的第一专用BWP上进行边链路通信。
可选的,在图3所示的流程中,还可包括:S302.终端设备在第二时间单元,在第二专用BWP使用第二帧结构参数进行边链路通信。所述第二时间单元的边链路通信可以包括单播和/或组播,即第二时间单元的边链路通信可包括“单播”、“组播”或“单播和组播” 等。其中,所述第二帧结构参数为所述第二专用BWP的帧结构参数。
比如,仍可参照图5a所示,第二时间单元包括时隙n(slot n),终端设备在时隙n,在专用BWP1使用第二帧结构参数进行边链路通信,或者,终端设备在时隙n,在专用BWP2使用第二帧结构参数进行边链路通信,或者,终端设备在时隙n,在专用BWP3使用第三帧结构参数进行边链路通信。其中,n为0或大于0的整数。在本申请实施例中,大于0的整数包括1、2、3或更大的整数,本申请实施例不做限制。
示例性的,针对一CC,网络设备可为终端设备配置专用BWP集合。所述专用BWP集合中可以包括一个或多个专用BWP。所述一个或多个专用BWP可以称为候选专用BWP。候选专用BWP可以包括配置的专用BWP和/或协议预定义的可能的专用BWP。终端设备可在专用BWP集合中,确定一个专用BWP,在第二时间单元使用该专用BWP进行边链路通信。示例的,终端设备可基于射频能力,在候选专用BWP中,选择一个专用BWP,然后,在第二时间单元,使用该专用BWP进行边链路通信,其过程与上述根据射频能力,在公共BWP集合中,确定公共BWP的过程相似,可参见上述记载,在此不再说明。示例性地,网络设备从候选专用BWP中为终端设备指示第二时间单元使用的第二专用BWP;在第二时间单元,终端设备在第二专用BWP使用第二帧结构参数进行边链路通信。
可以理解的是,在本申请实施例中,针对上述图3中S301和S302中,进行边链路通信的BWP(比如,上述第一BWP和/或第二专用BWP),可以称为边链路BWP(sidelink BWP,SL BWP),或者简称为BWP。
可选的,在本申请实施例中,针对上述图3中的第一BWP的激活和/或第二专用BWP的激活,可采用以下至少一种方式,需要指出的是,第一BWP还可称为第一SL BWP,第二专用BWP还可称为第二专用SL BWP。
示例一,基于下行控制信息(down control information,DCI)实现SL BWP激活或去激活。
网络设备可以在向终端设备配置SL BWP时,针对每个SL BWP配置SL BWP标识。网络设备可以向终端设备发送DCI,所述DCI的SL BWP指示域中可以指示SL BWP标识,该SL BWP标识指示的SL BWP为激活SL BWP,而其他SL BWP为去激活SL BWP。
比如,网络设备为终端配置了4个SL BWP,分别为SL BWP0,SL BWP1,SL BWP2,SL BWP3。而当前激活SL BWP为BWP0,如果DCI中的SL BWP指示域指示了SL BWP1,则表明SL BWP1为激活SL BWP,而SL BWP0、SL BWP2和SL BWP3为去激活SL BWP。比如,4个SL BWP时,可用2个比特(bits)指示SL BWP标识,具体的,比如00表示SL BWP0,01表示SL BWP1,10标识SL BWP2,11标识SL BWP4。即DCI中的2bits为01时,表示激活的SL BWP为SL BWP1,而其它SL BWP为去激活SL BWP。
示例二,基于无线资源控制RRC信令实现SL BWP的激活或去激活。
网络设备可以向终端设备发送RRC信令,通过该RRC信令网络设备为终端设备配置一个或多个SL BWP,此时的SL BWP为配置SL BWP。在RRC信令中还可以指示激活的SL BWP,比如指示激活的SL BWP的SL BWP标识(identifier,ID),当终端设备接收到该RRC信令后,即可根据该信令确定激活的SL BWP,并且将该终端设备的其它SL BWP作为去激活的SL BWP。
示例三,基于定时器(timer)实现SL BWP的激活或去激活。
网络设备可以向终端设备发送RRC信令,通过该RRC信令为终端设备配置一个或多 个SL BWP,此时的SL BWP为配置SL BWP。所述RRC信令中还可包括定时器指示。当终端设备接收到该RRC信令后,即可根据该信令中的定时器指示确定当前激活的BWP的定时,如果在该定时内在该激活BWP中没有检测到DCI,则在定时器到期后该激活BWP会被去激活,并且激活预定义的BWP或初始接入的BWP等。具体激活的BWP可以是协议预定义的,或者基站通过信令告知终端设备的。比如当前激活的BWP为BWP 1,预定义的BWP为BWP 2,定时器为20ms,如果在激活的BWP 1上在20ms内没有检测到下行控制信息DCI,则BWP1将被去激活,BWP2会被激活。
如图7所示,提供一种通信方法的流程,图7所示流程中的网络设备可为上述图1中的无线接入网设备103或网管系统104,第一终端设备可为图1中的发送侧终端设备101,第二终端设备可为图1中的接收侧终端设备102。该流程包括:
S701.网络设备发送第一指示,所述第一指示用于指示所述第一时间单元。
具体的,网络设备可指示第一时间单元的绝对时间位置或第一时间单元的位置,比如绝对时间位置的单位可为毫秒(ms)等,所述第一时间单元的位置可为在长度为N个时间单元的周期内,所述第一时间单元所占用的位置或者所在的位置等。其中,第一时间单元的单位可以是子帧,时隙,微时隙,迷你时隙,子时隙,符号等,所述第一时间单元可包括一个或多个上述单位的时间单元。其中,N为正整数。在本申请实施例中,正整数可以是1、2、3、4或者更大的整数。
S702.第一终端设备接收第一指示。
S703.第二终端设备接收第一指示。
在本申请实施例中,上述图7所示流程中的网络设备可为接入网设备,所述接入网设备可以分别向第一终端设备和第二终端设备发送第一指示。或者,网络设备可以为运营商运营的网管系统,网管系统可以分别向第一终端设备和第二终端设备发送第一指示。或者,网络设备可以为运营商运营的网管系统和接入网设备,网管系统可以向第一终端设备发送第一指示,接入网设备可以向第二终端设备发送第一指示。或者,网管系统可以向第二终端设备发送第一指示,接入网设备可以向第一终端设备发送第一指示。
可选的,第一指示也可以称为第一指示信息。第一终端设备接收的第一指示和第二终端设备接收的第一指示可以是不同的信令发送的,也可以是相同的信令发送的。具体的,本申请对此不做限定。
示例的,上述图7所示流程中的第一指示可采用但不限于以下示例进行指示:
示例一,所述第一指示用于指示在长度为N个时间单元的周期内,被配置为所述第一时间单元的时间单元,所述N为大于或等于1的正整数。周期的大小N可以为网络设备为终端设备指示的,也可以为预定义的。
示性1.1,网络设备通过比特图(bitmap)向终端设备指示长度为N个时间单元的周期内的第一时间单元。所述比特图中包括N个比特,该N个比特和该N个时间单元一一对应。如果该比特图中的一个比特的值为t1,则表示第一时间单元中包括该比特所对应的时间单元;如果该比特图中的一个比特的值为t2或者不为t1,则表示第一时间单元中不包括该比特所对应的时间单元。t1和t2为整数,例如t1等于1,t2等于0。
比如以周期的长度N为5,时间单元为时隙为例,网络设备可用5个比特(bit)向终端设备指示第一时间单元,一个比特对应1个时隙,如果该比特的取值为1,则表示网络设备指示该时隙,即第一时间单元中包括该时隙。如果该比特的取值为0,则表示网络设 备未指示该时隙,即第一时间单元中不包括该时隙。其中,0或1的取值和含义可以变换。例如,5比特的位图(bitmap)为1 0 0 0 0,则表明网络设备指示了每5个时隙中的第一个时隙,即第一时间单元中包括每5个时隙中的第一个时隙,第一时间单元中不包括每5个时隙中的其它4个时隙。可选地,该其它4个时隙为第二时间单元,或者该其它4个时隙中包括第二时间单元。
示例1.2,网络设备通过比特图向终端设备指示长度为N毫秒的周期内的第一时间单元。所述比特图中包括N比特,该N个比特和N毫秒一一对应。如果该比特图中的一个比特的值为t3,则表示第一时间单元中包括该比特所对应的毫秒;如果该比特图中的一个比特的取值为t4或者不为t3,则表示第一时间单元中不包括该比特所对应的毫秒。t3和t4为整数,例如,t3的取值可为1,t4的取值可为0
比如以N为5为例,可以用5个比特指示,一个比特对应1ms。如果该bit的取值为1,则表示第一时间单元中包括该bit所对应的1毫秒。如果该bit的取值为0,则表示第一时间单元中不包括该bit所对应的1毫秒。0或1的取值和含义可以变换。例如,5比特的位图bitmap为1 0 0 0 0,则表明第一时间单元中包括了每5毫秒中的第一毫秒,第一时间单元中不包括每5毫秒中的其它4毫秒。可选地,该其它4毫秒为第二时间单元,或者该其它4毫秒中包括第二时间单元。
可选的,针对上述示例中的第一指示包含的比特的个数可以是根据周期确定的。比如如果周期长度为N,则第一指示包含的比特的个数可以是N。
