WO2021197109A1 - 一种通信方法和通信装置 - Google Patents

一种通信方法和通信装置 Download PDF

Info

Publication number
WO2021197109A1
WO2021197109A1 PCT/CN2021/082059 CN2021082059W WO2021197109A1 WO 2021197109 A1 WO2021197109 A1 WO 2021197109A1 CN 2021082059 W CN2021082059 W CN 2021082059W WO 2021197109 A1 WO2021197109 A1 WO 2021197109A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
related information
dmrs
condition
prach
Prior art date
Application number
PCT/CN2021/082059
Other languages
English (en)
French (fr)
Inventor
张云昊
骆喆
徐修强
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021197109A1 publication Critical patent/WO2021197109A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/0858Random access procedures, e.g. with 4-step access with collision treatment collision detection

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and communication device.
  • terminal devices in communication scenarios gradually show characteristics such as large numbers and multiple forms.
  • the industrial automation scenario there are a large number of monitoring equipment, machines, sensors, etc. in the factory; in the home and life scenarios, there are a large number of mobile phones, tablets, wearable devices, smart home appliances, or vehicle-mounted terminal devices, etc.
  • Terminal equipment and network equipment can perform uplink and/or downlink data transmission.
  • the present application provides a communication method and communication device, which can reduce the detection complexity of network equipment.
  • a communication method which includes: a terminal device (or a chip or a processor in the terminal device) sending a physical uplink shared channel PUSCH to a network device; and sending a physical random access channel PRACH to the network device , Wherein the PUSCH related information of the PUSCH satisfies the first condition; or, does not send the PRACH to the network device, wherein the PUSCH related information satisfies the second condition.
  • the PUSCH related information implicitly indicates the transmission mode used by the terminal device, so that the network device no longer continues to detect PRACH when it learns that the PUSCH related information satisfies the second condition, making it unnecessary for the network device to detect PRACH every time. Thereby reducing the number of detections of network equipment.
  • the terminal device does not send the PUSCH in step 1 of the four-step random access method, but sends the PRACH to the network device, that is, the four-step random access method is adopted.
  • the method further includes: the terminal device determines the direction to the adjacent cell according to one or more of the following: a timing advance TA, a reference signal received power RSRP, and whether the terminal device moves to a neighboring cell
  • the network device sends a PRACH or does not send a PRACH to the network device. Therefore, the terminal device can select an appropriate transmission mode to transmit uplink data (such as an uplink small packet) in combination with the above factors, which helps to select a more appropriate transmission mode based on the actual situation of the terminal device.
  • the terminal device may select the CG mode to transmit the uplink small packet in combination with the above factors, or select the two-step random access method to transmit the uplink small packet, or select the four-step random access method to transmit the uplink small packet. Therefore, a more effective transmission method can be selected according to the demand, and the transmission efficiency can be improved.
  • a communication method including: a terminal device (or a chip or processor in the terminal device) sends a physical uplink shared channel PUSCH to a network device; when the PUSCH related information of the PUSCH satisfies the first condition, The transmission mode of the PUSCH is a two-step random access method, and the two-step random access method includes transmitting the PUSCH and a physical random access channel PRACH; when the PUSCH related information meets a second condition, the The PUSCH transmission mode is the configuration authorized CG mode, and the CG mode includes transmission of the PUSCH.
  • the PUSCH-related information implicitly indicates the transmission mode adopted by the terminal device, so that the network device does not continue to detect PRACH when it learns that the PUSCH-related information meets the second condition, so that the network device does not need to detect PRACH every time. Reduce the number of detections of network equipment.
  • the method further includes: determining the transmission of the PUSCH according to one or more of the following: a timing advance TA, a reference signal received power RSRP, and whether the terminal device moves to a neighboring cell Way. That is to say, the terminal device can consider the above factors and choose the CG mode to transmit the uplink small packet, or the two-step random access method to transmit the uplink small packet, or the four-step random access method to transmit the uplink small packet. For specific effects, refer to the description in the first aspect.
  • the method further includes: the terminal device receives configuration information from the network device, where the configuration information is used to indicate the first condition and the second condition.
  • the terminal device can learn the specific content of the first condition and the second condition from the network device.
  • the PUSCH related information includes the demodulation reference signal DMRS of the PUSCH, and the PUSCH related information satisfies a first condition, including that the pattern information of the DMRS is the first Pattern information, where the PUSCH related information satisfies the second condition and includes that the pattern information of the DMRS is the second pattern information; or, the PUSCH related information includes the demodulation reference signal DMRS of the PUSCH, and the PUSCH related information satisfies the first A condition includes that the resource location of the DMRS is a first resource location, and the PUSCH related information satisfies a second condition including that the resource location of the DMRS is a second resource location; or, the PUSCH related information includes the PUSCH, so The PUSCH related information meeting the first condition includes that the resource location of the PUSCH is the first resource location, and the PUSCH related information meeting the second condition includes the resource location of the PUSCH being the second resource
  • the content that can be included in the PUSCH related information in this application can be in a variety of situations, and in each case, the PUSCH related information satisfies the corresponding condition, that is, the content of the PUSCH related information is more diversified.
  • the pattern information of the DMRS includes one or more of the following parameters of the DMRS: sequence information, mapped time domain resource location, mapped frequency domain resource location, occupied symbol length, port number, cyclic shift Bit. Therefore, in this application, the pattern information of different DMRSs can be distinguished by one or more of the above parameters, and the implementation manner is relatively flexible.
  • a communication method which includes: a network device (or a chip or processor in the network device) detects physical uplink shared channel PUSCH related information from a terminal device; When the PUSCH related information satisfies the first condition, the network device detects the physical random access channel PRACH from the terminal device, and when the PUSCH related information satisfies the second condition, does not detect the PRACH from the terminal device.
  • the network device continues to detect PRACH when it learns that PUSCH-related information meets the first condition; when it learns that PUSCH-related information meets the second condition, it does not continue to detect PRACH, making it unnecessary for network devices to detect PRACH every time, thereby reducing network equipment The number of detections.
  • the network device can estimate the TA of the terminal device according to the random access preamble sequence carried in the PRACH, which helps to more accurately demodulate the PUSCH when the TA value of the terminal device is invalid or inaccurate.
  • the method further includes: in response to not detecting the PUSCH related information, the network device detects the PRACH from the terminal device.
  • the network device detects PRACH from the terminal device.
  • the network device executes the four-step random access method.
  • a communication method including: a network device (or a chip or processor in the network device) detects physical uplink shared channel PUSCH related information from a terminal device; in response to detecting the PUSCH related information, When the PUSCH related information satisfies the first condition, the transmission mode of the PUSCH is a two-step random access method, and the two-step random access method includes the transmission of the PUSCH and the physical random access channel PRACH; when the PUSCH When the related information satisfies the second condition, the transmission mode of the PUSCH is a configuration authorized CG mode, and the CG mode includes transmission of the PUSCH.
  • the network device continues to detect PRACH when it learns that PUSCH-related information meets the first condition; when it learns that PUSCH-related information meets the second condition, it does not continue to detect PRACH, making it unnecessary for network devices to detect PRACH every time, thereby reducing network equipment The number of detections.
  • the method further includes: in response to not detecting the PUSCH related information, the network device detects the PRACH from the terminal device.
  • the network device detects PRACH from the terminal device.
  • the network device executes the four-step random access method.
  • the method further includes: the network device sends configuration information to the terminal device, where the configuration information is used to indicate the first condition and the second condition.
  • the network device may pre-configure specific content of the first condition and the second condition for the terminal device.
  • the PUSCH related information includes the demodulation reference signal DMRS of the PUSCH, and the PUSCH related information satisfies a first condition, including that the pattern information of the DMRS is the first Pattern information, where the PUSCH related information satisfies the second condition and includes that the pattern information of the DMRS is the second pattern information; or, the PUSCH related information includes the demodulation reference signal DMRS of the PUSCH, and the PUSCH related information satisfies the first A condition includes that the resource location of the DMRS is a first resource location, and the PUSCH related information satisfies a second condition including that the resource location of the DMRS is a second resource location; or, the PUSCH related information includes the PUSCH, so The PUSCH related information meeting the first condition includes that the resource location of the PUSCH is the first resource location, and the PUSCH related information meeting the second condition includes the resource location of the PUSCH being the second resource
  • the pattern information of the DMRS includes one or more of the following parameters of the DMRS: sequence information, mapped time domain resource location, mapped frequency domain resource location, occupied symbol length, port number, cyclic shift Bit.
  • sequence information mapped time domain resource location
  • mapped frequency domain resource location mapped frequency domain resource location
  • occupied symbol length occupied symbol length
  • port number cyclic shift Bit
  • a device in a fifth aspect, may be a terminal device, or a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect or the second aspect.
  • the modules may be hardware circuits, software, or hardware. Circuit combined with software implementation.
  • the device may include a processing module and a communication module.
  • the communication module includes a sending module and/or a receiving module.
  • the sending module is used for a network device to send a physical uplink shared channel PUSCH; and, to send a physical random access channel PRACH to the network device, wherein the PUSCH related information of the PUSCH satisfies the first condition; or, no Sending a PRACH to the network device, where the PUSCH related information satisfies a second condition.
  • the processing module is configured to determine the direction to the destination according to one or more of the following: the timing advance TA, the reference signal received power RSRP, and whether the terminal device moves to a neighboring cell.
  • the network device sends a PRACH or does not send a PRACH to the network device.
  • the sending module is used for the network device to send the physical uplink shared channel PUSCH; when the PUSCH related information of the PUSCH satisfies the first condition, the transmission mode of the PUSCH is a two-step random access method.
  • the random access method includes the transmission of the PUSCH and the physical random access channel PRACH; when the PUSCH related information satisfies the second condition, the transmission mode of the PUSCH is the configuration authorized CG mode, and the CG mode includes the transmission station. ⁇ PUSCH.
  • the processing module is configured to determine the condition of the terminal device according to one or more of the following: a timing advance TA, a reference signal received power RSRP, and whether the terminal device moves to a neighboring cell PUSCH transmission method.
  • a receiving module is configured to receive configuration information from a network device, where the configuration information is used to indicate the first condition and the second condition.
  • the specific content included in the PUSCH-related information and the conditions met can be referred to the foregoing specific description, which is not specifically limited here.
  • a device in a sixth aspect, may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may include a module that performs one-to-one correspondence of the method/operation/step/action described in the third aspect or the fourth aspect.
  • the module may be a hardware circuit, software, or hardware. Circuit combined with software implementation.
  • the device may include a processing module and a communication module.
  • the communication module includes a sending module and/or a receiving module.
  • the receiving module is used to detect PUSCH related information of the physical uplink shared channel PUSCH from the terminal device;
  • the physical random access channel PRACH is detected from the terminal device, and when the PUSCH related information satisfies the second condition, the physical random access channel PRACH is not checked.
  • the terminal device detects PRACH.
  • the processing module in response to not detecting the PUSCH related information, is further configured to detect PRACH from the terminal device.
  • the processing module is configured to detect PUSCH related information of the physical uplink shared channel PUSCH from the terminal device; in response to detecting the PUSCH related information, when the PUSCH related information meets the first condition, the PUSCH transmission
  • the method is a two-step random access method.
  • the two-step random access method includes transmitting the PUSCH and a physical random access channel PRACH; when the PUSCH related information meets the second condition, the PUSCH transmission method is Configure an authorized CG mode, where the CG mode includes transmitting the PUSCH.
  • the processing module in response to not detecting the PUSCH related information, is further configured to detect PRACH from the terminal device.
  • a sending module is configured to send configuration information to a terminal device, where the configuration information is used to indicate the first condition and the second condition.
  • the specific content included in the PUSCH-related information and the conditions met can be referred to the foregoing specific description, which is not specifically limited here.
  • an embodiment of the present application provides an apparatus, the apparatus includes a processor, and is configured to implement the method described in the first aspect or the second aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect or the second aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the device can be a network device. In a possible device, the device includes:
  • Memory used to store program instructions
  • the processor is configured to use the communication interface to send the physical uplink shared channel PUSCH to the network device;
  • the PRACH is not sent to the network device, where the PUSCH related information satisfies the second condition.
  • the processor is further configured to determine according to one or more of the following: a timing advance TA, a reference signal received power RSRP, and whether the terminal device moves to a neighboring cell Sending a PRACH to the network device or not sending a PRACH to the network device.
  • the processor is configured to send a physical uplink shared channel PUSCH to a network device by using a communication interface;
  • the transmission mode of the PUSCH is a two-step random access method, and the two-step random access method includes transmitting the PUSCH and a physical random access channel PRACH;
  • the transmission mode of the PUSCH is a configuration authorized CG mode, and the CG mode includes transmission of the PUSCH.
  • the processor is further configured to determine according to one or more of the following: a timing advance TA, a reference signal received power RSRP, and whether the terminal device moves to a neighboring cell The transmission mode of the PUSCH.
  • the processor uses a communication interface to receive configuration information from a network device, where the configuration information is used to indicate the first condition and the second condition.
  • an embodiment of the present application provides a device, the device includes a processor, and is configured to implement the method described in the third or fourth aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the third aspect or the fourth aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the device can be a terminal device.
  • the device includes:
  • Memory used to store program instructions
  • a processor configured to detect physical uplink shared channel PUSCH related information from a terminal device; in response to detecting the PUSCH related information, when the PUSCH related information satisfies a first condition, detect a physical random access channel from the terminal device PRACH, when the PUSCH related information satisfies the second condition, PRACH is not detected from the terminal device.
