WO2020143558A1 - 信道测量方法和装置 - Google Patents

信道测量方法和装置 Download PDF

Info

Publication number
WO2020143558A1
WO2020143558A1 PCT/CN2020/070362 CN2020070362W WO2020143558A1 WO 2020143558 A1 WO2020143558 A1 WO 2020143558A1 CN 2020070362 W CN2020070362 W CN 2020070362W WO 2020143558 A1 WO2020143558 A1 WO 2020143558A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
period
secondary cell
time
configuration
Prior art date
Application number
PCT/CN2020/070362
Other languages
English (en)
French (fr)
Inventor
肖洁华
刘哲
唐浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738403.3A priority Critical patent/EP3897055A4/en
Publication of WO2020143558A1 publication Critical patent/WO2020143558A1/zh
Priority to US17/371,616 priority patent/US20210337560A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communication technology, and in particular to a channel measurement method and device.
  • network equipment and terminal equipment can perform wireless communication based on various multiple access technologies, such as code division multiple access (code division multiple access (CDMA), time division multiple access (time division multiple access, TDMA), frequency Frequency division multiple access (FDMA), orthogonal frequency division multiple access (orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (signal carrier frequency division multiple access, SC-FDMA), or non-orthogonal Multiple access (non-orthogonal multiple access, NOMA), etc.
  • code division multiple access code division multiple access
  • time division multiple access time division multiple access
  • FDMA frequency Frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • NOMA non-orthogonal Multiple access
  • the network device can manage the cell, for example, one network device can manage one or more cells.
  • the terminal device may communicate with the network device in a cell, and the cell may be referred to as a serving cell of the terminal device.
  • the embodiments of the present application aim to provide a method, device and system for quickly activating a secondary cell.
  • a channel measurement method which includes:
  • the first CSI-RS resource period is used in Receiving a first CSI-RS from the network device in a first time period, and the first CSI reporting period is used to report the CSI of the secondary cell to the network device in the first time period;
  • the second CSI-RS resource period is used in the second Receiving a second CSI-RS from the network device during a time period, and the second CSI reporting period is used to report the CSI of the secondary cell to the network device during the second time period;
  • the second time period is after the first time period.
  • the configuration of the first CSI-RS resource period, the configuration of the first CSI reporting period, the configuration of the second CSI-RS resource period and the configuration of the second CSI reporting period are included in the same signaling .
  • the network device can quickly obtain the effective CSI of the secondary cell from the terminal, thereby enabling rapid activation of the secondary cell.
  • the first CSI-RS resource period is used to receive the first CSI-RS from the network device in a first time period, including: the first CSI-RS resource period is used to In a first time period, a BWP receives a first CSI-RS from the network device in a first bandwidth portion, where the first BWP is the BWP of the terminal device in the secondary cell.
  • the first BWP is pre-configured.
  • the method includes receiving a first indication from the network device, where the first indication is used to indicate the first BWP.
  • the method provided by the embodiments of the present application can be applied. Therefore, in a system that supports BWP, the network device can quickly obtain the effective CSI of the secondary cell from the terminal, thereby enabling rapid activation of the secondary cell.
  • the method includes: starting from a time unit n+k, and reporting the CSI of the secondary cell to the network device according to the first CSI reporting period, where the time unit n To receive the activation unit of the time unit, the activation command is used to activate the secondary cell for the terminal device, k is greater than or equal to 0 and less than Integer, k 1 is HARQ feedback delay of hybrid automatic repeat request of physical downlink shared channel PDSCH, Is the number of time slots included in the subframe of the frame structure parameter ⁇ , and ⁇ is the frame structure parameter of the uplink channel used to report the CSI of the secondary cell.
  • the terminal device can start reporting CSI earlier, so that the network device can quickly obtain the effective CSI of the secondary cell from the terminal, so that the secondary cell can be quickly activated.
  • the physical downlink shared channel PDSCH and the physical downlink control information PDCCH are not detected in the first BWP.
  • the power consumption of the terminal in the first time period can be reduced.
  • the first time period is the time from the activation of the secondary cell to the completion of the activation of the secondary cell
  • the second time period is the time from the completion of activation of the secondary cell
  • the method includes: reporting capability information to the network device, where the capability information is used to indicate whether the terminal device supports the rapid secondary cell activation method.
  • the method includes: receiving a second indication from a network device, where the second indication is used to enable a fast secondary cell activation method.
  • the system can be made compatible with various types of UEs. For example, it is compatible with traditional UEs that do not support the rapid secondary cell activation method, and compatible with new UEs that support the rapid secondary cell activation method.
  • a channel measurement method which includes:
  • the first CSI-RS is sent in a segment, and the first CSI reporting period is used to receive the CSI of the secondary cell from the terminal device in the first time period;
  • the second CSI-RS resource period is used to send the second CSI-RS
  • the second CSI reporting period is used to receive the CSI of the secondary cell from the terminal device in the second time period
  • the second time is after the first time.
  • the configuration of the first CSI-RS resource period, the configuration of the first CSI reporting period, the configuration of the second CSI-RS resource period and the configuration of the second CSI reporting period are included in the same signaling .
  • the first CSI-RS resource period is used to send the first CSI-RS in the first time period, including: the first CSI-RS resource period is used in the first time period,
  • the first CSI-RS is sent in the first bandwidth part BWP, where the first BWP is the BWP of the terminal device in the secondary cell.
  • the first BWP is pre-configured.
  • the method includes: sending a first indication to the terminal device, where the first indication is used to indicate the first BWP.
  • the method includes: starting from a time unit n+k, and according to the first CSI reporting period, receiving the CSI of the secondary cell reported by the terminal device, wherein the time unit n is a time unit for sending an activation command, the activation command is used to activate the secondary cell for the terminal device, and k is greater than or equal to 0 and less than Integer, k 1 is HARQ feedback delay of hybrid automatic repeat request of physical downlink shared channel PDSCH, Is the number of time slots included in the subframe of the frame structure parameter ⁇ , and ⁇ is the frame structure parameter of the uplink channel used to receive the CSI of the secondary cell.
  • the physical downlink shared channel PDSCH and the physical downlink control information PDCCH are not sent in the first BWP.
  • the first time period is the time from the activation of the secondary cell to the completion of the activation of the secondary cell
  • the second time period is the time from the completion of activation of the secondary cell
  • the method includes: receiving capability information from the terminal device, where the capability information is used to indicate whether the terminal device supports a rapid secondary cell activation method.
  • the method includes: sending a second indication to the terminal device, where the second indication is used to enable a rapid secondary cell activation method.
  • an apparatus in a third aspect, may be a terminal device, an apparatus in a terminal device, or an apparatus that can be used in matching with a terminal device.
  • the device may include a module corresponding to the method/operation/step/action described in the first aspect, which may be a hardware circuit, software, or a hardware circuit combined with software.
  • the device may include a processing module and a communication module. Exemplarily,
  • the communication module is configured to receive the configuration of the first channel state information reference signal CSI-RS resource period and the configuration of the first channel state information CSI report period of the secondary cell of the terminal device from the network device, where the first CSI- The RS resource period is used to receive the first CSI-RS from the network device in a first time period, and the first CSI reporting period is used to report the CSI of the secondary cell to the network device in the first time period ;
  • the communication module receives from the network device the configuration of the second CSI-RS resource period and the configuration of the second CSI reporting period of the secondary cell of the terminal device, wherein the second CSI-RS resource period is used Receiving a second CSI-RS from the network device in a second time period, the second CSI reporting period is used to report the CSI of the secondary cell to the network device in the second time period;
  • the second time period is after the first time period.
  • the processing module is configured to process (eg, demodulate, decode, etc.) the configuration of the first CSI-RS resource period, the configuration of the first CSI reporting period, and the second CSI-RS resource The configuration of the period, and/or the configuration of the second CSI reporting period.
  • the configuration of the first CSI-RS resource period, the configuration of the first CSI reporting period, the configuration of the second CSI-RS resource period and the configuration of the second CSI reporting period are included in the same signaling .
  • the first CSI-RS resource period is used to receive the first CSI-RS from the network device in a first time period, including: the first CSI-RS resource period is used to In a first time period, a BWP receives a first CSI-RS from the network device in a first bandwidth portion, where the first BWP is the BWP of the terminal device in the secondary cell.
  • the first BWP is pre-configured.
  • the communication module is configured to receive a first indication from the network device, and the first indication is used to indicate the first BWP.
  • the communication module is configured to report the CSI of the secondary cell to the network device according to the first CSI reporting period starting from time unit n+k, where the time Unit n is a time unit that receives an activation command, the activation command is used to activate the secondary cell for the terminal device, and k is greater than or equal to 0 and less than Integer, k 1 is HARQ feedback delay of hybrid automatic repeat request of physical downlink shared channel PDSCH, Is the number of time slots included in the subframe of the frame structure parameter ⁇ , and ⁇ is the frame structure parameter of the uplink channel used to report the CSI of the secondary cell.
  • the processing module is used to generate the CSI.
  • the communication module does not detect a physical downlink shared channel PDSCH and physical downlink control information PDCCH in the first BWP.
  • the first time period is the time from the activation of the secondary cell to the completion of the activation of the secondary cell
  • the second time period is the time from the completion of activation of the secondary cell
  • the processing module uses the communication module to report capability information to the network device, where the capability information is used to indicate whether the terminal device supports the rapid secondary cell activation method.
  • the processing module uses the communication module to receive a second indication from a network device, where the second indication is used to enable a rapid secondary cell activation method.
  • an apparatus may be a network device, an apparatus in a network device, or an apparatus that can be matched with a network device.
  • the device may include a module that corresponds to the method/operation/step/action described in the second aspect, and the module may be a hardware circuit, software, or a hardware circuit combined with software.
  • the device may include a processing module and a communication module. Exemplarily,
  • the communication module is configured to send the configuration of the first channel state information reference signal CSI-RS resource period and the configuration of the first channel state information CSI report period of the secondary cell of the terminal device, wherein the first CSI-RS resource period Configured to send a first CSI-RS in a first time period, and the first CSI reporting period is used to receive the CSI of the secondary cell from the terminal device in the first time period;
  • the communication module is configured to send a configuration of a second CSI-RS resource period and a configuration of a second CSI reporting period of the secondary cell of the terminal device, wherein the second CSI-RS resource period is used in Sending a second CSI-RS in a second time period, and the second CSI reporting period is used to receive the CSI of the secondary cell from the terminal device in the second time period;
  • the second time is after the first time.
  • the processing module is configured to generate the configuration of the first CSI-RS resource period, the configuration of the first CSI reporting period, the configuration of the second CSI-RS resource period, and/or the Configuration of the second CSI reporting period.
  • the configuration of the first CSI-RS resource period, the configuration of the first CSI reporting period, the configuration of the second CSI-RS resource period and the configuration of the second CSI reporting period are included in the same signaling .
  • the first CSI-RS resource period is used to send the first CSI-RS in the first time period, including: the first CSI-RS resource period is used in the first time period, The first CSI-RS is sent in the first bandwidth part BWP, where the first BWP is the BWP of the terminal device in the secondary cell.
  • the first BWP is pre-configured.
  • the communication module is configured to: send a first indication to the terminal device, where the first indication is used to indicate the first BWP.
  • the processing module is used to generate the first indication.
  • the communication module is configured to: from time unit n+k, receive the CSI of the secondary cell reported by the terminal device according to the first CSI reporting period, where the Time unit n is a time unit for sending an activation command, the activation command is used to activate the secondary cell for the terminal device, and k is greater than or equal to 0 and less than Integer, k 1 is HARQ feedback delay of hybrid automatic repeat request of physical downlink shared channel PDSCH, Is the number of time slots included in the subframe of the frame structure parameter ⁇ , and ⁇ is the frame structure parameter of the uplink channel used to receive the CSI of the secondary cell.
  • the processing module is used to process (eg, demodulate, decode, etc.) the CSI.
  • the communication module does not send a physical downlink shared channel PDSCH and physical downlink control information PDCCH in the first BWP.
  • the first time period is the time from the activation of the secondary cell to the completion of the activation of the secondary cell
  • the second time period is the time from the completion of activation of the secondary cell
  • the communication module is configured to receive capability information from the terminal device, and the capability information is used to indicate whether the terminal device supports a rapid secondary cell activation method.
  • the processing module is used to process the capability information.
  • the communication module is configured to: send a second indication to the terminal device, where the second indication is used to enable a rapid secondary cell activation method.
  • the processing module is used to generate the second indication.
  • an embodiment of the present application provides an apparatus.
  • the apparatus includes a processor, configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled to the processor, and when the processor executes instructions stored in the memory, the method described in the first aspect may be implemented.
  • the apparatus may further include a communication interface, which is used for the apparatus to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • Other devices may be Network equipment.
  • the apparatus includes:
  • Memory used to store program instructions
  • a processor configured to receive a first channel state information reference signal CSI-RS resource period configuration and a first channel state information CSI report period configuration of a secondary cell of a terminal device from a network device by using a communication interface, wherein the first The CSI-RS resource period is used to receive the first CSI-RS from the network device during a first time period, and the first CSI reporting period is used to report the secondary cell to the network device during the first time period CSI;
  • the processor is configured to receive a second CSI-RS resource period configuration and a second CSI reporting period configuration of the secondary cell of the terminal device from the network device by using a communication interface, wherein the second CSI- The RS resource period is used to receive a second CSI-RS from the network device during a second time period, and the second CSI reporting period is used to report the CSI of the secondary cell to the network device during the second time period ;
  • the second time period is after the first time period.
  • the configuration of the first CSI-RS resource period, the configuration of the first CSI reporting period, the configuration of the second CSI-RS resource period and the configuration of the second CSI reporting period are included in the same signaling .
  • the first CSI-RS resource period is used to receive the first CSI-RS from the network device in a first time period, including: the first CSI-RS resource period is used to In a first time period, a BWP receives a first CSI-RS from the network device in a first bandwidth portion, where the first BWP is the BWP of the terminal device in the secondary cell.
  • the first BWP is pre-configured.
  • the processor is configured to use a communication interface to receive a first indication from the network device, and the first indication is used to indicate the first BWP.
  • the processor is used to utilize a communication interface: starting from time unit n+k, and reporting the CSI of the secondary cell to the network device according to the first CSI reporting period, wherein
  • the time unit n is a time unit that receives an activation command, the activation command is used to activate the secondary cell for the terminal device, and k is greater than or equal to 0 and less than Integer, k 1 is HARQ feedback delay of hybrid automatic repeat request of physical downlink shared channel PDSCH, Is the number of time slots included in the subframe of the frame structure parameter ⁇ , and ⁇ is the frame structure parameter of the uplink channel used to report the CSI of the secondary cell.
  • the processor does not use the communication interface to detect the physical downlink shared channel PDSCH and the physical downlink control information PDCCH in the first BWP.
  • the first time period is the time from the activation of the secondary cell to the completion of the activation of the secondary cell
  • the second time period is the time from the completion of activation of the secondary cell
  • the processor is used to use the communication interface to report capability information to the network device, and the capability information is used to indicate whether the terminal device supports the rapid secondary cell activation method.
  • the processor is used to utilize a communication interface: receiving a second indication from a network device, where the second indication is used to enable a rapid secondary cell activation method.
  • an embodiment of the present application provides an apparatus.
  • the apparatus includes a processor, configured to implement the method described in the second aspect above.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled to the processor, and when the processor executes instructions stored in the memory, the method described in the second aspect may be implemented.
  • the apparatus may further include a communication interface, which is used for the apparatus to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • Other devices may be Network equipment.
  • the apparatus includes:
  • Memory used to store program instructions
  • a processor configured to use a communication interface to send the configuration of the first channel state information reference signal CSI-RS resource period and the configuration of the first channel state information CSI report period of the secondary cell of the terminal device using the communication interface, wherein the first CSI-RS
  • the resource period is used to send the first CSI-RS in a first time period
  • the first CSI reporting period is used to receive the CSI of the secondary cell from the terminal device in the first time period
  • the processor is configured to use a communication interface to send the configuration of the second CSI-RS resource period and the configuration of the second CSI reporting period of the secondary cell of the terminal device, where the second CSI-RS resource period is used for Sending a second CSI-RS in a second time period, and the second CSI reporting period is used to receive the CSI of the secondary cell from the terminal device in the second time period;
  • the second time is after the first time.
  • the configuration of the first CSI-RS resource period, the configuration of the first CSI reporting period, the configuration of the second CSI-RS resource period and the configuration of the second CSI reporting period are included in the same signaling .
  • the first CSI-RS resource period is used to send the first CSI-RS in the first time period, including: the first CSI-RS resource period is used in the first time period, The first CSI-RS is sent in the first bandwidth part BWP, where the first BWP is the BWP of the terminal device in the secondary cell.
  • the first BWP is pre-configured.
  • the processor is configured to use a communication interface to send a first indication to a terminal device, where the first indication is used to indicate the first BWP.
  • the processor is used to utilize a communication interface: starting from time unit n+k, and according to the first CSI reporting period, receiving the CSI of the secondary cell reported by the terminal device, where,
  • the time unit n is a time unit for sending an activation command, the activation command is used to activate the secondary cell for the terminal device, and k is greater than or equal to 0 and less than Integer, k 1 is HARQ feedback delay of hybrid automatic repeat request of physical downlink shared channel PDSCH, Is the number of time slots included in the subframe of the frame structure parameter ⁇ , and ⁇ is the frame structure parameter of the uplink channel used to receive the CSI of the secondary cell.
  • the processing module is used to process (eg, demodulate, decode, etc.) the CSI.
  • the processor does not use a communication interface to send a physical downlink shared channel PDSCH and physical downlink control information PDCCH in the first BWP.
  • the first time period is the time from the activation of the secondary cell to the completion of the activation of the secondary cell
  • the second time period is the time from the completion of activation of the secondary cell
  • the processor is used to utilize a communication interface to receive capability information from the terminal device, and the capability information is used to indicate whether the terminal device supports the rapid secondary cell activation method.
  • the processor is used to use a communication interface to send a second indication to the terminal device, where the second indication is used to enable a rapid secondary cell activation method.
  • an embodiment of the present application further provides a computer-readable storage medium, including instructions, which when executed on a computer, causes the computer to execute the method of the first aspect or the second aspect.
  • an embodiment of the present application further provides a chip system.
  • the chip system includes a processor, and may further include a memory, for implementing the method of the first aspect or the second aspect.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • an embodiment of the present application further provides a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method of the first aspect or the second aspect.
  • an embodiment of the present application provides a system including the apparatus of the third aspect and the apparatus of the fourth aspect, or the apparatus of the fifth aspect and the apparatus of the sixth aspect.
  • FIG. 1 is a schematic diagram of carrier aggregation provided by an embodiment of this application.
  • FIGS. 2 and 4 are schematic diagrams of a terminal reporting CSI to a network device provided by an embodiment of this application;
  • FIG. 3 is a schematic flowchart of a channel measurement method provided by an embodiment of this application.
  • FIG. 5 shows a schematic structural diagram of a message provided by an embodiment of the present application
  • FIGS. 6 and 7 are schematic structural diagrams of devices provided by embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems.
  • the technical solution provided by the embodiment of the present application may be applied to a communication system supporting carrier aggregation (CA) and/or may be applied to a communication system supporting channel state information (CSI) reporting.
  • CA carrier aggregation
  • CSI channel state information
  • the technical solutions provided by the embodiments of the present application may be applied to, but not limited to: a 5th generation (5G) mobile communication system, a long term evolution (LTE) system, or a future mobile communication system.
  • 5G can also be called new radio (new radio, NR).
  • feature A and/or feature B may refer to feature A, feature B, or feature A and feature B.
  • feature A, feature B and/or feature C (or described as: feature A, and/or feature B, and/or feature C) may refer to feature A, feature B, feature C, features A and B, Features A and C, Features B and C, or Features A and B and C.
  • the communication device may include a network device and a terminal device.
  • the wireless communication between the communication devices may include: wireless communication between the network device and the terminal device, wireless communication between the network device and the network device, or wireless communication between the terminal device and the terminal device.
  • wireless communication may also be simply referred to as "communication”
  • communication may also be described as "data transmission”, “signal transmission”, “information transmission”, or “transmission”.
  • the transmission may include sending or receiving.
  • the transmission may be uplink transmission, for example, the terminal device may send data to the network device; the transmission may also be downlink transmission, for example, the network device may send data to the terminal device.
  • the terminal device involved in the embodiments of the present application may be simply referred to as a terminal, and it may be a device having a wireless transceiver function.
  • Terminals can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on the water (such as ships, etc.); they can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a user equipment (user equipment, UE).
  • the UE includes a handheld device, a vehicle mounted device, a wearable device, or a computing device with wireless communication functions.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • the terminal device can also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, and a smart grid Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the device for realizing the function of the terminal may be a terminal; or it may be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the device for implementing the functions of the terminal is a terminal, and the terminal is a UE as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network equipment involved in the embodiments of the present application includes a base station (BS).
  • the base station may be a device deployed in a wireless access network and capable of wireless communication with a terminal.
  • Base stations may take many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station involved in the embodiments of the present application may be a base station in 5G or a base station in LTE, where the base station in 5G may also be called a transmission and reception point (TRP) or gNB (generation NodeB) .
  • TRP transmission and reception point
  • gNB generation NodeB
  • the apparatus for implementing the function of the network device may be a network device; or may be an apparatus capable of supporting the network device to achieve the function, such as a chip system, and the apparatus may be installed in the network device.
  • the device for realizing the function of the network device is a network device, and the network device is a base station as an example to describe the technical solutions provided by the embodiments of the present application.
  • the embodiments of the present application are described by taking the communication between the UE and the base station as an example, the method provided by it may also be applied to wireless communication between other communication devices.
  • it can be applied to communication between a macro base station and a micro base station.
  • the function of the macro base station in this scenario is equivalent to that of the base station in this embodiment of the present application
  • the function of the micro base station in this scenario is equivalent to that of the UE in this embodiment of the present application.
  • CA carrier aggregation
  • the principle of CA technology is to aggregate two or more carrier units (CC) to support a larger transmission bandwidth.
  • One cell may include one downlink carrier unit and one uplink carrier unit, or one cell may include one downlink carrier unit and two uplink carrier units, or one cell may include only one downlink carrier unit.
  • One downlink carrier unit corresponds to one cell, and one downlink carrier unit can be equivalent to one cell.
  • multiple types of carrier aggregation can be supported. For example, as shown in FIG. 1, it can support aggregation between adjacent carrier units in the same frequency band.
  • the aggregated carrier units are adjacent in frequency band A; it can support non-adjacent carrier units in the same frequency band.
  • Inter-frequency aggregation for example, in the frequency domain, the aggregated carrier units are not adjacent or discrete in frequency band A; can support aggregation between carrier units in different frequency bands, for example, in the frequency domain, the aggregated carrier units are Located in Band A and Band B.
  • the bandwidths of different carrier units used for aggregation may be the same or different, and the embodiment of the present application does not limit it.
  • the base station may configure one or more serving cells for the UE, and perform uplink and/or downlink data transmission with the UE in the serving cell.
  • the plurality may be 2, 3, 4, or more, and the embodiments of the present application are not limited. If the UE is in the radio resource control (RRC) connected (RRC_CONNECTED) state but the CA is not configured, the UE may have only one serving cell; if the UE is in the RRC_CONNECTED state and the CA is configured, the UE may have one or Multiple serving cells.
  • RRC radio resource control
  • the serving cell configured by the base station for the UE may include a primary cell (PCell).
  • the carrier unit corresponding to PCell may be called a primary carrier unit (primary component carrier, PCC).
  • the downlink (DL) carrier unit of PCell is called DL PCC