可选的,针对上述示例中的周期可以是采用可预定义周期N,即网络设备可以不指示周期。终端设备和/或网络设备可以根据预定义的方法确定周期,进而确定周期内的第一时间单元。
可选的,针对上述示例中的周期可以是网络设备配置给终端设备的。其中,不同子载波间隔所对应的周期可独立配置。不同子载波间隔所对应的周期相同或不同。比如,可预定义15kHz的子载波间隔,周期为N1,30kHz的子载波间隔,周期为N2,60kHz的子载波间隔,周期为N3,120kHz的子载波间隔,周期为N4等。
示例二,所述第一指示用于指示配置周期、传输偏移和/或第一时间单元数量中的至少一个。传输偏移也可以简称为偏移、第一时间单元在周期中的偏移等。示例的,所述传输偏移可以包括第一传输偏移和第二传输偏移,关于第一传输偏移与第二传输偏移在下述示例2.1和示例2.2中分别进行详细的说明。网络设备可以向终端设备发送第一指示,终端设备可以接收网络设备发送的第一指示。终端设备可以根据网络设备发送的第一指示确定配置周期、传输偏移和/或第一时间单元数量中的至少一个,或者终端设备可以根据网络设备发送的第一指示确定第一时间单元。可选的,本申请实施例中,配置周期也可以简称为周期。可选的,第一时间单元数量也可以称为第一时间单元个数、周期中的第一时间单元的个数等。
示例2.1,网络设备可通过第一指示向终端设备指示配置周期与第一传输偏移(offset)。终端设备在接收到第一指示时,可根据第一指示,确定第一时间单元的周期N,以及第一传输偏移;或者可根据第一指示,确定第一时间单元。设定配置周期为N,所述N为正整数,所述第一传输偏移指在每N个时间单元内,第一时间单元内的每个第一时间单元相对于N个时间单元中的首个时间单元或起始时间单元的偏移。所述配置周期为N的N个时 间单元的编号可以为0~N-1,或,N~2N-1,或,依次类推;或者所述配置周期为N的N个时间单元的编号可以为1~N,或,N+1~2N,或,依次类推。比如,如图8c所示,定义配置周期为10个时间单元,所述10个时间单元的索引可以为0至9,所述第一传输偏移为{0,1,2,3},那么每个周期内所包括的第一时间单元为相对于时间单元0编移0的时间单元(即时间单元0),相对于时间单元0偏移1的时间单元(即时间单元1),相对于时间单元0偏移2的时间单元(即时间单元2),以及相对于时间单元0偏移3的时间单元(即时间单元3)。关于第一指示所指示的时间单元,可参见图8c中的斜线填充部分,在此不再说明。
在本申请实施例中,网络设备可指示配置周期与第一传输偏移,即第一指示中可包括配置周期和第一传输偏移。或者,可预先定义多种配置周期与传输偏移,且为每种配置周期与传输偏移设置索引,网络设备可指示配置周期与第一传输偏移的索引,即第一指示中可包括配置周期与传输偏移的索引。
可选的,可以预定义或者网络设备通过信令告知终端设备配置周期与传输偏移和索引的对应关系。网络设备可以发送第一指示,第一指示用于指示索引。终端设备可以接收第一指示信息。终端设备可以根据第一指示确定索引,根据索引和所述对应关系确定配置周期与传输偏移;或者终端设备可以根据网络设备发送的第一指示确定第一时间单元。
表1
Figure PCTCN2019129300-appb-000001
比如,如表1所示,可预定义16种配置周期与传输偏移,且为该16种配置周期与传输偏移设置索引,索引可以分别为0至15。当网络设备指示索引为0的配置周期与传输偏移时,第一指示的值为0000。终端设备在接收到第一指示后,可根据索引与配置周期和传 输偏移的对应关系,确定第一指示所指示的配置周期为2个时间单元,第一传输偏移为0,终端设备可确定每周期为2的时间单元内的第一个时间单元为第一时间单元。比如,如图8a所示,周期为2的时间单元的索引可以分别为0和1;2和3;4和5依次类推。以包括时间单元0和1的周期为例,该周期内第一时间单元包括相对于时间单元0偏移0的时间单元(即时间单元0),不包括相对于时间单元0偏移0的时间单元(即时间单元1),所述第一时间单元的单位可为时隙或毫秒,关于第一指示所指示的第一时间单元具体可参见图8a所示的斜线填充部分。
比如,当网络设备指示索引为1的配置周期与传输偏移时,第一指示的值为0001。终端设备在接收到第一指示后,可根据索引与配置周期和传输偏移的对应关系,确定第一时间单元的配置周期为2个时间单元,传输偏移为1。终端设备可确定每2个时间单元中的第二个时间单元为第一时间单元。比如,如图8b所示,周期为2的时间单元的索引可以分别为0和1;2和3;4和5依次类推。以包括时间单元0和1的周期为例,该周期内第一时间单元包括相对于时间单元0偏移1的时间单元(即时间单元1),不包括相对于时间单元0偏移0的时间单元(即时间单元1),所述第一时间单元的单位可为时隙或毫秒,关于第一时间单元可参见图8b所示的斜线填充部分。
比如,当网络设备指示索引为15的配置周期与传输偏移时,第一指示的值为1111,或者,称为第一指示包括1111。终端设备在接收到第一指示后,可根据索引与配置周期和传输偏移的对应关系,确定第一时间单元的配置周期为10个时间单元,传输偏移为{0,1,2,3}。终端设备可确定每10时间单元中,第1至4个时间单元为第一时间单元。例如,如图8c所示,当配置周期取10时,周期为10的10个时间单元的索引为0至9,第1至4个时间单元的索引为0至3,即每10个时间单元中索引可以为0至3的时间单元为第一时间单元。比如,如图8c所示,周期为10的时间单元的索引可以分别为0至9,第一传输偏移为{0,1,2,3},在一个周期内,第一时间单元所包括的时间单元为索引为0的时间单元(相对于索引为0的时间单元偏移为0),索引为1的时间单元(相对于索引为0的时间单元0偏移为1),索引为2的时间单元(相对于索引为0的单元偏移2),索引为3的时间单元(相对于索引为0的时间单元偏移3)。
示例2.2,网络设备可通过第一指示向终端设备指示配置周期、第二传输偏移和第一时间单元个数,所述第二传输偏移用于指示指该周期内起始第一时间单元相对于周期内的起始时间单元的偏移。终端设备在接收到第一指示后,可以根据第一指示确定第一时间单元。例如,终端设备可根据第一指示确定配置周期,确定配置周期为N的N个时间单元,根据第二传输偏移(即周期内首个第一时间单元,相对于N个时间单元内的首个时间单元的偏移),确定周期内起始第一时间单元,根据周期内起始第一时间单元以及周期内第一时间单元的个数,确定周期内第一时间单元。所述配置周期为N的N个时间单元的编号可以为0~N-1,或,N~2N-1,或,依次类推;或者所述配置周期为N的N个时间单元的编号可以为1~N,或,N+1~2N,或,依次类推。比如,如图8c所示,网络设备可向终端设备指示配置周期为10,第二传输偏移为0,第一时间单元个数为4。终端设备在接收到所述指示后,可根据配置周期,确定编号为0至9的时间单元为一个周期,根据传输偏移0,确定周期内起始第一时间单元是索引为0的时间单元(该时间单元相对于编号0到9的10个时间单元内的首个时间单元,即时间单元0的偏移为0),根据周期内第一时间单元的个数4,确定周期内共包括4个第一时间单元,除了上述首个索引为0的第一时间单元,后 续3个第一时间单元可为连续的或不连续(比如预定义间隔的时间单元等)。在图8c所示的示例中,以4个第一时间单元为连续的为例说明,关于第一时间单元所包括的4个第一时间单元可具体参见图8c中的斜线填充部分。可以理解的是,在本示例中,第一指示可直接指示配置周期、第二传输偏移和第一时间单元个数。或者,预先为指示配置周期、第二传输偏移和第一时间单元个数设置索引,第一指示可指示配置周期、第二传输偏移和第一时间单元个数所对应的索引等。可选的,可以预定义配置周期,传输偏移,时间单元个数和索引的对应关系,终端设备可以根据第一指示确定索引,根据索引和所述对应关系确定配置周期,传输偏移和时间单元个数。
示例2.3,网络设备可通过第一指示向终端设备指示配置周期和第二传输偏移。与上述示例2.2相类似,不同之处为,第一时间单元的个数为预定义的,无需网络设备进行指示,比如,可预定义每周期内只有1个第一时间单元,或者也可以预定义每周期内连续的多个时间单元为第一时间单元,或者也可以预定义,每周期内的预设间隔的多个时间单元的时间单元为第一时间单元等。
比如,以表1中的编号为1111的第一时间单元为例,网络设备可以向终端设备指示第一时间单元的周期为10ms或10个时隙,偏移为0。其中,第一时间单元的个数可以是预定义的,比如周期内只有1个第一时间单元,或者也可以是预定义为连续的多个时间单元为第一时间单元,或者也可以预定义间隔的多个时间单元的时间单元为第一时间单元。
示例2.4,网络设备可通过第一指示向终端设备指示配置周期。与上述示例2.1和示例2.2的过程相类似。不同之处为,可预定义传输偏移,所述传输偏移可为上述第一传输偏移和第二传输偏移。可选的,当传输偏移为上述第二传输偏移时,还可预定义第一时间单元的个数。
