WO2019028832A1 - 激活辅小区的方法、通信装置和网络设备 - Google Patents

激活辅小区的方法、通信装置和网络设备 Download PDF

Info

Publication number
WO2019028832A1
WO2019028832A1 PCT/CN2017/097093 CN2017097093W WO2019028832A1 WO 2019028832 A1 WO2019028832 A1 WO 2019028832A1 CN 2017097093 W CN2017097093 W CN 2017097093W WO 2019028832 A1 WO2019028832 A1 WO 2019028832A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
time unit
period
secondary cell
terminal device
Prior art date
Application number
PCT/CN2017/097093
Other languages
English (en)
French (fr)
Inventor
苗金华
权威
张戬
柴丽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020002780-4A priority Critical patent/BR112020002780A2/pt
Priority to PCT/CN2017/097093 priority patent/WO2019028832A1/zh
Priority to JP2020529786A priority patent/JP2020530735A/ja
Priority to EP17920712.1A priority patent/EP3661271A4/en
Priority to CN201780093664.9A priority patent/CN110999408A/zh
Publication of WO2019028832A1 publication Critical patent/WO2019028832A1/zh
Priority to US16/786,370 priority patent/US20200186318A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the present application relates to the field of communications, and more specifically to a method, a communication device, and a network device for activating a secondary cell in the field of communications.
  • a primary cell is a cell operating on a primary frequency band for a user equipment (UE).
  • UE user equipment
  • SCell secondary cell
  • RRC radio resource control
  • the terminal device In the process of the secondary cell activation, the terminal device first receives the RRC connection reconfiguration message sent by the network device. If the RRC connection reconfiguration message includes the secondary cell addition signaling, the terminal device sends the RRC connection configuration message. The carrier is added as a secondary cell. Thereafter, the terminal device receives an activation command of the secondary cell, indicating that the activation process begins. After the terminal device completes the hardware preparation, that is, after the activation process is completed, an uplink (UL) signal is sent to the network device to notify the network device that the secondary cell is successfully activated. After receiving the uplink signal correctly, the network device sends a scheduling command (signaling or data) to the terminal device, where the signaling or data is used to notify the terminal device to perform data reception or transmission.
  • UL uplink
  • the uplink signal will continue to be transmitted according to the configuration information in the RRC Connection Reconfiguration message.
  • the network device sends signaling to the terminal device after the time of the maximum activation time configured by the system. Or data.
  • the transmission period of the uplink signal is long, the activation delay is large.
  • the network resource for transmitting the uplink signal consumes a large amount.
  • the present application provides a method, a communication device, and a network device for activating a secondary cell.
  • the uplink signal can be sent in a short period. After the activation of the secondary cell is completed, a large period or a scheduling-based The way to send the uplink signal. Therefore, the problem of imbalance of network resource consumption and activation delay during and after activation of the secondary cell is solved, and data transmission efficiency and user experience are improved.
  • a method for activating a secondary cell includes: after receiving a secondary cell activation command sent by a network device, the terminal device sends the first time to the network device according to the first period after receiving the secondary cell activation command sent by the network device.
  • the second period is greater than the first period, or the terminal device sends a second uplink signal to the network device according to the manner in which the network device is scheduled after the second time unit.
  • the method for activating a secondary cell provided by the first aspect in the secondary cell activation process, that is, the first time unit after receiving the activation command from the terminal device, to the time unit that receives the scheduling command or reaches the longest activation time
  • the first uplink signal is sent to the network device according to the first period, and the probability that the network device receives the first uplink signal for notifying that the secondary cell has been activated is increased, so that the network device can receive earlier.
  • the first uplink signal is sent, so that the scheduling command is sent to the terminal device according to the first uplink signal earlier, which shortens the time taken by the network device to learn that the secondary cell has been activated successfully, and reduces the activation delay.
  • the terminal device After receiving the scheduling command, the terminal device sends the second uplink signal in a larger second period or in a network device scheduling manner, which reduces network resources used to send the second uplink signal. Therefore, the problem of imbalance of network resource consumption and activation delay during and after activation of the secondary cell is solved, and data transmission efficiency and user experience are improved.
  • the method before the terminal device receives the secondary cell activation command, the method further includes: receiving, by the terminal device, a configuration message of the secondary cell sent by the network device, the configuration message At least one of configuration information of the second period and configuration information based on a manner of scheduling the network device, and configuration information of the first period.
  • the first uplink signal includes a first channel state information CSI and/or a first sounding reference signal SRS, where the second uplink signal includes a second CSI and/or a second SRS .
  • the first time unit is a time unit that the terminal device can send the first uplink signal to the network device.
  • the first period is 1 ms or 1 TTI, or one time slot, or one sTTI.
  • a method for activating a secondary cell includes: after the network device sends a secondary cell activation command to the terminal device, starting from the first time unit, the network device receives the terminal device to send according to the first period. a first uplink signal; the network device determining a second time unit, the second time unit being a time unit for which the longest activation time arrives or a time unit for transmitting a scheduling command to the terminal device; the network device being in the second time unit Then, receiving the second uplink signal sent by the terminal device according to the second period, or receiving the second uplink signal according to the manner scheduled by the network device, where the second period is greater than the first period.
  • the method for activating a secondary cell provided by the second aspect, the network device starts with a first time unit that sends an activation command, and sends a scheduling command or a time unit that reaches a maximum activation time, according to a smaller first period Receiving the first uplink signal, increasing the probability that the network device receives the first uplink signal for notifying that the secondary cell has been activated, so that the network device can receive the first uplink signal earlier, and shortening the network device
  • the time taken for the secondary cell to be activated successfully is known, and the activation delay is reduced.
  • the network device receives the second uplink signal in a larger second period or in a network device scheduling manner, and reduces network resources consumed by the second uplink signal. Therefore, the problem of imbalance of network resource consumption and activation delay during and after activation of the secondary cell is solved, and data transmission efficiency and user experience are improved.
  • the method before the network device sends the secondary cell activation command to the terminal device, the method further includes: the network device sending, to the terminal device, a configuration message of the secondary cell, the configuration The message includes at least one of configuration information of the second period and configuration information based on a manner in which the network device is scheduled, and configuration information of the first period.
  • the first uplink signal includes first channel state information CSI and/or a first sounding reference signal SRS, where the second uplink signal includes a second CSI and/or a second SRS .
  • the first time unit is a time unit that the terminal device can send the first uplink signal to the network device.
  • the first period is 1 ms or 1 TTI, or a time slot, or a short TTI.
  • a third aspect provides a method for activating a secondary cell, where the method includes: the network device sends a secondary cell activation command to the terminal device in a third time unit; the network device starts from the third time unit, according to the first cycle The terminal device sends a first pilot signal; the network device determines a fourth time unit, where the fourth time unit is a time unit reached by the longest activation time or a time unit for the network device to send a scheduling command to the terminal device; After the fourth time unit, the network device sends a second pilot signal to the terminal device according to the second period, where the second period is greater than the first period.
  • the third aspect provides a method for activating a secondary cell.
  • a secondary cell activation process that is, during a period in which the network device sends an activation command and a scheduling command, the network device sends the first guide to the terminal device according to a smaller first period.
  • the frequency signal increases the probability that the terminal device receives the first pilot signal for downlink synchronization, so that the terminal device can complete the downlink synchronization earlier, thereby completing the hardware preparation work earlier, so that the network can be earlier to the network.
  • the device sends an uplink signal for notifying that the secondary cell has been successfully activated, and the network device can send the scheduling command earlier according to the uplink signal.
  • the time taken by the network device to learn that the secondary cell is successfully activated can be reduced, and the activation delay is reduced.
  • the network device After the scheduling command is sent, the network device sends the second pilot signal in a second, larger period, which reduces the network resources consumed by sending the second pilot signal. Therefore, the problem that the network resource consumption and the activation delay are unbalanced during the activation of the secondary cell and after the activation is solved, and the data transmission efficiency and the user experience are improved.
  • the method before the network device sends the secondary cell activation command, the method further includes: the network device sending a configuration message of the secondary cell to the terminal device, where the configuration message includes the Configuration information of the first period and configuration information of the second period.
  • the first pilot signal includes a first demodulation reference signal DMRS and/or a first beam pilot signal
  • the second pilot signal includes a second DMRS and/or Second beam pilot signal.