  • the processor is configured to detect physical uplink shared channel PUSCH related information from the terminal device;
  • the transmission mode of the PUSCH is a two-step random access method, and the two-step random access method includes transmitting the PUSCH And the physical random access channel PRACH; when the PUSCH related information satisfies the second condition, the transmission mode of the PUSCH is the configuration authorized CG mode, and the CG mode includes the transmission of the PUSCH.
  • the processor in response to not detecting the PUSCH related information, is further configured to detect PRACH from the terminal device.
  • the processor uses a communication interface to send configuration information to the terminal device, where the configuration information is used to indicate the first condition and the second condition.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect or the second aspect.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in the third aspect or the fourth aspect.
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for implementing the functions of the network device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for implementing the functions of the terminal device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a system, which includes the terminal device described in the fifth aspect or the seventh aspect, and the network device described in the sixth aspect or the eighth aspect.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the first, second, third, or fourth aspects. method.
  • FIG. 1 is an example diagram of the architecture of a mobile communication system applied by an embodiment of the present application
  • Fig. 2 is a schematic interaction diagram of a communication method according to an embodiment of the present application.
  • Fig. 3 is an example diagram of a communication method applying an embodiment of the present application.
  • Fig. 4 is a diagram showing an example of a pattern of a reference signal of DMRS type 1;
  • Fig. 5 is a diagram showing another example of a pattern of a reference signal of DMRS type 1;
  • Fig. 6 is a diagram showing an example of a pattern of a reference signal of DMRS type 2;
  • Fig. 7 is a diagram showing another example pattern of a reference signal of DMRS type 2;
  • FIG. 8 is a schematic diagram of another example of applying the communication method of the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another example of applying the communication method of the embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device to which an embodiment of the present application is applied.
  • FIG. 11 is a schematic structural diagram of a communication device to which an embodiment of the present application is applied.
  • Fig. 12 is another schematic structural diagram of a communication device to which an embodiment of the present application is applied.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G 5th generation
  • 5G the communication system introduced in the future, or the integration of multiple communication systems.
  • 5G can also be called new radio (NR).
  • the communication equipment can use air interface resources for wireless communication.
  • the communication device may include a network device and a terminal device, and the network device may also be referred to as a network side device.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources, and space resources. In the embodiments of the present application, at least one may also be described as one or more, and the multiple may be two, three, four or more, which is not limited in the present application.
  • “/" can indicate that the associated objects are in an "or” relationship.
  • A/B can indicate A or B; and "and/or” can be used to describe that there are three types of associated objects.
  • the relationship, for example, A and/or B can mean that: A alone exists, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions. The words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used to indicate examples, illustrations or illustrations, and any embodiment or design solution described as “exemplary” or “for example” shall not be interpreted It is more preferable or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner to facilitate understanding.
  • the terminal device involved in the embodiments of the present application can also be called a terminal, which can be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; or on water (such as Ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a user equipment (UE), where the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device used to implement the function of the terminal may be a terminal device; it may also be a device capable of supporting the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal device as an example to describe the technical solutions provided in the embodiments of the present application.
  • the network equipment involved in the embodiments of the present application includes a base station (base station, BS), which may be a device that is deployed in a wireless access network and can communicate with a terminal wirelessly.
  • the base station may have many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station involved in the embodiment of the present application may be a base station in a 5G system or a base station in LTE.
  • the base station in the 5G system may also be referred to as a transmission reception point (TRP) or gNB.
  • TRP transmission reception point
  • the network device can also be one or more antenna panels of the base station in the 5G system, or it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit). , DU) and so on.
  • BBU baseband unit
  • DU distributed unit
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the gNB may include a centralized unit (CU) and a DU, and the CU and DU respectively implement part of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • the gNB may also include an active antenna unit (AAU). AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be used as a network device in an access network, or as a network device in a core network (core network, CN), which is not limited in this application.
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application can be applied to wireless communication between communication devices.
  • the wireless communication between communication devices may include: wireless communication between a network device and a terminal device, wireless communication between a network device and a network device, and wireless communication between a terminal and a terminal.
  • wireless communication may also be simply referred to as "communication”
  • communication may also be described as "data transmission”, "information transmission” or “transmission”.
  • This technical solution can be used for wireless communication between a scheduling entity (such as a network device) and a subordinate entity (such as a terminal device).
  • the scheduling entity can allocate resources for the subordinate entities.
  • Fig. 1 is a diagram showing an example of the architecture of a mobile communication system to which an embodiment of the present application can be applied.
  • the mobile communication system includes a wireless access network device 120 and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal equipment is connected to the wireless access network equipment in a wireless manner.
  • the mobile communication system may also include a core network device 110.
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or it can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device.
  • the terminal device can be a fixed location, or it can be movable.
  • FIG. 1 is only an example diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1.
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • all network devices refer to wireless access network devices.
  • the uplink data channel is used to carry uplink data, and may be, for example, a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the uplink data channel may have different names in different systems, and the specific name of the channel is not limited in the embodiment of this application.
  • the terminal device uses the uplink transmission resource pre-configured by the network device or the uplink transmission resource indicated for the terminal device by the network device through high-level signaling, and sends the uplink small packet data to the network device through the PUSCH.
  • the high-level signaling can be RRC signaling or MAC control element (CE).
  • CE MAC control element
  • the configuration content mainly includes one or more of the following parameters of PUSCH: time domain resources, frequency domain resources, demodulation reference signal (demodulation reference signal). reference signal, DMRS), number of repeated transmissions, modulation and coding scheme, redundancy version, number of hybrid automatic repeat request (HARQ) processes, etc.
  • small packet data is a data packet with a transmission block (transmit block, TB) size of less than 100 bytes (byte), or a data packet that can be transmitted in one slot.
  • the terminal device may also send a terminal identifier (identifier, ID) to the network device.
  • the CG resources configured by the network equipment in the RRC connected state of the terminal mainly include PUSCH resources and PUSCH DMRS resources.
  • the CG resource used by the terminal device can be shared by multiple terminals or dedicated to one terminal.
  • the uplink small packet data may also be referred to as uplink small packet (small data).
  • the technical solutions provided by the embodiments of this application can be used not only to transmit uplink small packets, but also to transmit data packets of other sizes, such as data packets with a TB size greater than 100 bytes or data packets that can be transmitted in multiple slots.
  • This application The embodiment is not limited.
  • the 2-step RACH scheme can also be called a two-step random access method.
  • the 2-step RACH solution includes two steps.
  • Step 1 The terminal device sends a random access preamble (preamble) to the network device on the physical random access channel (PRACH) through message A (message A, Msg A), and sends it to the network device in the corresponding PUSCH Send upstream packets.
  • MsgA may also include the terminal ID.
  • the preamble is also called a preamble (or preamble sequence), which is a sequence that can be used by a network device to determine the timing advance (TA) of a terminal device.
  • TA timing advance
  • Step 2 The network device sends a random access response (RAR) to the terminal device through a message B (message B, Msg B).
  • RAR random access response
  • the RAR includes feedback information to inform the terminal device whether an uplink packet is received.
  • the different TA values of the terminal equipment are caused by the different distances from the terminal equipment to the network equipment.
  • the TA of the terminal device is usually determined by the network device through preamble detection.
  • the 4-step RACH scheme can also be called a four-step random access method.
  • the scheme of transmitting small packets through 4-step RACH is also called early data transmission (EDT).
  • EDT early data transmission
  • the 4-step RACH solution includes 4 steps:
  • Step 1 The terminal device sends a preamble to the network device on the PRACH through message 1 (message, Msg1).
  • Step 2 The network device sends RAR (or message 2 (message 2, Msg2)) to the terminal device, and the RAR includes the uplink scheduling information of message 3 (message 3, Msg3).
  • the RAR can be carried in the physical downlink shared channel (PDSCH).
  • Step 3 The terminal device sends an uplink small packet to the network device through Msg3 on the resources scheduled by the RAR.
  • Msg3 may include the ID of the terminal.
  • Msg 3 can be carried in PUSCH.
  • Step 4 The network device sends feedback information to the terminal device through message 4 (Msg4), informing the terminal device whether the uplink packet is successfully received by the terminal device.
  • Msg 4 can be carried in the PDSCH.
  • PRACH resources, preamble resources, PUSCH resources (including DMRS resources in PUSCH), and resources for receiving RAR are all configured to the terminal device when the network device is in the RRC connection state of the terminal. And/or, the network device is configured to the terminal device in the broadcast information or system message.
  • the terminal device can perform an RRC establishment process with the network device during or after accessing the network device. After the terminal device and the network device establish an RRC connection, the RRC state of the terminal device is the RRC connected (RRC_CONNECTED) state. Subsequently, the RRC state of the terminal device can be converted in the following states: RRC idle (RRC_IDLE) state, RRC_CONNECTED state, and RRC inactive (RRC_INACTIVE) state.
  • the data transmission between the network device and the terminal device can only be performed when the terminal device is in the RRC connected state.
  • only small packets are transmitted between the network device and the terminal device in a long time frame. After a small packet transmission is completed, from the perspective of energy saving, the terminal device does not need to be in the RRC_CONNECTED state for a long time. Therefore, in another possible implementation, the terminal device can send uplink small packets to the network device in the RRC_INACTIVE state, which can save signaling overhead and terminal device energy consumption.
  • the characteristic of the terminal device in the RRC_INACTIVE state is that the network device can retain the core network registration information of the terminal device, but the terminal device suspends most of the air interface behavior with the network device, such as suspending monitoring scheduling information (that is, receiving the PDCCH for scheduling unicast transmission of the UE.
  • the PDCCH is the UE-specific PDCCH), sending scheduling request, radio resource management (radio resource management, RRM) measurement, beam maintenance, etc. Therefore, the RRC_INACTIVE state is a state that enables the terminal to save power.
  • the network equipment configures the terminal equipment with transmission resources of these three transmission modes, and the terminal equipment selects one of the transmission modes to send the uplink small packet. Since the network device does not know which transmission mode the terminal device has selected, it needs to detect whether the terminal device has sent information on all uplink resources, which results in high detection complexity on the network device side.
  • FIG. 2 is a schematic interaction diagram of a communication method 200 according to an embodiment of the present application.
  • the terminal device in FIG. 2 may be the terminal device in FIG. 1 (for example, the terminal device 130 or the terminal device 140), or may refer to a device in the terminal device (for example, a processor, a chip, or a chip system, etc.) .
  • the network device may be the wireless access network device 120 in FIG. 1, or may refer to a device in the wireless access network device (for example, a processor, a chip, or a chip system, etc.).
  • the method 200 includes:
  • the terminal device sends a PUSCH to the network device.
  • the terminal device sends the DMRS of the PUSCH to the network device.
  • the DMRS may be located in the resources allocated for PUSCH.
  • the communication method in the embodiment of the present application is suitable for uplink data transmission.
  • the transmission of uplink data may include the transmission of uplink small packets, but the embodiment of the present application is not limited thereto.
  • the above row data is the uplink small packet as an example. If the terminal device uses the CG transmission method or the two-step random access method to send the uplink small packet, the step 1 of the two-step random access method needs to send the PUSCH to the network device, and the PUSCH is used for Carry upstream packets. Alternatively, the terminal device can also use a four-step random access method to send uplink small packets. If the terminal device uses the four-step random access method to send uplink small packets, the terminal device does not send PUSCH to the network device in step 1 of the four-step random access method (corresponding to method 200, the terminal device does not need to perform step S201). Step 1 of the four-step random access method sends PRACH.
  • the explanation of the CG transmission mode, the two-step random access method, and the four-step random access method can refer to the previous description, which will not be repeated here.
  • the network device detects the PUSCH related information of the PUSCH from the terminal device.
  • the network device may or may not detect PUSCH-related information. If the network device detects PUSCH related information, it decides whether to continue to detect PRACH based on the conditions satisfied by the PUSCH related information.
  • the terminal device sends a PRACH to the network device, where the PUSCH related information satisfies the first condition; or, does not send the PRACH to the network device, where the PUSCH related information satisfies the second condition.
  • the PUSCH transmission mode is a two-step random access method
  • step 1 in the two-step random access method includes transmitting PUSCH and PRACH. That is, the terminal device not only sends the PUSCH to the network device in step 1 of the two-step random access method, but also sends the PRACH.
  • the transmission mode of the PUSCH is a configuration authorized CG mode, and the CG mode includes transmission of the PUSCH. That is, the terminal device sends the PUSCH to the network device without sending the PRACH.
  • the network device In response to detecting the PUSCH related information, when the PUSCH related information meets the first condition, the network device detects the physical random access channel PRACH from the terminal device, and when the PUSCH related information meets the second condition, the network The device does not detect PRACH from the terminal device.
  • PUSCH related information indicates the transmission mode adopted by the terminal device.
  • the network equipment when the network equipment detects PUSCH related information, it can know the transmission mode adopted by the terminal equipment, so that it can know whether to detect PRACH. Specifically, when the network device learns that the PUSCH related information meets the first condition, it continues to detect the PRACH; when it learns that the PUSCH related information meets the second condition, it does not continue to detect the PRACH. This method makes it unnecessary for the network device to detect PRACH every time, thereby reducing the number of detections of the network device.