比如,网络设备向终端设备指示第一时间单元的周期为10ms或10个时隙。偏移可以是协议预定义的,比如偏移为0。可选的,第一时间单元的个数可以是预定义的,比如周期内只有1个第一时间单元,或者也可以是预定义为连续的多个时间单元为第一时间单元,或者也可以预定义间隔的多个时间单元的时间单元为第一时间单元。
示例2.5,网络设备可通过第一指示向终端设备指示传输偏移,所述传输偏移可为上述第一传输偏移和/或第二传输偏移。与上述示例2.1和示例2.2相类似,不同之处为,所述配置周期和第一时间单元个数等可为预定义的,比如,可预定义配置周期为10个时间单元,所述时间单元的单位为时隙或毫秒等。
比如,网络设备向终端设备指示第一时间单元在周期内的传输偏移。比如,可以预定义周期为N,比如N为10ms或10个时隙。第一指示用于指示传输偏移。可选的,第一时间单元的个数可以是预定义的,比如周期内只有1个第一时间单元,或者也可以是预定义为连续的多个时间单元为第一时间单元,或者也可以预定义间隔的多个时间单元的时间单元为第一时间单元。
示例2.6,网络设备可通过第一指示向终端设备指示第一时间单元数量。与上述示例2.2相类似,不同之处为,所述传输偏移和配置周期可为预定义。可选的,所述传输偏移可为上述第二传输偏移。
比如,网络设备向终端设备指示第一时间单元在周期内的第一时间单元数量。比如,可以预定义周期为N,比如N为10ms或10个时隙。第一指示用于指示在周期内的第一时间单元数量。可选的,偏移可以是预定义的,比如偏移为0,即从周期内的第一个时间单 元开始为第一时间单元。其中,第一时间单元数量对应的第一时间单元可以是连续的多个时间单元为第一时间单元,或者也可以预定义间隔的多个时间单元的时间单元为第一时间单元。比如间隔1个时间单元的时间单元为第一时间单元等。
可选地,示例一和/或示例二中,周期内第一时间单元以外的时间单元为第二时间单元,此时,网络设备指示第一时间单元等效于指示第二时间单元。或者,可选地,周期内包括第一时间单元和第二时间单元。
在本申请的一示例中,不同的终端设备可支持不同的帧结构参数。比如,如表2所示,系统中定义了5种帧结构参数,索引可以依次为0至4。所述帧结构参数中包括子载波间隔和/或CP,不同的帧结构参数下可包括不同的子载波间隔。在不同的子载波间隔下,时域符号的长度可以不同。比如,第一子载波间隔是第二子载波间隔的k倍,那么k个第一子载波间隔的时域符号长度之和等于一个第二子载波间隔的时域符号长度。可选地,第二子载波间隔的一个时域符号长度是第一子载波间隔的一个时域符号长度的k倍。在不同的帧结构参数下,每个时隙中包括时域符号的数量可以相同或不同,每个子帧中包括时隙的数量可以不同,每个帧中包括时隙的数量可以不同。在不同帧结构参数下,每时隙中包括的时域符号的数量
Figure PCTCN2019129300-appb-000002
每个子帧中包括时隙的数量
Figure PCTCN2019129300-appb-000003
每个帧中包括时隙的数量
Figure PCTCN2019129300-appb-000004
可参见下述表3所示。
表2支持的帧结构参数(numerologies)
Figure PCTCN2019129300-appb-000005
表3
Figure PCTCN2019129300-appb-000006
通过以上分析,可以得出,在不同的帧结构参数下,每个时间单元所对应的长度可以不同。比如,以时间单元的单位为时隙示例,第一帧结构参数包括的子载波间隔为15kHz,第二帧结构参数所包括的子载波间隔为30kHz,第一帧结构参数的一个时间单元长度可以是第二帧结构参数的一个时间单元长度的2倍。由于终端设备支持不同的帧结构参数,此时如何指示不同帧结构参数的第一时间单元是本申请所要解决的问题。
第一种示例,网络设备指示参考帧结构参数下的第一时间单元,终端设备可以根据第一帧结构参数与参考帧结构参数的关系,确定第一帧结构参数下的第一时间单元。比如,网络设备可发送第一指示,相应的,终端设备可以接收第一指示,第一指示用于指示参考 帧结构参数下的第一时间单元,终端设备可根据所述参考帧结构参数、第一帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第一时间单元,其中,所述第一帧结构参数是上述第一BWP的帧结构参数。所述参考帧结构参数可以是协议预定义的,或者是网络设备配置给终端设备的。可以理解的是,网络设备发送第一指示的方式,可参见上述示例进行指示,也可采用除上述示例外的其它示例进行指示,本申请并不限定。
可选的,终端设备可根据所述参考帧结构参数、第二帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,其中,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
以下以确定第一帧结构参数下的第一时间单元为例进行举例说明,确定第二帧结构参数下的第一时间单元与第一帧结构参数下的第一时间单元的过程相类似,在此不再说明。下述示例中,第一帧结构参数用μ BWP表示,参考帧结构参数用μ reference表示进行说明。
如果μ BWP>μ reference,参考帧结构参数下的周期为N个时隙,则第一帧结构参数下的周期为
Figure PCTCN2019129300-appb-000007
个时隙。
假设,参考帧结构参数下的周期中的N个时隙的编号为0~N-1,第一帧结构参数下的周期中的
Figure PCTCN2019129300-appb-000008
个时隙编号为
Figure PCTCN2019129300-appb-000009
比如参考帧结构参数下的编号为i的时隙,对应第一帧结构参数下的编号为
Figure PCTCN2019129300-appb-000010
Figure PCTCN2019129300-appb-000011
的时隙。
示例3.1.1.以第一时间单元的单位是时隙为例。参考帧结构参数下的第一时间单元中的一个时隙对应的第一帧结构参数下的多个时隙均为第一帧结构参数下的第一时间单元。
比如,参考帧结构参数下的第一时间单元中的一个时隙对应的第一帧结构参数下的所有时隙均为第一帧结构参数下的第一时间单元。
比如,如果参考帧结构参考下的一个时隙t为第一时间单元,则该参考帧结构参数下的时隙t对应的第一帧结构参数下的
Figure PCTCN2019129300-appb-000012
个时隙为第一时间单元。
可选的,如果参考帧结构参数下的编号i的时隙为第一时间单元,则第一帧结构参数下的编号为
Figure PCTCN2019129300-appb-000013
的时隙为第一时间单元。
例如,图9a所示,参考帧结构参数为15kHz,第一帧结构参数为30kHz,则参考帧结构参数下的第一时间单元所指示的一个时隙对应第一帧结构参数下的2个时隙。如果网络设备指示参考帧结构参数下的第一个时隙和第四个时隙为第一时间单元,终端设备可确定第一帧结构参数下的第一个时隙、第二个时隙、第七个时隙和第八个时隙为第一时间单元。当参考帧结构参数为30kHz,第一帧结构参数为60kHz时,与上述过程相似,在此不再说明。关于不同帧结构参数下的第一时间单元,可参见图9a中的斜线填充部分。
示例3.1.2参考帧结构参数下的第一时间单元中的一个时隙对应的第一帧结构参数下的一个时隙为第一帧结构参数下的第一时间单元。
比如,参考帧结构参数下的第一时间单元中的一个时隙为第一时间单元,则该参考帧结构参数的该一个时隙对应的第一帧结构参数下的多个时隙中的一个时隙为第一帧结构参数下的第一时间单元。
下面以多个时隙中的第一个时隙为第一时间单元为例,其他位置的第一时间单元类似,比如中间的时隙,最后一个时隙等,在此不再赘述。
可选的,多个时隙中的第一时间单元的位置可以是预定义的,或者网络设备通过信令 告知终端的,具体的,本申请在此不作限定。
比如,如果参考帧结构参考下的一个时隙t为第一时间单元,则该参考帧结构参数下的时隙t对应的第一帧结构参数下的
Figure PCTCN2019129300-appb-000014
个时隙中的第一个时隙为第一时间单元。
可选的,如果参考帧结构参数下的编号i的时隙为第一时间单元,则第一帧结构参数下的编号为
Figure PCTCN2019129300-appb-000015
的时隙为第一时间单元。
比如,如果参考帧结构参考下的一个时隙t为第一时间单元,则该参考帧结构参数下的时隙t对应的第一帧结构参数下的
Figure PCTCN2019129300-appb-000016
个时隙中的最后一个时隙为第一时间单元。
可选的,如果参考帧结构参数下的编号i的时隙为第一时间单元,则第一帧结构参数下的编号为
Figure PCTCN2019129300-appb-000017
的时隙为第一时间单元。