  • a fourth aspect provides a method for activating a secondary cell, where the method includes: receiving, by a terminal device, a secondary cell activation command sent by a network device, where the terminal device starts from the third time unit, according to the first Periodically receiving a first pilot signal sent by the network device; the terminal device determines a fourth time unit, where the fourth time unit is a time unit reached by the longest activation time or a scheduling command sent by the terminal device to the network device After the fourth time unit, the terminal device receives the second pilot signal sent by the network device according to the second period, where the second period is greater than the first period.
  • the method for activating a secondary cell when the terminal device receives the activation command and the scheduling command, the terminal device receives the first pilot signal according to the smaller first period, and increases the receiving of the terminal device.
  • the probability of the first pilot signal used for downlink synchronization may enable the terminal device to complete the downlink synchronization earlier, thereby completing the hardware preparation work earlier. Therefore, an uplink signal for notifying that the secondary cell has been successfully activated may be sent to the network device earlier, which may reduce the time taken by the network device to learn that the secondary cell is successfully activated, and reduce the activation delay.
  • the terminal device After receiving the scheduling command, the terminal device receives the second pilot signal in a second, larger period, and reduces network resources consumed by the second pilot signal. Therefore, the problem that the network resource consumption and the activation delay are unbalanced during the activation of the secondary cell and after the activation is solved, and the data transmission efficiency and the user experience are improved.
  • the receiving, by the terminal device, the network device, sending the secondary cell Before the command is activated the method further includes: the terminal device receiving the configuration message of the secondary cell sent by the network device, where the configuration message includes configuration information of the first period and configuration information of the second period.
  • the first pilot signal includes a first demodulation reference signal DMRS and/or a first beam pilot signal
  • the second pilot signal includes a second DMRS and/or Second beam pilot signal.
  • a fifth aspect provides a method for activating a secondary cell, where the method includes: receiving, by the terminal device, indication information sent by the network device, where the indication information is used to indicate that the terminal device starts RRM measurement, CSI measurement, downlink synchronization, and hardware preparation work. At least one of the terminal devices, according to the indication information, starts to perform RRM measurement, downlink synchronization, and/or hardware preparation work; after receiving the indication information, the terminal device receives the assistance sent by the network device in the first time unit. a cell activation command; the terminal device sends a first uplink signal to the network device according to the first period, starting from the first time unit.
  • the terminal device does not wait for the secondary cell activation command sent by the network device to start the hardware preparation work, but receives the indication information sent by the network device, and receives the auxiliary information.
  • hardware preparation is started.
  • the indication information can also be an activation command. In this way, the terminal device can complete the hardware preparation work earlier.
  • the terminal device After receiving the secondary cell activation command, the terminal device sends the first uplink signal to the network device according to the first period, so that the network device learns that the secondary cell has been activated successfully, and shortens the network device to learn that the secondary cell has been activated. The time taken for the activation to succeed, reducing the activation delay, so that the network device can schedule the secondary cell earlier.
  • the method further includes: determining, by the terminal device, a second time unit, where the time unit of the longest activation time arrives or receiving the scheduling sent by the network device a time unit of the command; after the second time unit, the terminal device sends a second uplink signal to the network device according to the second period or according to the manner of the network device scheduling, where the second period is greater than the first period.
  • the terminal device after the terminal device receives the secondary cell activation command, the terminal device sends the first uplink signal to the network device according to the smaller first period, so that the network device can learn that the secondary cell has been activated successfully and shortens.
  • the network device learns the time taken for the secondary cell to be activated successfully, reduces the activation delay, and after receiving the scheduling command or reaching the longest activation time, the terminal device uses a larger second period or a network device-based scheduling manner. Sending the second uplink signal reduces network resources consumed by transmitting the second uplink signal. Therefore, the problem of imbalance of network resource consumption and activation delay during and after activation of the secondary cell is solved, and data transmission efficiency and user experience are improved.
  • the terminal device after receiving the indication information, starts at least one of RRM measurement, CSI measurement, downlink synchronization, and hardware preparation work, where the hardware preparation work includes a phase locked loop. At least one of adjustment, crystal adjustment, automatic gain control, and RF chain activation.
  • the indication information and the secondary cell activation command are sent in the form of a MAC CE or in the form of physical layer signaling.
  • the method before the terminal device receives the indication information, the method further includes: receiving, by the terminal device, a configuration message of the secondary cell sent by the network device, where the secondary cell
  • the configuration message includes at least one of period information of the RRM measurement, a period of the CSI measurement, a configuration of the first period, and configuration information of the second period.
  • the first uplink signal includes first channel state information CSI and/or a first sounding reference signal SRS
  • the second uplink signal includes a second CSI and/or a second SRS .
  • a method for activating a secondary cell comprising: sending, by a network device, a terminal device
  • the indication information is used by the terminal device to start at least one of RRM measurement, CSI measurement, downlink synchronization, and hardware preparation work; after transmitting the indication information, the network device sends the auxiliary device to the terminal device in the first time unit. a cell activation command; the network device receives the first uplink signal sent by the terminal device according to the first period, starting from the first time unit.
  • the method for activating a secondary cell provided by the network device before the network device sends a secondary cell activation command to the terminal device, sends the indication information to the terminal device, where the indication information is used by the terminal device to start hardware preparation work.
  • the terminal device does not wait until the secondary cell activation command sent by the network device is received, and then starts the hardware preparation work. Before receiving the secondary cell activation command, the hardware preparation work is started.
  • the indication information can also be an activation command. In this way, the terminal device can complete the hardware preparation work earlier.
  • the terminal device After the network device sends the secondary cell activation command, the terminal device sends the first uplink signal to the network device according to the first period, so that the network device learns that the secondary cell has been activated successfully, and shortens the network device to learn the secondary cell. The time taken for success has been activated, and the activation delay is reduced so that the network device can schedule the secondary cell earlier.
  • the method further includes: determining, by the network device, a second time unit, where the time unit of the longest activation time arrives or receiving the scheduling sent by the network device a time unit of the command; after receiving the second time unit, the network device receives the second uplink signal sent by the terminal device according to the second period or the manner according to the network device scheduling, where the second period is greater than the first period.
  • the first uplink signal sent by the terminal device is received according to a smaller first period, and the network device can learn that the secondary cell has been activated successfully. The time for the network device to learn that the secondary cell has been successfully activated is shortened, and the activation delay is reduced.
  • the network device After the network device sends the scheduling command or reaches the longest activation time, the network device schedules in a second period or based on the network device.
  • the method receives the second uplink signal sent by the terminal device, and reduces network resources consumed by the second uplink signal. Therefore, the problem of imbalance of network resource consumption and activation delay during and after activation of the secondary cell is solved, and data transmission efficiency and user experience are improved.
  • the method before the network device sends the indication information, the method further includes: the network device sending a configuration message of the secondary cell to the terminal device, where the configuration of the secondary cell
  • the message includes at least one of period information of the RRM measurement, a period of the CSI measurement, a configuration of the first period, and configuration information of the second period.
  • the indication information and the secondary cell activation command are sent in the form of a MAC CE or in the form of physical layer signaling.
  • the first uplink signal includes first channel state information CSI and/or a first sounding reference signal SRS
  • the second uplink signal includes a second CSI and/or a second SRS .
  • a communication device comprising a processor, a memory and a transceiver for supporting the communication device to perform a corresponding function in the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, the processor is configured to invoke the instruction to implement the first, fourth and fifth aspects above.
  • a method of activating a secondary cell in any of the aspects and various implementations thereof.
  • a communication device including a processing module, a storage module, and a transceiver module, configured to support the communication device to perform the functions of the terminal device in any of the above aspects or the first aspect of the first aspect, or The function of the terminal device in any of the possible implementations of the fourth aspect or the fourth aspect, or the function of the communication device in any of the possible implementations of the fifth aspect or the fifth aspect.
  • Function can be implemented by hardware or by The hardware implements the corresponding software implementation, and the hardware or software includes one or more modules corresponding to the above functions.
  • a network device including a processor, a memory, and a transceiver for supporting the network device to perform a corresponding function in the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, the transceiver is configured to perform specific signal transceiving under the driving of the processor, and the processor is configured to invoke the instruction to implement the second, third and sixth aspects above.
  • a method of activating a secondary cell in any of the aspects and various implementations thereof.