  • the uplink (UL) carrier unit of PCell is called UL PCC.
  • the UE After the UE establishes the RRC link with the base station, the UE has a PCell.
  • the PCell may be the cell that the UE accesses when initially accessing the base station, or the cell that the UE accesses when the base station and the UE perform RRC connection reestablishment, or the base station is the UE during the UE's cell handover process The notified primary cell.
  • PCell is used for RRC communication between the base station and the UE.
  • the serving cell configured by the base station for the UE may include one or more secondary cells (secondary cells, SCells).
  • SCells secondary cells
  • the carrier unit corresponding to the SCell may be called a secondary carrier unit (SCC).
  • SCC secondary carrier unit
  • the downlink carrier unit of SCell is called DL SCC
  • the uplink carrier unit of SCell is called UL SCC.
  • the SCell may be a serving cell added to the UE when the base station and the UE perform RRC connection reconfiguration to provide additional wireless resources.
  • the base station may add, modify, or release the SCell for the UE through an RRC connection reconfiguration (RRC connection reconfiguration) message.
  • RRC connection reconfiguration RRC connection reconfiguration
  • RRC communication may not be performed between the base station and the UE.
  • the state of the new SCell added or modified by the RRC connection reconfiguration message is the deactivated state.
  • the base station and the UE can perform uplink and/or downlink data transmission in the SCell; when the SCell is in the deactivated state or in the deactivated In the BWP, the base station and the UE do not perform uplink and/or downlink data transmission in the SCell or BWP.
  • the activation/deactivation mechanism may not be supported, and the PCell of the UE is always in an activated state. The base station and the UE can always perform data transmission in the PCell.
  • the UE may perform one or more of the following operations in the carrier unit corresponding to the SCell: send a channel sounding signal (SRS) to the base station; send to the base station Physical uplink control channel (physical uplink control channel, PUCCH); send physical uplink shared channel (physical uplink shared channel, PUSCH) to the base station; report channel state information (channel) information to the base station; detect physical downlink control channel from the base station (physical downlink control channel, PDCCH); and, receiving a physical downlink shared channel (PDSCH) from the base station.
  • SRS channel sounding signal
  • PUCCH Physical uplink control channel
  • PUCCH physical uplink shared channel
  • PUSCH physical uplink shared channel
  • detect physical downlink control channel from the base station physical downlink control channel, PDCCH
  • PDSCH physical downlink shared channel
  • the PDCCH may be used to carry scheduling information of data channels, such as PDSCH and/or PUSCH scheduling information.
  • scheduling information of data channels such as PDSCH and/or PUSCH scheduling information.
  • the UE can receive the PDCCH for the SCell from the base station in the other cell, and the PDCCH is used to carry The scheduling information of the data channel in the SCell.
  • the other cell may be the PCell of the UE or another SCell of the UE.
  • the multiple types may be 2, 3, 4, or more, and the embodiments of the present application are not limited.
  • the UE when an SCell is in the deactivated state or the BWP is in the deactivated state, the UE does not perform one or more of the following operations in the carrier unit corresponding to the SCell or in the BWP: does not send the SRS to the base station, does not CSI is reported to the base station, PUCCH is not sent to the base station, PUSCH is not sent to the base station, no physical random access channel (PRACH) is sent to the base station, PDCCH is not detected from the base station, and PDSCH is not received from the base station.
  • PRACH physical random access channel
  • the UE when a SCell is in a deactivated state, the UE does not detect the PDCCH for the SCell from the base station.
  • SCell activation may be indicated by a media access control (MAC) control unit (CE) sent by the base station; SCell deactivation may be indicated by the MAC sent by the base station or CE, or based on Activate the timer to achieve.
  • the value of the deactivation timer may be configured by the base station for the UE; or may be pre-configured, such as pre-configured to a fixed value.
  • the base station may indicate the activation/deactivation status of one or more SCells of the UE to the UE through the MAC CE, where the activation/deactivation status of different SCells may be the same or different, and the embodiment of the present application does not limit it.
  • the one or more SCells may be all SCells of the UE, or may be part of the SCells of the UE, which is not limited in the embodiments of the present application.
  • the UE can deactivate the SCell according to the deactivation timer. For example, for an SCell of the UE, when the UE determines the SCell as the activated state through the MAC sent by the base station, it can start or restart the deactivation timer. Before the expiry of the deactivation timer, if the UE receives the PDCCH for the SCell from the base station, or if the UE receives the PDCCH or PDSCH from the base station in the SCell, or if the UE sends the PUSCH to the base station, The UE starts or restarts the deactivation timer. If the deactivation timer expires, the UE deactivates the SCell.
  • the UE may report the CSI of the SCell to the base station, which is used by the base station to schedule downlink data, for example, the base station determines the transmission parameters of the PDSCH in the SCell.
  • the transmission parameters include modulation and coding scheme (MCS).
  • FIG. 2 is a diagram illustrating an example in which the UE reports CSI to the base station in an SCell, for example, in the secondary cell A.
  • the base station configures (eg, adds or modifies) a new secondary cell A for the UE through an RRC connection reconfiguration message.
  • the base station may send a MAC CE to the UE, and the MAC CE may be used to activate the secondary cell A for the UE.
  • the MAC may also indicate the activation/deactivation status of other secondary cells for the UE.
  • the UE may process the MAC CE.
  • the UE may perform content analysis processing such as demodulation and decoding on the MAC. After the UE completes the content analysis of the MAC, it can also perform other operations such as radio frequency setting and baseband preparation. After completing these processes, the UE starts to activate the secondary cell A in time units (eg, subframes, time slots) n+k. For example, the UE reports the CSI of the secondary cell A to the base station starting from a time unit (eg, subframe, time slot) n+k, and/or starts a deactivation timer for the secondary cell A.
  • n and k are 0 or positive integers, and the values of n and k may be the same or different.
  • the positive integer may be 1, 2, 3 or a larger positive integer, and the embodiment of the present application is not limited.
  • the time unit may be a frame, a subframe, a time slot, a mini-slot, or a time-domain symbol.
  • one frame may include one or more subframes
  • one frame or one subframe may include one or more time slots
  • one frame, one subframe, one time slot or one mini time slot may include one or more Time domain symbols.
  • the time domain symbol can be referred to simply as a symbol.
  • the time domain symbol may be an OFDMA symbol or an SC-FDMA symbol.
  • the frame structure parameter numerology includes subcarrier spacing and/or cyclic prefix (CP) type.
  • the frame structure parameter ⁇ indicates that the subcarrier spacing in the frame structure parameter is 15 kHz ⁇ 2 ⁇ .
  • the subcarrier may be a frequency domain resource unit in an OFDMA-based communication system, such as LTE or 5G.
  • the base station may send a signal for CSI measurement to the UE in the secondary cell A according to the CSI measurement resource period.
  • the signal may be a synchronization signal block (synchronization signal block, SSB) or a channel state information reference signal (channel state information-reference signal, CSI-RS).
  • the SSB may include one or more of the following signals: primary synchronization information (primary synchronization signal (PSS), secondary synchronization signal (secondary synchronization signal (SSS), physical broadcast signal (physical broadcast channel, PBCH), and PBCH Demodulation reference signal (DMRS).
  • PSS primary synchronization information
  • secondary synchronization signal secondary synchronization signal
  • PBCH physical broadcast signal
  • DMRS Demodulation reference signal
  • the base station When the signal used for CSI measurement is SSB, the base station sends the SSB to the UE in the resource used to map the SSB in the secondary cell A.
  • the CSI measurement resource period may also be called SSB resource period, SSB transmission period, or other names , The embodiment of the present application does not limit.
  • the base station When the signal used for CSI measurement is CSI-RS, the base station sends the CSI-RS to the UE in the resource used for mapping CSI-RS in the secondary cell A, and the CSI measurement resource period may also be referred to as CSI-RS resource
  • the period, CSI-RS transmission period, or other names are not limited in the embodiments of the present application.
  • the base station may also configure the SSB measurement period for the UE in the secondary cell A.
  • the UE may measure the SSB received from the base station based on the SSB measurement period to estimate the CSI of the secondary cell A.
  • the UE after the UE starts activating the secondary cell A, it can report the CSI of the secondary cell A to the base station from the time unit (for example, subframe, time slot, etc.) n+k according to the CSI reporting period. Determined based on the signal received from the base station for CSI measurement.
  • the UE may report the CSI of the secondary cell A to the base station in PCell or other activated secondary cells.
  • CSI may include one or more of the following information: channel status indicator (channel quality indicator (CQI), precoding matrix indicator (precoding matrix indicator (PMI), CSI-RS resource indicator (CSI-RS resource indicator (CRI), SSB resource indicator (SS/PBCH block resource indicator (SSBRI), layer indicator (layer indicator, LI), rank indicator (RI) and layer 1 reference signal received power (layer 1 reference signal received power, L1-RSRP).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • PMI CSI-RS resource indicator
  • CRI CSI-RS resource indicator
  • SSBRI SSB resource indicator
  • layer indicator layer indicator
  • RI rank indicator
  • layer 1 reference signal received power layer 1 reference signal received power
  • the CSI When the CQI value in the CSI reported by the UE for the base station is 0, the CSI may be regarded as invalid CSI; when the CQI value in the CSI reported by the UE for the base station is not 0 or greater than 0, the CSI may be regarded as valid CSI.
  • the CSI reported by the UE to the base station is invalid CSI.
  • the UE After the activation of the secondary cell A is completed, in time units (for example, subframes, time slots, etc.) n+k_active, the UE starts reporting valid CSI for the base station.
  • time units for example, subframes, time slots, etc.
  • the UE starts to report the effective CSI of the secondary cell A for the base station, or the base station starts to receive the effective CSI of the secondary cell A
  • the activation of the secondary cell A is considered complete.
  • the secondary cell A is switched from the deactivated state to the activated state. For example, in FIG. 2, in the time slot n+k_active, the secondary cell A switches from the deactivated state to the activated state.
  • the base station cannot obtain the effective CSI of the secondary cell A from the UE, so the base station cannot perform scheduling based on channel conditions for the secondary cell A, thereby failing to effectively use transmission resources to increase the data transmission rate.
  • an embodiment of the present application proposes a corresponding channel measurement method, device, and system, which are used to obtain effective CSI faster during the secondary cell activation process to increase the data transmission rate.
  • This method can also be described as a method for quickly performing secondary cell activation.
  • FIG. 3 is a schematic flowchart of a channel measurement method provided by an embodiment of this application. Based on FIG. 3, the following first to third channel measurement methods provided in the embodiments of the present application may be shown.
  • the method shown in FIG. 3 may be a method for a secondary cell. For multiple secondary cells, the method shown in FIG. 3 may be used for channel measurement.
  • the first channel measurement method :
  • the base station sends the configuration of the first CSI-RS resource period of the secondary cell to the UE.
  • the first CSI-RS resource period is used for the first time period when the base station sends the first CSI-RS for the UE.
  • the configuration of the first CSI-RS resource period is used to indicate the first CSI-RS resource period.
  • the first CSI-RS resource period may be referred to as a period for transmitting resources of the first CSI-RS, a period for transmitting the first CSI-RS, or a period for transmitting the first CSI-RS.
  • the resource used to send the CSI-RS may be a time-frequency resource, for example, it may be one or more of the following resource types: a time slot or a subframe used to send the CSI-RS, used to The resource element (resource, RE) of the CSI-RS is sent.
  • the UE may perform cell search according to the CSI-RS, and/or synchronize with the base station in the cell, and/or perform channel quality measurement of the cell.
  • the first CSI-RS resource period is used to periodically transmit the first CSI-RS.
  • the base station may configure the first CSI-RS resource period for the UE to be N resource1 time units, and the first CSI-RS resource offset to be offset resource1 time units.
  • N resource1 is a positive integer
  • offset resource1 is an integer ranging from 0 to N resource1 -1.
  • the base station may send the first CSI-RS for the UE in the offset resource1 +1 time unit every N resource1 time units.
  • the base station configures the first CSI-RS resource period for the UE to be 20 slots, and the first CSI-RS resource offset is 5 slots.
  • the indexes of the 20 time slots in each cycle are 0 to 19 respectively.
  • the base station sends the first CSI-RS for the UE.
  • the base station may also configure a first CSI-RS pattern for the UE, which is used to determine which REs are used to map the first CSI-RS in the time unit used to transmit the first CSI-RS the sequence of.
  • the first time period may be a time period corresponding to the activation process of the secondary cell.
  • the time period corresponding to the activation process of the secondary cell is: from the time when the secondary cell is activated to the time before the activation of the secondary cell is completed, for example, the secondary time unit n shown in FIG. 2 or FIG. 4 Time unit from +k to time unit n+k_active, that is, time unit from time unit n+k to time unit n+k_active-1.
  • the time unit for starting activation of the secondary cell is a time unit for the UE to start reporting CSI for the base station.
  • the time unit n+k is a time unit in which the UE can start reporting CSI.
  • the UE can report CSI in this time unit, or can report CSI in the time unit after this time unit.
  • the UE may report CSI in a time unit that can be used for reporting CSI after n+k.
  • the time unit in which the activation of the secondary cell is completed is the time unit in which the UE starts reporting effective CSI for the base station.
  • the UE starts to report the effective CSI of the secondary cell for the base station, or the base station starts to receive the effective CSI of the secondary cell it is considered that the activation of the secondary cell is completed.
  • the time unit in which the activation of the secondary cell is completed is considered to be the time unit in which the secondary cell is switched from the deactivated state to the activated state.
  • the activation of the secondary cell may be activated by the UE according to the activation command in the MAC CE, or may be activated by the base station through the activation command in the DCI, or may be activated by the base station through the RRC signal. Let the UE be activated. Among them, the method of activating the secondary cell through MAC CE has been described in detail in the method involved in FIG. 2, and will not be repeated here.
  • the DCI may indicate the identity of the activated secondary cell.
  • the RRC signaling may be the RRC connection reconfiguration message introduced in the method involved in FIG. 2.
  • the secondary cell added or modified through the RRC connection reconfiguration message may be pre-configured to be activated, or the RRC connection reconfiguration message may be
  • the indication of the activation state of the added or modified secondary cell is equivalent to that the RRC connection reconfiguration message contains the indication information of the activation of the secondary cell or the activation state of the secondary cell.
  • the activation time of the secondary cell may be different according to different sending methods of the secondary cell activation command.
  • the secondary cell activation start time n+m1 is less than or equal to the secondary cell start activation time n+k when the MAC CE sends an activation command, where m1 is 0 or a positive integer, and m1 is less than or equal to k ; If RRC signaling is used for cell activation, the secondary cell activation start time n+m2 is greater than the secondary cell start activation time n+k when the activation command is sent through the MAC CE, where m2 is a positive integer and m2 is greater than k.
  • the value of m1 may be 0.5 ms or 1 or 2 symbols, or the number of corresponding time slots, such as Or or Exemplary
  • the value of m2 can be 16ms (milliseconds) or the number of corresponding time slots, such as or among them Is the number of time slots included in the subframe
  • the frame structure parameter of the subframe is ⁇
  • is the frame structure parameter of the uplink channel used to report the CSI of the secondary cell.
  • the uplink channel may be PUCCH or PUSCH.
  • the base station in the first time period, according to the first CSI-RS resource period, the base station sends the first CSI-RS for the UE in the secondary cell.
  • the first time period is a time period corresponding to the secondary cell activation process, so that the configuration of the period can be performed without considering the completion of the secondary cell activation After the operation, for example, a shorter period can be configured without considering resource overhead, so that when the UE reports CSI for the base station, the reported CSI is valid CSI, so the base station can be quickly and effectively in the activation process of the secondary cell CSI to reduce data transmission delay and increase data transmission rate.
  • This method can be applied to various application scenarios, especially for low-latency services.
  • the first CSI-RS resource period may be configured to be shorter than the CSI measurement resource period in the method involved in FIG. 2.
  • the CSI measurement resource period in the method involved in FIG. 2 is used in the secondary cell activation process and after the secondary cell activation is completed, considering the resource overhead of the channel used for CSI measurement, the CSI measurement in the method involved in FIG. 2
  • the resource period is configured to be 60ms, 40ms, 20ms, or 10ms; since the first CSI-RS resource period in the method involved in FIG.
  • the CSI measurement resource period in the method involved in FIG. 3 is configured to be 10 ms, 5 ms, 1 ms, 0.5 ms, or even shorter. Since the method involved in FIG. 3 is faster than the method involved in FIG. 2, the UE can receive the CSI-RS more quickly, so the UE can determine the effective CSI more quickly. In addition, compared with the method shown in FIG. 2, the CSI obtained by the method shown in FIG. 3 is more accurate and matches the PDSCH channel more, so the data transmission rate can be further improved. In the method involved in FIG.
  • the effective CSI obtained initially may be estimated based on the SSB received earlier, which is not accurate CSI and cannot be accurate PDSCH scheduling.
  • the transmission channel of SSB and PDSCH are not matched.
  • SSB is a cell-level signal with a wide transmission beam and a single antenna port for transmission.
  • PDSCH is a UE-level signal and PDSCH has a narrow transmission beam. Single antenna port or multiple antenna ports for transmission. Therefore, in the method involved in FIG. 2, the delay from when the base station activates the secondary cell A to when the base station receives the accurate CSI of the secondary cell A is long. Based on the above analysis, the method involved in FIG.
  • the base station may send the configuration of the second CSI-RS resource period of the secondary cell to the UE.
  • the second CSI-RS resource period is used for the second time period when the base station sends the second CSI-RS for the UE.
  • the second time period is after the first time period.
  • the base station sends the second CSI-RS to the UE in the secondary cell.
  • the configuration of the second CSI-RS resource period is used to indicate the second CSI-RS resource period.
  • the second CSI-RS resource period may be referred to as a period for transmitting resources of the second CSI-RS, a period for transmitting the second CSI-RS, or a period for transmitting the second CSI-RS.
  • the second CSI-RS resource period is used to periodically transmit the second CSI-RS.
  • the method for the base station to send the second CSI-RS for the UE using the second CSI-RS resource period is similar to the method for the base station to send the first CSI-RS for the UE using the first CSI-RS resource period.
  • the base station may configure the second CSI-RS resource period for the UE to be N resource2 time units, and the second CSI-RS resource offset to be offset resource2 time units.
  • N resource2 is a positive integer
  • offset resource2 is an integer ranging from 0 to N resource2 -1.
  • the base station may send the second CSI-RS for the UE in the offset resource2 +1 time unit in every N resource2 time units.
  • the second time period is the time from the completion of activation of the secondary cell.
  • the second time period is the time from the completion of the secondary cell activation to the next time the secondary cell is deactivated; or the second time period is the time from the completion of the secondary cell activation to the time before the secondary cell is released.
  • the UE may report CSI for the base station.
  • the CSI may be determined according to the first CSI-RS, or may be determined according to the SSB.
  • the UE may report CSI for the base station during the activation process, and/or may report CSI for the base station from the completion of activation, which is not limited in the embodiments of the present application.
  • the UE reports the CSI for the base station it may be reported periodically, semi-statically, or aperiodically, which is not limited in the embodiments of the present application.
  • the method for the UE to report CSI may be the method shown in FIG. 2, or the CSI reporting method described in the second channel measurement method described below, or the CSI reporting method described in LTE or NR, which will not be repeated here. .
  • the second channel measurement method is the second channel measurement method
  • the base station sends the configuration of the first CSI report period to the UE.
  • the first CSI reporting period is used for the UE to report the CSI of the secondary cell to the base station in the first time period.
  • the introduction of the first time period is the same as that described in the first channel measurement method above, and will not be repeated here.
  • the configuration of the first CSI reporting period is used to indicate the first CSI reporting period.
  • the first CSI reporting period may be referred to as a period for sending CSI reports in the first time period.
  • the UE when the UE reports the CSI of the secondary cell for the base station, it may be reported in the PCell of the UE or in another activated secondary cell.
  • the embodiment of the present application does not limit it.
  • the UE reports CSI for the base station it can be reported through the physical uplink shared channel (PUSCH) or through the physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the first CSI reporting period is used to periodically report CSI to the base station.
  • the base station may configure the first CSI report period for the UE to be N report1 time units, and the first CSI report offset to be offset report1 time units.
  • N report1 is a positive integer
  • offset report1 is an integer ranging from 0 to N report1 -1.
  • the UE may report the CSI of the secondary cell for the base station in the offset report1 +1 time unit every N report1 time units.
  • the UE reports the CSI of the secondary cell to the base station.
  • the configuration of this period may not need to consider the operation after the activation of the secondary cell is completed.
  • the short period does not need to consider resource overhead, so that the CSI reported by the UE is valid CSI, so the base station can quickly obtain the effective CSI during the activation of the secondary cell, so as to reduce the data transmission delay and increase the data transmission rate.
  • This method can be applied to various application scenarios, especially for low-latency services.
  • the UE can be configured with a shorter first CSI reporting period, so that the UE can have more opportunities to report CSI, and thus can enable the base station to obtain effective or even accurate CSI more quickly, thereby making the secondary cell Data scheduling can effectively use transmission resources to increase the data transmission rate.
  • the CSI reporting period in the method involved in FIG. 2 is used in the secondary cell activation process and after the secondary cell activation is completed, considering the resource overhead for CSI reporting, the CSI reporting period in the method involved in FIG. 2 is configured as 100ms, 60ms, 40ms, 20ms or 10ms, etc.; since the first CSI-RS reporting period in the method involved in FIG.
  • the CSI report period in the method involved in FIG. 3 is configured to be 20ms, 10ms, 5ms, 1ms, 0.5ms, or even shorter.
  • the report period may not be reported to the base station due to the long CSI reporting period, so the base station cannot effectively use resources to increase the data transmission rate.
  • the method involved in FIG. 2 even if the UE obtains effective or even accurate CSI, the report period may not be reported to the base station due to the long CSI reporting period, so the base station cannot effectively use resources to increase the data transmission rate.
  • the CSI reporting period for the first time period can be independently configured, so it can be configured shorter, so that after the UE obtains effective or even accurate CSI, it can be reported to the base station in time. Therefore, the base station can effectively use resources to increase the data transmission rate.
  • the base station sends the configuration of the second CSI report period to the UE.
  • the second CSI reporting period is used for the UE to report the CSI of the secondary cell to the base station during the second time period.
  • the introduction of the second time period is the same as that described in the first channel measurement method above, and will not be repeated here.
  • the configuration of the second CSI reporting period is used to indicate the second CSI reporting period.
  • the second CSI reporting period may be referred to as a period for sending CSI reports during the second time period.
  • the second CSI reporting period is used to periodically report CSI to the base station during the second time period.
  • the base station may configure the second CSI report period for the UE to be N report2 time units, and the second CSI report offset to be the offset report2 time units.
  • N report2 is a positive integer
  • offset report2 is an integer ranging from 0 to N report2 -1.
  • the second time period the UE may N report2 per time unit, in a first time offset report2 +1 CSI reporting unit cell of the secondary base station.
  • the UE reports the CSI of the secondary cell to the base station.
  • the base station may send a signal for CSI measurement for the UE.
  • the signal and transmission method for CSI measurement may be the method shown in FIG. 2, or the method described in the first channel measurement method, or the CSI-RS transmission method described in LTE or NR, here No longer.
  • the third channel measurement method is the third channel measurement method.
  • the base station sends the configuration of the first CSI-RS resource period and the configuration of the first CSI reporting period of the secondary cell to the UE.
  • the first CSI-RS resource period is used for the first time period when the base station sends the first CSI-RS for the UE; the first CSI reporting period is used for the first time period when the UE reports the CSI of the secondary cell to the base station.
  • the introduction of the configuration of the first CSI-RS resource period is the same as the corresponding description in the above-mentioned first channel measurement method, which will not be repeated here.
  • the introduction of the configuration of the first CSI reporting period is the same as the corresponding description in the above second channel measurement method, and will not be repeated here.
  • the configuration of the first CSI-RS resource period and/or the configuration of the first CSI reporting period are pre-configured values.
  • the difference from the above S301 is that there is no need to send signaling from the base station to the UE to indicate the value of the pre-configured parameter.
  • the base station in the first time period, according to the first CSI-RS resource period, the base station sends the first CSI-RS to the UE in the secondary cell.
  • This step is the same as the corresponding description in the first channel measurement method, and will not be repeated here.
  • the UE reports the CSI of the secondary cell to the base station.
  • This step is the same as the corresponding description in the second channel measurement method, which will not be repeated here.
  • the base station sends the configuration of the second CSI-RS resource period and the configuration of the second CSI reporting period of the secondary cell to the UE.
  • the second CSI-RS resource period is used for the second time period when the base station sends the second CSI-RS to the UE; the second CSI reporting period is used for the second time period when the UE reports the CSI of the secondary cell to the base station.
  • the introduction of the configuration of the second CSI-RS resource period is the same as the corresponding description in the above-mentioned first channel measurement method, which will not be repeated here.
  • the introduction of the configuration of the second CSI reporting period is the same as the corresponding description in the above second channel measurement method, and will not be repeated here.
  • the configuration of the second CSI-RS resource period and/or the configuration of the second CSI reporting period are pre-configured values.
  • the difference from the above S301' is that there is no need to send signaling from the base station to the UE to indicate the value of the pre-configured parameter.
  • the base station sends the second CSI-RS to the UE in the secondary cell.
  • This step is the same as the corresponding description in the first channel measurement method, and will not be repeated here.
  • the UE reports the CSI of the secondary cell to the base station.
  • This step is the same as the corresponding description in the second channel measurement method, which will not be repeated here.
  • the configuration that the base station sends the first CSI-RS resource period of the secondary cell for the UE includes: the base station sends the configuration of the second CSI-RS resource period of the secondary cell for the UE, where the first The CSI-RS resource period is obtained according to the second CSI-RS resource period.
  • the second CSI-RS resource period is N resource2 time units
  • the second CSI-RS resource period is n1 resource times the first CSI-RS resource period.
  • n1 resource is greater than or equal to 1, for example, n1 resource is a multiple of 1.5, 2, 2.5, 3, 4 or greater.