比如,参考帧结构参数下的第一时间单元中的一个时隙对应的第一帧结构参数下的第一个时隙为第一帧结构参数下的第一时间单元。如图9b所示,参考帧结构参数为15kHz,第一帧结构参数为30kHz,则参考帧结构参数下的一个时隙对应于第一帧结构参数下的2个时隙。比如,如果网络设备指示参考帧结构参数下的第一个时隙和第四个时隙为第一时间单元,终端设备可确定第一帧结构参数下的第一个时隙和第七个时隙为第一时间单元。或者,终端设备确定第一帧结构参数下的第二个时隙和第八个时隙为第一时间单元等。当参考帧结构参数为30kHz,第一帧结构参数为60kHz时,与上述过程相似,不再说明。关于不同帧结构参数下的第一时间单元可参见图9b中的斜线填充部分。
如果μ BWP<μ reference,则参考帧结构参数下的一个时隙对应于第一帧结构参数的一个时隙。
示例3.1.3参考帧结构参数下的第一时间单元中的一个时隙对应的第一帧结构参数下的一个时隙为第一帧结构参数下的第一时间单元。
比如,如果参考帧结构参考下的一个时隙t为第一时间单元,则该参考帧结构参数下的时隙t对应的第一帧结构参数下的1个时隙为第一时间单元。
可选的,如果参考帧结构参数下的编号i的时隙为第一时间单元,则第一帧结构参数下的编号为
Figure PCTCN2019129300-appb-000018
的时隙为第一时间单元。
如图9c所示,如果参考帧结构参数为60kHz,第一帧结构参数为30kHz。网络设备指示参考帧结构参数下的第一个时隙和第十三个时隙为第一时间单元。终端设备可确定第一帧结构参数下的第一个时隙和第七个时隙为第一帧结构参数下的第一时间单元。如果参考帧结构参数为30kHz,第一帧结构参数为15kHz,与上述过程相类似,在此不再说明。关于不同帧结构参数下的第一时间单元,可参见图9c中斜线填充部分,在此不再说明。
在本申请实施例中,基于参考帧结构参数下的第一时间单元可指示不同帧结构参数下的第一时间单元,降低信令开销。
第二种示例,网络设备指示一种或多种帧结构参数下的第一时间单元,所述一种或多种帧结构参数包括第一帧结构参数和/或第二帧结构参数。比如网络设备指示第一帧结构参数下的第一时间单元和/或第二帧结构参数下的第一时间单元。终端设备可以根据网络设备指示的第一帧结构参数下的第一时间单元确定第一帧结构参数下的第一时间单元。和/或,终端设备可以根据网络设备指示的第二帧结构参数下的第一时间单元确定第二帧结构参数下的第一时间单元。比如网络设备发送第一指示,所述第一指示用于指示在一种或多种帧结构参数下的第一时间单元,终端设备根据所述一种或多种帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第一时间单元,其中,所述一种或多种帧结构参数中包括第一帧结构参数,所述第一帧结构参数是所述第一BWP的帧结构参数;和/或,根据所 述一种或多种帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,其中,所述一种或多种帧结构参数中包括第二帧结构参数,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
比如,在本申请实施例中,以指示周期内时隙的Bitmap的方式为例,如果终端设备所配置的SL BWP的帧结构参数为15kHz。网络设备可以向终端设备指示15kHz对应的第一时间单元。比如,针对15kHz所指示的第一时间单元,一个周期可为5个时隙,可以用5bits的bitmap指示,比如10010表示该周期内的5个时隙中第一个时隙和第四个时隙为第一时间单元。比如,如果第一帧结构参数为30kHz,网络设备可以向终端设备指示30kHz对应的第一时间单元。比如,针对15kHz所指示的第一时间单元,一个周期可为10个时隙,可以用10bits的bitmap指示,比如1001001001表示该周期内的10个时隙中第一个时隙,第四个时隙,第七个时隙和第10个时隙为第一时间单元。比如,如果第一帧结构参数为60kHz,网络设备可以向终端设备指示60kHz对应的第一时间单元。比如,针对60kHz的第一时间单元,一个周期可为4个时隙,可以用4bits指示,比如1000表示该周期内的4个时隙中第一个时隙为第一时间单元。考虑不同帧结构参数的时间单元的特征,指示更加灵活。可选的,可以在配置SL BWP的信令中指示该SL BWP的帧结构参数下的第一时间单元。
比如,在本申请实施例中,以指示周期内时隙的Bitmap的方式为例,如果终端设备所配置的SL BWP的帧结构参数为15kHz。网络设备可以向终端设备指示15kHz对应的第一时间单元。比如,针对15kHz所指示的第一时间单元,一个周期可为5个时隙,可以用5bits的bitmap指示,比如10010表示该周期内的5个时隙中第一个时隙和第四个时隙为第一时间单元。比如,如果第二帧结构参数为30kHz,网络设备可以向终端设备指示30kHz对应的第一时间单元。比如,针对30kHz所指示的第一时间单元,一个周期可为10个时隙,可以用10bits的bitmap指示,比如1001001001表示该周期内的10个时隙中第一个时隙,第四个时隙,第七个时隙和第10个时隙为第一时间单元。比如,如果第二帧结构参数为60kHz,网络设备可以向终端设备指示60kHz对应的第一时间单元。比如,针对60kHz的第一时间单元,一个周期可为4个时隙,可以用4bits指示,比如1000表示该周期内的4个时隙中第一个时隙为第一时间单元。考虑不同帧结构参数的时间单元的特征,指示更加灵活。可选的,可以在配置SL BWP的信令中指示该SL BWP的帧结构参数下的第一时间单元。
比如,在本申请实施例中,以指示周期内时隙的Bitmap的方式为例,如果终端设备侧所配置的帧结构参数中包括15kHz、30kHz和60kHz。网络设备针对不同的帧结构参数,可分别指示第一时间单元。比如,针对15kHz所指示的第一时间单元,一个周期可为5个时隙,可以用5bits的bitmap指示,比如10010表示该周期内的5个时隙中第一个时隙和第四个时隙为第一时间单元,针对30kHz所指示的第一时间单元,一个周期可为10个时隙,可以用10bits的bitmap指示,比如1001001001表示该周期内的10个时隙中第一个时隙,第四个时隙,第七个时隙和第10个时隙为第一时间单元,针对60kHz的第一时间单元,一个周期可为4个时隙,可以用4bits指示,比如1000表示该周期内的4个时隙中第一个时隙为第一时间单元。考虑不同帧结构参数的时间单元的特征,指示更加灵活。可选的,可以在配置SL BWP的信令中指示该SL BWP的帧结构参数下的第一时间单元。
如图10所示,提供一种通信方法的流程,该流程中的第一终端设备可为上述图1中 的发送侧终端设备101,第二终端设备可为上述图1中的接收侧终端设备102,基站可为上述图1中的接入网设备103或者网管系统104,该流程包括:
S1001.网络设备发送第一指示,第一指示用于指示第一时间单元,所述第一时间单元对应的时间单元还可称为时间样图(time pattern)或时域图样。第一时间单元所指示的时刻仅支持一种帧结构参数,或者,第一时间单元所指示的时刻仅支持一种帧结构参数的通信。
示例的,网络设备可以是接入网设备,比如接入网设备可以通过系统信息为终端设备配置第一指示,第一指示用于指示第一时间单元。终端设备可以通过系统信息中的第一指示确定第一时间单元。
示例的,网络设备可以是接入网设备,比如接入网设备可以通过RRC专用信令向终端设备配置第一指示,第一指示用于指示第一时间单元。终端设备可以通过RRC专用信令中的第一指示确定第一时间单元。
示例的,如果终端设备既接收到预配置信令配置的第一指示,又接收到系统信息配置的第一指示,则终端设备可以系统信息配置的第一指示为准,即系统信息可以覆盖预配置信令,或,系统信息的优先级比预配置信令的优先级高。可选的,如果终端设备既接收到系统信息配置的第一指示,又接收到RRC专用信令配置的第一指示,则终端设备以专用信令配置的第一指示为准,即RRC专用信令可以覆盖系统信息,或RRC专用信令的优先级比系统信息的优先级高。
示例的,网络设备也可以是指特殊终端设备,该特殊终端设备可以是具有调度功能和/或辅助调度功能的终端设备。其中,特殊终端设备也可以称为头终端,锚终端等。比如,特殊终端设备可以有管理组内UE的加入或删除的功能的终端设备,和/或,特殊终端设备可以是与基站进行通信交互其他终端设备的情况的终端设备等。或者,特殊终端设备可以是与基站有RRC链接的终端设备主动请求作为特殊终端设备,或者可以是基站指定的特殊终端设备,或者是预定义的特殊终端设备,比如车队中的车头可以是作为特殊终端设备等。
S1002.第一终端设备接收第一指示,根据第一指示确定在第一时间单元进行边链路通信的第一BWP,所述第一BWP为用于进行广播边链路信号的BWP。其中,进行广播边链路信号的BWP,也可称为进行广播业务的边链路通信,或者,进行传输类型为广播的边链路通信。