  • a network device including a processing module, a storage module, and a transceiver module, is configured to support the terminal device to perform the function of the network device in any of the foregoing second aspect or the second aspect, or The function of the network device in the third aspect or any possible implementation manner of the third aspect, or the function of the terminal device in any of the foregoing sixth or sixth possible aspects.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • a communication system comprising the communication device provided in the seventh aspect or the eighth aspect, and the network device provided in the ninth or tenth aspect.
  • the communication system can perform the method of activating a secondary cell provided by the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, and the sixth aspect.
  • a twelfth aspect a computer readable storage medium for storing a computer program, the computer program comprising a method for performing the first aspect or any one of the possible implementations of the first aspect, the fourth The method of any one of the possible implementations of the aspect or the method of any one of the foregoing possible implementations of the fifth aspect or the fifth aspect.
  • a thirteenth aspect a computer readable storage medium for storing a computer program, the computer program comprising a method for performing any of the possible implementations of the second aspect or the second aspect, the third The method of any one of the possible implementations of the third aspect, the method of the sixth aspect or the method of any of the possible implementations of the sixth aspect.
  • Figure 1 is a schematic diagram of different carrier aggregation modes.
  • FIG. 2 is a schematic flowchart of activating a secondary cell in the prior art.
  • FIG. 3 is a schematic diagram of a typical application scenario according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for activating a secondary cell according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for activating a secondary cell according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for activating a secondary cell according to still another embodiment of the present invention.
  • Figure 7 is a schematic block diagram of a communication device in accordance with one embodiment of the present invention.
  • Figure 8 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a network device in accordance with an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a network device according to another embodiment of the present invention.
  • Figure 11 is a schematic block diagram of a network device in accordance with one embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of a network device according to another embodiment of the present invention.
  • Figure 13 is a schematic block diagram of a communication device in accordance with one embodiment of the present invention.
  • Figure 14 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
  • Figure 15 is a schematic block diagram of a communication device in accordance with one embodiment of the present invention.
  • Figure 16 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
  • Figure 17 is a schematic block diagram of a network device in accordance with one embodiment of the present invention.
  • Figure 18 is a schematic block diagram of a network device in accordance with another embodiment of the present invention.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • 5G fifth generation
  • NR new radio
  • the communication device in the embodiment of the present application may refer to a terminal device, a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, Communication device, user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a global system of mobile communication (GSM) system or code division multiple access (CDMA).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • a base transceiver station (BTS) may also be a base station (nodeb, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evolutional) in an LTE system.
  • NB base station
  • WCDMA wideband code division multiple access
  • evolutional evolved base station
  • the nodeb, eNB or eNodeB may also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future
  • CRAN cloud radio access network
  • the network device in the 5G network or the network device in the PLMN network in the future is not limited in this embodiment.
  • the primary cell is a cell operating on a primary frequency band (primary carrier), and the secondary cell is a cell operating on a secondary frequency band (secondary carrier).
  • the serving cell of the terminal device may be a secondary cell or a primary cell.
  • CA carrier aggregation
  • the serving cell is a set of cells composed of a primary cell and a secondary cell.
  • the terminal device configured with the CA is connected to one primary cell and a maximum of four secondary cells.
  • Figure 1 is a schematic diagram of different carrier aggregation modes. In FIG.
  • CA for terminal device A, CA is not supported, so there is only one cell, that is, one uplink carrier and one downlink carrier.
  • a symmetric CA mode is configured, two carriers are aggregated, and two uplink carriers and downlink carriers are supported at the same time.
  • an asymmetric CA mode is configured, and there are 3 downlink carriers and 1 uplink carrier.
  • carrier aggregation mode one terminal device supports The number of downlink carriers is greater than or equal to the number of uplink carriers.
  • carrier aggregation can support aggregation of up to 32 carriers. In future 5G networks, carrier aggregation may support more carriers, that is, more secondary cells that terminal devices need to increase (activate).
  • FIG. 2 is a schematic flowchart of activating a secondary cell in the prior art.
  • the terminal device first receives the RRC reconfiguration message. After receiving the RRC reconfiguration message, if the SCell addition signaling is included, the UE adds the carrier in the configuration message as the carrier where the secondary cell is located. However, the secondary cell is in an inactive state.
  • the terminal device does not send an uplink signal on the secondary cell, for example, a sounding reference signal (SRS); and does not transmit UL data on the secondary cell; Transmitting a channel quality indicator (CQI)/pre-coding matrix indicator (PMI)/rank indication (RI) of the secondary cell; not listening to the physical downlink control channel of the secondary cell (physical downlink control channel, PDCCH), including scheduling on the secondary cell and scheduling the control channel of the secondary cell; not performing a random access procedure; if a physical uplink control channel (PUCCH) is configured, not Transmission on a physical uplink control channel (PUCCH). The data is not transmitted on the uplink shared channel of the secondary cell. As shown in FIG.
  • the terminal device receives the activation command of the secondary cell in the Tth time unit, and completes the processing of receiving the activation command and related decoding in the next 4 ms.
  • a valid channel state information is sent to the network device for reporting the channel state of the current cell to the network device.
  • the terminal device completes the hardware preparation work, for example, phase-locked loop adjustment, crystal oscillator adjustment, automatic gain control, RF chain activation, etc., after completing the hardware preparation work.
  • the uplink signal is periodically sent to the network device to notify the network device that the secondary cell is successfully activated.
  • the uplink signal includes CSI and/or SRS.
  • the network device may receive the uplink signal earlier than the T+k time unit, or may be later than the T+k time unit, where the value of k is 24 or 34, and when the value of k is 24, it indicates that it is to be activated.
  • the secondary cell has reported a valid measurement report.
  • the value of K is the maximum activation time of the system configuration. That is, when the T+k time unit is reached, even if the network device does not correctly receive the uplink signal, a scheduling command (signaling or data) is sent to the terminal device for scheduling.
  • the terminal device performs data reception or transmission.
  • the maximum activation time is defined or predefined by the protocol, and refers to the maximum time that the terminal device uses to activate the terminal device after receiving the activation command, for example, n+24 milliseconds or n+34 defined in 3GPP 36.133. millisecond.
  • the network device receives the uplink signal or reaches the T+k time unit. As long as any one of the two conditions is met, the network device considers that the secondary cell of the terminal device is activated and starts performing data scheduling. After the terminal device receives the scheduling command, the terminal device continues to send the uplink signal according to the configured period, sends the CQI/PMI/RI/ of the secondary cell to the network device, listens to the PDCCH of the secondary cell, and/or sends the PDCCH on the PUCCH. The data, and the deactivation timer of the other secondary cells are turned on, and the power headroom reporting action of the secondary cell is triggered.
  • the network device can only wait until the configured maximum activation time arrives (ie, reaches the T+K time).
  • the unit can schedule the secondary cell of the terminal device. This will cause scheduling delays.
  • the transmission period of the configured uplink signal is short, after the secondary cell is activated, the uplink signal is sent according to the original period, which causes relatively serious network resource consumption.
  • the embodiment of the present invention provides a method for activating a secondary cell, which can be activated in a secondary cell.
  • network resource consumption and activation delay are unbalanced, improving data transmission efficiency and user experience.
  • TRPs transmission reception points
  • NR-NB NR base station
  • the method for activating a secondary cell in the embodiment of the present application may be used in each of the TRP and the terminal device.
  • the network device may also be divided into a control unit (CU) and a data unit (DU). Under one CU, multiple DUs may exist, where each DU and terminal device
  • the method of activating a secondary cell in the embodiment of the present application can be used.
  • the difference between the CU-DU separation scenario and the multi-TRP scenario is that the TRP is only a radio unit or an antenna device, and the protocol stack function can be implemented in the DU.
  • the physical layer function can be implemented in the DU.
  • FIG. 3 is a schematic diagram of a typical application scenario of the embodiment of the present invention.
  • the technical solution of the present application may be applied to a secondary cell activation process between a network device and a terminal device.
  • the serving cell of the terminal device 1 and the terminal device 2 are from the same network device, and the terminal device 1 and the terminal device 2 are respectively connected to multiple carriers of the network device, and the serving cell of the terminal device 2 is composed of a primary cell and two secondary cells (secondary cells) 1 and the secondary cell 2), the serving cell of the terminal device 1 is composed of the primary cell secondary cell 1.
  • At least some of the plurality of cells (carriers) form the serving cell of the terminal device 1 and the terminal device 2, respectively.