  • the value of n1 resource may be predefined or sent by the base station to the UE through signaling.
  • the configuration that the base station sends the second CSI-RS resource period of the secondary cell for the UE includes: the base station sends the configuration of the first CSI-RS resource period of the secondary cell for the UE, where the second The CSI-RS resource period is obtained according to the first CSI-RS resource period.
  • the first CSI-RS resource period is N resource1 time units
  • the second CSI-RS resource period is n2 resource times the first CSI-RS resource period.
  • n2 resource is greater than or equal to 1, for example, n2 resource 1.5, 2, 2.5, 3, 4 or a multiple of more.
  • the value of n2 resource may be predefined, or sent by the base station to the UE through signaling.
  • the configuration that the base station sends the first CSI report period of the secondary cell for the UE includes the configuration that the base station sends the second CSI report period of the secondary cell for the UE, where the first CSI report period is According to the second CSI reporting period.
  • the second CSI reporting period is N report2 time units
  • the second CSI reporting period is n3 resource times of the first CSI reporting period.
  • n3 resource is greater than or equal to 1, for example, n3 resource is a multiple of 1.5, 2, 2.5, 3, 4 or greater.
  • the value of n3 resource may be predefined, or sent by the base station to the UE through signaling.
  • the configuration that the base station sends the second CSI reporting period of the secondary cell for the UE includes: the base station sends the configuration of the first CSI reporting period of the secondary cell for the UE, where the second CSI reporting period is According to the first CSI reporting period.
  • the first CSI reporting period is N report1 time units
  • the second CSI reporting period is n4 resource times of the first CSI reporting period.
  • n4 resource is greater than or equal to 1, for example, n4 resource is a multiple of 1.5, 2, 2.5, 3, 4 or greater.
  • the value of n4 resource may be predefined or sent by the base station to the UE through signaling.
  • the first time period is a time unit n+k to a time unit n+k+k_offset-1.
  • the time unit n+k is the time unit for starting activation of the secondary cell (for example, as shown in FIG. 2 or FIG. 4), and k_offset is a positive integer, for example, 4, 6, 8, 12, or other integers.
  • the value of k_offset may be pre-configured, or it may be configured by the base station for the UE through signaling.
  • the second time period is a time unit starting from time unit n+k+k_offset.
  • k+k_offset can also be expressed as k2, where k2 is an integer greater than k.
  • the parameter values of each time period are independently configured, such as the value of the CSI-RS resource period and/or the CSI reporting period, and a smaller value can be configured for the first time period, so that during the secondary cell activation process More opportunities for CSI-RS transmission and/or CS reporting, so that secondary cell activation can be completed quickly.
  • the length of the first time period may be greater than, equal to, or less than the length of the time period corresponding to the secondary cell activation process, which is not limited in this embodiment of the present application.
  • S301 and S301' may be performed at the same time.
  • the base station sends the first CSI-RS resource period configuration, the first CSI reporting period configuration, and the second CSI-RS to the UE in the same signaling Resource cycle configuration and second CSI report cycle configuration; for example, S301' may be located after S302 or S303.
  • FIG. 4 is an example diagram of channel measurement according to the third channel measurement method.
  • the base station activates the secondary cell A for the UE through MAC CE
  • the base station sends the first CSI-RS for the UE according to the first CSI-RS resource period, so that The UE can quickly obtain the accurate CSI of the secondary cell A; the UE reports the accurate CSI of the secondary cell A for the base station according to the first CSI reporting period, so that the base station can quickly obtain the accurate CSI of the secondary cell A, and therefore can accurately downlink the secondary cell A Scheduling.
  • the base station After the activation of the secondary cell A is completed, the base station sends the second CSI-RS for the UE according to the second CSI-RS resource period; the UE reports the CSI of the secondary cell A for the base station according to the second CSI reporting period.
  • the first CSI-RS resource period and the first CSI reporting period used in the secondary cell activation process are independently configured, so that the configuration of these two periods can be as short as possible, for example, the two can be compared
  • the second CSI-RS resource period and the second CSI reporting period used after the secondary cell activation is completed so that the base station can quickly obtain the accurate CSI of the secondary cell A during the secondary cell activation process, for example, the method shown in FIG. 4
  • the medium base station can obtain the accurate CSI of the secondary cell A even in the time unit n+k, so that the base station can quickly complete accurate scheduling for the secondary cell.
  • the UE after the UE receives the activation command of the secondary cell A through the MAC CE in the subframe n, the UE starts to activate the secondary cell A. For example, the UE starts reporting the CSI of the secondary cell A to the base station in time unit n+k, where the value of k is equal to k 1 is the HARQ feedback delay of the hybrid automatic repeat request of the physical downlink shared channel PDSCH, Is the number of time slots included in the subframe with the frame structure parameter ⁇ , and ⁇ is the frame structure parameter of the uplink channel used to report the CSI of the secondary cell A.
  • time unit n+k the UE starts reporting the CSI of the secondary cell to the base station, where time unit n is the time unit that received the activation command, and the activation command is used to activate the UE Secondary cell, k is greater than or equal to 0 and less than Integer, k 1 is the PDSCH hybrid automatic repeat request (, HARQ) feedback delay, Is the number of time slots included in the subframe, the frame structure parameter of the subframe is ⁇ , and ⁇ is the frame structure parameter of the uplink channel used to report the CSI of the secondary cell.
  • time unit n is the time unit that received the activation command
  • the activation command is used to activate the UE Secondary cell
  • k is greater than or equal to 0 and less than Integer
  • k 1 is the PDSCH hybrid automatic repeat request (, HARQ) feedback delay
  • Is the number of time slots included in the subframe the frame structure parameter of the subframe is ⁇
  • is the frame structure parameter of the uplink channel used
  • k is k 1 +3 ⁇
  • k is
  • k is a time unit corresponding to N1 symbols
  • N1 represents the processing time of the physical downlink shared channel (PDSCH) by the terminal device.
  • the processing time of the PDSCH by the terminal device refers to the first uplink symbol of the physical channel from the end of receiving the last symbol of the PDSCH to the reception of the physical channel carrying hybrid automatic repeat request (HARQ) feedback information The elapsed time.
  • the HARQ feedback information is valid HARQ feedback information.
  • HARQ feedback may include receiving correct confirmation feedback or receiving error confirmation feedback. Receiving correct confirmation feedback can be expressed by ACK, and receiving wrong confirmation feedback can be expressed by NACK.
  • the processing time of the terminal device PDSCH can be measured in units of symbols.
  • k is a time unit corresponding to N1 symbols plus a time unit corresponding to 1 ms. When the two are added, they need to be unified into the same time unit, such as time slot, Where T symbols represent the number of symbols .
  • the reasons for choosing these k values include that the start time of the secondary cell activation does not have to wait until the UE feeds back HARQ to the base station, or the processing time of the UE does not depend on the configuration of the network, and the configuration on the network side is often the worst processing capability of the UE according to the processing capability of the UE .
  • the UE can process signaling analysis and feed back HARQ information synchronously, shortening the time.
  • UE processing signaling analysis and radio frequency or baseband preparation time is less than 3ms.
  • the HARQ feedback delay of the PDSCH may be a pre-configured value, for example, a positive integer number of subframes or time slots, such as 4.
  • the HARQ feedback delay of the PDSCH may be indicated by the base station to the UE through signaling (for example, DCI).
  • the HARQ feedback delay of the PDSCH may be indicated by the base station to the UE through RRC signaling + DCI, where the RRC signaling is used to configure the set of candidate values of the HARQ feedback delay of the PDSCH, and the DCI is used to indicate from the candidate set
  • the HARQ feedback delay of the specific PDSCH configured for the UE may be a pre-configured value, for example, a positive integer number of subframes or time slots, such as 4.
  • the HARQ feedback delay of the PDSCH may be indicated by the base station to the UE through signaling (for example, DCI).
  • the HARQ feedback delay of the PDSCH may be indicated by the base station to the UE through
  • the base station can quickly complete accurate scheduling for the secondary cell, thereby improving data Transmission rate.
  • the UE may report the CSI of the secondary cell in the primary cell or in other secondary cells.
  • the CSI may be reported through PUCCH or PUSCH.
  • ⁇ in is the frame structure parameter of PUCCH; when reporting CSI through PUSCH, ⁇ in is the frame structure parameter of PUSCH.
  • the time for completing the activation of the secondary cell may also be a time for cell search, automatic gain control, frequency or time synchronization, frequency or time tracking, CSI processing time, and so on.
  • the unit of the first CSI-RS resource period, the second CSI-RS resource period, the first CSI reporting period, and/or the second CSI reporting period may be an absolute time, such as 10ms, 5ms, 1ms, 0.5ms, etc.
  • the unit of the first CSI-RS resource period, the second CSI-RS resource period, the first CSI reporting period, and/or the second CSI reporting period may be a time unit. For example, it can be configured as an integer number of time slots or subframes.
  • the first CSI-RS resource period is used by the base station to send to the UE in the first bandwidth part (BWP) of the secondary cell in the first time period
  • the first CSI-RS is used for the UE to receive the first CSI-RS of the UE from the base station in the first BWP of the secondary cell in the first time period.
  • the first BWP is the BWP configured by the base station in the secondary cell for the UE.
  • the signaling may be semi-static signaling and/or dynamic signaling.
  • the semi-static signaling may be radio resource control (radio resource control (RRC) signaling, broadcast message, system message, or MAC control element (CE).
  • RRC radio resource control
  • CE MAC control element
  • the broadcast message may include the remaining minimum system message (remaining minimum system information, RMSI).
  • RMSI remaining minimum system information
  • the dynamic signaling may be physical layer signaling.
  • the physical layer signaling may be signaling carried by the physical control channel or signaling carried by the physical data channel.
  • the physical data channel may be a downlink channel, such as a physical downlink shared channel (physical downlink shared channel, PDSCH).
  • the physical control channel may be a physical downlink control channel (physical downlink control channel, PDCCH), an enhanced physical downlink control channel (enhanced physical downlink control channel, EPDCCH), a narrowband physical downlink control channel (narrowband physical downlink control channel, NPDCCH), or a machine type Communication physical downlink control channel (machine type communication (MTC) physical downlink control channel (MPDCCH)).
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • NPDCCH narrowband physical downlink control channel
  • MTC machine type communication
  • MPDCCH machine type Communication physical downlink control channel
  • DCI downlink control information
  • the physical control channel may also be a physical sidelink control channel (physical sidelink control channel), and the signaling carried by the physical sidelink control channel may also be called sidelink control information (SCI).
  • the BWP may also be called a carrier bandwidth part.
  • a BWP includes consecutive positive integer resource units, such as consecutive positive integer subcarriers, resource blocks (RB), or resource block groups (RBG).
  • RB resource blocks
  • RBG resource block groups
  • one RB includes positive integer number of subcarriers, for example, 12;
  • one RBG includes positive integer number of RBs, for example, 4 or 8 and so on.
  • the BWP may be a downlink BWP or an uplink BWP.
  • the uplink BWP is used by the UE to send signals to the base station
  • the downlink BWP is used by the base station to send signals to the UE.
  • the base station may configure one or more BWPs for the uplink or downlink of the UE, for example, up to 4 BWPs for uplink and up to 4 BWPs for downlink.
  • the number of BWP configured in the uplink and downlink may be the same or different.
  • One or more BWPs configured by the base station for the UE may be referred to as UE-configured BWPs.
  • one or more uplink BWPs configured by the base station for the UE may be referred to as UE uplink configuration BWPs, and one or more downlinks configured by the base station for the UE
  • the BWP may be referred to as the downlink configuration BWP of the UE.
  • the numerology of the BWP can be independently configured through pre-configuration or the base station sends signaling to the UE.
  • the numerology of different BWP may be the same or different.
  • the base station may activate only one BWP in the configuration BWP of the UE for the UE, and the UE and the base station may only send and receive data on the activated BWP.
  • the UE only sends a physical uplink control channel (PUCCH) and/or a physical uplink shared channel (PUSCH) to the base station in the activated uplink BWP, and the base station only transmits to the base station in the activated downlink BWP.
  • the UE transmits PDCCH and/or PDSCH.
  • the first CSI-RS resource period is used to send the first CSI-RS for the UE in the first bandwidth part (BWP) of the secondary cell in the first time period.
  • the first BWP may be pre-configured or indicated by the base station to the UE through signaling.
  • the first BWP is a BWP used by the UE to access the base station in the secondary cell.
  • the BWP is a BWP used to receive a random access response (RAR) from the base station when the UE accesses the base station.
  • RAR random access response
  • This BWP may be referred to as an initial downlink BWP or another name.
  • the first BWP is a BWP for the UE to receive the SSB in the secondary cell.
  • This BWP may be called an initial downlink BWP or another name.
  • the first BWP is any BWP in the downlink configuration BWP of the UE in the secondary cell.
  • it may be the BWP with the index 0 or the first BWP in the downlink configuration BWP of the UE.
  • the first BWP is the first (first) downlink activated BWP of the UE in the secondary cell.
  • the base station configures the downlink configuration BWP of the UE for the UE in the secondary cell
  • one of the downlink BWPs may be configured as the first downlink activated BWP of the UE.
  • the first downlink activated BWP may be the downlink BWP activated for the first time in the downlink configuration BWP of the UE after the UE accesses the base station in the secondary cell, or after the UE switches to the secondary cell.
  • the first downlink activated BWP may also be called an initial activated BWP, a first working BWP, an initial working BWP, or other names, which are not limited in the embodiments of the present application.
  • the first downlink activated BWP may be the first BWP.
  • the base station may send a first indication for the UE, where the first indication is used to indicate the first BWP.
  • the signaling form of the first indication may be any signaling type described above, which is not limited in the embodiments of the present application.
  • the base station may indicate one or more of the following information of the first BWP through the first indication: the identifier of the first BWP, and the resource location (eg, start location and bandwidth) of the first BWP.
  • the starting position of the first BWP may be the position of the starting RB in the first BWP.
  • the base station when the base station configures the UE's downlink configuration BWP for the UE in the secondary cell, or after the base station configures the UE's downlink configuration BWP for the UE in the secondary cell, the base station may send the first indication for the UE The index indicating the first BWP in the downlink configuration BWP.
  • the downlink configuration BWP of the UE includes three BWPs, namely BWP 0, BWP 1 and BWP 2.
  • the second CSI-RS resource period is used for the second time period when the base station sends the second CSI-RS for the UE in the second BWP of the secondary cell.
  • the second BWP may be the first BWP, and the second BWP may also be pre-configured or indicated by the base station to the UE through signaling.
  • the method of pre-configuration or signaling indicating the second BWP is similar to the method described in the above method of configuring the first BWP, and is not repeated here.
  • the configuration method of the first BWP and the configuration method of the second BWP may be the same or different, and the embodiment of the present application is not limited.
  • the base station may configure the first CSI-RS resource period for the UE in the signaling for configuring the first BWP, that is, the signaling for configuring the first BWP includes the first CSI-RS resource period configuration; and /Or the base station may configure the first CSI reporting period for the UE in the signaling for configuring the first BWP, that is, the signaling for configuring the first BWP includes the first CSI reporting period configuration.
  • the base station may configure the second CSI-RS resource period for the UE in the signaling for configuring the second BWP, and/or the base station may configure the second CSI report for the UE in the signaling for configuring the second BWP cycle.
  • the signaling for configuring the BWP may be used to indicate one or more of the following information of the BWP: starting position, bandwidth, subcarrier interval, and cyclic prefix type.
  • the type of signaling used to configure the BWP may be RRC signaling, MAC CE, or other signaling forms, which are not limited in the embodiments of the present application.
  • the base station may configure the first CSI-RS resource period and/or the first CSI reporting period for the UE in the CSI measurement configuration CSI-MeasConfig message, or the CSI measurement configuration message includes the first CSI- RS resource period configuration and/or first CSI report period configuration.
  • the CSI measurement configuration message CSI-MeasConfig may further include a second CSI-RS resource period configuration and/or a second CSI report period configuration.
  • the signaling type of the CSI measurement configuration CSI-MeasConfig message may be a system message, a broadcast message, RRC signaling, MAC CE, or other signaling forms, which is not limited in the embodiments of the present application.
  • the CSI measurement configuration CSI-MeasConfig message includes one or more of the following information elements: information elements configured for the first CSI-RS resource period, information elements for the first CSI reporting period, and second CSI-RS resources Periodically configured cells, cells of the second CSI reporting period, and identifier or ID (ID) of the first BWP.
  • FIG. 5 is a schematic structural diagram of a CSI measurement configuration CSI-MeasConfig message.
  • the CSI measurement configuration message may include a CSI resource configuration list, and the list includes one or more CSI resource configurations.
  • the CSI measurement configuration message may include a CSI-RS resource group configuration list, and the list includes one or more CSI-RS resource group configurations.
  • the CSI measurement configuration message may include a CSI-RS resource configuration list, and the list includes one or more CSI-RS resource configurations.
  • the CSI measurement configuration message may include a CSI report configuration list, and the CSI report configuration list includes one or more CSI report configurations.
  • a CSI resource configuration may include an identification (ID) of the CSI resource; it may include a list of CSI-RS resource groups, which is used to associate one or more CSI-RS resource groups, for example The IDs of the one or more CSI-RS resource groups are included; the BWP ID may be included to associate the BWP configured with the CSI resource.
  • it may include a first CSI-RS resource period associated with the CSI resource configuration.
  • a CSI-RS resource group configuration may include the ID of the CSI-RS resource group; it may include a list of CSI-RS resources, which is used to associate one or more CSI-RS resources, For example, each ID of the one or more CSI-RS resources is included.
  • it may include the first CSI-RS resource period associated with the CSI-RS resource group.
  • a CSI-RS resource configuration may include the ID of the CSI-RS resource; it may include a second CSI-RS resource period associated with the CSI-RS resource. Optionally, it may include the first CSI-RS resource period associated with the CSI-RS resource.
  • a CSI report configuration it may include the ID of the CSI report; it may include the ID of the CSI resource associated with the CSI report; it may include the first CSI report period associated with the CSI report and The second CSI reporting period.
  • the base station does not send the PDSCH for the UE in the secondary cell, and/or does not send the PDCCH for the UE in the secondary cell, and/or does not The PUCCH is received from the UE in the secondary cell, and/or the PUSCH is not received from the UE in the secondary cell. Accordingly, the UE does not detect the PDCCH sent by the base station in the secondary cell, and/or does not receive the PDCCH sent by the base station in the secondary cell, and/or does not send the PUCCH to the base station in the secondary cell, and/or does not send the PUSCH to the base station in the secondary cell . For example, during the activation process of the secondary cell, the base station does not send the PDCCH and/or PDSCH to the UE in the first BWP of the secondary cell.
  • the UE may report a first capability to the base station, where the first capability is used to indicate whether the UE supports fast secondary cell activation, or is used to indicate whether the UE does not support fast secondary cell activation. If the first capability indicates that the UE supports fast secondary cell activation, the UE may support the method involved in FIG. 3; if the first capability indicates that the UE does not support fast secondary cell activation, the UE may support the method involved in FIG. 2, or Perform the methods related to CSI-RS transmission and/or CSI reporting involved in the existing LTE or NR.
  • the base station may send a second indication to the UE, where the second indication is used to indicate whether fast secondary cell activation is enabled (or turned on). If fast secondary cell activation is turned on, the UE and the base station perform the method involved in FIG. 3; if fast secondary cell activation is not turned on, the UE and the base station perform the method involved in FIG. 2, or the existing LTE or NR On CSI-RS transmission and/or CSI reporting method.
  • the base station When performing the method of FIG. 2, for example, it may be described as: the base station sends the configuration of the third CSI-RS resource period and the configuration of the third CSI reporting period of the secondary cell for the UE.
  • the third CSI-RS resource period is used for the first time period and the second time period, and the base station sends the third CSI-RS for the UE;
  • the third CSI reporting period is used for the first time period and the second time period,
  • the UE reports the CSI of the secondary cell to the base station.
  • the base station sends the configuration of the third CSI-RS resource period and the configuration of the third CSI reporting period of the secondary cell for the UE.
  • the third CSI-RS resource period is used to activate the secondary cell, and the base station sends the third CSI-RS for the UE; the third CSI reporting period is used to activate the secondary cell, and the UE reports the secondary cell's CSI.
  • the base station and/or the UE may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application of the technical solution and design constraints.
  • the device 600 may be a UE or a base station, which can implement the method provided by the embodiments of the present application; the device 600 may also be a device that can support the UE or the base station to implement the method provided by the embodiments of the present application, and the device 600 may be installed in the base station or the UE .
  • the device 600 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the device 600 may be implemented by a chip system.
  • the device 600 includes a processing module 602 and a communication module 604.
  • the processing module 602 can generate information for sending, and can use the communication module 604 to send the information.
  • the processing module 602 can use the communication module 604 to receive information and process the received information.
  • the processing module 602 and the communication module 604 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or connection between devices, units, or modules, which may be electrical, mechanical, or other forms, used for information interaction between devices, units, or modules.
  • the coupling can be a wired connection or a wireless connection.
  • the communication module may be a circuit, a module, a bus, an interface, a transceiver, or other devices that can implement a transceiver function, and the embodiments of the present application are not limited.
  • the device 700 may be a terminal device or a base station, which can implement the method provided by the embodiments of the present application; the device 700 may also be an device that can support the terminal device or the base station to implement the method provided by the embodiments of the present application, such as a chip system, and the device 700 may Installed in the base station or terminal equipment.
  • the apparatus 700 includes a processing system 702 for implementing or for supporting a terminal device or a base station to implement the method provided by the embodiments of the present application.
  • the processing system 702 can be a circuit that can be implemented by a chip system.
  • the processing system 702 includes one or more processors 722, which may be used to implement or support a terminal device or a base station to implement the method provided in the embodiments of the present application.
  • the processor 722 may also be used to manage other devices included in the processing system 702.
  • the other devices may be the following memory 724, bus 726, and One or more of the bus interfaces 728.
  • the processor 722 may be used to manage the memory 724, or the processor 722 may be used to manage the memory 724, the bus 726, and the bus interface 728.
  • the processing system 702 may also include one or more memories 724 for storing instructions and/or data. Further, the memory 724 may also be included in the processor 722. If the memory 724 is included in the processing system 702, the processor 722 may be coupled with the memory 724. The processor 722 may cooperate with the memory 724. The processor 722 may execute instructions stored in the memory 724. When the processor 722 executes the instructions stored in the memory 724, it may implement or support the UE or the base station to implement the method provided in the embodiments of the present application. The processor 722 may also read the data stored in the memory 724. The memory 724 may also store data obtained when the processor 722 executes instructions.
  • the memory includes volatile memory (volatile memory), such as random-access memory (random-access memory, RAM); the memory may also include non-volatile memory (non-volatile memory), such as fast Flash memory (flash memory), hard disk (HDD) or solid-state drive (SSD); the memory can also include a combination of the above types of memory; the memory can also include any other device with a storage function, For example circuits, devices or software modules.
  • volatile memory such as random-access memory (random-access memory, RAM)
  • non-volatile memory such as fast Flash memory (flash memory), hard disk (HDD) or solid-state drive (SSD)
  • flash memory flash memory
  • HDD hard disk
  • SSD solid-state drive
  • the memory can also include a combination of the above types of memory
  • the memory can also include any other device with a storage function, For example circuits, devices or software modules.
  • the processing system 702 may also include a bus interface 728 for providing an interface between the bus 726 and other devices.
  • the bus interface can also be called a communication interface.
  • the communication interface may be a circuit, a module, a bus, an interface, a transceiver, or other devices that can implement a transceiver function, and the embodiments of the present application are not limited.
  • the apparatus 700 may further include a transceiver 706 for communicating with other communication devices through a transmission medium, so that other apparatuses in the apparatus 700 can communicate with other communication devices.
  • the other device may be the processing system 702.
  • other devices in the device 700 may use the transceiver 706 to communicate with other communication devices, receive and/or send corresponding information.
  • other devices in the device 700 may receive corresponding information, where the corresponding information is received by the transceiver 706 through a transmission medium, and the corresponding information may be through the bus interface 728 or through the bus interface 728 and the bus 726 Interact between the transceiver 706 and other devices in the device 700; and/or other devices in the device 700 may send corresponding information, wherein the corresponding information is sent by the transceiver 706 through a transmission medium, the corresponding The information may be exchanged between the transceiver 706 and other devices in the device 700 through the bus interface 728 or through the bus interface 728 and the bus 726.
  • the device 700 may further include a user interface 704, which is an interface between the user and the device 700, and may be used for information interaction between the user and the device 700.
  • the user interface 704 may be at least one of a keyboard, a mouse, a display, a speaker, a microphone, and a joystick.
  • the processing system 702 includes a processor 722, and may further include one or more of a memory 724, a bus 726, and a bus interface 728, for implementing the method provided by the embodiments of the present application.
  • the processing system 702 is also within the scope of protection of this application.
  • the module division of the device is a logical function division, and there may be another division manner in actual implementation.
  • each functional module of the device may be integrated into one module, or each functional module may exist alone, or two or more functional modules may be integrated into one module.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present invention are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, a network device, a terminal, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, floppy disk, hard disk, magnetic tape), optical medium (for example, digital video disc (DVD)), or semiconductor medium (for example, SSD), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了信道测量方法、装置和系统。其中,该方法包括:终端从网络设备接收辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,第一CSI-RS资源周期用于终端在第一时间段从网络设备接收第一CSI-RS,第一CSI报告周期用于终端在第一时间段向网络设备上报该辅小区的CSI。终端从网络设备接收该辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,第二CSI-RS资源周期用于终端在第二时间段从网络设备接收第二CSI-RS,第二CSI报告周期用于终端在第二时间段向网络设备上报该辅小区的CSI。其中,第二时间段在第一时间段之后。通过该方法,可以实现辅小区的快速激活。