S1003.第二终端设备接收第一指示,根据第一指示确定在第一时间单元进行边链路通信的第一BWP。
可选的,为了实现在第一时间单元利用第一BWP进行边链路通信,终端设备可能需要进行BWP的激活,具体的:如果终端设备在第一时间单元之前的时间单元上的激活的BWP不是第一BWP,则终端设备需要激活(或者切换)第一BWP,保证在第一时间单元利用第一BWP进行边链路通信。激活或切换BWP会有延时。比如不同帧结构参数下,BWP切换时延可以不同。针对BWP切换时延,终端设备可以有两种能力,一种是支持类型1的BWP切换时延,一种是支持类型2的BWP切换时延。比如如下表4所示。
表4 BWP切换时延
Figure PCTCN2019129300-appb-000019
Figure PCTCN2019129300-appb-000020
需要指出的是,在表4中,如果BWP切换包括子载波间隔的更改,则BWP切换的时延可以是根据BWP切换前的子载波间隔和BWP切换后的子载波间隔两者中的最大值确定。
可以理解的是,在上述记载中,如果在第一时间单元之前,终端设备未工作在第一BWP上,那么第一终端设备需要在第一时间单元之前激活(或切换)第一BWP,所述激活第一BWP可以指的是激活用于边链路通信的第一BWP,即用于终端与终端之间通信的第一BWP。在物理层面,“激活”可以通过射频的开关、或调整滤波器抽头系数等方式实现。比如激活BWP可指开启对应的BWP的射频,或者,激活BWP可指调整对应BWP的滤波器抽头系数等。需要说明的是,激活BWP可以指激活发送边链路信号的BWP,或者是激活接收边链路信号的BWP,在本申请实施例中,将激活发送边链路信号的BWP和激活接收边链路信号的BWP,统称为激活BWP。
可替代性的,在本申请实施例中,网络设备和/或终端设备可以根据预配置参数,确定第一时间单元,即网络设备可以不用发送第一指示。可选的,网络设备可以是网管系统,比如网管系统可以在终端设备的SIM/USIM中写入预配置参数,终端设备可以通过读取SIM卡获取配置参数。或者,网管系统也可以向终端设备的移动设备(mobile equipment,ME)发送预配置参数。
相应的,在本申请实施例中,上述S1001可替换为:网络设备根据预配置参数,确定第一时间单元。上述S1002可替换为:第一终端设备根据预配置参数,确定第一时间单元。上述S1003可替换为:第二终端设备根据预配置参数,确定第一时间单元。
S1004.第一终端设备在第一时间单元,在第一BWP上,发送边链路信号。
S1005.第二终端设备在第一时间单元,在第一BWP上,接收边链路信号。
具体的,第一终端设备在第一BWP上向一个或多个接收端UE发送边链路信号,所述一个或多个接收端UE中包括第二终设备。相应的,第二终端设备可在第一BWP上接收一个或多个发送端UE发送的边链路信号,所述一个或多个发送端中包括第一终端设备,边链路信号可包括参考信号、PSSCH、PSCCH、PSDCH、PSBCH或PSUCCH等中的至少一项。
可选的,在图10所示的流程中,网络设备可向第一终端设备和第二终端设备发送BWP的配置参数,所述配置参数包括帧结构参数、用于传输边链路信号的波形、上下行配置等中的一项或多项。上下行配置指在一段时间内,用于上传输的时间单元和用于下行传输的时间单元的比值。
在支持多帧结构参数的SL场景中,假设终端设备(比如上述第一终端设备和第二终端设备)在一个时刻仅支持一种帧结构参数的发送和/或接收,如果在该时刻有广播信号的通信,那么该时刻要么仅支持广播,或者,在支持广播的同时,也支持单播和组播,但单播和组播的帧结构参数要与广播的帧结构参数相同。
可选的,针对一个资源池,终端设备可以在该资源池中进行单播,组播,或广播的通信。即单播,组播或广播的资源池是共享的。或者,单播,组播或广播的资源池可以是独立的。终端设备在单播的资源池中进行单播,和/或,在组播的资源池中进行组播,和/或, 在广播的资源池中进行广播。
比如,如图11所示,以独立资源池为例,白色填充的资源块为广播信号的边链路通信资源,斜线填充的资源块为组播信号的边链路通信资源,黑色填充的资源块为单播信号的边链路通信资源。配置周期为N个时隙,N个时隙的索引可以依次为0至N-1,上述第一时间单元所包括的时隙为时隙0和时隙N-1,上述第二时间单元所包括的时隙为时隙1至时隙N-2。示例的,在图11所示的示例中,以时隙n表示时隙1至时隙N-2中的任一时隙为例。
其中,在时隙0和时隙N-1上,所有的资源池或BWP的帧结构参数是和广播信号的资源的帧结构参数相同,比如30kHz。而在时隙0和时隙N-1之外的时隙,比如时隙n,终端设备可以被配置一种或多种帧结构参数的资源池或BWP,且该帧结构参数可以与广播的帧结构参数相同或不同。比如BWP 1(包括资源池0,资源池1,资源池2)的帧结构参数为15kHz,BWP 2(包括资源池3,资源池4)的帧结构参数为30kHz,BWP 3(包括资源池5,资源池6)的帧结构参数为60kHz等。
在本申请实施例中,边链路通信可以支持单播,组播,广播下多种帧结构参数下的通信,提高传输性能。NR下的边链路通信可以满足各种不同业务的需求,比如单播,组播,广播等,实现不同帧结构参数的传输。
可选的,在上述S1004中,第一终端设备在第一时间单元,在第一BWP上,发送边链路信号时,第一终端设备需确定SL发送资源。第一终端设备具体在SL发送资源上发送SL信号。在本申请实施例中,终端设备可基于UE自主选择模式确定SL发送资源,或者,终端设备可基于基站调度模式确定SL发送资源,或者可以基于其他模式确定SL资源。
如图12所示,提供一种通信方法的流程,在该流程中基于基站调度模式,确定SL发送资源,该流程包括:
S120a.基站或运营商为UE1配置公共BWP和/或专用BWP。
S120b.基站或运营商为UE2配置公共BWP和/或专用BWP。
在本申请实施例中,所述公共BWP可包括系统公共BWP和预配置BWP。比如,基站或运营商可通过系统消息为UE1和/或UE2配置系统公共BWP,和/或,基站或运营商可通过预配置信令为UE1和/或UE2配置预配置BWP,和/或,基站或运营商可通过专用信令为UE1和/或UE2配置专用BWP。
S121.UE1根据第一时间单元,确定第一BWP。
S122.UE2根据第一时间单元,确定第一BWP。
其中,所述第一BWP为公共BWP,或者,所述第一BWP为专用BWP,且所述专用BWP的帧结构参数与所述公共BWP的帧结构参数相同。
S123.基站或运营商根据第一时间单元,确定终端设备在第一时间单元进行边链路通信的第一BWP。
S124.UE1向基站或运营商发送SL资源请求。
S125.基站或运营商接收SL资源请求,向UE1发送DCI,所述DCI用于指示网络设备为UE1在第一BWP中分配的SL发送资源。
S126.UE1接收DCI,根据DCI,确定SL发送资源。
可选的,网络设备可利用无线网络临时标识(radio network tempory identity,RNTI)对DCI加扰,终端设备在接收到DCI时,可根据RNTI对DCI解扰并进行循环冗余校验 (cyclic redundancy check,CRC),如果校验成功,则表明该DCI为该终端设备的DCI。
S127.UE1在第一时间单元,在SL发送资源上发送SL信号,所述SL信号包括SCI和/或data和/或SFCI等。
S128.UE2在第一时间单元,在第一BWP上接收SL信号。
如图13所示,提供一种通信方法的流程,该流程中基于UE自主选择模式,确定SL发送资源,该流程包括:
S130a.基站或运营商为UE1配置公共BWP和/或专用BWP。
S130b.基站或运营商为UE2配置公共BWP和/或专用BWP。
S131.UE1根据第一时间单元,确定第一BWP。
S132.UE2根据第一时间单元,确定第一BWP。
S133.UE1在第一BWP中,感知可用资源,且在第一时间单元,在第一BWP的可用资源上,发送SL信号。
S134.UE2在第一时间单元,在第一BWP中接收SL信号。
如图14所示,提供一种通信流程,该流程中的第一终端设备可为上述图1的发送侧终端设备101,第二终端设备可为上述图1中的接收侧终端设备102,网络设备可为上述图1中的接入网设备103或网管系统104,该流程是以在第一时间单元激活第一BWP为例进行说明的。该流程可具体为:
S140.第一终端设备根据第一时间单元激活第一BWP,关于第一BWP的解释可参见上述记载,在此不再说明。
S141.第二终端设备根据第一时间单元激活第一BWP。
可选的,根据第一时间单元激活BWP,可以是指为了实现在第一时间单元激活的BWP为第一BWP,如果终端设备在第一时间单元之前的时间单元上的激活的BWP不是第一BWP,则终端设备需要激活(或者切换)BWP,保证在第一时间单元的激活的BWP为第一BWP。即终端设备会根据第一时间单元激活BWP。