  • the PRACH is used by multiple terminal devices in competition, it also helps the network device to determine whether a terminal device has sent a preamble on the PRACH, thereby reducing the complexity of preamble detection and improving the accuracy of preamble detection.
  • the network device can estimate the TA value of the terminal device according to the preamble carried in the PRACH.
  • the network device may not detect PUSCH related information.
  • the method 200 further includes: S205, in response to not detecting PUSCH related information, the network device detects the PRACH from the terminal device.
  • the network device If the network device does not detect the PUSCH related information (for example, the DMRS is not detected on the PUSCH), the network device thinks that the terminal device may have adopted the four-step random access method, and then performs detection on the PRACH.
  • the network device if the network device detects PRACH, it executes the four-step random access method. Specifically, the network device receives the PRACH from the terminal device and sends the RAR to the terminal device, then receives the uplink packet from the terminal device, and finally sends feedback information to the terminal device through the PDSCH.
  • the feedback information is used to inform the terminal device whether the uplink is successfully received packet.
  • the PUSCH related information includes the demodulation reference signal DMRS of the PUSCH, and the PUSCH related information satisfies the first condition includes: the pattern information of the DMRS is the first pattern information, and the PUSCH related information satisfies the second condition includes: The pattern information of the DMRS is the second pattern information.
  • the first pattern information and the second pattern information are different DMRS patterns. That is to say, here, the DMRS pattern is used to implicitly indicate whether the terminal device sends the preamble on the PRACH.
  • the first pattern information indicates that the terminal device sends the PUSCH and does not send the preamble on the PRACH, that is, the terminal device adopts the CG transmission mode.
  • the second pattern information indicates that the terminal device sends the PUSCH in step 1 of the two-step random access method, and sends the preamble on the PRACH, that is, the terminal device uses the two-step random access method.
  • the terminal device adopts the four-step random access method the PUSCH will not be sent in step 1 of the four-step random access method.
  • the terminal device if it adopts the CG transmission mode, it sends the PUSCH, and the PUSCH carries the first DMRS; if the terminal device adopts the two-step random access method, the two Step 1 of the random access method sends the PUSCH, the PUSCH carries the second DMRS, and the preamble is sent on the PRACH.
  • the pattern information of the first DMRS is different from the pattern information of the second DMRS.
  • the pattern information of the first DMRS and the pattern information of the second DMRS can be distinguished by various methods provided below.
  • step 1 of the four-step random access method the PUSCH is not sent, but the preamble is sent on the PRACH.
  • the network device detects the first DMRS in the PUSCH, it does not detect PRACH; after the network device detects the second DMRS in the PUSCH, it continues to detect PRACH; the network device does not detect the PUSCH, then it detects PRACH.
  • the pattern information of the DMRS includes one or more of the following parameters of the DMRS: sequence information, mapped time domain resource location, mapped frequency domain resource location, occupied symbol length, port number, cyclic shift.
  • the sequence information includes the calculation method of the sequence (the sequence generation formula) or the length of the sequence. That is to say, if the pattern information of the DMRS is distinguished by the information of the sequence of the DMRS, it can be distinguished by the calculation method of the sequence, and can also be distinguished by the length of the sequence, which is not limited.
  • Mapped time domain resource position the physical layer time domain resource position of the DMRS sequence in the transmission slot, such as the symbol position occupied.
  • the mapped frequency domain resource position the physical layer frequency domain resource position of the DMRS sequence in the transmission time slot, such as the occupied subcarrier position and resource block (resource block, RB) position.
  • Cyclic shift Each element of the DMRS sequence is shifted by the same number of bits in a left-shift or right-shift manner, and the vacant part at one end after the shift is sequentially supplemented by the part shifted out at the other end. Information can be carried by the number of shifts.
  • Occupied symbol length For example, DMRS occupies 1 symbol or 2 symbols, or other symbols.
  • the difference between the first pattern information and the second pattern information may be expressed as: the length of the symbols occupied is different.
  • Port number DMRS port number.
  • the first pattern information and the second pattern information can be distinguished by the port number of the DMRS.
  • DMRS port number The following explains the related concepts distinguished by the DMRS port number. It can be understood that the following description of the division of DMRS ports and the DMRS pattern illustrated in the figure are only for ease of understanding, and do not constitute a limitation to the embodiment of the present application. In fact, DMRS ports can have other division schemes, or DMRS patterns can have other examples.
  • the DMRS port adopts frequency-division multiplexing (FDM) and code division multiplexing (CDM) for multiplexing.
  • FDM frequency-division multiplexing
  • CDM code division multiplexing
  • Each DMRS CDM group is divided into multiple DMRS ports through orthogonal cover code (OCC) multiplexing. It can support two DMRS types (including DMRS type 1 and DMRS type 2). Among them, DMRS has a front-loaded symbol and a double-frontloaded symbol.
  • DMRS type 1 single pre-symbol supports up to 4 DMRS ports; DMRS type 1, dual pre-symbol supports up to 8 DMRS ports; DMRS type 2, single pre-symbol supports up to 6 DMRS ports; DMRS type 2, dual The pre-symbol supports up to 12 DMRS ports.
  • the multiplexing and configuration methods of the two DMRS types are described as follows:
  • the DMRS port is divided into two DMRS CDM groups. The following describes the examples in FIG. 4 and FIG. 5.
  • the OFDM symbol (corresponding to the orthogonal frequency division multiplexing (OFDM) symbol numbered 2, the horizontal axis in the figure)
  • the subcarriers (the vertical axis in the figure) are divided into two groups, that is, the subcarriers of the OFDM symbol are divided into two DMRS CDM groups, and each DMRS CDM group corresponds to a single OFDM symbol with 2 DMRS ports multiplexed by OCC. .
  • DMRS CDM group 0 corresponds to DMRS resource elements (resource elements, RE) of antenna port 0/1
  • DMRS CDM group 1 corresponds to DMRS REs of antenna port 2/3
  • DMRS CDM group 0 corresponds to DMRS ports 0 and DMRS port 1
  • DMRS CDM group 1 corresponds to DMRS port 2 and DMRS port 3.
  • the subcarriers of the OFDM symbol are divided into two groups, that is, the subcarriers of the OFDM symbol
  • the carrier is divided into two DMRS CDM groups, and each DMRS CDM group corresponds to 4 DMRS ports multiplexed by dual OFDM symbols through OCC.
  • DMRS CDM group 0 corresponds to DMRS REs of antenna port 0/1/4/5
  • DMRS CDM group 1 corresponds to DMRS REs of antenna port 2/3/6/7, that is, DMRS CDM group 0 corresponds to DMRS Port 0, DMRS port 1, DMRS port 4, and DMRS port 5.
  • DMRS CDM group 1 corresponds to DMRS port 2, DMRS port 3, DMRS port 6, and DMRS port 7.
  • DMRS ports are divided into three DMRS CDM groups. The following describes the examples in FIGS. 6 and 7.
  • the subcarriers of the OFDM symbol are divided into three groups, that is, the subcarriers of the OFDM symbol are divided There are three DMRS CDM groups, and each DMRS CDM group corresponds to 2 DMRS ports multiplexed by a single OFDM symbol through OCC.
  • DMRS CDM group 0 corresponds to DMRS REs of antenna port 0/1
  • DMRS CDM group 1 corresponds to DMRS REs of antenna port 2/3
  • DMRS CDM group 2 corresponds to DMRS REs of antenna port 4/5, namely DMRS CDM group 0 corresponds to DMRS port 0 and DMRS port 1
  • DMRS CDM group 1 corresponds to DMRS port 2 and DMRS port 3
  • DMRS CDM group 2 corresponds to DMRS port 4 and DMRS port 5.
  • the subcarriers of the OFDM symbol are divided into three groups, that is, the subcarriers of the OFDM symbol
  • the carrier is divided into three DMRS CDM groups, and each DMRS CDM group corresponds to 4 OFDM ports multiplexed by dual OFDM symbols through OCC.
  • DMRS CDM group 0 corresponds to the DMRS REs of antenna port 0/1/6/7
  • DMRS CDM group 1 corresponds to the DMRS REs of antenna port 2/3/8/9
  • DMRS CDM group 2 is the corresponding antenna port 4/5/10/11 DMRS REs, that is, DMRS CDM group 0 corresponds to DMRS port 0, DMRS port 1, DMRS port 6 and DMRS port 7,
  • DMRS CDM group 1 corresponds to DMRS port 2, DMRS port 3, DMRS port 8 and DMRS port 9, DMRS CDM group 2 corresponds to DMRS port 4, DMRS port 5, DMRS port 10, and DMRS port 11.
  • transform precoding that is, when discrete Fourier spread orthogonal frequency division multiplexing (DFT-s-OFDM) waveform is used in the uplink, only the DMRS type can be used 1. If transform precoding (transform precoding) is not enabled, that is, cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) waveform is used, DMRS type 1 or DMRS type 2 can be used.
  • DFT-s-OFDM discrete Fourier spread orthogonal frequency division multiplexing
  • CP-OFDM cyclic prefix orthogonal frequency division multiplexing
  • the resource mapping formula of DMRS under CP-OFDM waveform is as follows:
  • n 0,1,...
  • the resource mapping formula of DMRS under DFT-s-OFDM waveform is as follows:
  • n 0,1,...
  • Configuration type 1 represents DMRS type 1
  • Configuration type 2 represents DMRS type 2
  • k is the frequency domain position
  • l is the time domain position
  • is the frequency domain offset
  • w f (k′) and w t (l′) Respectively represent the OCC in the frequency domain and the time domain
  • j represents the PUSCH layer index
  • represents the total number of PUSCH layers
  • r(2n+k′) represents the DMRS sequence
  • the values of k′ and l′ refer to the following table 1 and Table 2.
  • each DMRS port in DMRS type 1 or DMRS type 2 can be determined, and then according to the above-mentioned resource mapping formula of DMRS, each Resources of the DMRS port.
  • Table 1 Parameters for PUSCH DM-RS configuration type 1 (PUSCH DMRS type 1 parameters)
  • Table 2 Parameters for PUSCH DM-RS configuration type 2 (PUSCH DMRS type 2 parameters)
  • the network device will explicitly instruct the terminal to use one or more DMRS ports for PUSCH transmission.
  • the specific indication method is to indicate the antenna port indication information, waveform, DMRS type, maximum length of the DMRS time domain, and the number of channels (rank) through an RRC message or downlink control information (DCI).
  • Each configuration above except for the antenna port indication information can correspond to a DMRS port indication table.
  • Table 3 shows the CP-OFDM waveform, DMRS type 1, and the maximum length of the DMRS time domain is 2 pre-symbols.
  • the antenna port indication information is used to indicate the specific entry in the determined DMRS port indication table. For example, when the antenna port indication information is 0, it indicates that the user cannot be in both DMRS CDM groups For mapping data, the actual pre-DMRS time domain length is 1 symbol. After the actual random access, the DMRS port used for PUSCH transmission is 0 to 3. Table 3 is as follows:
  • the PUSCH related information includes the demodulation reference signal DMRS of the PUSCH, the PUSCH related information satisfies the first condition including the resource location of the DMRS as the first resource location, and the PUSCH related information satisfies the second condition includes the information of the DMRS
  • the resource location is the second resource location.
  • the first resource location is different from the second resource location.
  • that the first resource location is different from the second resource location includes: the first resource location and the second resource location are different in the time domain, and/or, the first resource location It is different from the second resource location in the frequency domain.
  • the network device For the network device, if the network device detects that the terminal device sends the DMRS at the first resource location, it is considered that the terminal device has selected the CG transmission mode, and the network device no longer detects the PRACH. If the network device detects that the terminal device sends the DMRS on the second resource location, it is considered that the terminal device has selected the two-step random access method, and the network device needs to detect the preamble on the PRACH.
  • DMRS position 1 and DMRS position 2 are different, for example, the start time domain position of DMRS position 1 is earlier than the start time domain position of DMRS position 2. If the terminal device adopts the four-step random access method, the terminal device does not send the PUSCH in step 1 of the four-step random access method, but sends the preamble on the PRACH.
  • the network device detects that the DMRS is in DMRS position 1, it is considered that the terminal device has selected the CG transmission mode, and it does not detect PRACH; if the network device detects that the DMRS is in DMRS position 2, it is considered that the terminal device has selected two steps In the random access method, PRACH is detected; if the network device does not detect the PUSCH, it is considered that the terminal device has selected the four-step random access method, and PRACH is detected.
  • the PUSCH-related information includes the PUSCH, the PUSCH-related information satisfies the first condition, including that the resource location of the PUSCH is the first resource location, and the PUSCH-related information satisfies the second condition, includes the resource location of the PUSCH is the second resource Location.
  • the first resource location is different from the second resource location.
  • that the first resource location is different from the second resource location includes: the first resource location and the second resource location are different in the time domain, and/or, the first resource location It is different from the second resource location in the frequency domain.
  • first resource location and the second resource location of the implementation manner 3 are for PUSCH
  • first resource location and the second resource location of the implementation manner 2 are for DMRS, that is, the first resource location of the implementation manner 3
  • the resource location and the second resource location may not be related to the first resource location and the second resource location of the second implementation manner.
  • the network device For the network device, if the network device detects that the terminal device sends the PUSCH at the first resource location, it is considered that the terminal device has selected the CG transmission mode, and the network device no longer detects the PRACH. If the network device detects that the terminal device sends the PUSCH on the second resource location, it is considered that the terminal device has selected the two-step random access method, and the network device needs to detect the preamble on the PRACH.