  • the embodiment of the present invention is only described by using the application scenario shown in FIG. 3 as an example, but the embodiment of the present invention is not limited thereto.
  • the system may include more terminal devices and carriers.
  • FIG. 4 is a schematic flowchart of a method 100 for activating a secondary cell according to an embodiment of the present invention.
  • the method 100 may be applied to the scenario shown in FIG. Of course, it can be applied to other communication scenarios, and the embodiment of the present invention is not limited herein.
  • the method 100 includes:
  • the terminal device After receiving the secondary cell activation command sent by the network device, the terminal device sends the first uplink signal to the network device according to the first period, starting from the first time unit.
  • the network device receives the first uplink signal according to the first period, starting from the first time unit.
  • the terminal device determines a second time unit, where the time unit of the longest activation time arrives or the time unit that receives the scheduling command sent by the network device.
  • the terminal device After the second time unit, the terminal device sends a second uplink signal to the network device according to the second period or according to the network device scheduling manner, where the second period is greater than the first period.
  • the network device receives the second uplink signal according to the scheduling of the network device according to the second period, starting from the second time unit.
  • the method for activating a secondary cell provided by the embodiment of the present invention, in the activation process, that is, the time from the first time unit after receiving the activation command from the terminal device to the time unit receiving the scheduling command or reaching the longest activation time
  • Sending the first uplink signal to the network device according to the smaller first period increasing the probability that the network device receives the first uplink signal for notifying that the secondary cell has been activated, so that the network device can be earlier.
  • Receiving the first uplink signal so that the scheduling command is sent to the terminal device according to the first uplink signal earlier, which shortens the time taken by the network device to learn that the secondary cell has been activated successfully, and reduces the activation delay, so that the network device can The secondary cell is scheduled earlier.
  • the terminal device After receiving the scheduling command (signaling or data) or reaching the longest activation time, the terminal device sends the second uplink signal in a larger second period or in a network device scheduling manner, which reduces the consumption of the second uplink signal.
  • Internet resources Thereby solving the problem that the network resource consumption and the activation delay are unbalanced during the activation of the secondary cell and after activation. Improve data transfer efficiency and user experience.
  • the network device sends a secondary cell activation command to the terminal device.
  • the terminal device sends the first uplink signal to the network device according to the first period, starting from the first time unit.
  • the terminal device completes the receiving of the secondary cell activation command during the period between the terminal device receiving the secondary cell activation command and the first time unit, that is, performing demodulation, decoding, and the like.
  • the first time unit is a time unit that the terminal device can send the first uplink signal, that is, can be transmitted to the first uplink signal, and has a time unit capable of transmitting the first uplink signal. It should be understood that, in the first time unit, the terminal device only has the capability to start transmitting the first uplink signal, and the terminal device may start transmitting the first uplink reference signal at a certain time unit after the first time unit. The embodiments of the present invention are not limited herein. After the terminal device completes the receiving of the activation command, it sends a valid CSI report to the network device, and the first uplink signal may include the valid CSI report.
  • the first time unit may be a time unit that sends the valid CSI report.
  • the valid CSI report is used to inform the network device of the channel status of the carrier where the secondary cell is located.
  • the terminal device After receiving the activation command, the terminal device starts hardware preparation work, such as phase-locked loop adjustment, crystal oscillator adjustment, automatic gain control, and RF chain activation. The terminal device completes the hardware preparation work, indicating that the secondary cell has been successfully activated.
  • the first time unit may be a time unit in which the terminal device completes hardware preparation, and the first time unit may also be a certain time unit before the terminal device completes hardware preparation, and the first time unit may also be the terminal.
  • the device is capable of transmitting the first uplink signal and has a time unit for transmitting SRS, PDCCH detection, and power headroom reporting capability.
  • the embodiments of the present invention are not limited herein.
  • a time unit and a time can express the same meaning, and can be used to represent nodes of time, and can be replaced with each other.
  • the first time unit may be a first time
  • the first time unit may be in one subframe, or in a slot, or a mini-slot, or a short transmission interval. (short transmission time interval, sTTI).
  • sTTI short transmission time interval
  • the secondary cell activation command may be sent on the media access control channel element (MAC CE) or sent on the PDCCH, which is not limited herein.
  • MAC CE media access control channel element
  • the secondary cell may be in the form of a cell, transmitting a primary synchronization signal, a secondary synchronization signal, and a broadcast message, or the secondary cell may be in the form of a beam, transmitting a beam pilot signal.
  • the beam pilot signal is transmitted according to a certain period, or the secondary cell may be in the form of a distribution unit, the allocation unit includes only a user plane, and the allocation unit is connected to a central unit, and the central unit provides control plane information. .
  • the secondary cell addition or modification signaling in the secondary cell activation command may be sent in the form of a secondary cell group index or a single secondary cell index.
  • the embodiments of the present invention are not limited herein.
  • the first uplink signal can be transmitted (be capable to transmit), and therefore, according to the first period, starting from the first time unit, Sending a first uplink signal to the network device, to notify the network device that the secondary cell has been successfully activated.
  • the network device starts from the first time unit, and receives the first uplink signal sent by the terminal device according to the first period.
  • the first time unit may be an eighth subframe after the time unit that receives the secondary cell activation command starts, indicating that the terminal device is the earliest in the eighth subframe, and sends a valid CSI report (transmit valid CSI) Report), the value of the first time unit can also be other values.
  • the parameter configuration can be called “numerology”, for example, the cyclic prefix (CP) length, the transmission time interval (TTI), the subcarrier spacing, and the symbol (for different service configurations). The number of symbols, the resource block (RB) position, the slot length, and the frame format are different.
  • the duration between the first time unit and the time unit receiving the secondary cell activation command may also be a value according to different numerology, for example, for a TTI length of 2 symbols, may be 16 TTIs, for 1 ms
  • the TTI length can be eight 1 ms subframes.
  • the embodiments of the present invention are not limited herein.
  • the terminal device may also send the first uplink signal to the network device at a certain time unit after the first time unit.
  • the first uplink signal may be sent to the network device at the beginning of the time unit in which the terminal device completes the hardware preparation.
  • the first time unit may also be a certain time unit before the terminal device completes the hardware preparation, or may be a certain time unit after the terminal device completes the hardware preparation.
  • the terminal device determines a second time unit, which is a time unit to which the longest activation time arrives or a time unit that receives a scheduling command sent by the network device, wherein, in time, the second time unit is After the first time unit.
  • the second time unit may be a time unit in which the terminal device receives the scheduling command.
  • the scheduling command can be signaling or data.
  • the second time unit may also be a time unit in which the network device correctly receives the first uplink signal.
  • a maximum activation time is configured, and the maximum activation time is specified by the protocol or predefined, which is the longest time used by the terminal device to activate the secondary cell after receiving the activation command. Time, such as n+24 milliseconds or n+34 milliseconds as defined in 3GPP 36.133. The latest time to activate the secondary cell cannot be later than the longest activation time.
  • the network device Upon reaching the time unit of the maximum activation time (latest activation time), the network device sends a scheduling command to the terminal device regardless of whether the network device correctly receives the first uplink signal. Therefore, the second time unit can be a time unit that is the longest activation time arrival.
  • the maximum activation duration may be 24ms or 34ms, or 24 sTTIs or 34 sTTIs, or 24 slots or 34 slots. The embodiments of the present invention are not limited herein.
  • the terminal device after the second time unit, the terminal device sends a second uplink signal to the network device according to the second period, where the second period is greater than the first period, or sent to the network device according to the manner in which the network device schedules
  • the second uplink signal is not limited here.
  • the network device receives the first uplink signal according to the second period, starting from the second time unit.
  • the second uplink signal is not required to be sent to the network device as frequently as the previous activated secondary cell, and therefore, the terminal device is scheduled according to the second period or based on the network device.
  • the method sends a second uplink signal to the network device, where the second period is greater than the first period.
  • the network device scheduling method can be understood as that when the network device needs the information of the terminal device, the scheduling information is sent to the terminal device, and when the terminal device receives the scheduling information, the second uplink signal is reported to the network device.
  • the manner of scheduling based on the network device means that the network device performs scheduling in a manner of PDCCH/MAC CE.
  • the second uplink signal is used by the network device for coherent demodulation and detection, and channel quality measurement, etc., to facilitate subsequent data transmission. This will reduce the consumption of network resources.
  • the network device receives the second uplink signal according to the second period or according to the manner in which the network device schedules.