Description

信道测量方法和装置
本申请要求于2019年01月11日提交国家知识产权局、申请号为201910028812.X、申请名称为“信道测量方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及信道测量方法和装置。
背景技术
在无线通信系统中,网络设备和终端设备可以基于各种多址技术进行无线通信,例如:码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency division multiple access,OFDMA)、单载波频分多址(signal carrierfrequency division multiple access,SC-FDMA)、或非正交多址(non-orthogonal multiple access,NOMA)等。
网络设备可以管理小区,例如一个网络设备可以管理一个或者多个小区。终端设备可以在小区中和网络设备进行通信,该小区可以称为该终端设备的服务小区。
发明内容
本申请实施例旨在提供快速激活辅小区的方法、装置和系统。
第一方面,提供了一种信道测量方法,其特征在于,包括:
从网络设备接收终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段从所述网络设备接收第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段向所述网络设备上报所述辅小区的CSI;
从所述网络设备接收所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段从所述网络设备接收第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段向所述网络设备上报所述辅小区的CSI;
其中,所述第二时间段在所述第一时间段之后。
可选地,所述第一CSI-RS资源周期的配置、第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置和第二CSI报告周期的配置包含在同一条信令中。
通过该方法,激活辅小区后,可以使得网络设备从终端快速获得辅小区的有效CSI,从而可以实现辅小区的快速激活。
在一种可能的设计中,所述第一CSI-RS资源周期用于在第一时间段从所述网络设备接收第一CSI-RS,包括:所述第一CSI-RS资源周期用于在第一时间段,在第一带宽部分BWP从所述网络设备接收第一CSI-RS,其中,所述第一BWP是所述终端设 备在所述辅小区中的BWP。可选地,所述第一BWP是预配置的。可选地,该方法包括:从所述网络设备接收第一指示,所述第一指示用于指示所述第一BWP。
通过该方法,在支持BWP的系统中,例如NR中,可以应用本申请实施例提供的方法。从而使得在支持BWP的系统中,网络设备可以从终端快速获得辅小区的有效CSI,从而可以实现辅小区的快速激活。
在一种可能的设计中,所述方法包括:从时间单元n+k开始,根据所述第一CSI报告周期,向所述网络设备上报所述辅小区的CSI,其中,所述时间单元n为接收到激活命令的时间单元,所述激活命令用于为所述终端设备激活所述辅小区,k为大于等于0且小于
Figure PCTCN2020070362-appb-000001
的整数,k 1是物理下行共享信道PDSCH的混合自动重传请求HARQ反馈时延,
Figure PCTCN2020070362-appb-000002
是帧结构参数μ的子帧中包括的时隙的个数,μ是用于上报所述辅小区的CSI的上行信道的帧结构参数。
通过该方法,使得终端设备可以较早地开始上报CSI,从而使得网络设备可以从终端快速获得辅小区的有效CSI,从而可以实现辅小区的快速激活。
在一种可能的设计中,在所述第一时间段,不在所述第一BWP中检测物理下行共享信道PDSCH和物理下行控制信息PDCCH。通过该方法,可以降低终端在第一时间段中的功耗。
在一种可能的设计中,所述第一时间段为开始激活所述辅小区到所述辅小区激活完成前的时间,所述第二时间段为从所述辅小区激活完成开始的时间。
在一种可能的设计中,所述方法包括:向所述网络设备上报能力信息,所述能力信息用于指示所述终端设备是否支持快速辅小区激活方法。
在一种可能的设计中,所述方法包括:从网络设备接收第二指示,所述第二指示用于使能快速辅小区激活方法。
通过上述方法,可以使得系统兼容各种类型的UE。例如兼容传统不支持快速辅小区激活方法的UE,和兼容新的支持快速辅小区激活方法的UE。
第二方面,提供了一种信道测量方法,其特征在于,包括:
发送终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段发送第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段从所述终端设备接收所述辅小区的CSI;
发送所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段发送第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段从所述终端设备接收所述辅小区的CSI;
其中,所述第二时间在所述第一时间之后。
可选地,所述第一CSI-RS资源周期的配置、第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置和第二CSI报告周期的配置包含在同一条信令中。
在一种可能的设计中,所述第一CSI-RS资源周期用于在第一时间段发送第一CSI-RS,包括:所述第一CSI-RS资源周期用于在第一时间段,在第一带宽部分BWP发送第一CSI-RS,其中,所述第一BWP是所述终端设备在所述辅小区中的BWP。可选地,所述第一BWP是预配置的。可选地,该方法包括:向终端设备发送第一指示, 所述第一指示用于指示所述第一BWP。
在一种可能的设计中,所述方法包括:从时间单元n+k开始,根据所述第一CSI报告周期,接收所述终端设备上报的所述辅小区的CSI,其中,所述时间单元n为发送激活命令的时间单元,所述激活命令用于为所述终端设备激活所述辅小区,k为大于等于0且小于
Figure PCTCN2020070362-appb-000003
的整数,k 1是物理下行共享信道PDSCH的混合自动重传请求HARQ反馈时延,
Figure PCTCN2020070362-appb-000004
是帧结构参数μ的子帧中包括的时隙的个数,μ是用于接收所述辅小区的CSI的上行信道的帧结构参数。
在一种可能的设计中,在所述第一时间段,不在所述第一BWP中发送物理下行共享信道PDSCH和物理下行控制信息PDCCH。
在一种可能的设计中,所述第一时间段为开始激活所述辅小区到所述辅小区激活完成前的时间,所述第二时间段为从所述辅小区激活完成开始的时间。
在一种可能的设计中,所述方法包括:从所述终端设备接收能力信息,所述能力信息用于指示所述终端设备是否支持快速辅小区激活方法。
在一种可能的设计中,所述方法包括:向所述终端设备发送第二指示,所述第二指示用于使能快速辅小区激活方法。
第三方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性地,
所述通信模块用于从网络设备接收终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段从所述网络设备接收第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段向所述网络设备上报所述辅小区的CSI;
所述通信模块从所述网络设备接收所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段从所述网络设备接收第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段向所述网络设备上报所述辅小区的CSI;
其中,所述第二时间段在所述第一时间段之后。
可选地,所述处理模块用于处理(例如解调、译码等)所述第一CSI-RS资源周期的配置、所述第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置、和/或所述第二CSI报告周期的配置。
可选地,所述第一CSI-RS资源周期的配置、第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置和第二CSI报告周期的配置包含在同一条信令中。
在一种可能的设计中,所述第一CSI-RS资源周期用于在第一时间段从所述网络设备接收第一CSI-RS,包括:所述第一CSI-RS资源周期用于在第一时间段,在第一带宽部分BWP从所述网络设备接收第一CSI-RS,其中,所述第一BWP是所述终端设备在所述辅小区中的BWP。可选地,所述第一BWP是预配置的。可选地,所述通信模块用于:从所述网络设备接收第一指示,所述第一指示用于指示所述第一BWP。
在一种可能的设计中,所述通信模块用于:从时间单元n+k开始,根据所述第一CSI报告周期,向所述网络设备上报所述辅小区的CSI,其中,所述时间单元n为接收到激活命令的时间单元,所述激活命令用于为所述终端设备激活所述辅小区,k为大于等于0且小于
Figure PCTCN2020070362-appb-000005
的整数,k 1是物理下行共享信道PDSCH的混合自动重传请求HARQ反馈时延,
Figure PCTCN2020070362-appb-000006
是帧结构参数μ的子帧中包括的时隙的个数,μ是用于上报所述辅小区的CSI的上行信道的帧结构参数。可选地,所述处理模块用于生成所述CSI。
在一种可能的设计中,在所述第一时间段,所述通信模块不在所述第一BWP中检测物理下行共享信道PDSCH和物理下行控制信息PDCCH。
在一种可能的设计中,所述第一时间段为开始激活所述辅小区到所述辅小区激活完成前的时间,所述第二时间段为从所述辅小区激活完成开始的时间。
在一种可能的设计中,所述处理模块利用所述通信模块:向所述网络设备上报能力信息,所述能力信息用于指示所述终端设备是否支持快速辅小区激活方法。
在一种可能的设计中,所述处理模块利用所述通信模块:从网络设备接收第二指示,所述第二指示用于使能快速辅小区激活方法。
第四方面,提供一种装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性地,
所述通信模块用于发送终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段发送第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段从所述终端设备接收所述辅小区的CSI;
所述通信模块用于发送所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段发送第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段从所述终端设备接收所述辅小区的CSI;
其中,所述第二时间在所述第一时间之后。
可选地,所述处理模块用于生成所述第一CSI-RS资源周期的配置、所述第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置、和/或所述第二CSI报告周期的配置。
可选地,所述第一CSI-RS资源周期的配置、第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置和第二CSI报告周期的配置包含在同一条信令中。
在一种可能的设计中,所述第一CSI-RS资源周期用于在第一时间段发送第一CSI-RS,包括:所述第一CSI-RS资源周期用于在第一时间段,在第一带宽部分BWP发送第一CSI-RS,其中,所述第一BWP是所述终端设备在所述辅小区中的BWP。可选地,所述第一BWP是预配置的。可选地,所述通信模块用于:向终端设备发送第一指示,所述第一指示用于指示所述第一BWP。所述处理模块用于生成所述第一指示。
在一种可能的设计中,所述通信模块用于:从时间单元n+k开始,根据所述第一CSI报告周期,接收所述终端设备上报的所述辅小区的CSI,其中,所述时间单元n为发送激活命令的时间单元,所述激活命令用于为所述终端设备激活所述辅小区,k为大于等于0且小于
Figure PCTCN2020070362-appb-000007
的整数,k 1是物理下行共享信道PDSCH的混合自动重传请求HARQ反馈时延,
Figure PCTCN2020070362-appb-000008
是帧结构参数μ的子帧中包括的时隙的个数,μ是用于接收所述辅小区的CSI的上行信道的帧结构参数。所述处理模块用于处理(例如解调、译码等)所述CSI。
在一种可能的设计中,在所述第一时间段,所述通信模块不在所述第一BWP中发送物理下行共享信道PDSCH和物理下行控制信息PDCCH。
在一种可能的设计中,所述第一时间段为开始激活所述辅小区到所述辅小区激活完成前的时间,所述第二时间段为从所述辅小区激活完成开始的时间。
在一种可能的设计中,所述通信模块用于:从所述终端设备接收能力信息,所述能力信息用于指示所述终端设备是否支持快速辅小区激活方法。所述处理模块用于处理所述能力信息。
在一种可能的设计中,所述通信模块用于:向所述终端设备发送第二指示,所述第二指示用于使能快速辅小区激活方法。所述处理模块用于生成所述第二指示。
第五方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口从网络设备接收终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段从所述网络设备接收第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段向所述网络设备上报所述辅小区的CSI;
所述处理器用于利用通信接口从所述网络设备接收所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段从所述网络设备接收第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段向所述网络设备上报所述辅小区的CSI;
其中,所述第二时间段在所述第一时间段之后。
可选地,所述第一CSI-RS资源周期的配置、第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置和第二CSI报告周期的配置包含在同一条信令中。
在一种可能的设计中,所述第一CSI-RS资源周期用于在第一时间段从所述网络设备接收第一CSI-RS,包括:所述第一CSI-RS资源周期用于在第一时间段,在第一带宽部分BWP从所述网络设备接收第一CSI-RS,其中,所述第一BWP是所述终端设备在所述辅小区中的BWP。可选地,所述第一BWP是预配置的。可选地,所述处理器用于利用通信接口:从所述网络设备接收第一指示,所述第一指示用于指示所述第 一BWP。
在一种可能的设计中,所述处理器用于利用通信接口:从时间单元n+k开始,根据所述第一CSI报告周期,向所述网络设备上报所述辅小区的CSI,其中,所述时间单元n为接收到激活命令的时间单元,所述激活命令用于为所述终端设备激活所述辅小区,k为大于等于0且小于
Figure PCTCN2020070362-appb-000009
的整数,k 1是物理下行共享信道PDSCH的混合自动重传请求HARQ反馈时延,
Figure PCTCN2020070362-appb-000010
是帧结构参数μ的子帧中包括的时隙的个数,μ是用于上报所述辅小区的CSI的上行信道的帧结构参数。
在一种可能的设计中,在所述第一时间段,所述处理器不利用通信接口在所述第一BWP中检测物理下行共享信道PDSCH和物理下行控制信息PDCCH。
在一种可能的设计中,所述第一时间段为开始激活所述辅小区到所述辅小区激活完成前的时间,所述第二时间段为从所述辅小区激活完成开始的时间。
在一种可能的设计中,所述处理器用于利用通信接口:向所述网络设备上报能力信息,所述能力信息用于指示所述终端设备是否支持快速辅小区激活方法。
在一种可能的设计中,所述处理器用于利用通信接口:从网络设备接收第二指示,所述第二指示用于使能快速辅小区激活方法。
第六方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二方面描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口发送终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段发送第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段从所述终端设备接收所述辅小区的CSI;
处理器用于利用通信接口发送所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段发送第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段从所述终端设备接收所述辅小区的CSI;
其中,所述第二时间在所述第一时间之后。
可选地,所述第一CSI-RS资源周期的配置、第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置和第二CSI报告周期的配置包含在同一条信令中。
在一种可能的设计中,所述第一CSI-RS资源周期用于在第一时间段发送第一CSI-RS,包括:所述第一CSI-RS资源周期用于在第一时间段,在第一带宽部分BWP发送第一CSI-RS,其中,所述第一BWP是所述终端设备在所述辅小区中的BWP。可选地,所述第一BWP是预配置的。可选地,所述处理器用于利用通信接口:向终端设备发送第一指示,所述第一指示用于指示所述第一BWP。
在一种可能的设计中,所述处理器用于利用通信接口:从时间单元n+k开始,根 据所述第一CSI报告周期,接收所述终端设备上报的所述辅小区的CSI,其中,所述时间单元n为发送激活命令的时间单元,所述激活命令用于为所述终端设备激活所述辅小区,k为大于等于0且小于
Figure PCTCN2020070362-appb-000011
的整数,k 1是物理下行共享信道PDSCH的混合自动重传请求HARQ反馈时延,
Figure PCTCN2020070362-appb-000012
是帧结构参数μ的子帧中包括的时隙的个数,μ是用于接收所述辅小区的CSI的上行信道的帧结构参数。所述处理模块用于处理(例如解调、译码等)所述CSI。
在一种可能的设计中,在所述第一时间段,所述所述处理器不利用通信接口在所述第一BWP中发送物理下行共享信道PDSCH和物理下行控制信息PDCCH。
在一种可能的设计中,所述第一时间段为开始激活所述辅小区到所述辅小区激活完成前的时间,所述第二时间段为从所述辅小区激活完成开始的时间。
在一种可能的设计中,所述处理器用于利用通信接口:从所述终端设备接收能力信息,所述能力信息用于指示所述终端设备是否支持快速辅小区激活方法。
在一种可能的设计中,所述处理器用于利用通信接口:向所述终端设备发送第二指示,所述第二指示用于使能快速辅小区激活方法。
第七方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面的方法。
第八方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面或第二方面的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第二方面的方法。
第十方面,本申请实施例提供一种系统,所述系统包括第三方面的装置和第四方面的装置,或者,包括第五方面的装置和第六方面的装置。
附图说明
图1所示为本申请实施例提供的载波聚合的示意图;
图2和图4所示为本申请实施例提供的终端向网络设备上报CSI的示意图;
图3所示为本申请实施例提供的信道测量方法的流程示意图;
图5(包括图5a至图5e)所示为本申请实施例提供的消息的结构示意图;
图6和图7所示为本申请实施例提供的装置的结构示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统。示例性地,本申请实施例提供的技术方案可以应用于支持载波聚合(carrier aggregation,CA)的通信系统,和/或可以应用于支持信道状态信息(channel state information,CSI)上报的通信系统。例如,本申请实施例提供的技术方案可以应用于但不限于:第五代(5th generation,5G)移动通信系统、长期演进(long term evolution,LTE)系统或未来移动通信系统。其中,5G还可以称为新无线(new radio,NR)。
在本申请实施例中,特征A和/或特征B可以指特征A、特征B、或者特征A和特征B。可扩展地,特征A、特征B和/或特征C(或者描述为:特征A,和/或特征B,和/或特征C)可以指特征A、特征B、特征C、特征A和B、特征A和C、特征B和C、或者特征A和B和C。
在通信系统中,本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备可以包括网络设备和终端设备。通信设备间的无线通信可以包括:网络设备和终端设备间的无线通信、网络设备和网络设备间的无线通信、或者终端设备和终端设备间的无线通信。在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信号传输”、“信息传输”或“传输”等。在本申请实施例中,传输可以包括发送或接收。示例性地,传输可以是上行传输,例如可以是终端设备向网络设备发送数据;传输也可以是下行传输,例如可以是网络设备向终端设备发送数据。
本申请实施例涉及的终端设备可以简称为终端,其可以是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobilephone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtualreality,VR)终端设备、增强现实(augmentedreality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smartcity)中的无线终端、智慧家庭(smarthome)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及的网络设备包括基站(basestation,BS),基站可以是一种部署在无线接入网中能够和终端进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的基站,其中,5G中的基站还可以称为传输接收点(transmission reception point,TRP)或gNB(generation NodeB)。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
需要说明的是,虽然本申请实施例以UE和基站之间的通信为例进行描述,但是其提供的方法还可以被应用于其它通信设备间的无线通信。例如,可以应用于宏基站和微基站之间的通信。应用该方法时,该场景中的宏基站的功能相当于本申请实施例中的基站的功能,该场景中的微基站的功能相当于本申请实施例中的UE的功能。
在通信系统中,为了提高数据传输速率,提出了载波聚合(carrier aggregation,CA)技术。CA技术的原理是将两个或更多个载波单元(component carrier,CC)聚合在一起以支持更大的传输带宽。1个小区可以包括一个下行载波单元和一个上行载波单元,或者1个小区可以包括一个下行载波单元和两个上行载波单元,或者1个小区可以只包括一个下行载波单元。一个下行载波单元对应于一个小区,可以将1个下行载波单元等同于1个小区。为了高效地利用零碎的频谱,可以支持多种类型的载波聚合。例如图1所示,可以支持相同频带内的邻接的载波单元之间的聚合,例如在频域,进行聚合的载波单元在频带A中相邻;可以支持相同频带内的非邻接的载波单元之间的聚合,例如在频域,进行聚合的载波单元在频带A中不相邻或者是离散的;可以支持不同频带内的载波单元之间的聚合,例如在频域,进行聚合的载波单元分别位于频带A和频带B中。CA中,用于进行聚合的不同载波单元的带宽可以相同,也可以不同,本申请实施例不做限制。
CA技术中,针对一个UE,基站可以为UE配置一个或多个服务小区(serving cell),并在服务小区中和UE进行上行和/或下行数据传输。在本申请实施例中,多个可以是2个、3个、4个或者更多个,本申请实施例不做限制。如果UE处于无线资源控制(radio resource control,RRC)连接(RRC_CONNECTED)态但并未配置CA,则该UE可以只有一个服务小区;如果UE处于RRC_CONNECTED态且配置了CA,则该UE可以有一个或多个服务小区。
CA技术中,基站为UE配置的服务小区中,可以包括一个主小区(primary Cell,PCell)。PCell对应的载波单元可以称为主载波单元(primary component carrier,PCC)。PCell的下行(downlink,DL)载波单元称为DL PCC,PCell的上行(uplink,UL)载波单元称为UL PCC。UE与基站建立了RRC链接后,该UE就有了PCell。例如,PCell可以是UE初始接入基站时所接入的小区,或者是基站和UE进行RRC连接重建时UE所接入的小区,还可以是在UE的小区切换(handover)过程中基站为UE通知的主小区。PCell用于基站与UE之间的RRC通信。
CA技术中,基站为UE配置的服务小区中,可以包括一个或多个辅小区(secondary Cell,SCell)。例如,基站为UE配置的服务小区中,除PCell外的服务小区都是该UE的SCell。SCell对应的载波单元可以称为辅载波单元(secondary component carrier,SCC)。SCell的下行载波单元称为DL SCC,SCell的上行载波单元称为UL SCC。SCell可以是在基站和UE进行RRC连接重配置时为UE添加的服务小区,用于提供额外的无线资源。例如,在初始安全激活流程(initial security activation procedure)之后,基站可以通过RRC连接重配置(RRC connection reconfiguration)消息为UE添加、修改、或释放SCell。在SCell中,基站与UE之间可以不进行RRC通信。
为了更好地管理被配置了CA的UE的功耗,CA技术中提出了SCell的激活