可选的,比如根据第一时间单元激活BWP可以是指如果在第一时间单元之前的BWP切换时延个时间单元的时候,终端设备的激活BWP不是第一BWP,则此时终端设备需要激活第一BWP。可选的,比如在第一时间单元结束的时间单元或第一时间单元之后的一个时间单元,终端设备可以激活第二BWP。
可选的,图14所示的流程,还可包括:S142.UE1和UE2在第一时间单元,在第一BWP上进行边链路通信。图14所示的流程可以适用于UE自主选择模式,基站调度模式或者其他SL资源的确定模式,在此不再限定。
可以理解的是,在本申请实施例中,上述示例可以单独使用,不同示例间也可组合使用,单独使用和结合使用的方式均在本申请的保护范围内。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
与上述构思相同,如图15所示,本申请实施例还提供一种装置1500用于实现上述方 法中终端设备的功能。该装置可以是终端设备,也可以是终端设备中的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置1500可以包括:
通信模块1501,用于在第一时间单元,在第一载波带宽部分BWP上进行边链路通信;
关于通信模块1501的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图16所示,本申请实施例提供一种装置1600,用于实现上述方法中终端设备的功能,该装置可以是终端设备,也可以是终端设备中的装置。
装置1600包括至少一个处理器1601,用于实现上述方法中终端设备的功能。示例地,处理器1601可在第一时间单元,在第一BWP上进行边链路通信,具体参见方法中的详细描述,此处不再说明。
装置1600还可以包括至少一个存储器1602,用于存储程序指令和/或数据。存储器1602和处理器1601耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1601可以和存储器1602协同操作。处理器1601可能执行存储器1602中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置1600还可以包括通信接口1603,用于通过传输介质和其它设备进行通信,从而用于装置1600中的装置可以和其它设备进行通信。比如,通信接口1603,可用于在第一时间单元,在第一BWP上向其它终端设备发送边链路信号或接收其它终端设备发送的边链路信号等。示例性地,通信接口1603可以是收发器、电路、总线、模块或其它类型的通信接口,该其它设备可以是第二终端设备或网络设备。处理器1601利用通信接口1603收发数据,并用于实现上述实施例中的方法。
本申请实施例中不限定上述通信装置1603、处理器1601以及存储器1602之间的连接介质。本申请实施例在图16中以存储器1602、处理器1601以及通信接口1603之间通过总线1604连接,总线在图16中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为了便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储 程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    在第一时间单元,在第一载波带宽部分BWP上进行边链路通信;
    其中,所述第一时间单元中的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共BWP的帧结构参数相同,所述第一BWP为公共BWP或者第一专用BWP,所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同,且所述专用BWP的带宽包括所述公共BWP的带宽。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    在第二时间单元,在第二专用BWP使用第二帧结构参数进行边链路通信;
    其中,所述第二帧结构参数为所述第二专用BWP的帧结构参数。
  3. 如权利要求2所述的方法,其特征在于,所述第一时间单元的边链路通信包括广播,所述第二时间单元的边链路通信包括单播和/或组播。
  4. 如权利要求3所述的方法,其特征在于,所述第一时间单元的边链路通信还包括单播和/或组播。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述第一BWP为公共BWP,所述方法还包括:
    根据公共BWP集合,确定所述第一BWP。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    接收第一指示,所述第一指示用于指示所述第一时间单元。
  7. 如权利要求6所述的方法,其特征在于,所述第一指示用于指示所述第一时间单元,包括:
    所述第一指示用于指示在长度为N个时间单元的周期内,被配置为所述第一时间单元的时间单元,所述N为大于或等于1的正整数;或者,
    所述第一指示用于指示配置周期、传输偏移和/或第一时间单元数量中的至少一个。
  8. 如权利要求6或7所述的方法,其特征在于,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在一种或多种帧结构参数下的第一时间单元,所述方法还包括:
    根据所述一种或多种帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第一时间单元,所述一种或多种帧结构参数中包括所述第一帧结构参数,所述第一帧结构参数是所述第一BWP的帧结构参数;和/或,
    根据所述一种或多种帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,所述一种或多种帧结构参数中包括所述第二帧结构参数,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
  9. 如权利要求6或7所述的方法,其特征在于,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示参考帧结构参数下的第一时间单元,所述方法还包括:
    根据所述参考帧结构参数、第一帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第一帧结构参数下的第一时间单元,所述第一帧结构参数是所述第一BWP的帧结构参数;和/或,
    根据所述参考帧结构参数、第二帧结构参数以及所述参考帧结构参数下的第一时间单元,确定所述第二帧结构参数下的第一时间单元,所述第二帧结构参数是所述第二专用BWP的帧结构参数。
  10. 一种通信方法,其特征在于,包括:
    向第一终端设备和第二终端设备发送第一指示,所述第一指示用于指示第一时间单元,所述第一时间单元用于所述第一终端设备和所述第二终端设备进行边链路通信,所述第一时间单元的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共载波带宽部分BWP的帧结构参数相同。
  11. 如权利要求10所述的方法,其特征在于,所述第一指示用于指示所述第一时间单元,包括:
    所述第一指示用于指示在长度为N个时间单元的周期内,被配置为所述第一时间单元的时间单元,所述N为大于或等于1的正整数;或者,
    所述第一指示用于指示配置周期、传输偏移和/或第一时间单元数量中的至少一个。
  12. 如权利要求10或11所述的方法,其特征在于,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示在一种或多种帧结构参数下的第一时间单元。
  13. 如权利要求10至12任一项所述的方法,其特征在于,所述第一指示用于指示所述第一时间单元,包括:所述第一指示用于指示参考帧结构参数下的第一时间单元。
  14. 一种装置,其特征在于,用于实现如权利要求1至9任一项所述的方法。
  15. 一种装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求1至9任一项所述的方法。
  16. 一种装置,其特征在于,包括处理器和通信接口,
    所述处理器利用所述通信接口,在第一时间单元,在第一载波带宽部分BWP上进行边链路通信;
    其中,所述第一时间单元中的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共BWP的帧结构参数相同,所述第一BWP为公共BWP或者第一专用BWP,所述第一专用BWP的帧结构参数和所述公共BWP的帧结构参数相同,且所述专用BWP的带宽包括所述公共BWP的带宽。
  17. 一种装置,其特征在于,用于实现如权利要求10至13任一项所述的方法。