  • the terminal device may also stop transmitting the second uplink signal to the network device, for example, in a state where the terminal device is in a static state or no data transmission.
  • the second uplink signal may be reported to the network device in a manner that may reduce network resource consumption, for example, a non-periodic manner.
  • the embodiments of the present invention are not limited herein.
  • the terminal device periodically receives the pilot signal sent by the network device from the time when the activation command of the secondary cell is received, or from the time after receiving the activation command of the secondary cell, the pilot signal is received.
  • the device is configured to notify the terminal device of the related information of the secondary cell, so that the terminal device can quickly obtain downlink synchronization with the secondary cell, thereby completing hardware preparation work earlier and transmitting the first uplink signal to the network device earlier.
  • the terminal device can send the first uplink signal to the network device earlier.
  • the network device sends the pilot signal in a short period, and the terminal device sends the first uplink signal in a shorter first period, which can more effectively shorten the notification network device that the secondary cell has been activated. Time, so that the network device knows earlier that the secondary cell has been activated. After the second time unit, the network device sends the pilot signal in a longer period, and the terminal device sends the second uplink signal in a longer second period or in a scheduling manner, which can save network resources more effectively.
  • the first period may be a system specified period, for example, may be 1 ms or 1 TTI, or other values.
  • the shorter the first period the shorter the activation time will be.
  • the first cycle is 1 slot, or an sTTI or the like.
  • the embodiments of the present invention are not limited herein.
  • the second period is greater than the first period.
  • the longer the second period the smaller the network resource consumption.
  • the terminal device in the process of activating a secondary cell, sends a first uplink signal to the network device according to the first period, and the terminal device is configured to notify the network device of the secondary cell.
  • the action of the completed first uplink reference signal has been activated.
  • the network device can send the scheduling command according to the first uplink signal earlier, and the activation delay can be reduced.
  • the terminal device After receiving the scheduling command, sends the second uplink signal in a larger second period or in a network device scheduling manner, which reduces network resources used to send the second uplink signal.
  • the network device can be quickly notified that the secondary cell has been activated, reducing the activation delay. Solving the problem of unbalanced network resource consumption and activation delay in secondary cell activation, improving data transmission efficiency and user experience.
  • the method further includes:
  • the network device sends a configuration message of the secondary cell to the terminal device, where the configuration message includes at least one of configuration information of the second period and configuration information of the network device scheduling manner, and the first period Configuration information.
  • the network device Before the network device sends the activation command to the terminal device, the network device sends a configuration message of the secondary cell to the terminal device, where the configuration message of the secondary cell may be an RRC reconfiguration message.
  • the configuration message includes the secondary cell adding or modifying signaling.
  • the terminal device adds the carrier in the configuration message to the carrier where the secondary cell is located according to the added signaling of the secondary cell, and the secondary cell is in the non- Activation status.
  • the configuration message includes at least one of configuration information of the second period and configuration information of the network device scheduling manner, and configuration information of the first period.
  • the terminal device After acquiring the configuration information, the terminal device sends the first uplink signal and the first manner according to the protocol, the configuration message, or other means for instructing the terminal device to perform scheduling according to the first period, the second period, and the network device-based scheduling.
  • the indication information of the two uplink signals may be indicated to the terminal device at different times
  • the first uplink signal is sent in a different manner in the segment.
  • the terminal device sends the first uplink signal and the second uplink signal in different manners in different time periods according to the configuration information.
  • the network device also receives the first uplink signal and the second uplink signal in different manners in different time periods according to the protocol specification or the configuration information.
  • the first period, the second period, the network device scheduling manner, and the stop sending the second uplink signal may be notified to the terminal device by using the configuration message, or may be pre-negotiated by the network device and the terminal device. Ok, that is, the system is pre-configured.
  • the embodiments of the present invention are not limited herein.
  • the configuration message may further include indication information for indicating whether the terminal device needs to transmit the first uplink signal and the second uplink signal according to different periods in different time periods.
  • the indication information may indicate that the terminal device always sends the first uplink signal and the second uplink signal in the same manner or periodically, or may send the first time in different time periods according to different periods included in the configuration message.
  • the uplink signal and the second uplink signal are not limited herein.
  • the configuration information of the first period, the second period, the network device scheduling manner, and the stopping of the sending of the second uplink signal may also be notified to the terminal device by using a broadcast message, and being in the same Other terminal devices of network devices.
  • the embodiments of the present invention are not limited herein.
  • the configuration message may include any one of configuration information of the second period, configuration information based on a manner of scheduling of the network device, and configuration information for stopping sending the second uplink signal.
  • the configuration message may further include any combination of the foregoing three types of configuration information, and the terminal device selects one type according to other information or conditions or performs different manners in different time periods.
  • the embodiments of the present invention are not limited herein.
  • the first uplink signal includes first channel state information CSI and/or a first sounding reference signal SRS
  • the second uplink signal includes a second CSI and/or a second SRS.
  • the first uplink signal sent by the terminal device to the network device may include a first CSI and/or a first SRS, where the first CSI is used to notify the network device of the primary cell of the terminal device.
  • the channel and secondary cell channel states facilitate network equipment to perform uplink channel quality measurements.
  • the first SRS provides a reference for scheduling of the network device, and the referenced content may be the channel quality of the primary cell and the channel quality of the secondary cell.
  • the network device sends a scheduling command for scheduling the secondary cell to the terminal device according to the first CSI and/or the first SRS.
  • the second uplink signal includes a second CSI and/or a second SRS, where the channel state information of the primary cell and the secondary cell and the coherent demodulation and detection for the network device are reported to the network device after the secondary cell is activated. In order to facilitate the effective transmission of data between the network device and the terminal device.
  • the second CSI and the first CSI may be the same. Can be different.
  • the second SRS may be the same as the first SRS and may be different. The embodiments of the present invention are not limited herein.
  • first CSI and the second CSI may be transmitted through other cells or the secondary cell.
  • the first SRS and the second SRS need to be sent through the secondary cell.
  • first uplink signal and the second uplink signal may further include other uplink signals, for example, an uplink demodulation reference signal and the like.
  • the embodiments of the present invention are not limited herein.
  • the embodiment of the present invention further provides another method 200 for activating a secondary cell.
  • the method 200 can be applied to the scenario shown in FIG. 3, and can of course be applied to other communication scenarios.
  • the embodiments of the present invention are not limited herein.
  • the method 200 includes:
  • the network device sends a secondary cell activation command to the terminal device in the third time unit, and correspondingly, the terminal device The secondary cell activation command is received at the third time unit.
  • the network device starts sending, by the third time unit, the first pilot signal to the terminal device according to the first period.
  • the terminal device receives, according to the third time unit, the first pilot signal sent by the network device according to the first period.
  • the network device determines a fourth time unit, where the time unit of the longest activation time is reached or a time unit for the network device to send a scheduling command to the terminal device.
  • the network device After the fourth time unit, the network device sends a second pilot signal to the terminal device according to the second period, where the second period is greater than the first period.
  • the terminal device After the fourth time unit, the terminal device receives the second pilot signal sent by the network device according to the second period.
  • the method for activating a secondary cell in a period in which the secondary device is activated, that is, the terminal device receives the activation command and receives the scheduling command, the network device sends the terminal device to the terminal device according to the smaller first period.
  • the first pilot signal increases the probability that the terminal device receives the first pilot signal for downlink synchronization, so that the terminal device can complete the downlink synchronization earlier, and then complete the hardware preparation work earlier, that is, complete the secondary cell.
  • an uplink signal for notifying that the secondary cell has been successfully activated may be sent to the network device earlier, and the network device may send the scheduling command earlier according to the uplink signal.
  • the scheduling command is used to schedule the terminal device to receive or send data.
  • the time taken by the network device to learn that the secondary cell is successfully activated can be reduced, and the activation delay is reduced.
  • the network device After the scheduling command is sent, the network device sends the second pilot signal in a second, larger period, which reduces the network resources consumed by sending the second pilot signal. Therefore, the problem that the network resource consumption and the activation delay are unbalanced during the activation of the secondary cell and after the activation is solved, and the data transmission efficiency and the user experience are improved.
  • the network device sends a secondary cell activation command to the terminal device in the third time unit, configured to notify the terminal to start activation of the secondary cell.
  • the terminal device receives the secondary cell activation command in the third time unit.
  • time units and time units may express the same meaning and may be interchanged.