(activation)/去激活(deactivation)机制。可选地,通过RRC连接重配置消息为UE添加的新SCell或者修改的新SCell的状态是去激活状态。
为UE配置了SCell后,在该SCell处于激活态时或在激活BWP里,基站和UE可以在该SCell中进行上行和/或下行数据传输;在该SCell处于去激活态时或在去激活的BWP里,基站和UE不在该SCell或BWP中进行上行和/或下行数据传输。需要说 明的是,针对PCell可以不支持激活/去激活机制,UE的PCell总是处于激活态。基站和UE可以总是在PCell中进行数据传输。
示例性地,当一个SCell处于激活态时,UE可以在该SCell对应的载波单元中执行如下操作中的一种或多种:向基站发送信道探测信号(sounding reference signal,SRS);向基站发送物理上行控制信道(physical uplink control channel,PUCCH);向基站发送物理上行共享信道(physical uplink shared channel,PUSCH);向基站上报信道状态信息(channel state information,CSI);从基站检测物理下行控制信道(physical downlink control channel,PDCCH);和,从基站接收物理下行共享信道(physical downlink shared channel,PDSCH)。可选地,当一个SCell处于激活态时或在激活BWP中,UE可以从基站检测用于该SCell的PDCCH。其中,PDCCH可以用于携带数据信道的调度信息,例如PDSCH和/或PUSCH的调度信息。当为载波聚合配置了跨载波调度时,如果一个SCell的数据信道可以在另一小区中进行调度,则UE可以在该另一小区中从基站接收用于该SCell的PDCCH,该PDCCH用于携带该SCell中的数据信道的调度信息。其中,该另一个小区可以是该UE的PCell或者该UE的另一个SCell。
在本申请实施例中,多种可以是2种、3种、4种或者更多种,本申请实施例不做限制。
示例性地,当一个SCell处于去激活态或BWP为去激活状态时,UE在该SCell对应的载波单元中或BWP中不执行如下操作中的一种或多种:不向基站发送SRS、不向基站上报CSI、不向基站发送PUCCH、不向基站发送PUSCH、不向基站发送物理随机接入信道(physical random access channel,PRACH)、不从基站检测PDCCH、不从基站接收PDSCH。可选地,当一个SCell处于去激活态时,UE不从基站检测用于该SCell的PDCCH。
SCell的激活可以是由基站发送的媒体接入控制(media access control,MAC)控制单元(control element,CE)指示的;SCell的去激活可以是由基站发送的MAC CE指示的,或者是基于去激活定时器来实现的。去激活定时器的值可以是基站为UE配置的;或者可以是预配置的,比如预配置为固定的值。
基站可以通过MAC CE为UE指示该UE的一个或多个SCell的激活/去激活状态,其中不同SCell的激活/去激活状态可以相同,也可以不相同,本申请实施例不做限制。该一个或多个SCell可以是该UE的所有SCell,也可以是该UE的部分SCell,本申请实施例不做限制。
对于通过MAC CE被指示为激活状态的SCell,UE可以根据去激活定时器将该SCell去激活。例如,对于UE的一个SCell,当UE通过基站发送的MAC CE将该SCell确定为激活状态后,可以启动或重新启动去激活定时器。在去激活定时器到期(expire)前,如果UE从基站接收到用于该SCell的PDCCH,或者如果UE在该SCell中从基站接收到PDCCH或PDSCH,或者如果UE向基站发送了PUSCH,则UE启动或重新启动去激活定时器。如果去激活定时器到期,则UE将该SCell去激活。
当UE的一个SCell被激活后,UE可以向基站上报该SCell的CSI,用于基站进行下行数据调度,例如用于基站确定该SCell中的PDSCH的传输参数。可选地,该传输 参数包括调制编码机制(modulation and coding scheme,MCS)。
图2所示为UE在一个SCell中,例如辅小区A中,向基站上报CSI的示例图。如图2所示,基站通过RRC连接重配置消息为UE配置(例如,添加或修改)新的辅小区A。随后,基站可以为UE发送MAC CE,该MAC CE可以用于为UE激活辅小区A。可选地,该MAC CE还可以为该UE指示其它辅小区的激活/去激活状态。在时间单元(例如,子帧、时隙)n接收到该MAC CE后,UE可以处理该MAC CE。例如UE可以对该MAC CE进行解调、译码等内容解析处理。UE在完成MAC CE的内容解析后,还可以进行射频设置、基带准备等其他操作。完成这些处理后,在时间单元(例如,子帧、时隙)n+k,UE开始激活该辅小区A。例如UE从时间单元(例如,子帧、时隙)n+k开始向基站上报辅小区A的CSI,和/或为辅小区A启动去激活定时器。其中,n和k为0或正整数,n和k的值可以相同也可以不同。在本申请实施例中,正整数可以为1、2、3或更大的正整数,本申请实施例不做限制。
在本申请实施例中,时间单元可以是帧、子帧、时隙、微时隙、时域符号等。其中,一个帧中可以包括一个或多个子帧,一个帧或一个子帧中可以包括一个或多个时隙,一个帧、一个子帧、一个时隙或一个微时隙中可以包括一个或多个时域符号。其中,时域符号可以简称为符号。例如,时域符号可以是OFDMA符号,或者是SC-FDMA符号。
在不同的通信系统中,相同物理含义的时间单元的名称可以不同。示例性地,在一种可能的实现中,常用的时间单元的定义如表1、表2和表3所示。其中,帧结构参数numerology包括子载波间隔和/或循环前缀(cyclic prefix,CP)类型。表2和表3中,帧结构参数μ表示帧结构参数中的子载波间隔是15kHz×2 μ。其中,子载波可以是基于OFDMA的通信系统中,例如LTE或5G中,的频域资源单位。对于不同的子载波间隔,例如,子载波间隔Δf1是另一个子载波间隔Δf2的m倍,即Δf1=m×Δf2。则m个Δf2对应的符号的长度之和等于一个Δf1对应的符号的长度。
表1
Figure PCTCN2020070362-appb-000013
表2 CP类型为普通(normal)CP
Figure PCTCN2020070362-appb-000014
Figure PCTCN2020070362-appb-000015
表3 CP类型为扩展(extended)CP
Figure PCTCN2020070362-appb-000016
如图2所示,基站为UE配置辅小区A后,可以根据CSI测量资源周期,在辅小区A中向UE发送用于进行CSI测量的信号。其中,该信号可以是同步信号块(synchronization signal block,SSB)或者信道状态信息参考信号(channel state information-reference signal,CSI-RS)。SSB中可以包括以下信号中的一种或多种:主同步信息(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、物理广播信号(physical broadcast channel,PBCH)、和PBCH的解调参考信号(demodulation reference signal,DMRS)。当用于进行CSI测量的信号是SSB时,基站在辅小区A中,在用于映射SSB的资源中向UE发送SSB,CSI测量资源周期还可称为SSB资源周期、SSB发送周期或者其它名称,本申请实施例不做限制。当用于进行CSI测量的信号是CSI-RS时,基站在辅小区A中,在用于映射CSI-RS的资源中向UE发送CSI-RS,CSI测量资源周期还可称为CSI-RS资源周期、CSI-RS发送周期或者其它名称,本申请实施例不做限制。可选地,当用于进行CSI测量的信号是SSB时,基站还可以在辅小区A中为UE配置SSB测量周期。UE可以基于该SSB测量周期,对从基站接收到SSB进行测量,以得估计到辅小区A的CSI。
如图2所示,UE开始激活辅小区A后,可以根据CSI报告周期,从时间单元(例如,子帧,时隙等)n+k开始,向基站上报辅小区A的CSI,该CSI是根据从基站接收到的用于进行CSI测量的信号确定的。可选地,UE可以在PCell或者其它激活态辅小区中向基站上报辅小区A的CSI。
在本申请实施例中,CSI中可以包括以下信息中的一种或多种:信道状态指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI),CSI-RS资源指示(CSI-RS resource indicator,CRI),SSB资源指示(SS/PBCH block  resource indicator,SSBRI),层指示(layer indicator,LI),秩指示(rank indicator,RI)和层1参考信号接收功率(layer 1reference signal received power,L1-RSRP)。其中,CQI的值可以为0或者正整数,例如为0至15中任一个整数。当UE为基站上报的CSI中的CQI值为0时,可以认为该CSI是无效CSI;当UE为基站上报的CSI中的CQI值不为0或者大于0时,可以认为该CSI是有效CSI。
如图2所示,从开始激活辅小区A,到辅小区A的激活完成之前,即在辅小区A的激活过程中,由于处理时延等原因,UE为基站上报的CSI是无效CSI。辅小区A的激活完成后,在时间单元(例如,子帧,时隙等)n+k_active,UE开始为基站上报有效的CSI。可选地,UE开始为基站上报辅小区A的有效CSI,或者基站开始收到辅小区A的有效CSI,则认为辅小区A激活完成。此时,可以认为辅小区A从去激活态切换为激活态。例如图2中,在时隙n+k_active,辅小区A从去激活态切换为激活态。
如上所述,在辅小区A的激活过程中,基站无法从UE获得辅小区A的有效CSI,因此基站无法针对辅小区A执行基于信道条件的调度,从而无法有效利用传输资源提升数据传输速率。
基于图2所示的图例,本申请实施例提出了相应的信道测量方法、装置和系统,用于在辅小区的激活过程中更快的得到有效的CSI,以提高数据传输速率。该方法还可以被描述为快速执行辅小区激活的方法。
图3所示为本申请实施例提供的信道测量方法的流程示意图。基于图3,可以示出下述本申请实施例提供的第一种至第三种信道测量方法。图3所示的方法可以是针对一个辅小区的方法。针对多个辅小区,可以分别采用图3所示的方法进行信道测量。
第一种信道测量方法:
S301,基站向UE发送辅小区的第一CSI-RS资源周期的配置。其中,第一CSI-RS资源周期用于在第一时间段,基站为UE发送第一CSI-RS。
第一CSI-RS资源周期的配置用于指示第一CSI-RS资源周期。第一CSI-RS资源周期可以称为用于发送第一CSI-RS的资源的周期,用于发送第一CSI-RS的周期,或者传输第一CSI-RS的周期。
在本申请实施例中,用于发送CSI-RS的资源可以是时频资源,例如可以是以下资源类型中的一种或多种:用于发送CSI-RS的时隙或子帧、用于发送CSI-RS的资源元素(resource element,RE)。可选地,UE可以根据CSI-RS进行小区搜索,和/或在小区中和基站进行同步,和/或进行小区的信道质量测量。
示例性地,第一CSI-RS资源周期用于周期性地传输第一CSI-RS。基站可以为UE配置第一CSI-RS资源周期为N resource1个时间单元,第一CSI-RS资源偏移为offset resource1个时间单元。其中,N resource1为正整数,offset resource1是取值范围为0至N resource1-1的整数。则基站可以在每N resource1个时间单元中,在第offset resource1+1个时间单元中为UE发送第一CSI-RS。例如,基站为UE配置第一CSI-RS资源周期是20个时隙,第一CSI-RS资源偏移是5个时隙。其中,每个周期中的20个时隙的索引分别是0至19。则在每20个时隙中,在第6个时隙中,基站为UE发送第一CSI-RS。为了发送第一 CSI-RS,基站还可以为UE配置第一CSI-RS图案,该图案用于确定在用于发送第一CSI-RS的时间单元中,哪些RE用于映射第一CSI-RS的序列。
可选地,在本申请实施例中,第一时间段可以是辅小区的激活过程所对应的时间段。在本申请实施例中,辅小区的激活过程所对应的时间段为:从开始激活该辅小区的时间到该辅小区激活完成前的时间,例如图2或图4所示的从时间单元n+k开始到时间单元n+k_active前的时间单元,即从时间单元n+k开始到时间单元n+k_active-1的时间单元。
在本申请实施例中,开始激活辅小区的时间单元是UE可以开始为基站上报CSI的时间单元。例如图2或图4所示的时间单元n+k。该时间单元n+k是UE可以开始上报CSI的时间单元,实际中,UE可以在该时间单元上报CSI,也可以在该时间单元之后的时间单元上报CSI。例如,当时间单元n+k不能用于上报CSI时,UE可以在n+k之后的可以用于上报CSI的时间单元中进行CSI的上报。
在本申请实施例中,辅小区激活完成的时间单元是UE开始为基站上报有效CSI的时间单元。UE开始为基站上报辅小区的有效CSI,或者基站开始收到辅小区的有效CSI,则认为辅小区激活完成。此时,可以认为辅小区从去激活态切换为激活态,可以认为辅小区激活完成的时间单元是辅小区从去激活态转换为激活状态的时间单元。
在图3涉及的方法中,对于辅小区的激活,可以是根据MAC CE中的激活命令为UE激活的,或者可以是基站通过DCI中的激活命令为UE激活的,或者可以是基站通过RRC信令为UE激活的。其中,通过MAC CE激活辅小区的方法在图2涉及的方法中已经进行了详细的描述,这里不再赘述。通过DCI中的激活命令为UE激活辅小区时,DCI中可以指示被激活的辅小区的标识。通过RRC信令为UE激活辅小区时,该RRC信令可以是图2涉及的方法中介绍的RRC连接重配置消息。然而,和图2涉及的方法不同的是,通过RRC信令为UE激活辅小区时,可以预配置通过RRC连接重配置消息所添加或修改的辅小区是激活的,或者RRC连接重配置消息可以指示所添加或修改的辅小区的激活状态,相当于RRC连接重配置消息里包含了激活辅小区的指示信息或辅小区的激活状态。根据辅小区激活命令不同的发送方式,辅小区开始激活的时间可以不同。如使用DCI进行小区激活时,辅小区激活开始时间n+m1,小于或等于通过MAC CE发送激活命令时辅小区开始激活的时间n+k,其中m1为0或正整数,m1小于或等于k;如使用RRC信令进行小区激活时,辅小区激活开始时间n+m2,大于通过MAC CE发送激活命令时辅小区开始激活的时间n+k,其中m2为正整数,m2大于k。示例性的,m1的取值可以为0.5ms或1个或2个符号,或其对应的时隙个数,如
Figure PCTCN2020070362-appb-000017
或或
Figure PCTCN2020070362-appb-000018
示例性的,
Figure PCTCN2020070362-appb-000019
Figure PCTCN2020070362-appb-000020
m2的取值可以为16ms(毫秒)或其对应的时隙个数,如
Figure PCTCN2020070362-appb-000021
Figure PCTCN2020070362-appb-000022
其中
Figure PCTCN2020070362-appb-000023
是子帧中包括的时隙的个数,所述子帧的帧结构参数为μ,μ是用于上报该辅小区的CSI的上行信道的帧结构参数。上行信道可以是PUCCH或PUSCH。
可选地,S302,在第一时间段,根据第一CSI-RS资源周期,基站在该辅小区中为 UE发送第一CSI-RS。
该方法中,通过配置用于第一时间段的第一CSI-RS资源周期,例如该第一时间段为辅小区激活过程所对应的时间段,使得该周期的配置可以无需考虑辅小区激活完成后的操作,例如可以配置较短的周期而无需考虑资源开销,从而可以使得UE为基站上报CSI时,所上报的CSI是有效的CSI,因此可以在辅小区的激活过程中使基站快速得到有效CSI,以降低数据传输时延并提升数据传输速率。该方法可以适用于各种应用场景,尤其适用于低时延业务。
示例性地,第一CSI-RS资源周期可以配置为比图2涉及的方法中的CSI测量资源周期更短。例如,由于图2涉及的方法中的CSI测量资源周期用于辅小区激活过程中和辅小区激活完成后,考虑到用于进行CSI测量的信道的资源开销,图2涉及的方法中的CSI测量资源周期配置为60ms、40ms、20ms或者10ms等;由于图3涉及的方法中的第一CSI-RS资源周期可以仅用于第一时间段,由于第一时间段包括的时间远远小于辅小区激活完成后包括的时间,可以无需考虑第一CSI-RS的资源开销,则图3涉及的方法中的CSI测量资源周期配置为10ms、5ms、1ms、0.5ms甚至更短。由于图3涉及的方法相比图2涉及的方法,UE可以更快速地接收到CSI-RS,因此UE可以更快速地确定出有效的CSI。此外,相对图2涉及的方法,图3涉及的方法获得的CSI更加精确,更加匹配PDSCH信道,因此可以进一步提高数据传输速率。在图2涉及的方法中,在辅小区A的激活过程中,即使获取到有效CSI,初期所获得的有效CSI也可能是根据较早接收到的SSB进行估计得到的,不是精确CSI,无法精确地进行PDSCH的调度。其中,SSB的传输信道和PDSCH的传输信道是不匹配的,例如SSB是小区级信号,其发送波束较宽,采用单天线端口进行发送,PDSCH是UE级信号,PDSCH的发送波束较窄,采用单天线端口或多天线端口进行发送。因此,在图2涉及的方法中,从基站激活辅小区A,到基站接收到辅小区A的精确CSI的时延较长。根据上述分析,图3涉及的方法通过配置第一时间段使用的第一CSI-RS资源周期,UE可以更快速地接收到CSI-RS,从而可以根据CSI-RS快速地获取到精确的CSI,因此很好地解决了图2涉及的方法中的问题。
可选地,S301’,基站可以向UE发送辅小区的第二CSI-RS资源周期的配置。第二CSI-RS资源周期用于在第二时间段,基站为UE发送第二CSI-RS。第二时间段在第一时间段之后。
可选地,S304,在第二时间段,根据第二CSI-RS资源周期,基站在该辅小区中向UE发送第二CSI-RS。
第二CSI-RS资源周期的配置用于指示第二CSI-RS资源周期。第二CSI-RS资源周期可以称为用于发送第二CSI-RS的资源的周期,用于发送第二CSI-RS的周期,或者传输第二CSI-RS的周期。
类似S301,第二CSI-RS资源周期用于周期性地传输第二CSI-RS。基站使用第二CSI-RS资源周期为UE发送第二CSI-RS的方法类似基站使用第一CSI-RS资源周期为UE发送第一CSI-RS的方法。例如,基站可以为UE配置第二CSI-RS资源周期为N resource2个时间单元,第二CSI-RS资源偏移为offset resource2个时间单元。其中,N resource2为正整数,offset resource2是取值范围为0至N resource2-1的整数。则基站可以在每N resource2个时 间单元中,在第offset resource2+1个时间单元中为UE发送第二CSI-RS。
可选地,在本申请实施例中,第二时间段是从辅小区激活完成开始的时间。例如,第二时间段是从辅小区激活完成开始,到下一次辅小区被去激活之前的时间;或者第二时间段是从辅小区激活完成开始,到辅小区被释放之前的时间。
在该方法中,可选地,UE可以为基站上报CSI。该CSI可以是根据第一CSI-RS确定的,也可以是根据SSB确定的。UE可以在激活过程中为基站上报CSI,和/或可以从激活完成开始为基站上报CSI,本申请实施例不做限制。UE为基站上报CSI时,可以是周期性地上报、半静态地上报,或者非周期性地上报,本申请实施例不做限制。例如,UE上报CSI的方法可以是图2所示的方法,或者是下述第二种信道测量方法中所描述的CSI上报方法,或者是LTE或NR中描述的CSI上报方法,这里不再赘述。
第二种信道测量方法:
S301,基站向UE发送第一CSI报告周期的配置。其中,第一CSI报告周期用于在第一时间段,UE向基站上报该辅小区的CSI。
第一时间段的介绍同上述第一种信道测量方法中的描述,这里不再赘述。
第一CSI报告周期的配置用于指示第一CSI报告周期。第一CSI报告周期可以称为用于在第一时间段发送CSI报告的周期。
在本申请实施例中,UE为基站上报该辅小区的CSI时,可以在UE的PCell中上报,也可以在另一个激活的辅小区中上报,本申请实施例不做限制。UE为基站上报CSI时,可以通过物理上行共享信道(physical uplink shared channel,PUSCH)上报,也可以通过物理上行控制信道(physical uplink control channel,PUCCH)上报。
示例性地,第一CSI报告周期用于周期性地向基站上报CSI。基站可以为UE配置第一CSI报告周期为N report1个时间单元,第一CSI报告偏移为offset report1个时间单元。其中,N report1为正整数,offset report1是取值范围为0至N report1-1的整数。则在第一时间段,UE可以在每N report1个时间单元中,在第offset report1+1个时间单元中为基站上报该辅小区的CSI。
可选地,S303,在第一时间段,根据第一CSI报告周期,UE向基站上报该辅小区的CSI。
该方法中,通过配置用于第一时间段中,例如辅小区的激活过程中,的第一CSI报告周期,使得这该周期的配置可以无需考虑辅小区激活完成后的操作,例如可以配置较短的周期而无需考虑资源开销,从而可以使得UE所上报的CSI是有效的CSI,因此可以在辅小区的激活过程中使基站快速得到有效CSI,以降低数据传输时延并提升数据传输速率。该方法可以适用于各种应用场景,尤其适用于低时延业务。
该方法中,可以为UE配置更短的第一CSI报告周期,使得UE可以有更多的机会上报CSI,因此可以使得基站更快速地获得有效的甚至是精确的CSI,从而使得辅小区中的数据调度可以有效利用传输资源,以提升数据传输速率。例如,由于图2涉及的方法中的CSI报告周期用于辅小区激活过程中和辅小区激活完成后,考虑到用于进行CSI上报的资源开销,图2涉及的方法中的CSI报告周期配置为100ms、60ms、40ms、20ms或者10ms等;由于图3涉及的方法中的第一CSI-RS报告周期仅用于第一时间段,由于第一时间段包括的时间远远小于辅小区激活完成后包括的时间,可以无需考 虑CSI报告的资源开销,则图3涉及的方法中的CSI报告周期配置为20ms、10ms、5ms、1ms、0.5ms甚至更短。在图2涉及的方法中,即使UE获取了有效的甚至是精确的CSI,由于CSI上报周期较长,可能无法报告至基站,因此基站无法有效地利用资源提高数据传输速率。然而,图3涉及的方法中,用于第一时间段的CSI报告周期可以独立配置,因此可以配置的更短,则当UE获取了有效的甚至是精确的CSI后,可以及时上报至基站,因此基站可以有效地利用资源提高数据传输速率。
可选地,S301’,基站向UE发送第二CSI报告周期的配置。其中,第二CSI报告周期用于在第二时间段,UE向基站上报该辅小区的CSI。
第二时间段的介绍同上述第一种信道测量方法中的描述,这里不再赘述。
第二CSI报告周期的配置用于指示第二CSI报告周期。第二CSI报告周期可以称为用于在第二时间段发送CSI报告的周期。
示例性地,第二CSI报告周期用于在第二时间段周期性地向基站上报CSI。基站可以为UE配置第二CSI报告周期为N report2个时间单元,第二CSI报告偏移为offset report2个时间单元。其中,N report2为正整数,offset report2是取值范围为0至N report2-1的整数。则在第二时间段,UE可以在每N report2个时间单元中,在第offset report2+1个时间单元中为基站上报该辅小区的CSI。
可选地,S305,根据第二CSI报告周期,在第二时间段,UE向基站上报该辅小区的CSI。
在该方法中,可选地,基站可以为UE发送用于进行CSI测量的信号。例如,用于进行CSI测量的信号和发送方法可以是图2所示的方法,或者是第一种信道测量方法中所描述的方法,或者是LTE或NR中描述的CSI-RS发送方法,这里不再赘述。
第三种信道测量方法:
S301,基站向UE发送辅小区的第一CSI-RS资源周期的配置和第一CSI报告周期的配置。其中,第一CSI-RS资源周期用于在第一时间段,基站为UE发送第一CSI-RS;第一CSI报告周期用于在第一时间段,UE向基站上报该辅小区的CSI。
第一CSI-RS资源周期的配置的介绍同上述第一种信道测量方法中相应的描述,这里不再赘述。第一CSI报告周期的配置的介绍同上述第二种信道测量方法中相应的描述,这里不再赘述。
可替换地,第一CSI-RS资源周期的配置和/或第一CSI报告周期的配置是预配置的值。此时,和上述S301的区别是无需从基站向UE发送信令,以指示被预配置的参数的值。
可选地,S302,在第一时间段,根据第一CSI-RS资源周期,基站在该辅小区中向UE发送第一CSI-RS。该步骤同第一种信道测量方法中相应的描述,这里不再赘述。
可选地,可选地,S303,在第一时间段,根据第一CSI报告周期,UE向基站上报该辅小区的CSI。该步骤同第二种信道测量方法中相应的描述,这里不再赘述。
可选地,S301’,基站向UE发送辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置。其中,第二CSI-RS资源周期用于在第二时间段,基站向UE发送第二CSI-RS;第二CSI报告周期用于在第二时间段,UE向基站上报该辅小区的CSI。
第二CSI-RS资源周期的配置的介绍同上述第一种信道测量方法中相应的描述,这里不再赘述。第二CSI报告周期的配置的介绍同上述第二种信道测量方法中相应的描述,这里不再赘述。
可替换地,第二CSI-RS资源周期的配置和/或第二CSI报告周期的配置是预配置的值。此时,和上述S301’的区别是无需从基站向UE发送信令,以指示被预配置的参数的值。
可选地,S304,在第二时间段,根据第二CSI-RS资源周期,基站在该辅小区中向UE发送第二CSI-RS。该步骤同第一种信道测量方法中相应的描述,这里不再赘述。
可选地,S305,根据第二CSI报告周期,在第二时间段,UE向基站上报该辅小区的CSI。该步骤同第二种信道测量方法中相应的描述,这里不再赘述。