  • the terminal device if the terminal device adopts the CG transmission mode, then the PUSCH is sent on PUSCH position 1; if the terminal device adopts the two-step random access method, then it is on PUSCH position 2. PUSCH is sent on and the preamble is sent on PRACH.
  • PUSCH position 1 and PUSCH position 2 are different, for example, the start time domain position of PUSCH position 1 is earlier than the start time domain position of PUSCH position 2. If the terminal device adopts the four-step random access method, the terminal device does not send the PUSCH in step 1 of the four-step random access method, but sends the preamble on the PRACH.
  • the network device detects that the PUSCH is at PUSCH position 1, it is considered that the terminal device has selected the CG transmission mode, and PRACH is not detected; if the network device detects that the PUSCH is on PUSCH position 2, it is considered that the terminal device has selected two steps In the random access method, PRACH is detected; if the network device does not detect the PUSCH, it is considered that the terminal device has selected the four-step random access method, and then PRACH is detected.
  • the method 200 further includes: the terminal device according to one or more of the following: a timing advance TA, reference signal receiving power (reference signal receiving power, RSRP), and whether the terminal device moves to a neighbor In the case of the cell, it is determined whether to send the PRACH to the network device or not to send the PRACH to the network device.
  • a timing advance TA timing advance
  • RSRP reference signal receiving power
  • the terminal device decides which transmission method to choose according to whether the TA value is valid. For example, if the terminal device judges that the TA value is valid, it selects the CG transmission mode, that is, sends PUSCH to the network device without sending PRACH; if the terminal device judges that the TA value is invalid, it selects the two-step random access method, that is, to the network device Send PUSCH, and send PRACH to network equipment.
  • the terminal device judges whether the TA value is valid.
  • the terminal device can judge whether the TA value is valid by whether the timer expires and whether it moves to a neighboring cell.
  • the time when the timer starts working For example, the terminal device starts timing when it enters the RRC INACTIVE state.
  • the terminal device starts timing after obtaining the configuration information sent by the network device, and the configuration information is used to indicate the first condition and the second condition (S206 will be described in detail below).
  • the terminal device considers the TA value to be invalid; if the timer does not expire, the terminal device considers the TA value to be valid. For another example, if the terminal device moves to a neighboring cell, the terminal device considers the TA value to be invalid; if the terminal device does not move to a neighboring cell, the terminal device considers the TA value to be valid.
  • the terminal device decides which transmission mode to choose according to the relationship between the detected RSRP value and the threshold value. For example, if the RSRP value detected by the terminal device is lower than the first threshold, the four-step random access method is selected, that is, the PRACH is sent to the network device, and the PUSCH is not sent in step 1 of the four-step random access method; if the terminal If the RSRP value detected by the device is lower than the second threshold, the two-step random access method is selected, that is, in step 1 of the two-step random access method, the PUSCH is sent to the network device and the PRACH is sent to the network device; if the terminal device detects If the RSRP value is higher than the second threshold, the CG transmission mode is selected, that is, the PUSCH is sent to the network device, and the PRACH is not sent.
  • the method for acquiring the first threshold and/or the second threshold is not limited here, and it may be defined by a protocol, or may be configured by a network device or instructed to a terminal device.
  • the terminal device decides which transmission mode to choose according to whether it moves to a neighboring cell. For example, if the terminal device moves to a neighboring cell, the terminal device selects the two-step random access method, that is, sends PUSCH to the network device of the neighboring cell, and sends PRACH to the network device of the neighboring cell, or the terminal device selects four Step random access method, that is, send PRACH to the network equipment of the neighboring cell, and do not send PUSCH in step 1 of the four-step random access method; if the terminal equipment does not move to the neighboring cell, the terminal equipment selects the CG transmission mode, that is, to the neighboring cell. The network equipment of the cell sends PUSCH but not PRACH.
  • the terminal device may determine whether it has moved to a neighboring cell according to a cell identifier (for example, Cell ID) indicated by a synchronization signal in a synchronization signal block (synchronization signal block, SSB) detected.
  • a cell identifier for example, Cell ID
  • SSB synchronization signal block
  • the relationship between the conditions satisfied by the PUSCH related information and the corresponding transmission mode may be defined by the protocol, that is, the terminal device and the network device can be known in advance.
  • the relationship between the conditions satisfied by the PUSCH related information and the corresponding transmission mode may also be configured by the network device to the terminal device through broadcast system information or RRC signaling, which is not limited.
  • the method 200 further includes: S206.
  • the network device sends configuration information to the terminal device, where the configuration information is used to indicate the first condition and the second condition.
  • the terminal device receives the configuration information.
  • the network device may send the configuration information to the terminal device through system information, RRC message, MACCE or DCI signaling.
  • the network device may carry specific content of the first condition and the second condition in the configuration information, such as the first pattern information, the second pattern information, for example, the location of the first resource of the DMRS, the second resource of the DMRS The location, for example, the first resource location of the PUSCH, and the second resource location of the PUSCH.
  • the network device may indicate the correspondence between the conditions satisfied by the PUSCH related information and the transmission mode in the configuration information.
  • the configuration information indicates that the pattern information of the DMRS is the first pattern information, and the transmission method adopted by the terminal device is CG; the pattern information of the DMRS is the second pattern information, and the transmission method adopted by the terminal device is the two-step random access method.
  • the configuration information indicates that the resource location of the DMRS is the first resource location, and the transmission mode adopted by the terminal device is CG; the resource location of the DMRS is the second resource location, and the transmission mode adopted by the terminal device is the two-step random access method.
  • the configuration information indicates that the resource location of PUSCH is the first resource location, and the transmission mode adopted by the terminal device is CG; the resource location of PUSCH is the second resource location, and the transmission mode adopted by the terminal device is a two-step random access method.
  • the configuration information may also include the correspondence between PUSCH and PRACH.
  • the correspondence may be part of the 2-step RACH configuration.
  • a network device can send configuration information to the terminal device through an RRC message when the terminal device is in the RRC connected state, for example, when the terminal device is RRC released.
  • the configuration information indicates the correspondence between PUSCH and PRACH, and the two sets of The DMRS patterns in PUSCH, each set includes at least one DMRS pattern.
  • the first set means that the terminal device sends PUSCH, and the preamble is not sent on the PRACH resource, which is a CG transmission scheme;
  • the second set means that the terminal device sends PUSCH in step 1 of the two-step random access method and sends it on the PRACH resource preamble, which is the 2-step RACH solution.
  • the terminal equipment in the RRC INACTIVE state can select the CG transmission scheme or the 2-step RACH scheme, and send the uplink small packets on the configured resources.
  • the network device detects the DMRS on the PUSCH, and determines whether it is the DMRS in the first set or the DMRS in the second set according to the DMRS pattern. If the network device detects the DMRS in the first set, it does not detect the preamble on the corresponding PRACH; if it detects the DMRS in the second set, it detects the preamble on the corresponding PRACH. If the network device does not detect the DMRS, and/or does not detect the PUSCH, the network device thinks that the terminal device may be performing 4-step RACH and must detect the preamble on the PRACH.
  • the methods provided in the embodiments of the present application are introduced from the perspective of network equipment, terminal, and interaction between the network equipment and the terminal.
  • the network device and the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • Fig. 10 is a schematic block diagram of an apparatus 1000 according to an embodiment of the present application.
  • the device includes a communication module 1010 and a processing module 1020.
  • the communication module 1010 includes a receiving module and/or a sending module.
  • the apparatus 1000 can be used to implement the functions of the terminal device in the above method.
  • the device may be a terminal device, or a device that can be matched with the terminal device.
  • the device may be installed in the terminal device.
  • the communication module 1010 may be the communication interface 1410 in FIG. 11.
  • the processing module 1020 may be the processor 1420 in FIG. 11.
  • the apparatus 1000 is used to implement the function of the network device in the foregoing method.
  • the device may be a network device, or a device that can be matched with the network device.
  • the device may be installed in the network device.
  • the communication module 1010 may be the communication interface 1510 in FIG. 12.
  • the processing module 1020 may be the processor 1520 in FIG. 12.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an apparatus 1400 provided in an embodiment of this application is used to implement the functions of the terminal device in the foregoing method.
  • the device may be a terminal device, or a device that can be matched with the terminal device.
  • the device may be installed in the terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1400 includes at least one processor 1420, configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
  • the processor 1420 may use a communication interface to send a physical uplink shared channel PUSCH to a network device; and send a physical random access channel PRACH to the network device, where the PUSCH related information of the PUSCH satisfies the first condition; Or, the PRACH is not sent to the network device, where the PUSCH related information of the PUSCH satisfies the second condition, etc., for details, please refer to the detailed description in the method example, which will not be repeated here.
  • the processor 1420 may use a communication interface to send the physical uplink shared channel PUSCH to the network device;
  • the transmission mode of the PUSCH is a two-step random access method, and the two-step random access method includes transmitting the PUSCH and a physical random access channel PRACH;
  • the transmission mode of the PUSCH is a configuration authorized CG mode, and the CG mode includes transmission of the PUSCH.
  • the device 1400 may further include at least one memory 1430 for storing program instructions and/or data.
  • the memory 1430 and the processor 1420 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1420 may operate in cooperation with the memory 1430.
  • the processor 1420 may execute program instructions stored in the memory 1430. At least one of the at least one memory may be included in the processor
  • the apparatus 1400 may further include a communication interface 1410 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1400 can communicate with other devices.
  • the communication interface may be a transceiver, an interface, a bus, a circuit, a pin, or a device capable of implementing the transceiver function.
  • the other device may be a network device.
  • the processor 1420 uses the communication interface 1410 to send and receive data, and is used to implement the method executed by the terminal device described in the embodiment corresponding to FIG. 2.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 1410, the processor 1420, and the memory 1430.
  • the memory 1430, the processor 1420, and the communication interface 1410 are connected by a bus 1440.
  • the bus is represented by a thick line in FIG. 11, and the connection modes between other components are merely illustrative , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • an apparatus 1500 provided in an embodiment of this application is used to implement the function of the network device in the foregoing method.
  • the device may be a network device, or a device that can be matched with the network device.
  • the device may be installed in the network device.
  • the device may be a chip system.
  • the apparatus 1500 includes at least one processor 1520, which is configured to implement the function of the network device in the method provided in the embodiment of the present application.
  • the processor 1520 may detect physical uplink shared channel PUSCH related information from a terminal device; in response to detecting the PUSCH related information, when the PUSCH related information satisfies the first condition, detect physical randomness from the terminal device For the access channel PRACH, when the PUSCH related information meets the second condition, the PRACH is not detected from the terminal device.
  • the access channel PRACH when the PUSCH related information meets the second condition, the PRACH is not detected from the terminal device.
  • the processor 1520 may detect PUSCH related information of the physical uplink shared channel PUSCH from the terminal device;
  • the transmission mode of the PUSCH is a two-step random access method, and the two-step random access method includes transmitting the PUSCH And the physical random access channel PRACH; when the PUSCH related information satisfies the second condition, the transmission mode of the PUSCH is the configuration authorized CG mode, and the CG mode includes the transmission of the PUSCH.
  • the device 1500 may also include at least one memory 1530 for storing program instructions and/or data.
  • the memory 1530 and the processor 1520 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1520 may operate in cooperation with the memory 1530.
  • the processor 1520 may execute program instructions stored in the memory 1530. At least one of the at least one memory may be included in the processor
  • the apparatus 1500 may further include a communication interface 1510 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1500 can communicate with other devices.
  • the other device may be a terminal.
  • the processor 1520 uses the communication interface 1510 to send and receive data, and is used to implement the method executed by the network device described in the embodiment corresponding to FIG. 2.
  • the embodiment of the present application does not limit the specific connection medium between the aforementioned communication interface 1510, the processor 1520, and the memory 1530.
  • the memory 1530, the processor 1520, and the communication interface 1510 are connected by a bus 1540.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 12 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the technical solutions provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server, or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium.
  • the embodiments can be mutually cited.