  • the third time unit may be a third time unit, which may be in one subframe, or in a slot, or a mini-slot, or an sTTI.
  • the embodiments of the present invention are not limited herein.
  • the secondary cell activation command may be sent on the MAC CE or sent on the PDCCH, which is not limited herein.
  • the secondary cell addition or modification signaling in the secondary cell activation command may be sent in the form of a secondary cell group index or a single secondary cell index.
  • the embodiments of the present invention are not limited herein.
  • the network device sends, by using the third time unit, a first pilot signal to the terminal device according to the first period, where the terminal device completes downlink synchronization and a valid channel according to the first pilot signal.
  • State information measurement, and finally complete hardware preparation such as phase-locked loop adjustment, crystal adjustment, automatic gain control, RF chain activation, etc.
  • the uplink signal is sent to the network device.
  • the CSI and/or the SRS may be used to notify the terminal device that the hardware preparation work has been completed.
  • the network device sends a scheduling command to the terminal device for scheduling the terminal device to perform data reception or transmission.
  • the terminal device starts from the third time unit, and receives the first pilot signal sent by the network device according to the first period.
  • the network device determines a fourth time unit, where the fourth time unit is reached by the longest activation time.
  • the time unit or a time unit for the network device to send a scheduling command to the terminal device.
  • the fourth time unit may be a time unit in which the network device sends a scheduling command to the terminal device.
  • the fourth time unit may also be a time unit in which the network device correctly receives the uplink signal.
  • a longest activation duration is configured, and the maximum activation time is specified by the protocol or predefined, and is the most used by the terminal device to activate the terminal device after receiving the activation command. For a long time, for example, n+24 milliseconds or n+34 milliseconds as defined in 3GPP36.133.
  • the latest time to activate the secondary cell may not be later than the time unit of the longest activation time.
  • the network device Upon reaching the time unit of the maximum activation time (latest activation time), the network device sends a scheduling command to the terminal device regardless of whether the network device correctly receives the first uplink signal. Therefore, the fourth time unit can be the time unit for which the longest activation time arrives.
  • the maximum activation duration may be 24ms or 34ms, or 24 sTTIs or 34 sTTIs, or 24 slots or 34 slots.
  • the embodiments of the present invention are not limited herein.
  • the network device After the fourth time unit, the network device sends a second pilot signal to the terminal device according to the second period, where the second period is greater than the first period.
  • the network device sends a second pilot signal to the terminal device according to the second period, where the second period is greater than the first period.
  • the second pilot signal is used for coherent demodulation and detection between the subsequent network device and the terminal device, and measurement of the quality of the channel, etc., in order to facilitate subsequent data transmission.
  • the terminal device receives the second pilot signal sent by the network device according to the second period.
  • the network device may also send a second pilot signal to the terminal device in a manner that may reduce network resource consumption, for example, a non-periodic manner.
  • the embodiments of the present invention are not limited herein.
  • the first period may be a system specified period, for example, may be 1 ms, or other values.
  • the shorter the first period the shorter the activation time will be.
  • the first period may be 1 ms, or 1 slot, or an sTTI or the like.
  • the second period is greater than the first period.
  • the longer the second period the smaller the network resource consumption.
  • the uplink signal sent by the terminal device is periodically received. Can understand. The sooner the network device receives the uplink signal, it will be known earlier that the secondary cell has completed activation. That is, the network device sends the first pilot signal in a shorter first period, and the terminal device completes downlink synchronization and hardware preparation work earlier according to the first pilot signal, that is, the activation of the secondary cell is completed earlier. The terminal device then transmits an uplink signal to the network device in a small cycle. The time taken to notify the network device that the secondary cell has been activated can be reduced. The activation delay can be shortened more effectively. After the secondary cell is activated, the network device sends the second pilot signal in a longer second period, and the terminal device sends the second uplink signal in a longer period or in a scheduling manner, which can save network resources more effectively.
  • the network device in the activation process, sends the first pilot signal to the terminal device according to the smaller first period, so that the terminal device completes the activation of the secondary cell earlier, thereby An uplink signal for notifying that the secondary cell has been activated may be sent to the network device earlier. Thereby, the network device can send a scheduling command according to the uplink signal earlier, and reduce the activation delay.
  • the network device sends the second pilot signal in a larger second period, which reduces the network resources consumed by transmitting the second pilot signal. Solve the auxiliary community During the live process and after activation, the problem of network resource consumption and activation delay is unbalanced, improving data transmission efficiency and user experience.
  • the method further includes:
  • the network device sends a configuration message of the secondary cell, where the configuration message is configured by the first period and configuration information of the second period.
  • the network device sends a configuration message of the secondary cell to the terminal device, where the configuration message of the secondary cell may be an RRC reconfiguration message.
  • the configuration message includes the secondary cell addition or modification signaling.
  • the terminal device adds signaling according to the secondary cell, and adds the carrier in the configuration message to the carrier where the secondary cell is located, and the secondary cell is in an inactive state.
  • the configuration message further includes configuration information of the first period and configuration information of the second period.
  • the network device according to the protocol, the configuration message or other indication information for instructing the network device to send the first pilot signal and the second pilot signal according to the first period and the second period, for example, the indication information
  • the indication may be to the network device to transmit the first pilot signal and the second pilot signal in different manners in different time periods. Based on the information, the network device transmits the first pilot signal and the second pilot signal according to different periods in different time periods.
  • the terminal also receives the first pilot signal and the second pilot signal according to the reconfiguration information and the indication information according to different periods in different time periods.
  • the information such as the first period and the second period may be notified to the terminal device by using the configuration message, or may be pre-negotiated by the network device and the terminal device, that is, the system is pre-configured.
  • the embodiments of the present invention are not limited herein.
  • the configuration message may further include indication information indicating whether the network device needs to transmit the first pilot signal according to different periods in different time periods.
  • the indication information may indicate that the network device always sends the first pilot signal and the second pilot signal in the same period, or may send the first time in different time periods according to different periods included in the configuration message.
  • An uplink signal and the second pilot signal That is, the network device may determine, according to the indication information, whether to transmit the first pilot signal according to the first period in the process of activating the secondary cell, and send the second pilot signal according to the second period after the secondary cell is activated.
  • the embodiments of the present invention are not limited herein.
  • the information such as the first period and the second period may also be that other terminal devices are notified by using a broadcast message or RRC dedicated signaling, and other terminal devices may perform data reception according to the period information of the first pilot signal. , and / or complete the earlier downlink synchronization process.
  • the embodiments of the present invention are not limited herein.
  • the first pilot signal includes a first demodulation reference signal DMRS and/or a first beam pilot signal, the second pilot signal comprising a second DMRS and/or a second beam pilot signal.
  • the first pilot signal transmitted to the terminal device includes a first demodulation reference signal (DMRS) and/or a first beam pilot signal.
  • DMRS demodulation reference signal
  • the first DMRS and/or the first beam pilot signal is used by the terminal device for correlation detection and data demodulation.
  • the terminal device completes downlink synchronization, valid channel state information measurement, and completes hardware preparation according to the first DMRS and/or the first beam pilot signal. After the hardware preparation is completed, the uplink signal is sent to the network device.
  • the second DMRS and/or the second beam pilot signal is used for coherent demodulation and detection between subsequent network devices and terminal devices, as well as measurement of channel quality, and the like. In order to facilitate the transmission of data by the network device and the terminal device.
  • the second beam pilot signal and the first beam pilot signal may be the same. Can be different.
  • the second The DMRS may be the same as the first DMRS and may be different. The embodiments of the present invention are not limited herein.
  • first pilot signal and the second pilot signal may further include other downlink signals, for example, a beam reference signal, a cell-specific reference signal (CRS), and a primary synchronization signal (primary synchronization signal).
  • Channel status information reference signal etc.
  • the embodiments of the present invention are not limited herein.
  • the embodiment of the invention further provides a method 300 for activating a secondary cell.
  • the method 300 can be applied to the scenario shown in FIG. 3, and can of course be applied to other communication scenarios.
  • the embodiments of the present invention are not limited herein.
  • the method 300 includes:
  • the network device sends indication information to the terminal device, where the indication information is used to indicate that the terminal device starts hardware preparation work.
  • the terminal device receives the indication information, and starts at least one of radio resource management RRM measurement, CSI measurement, downlink synchronization, and hardware preparation work according to the indication information.