可选地,在图3涉及的方法中,基站为UE发送辅小区的第一CSI-RS资源周期的配置包括:基站为UE发送辅小区的第二CSI-RS资源周期的配置,其中第一CSI-RS资源周期是根据第二CSI-RS资源周期得到的。示例性地,第二CSI-RS资源周期为N resource2个时间单元,第二CSI-RS资源周期是第一CSI-RS资源周期的n1 resource倍。n1 resource大于或等于1,例如n1 resource是1.5、2、2.5、3、4或者更大的倍数。其中,n1 resource的值可以是预定义的,或者是基站通过信令为UE发送的。
可选地,在图3涉及的方法中,基站为UE发送辅小区的第二CSI-RS资源周期的配置包括:基站为UE发送辅小区的第一CSI-RS资源周期的配置,其中第二CSI-RS资源周期是根据第一CSI-RS资源周期得到的。示例性地,第一CSI-RS资源周期为N resource1个时间单元,第二CSI-RS资源周期是第一CSI-RS资源周期的n2 resource倍。n2 resource大于或等于1,例如n2 resource1.5、2、2.5、3、4或者更大的倍数。其中,n2 resource的值可以是预定义的,或者是基站通过信令为UE发送的。
可选地,在图3涉及的方法中,基站为UE发送辅小区的第一CSI报告周期的配置包括:基站为UE发送辅小区的第二CSI报告周期的配置,其中第一CSI报告周期是根据第二CSI报告周期得到的。示例性地,第二CSI报告周期为N report2个时间单元,第二CSI报告周期是第一CSI报告周期的n3 resource倍。n3 resource大于或等于1,例如n3 resource是1.5、2、2.5、3、4或者更大的倍数。其中,n3 resource的值可以是预定义的,或者是基站通过信令为UE发送的。
可选地,在图3涉及的方法中,基站为UE发送辅小区的第二CSI报告周期的配置包括:基站为UE发送辅小区的第一CSI报告周期的配置,其中第二CSI报告周期是根据第一CSI报告周期得到的。示例性地,第一CSI报告周期为N report1个时间单元,第二CSI报告周期是第一CSI报告周期的n4 resource倍。n4 resource大于或等于1,例如n4 resource是1.5、2、2.5、3、4或者更大的倍数。其中,n4 resource的值可以是预定义的,或者是基站通过信令为UE发送的。
可选地,在图3涉及的方法中,第一时间段为时间单元n+k至时间单元n+k+k_offset-1。其中,时间单元n+k为开始激活辅小区的时间单元(例如图2或图4所示),k_offset为正整数,例如为4、6、8、12或者其它整数。k_offset的值可以是 预配置的,也可以是基站通过信令为UE配置的。第二时间段为从时间单元n+k+k_offset开始的时间单元。例如从时间单元n+k+k_offset开始至辅小区被去激活前的时间单元,或者从从时间单元n+k+k_offset开始至辅小区被去释放前的时间单元。可选地,k+k_offset还可以被表示为k2,k2为大于k的整数。通过该方法,独立地配置各时间段的参数值,例如CSI-RS资源周期和/或CSI报告周期的值,可以为第一时间段配置更小的值,从而使得在辅小区激活过程中有更多的CSI-RS发送和/或CS上报机会,从而可以快速完成辅小区激活。该方法中第一时间段的长度可以大于、等于或小于辅小区激活过程所对应的时间段的长度,本申请实施例不做限制。
在本申请实施例中,图例中的步骤间并未限制时间先后顺序。图3中,例如S301和S301’可以在相同的时间进行,例如,基站在同一条信令中,为UE发送第一CSI-RS资源周期配置、第一CSI报告周期配置、第二CSI-RS资源周期配置和第二CSI报告周期配置;例如S301’可以位于S302或S303之后。
示例性地,以第一时间段是辅小区激活过程对应的时间段为例,图4所示为根据第三种信道测量方法进行信道测量的示例图。不同于图2,在图4中,基站通过MAC CE为UE激活辅小区A后,在辅小区A的激活过程中,基站根据第一CSI-RS资源周期为UE发送第一CSI-RS,使得UE可以快速获取辅小区A的精确CSI;UE根据第一CSI报告周期为基站上报辅小区A的精确CSI,使得基站可以快速获得辅小区A的精确CSI,因此可以对辅小区A进行精确地下行调度。在辅小区A的激活完成后,基站根据第二CSI-RS资源周期为UE发送第二CSI-RS;UE根据第二CSI报告周期为基站上报辅小区A的CSI。通过图3涉及的方法,独立配置用于辅小区激活过程中的第一CSI-RS资源周期和第一CSI报告周期,使得这两个周期的配置可以尽可能地短,例如二者可以分别比用于辅小区激活完成后的第二CSI-RS资源周期和第二CSI报告周期短,从而使基站可以在辅小区激活过程中快速获得辅小区A的精确CSI,例如在图4所示的方法中基站甚至在时间单元n+k时便可以获得辅小区A的精确CSI,使得基站可以快速地完成针对该辅小区的精确的调度。
示例性地,在图2涉及的方法中,UE在子帧n通过MAC CE接收到辅小区A的激活命令后,UE开始激活该辅小区A。例如UE在时间单元n+k开始向基站上报辅小区A的CSI,其中,该k的值等于
Figure PCTCN2020070362-appb-000024
k 1是物理下行共享信道PDSCH的混合自动重传请求HARQ反馈时延,
Figure PCTCN2020070362-appb-000025
是帧结构参数为μ的子帧中包括的时隙的个数,μ是用于上报辅小区A的CSI的上行信道的帧结构参数。
然而,在图3涉及的方法中,在时间单元n+k,UE开始向基站上报辅小区的CSI,其中,时间单元n为接收到激活命令的时间单元,该激活命令用于为UE激活该辅小区,k为大于等于0且小于
Figure PCTCN2020070362-appb-000026
的整数,k 1是PDSCH的混合自动重传请求(,HARQ)反馈时延,
Figure PCTCN2020070362-appb-000027
是子帧中包括的时隙的个数,所述子帧的帧结构参数为μ,μ是用于上报该辅小区的CSI的上行信道的帧结构参数。示例性的,k为k 1+3·
Figure PCTCN2020070362-appb-000028
或k为
Figure PCTCN2020070362-appb-000029
或k为N1个符号对应的时间单元,其中N1表示终端设备对物理下行共享信道(physical downlink shared channel,PDSCH)的处理时间。终端设备对PDSCH的处理时间是指终端设备从接收到PDSCH最后一个符号结 束开始,到接收到携带有混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息的物理信道的第一个上行符号所经过的时间。其中HARQ反馈信息为有效的HARQ反馈信息。HARQ反馈可以包括接收正确确认反馈,或者接收错误确认反馈。接收正确确认反馈可以通过ACK表示,接收错误确认反馈可以通过NACK表示。终端设备PDSCH的处理时间可以以符号为单位来计量。示例性的,k为N1个符号对应的时间单元加上1ms对应的时间单元。当两者相加时需要统一到相同的时间单元,如时隙,
Figure PCTCN2020070362-appb-000030
其中T symbols表示符号的个数。选择这些k值的原因包括辅小区激活开始时间不用等到UE反馈HARQ给基站,或者UE的处理时间不根据网络的配置,而根据UE的处理能力,网络侧的配置往往是UE最差的处理能力。另外,UE在处理信令解析和反馈HARQ信息可以同步进行,缩短时间。UE处理信令解析和射频或基带准备时间小于3ms等。
其中,PDSCH的HARQ反馈时延可以是预配置的值,例如正整数个子帧或者时隙,如4个。或者PDSCH的HARQ反馈时延可以是基站通过信令(例如DCI)为UE指示的。或者PDSCH的HARQ反馈时延可以是基站通过RRC信令+DCI的方式为UE指示的,其中,RRC信令用于配置PDSCH的HARQ反馈时延的候选值集合,DCI用于从候选集合中指示为UE所配置的具体的PDSCH的HARQ反馈时延。
类似上述分析,通过对比图2和图3涉及的方法中的n+k,可以得到,通过本申请实施例提供的方法,基站可以快速地完成针对该辅小区的精确的调度,从而可以提高数据传输速率。
在图3涉及的方法中,UE可以在主小区中或者其它辅小区中上报所述辅小区的CSI。上报所述辅小区的CSI时,可以通过PUCCH或者PUSCH上报该CSI。当通过PUCCH上报CSI时,
Figure PCTCN2020070362-appb-000031
中的μ是PUCCH的帧结构参数;当通过PUSCH上报CSI时,
Figure PCTCN2020070362-appb-000032
中的μ是PUSCH的帧结构参数。
在图2和/或图3涉及的方法中,除开始上报CSI和启动辅小区去激活定时器需在时间单元n+k进行,其它MAC层处理,例如PDSCH和/或PUSCH的调度、PRACH的发送等,需要在不早于时间单元n+k且不晚于时间单元n+k_uplimit进行,其中,k_uplimit为0或者正整数。在本申请实施例中,辅小区激活完成的时间还可以是可以进行小区搜索,自动增益控制,频率或时间同步,频率或时间跟踪,CSI处理的时间等。
在图3涉及的方法中,第一CSI-RS资源周期、第二CSI-RS资源周期、第一CSI报告周期、和/或第二CSI报告周期的单位可以是绝对时间,例如10ms、5ms、1ms、0.5ms等。或者,第一CSI-RS资源周期、第二CSI-RS资源周期、第一CSI报告周期、和/或第二CSI报告周期的单位可以是时间单元。例如,可以配置为整数个时隙或子帧。
在图3涉及的方法中,在一种可能的实现中,第一CSI-RS资源周期用于在第一时间段,基站在辅小区的第一带宽部分(bandwidth part,BWP)中为UE发送第一CSI-RS。相应地,第一CSI-RS资源周期用于在第一时间段,UE在辅小区的第一BWP中从基站接收该UE的第一CSI-RS。第一BWP是基站为UE在该辅小区中配置的BWP。
在本申请实施例中,信令可以是半静态信令和/或动态信令。半静态信令可以是无线资源控制(radio resource control,RRC)信令、广播消息、系统消息、或MAC控制元素(control element,CE)。其中,广播消息可以包括剩余最小系统消息(remaining minimum system information,RMSI)。动态信令可以是物理层信令。物理层信令可以是物理控制信道携带的信令或者物理数据信道携带的信令。其中,物理数据信道可以是下行信道,例如物理下行共享信道(physical downlink shared channel,PDSCH)。物理控制信道可以是物理下行控制信道(physical downlink control channel,PDCCH)、增强物理下行控制信道(enhanced physical downlink control channel,EPDCCH)、窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)或机器类通信物理下行控制信道(machine type communication(MTC)physical downlink control channel,MPDCCH)。其中,PDCCH或EPDCCH携带的信令还可以称为下行控制信息(downlink control information,DCI)。物理控制信道还可以是物理边链路控制信道(physical sidelink control channel),物理边链路控制信道携带的信令还可以称为边链路控制信息(sidelink control information,SCI)。
在本申请实施例中,BWP也可以称为载波带宽部分(carrier bandwidth part)。在频域,一个BWP中包括连续正整数个资源单元,比如包括连续正整数个子载波、资源块(resource block,RB)、或者资源块组(RB group,RBG)。其中,一个RB中包括正整数个子载波,例如12个;一个RBG中包括正整数个RB,例如4个或8个等。BWP可以是下行BWP或上行BWP。其中,上行BWP用于UE向基站发送信号,下行BWP用于基站向UE发送信号。
在一个小区中,基站可以为UE的上行或下行配置一个或多个BWP,例如上行最多4个BWP,下行最多4个BWP。上行和下行配置的BWP的数量可以相同,也可以不同。基站为UE配置的一个或多个BWP可以称为UE的配置BWP,例如,基站为UE配置的一个或多个上行BWP可以称为UE的上行配置BWP,基站为UE配置的一个或多个下行BWP可以称为UE的下行配置BWP。针对每个BWP,可以通过预配置或者基站为UE发送信令的方式,独立配置该BWP的numerology。不同BWP的numerology可能相同,也可能不同。
在上行和/或下行,基站可以为UE仅激活该UE的配置BWP中的一个BWP,UE和基站可以仅在激活的BWP上进行数据的收发。例如,UE仅在激活的上行BWP中向基站发送物理上行控制信道(physical uplink control channel,PUCCH)和/或物理上行共享信道(physical uplink shared channel,PUSCH),基站仅在激活的下行BWP中向UE发送PDCCH和/或PDSCH。
如上所述,可选地,第一CSI-RS资源周期用于在第一时间段,基站在辅小区的第一带宽部分(bandwidth part,BWP)中为UE发送第一CSI-RS。第一BWP可以是预配置的或者是基站通过信令为UE指示的。
可选地,第一BWP是UE在辅小区中用于接入基站的BWP。示例性地,该BWP是用于在UE接入基站的过程中,从基站接收随机接入响应(random access response,RAR)的BWP。该BWP可以称为初始(initial)下行BWP或者别的名称。
可选地,第一BWP是在辅小区中用于UE接收SSB的BWP。该BWP可以称为初 始(initial)下行BWP或者别的名称。
可选地,第一BWP是在辅小区中UE的下行配置BWP中的任一BWP。例如,可以是UE的下行配置BWP中索引为0的BWP或者第一个BWP。
可选地,第一BWP是在辅小区中UE的第一(first)下行激活BWP。示例性地,基站在辅小区中为UE配置该UE的下行配置BWP时或之后,可以配置其中一个下行BWP为UE的第一下行激活BWP。第一下行激活BWP可以是UE在辅小区中接入基站后,或者是UE切换至辅小区后,在该UE的下行配置BWP中第一次被激活的下行BWP。第一下行激活BWP还可以称为初始激活BWP、第一工作BWP、初始工作BWP或者其它名称,本申请实施例不做限制。该第一下行激活BWP可以为该第一BWP。
可选地,基站可以为UE发送第一指示,该第一指示用于指示第一BWP。第一指示的信令形式可以是上述任意信令类型,本申请实施例不做限制。
示例性地,基站可以通过第一指示,指示第一BWP的以下信息中的一种或多种:第一BWP的标识、第一BWP的资源位置(例如起始位置和带宽)。其中,第一BWP的起始位置可以是第一BWP中的起始RB的位置。
示例性地,基站在辅小区中为UE配置该UE的下行配置BWP时,或者基站在辅小区中为UE配置该UE的下行配置BWP之后,可以为UE发送第一指示,用于从UE的下行配置BWP中指示第一BWP的索引。例如,UE的下行配置BWP中包括3个BWP,分别为BWP 0、BWP 1和BWP 2。则第一指示中可以包括log 2(3)=2位比特,当该2位比特的值为00时,第一BWP为BWP 0;当该2位比特的值为01时,第一BWP为BWP 1;当该2位比特的值为10时,第一BWP为BWP 2。
可选地,第二CSI-RS资源周期用于在第二时间段,基站在辅小区的第二BWP中为UE发送第二CSI-RS。第二BWP可以是第一BWP,第二BWP也可以是预配置的或者是基站通过信令为UE指示的。预配置或者信令指示第二BWP的方法类似上述配置第一BWP的方法中所描述的方法,这里不再赘述。其中,第一BWP的配置方式和第二BWP的配置方式可以相同,也可以不同,本申请实施例不做限制。
可选地,基站可以在用于配置第一BWP的信令中为UE配置第一CSI-RS资源周期,即用于配置第一BWP的信令中包括第一CSI-RS资源周期配置;和/或基站可以在用于配置第一BWP的信令中为UE配置第一CSI报告周期,即用于配置第一BWP的信令中包括第一CSI报告周期配置。类似地,基站可以在用于配置第二BWP的信令中为UE配置第二CSI-RS资源周期,和/或基站可以在用于配置第二BWP的信令中为UE配置第二CSI报告周期。用于配置BWP的信令可以用于指示该BWP的以下信息中的一种或多种:起始位置、带宽、子载波间隔、和循环前缀类型。该用于配置BWP的信令的类型可以是RRC信令、MAC CE或者其它信令形式,本申请实施例不做限制。
可选地,如下信令格式,基站可以在CSI测量配置CSI-MeasConfig消息中为UE配置第一CSI-RS资源周期和/或第一CSI报告周期,或者CSI测量配置消息中包括第一CSI-RS资源周期配置和/或第一CSI报告周期配置。可选地,CSI测量配置消息CSI-MeasConfig中还可以包括第二CSI-RS资源周期配置和/或第二CSI报告周期配置。CSI测量配置CSI-MeasConfig消息的信令类型可以是系统消息、广播消息、RRC信令、MAC CE或者其它信令形式,本申请实施例不做限制。
示例性地,CSI测量配置CSI-MeasConfig消息中包括以下信元中的一个或多个:第一CSI-RS资源周期配置的信元,第一CSI报告周期的信元,第二CSI-RS资源周期配置的信元,第二CSI报告周期的信元,第一BWP的标识或索引(identifier,ID)。
如图5所示为CSI测量配置CSI-MeasConfig消息的结构示意图。如图5a所示,CSI测量配置消息中可以包括CSI资源配置列表,该列表中包括一个或多个CSI资源配置。CSI测量配置消息中可以包括CSI-RS资源组配置列表,该列表中包括一个或多个CSI-RS资源组配置。CSI测量配置消息中可以包括CSI-RS资源配置列表,该列表中包括一个或多个CSI-RS资源配置。CSI测量配置消息中可以包括CSI报告配置列表,该CSI报告配置列表中包括一个或多个CSI报告配置。
如图5b所示,对于一个CSI资源配置,其中可以包括该CSI资源的标识(ID);其中可以包括CSI-RS资源组列表,该列表用于关联一个或多个CSI-RS资源组,例如包括该一个或多个CSI-RS资源组各自的ID;其中可以包括BWP ID,用于关联使用该CSI资源配置的BWP。可选地,其中可以包括关联与该CSI资源配置的第一CSI-RS资源周期。
如图5c所示,对于一个CSI-RS资源组配置,其中可以包括该CSI-RS资源组的ID;其中可以包括CSI-RS资源列表,该列表用于关联一个或多个CSI-RS资源,例如包括该一个或多个CSI-RS资源各自的ID。可选地,其中可以包括关联与该CSI-RS资源组的第一CSI-RS资源周期。
如图5d所示,对于一个CSI-RS资源配置,其中可以包括该CSI-RS资源的ID;其中可以包括关联与该CSI-RS资源的第二CSI-RS资源周期。可选地,其中可以包括关联与该CSI-RS资源的第一CSI-RS资源周期。
如图5e所示,对于一个CSI报告配置,其中可以包括该CSI报告的ID;其中可以包括关联与该CSI报告的CSI资源的ID;其中可以包括关联与该CSI报告的第一CSI报告周期和第二CSI报告周期。
在一种可能的实现中,在图3涉及的方法中,在辅小区的激活过程中,基站不在辅小区中为UE发送PDSCH,和/或不在辅小区中为UE发送PDCCH,和/或不在辅小区中从UE接收PUCCH,和/或不在辅小区中从UE接收PUSCH。相应的,UE不在辅小区中检测基站发送的PDCCH,和/或不在辅小区中接收基站发送的PDCCH,和/或不在辅小区中向基站发送PUCCH,和/或不在辅小区中向基站发送PUSCH。例如,在辅小区的激活过程中,基站不在辅小区的第一BWP中向UE发送PDCCH和/或PDSCH。
可选地,在图3涉及的方法中,UE可以向基站上报第一能力,该第一能力用于指示UE是否支持快速辅小区激活,或者用于指示UE是否不支持快速辅小区激活。如果该第一能力指示UE支持快速辅小区激活,则该UE可以支持图3涉及的方法;如果该第一能力指示UE不支持快速辅小区激活,则该UE可以支持图2涉及的方法,或者执行现有LTE或NR中涉及的关于CSI-RS发送和/或CSI上报的方法。
可选地,基站可以向UE发送第二指示,该第二指示用于指示是否使能(或开启)快速辅小区激活。如果开启快速辅小区激活,则该UE和该基站执行图3涉及的方法;如果不开启快速辅小区激活,则该UE和该基站执行图2涉及的方法,或者执行现有LTE或NR中涉及的关于CSI-RS发送和/或CSI上报的方法。
执行图2的方法时,示例性地,可以描述为:基站为UE发送辅小区的第三CSI-RS资源周期的配置和第三CSI报告周期的配置。其中,第三CSI-RS资源周期用于在第一时间段和第二时间段,基站为UE发送第三CSI-RS;第三CSI报告周期用于在第一时间段和第二时间段,UE向基站上报该辅小区的CSI。或者可以描述为:基站为UE发送辅小区的第三CSI-RS资源周期的配置和第三CSI报告周期的配置。其中,第三CSI-RS资源周期用于从辅小区开始激活起,基站为UE发送第三CSI-RS;第三CSI报告周期用于从辅小区开始激活起,UE向基站上报该辅小区的CSI。
在本申请实施例中,“第一”、“第二”、“第三”等用于区分目的,其不用于限制大小或者先后顺序。
上述从基站和UE交互的角度描述了本申请实施例提供的方法。为了实现本申请实施例提供的方法中的功能,基站和/或UE可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图6是本申请实施例提供的装置600的结构示意图。其中,装置600可以是UE或基站,能够实现本申请实施例提供的方法;装置600也可以是能够支持UE或基站实现本申请实施例提供的方法的装置,装置600可以安装在基站或UE中。装置600可以是硬件结构、软件模块、或硬件结构加软件模块。装置600可以由芯片系统实现。
装置600中包括处理模块602和通信模块604。处理模块602可以生成用于发送的信息,并可以利用通信模块604发送该信息。处理模块602可以利用通信模块604接收信息,并处理该接收到的信息。处理模块602和通信模块604耦合。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或连接,其可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。耦合可以是有线连接,也可以是无线连接。
在本申请实施例中,通信模块可以是电路、模块、总线、接口、收发器或者其它可以实现收发功能的装置,本申请实施例不做限制。
图7是本申请实施例提供的装置700的结构示意图。其中,装置700可以是终端设备或基站,能够实现本申请实施例提供的方法;装置700也可以是能够支持终端设备或基站实现本申请实施例提供的方法的装置,比如芯片系统,装置700可以安装在基站或终端设备中。
如图7中所示,装置700中包括处理系统702,用于实现或者用于支持终端设备或基站实现本申请实施例提供的方法。处理系统702可以是一种电路,该电路可以由芯片系统实现。处理系统702中包括一个或多个处理器722,可以用于实现或者用于支持终端设备或基站实现本申请实施例提供的方法。当处理系统702中包括除处理器722以外的其它装置时,处理器722还可以用于管理处理系统702中包括的其它装置,示例性地,该其它装置可能为下述存储器724、总线726和总线接口728中一个或多个。例如,处理器722可以用于管理存储器724,或者处理器722可以用于管理存储器724、总线726和总线接口728。
处理系统702中还可以包括一个或多个存储器724,用于存储指令和/或数据。进 一步地,存储器724还可以包括于处理器722中。如果处理系统702中包括存储器724,处理器722可以和存储器724耦合。处理器722可以和存储器724协同操作。处理器722可以执行存储器724中存储的指令。当处理器722执行存储器724中存储的指令时,可以实现或者支持UE或基站实现本申请实施例提供的方法。处理器722还可能读取存储器724中存储的数据。存储器724还可能存储处理器722执行指令时得到的数据。
在本申请实施例中,存储器包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合;存储器还可以包括其它任何具有存储功能的装置,例如电路、器件或软件模块。
处理系统702还可以包括总线接口728,用于提供总线726和其它装置之间的接口。其中,总线接口还可以称为通信接口。在本申请实施例中,通信接口可以是电路、模块、总线、接口、收发器或者其它可以实现收发功能的装置,本申请实施例不做限制。
装置700还可能包括收发器706,用于通过传输介质和其它通信设备进行通信,从而用于装置700中的其它装置可以和其它通信设备进行通信。其中,该其它装置可能是处理系统702。示例性地,装置700中的其它装置可能利用收发器706和其它通信设备进行通信,接收和/或发送相应的信息。还可以描述为,装置700中的其它装置可能接收相应的信息,其中,该相应的信息由收发器706通过传输介质进行接收,该相应的信息可以通过总线接口728或者通过总线接口728和总线726在收发器706和装置700中的其它装置之间进行交互;和/或,装置700中的其它装置可能发送相应的信息,其中,该相应的信息由收发器706通过传输介质进行发送,该相应的信息可以通过总线接口728或者通过总线接口728和总线726在收发器706和装置700中的其它装置之间进行交互。
装置700还可能包括用户接口704,用户接口704是用户和装置700之间的接口,可能用于用户和装置700进行信息交互。示例性地,用户接口704可能是键盘、鼠标、显示器、扬声器(speaker)、麦克风和操作杆中至少一个。
上述主要从装置700的角度描述了本申请实施例提供的一种装置结构。在该装置中,处理系统702中包括处理器722,还可以包括存储器724、总线726和总线接口728中一种或多种,用于实现本申请实施例提供的方法。处理系统702也在本申请的保护范围。
本申请的装置实施例中,装置的模块划分是一种逻辑功能划分,实际实现时可以有另外的划分方式。例如,装置的各功能模块可以集成于一个模块中,也可以是各个功能模块单独存在,也可以两个或两个以上功能模块集成在一个模块中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可 以是通用计算机、专用计算机、计算机网络、网络设备、终端或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上各实施例仅用以说明本申请的技术方案,并不用于限定其保护范围。凡在本申请的技术方案的基础上所做的修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (23)