  18. 一种装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求10至13任一项所述的方法。
  19. 一种装置,其特征在于,包括处理器和通信接口,
    所述处理器利用所述通信接口,向第一终端设备和第二终端设备发送第一指示,所述第一指示用于指示第一时间单元,所述第一时间单元用于所述第一终端设备和所述第二终端设备进行边链路通信,所述第一时间单元的边链路通信使用第一帧结构参数,所述第一帧结构参数和公共载波带宽部分BWP的帧结构参数相同。
  20. 一种通信系统,其特征在于,包括权利要求14至16任一项所述的装置,和权利要求17至19任一项所述的装置。
  21. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至13任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,包括指令,当其在计算机上运行时,使得计 算机执行权利要求1至13任一项所述的方法。
PCT/CN2019/129300 2019-01-10 2019-12-27 一种通信方法及装置 WO2020143482A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19909066.3A EP3897005A4 (en) 2019-01-10 2019-12-27 COMMUNICATION METHOD AND APPARATUS
US17/370,972 US20210337544A1 (en) 2019-01-10 2021-07-08 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910021720.9 2019-01-10
CN201910021720.9A CN111432349B (zh) 2019-01-10 2019-01-10 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/370,972 Continuation US20210337544A1 (en) 2019-01-10 2021-07-08 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020143482A1 true WO2020143482A1 (zh) 2020-07-16

Family

ID=71520261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129300 WO2020143482A1 (zh) 2019-01-10 2019-12-27 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20210337544A1 (zh)
EP (1) EP3897005A4 (zh)
CN (1) CN111432349B (zh)
WO (1) WO2020143482A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071729A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种确定bwp的方法、装置及系统
EP4224893A4 (en) * 2020-09-30 2024-02-07 Datang mobile communications equipment co ltd METHOD AND DEVICE FOR BWP CONFIGURATION AND NETWORK-SIDE DEVICE AND TERMINAL DEVICE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148264A1 (en) * 2019-01-18 2020-07-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nr v2x resource pool definitions within a band width part
US11722882B2 (en) * 2019-06-14 2023-08-08 Qualcomm Incorporated Sidelink capability signaling and configuration
US11849459B2 (en) * 2019-07-08 2023-12-19 Qualcomm Incorporated Bandwidth part configuration for sidelink communication
CN114080845A (zh) * 2019-07-09 2022-02-22 三星电子株式会社 用于在无线通信系统中选择资源的设备和方法
US11924895B2 (en) * 2020-02-14 2024-03-05 Qualcomm Incorporated Techniques for new radio layer two relay
US20220046587A1 (en) * 2020-08-07 2022-02-10 Qualcomm Incorporated Interaction Of Multicast Band Width Part (BWP) With Multiple BWP
US11683727B2 (en) * 2021-03-31 2023-06-20 Qualcomm Incorporated Coexistence of redcap and non-redcap UEs in SL
CN117796028A (zh) * 2021-08-05 2024-03-29 上海诺基亚贝尔股份有限公司 用于带宽部分切换的装置、方法和计算机可读介质
CN113783675B (zh) * 2021-08-06 2022-11-11 中国信息通信研究院 一种控制信息传送方法和设备
WO2023248137A1 (en) * 2022-06-20 2023-12-28 Lenovo (Singapore) Pte. Ltd. Activating a bandwidth part based on transmission parameter requirements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129017A2 (en) * 2017-01-04 2018-07-12 Idac Holdings, Inc. Receiver feedback in wireless systems
CN108811120A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 数据传输方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3282633B1 (en) * 2016-08-12 2020-08-05 ASUSTek Computer Inc. Method and apparatus for determining numerology bandwidth in a wireless communication system
US10868649B2 (en) * 2016-12-27 2020-12-15 FG Innovation Company Limited Method for signaling bandwidth part (BWP) indicators and radio communication equipment using the same
US10856174B2 (en) * 2017-03-16 2020-12-01 Ofinno, Llc Buffer status report control
US10284404B2 (en) * 2017-05-26 2019-05-07 Kt Corporation Method and apparatus for scheduling data channel in new radio
US10505803B2 (en) * 2017-06-15 2019-12-10 Mediatek Inc. Power-efficient operation for wider bandwidth
EP3934331A1 (en) * 2017-06-15 2022-01-05 Huawei Technologies Co., Ltd. Frequency location indexing for a wideband component carrier