  • the network device After the network device sends the indication information, the network device sends a secondary cell activation command to the terminal device in the first time unit.
  • the terminal device receives the secondary cell activation command in the first time unit, and sends a first uplink signal to the network device according to the first period from the first time unit.
  • the network device receives the first uplink signal sent by the terminal device according to the first period,
  • the terminal device does not wait for the secondary cell activation command sent by the network device to start the hardware preparation work, but receives the indication information sent by the network device, and then receives the indication information sent by the network device. Before the secondary cell activates the command, hardware preparation begins. The indication information can also be an activation command. This will complete the hardware preparation work earlier.
  • the terminal device sends the first uplink signal to the network device according to the first period, so that the network device learns that the secondary cell has been activated successfully, and shortens the network device to learn that the secondary cell has been activated. The time taken for the activation to succeed, reducing the activation delay, so that the network device can schedule the secondary cell earlier.
  • the method 300 further includes:
  • the terminal device determines a second time unit, where the time unit of the longest activation time arrives or the time unit that receives the scheduling command sent by the network device.
  • the terminal device After the second time unit, the terminal device sends a second uplink signal to the network device according to the second period or according to the network device scheduling manner, where the second period is greater than the first period.
  • the network device receives the second uplink signal sent by the terminal device according to the second period, or receives the second uplink signal according to the manner scheduled by the network device.
  • the method for activating a secondary cell when the terminal device receives the secondary cell activation command, sends a first uplink signal to the network device according to a smaller first period, so that the network device can learn the earlier information.
  • the secondary cell has been successfully activated, shortening the time taken by the network device to learn that the secondary cell has been successfully activated, and reducing the activation delay.
  • the terminal device After receiving the scheduling command or reaching the longest activation time, the terminal device has a larger number.
  • the second uplink signal is sent in a two-cycle or network device scheduling manner, which reduces network resources consumed by the second uplink signal. Therefore, the problem of imbalance of network resource consumption and activation delay during and after activation of the secondary cell is solved, and data transmission efficiency and user experience are improved.
  • the terminal device after receiving the indication information, performs at least one of radio resource management (RRM) measurement, CSI measurement, downlink synchronization, and hardware preparation, and the hardware preparation is performed.
  • RRM radio resource management
  • the work includes at least one of phase-locked loop adjustment, crystal adjustment, automatic gain control, and RF chain activation.
  • the embodiments of the present invention are not limited herein.
  • the indication information and the secondary cell activation command may be sent in the form of a MAC CE or in the form of physical layer signaling.
  • the embodiments of the present invention are not limited herein.
  • the method before the terminal device receives the indication information, the method further includes: the terminal device receiving, by the network device, a configuration message of the secondary cell, where the configuration message of the secondary cell includes At least one of period information of the RRM measurement, a period of the CSI measurement, a configuration of the first period, and configuration information of the second period.
  • the first uplink signal includes first channel state information CSI and/or a first sounding reference signal SRS
  • the second uplink signal includes a second CSI and/or a second SRS.
  • FIG. 7 is a schematic block diagram of a communication device in accordance with one embodiment of the present invention.
  • the communication device 400 includes a processor 410, a memory 420 and a transceiver 430, the memory 420 and the transceiver 430 are connected by communication, the memory 420 stores instructions, and the processor 410 is used to execute instructions stored in the memory 420, the transceiver The 430 is configured to perform specific signal transceiving under the driving of the processor 410.
  • the transceiver 430 is configured to, after receiving the secondary cell activation command sent by the network device, send the first uplink signal to the network device according to the first period, starting from the first time unit.
  • the processor 410 is configured to determine a second time unit, where the time unit of the longest activation time arrives or the time unit that receives the scheduling command sent by the network device.
  • the transceiver 430 is further configured to send, after the second time unit, the second uplink signal to the network device according to the second period or according to the manner of the network device scheduling, where the second period is greater than the first period.
  • the communication device provided by the embodiment of the present invention starts during the activation of the secondary cell, that is, from the first time unit after receiving the activation command from the communication device, to the time when the scheduling command is received or the time unit of the longest activation time is reached.
  • Sending the first uplink signal to the network device according to the smaller first period increasing the probability that the network device receives the first uplink signal for notifying that the secondary cell has been activated, so that the network device can be earlier.
  • the first uplink signal is received, so that the scheduling command is sent to the communication device according to the first uplink signal earlier, which shortens the time taken by the network device to learn that the secondary cell has been activated successfully, and reduces the activation delay.
  • the communications device After receiving the scheduling command, the communications device sends the second uplink signal in a larger second period or in a network device scheduling manner, which reduces network resources used to send the second uplink signal. Therefore, the network resource consumption and the activation delay are unbalanced during and after the activation of the secondary cell.
  • the problem is to improve data transfer efficiency and user experience.
  • the various components in communication device 400 communicate with one another via a communication connection, i.e., processor 410, memory 420, and transceiver 430, through internal connection paths, to communicate control and/or data signals.
  • a communication connection i.e., processor 410, memory 420, and transceiver 430
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP, a digital signal processor (DSP), an application specific integrated circuit (application).
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • application application specific integrated circuit
  • ASIC Specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the transceiver 430 before receiving the secondary cell activation command, is further configured to receive a configuration message of the secondary cell sent by the network device, where the communication device receives the network And a configuration message of the secondary cell that is sent by the device, where the configuration message includes at least one of configuration information of the second period and configuration information of a manner of scheduling according to the network device, and configuration information of the first period.
  • the first uplink signal sent by the transceiver 430 includes first channel state information CSI and/or a first sounding reference signal SRS, and the transceiver 430 sends the first
  • the second uplink signal includes a second CSI and/or a second SRS.
  • the first time unit is a time unit that the communication device can send the first uplink signal to the network device.
  • the processor 410 may be implemented by a processing module
  • the memory 420 may be implemented by a storage module
  • the transceiver 430 may be implemented by a transceiver module.
  • the communication device 500 may include a processing module 510.
  • the communication device 400 shown in FIG. 7 or the communication device 500 shown in FIG. 8 can implement the steps performed by the terminal device in FIG. 4 described above. To avoid repetition, details are not described herein again.
  • FIG. 9 shows a schematic block diagram of a network device 600 in accordance with one embodiment of the present invention. It should be understood that the network device embodiment and the method embodiment correspond to each other. For a similar description, refer to the method embodiment.
  • the network device 600 includes: a processor 610, a memory 620, and a transceiver 630.
  • the processor 610, The memory 620 and the transceiver 630 are connected by communication, the memory 620 stores instructions, the processor 610 is used to execute instructions stored in the memory 620, and the transceiver 630 is configured to perform specific signal transceiving under the driving of the processor 610.
  • the transceiver 630 is configured to: after transmitting the secondary cell activation command to the terminal device, start from the first time unit, the network device receives the first uplink signal sent by the terminal device according to the first period.
  • the processor 610 is configured to determine a second time unit, where the time unit of the longest activation time arrives or a time unit that sends a scheduling command to the terminal device.
  • the transceiver 630 is further configured to receive, after the second time unit, the second uplink signal sent by the terminal device according to the second period or according to the manner of the network device scheduling, where the second period is greater than the first period.
  • the network device provided by the embodiment of the present invention starts during the activation process of the secondary cell, that is, at the time when the first time unit that sends the activation command starts, to the time when the scheduling command is sent or the time unit of the longest activation time is reached.
  • Receiving the first uplink signal in the first period increasing the probability that the network device receives the first uplink signal for notifying that the secondary cell has been activated, so that the network device can receive the first uplink signal earlier, Therefore, the scheduling command is sent to the terminal device according to the first uplink signal earlier, which shortens the time taken by the network device to learn that the secondary cell has been activated successfully, and reduces the activation delay.
  • the network device After the scheduling command is sent, the network device receives the second uplink signal in a larger second period or in a network device scheduling manner, and reduces network resources consumed by the second uplink signal. Therefore, the problem of imbalance of network resource consumption and activation delay during and after activation of the secondary cell is solved, and data transmission efficiency and user experience are improved.
  • the various components in network device 600 communicate with each other via a communication connection, i.e., processor 610, memory 620, and transceiver 630, through internal connection paths, to communicate control and/or data signals.
  • a communication connection i.e., processor 610, memory 620, and transceiver 630
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, a network processor NP or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the transceiver 630 before being sent to the secondary cell activation command, is further configured to send a configuration message of the secondary cell to the terminal device, where the terminal device receives the network device.