  • the methods and/or terms between the method embodiments can be mutually cited, such as the functions and/or functions between the device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法及通信装置,通过PUSCH相关信息隐式指示终端设备采用的传输方式,使得网络设备获知终端设备采用的传输方式。这样,网络设备在检测到PUSCH相关信息时,可以得知终端设备采用的传输方式,从而可以得知是否检测PRACH。网络设备在获知PUSCH相关信息满足第一条件时,继续检测PRACH;获知PUSCH相关信息满足第二条件时,不再继续检测PRACH,使得网络设备不必要每次都检测PRACH,从而降低网络设备的检测次数。

Description

一种通信方法和通信装置
本申请要求于2020年3月31日提交中国国家知识产权局、申请号为202010243580.2、申请名称为“一种通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
随着通信技术的发展和用户需求的提升,通信场景中的终端设备逐渐呈现大数量、多形态等特征。例如,工业自动化场景中,厂房中存在大量的监控设备、机器、传感器等;家庭和生活场景中,存在大量手机、平板、穿戴式设备、智能家电、或车载终端设备等。终端设备和网络设备可以进行上行和/或下行数据传输。
发明内容
有鉴于此,本申请提供一种通信方法及通信装置,能够减少网络设备的检测复杂度。
第一方面,提供了一种通信方法,包括:终端设备(或终端设备中的芯片或处理器)向网络设备发送物理上行共享信道PUSCH;以及,向所述网络设备发送物理随机接入信道PRACH,其中,所述PUSCH的PUSCH相关信息满足第一条件;或,不向所述网络设备发送PRACH,其中所述PUSCH相关信息满足第二条件。
该方法中,PUSCH的相关信息隐式指示了终端设备采用的传输方式,使得网络设备在获知PUSCH相关信息满足第二条件时,不再继续检测PRACH,使得网络设备不必要每次都检测PRACH,从而降低网络设备的检测次数。
可选地,所述终端设备在四步随机接入法的步骤1不发送PUSCH,而是向网络设备发送PRACH,即采用四步随机接入法。
可选地,所述方法还包括:终端设备根据以下中的一项或多项:时间提前量TA、参考信号接收功率RSRP,以及所述终端设备是否移动到邻小区的情况,确定向所述网络设备发送PRACH或不向所述网络设备发送PRACH。因此,终端设备可以结合上述因素选择合适的传输方式传输上行数据(比如上行小包),有助于结合终端设备的实际情况选择更合适的传输方式。
可选地,终端设备可以结合上述因素选择CG方式传输上行小包,或选择两步随机接入法传输上行小包,或选择四步随机接入法传输上行小包。从而可以根据需求,选择较为有效的传输方式,提高传输效率。
第二方面,提供了一种通信方法,包括:终端设备(或终端设备中的芯片或处理器)向网络设备发送物理上行共享信道PUSCH;当所述PUSCH的PUSCH相关信息满足第一 条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。该方法中,PUSCH相关信息隐式指示了终端设备采用的传输方式,使得网络设备在获知PUSCH相关信息满足第二条件时,不再继续检测PRACH,使得网络设备不必要每次都检测PRACH,从而降低网络设备的检测次数。
可选地,所述方法还包括:根据以下中的一项或多项:时间提前量TA、参考信号接收功率RSRP,以及所述终端设备是否移动到邻小区的情况,确定所述PUSCH的传输方式。也就是说,终端设备可以考虑上述因素,选择CG方式传输上行小包,或选择两步随机接入法传输上行小包,或选择四步随机接入法传输上行小包。具体效果可以参考第一方面中的描述。
在上述第一方面或第二方面中,所述方法还包括:终端设备接收来自网络设备的配置信息,所述配置信息用于指示所述第一条件和所述第二条件。这里,终端设备可以从网络设备获知第一条件和第二条件的具体内容。
在上述第一方面和第二方面的各个实现方式中,所述PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括所述DMRS的图样信息为第一图样信息,所述PUSCH相关信息满足第二条件包括所述DMRS的图样信息是第二图样信息;或者,所述PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括所述DMRS的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述DMRS的资源位置是第二资源位置;或者,所述PUSCH相关信息包括所述PUSCH,所述PUSCH相关信息满足第一条件包括所述PUSCH的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述PUSCH的资源位置是第二资源位置。因此,本申请中PUSCH相关信息可以包括的内容可以有多种情况,每种情况下PUSCH相关信息满足相应的条件,即PUSCH相关信息的内容比较多样化。
可选地,所述DMRS的图样信息包括DMRS的以下参数中的一项或多项:序列信息、映射的时域资源位置、映射的频域资源位置、占用的符号长度、端口号、循环移位。因此,本申请可以通过上述参数中的一项或多项区分不同的DMRS的图样信息,实现方式比较灵活。
第三方面,提供了一种通信方法,包括:网络设备(或网络设备中的芯片或处理器)从终端设备检测物理上行共享信道PUSCH相关信息;响应于检测到所述PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,网络设备从所述终端设备检测物理随机接入信道PRACH,当所述PUSCH相关信息满足第二条件时,不从所述终端设备检测PRACH。这里,网络设备在获知PUSCH相关信息满足第一条件时,继续检测PRACH;获知PUSCH相关信息满足第二条件时,不再继续检测PRACH,使得网络设备不必要每次都检测PRACH,从而降低网络设备的检测次数。
可选地,网络设备在检测到PRACH后,可以根据PRACH中携带的随机接入前导序列估计终端设备的TA,有助于在终端设备的TA值失效或不准确时更准确地解调PUSCH。
在一种可能的实现方式中,所述方法还包括:响应于未检测到所述PUSCH相关信息, 网络设备从所述终端设备检测PRACH。这里,如果网络设备检测到PRACH,则执行四步随机接入法。
第四方面,提供了一种通信方法,包括:网络设备(或网络设备中的芯片或处理器)从终端设备检测物理上行共享信道PUSCH相关信息;响应于检测到所述PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。这里,网络设备在获知PUSCH相关信息满足第一条件时,继续检测PRACH;获知PUSCH相关信息满足第二条件时,不再继续检测PRACH,使得网络设备不必要每次都检测PRACH,从而降低网络设备的检测次数。
在一种可能的实现方式中,所述方法还包括:响应于未检测到所述PUSCH相关信息,网络设备从所述终端设备检测PRACH。这里,如果网络设备检测到PRACH,则执行四步随机接入法。
在上述第三方面或第四方面中,所述方法还包括:网络设备向终端设备发送配置信息,所述配置信息用于指示所述第一条件和所述第二条件。也就是说,网络设备可以为终端设备预先配置第一条件和第二条件的具体内容。
在上述第三方面和第四方面的各个实现方式中,所述PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括所述DMRS的图样信息为第一图样信息,所述PUSCH相关信息满足第二条件包括所述DMRS的图样信息是第二图样信息;或者,所述PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括所述DMRS的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述DMRS的资源位置是第二资源位置;或者,所述PUSCH相关信息包括所述PUSCH,所述PUSCH相关信息满足第一条件包括所述PUSCH的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述PUSCH的资源位置是第二资源位置。具体技术效果可以参考终端设备侧的描述。
可选地,所述DMRS的图样信息包括DMRS的以下参数中的一项或多项:序列信息、映射的时域资源位置、映射的频域资源位置、占用的符号长度、端口号、循环移位。具体技术效果可以参考终端设备侧的描述。
第五方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面或第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。可选地,通信模块包括发送模块和/或接收模块。
示例性地,发送模块,用于网络设备发送物理上行共享信道PUSCH;以及,向所述网络设备发送物理随机接入信道PRACH,其中,所述PUSCH的PUSCH相关信息满足第一条件;或,不向所述网络设备发送PRACH,其中所述PUSCH相关信息满足第二条件。
在一种可能的设计中,处理模块,用于根据以下中的一项或多项:时间提前量TA、参考信号接收功率RSRP,以及所述终端设备是否移动到邻小区的情况,确定向所述网络设备发送PRACH或不向所述网络设备发送PRACH。
示例性地,发送模块,用于网络设备发送物理上行共享信道PUSCH;当所述PUSCH的PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
在一种可能的设计中,处理模块,用于根据以下中的一项或多项:时间提前量TA、参考信号接收功率RSRP,以及所述终端设备是否移动到邻小区的情况,确定所述PUSCH的传输方式。
在第五方面中,可选地,接收模块,用于接收来自网络设备的配置信息,所述配置信息用于指示所述第一条件和所述第二条件。
在一种可能的设计中,所述PUSCH相关信息包括的具体内容以及满足的条件可以参见前文的具体描述,此处不再具体限定。
第六方面,提供一种装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第三方面或第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。可选地,通信模块包括发送模块和/或接收模块。
示例性地,接收模块,用于从终端设备检测物理上行共享信道PUSCH的PUSCH相关信息;
响应于检测到所述PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,从所述终端设备检测物理随机接入信道PRACH,当所述PUSCH相关信息满足第二条件时,不从所述终端设备检测PRACH。
在一种可能的设计中,响应于未检测到所述PUSCH相关信息,处理模块还用于从所述终端设备检测PRACH。
示例性地,处理模块,用于从终端设备检测物理上行共享信道PUSCH的PUSCH相关信息;响应于检测到所述PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
在一种可能的设计中,响应于未检测到所述PUSCH相关信息,处理模块还用于从所述终端设备检测PRACH。
在第六方面中,可选地,发送模块,用于向终端设备发送配置信息,所述配置信息用于指示所述第一条件和所述第二条件。
在一种可能的设计中,所述PUSCH相关信息包括的具体内容以及满足的条件可以参见前文的具体描述,此处不再具体限定。
第七方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面或第二方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面或第二方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其 它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,向网络设备发送物理上行共享信道PUSCH;以及,
向所述网络设备发送物理随机接入信道PRACH,其中,所述PUSCH相关信息满足第一条件;或,
不向所述网络设备发送PRACH,其中所述PUSCH相关信息满足第二条件。
在一种可能的设计中,所述处理器还用于根据以下中的一项或多项:时间提前量TA、参考信号接收功率RSRP,以及所述终端设备是否移动到邻小区的情况,确定向所述网络设备发送PRACH或不向所述网络设备发送PRACH。
或者,所述处理器,用于利用通信接口向网络设备发送物理上行共享信道PUSCH;
当所述PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;
当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
在一种可能的设计中,所述处理器还用于根据以下中的一项或多项:时间提前量TA、参考信号接收功率RSRP,以及所述终端设备是否移动到邻小区的情况,确定所述PUSCH的传输方式。
在第七方面中,可选地,处理器利用通信接口接收来自网络设备的配置信息,所述配置信息用于指示所述第一条件和所述第二条件。
第八方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第三方面或第四方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第三方面或第四方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为终端设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于从终端设备检测物理上行共享信道PUSCH相关信息;响应于检测到所述PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,从所述终端设备检测物理随机接入信道PRACH,当所述PUSCH相关信息满足第二条件时,不从所述终端设备检测PRACH。
或者,处理器,用于从终端设备检测物理上行共享信道PUSCH相关信息;
响应于检测到所述PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
在一种可能的设计中,响应于未检测到所述PUSCH相关信息,所述处理器还用于从所述终端设备检测PRACH。
在第八方面中,可选地,处理器利用通信接口向终端设备发送配置信息,所述配置信 息用于指示所述第一条件和所述第二条件。
第九方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第二方面所述的方法。
第十方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第三方面或第四方面所述的方法。
第十一方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述方法中网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述方法中终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,本申请实施例提供了一种系统,所述系统包括第五方面或者第七方面所述的终端设备、和第六方面或者第八方面所述的网络设备。
第十四方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面、第二方面、第三方面或第四方面所述的方法。
附图说明
图1是本申请的实施例应用的移动通信系统的架构示例图;
图2是根据本申请实施例的通信方法的示意性交互图;
图3是应用本申请实施例的通信方法的一个示例图;
图4是DMRS类型1的参考信号的一个图样示例图;
图5是DMRS类型1的参考信号的另一个图样示例图;
图6是DMRS类型2的参考信号的一个图样示例图;
图7是DMRS类型2的参考信号的另一个图样示例图;
图8是应用本申请实施例的通信方法的另一个例子的示意图;
图9是应用本申请实施例的通信方法的又一个例子的示意图;
图10是应用本申请实施例的通信装置的示意性框图;
图11是应用本申请实施例的通信装置的示意结构图;
图12是应用本申请实施例的通信装置的另一示意结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统、未来引入的通信系统或多种通信系统的融合等。其中,5G还可以称为新无线(new radio,NR)。
在无线通信系统中,包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备,网络设备还可以称为网络侧设备。空口资源可以包括时域资源、频域资源、码资源和空间资源中至少一个。在本申请实施例中,至少 一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端设备;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中、能够和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G系统中的基站或LTE中的基站。其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。网络设备还可以是5G系统中的基站的一个或多个天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在一些部署中,gNB可以包括集中式单元(central unit,CU)和DU,CU和DU分别实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。gNB还可以包括有源天线单元(active antenna unit,AAU)。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层 的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,CU可以作为接入网中的网络设备,也可以作为核心网(core network,CN)中的网络设备,本申请对此不做限定。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端设备间的无线通信、网络设备和网络设备间的无线通信以及终端和终端间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。该技术方案可用于进行调度实体(例如网络设备)和从属实体间(例如终端设备)的无线通信。其中,调度实体可以为从属实体分配资源。本领域技术人员可以将本申请实施例提供的技术方案用于进行其它调度实体和从属实体间的无线通信,例如宏基站和微基站之间的无线通信,例如第一终端和第二终端间的无线通信。