CN111165039B (zh) * 2017-08-02 2024-01-09 株式会社Ntt都科摩 用户终端以及无线通信方法
US20200252180A1 (en) * 2017-08-10 2020-08-06 Ntt Docomo, Inc. User terminal and radio communication method
US20190044689A1 (en) * 2017-09-28 2019-02-07 Intel IP Corporation Bandwidth part signaling and measurement handling
US11297674B2 (en) * 2018-02-14 2022-04-05 Samsung Electronics Co., Ltd. Method and apparatus for power savings at a user equipment
CN111713070B (zh) * 2018-02-15 2023-04-18 瑞典爱立信有限公司 带宽部分切换和phy配置对齐
US10887897B2 (en) * 2018-02-27 2021-01-05 Qualcomm Incorporated Mechanisms for sidelink resource scheduling
US11032867B2 (en) * 2018-03-27 2021-06-08 Hyundai Motor Company Method and apparatus for performing communication using aggregated carriers in V2X communication system
US11457431B2 (en) * 2018-08-03 2022-09-27 FG Innovation Company Limited Sidelink radio resource allocation
CN112690036B (zh) * 2018-09-18 2024-06-18 三星电子株式会社 用于车辆对一切通信的资源分配和带宽部分非活动定时器处理的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129017A2 (en) * 2017-01-04 2018-07-12 Idac Holdings, Inc. Receiver feedback in wireless systems
CN108811120A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 数据传输方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Bandwidth Parts and Resource Pools for NR V2X Sidelink.", 3GPP DRAFT; R2-1816973, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 4, XP051480908 *
HUAWEI; HISILICON: "Bandwidth Parts and Resource Pools for V2X Sidelink.", 3GPP DRAFT; R1-1813555, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 12, XP051479893 *
INTEL CORPORATION: "Sidelink Physical Layer Structure and Procedures for NR V2X", 3GPP DRAFT; R1-1812488, 16 November 2018 (2018-11-16), pages 1 - 15, XP051478717 *
See also references of EP3897005A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071729A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种确定bwp的方法、装置及系统
EP4178287A4 (en) * 2020-07-31 2023-12-20 Huawei Technologies Co., Ltd. METHOD, DEVICE AND SYSTEM FOR DETERMINING BWP
EP4224893A4 (en) * 2020-09-30 2024-02-07 Datang mobile communications equipment co ltd METHOD AND DEVICE FOR BWP CONFIGURATION AND NETWORK-SIDE DEVICE AND TERMINAL DEVICE

Also Published As

Publication number Publication date
EP3897005A1 (en) 2021-10-20
US20210337544A1 (en) 2021-10-28
EP3897005A4 (en) 2022-02-09
CN111432349A (zh) 2020-07-17
CN111432349B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2020143482A1 (zh) 一种通信方法及装置
US11483867B2 (en) Apparatus and method for handling bandwidth part configuration for random access channel procedure in wireless communication system
KR102480608B1 (ko) D2d 통신을 위한 자원 할당 방법 및 장치
WO2019141101A1 (zh) 随机接入方法及装置
CN110972297B (zh) 一种信号传输方法及装置
WO2020143804A1 (zh) 一种旁链路资源的配置方法及装置
JP2022520785A (ja) 新無線設定されたアップリンク(ul)のための時間リソース
CN113099540B (zh) 上行链路信道复用和波形选择的方法和装置
WO2020164445A1 (zh) 一种通信方法及装置
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
EP3179822B1 (en) Terminal device and method for device-to-device communication
EP2842350A1 (en) Switching between downlink and uplink
CN109891965A (zh) 上行传输控制方法及其装置、通信系统
CN111756508B (zh) 一种通信方法及装置
EP3657887B1 (en) Resource allocation method and device
TWI640215B (zh) 經由錨定載波的小區存取方法和裝置
EP3177084B1 (en) Terminal device, base station device, communications method and integrated circuit
US10368344B2 (en) User equipment, network side device and method for controlling user equipment
JP2018026661A (ja) 通信装置、通信方法及びプログラム
KR20140034793A (ko) 단말 협력 전송을 지원하는 무선 접속 시스템에서 협력 단말의 상향링크 데이터 전송을 위한 자원 할당 방법 및 장치
WO2021197109A1 (zh) 一种通信方法和通信装置
CN113453317B (zh) 一种侧行链路通信方法及装置
WO2020164392A1 (zh) 一种通信方法及装置
WO2020164391A1 (zh) 一种通信方法及装置
CN110972281A (zh) 一种检测控制信道的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019909066

Country of ref document: EP

Effective date: 20210714