  1. 一种信道测量方法,其特征在于,包括:
    从网络设备接收终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段从所述网络设备接收第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段向所述网络设备上报所述辅小区的CSI;
    从所述网络设备接收所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段从所述网络设备接收第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段向所述网络设备上报所述辅小区的CSI;
    其中,所述第二时间段在所述第一时间段之后。
  2. 根据权利要求1所述的方法,其特征在于,所述第一CSI-RS资源周期用于在第一时间段从所述网络设备接收第一CSI-RS,包括:
    所述第一CSI-RS资源周期用于在第一时间段,在第一带宽部分BWP从所述网络设备接收第一CSI-RS,其中,所述第一BWP是所述终端设备在所述辅小区中的BWP。
  3. 根据权利要求2所述的方法,其特征在于,所述方法包括:
    预配置所述第一BWP;或者,
    从所述网络设备接收第一指示,所述第一指示用于指示所述第一BWP。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法包括:
    从时间单元n+k开始,根据所述第一CSI报告周期,向所述网络设备上报所述辅小区的CSI,其中,所述时间单元n为接收到激活命令的时间单元,所述激活命令用于为所述终端设备激活所述辅小区,k为大于等于0且小于
    Figure PCTCN2020070362-appb-100001
    的整数,k 1是物理下行共享信道PDSCH的混合自动重传请求HARQ反馈时延,
    Figure PCTCN2020070362-appb-100002
    是帧结构参数μ的子帧中包括的时隙的个数,μ是用于上报所述辅小区的CSI的上行信道的帧结构参数。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在所述第一时间段,不在所述第一BWP中检测物理下行共享信道PDSCH和物理下行控制信息PDCCH。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一时间段为开始激活所述辅小区到所述辅小区激活完成前的时间,所述第二时间段为从所述辅小区激活完成开始的时间。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一CSI-RS资源周期的配置、第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置和第二CSI报告周期的配置包含在同一条信令中。
  8. 一种信道测量方法,其特征在于,包括:
    发送终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段发送第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段从所述终端设备接收所述辅小区的CSI;
    发送所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周 期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段发送第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段从所述终端设备接收所述辅小区的CSI;
    其中,所述第二时间在所述第一时间之后。
  9. 根据权利要求8所述的方法,其特征在于,所述第一CSI-RS资源周期用于在第一时间段发送第一CSI-RS,包括:
    所述第一CSI-RS资源周期用于在第一时间段,在第一带宽部分BWP发送第一CSI-RS,其中,所述第一BWP是所述终端设备在所述辅小区中的BWP。
  10. 根据权利要求9所述的方法,其特征在于,所述方法包括:
    预配置所述第一BWP;或者,
    发送第一指示,所述第一指示用于指示所述第一BWP。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述方法包括:
    从时间单元n+k开始,根据所述第一CSI报告周期,接收所述终端设备上报的所述辅小区的CSI,其中,所述时间单元n为发送激活命令的时间单元,所述激活命令用于为所述终端设备激活所述辅小区,k为大于等于0且小于
    Figure PCTCN2020070362-appb-100003
    的整数,k 1是物理下行共享信道PDSCH的混合自动重传请求HARQ反馈时延,
    Figure PCTCN2020070362-appb-100004
    是帧结构参数μ的子帧中包括的时隙的个数,μ是用于接收所述辅小区的CSI的上行信道的帧结构参数。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,在所述第一时间段,不在所述第一BWP中发送物理下行共享信道PDSCH和物理下行控制信息PDCCH。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述第一时间段为开始激活所述辅小区到所述辅小区激活完成前的时间,所述第二时间段为从所述辅小区激活完成开始的时间。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述第一CSI-RS资源周期的配置、第一CSI报告周期的配置、所述第二CSI-RS资源周期的配置和第二CSI报告周期的配置包含在同一条信令中。
  15. 一种装置,其特征在于,用于实现如权利要求1-7任一项所述的方法。
  16. 一种装置,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使所述装置执行权利要求1-7任一项所述的方法。
  17. 一种装置,包括处理器和通信接口,其特征在于,
    所述处理器利用所述通信接口从网络设备接收终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段从所述网络设备接收第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段向所述网络设备上报所述辅小区的CSI;
    所述处理器利用所述通信接口从所述网络设备接收所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段从所述网络设备接收第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段向所述网络设备上报所述辅小区的CSI;
    其中,所述第二时间段在所述第一时间段之后。
  18. 一种装置,其特征在于,用于实现如权利要求8-14任一项所述的方法。
  19. 一种装置,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使所述装置执行权利要求8-14任一项所述的方法。
  20. 一种装置,包括处理器和通信接口,其特征在于,
    所述处理器利用所述通信接口发送终端设备的辅小区的第一信道状态信息参考信号CSI-RS资源周期的配置和第一信道状态信息CSI报告周期的配置,其中,所述第一CSI-RS资源周期用于在第一时间段发送第一CSI-RS,所述第一CSI报告周期用于在所述第一时间段从所述终端设备接收所述辅小区的CSI;
    所述处理器利用所述通信接口发送所述终端设备的所述辅小区的第二CSI-RS资源周期的配置和第二CSI报告周期的配置,其中,所述第二CSI-RS资源周期用于在第二时间段发送第二CSI-RS,所述第二CSI报告周期用于在所述第二时间段从所述终端设备接收所述辅小区的CSI;
    其中,所述第二时间在所述第一时间之后。
  21. 一种通信系统,其特征在于,包括权利要求15至17任一项所述的装置,和权利要求18至20任一项所述的装置。
  22. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-14任一项所述的方法。
  23. 一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-14任一项所述的方法。
PCT/CN2020/070362 2019-01-11 2020-01-04 信道测量方法和装置 WO2020143558A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20738403.3A EP3897055A4 (en) 2019-01-11 2020-01-04 CHANNEL MEASUREMENT METHOD AND DEVICE
US17/371,616 US20210337560A1 (en) 2019-01-11 2021-07-09 Channel Measurement Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028812.X 2019-01-11
CN201910028812.XA CN111436133B (zh) 2019-01-11 2019-01-11 信道测量方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,616 Continuation US20210337560A1 (en) 2019-01-11 2021-07-09 Channel Measurement Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2020143558A1 true WO2020143558A1 (zh) 2020-07-16