图1是本申请的实施例可以应用的移动通信系统的架构示例图。如图1所示,该移动通信系统包括无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连。该移动通信系统中还可以包括核心网设备110。无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示例图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
在本申请实施例中,如果没有特殊说明,网络设备均指无线接入网设备。
应理解,在本申请实施例中,上行数据信道用于携带上行数据,例如可以是物理上行共享信道(physical uplink shared channel,PUSCH)。为了描述方便,下面仅以PUSCH为例进行说明。上行数据信道在不同的系统中可能有不同的名字,本申请实施例对该信道的具体名字不做限定。
在介绍本申请实施例前,为了便于理解,将对本申请实施例涉及的一些概念或术语作简单介绍。
(1)配置授权(configured grant,CG)
终端设备使用网络设备预配置的上行传输资源或者网络设备通过高层信令为终端设备指示的上行传输资源,通过PUSCH向网络设备发送上行小包数据。高层信令可以是RRC信令或者MAC控制元素(control element,CE),配置的内容主要包括PUSCH的以下参数中的一项或多项:时域资源、频域资源、解调参考信号(demodulation reference signal,DMRS)、重复传输次数、调制编码方案、冗余版本、混合自动重传请求(hybrid automatic  repeat request,HARQ)进程数等。例如,小包数据为传输块(transmit block,TB)大小为小于100字节(byte)的数据包,或在一个时隙(slot)中即可传输完成的数据包。可选地,终端设备也可将终端标识(identifier,ID)发送给网络设备。网络设备在终端RRC连接态时配置的CG资源主要包括PUSCH资源和PUSCH的DMRS资源。终端设备使用的CG资源可以是多终端共享的,也可以是一个终端专用的。在本申请实施例中,上行小包数据还可以称为上行小包(small data)。
本申请实施例提供的技术方案不仅可以用于传输上行小包,也可以用于传输其他大小的数据包,例如TB大小大于100byte的数据包或者在多个slot中可以传输完成的数据包,本申请实施例不做限制。
(2)2步随机接入信道(2-step random access channel,2-step RACH)
2-step RACH方案也可以称作两步随机接入法。2-step RACH方案包括两个步骤。
步骤1,终端设备通过消息A(message A,Msg A)在物理随机接入信道(physical random access channel,PRACH)上向网络设备发送随机接入前导(preamble),在对应的PUSCH中向网络设备发送上行小包。可选地,MsgA也可以包括终端ID。preamble又称为前导码(或前导序列),是一个序列,可用于网络设备确定终端设备的时间提前量(timing advance,TA)。
步骤2,网络设备通过消息B(message B,Msg B)向终端设备发送随机接入响应(random access response,RAR)。RAR中包括反馈信息,用以向终端设备告知是否收到了上行小包。
终端设备的不同TA值是由终端设备到网络设备的距离不同而产生的。终端设备的TA通常由网络设备通过preamble的检测来确定。
(3)4步随机接入信道(4-step random access channel,4-step RACH)
4-step RACH方案也可以称作四步随机接入法。通过4-step RACH传输小包的方案,也称为数据早传方案(early data transmission,EDT)。4-step RACH方案包括4个步骤:
步骤1,终端设备通过消息1(message,Msg1)在PRACH上向网络设备发送preamble。
步骤2,网络设备向终端设备发送RAR(或消息2(message 2,Msg2)),RAR中包括消息3(message 3,Msg3)的上行调度信息。RAR可以携带在物理下行共享信道(physical downlink shared channel,PDSCH)中。
步骤3,终端设备在RAR调度的资源上,通过Msg3向网络设备发送上行小包。可选地,Msg3可以包括终端的ID。Msg 3可以携带在PUSCH中。
步骤4,网络设备通过消息4(message 4,Msg4)向终端设备发送反馈信息,告知该终端设备是否成功接收到上行小包。Msg 4可以携带在PDSCH中。
在2-step RACH和4-step RACH中,PRACH资源、preamble资源、PUSCH资源(包括PUSCH中的DMRS资源)、以及接收RAR的资源,均为网络设备在终端RRC连接态时配置给终端设备,和/或,网络设备在广播信息或系统消息中配置给终端设备。
终端设备在接入网络设备的过程中或者接入网络设备后,可以和网络设备进行RRC建立过程。终端设备和网络设备建立了RRC连接后,该终端设备的RRC状态为RRC连接(RRC_CONNECTED)态。随后,终端设备的RRC状态可以在以下状态中进行转换:RRC空闲(RRC_IDLE)态、RRC_CONNECTED态、和RRC非激活(RRC_INACTIVE) 态。
在一种可能的实现中,网络设备和终端设备之间的数据传输需在终端设备设备是RRC连接态时才能进行。在一些场景中,在较长的时间范围内网络设备和终端设备之间只有小包传输。一次小包传输完成后,从节能角度考虑,不需要终端设备长时间处于RRC_CONNECTED态。因此,在另一种可能的实现中,终端设备可在RRC_INACTIVE态向网络设备发送上行小包,可节省信令开销,以及终端设备能耗。终端设备处于RRC_INACTIVE态的特征是,网络设备可以保留终端设备的核心网注册信息,但终端设备暂停大部分与网络设备的空口行为,如暂停监听调度信息(即接收调度该UE单播传输的PDCCH,该PDCCH是该UE特定的PDCCH)、发送调度请求、无线资源管理(radio resource management,RRM)测量、波束维护等。因此RRC_INACTIVE态是一种使终端省电的状态。
针对RRC_INACTIVE态的上行小包传输,可以有配置授权CG、2-step RACH、4-step RACH三种候选的传输方式。网络设备给终端设备配置这三种传输方式的传输资源,由终端设备选择其中的一种传输方式发送上行小包。由于网络设备不知道终端设备选择了哪种传输方式,因此需要在所有上行资源上检测终端设备是否发送了信息,导致网络设备侧的检测复杂度较高。
图2是根据本申请实施例的通信方法200的示意性交互图。可以理解,图2中的终端设备可以是图1中的终端设备(比如,终端设备130或终端设备140),也可以是指终端设备中的装置(例如处理器、芯片、或芯片系统等)。网络设备可以是图1中的无线接入网设备120,也可以是指无线接入网设备中的装置(例如处理器、芯片、或芯片系统等)。还可理解,图2中终端设备与网络设备之间交互的部分或全部信息,可以携带于已有的消息、信道、信号或信令中,也可以是新定义的消息、信道、信号或信令,对此不作具体限定。如图2所示,所述方法200包括:
S201,终端设备向网络设备发送PUSCH。
可选地,终端设备向网络设备发送PUSCH的DMRS。该DMRS可以位于为PUSCH分配的资源中。
这里作统一说明,本申请实施例的通信方法适用于上行数据的传输。示例性地,上行数据的传输可包括上行小包的传输,但本申请实施例并不限于此。
以上行数据为上行小包为例描述,若终端设备采用CG传输方式或两步随机接入法发送上行小包,则两步随机接入法的步骤1需要向网络设备发送PUSCH,该PUSCH上用于承载上行小包。或者,终端设备也可以采用四步随机接入法发送上行小包。若终端设备采用四步随机接入法发送上行小包,则终端设备在四步随机接入法的步骤1不向网络设备发送PUSCH(对应于方法200中,终端设备不需要执行步骤S201),在四步随机接入法的步骤1发送PRACH。
其中,CG传输方式、两步随机接入法、四步随机接入法的解释可以参考前文描述,这里不作赘述。
S202,网络设备从终端设备检测所述PUSCH的PUSCH相关信息。
网络设备可能检测到PUSCH相关信息,也可能未检测到PUSCH相关信息。如果网络设备检测到PUSCH相关信息,则基于PUSCH相关信息满足的条件,决定是否继续检 测PRACH。
S203,终端设备向网络设备发送PRACH,其中,PUSCH相关信息满足第一条件;或,不向网络设备发送PRACH,其中,PUSCH相关信息满足第二条件。
换种表述,当PUSCH相关信息满足第一条件时,PUSCH的传输方式是两步随机接入法,两步随机接入法中的步骤1包括传输PUSCH和PRACH。即,终端设备在两步随机接入法的步骤1中不仅向网络设备发送PUSCH,还要发送PRACH。
当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。即,终端设备向网络设备发送PUSCH,不需要发送PRACH。
S204,响应于检测到所述PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,网络设备从所述终端设备检测物理随机接入信道PRACH,当PUSCH相关信息满足第二条件时,网络设备不从所述终端设备检测PRACH。
也就是说,PUSCH相关信息指示了终端设备采用的传输方式。对于网络设备而言,网络设备在检测到PUSCH相关信息时,可以得知终端设备采用的传输方式,从而可以得知是否检测PRACH。具体地,网络设备在获知PUSCH相关信息满足第一条件时,继续检测PRACH;获知PUSCH相关信息满足第二条件时,不再继续检测PRACH。该方法使得网络设备不必要每次都检测PRACH,从而降低网络设备的检测次数。并且,如果PRACH是多个终端设备竞争使用的,还有助于网络设备明确某个终端设备是否在PRACH上发送了preamble,从而能够降低preamble的检测复杂度,提高preamble检测准确性。另外,网络设备可以根据PRACH中携带的preamble估计终端设备的TA值。
可选的,网络设备也可能未检测到PUSCH相关信息。可选地,所述方法200还包括:S205,响应于未检测到PUSCH相关信息,网络设备从终端设备检测PRACH。
如果网络设备没有检测到PUSCH相关信息(比如,未在PUSCH上检测到DMRS),那么网络设备认为终端设备可能采用了四步随机接入法,然后在PRACH上进行检测。这里,如果网络设备检测到PRACH,则执行四步随机接入法。具体地,网络设备从终端设备接收PRACH,并向终端设备发送RAR,接着从终端设备接收上行小包,最后通过PDSCH向终端设备发送反馈信息,该反馈信息用于向终端设备告知是否成功接收到上行小包。
在本申请实施例中,PUSCH相关信息满足第一条件或第二条件有不同的实现方式。下面将具体描述。
实现方式一
PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括:所述DMRS的图样信息为第一图样信息,所述PUSCH相关信息满足第二条件包括:所述DMRS的图样信息是第二图样信息。
示例性地,第一图样信息与第二图样信息是不同的DMRS图样(pattern)。也就是说,这里通过DMRS图样隐式指示终端设备是否在PRACH上发送preamble。第一图样信息表示终端设备发送PUSCH,且在PRACH上不发送preamble,即终端设备采用CG传输方式。第二图样信息表示终端设备在两步随机接入法的步骤1发送PUSCH,且在PRACH上发送preamble,即终端设备采用两步随机接入法。当然,若终端设备采用四步随机接入法,则在四步随机接入法的步骤1不发送PUSCH。
以图3中的示例为例进行描述,如图3所示,若终端设备采用CG传输方式,则发送PUSCH,PUSCH中携带第一DMRS;若终端设备采用两步随机接入法,则在两步随机接入法的步骤1发送PUSCH,PUSCH中携带第二DMRS,且在PRACH上发送preamble。其中,第一DMRS的图样信息与第二DMRS的图样信息不同。第一DMRS的图样信息与第二DMRS的图样信息可以通过下文提供的各种方式进行区分。若终端设备采用四步随机接入法,则在四步随机接入法的步骤1不发送PUSCH,而是在PRACH上发送preamble。对应的,网络设备检测到PUSCH中的第一DMRS后,不检测PRACH;网络设备检测到PUSCH中的第二DMRS后,继续检测PRACH;网络设备未检测到PUSCH,则检测PRACH。
可选地,DMRS的图样信息包括DMRS的以下参数中的一项或多项:序列信息、映射的时域资源位置、映射的频域资源位置、占用的符号长度、端口号、循环移位。
其中,序列信息包括序列的计算方式(序列的生成公式)或序列的长度。也就是说,若DMRS的图样信息通过DMRS的序列的信息区分,那么可以包括通过序列的计算方式进行区分,也可以包括通过序列的长度进行区分,对此不作限定。
映射的时域资源位置:DMRS的序列在发送时隙中的物理层时域资源位置,例如占据的符号位置。
映射的频域资源位置:DMRS的序列在发送时隙中的物理层频域资源位置,例如占据的子载波位置、资源块(resourceblock,RB)位置。
循环移位:DMRS的序列的各元素按照左移或右移的方式移动相同的位数,移动后一端空出的部分由另一端移出的部分依次补充。可以通过移位的数量携带信息。
占用的符号长度:例如DMRS占用1个符号或2个符号,或其他数量的符号。示例性地,第一图样信息与第二图样信息的不同可以表现为:占用的符号长度不同。
端口号:DMRS的端口号。示例性地,第一图样信息与第二图样信息可以通过DMRS的端口号区分。
下面对通过DMRS端口号进行区分的相关概念进行解释。可以理解,下文中关于DMRS端口的划分以及图中示意的DMRS图样只是便于理解,并不对本申请实施例构成限定。事实上,DMRS端口可以有其他的划分方案,或DMRS图样可以有其他的示例。
DMRS端口采用频分复用(frequency-division multiplexing,FDM)和码分复用(code division multiplexing,CDM)的方式进行复用。每个DMRS CDM组通过正交覆盖码(orthogonal cover code,OCC)复用分为多个DMRS端口。可以支持两种DMRS类型(包括DMRS类型1和DMRS类型2)。其中,DMRS有单前置(Front-loaded)符号和双前置符号之分。DMRS类型1、单前置符号最大支持4个DMRS端口;DMRS类型1、双前置符号最大支持8个DMRS端口;DMRS类型2、单前置符号最大支持6个DMRS端口;DMRS类型2、双前置符号最大支持12个DMRS端口。两种DMRS类型的复用和配置方式具体描述如下:
对于DMRS类型1的参考信号,DMRS端口被划分为两个DMRS CDM组。下文以图4和图5中的示例进行描述。
示例的,参见图4所示,针对一个(单)前置符号的DMRS(对应编号为2的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、图中横轴),该OFDM符号的子载波(图中纵轴)被分为两组,即该OFDM符号的子载波被划分为两个DMRS  CDM组,每个DMRS CDM组对应单OFDM符号通过OCC方式复用的2个DMRS端口。参见图4所示,DMRS CDM组0对应天线端口0/1的DMRS资源元素(resourceelement,RE),DMRS CDM组1对应天线端口2/3的DMRS REs,即DMRS CDM组0对应DMRS端口0和DMRS端口1,DMRS CDM组1对应DMRS端口2和DMRS端口3。
示例的,参见图5所示,针对两个(双)前置符号(对应编号为2和3的OFDM符号)的DMRS,该OFDM符号的子载波被分为两组,即该OFDM符号的子载波被划分为两个DMRS CDM组,每个DMRS CDM组对应双OFDM符号通过OCC方式复用的4个DMRS端口。参见如图5所示,DMRS CDM组0对应天线端口0/1/4/5的DMRS REs,DMRS CDM组1对应天线端口2/3/6/7的DMRS REs,即DMRS CDM组0对应DMRS端口0、DMRS端口1、DMRS端口4和DMRS端口5,DMRS CDM组1对应DMRS端口2、DMRS端口3、DMRS端口6和DMRS端口7。
对于DMRS类型2,DMRS端口被划分为三个DMRS CDM组。下文以图6和图7中的示例进行描述。
示例的,参见图6所示,针对一个(单)前置符号(对应编号为2的OFDM符号)的DMRS,该OFDM符号的子载波被分为三组,即该OFDM符号的子载波被划分为三个DMRS CDM组,每个DMRS CDM组对应单OFDM符号通过OCC方式复用的2个DMRS端口。参见图6所示,DMRS CDM组0对应天线端口0/1的DMRS REs,DMRS CDM组1对应天线端口2/3的DMRS REs,DMRS CDM组2对应天线端口4/5的DMRS REs,即DMRS CDM组0对应DMRS端口0和DMRS端口1,DMRS CDM组1对应DMRS端口2和DMRS端口3,DMRS CDM组2对应DMRS端口4和DMRS端口5。
示例的,参见图7所示,针对两个(双)前置符号(对应编号为2和3的OFDM符号)的DMRS,该OFDM符号的子载波被分为三组,即该OFDM符号的子载波被划分为三个DMRS CDM组,每个DMRS CDM组对应双OFDM符号通过OCC方式复用的4个OFDM端口。参见图7所示,DMRS CDM组0对应天线端口0/1/6/7的DMRS REs,DMRS CDM组1对应天线端口2/3/8/9的DMRS REs,DMRS CDM组2为对应天线端口4/5/10/11的DMRS REs,即DMRS CDM组0对应DMRS端口0、DMRS端口1、DMRS端口6和DMRS端口7,DMRS CDM组1对应DMRS端口2、DMRS端口3、DMRS端口8和DMRS端口9,DMRS CDM组2对应DMRS端口4、DMRS端口5、DMRS端口10和DMRS端口11。
如果变换预编码(transform precoding)被使能,即上行使用离散傅里叶扩展正交频分复用(discrete Fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)波形时,仅可使用DMRS类型1,如果变换预编码(transform precoding)没被使能,即使用循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)波形时,可以使用DMRS类型1或DMRS类型2。
下面将介绍DMRS配置的相关描述。
CP-OFDM波形下DMRS的资源映射公式如下:
Figure PCTCN2021082059-appb-000001
Figure PCTCN2021082059-appb-000002
k′=0,1
Figure PCTCN2021082059-appb-000003
n=0,1,...
j=0,1,...,υ-1
DFT-s-OFDM波形下DMRS的资源映射公式如下:
Figure PCTCN2021082059-appb-000004
k=4n+2k′+Δ
k′=0,1
Figure PCTCN2021082059-appb-000005
n=0,1,...
其中,Configuration type 1表示DMRS类型1、Configuration type 2表示DMRS类型2、k为频域位置,l为时域位置,Δ为频域偏置,w f(k′)和w t(l′)分别表示频域和时域的OCC,
Figure PCTCN2021082059-appb-000006
表示进行预编码以及物理资源映射操作之前的中间量,j表示PUSCH层索引,υ表示PUSCH总层数,r(2n+k′)表示DMRS序列,k′、l′取值参照下表1和表2。
通过下表1(对应DMRS类型1)和表2(对应DMRS类型2),可以确定DMRS类型1或DMRS类型2中每个DMRS端口的参数,进而根据上述DMRS的资源映射公式,确定出每个DMRS端口的资源。
表1:Parameters for PUSCH DM-RS configuration type 1(PUSCH的DMRS类型1的参数)
Figure PCTCN2021082059-appb-000007
表2:Parameters for PUSCH DM-RS configuration type 2(PUSCH的DMRS类型2的参数)
Figure PCTCN2021082059-appb-000008
Figure PCTCN2021082059-appb-000009
另外,一种可能的实现中,无论是动态调度还是免授权传输,网络设备都会明确的指示终端PUSCH传输所使用的一个或者多个DMRS端口。具体的指示方法是通过RRC消息或者下行控制信息(downlink control information,DCI)指示天线端口指示信息、波形、DMRS类型、DMRS时域最大长度和通道(rank)数。以上除了天线端口指示信息外的每种配置都可以对应于一个DMRS端口指示的表格,如下表3所示的为CP-OFDM波形下,DMRS类型1,DMRS时域最大长度为2前置符号,rank数为4的DMRS端口指示表格,天线端口指示信息用于指示在确定的DMRS端口指示表格中具体的表项,例如天线端口指示信息为0时,指示用户在两个DMRS CDM组上都不能映射数据,实际的前置DMRS时域长度为1符号,实际随机接入后,PUSCH传输所使用的DMRS端口为0~3。表3如下所示:
表3:Antenna port(s),transform precoder is disabled,dmrs-Type=1,maxLength=2,rank=4(天线端口,禁用转换预编码(CP-OFDM波形),DMRS类型=1,DMRS时域最大长度=2,通道数=4)
Figure PCTCN2021082059-appb-000010
实现方式二
PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括所述DMRS的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述DMRS的资源位置是第二资源位置。
所述第一资源位置与所述第二资源位置不同。可选地,所述第一资源位置与所述第二资源位置不同,包括:所述第一资源位置与所述第二资源位置在时域上不同,和/或,所述第一资源位置与所述第二资源位置在频域上不同。
对于网络设备而言,若网络设备检测到终端设备在第一资源位置上发送DMRS,则认为终端设备选择了CG传输方式,那么网络设备不再检测PRACH。若网络设备检测到终端设备在第二资源位置上发送DMRS,则认为终端设备选择了两步随机接入法,那么网络设备需要在PRACH上检测preamble。
以图8中的示例为例进行描述,如图8所示,若终端设备采用CG传输方式,那么通过PUSCH在DMRS位置1上发送DMRS;若终端设备采用两步随机接入法,那么通过PUSCH在DMRS位置2上发送DMRS,并在PRACH上发送preamble。DMRS位置1和DMRS位置2不同,例如DMRS位置1的起始时域位置早于DMRS位置2的起始时域位置。若终端设备采用四步随机接入法,那么终端设备在四步随机接入法的步骤1不发送PUSCH,而是在PRACH上发送preamble。对应的,若网络设备检测到DMRS在DMRS位置1上,则认为终端设备选择了CG传输方式,则不检测PRACH;若网络设备检测到DMRS在DMRS位置2上,则认为终端设备选择了两步随机接入法,则检测PRACH;若网络设备未检测到PUSCH,则认为终端设备选择了四步随机接入法,则检测PRACH。
实现方式三
PUSCH相关信息包括所述PUSCH,所述PUSCH相关信息满足第一条件包括所述PUSCH的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述PUSCH的资源位置是第二资源位置。
所述第一资源位置与所述第二资源位置不同。可选地,所述第一资源位置与所述第二资源位置不同,包括:所述第一资源位置与所述第二资源位置在时域上不同,和/或,所述第一资源位置与所述第二资源位置在频域上不同。
可以理解,实现方式三的第一资源位置与第二资源位置是针对PUSCH而言的,实现方式二的第一资源位置与第二资源位置是针对DMRS而言的,即实现方式三的第一资源位置与第二资源位置,和实现方式二的第一资源位置与第二资源位置可以没有关系。
对于网络设备而言,若网络设备检测到终端设备在第一资源位置上发送PUSCH,则认为终端设备选择了CG传输方式,那么网络设备不再检测PRACH。若网络设备检测到终端设备在第二资源位置上发送PUSCH,则认为终端设备选择了两步随机接入法,那么网络设备需要PRACH上检测preamble。
以图9中的示例为例进行描述,如图9所示,若终端设备采用CG传输方式,那么在PUSCH位置1上发送PUSCH;若终端设备采用两步随机接入法,那么在PUSCH位置2上发送PUSCH,并在PRACH上发送preamble。PUSCH位置1和PUSCH位置2不同,例如PUSCH位置1的起始时域位置早于PUSCH位置2的起始时域位置。若终端设备采用四步随机接入法,那么终端设备在四步随机接入法的步骤1不发送PUSCH,而是在PRACH上发送preamble。对应的,若网络设备检测到PUSCH在PUSCH位置1上,则认为终端设备选择了CG传输方式,则不检测PRACH;若网络设备检测到PUSCH在PUSCH位置2上,则认为终端设备选择了两步随机接入法,则检测PRACH;若网络设备未检测到PUSCH,则认为终端设备选择了四步随机接入法,则检测PRACH。
可以理解,上述三种实现方式可以独立使用,也可以组合使用,对此不作具体限定。
在本申请实施例中,终端设备选择哪种传输方式(从CG、两步随机接入法或四步随机接入法中选择一种,或者从CG和两步随机接入法种选择一种,或者从CG和四步随机接入法中选择一种),可以考虑一些因素。可选地,所述方法200还包括:终端设备根据以下中的一项或多项:时间提前量TA、参考信号接收功率(reference signal receiving power,RSRP),以及所述终端设备是否移动到邻小区的情况,确定向网络设备发送PRACH或不向所述网络设备发送PRACH。
作为一种实现方式,终端设备根据TA值是否有效,来决定选择哪种传输方式。举例来说,如果终端设备判断TA值有效,则选择CG传输方式,即向网络设备发送PUSCH,不发送PRACH;如果终端设备判断TA值无效,则选择两步随机接入法,即向网络设备发送PUSCH,以及,向网络设备发送PRACH。
这里对终端设备判断TA值是否有效的方式不作限定。可选地,终端设备可以通过计时器是否超时,是否移动到邻区来判断TA值是否有效。这里对计时器开始工作的时刻不作具体限定。例如,终端设备从进入RRC INACTIVE态开始计时。又例如,终端设备在获得网络设备发送的配置信息后开始计时,所述配置信息用于指示第一条件和第二条件(下文S206将具体描述)。
比如,若计时器超时,则终端设备认为TA值无效;若计时器未超时,则终端设备认为TA值有效。又比如,若终端设备移动到邻小区,则终端设备认为TA值无效;若终端设备未移动到邻小区,则终端设备认为TA值有效。
作为一种实现方式,终端设备根据检测到的RSRP值与门限值之间的关系,决定选择哪种传输方式。举例来说,如果终端设备检测到的RSRP值低于第一门限,则选择四步随机接入法,即向网络设备发送PRACH,在四步随机接入法的步骤1不发送PUSCH;如果终端设备检测到的RSRP值低于第二门限,则选择两步随机接入法,即在两步随机接入法的步骤1向网络设备发送PUSCH,以及,向网络设备发送PRACH;如果终端设备检测到的RSRP值高于第二门限,则选择CG传输方式,即向网络设备发送PUSCH,不发送PRACH。
这里对第一门限和/或第二门限的获取方式不作限定,可以是协议定义的,也可以是网络设备配置或指示给终端设备的。
作为一种实现方式,终端设备根据是否移动到邻小区的情况,决定选择哪种传输方式。举例来说,如果终端设备移动到了邻小区,则终端设备选择两步随机接入法,即向邻小区的网络设备发送PUSCH,以及,向邻小区的网络设备发送PRACH,或者,终端设备选择四步随机接入法,即向邻小区的网络设备发送PRACH,在四步随机接入法的步骤1不发送PUSCH;如果终端设备未移动到邻小区,则终端设备选择CG传输方式,即向邻小区的网络设备发送PUSCH,不发送PRACH。
这里对判断是否移动到邻小区的方式不作限定。示例性地,终端设备可以根据检测到同步信号块(synchronization signal block,SSB)中同步信号所指示的小区标识(比如,Cell ID),确定是否移动到了邻小区。
在本申请实施例中,PUSCH相关信息满足的条件与相应的传输方式之间的关系可以是协议定义的,即终端设备与网络设备间事先均能获知。或者,PUSCH相关信息满足的条件与相应的传输方式之间的关系,也可以是网络设备通过广播系统信息或者RRC信令 配置给终端设备的,对此不作限定。
可选地,所述方法200还包括:S206,网络设备向终端设备发送配置信息,所述配置信息用于指示第一条件和第二条件。对应的,终端设备接收所述配置信息。示例性地,网络设备可以通过系统信息、RRC消息、MACCE或DCI信令,向终端设备发送所述配置信息。
示例性地,网络设备可以在配置信息中携带第一条件和第二条件的具体内容,比如,第一图样信息,第二图样信息,又比如,DMRS的第一资源位置,DMRS的第二资源位置,又比如,PUSCH的第一资源位置,PUSCH的第二资源位置。
示例性地,网络设备可以在配置信息中指示PUSCH相关信息满足的条件与传输方式的对应关系。比如,配置信息指示:DMRS的图样信息为第一图样信息,终端设备采用的传输方式为CG;DMRS的图样信息为第二图样信息,终端设备采用的传输方式为两步随机接入法。又比如,配置信息指示:DMRS的资源位置为第一资源位置,终端设备采用的传输方式为CG;DMRS的资源位置为第二资源位置,终端设备采用的传输方式为两步随机接入法。又比如,配置信息指示:PUSCH的资源位置为第一资源位置,终端设备采用的传输方式为CG;PUSCH的资源位置为第二资源位置,终端设备采用的传输方式为两步随机接入法。
可选地,配置信息还可以包括PUSCH和PRACH的对应关系。可选地,该对应关系可以是2-step RACH配置的一部分。
举例来说,网络设备可以在终端设备处于RRC连接态时,例如,对终端设备进行RRC release时,通过RRC消息向终端设备发送配置信息,该配置信息指示PUSCH与PRACH的对应关系,以及两套用于PUSCH中的DMRS的pattern,每套至少包括一个DMRS pattern。其中,第一套表示终端设备发送PUSCH,在PRACH资源上不发送preamble,即为CG传输方案;第二套表示终端设备在两步随机接入法的步骤1发送PUSCH,且在PRACH资源上发送preamble,即为2-step RACH方案。对于终端设备而言,处于RRC INACTIVE态的终端设备可以选择CG传输方案或2-step RACH方案,在配置的资源上发送上行小包。网络设备在PUSCH上检测DMRS,根据DMRSpattern确定是第一套中的DMRS还是第二套中的DMRS。若网络设备检测到的是第一套中的DMRS,则不在对应的PRACH上检测preamble;若检测到的是第二套中的DMRS,则在对应的PRACH上检测preamble。若网络设备未检测到DMRS,和/或,未检测到PUSCH,则网络设备认为终端设备可能是进行4-step RACH,必须在PRACH上检测preamble。
可以理解上述配置信息中包括的内容只是举例描述,并不对本申请实施例构成限定。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图10是根据本申请实施例的一个装置1000的示意性框图。该装置包括通信模块1010和处理模块1020。可选地,通信模块1010包括接收模块和/或发送模块。
该装置1000可用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是能够和终端设备匹配使用的装置,例如该装置可以安装在终端设备中。在一种可能的设计中,通信模块1010可以为图11中的通信接口1410。在一种可能的设计中,处理模块1020可以为图11中的处理器1420。
或者,该装置1000用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是能够和网络设备匹配使用的装置,例如该装置可以安装在网络设备中。在一种可能的设计中,通信模块1010可以为图12中的通信接口1510。在一种可能的设计中,处理模块1020可以为图12中的处理器1520。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图11所示为本申请实施例提供的装置1400,用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是能够和终端设备匹配使用的装置,例如该装置可以安装在终端设备中。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置1400包括至少一个处理器1420,用于实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器1420可以利用通信接口向网络设备发送物理上行共享信道PUSCH;以及,向所述网络设备发送物理随机接入信道PRACH,其中,所述PUSCH的PUSCH相关信息满足第一条件;或,不向所述网络设备发送PRACH,其中所述PUSCH的PUSCH相关信息满足第二条件等等,具体参见方法示例中的详细描述,此处不做赘述。
或者,处理器1420可以利用通信接口向网络设备发送物理上行共享信道PUSCH;
当所述PUSCH的PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;
当所述PUSCH的PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
装置1400还可以包括至少一个存储器1430,用于存储程序指令和/或数据。存储器1430和处理器1420耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1420可能和存储器1430协同操作。处理器1420可能执行存储器1430中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中
装置1400还可以包括通信接口1410,用于通过传输介质和其它设备进行通信,从而用于装置1400中的装置可以和其它设备进行通信。本申请实施例中,通信接口可以是收发器、接口、总线、电路、管脚或者能够实现收发功能的装置。示例性地,该其它设备可以是网络设备。处理器1420利用通信接口1410收发数据,并用于实现图2对应的实施例中所述的终端设备所执行的方法。
本申请实施例中不限定上述通信接口1410、处理器1420以及存储器1430之间的具体连接介质。本申请实施例在图11中以存储器1430、处理器1420以及通信接口1410之间通过总线1440连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行 示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