Family

ID=71521939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070362 WO2020143558A1 (zh) 2019-01-11 2020-01-04 信道测量方法和装置

Country Status (4)

Country Link
US (1) US20210337560A1 (zh)
EP (1) EP3897055A4 (zh)
CN (1) CN111436133B (zh)
WO (1) WO2020143558A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023137686A1 (en) * 2022-01-21 2023-07-27 Qualcomm Incorporated Adaptive channel state information (csi) report deactivation for beam prediction

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240056150A1 (en) * 2021-04-14 2024-02-15 Qualcomm Incorporated Semi-persistent channel state information reference signal activation in a direct secondary cell activation
US11832246B2 (en) * 2021-12-08 2023-11-28 PanPsy Technologies, LLC PUCCH cell switching and CSI reporting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211296A (zh) * 2015-01-20 2017-09-26 Lg电子株式会社 用于在无线通信系统中激活/停用小区的方法及其装置
WO2019028832A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 激活辅小区的方法、通信装置和网络设备
CN109391986A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种辅小区激活方法、接入网设备、通信装置以及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218481B2 (en) * 2009-04-22 2019-02-26 Lg Electronics Inc. Apparatus and method for transmitting a reference signal in a wireless communication system
CN102812658B (zh) * 2010-01-08 2015-12-16 交互数字专利控股公司 针对多个载波的信道状态信息传输的方法及设备
CN103889879B (zh) * 2011-10-19 2017-03-22 克朗设备公司 识别、匹配并跟踪图像序列中的多个对象
US9496997B2 (en) * 2012-09-07 2016-11-15 Lg Electronics Inc. Method and apparatus for measuring channel in wireless communication system
US9674727B2 (en) * 2014-01-17 2017-06-06 Qualcomm Incorporated Indication of cell mode and CSI feedback rules for cell on-off procedure
CN106209277B (zh) * 2014-11-07 2021-02-09 北京三星通信技术研究有限公司 一种信道状态信息测量的方法和用户设备
US9999073B2 (en) * 2014-11-18 2018-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Signaling adapted CSI-RS periodicities in active antenna systems
US11239981B2 (en) * 2017-06-27 2022-02-01 Intel Corporation Multiplexing of channel state information reference signals (CSI-RS)
EP3586469B1 (en) * 2018-01-09 2020-12-02 Ofinno, LLC Physical and mac layer processes in a wireless device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211296A (zh) * 2015-01-20 2017-09-26 Lg电子株式会社 用于在无线通信系统中激活/停用小区的方法及其装置
WO2019028832A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 激活辅小区的方法、通信装置和网络设备
CN109391986A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种辅小区激活方法、接入网设备、通信装置以及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Delay Reduction for SCell Activation", R2-1711641, 3GPP TSG-RAN WG2 MEETING #99BIS, 13 October 2017 (2017-10-13), XP051355685 *
LG ELECTRONICS INC.: "Fallback to Normal CQI Reporting Period", R2-1807952, 3GPP TSG-RAN2 MEETING #102, 25 May 2018 (2018-05-25), XP051465022 *
NOKIA ET AL.: "Running CR for euCA Stage-2", R2-1806788, 3GPP TSG-RAN WG2 MEETING #101, 20 April 2018 (2018-04-20), XP051443243 *
See also references of EP3897055A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023137686A1 (en) * 2022-01-21 2023-07-27 Qualcomm Incorporated Adaptive channel state information (csi) report deactivation for beam prediction

Also Published As

Publication number Publication date
CN111436133A (zh) 2020-07-21
EP3897055A1 (en) 2021-10-20
CN111436133B (zh) 2023-07-14
EP3897055A4 (en) 2022-03-02
US20210337560A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US10334576B2 (en) Systems and methods for uplink control information reporting with license-assisted access (LAA) uplink transmissions
CN107852313B (zh) 下行链路控制信息接收方法和用户设备以及下行链路控制信息发送方法和基站
US10701720B2 (en) Uplink signal transmission method and user equipment, and uplink signal reception method and base station
CN107534992B (zh) 上行链路数据发送方法和用户设备以及上行链路数据接收方法和基站
US20220210697A1 (en) Transmit format for multi-segment pusch
EP3616450B1 (en) Multiple starting positions for uplink transmission on unlicensed spectrum
CA3061633A1 (en) Beam configuration method and apparatus
WO2020228589A1 (zh) 通信方法和通信装置
WO2019160483A1 (en) Sps release handling for code block group-based dynamic harq-ack codebook
CN113541869B (zh) 通信系统中的终端、基站及其执行的方法
CN113692769A (zh) 发送下行链路控制信息的方法和基站、接收下行链路控制信息的方法和用户设备以及存储介质
WO2020143558A1 (zh) 信道测量方法和装置
US20220159568A1 (en) Method and apparatus for transmitting and receiving terminal support information in wireless communication system
WO2019139139A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2019122004A (ja) 基地局装置、端末装置、通信方法、および、集積回路
US20230021623A1 (en) Resolving Collision of Semi-Persistent Scheduling Data
WO2022022286A2 (en) Method and apparatus for transmitting csi report
CN114731691A (zh) 用于发送下行链路控制信息的方法和基站及用于接收下行链路控制信息的用户设备、设备和存储介质
WO2018185641A1 (en) Dynamic start for transmission on unlicensed spectrum
US20230179385A1 (en) Enhanced scheduling for beam based transmission
CN115152157A (zh) 在无线通信系统中执行波束故障恢复过程的方法及其设备
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
JP2023546875A (ja) 端末装置、ネットワーク装置、及び端末装置により実行される方法
US20240049151A1 (en) Method and device for power control for multi-connectivity in wireless communication system
TW201933921A (zh) 一種通道資源集的指示方法及裝置、電腦存儲媒介

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738403

Country of ref document: EP

Effective date: 20210714