如图12所示为本申请实施例提供的装置1500,用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是能够和网络设备匹配使用的装置,例如该装置可以安装在网络设备中。其中,该装置可以为芯片系统。装置1500包括至少一个处理器1520,用于实现本申请实施例提供的方法中网络设备的功能。示例性地,处理器1520可以从终端设备检测物理上行共享信道PUSCH相关信息;响应于检测到所述PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,从所述终端设备检测物理随机接入信道PRACH,当所述PUSCH相关信息满足第二条件时,不从所述终端设备检测PRACH,具体参见方法示例中的详细描述,此处不做赘述。
或者,处理器1520可以从终端设备检测物理上行共享信道PUSCH的PUSCH相关信息;
响应于检测到所述PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
装置1500还可以包括至少一个存储器1530,用于存储程序指令和/或数据。存储器1530和处理器1520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1520可能和存储器1530协同操作。处理器1520可能执行存储器1530中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中
装置1500还可以包括通信接口1510,用于通过传输介质和其它设备进行通信,从而用于装置1500中的装置可以和其它设备进行通信。示例性地,该其它设备可以是终端。处理器1520利用通信接口1510收发数据,并用于实现图2对应的实施例中所述的网络设备所执行的方法。
本申请实施例中不限定上述通信接口1510、处理器1520以及存储器1530之间的具体连接介质。本申请实施例在图12中以存储器1530、处理器1520以及通信接口1510之间通过总线1540连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。 本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种通信方法,其特征在于,包括:
    发送物理上行共享信道PUSCH;以及,
    发送物理随机接入信道PRACH,其中,所述PUSCH的PUSCH相关信息满足第一条件;或,
    不发送PRACH,其中,所述PUSCH相关信息满足第二条件。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据以下中的一项或多项:时间提前量TA、参考信号接收功率RSRP,以及终端设备是否移动到邻小区的情况,确定发送PRACH或不发送PRACH。
  3. 一种通信方法,其特征在于,包括:
    发送物理上行共享信道PUSCH;
    当所述PUSCH的PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;
    当所述PUSCH的PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    根据以下中的一项或多项:时间提前量TA、参考信号接收功率RSRP,以及终端设备是否移动到邻小区的情况,确定所述PUSCH的传输方式。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收配置信息,所述配置信息用于指示所述第一条件和所述第二条件。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    所述PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括所述DMRS的图样信息为第一图样信息,所述PUSCH相关信息满足第二条件包括所述DMRS的图样信息是第二图样信息;或者,
    所述PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括所述DMRS的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述DMRS的资源位置是第二资源位置;或者,
    所述PUSCH相关信息包括所述PUSCH,所述PUSCH相关信息满足第一条件包括所述PUSCH的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述PUSCH的资源位置是第二资源位置。
  7. 根据权利要求6所述的方法,其特征在于,所述DMRS的图样信息包括DMRS的以下参数中的一项或多项:序列信息、映射的时域资源位置、映射的频域资源位置、占用的符号长度、端口号、循环移位。
  8. 一种通信方法,其特征在于,包括:
    响应于检测到物理上行共享信道PUSCH的PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,检测物理随机接入信道PRACH,当所述PUSCH相关信息满足第二条件时,不检测PRACH。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    响应于未检测到所述PUSCH相关信息,检测PRACH。
  10. 一种通信方法,其特征在于,包括:
    响应于检测到物理上行共享信道PUSCH的PUSCH相关信息,
    当所述PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;
    当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    响应于未检测到所述PUSCH相关信息,检测PRACH。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述方法还包括:
    发送配置信息,所述配置信息用于指示所述第一条件和所述第二条件。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,
    所述PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括所述DMRS的图样信息为第一图样信息,所述PUSCH相关信息满足第二条件包括所述DMRS的图样信息是第二图样信息;或者,
    所述PUSCH相关信息包括所述PUSCH的解调参考信号DMRS,所述PUSCH相关信息满足第一条件包括所述DMRS的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述DMRS的资源位置是第二资源位置;或者,
    所述PUSCH相关信息包括所述PUSCH,所述PUSCH相关信息满足第一条件包括所述PUSCH的资源位置为第一资源位置,所述PUSCH相关信息满足第二条件包括所述PUSCH的资源位置是第二资源位置。
  14. 根据权利要求13所述的方法,其特征在于,所述DMRS的图样信息包括DMRS的以下参数中的一项或多项:序列信息、映射的时域资源位置、映射的频域资源位置、占用的符号长度、端口号、循环移位。
  15. 一种通信装置,其特征在于,用于实现如权利要求1至7中任一项所述的方法。
  16. 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至7任一项所述的方法。
  17. 一种通信装置,包括处理器和通信接口,所述处理器利用所述通信接口:
    发送物理上行共享信道PUSCH;以及,
    发送物理随机接入信道PRACH,其中,所述PUSCH的PUSCH相关信息满足第一条件;或,
    不发送PRACH,其中,所述PUSCH相关信息满足第二条件。
  18. 一种通信装置,包括处理器和通信接口,所述处理器利用所述通信接口:
    发送物理上行共享信道PUSCH;
    当所述PUSCH的PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;
    当所述PUSCH的PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
  19. 一种通信装置,其特征在于,用于实现如权利要求8至14中任一项所述的方法。
  20. 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求8至14任一项所述的方法。
  21. 一种通信装置,包括处理器和通信接口,所述处理器利用所述通信接口:
    响应于检测到物理上行共享信道PUSCH的PUSCH相关信息,当所述PUSCH相关信息满足第一条件时,检测物理随机接入信道PRACH,当所述PUSCH相关信息满足第二条件时,不检测PRACH。
  22. 一种通信装置,包括处理器和通信接口,所述处理器利用所述通信接口:
    响应于检测到物理上行共享信道PUSCH的PUSCH相关信息,
    当所述PUSCH相关信息满足第一条件时,所述PUSCH的传输方式是两步随机接入法,所述两步随机接入法中包括传输所述PUSCH和物理随机接入信道PRACH;
    当所述PUSCH相关信息满足第二条件时,所述PUSCH的传输方式是配置授权CG方式,所述CG方式中包括传输所述PUSCH。
  23. 一种通信系统,其特征在于,包括权利要求15至18任一项所述的通信装置,和权利要求19至22任一项所述的通信装置。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至14任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至14任一项所述的方法。
PCT/CN2021/082059 2020-03-31 2021-03-22 一种通信方法和通信装置 WO2021197109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010243580.2 2020-03-31
CN202010243580.2A CN113473641A (zh) 2020-03-31 2020-03-31 一种通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2021197109A1 true WO2021197109A1 (zh) 2021-10-07

Family

ID=77865575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082059 WO2021197109A1 (zh) 2020-03-31 2021-03-22 一种通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN113473641A (zh)
WO (1) WO2021197109A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113014363B (zh) * 2019-12-19 2022-06-10 维沃移动通信有限公司 Dmrs端口指示的方法及设备
WO2023130470A1 (zh) * 2022-01-10 2023-07-13 北京小米移动软件有限公司 暂停监听的方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863814A (zh) * 2016-10-19 2019-06-07 高通股份有限公司 增强型随机接入信道(rach)规程
CN110351878A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种随机接入处理方法和相关设备
WO2020032697A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 비면허 대역에서의 상향 링크 전송 방법 및 상기 방법을 이용하는 단말
CN110913499A (zh) * 2018-09-18 2020-03-24 维沃移动通信有限公司 一种随机接入方法及终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106998557A (zh) * 2016-01-26 2017-08-01 中兴通讯股份有限公司 一种ta值的估计方法和装置
CN110769505B (zh) * 2018-07-26 2023-04-18 维沃移动通信有限公司 随机接入方法、终端及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863814A (zh) * 2016-10-19 2019-06-07 高通股份有限公司 增强型随机接入信道(rach)规程
CN110351878A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种随机接入处理方法和相关设备
WO2020032697A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 비면허 대역에서의 상향 링크 전송 방법 및 상기 방법을 이용하는 단말
CN110913499A (zh) * 2018-09-18 2020-03-24 维沃移动通信有限公司 一种随机接入方法及终端

Also Published As

Publication number Publication date
CN113473641A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2020143482A1 (zh) 一种通信方法及装置
JP6958958B2 (ja) 通信プロセスにおけるリソース要素の数量を取得するための方法、および関連する装置
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
US20230189225A1 (en) Method for Enhancing Physical Downlink Control Channel, Communication Apparatus, and System
WO2021204300A1 (zh) 控制信息传输方法
KR20200105436A (ko) 무선 통신 시스템에서 리소스 풀을 운영하는 방법 및 장치
JP2023537067A (ja) 周波数領域リソース決定方法、デバイス、及び記憶媒体
TWI640215B (zh) 經由錨定載波的小區存取方法和裝置
WO2020199846A1 (zh) 一种通信方法及装置
WO2020052573A1 (zh) 通信方法、装置及计算机存储介质
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2022028295A1 (zh) 一种通信方法及装置
WO2021030991A1 (zh) 一种上行传输资源的确定方法及装置
WO2021204107A1 (zh) 一种通信方法及装置
WO2021197109A1 (zh) 一种通信方法和通信装置
WO2017167139A1 (zh) 一种上行控制信号传输方法及装置、用户终端、存储介质
WO2020143558A1 (zh) 信道测量方法和装置
JP2021514585A (ja) 通信デバイス、インフラストラクチャ装置、ワイヤレス通信システムおよびその方法
US11962533B2 (en) User equipment and base station performing transmission and reception operations
WO2023207919A1 (zh) 资源调度方法和通信装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
TWI826057B (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
WO2020164392A1 (zh) 一种通信方法及装置
KR20220069853A (ko) 사이드링크 통신에서 페이징을 위한 방법 및 장치
WO2020220477A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781891

Country of ref document: EP

Kind code of ref document: A1