  • the configuration message of the secondary cell that is sent, the configuration message includes at least one of configuration information of the second period and configuration information of a manner of scheduling according to the network device, and configuration information of the first period.
  • the first uplink signal received by the transceiver 630 includes first channel state information CSI and/or a first sounding reference signal SRS, and the second received by the transceiver The uplink signal includes a second CSI and/or a second SRS.
  • the first time unit is a time unit that the terminal device can send the first uplink signal to the network device.
  • the processor 610 may be implemented by a processing module
  • the memory 620 may be implemented by a storage module
  • the transceiver 630 may be implemented by a transceiver module.
  • the network device 700 may include a processing module 710.
  • the network device 600 shown in FIG. 9 or the network device 700 shown in FIG. 10 can implement the steps performed by the network device in FIG. 4 described above. To avoid repetition, details are not described herein again.
  • FIG. 11 is a schematic block diagram of a network device in accordance with one embodiment of the present invention. It should be understood that the network device embodiment and the method embodiment correspond to each other, and a similar description may refer to the method embodiment, and the network device 800 shown in FIG. 11 may be used. The steps corresponding to the execution of the network device in FIG. 5 are performed.
  • the network device 800 includes a processor 810, a memory 820, and a transceiver 830.
  • the processor 810, the memory 820, and the transceiver 830 are connected by communication, the memory 820 stores instructions, and the processor 810 is configured to execute instructions stored by the memory 820, the transceiver. 830 is for performing specific signal transceiving under the driving of the processor 810.
  • the transceiver 830 is configured to send a secondary cell activation command to the terminal device in the third time unit.
  • the transceiver 830 is further configured to send, according to the third time unit, the first pilot signal to the terminal device according to the first period.
  • the processor 810 is configured to determine a fourth time unit, where the time unit of the longest activation time is reached or a time unit for the network device to send a scheduling command to the terminal device.
  • the transceiver 830 is further configured to send, after the fourth time unit, a second pilot signal to the terminal device according to the second period, where the second period is greater than the first period.
  • the network device sends the first pilot signal to the terminal device according to a smaller first period during the activation of the secondary cell, that is, the network device sends the activation command and the sending the scheduling command.
  • the probability that the terminal device receives the first pilot signal for downlink synchronization is increased, so that the terminal device can complete the downlink synchronization earlier, and then complete the hardware preparation work earlier, that is, complete the activation of the secondary cell. Therefore, an uplink signal for notifying that the secondary cell has been successfully activated may be sent to the network device earlier, and the network device may send the scheduling command earlier according to the uplink signal.
  • the time taken by the network device to learn that the secondary cell is successfully activated can be reduced, and the activation delay is reduced.
  • the network device After the scheduling command is sent, the network device sends the second pilot signal in a second, larger period, which reduces the network resources consumed by sending the second pilot signal. Therefore, the problem that the network resource consumption and the activation delay are unbalanced during the activation of the secondary cell and after the activation is solved, and the data transmission efficiency and the user experience are improved.
  • the various components in network device 800 communicate with one another via a communication connection, i.e., processor 810, memory 820, and transceiver 830, through internal connection paths, to communicate control and/or data signals.
  • a communication connection i.e., processor 810, memory 820, and transceiver 830
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, a network processor NP or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the transceiver 830 before being sent to the secondary cell activation command, is further configured to send, to the terminal device, a configuration message of the secondary cell, where the configuration message includes the first The configuration information of the period and the configuration information of the second period.
  • the first pilot signal sent by the transceiver 830 includes a first cell-specific reference signal CRS and/or a first demodulation reference signal DMRS, and the transceiver 830 sends
  • the second pilot signal includes a second CRS and/or a second DMRS.
  • the processor 810 may be implemented by a processing module
  • the memory 820 may be stored by
  • the module implementation, the transceiver 830 can be implemented by the transceiver module.
  • the network device 900 can include a processing module 910, a storage module 920, and a transceiver module 930.
  • the network device 800 shown in FIG. 11 or the network device 900 shown in FIG. 12 can implement the steps performed by the network device in FIG. 5 described above. To avoid repetition, details are not described herein again.
  • FIG. 13 shows a schematic block diagram of a communication device 1100 in accordance with one embodiment of the present invention.
  • the communication device may refer to the foregoing terminal device, and the communication device embodiment and the method embodiment correspond to each other. For a similar description, refer to the method embodiment.
  • the communication device 1100 includes: a processor 1110, and a memory. 1120 and a transceiver 1130, a processor 1110, a memory 1120 and a transceiver 1130 are connected by communication, a memory 1120 stores instructions, a processor 1110 is used to execute instructions stored by the memory 1120, and the transceiver 1130 is configured to be executed under the driving of the processor 1110. Specific signal transmission and reception.
  • the transceiver 1130 is configured to receive, by the third time unit, a secondary cell activation command sent by the network device.
  • the transceiver 1130 is further configured to receive, according to the third time unit, the first pilot signal sent by the network device according to the first period.
  • the processor 1110 is configured to determine a fourth time unit, where the time unit of the longest activation time is reached or a time unit for the communication device to receive the scheduling command sent by the network device.
  • the transceiver 1130 is further configured to receive, after the fourth time unit, the second pilot signal sent by the network device according to the second period, where the second period is greater than the first period.
  • the communication device during the activation process of the secondary cell, that is, during the period when the communication device receives the activation command and the scheduling command, the communication device receives the first pilot signal according to the smaller first period, and increases.
  • the probability that the communication device receives the first pilot signal for downlink synchronization may enable the communication device to complete the downlink synchronization earlier, thereby completing the hardware preparation work earlier, that is, completing the activation of the secondary cell. Therefore, an uplink signal for notifying that the secondary cell has been successfully activated may be sent to the network device earlier, which may reduce the time taken by the network device to learn that the secondary cell is successfully activated, and reduce the activation delay.
  • the communication device After receiving the scheduling command, the communication device receives the second pilot signal in a second, larger period, reducing network resources consumed by the second pilot signal. Therefore, the problem that the network resource consumption and the activation delay are unbalanced during the activation of the secondary cell and after the activation is solved, and the data transmission efficiency and the user experience are improved.
  • the various components in communication device 1100 communicate with one another via a communication connection, i.e., processor 1110, memory 1120, and transceiver 1130, communicating control and/or data signals through internal connection paths.
  • a communication connection i.e., processor 1110, memory 1120, and transceiver 1130, communicating control and/or data signals through internal connection paths.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, a network processor NP or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the transceiver 1130 before receiving the secondary cell activation command, is further configured to receive a configuration message of the secondary cell sent by the network device, where the configuration message includes the First cycle configuration letter Information and configuration information for the second period.
  • the first pilot signal received by the transceiver 1130 includes a first demodulation reference signal DMRS and/or a first beam pilot signal
  • the transceiver 1130 receives
  • the second pilot signal includes a second DMRS and/or a second beam pilot signal.
  • the processor 1100 may be implemented by a processing module
  • the memory 1120 may be implemented by a storage module
  • the transceiver 1130 may be implemented by a transceiver module.
  • the communication device 1200 may include a processing module 1210. The storage module 1220 and the transceiver module 1230.
  • the communication device 1100 shown in FIG. 13 or the communication device 1200 shown in FIG. 14 can implement the steps performed by the terminal device in FIG. 5 described above. To avoid repetition, details are not described herein again.
  • Figure 15 shows a schematic block diagram of a communication device 1300 in accordance with one embodiment of the present invention.
  • the communication device may refer to the foregoing terminal device, and the communication device embodiment and the method embodiment correspond to each other. A similar description may refer to the method embodiment.
  • the communication device 1300 includes: a processor 1310, and a memory. 1320 and transceiver 1330, processor 1310, memory 1320 and transceiver 1330 are connected by communication, memory 1320 stores instructions, processor 1310 is used to execute instructions stored by memory 1320, and transceiver 1330 is configured to be executed by processor 1310. Specific signal transmission and reception.
  • the transceiver 1330 is configured to receive indication information sent by the network device, where the indication information is used to indicate that the communication device starts hardware preparation work.
  • the processor 1310 is configured to start at least one of RRM measurement, CSI measurement, downlink synchronization, and hardware preparation according to the indication information.
  • the transceiver 1330 is further configured to: after receiving the indication information, receive a secondary cell activation command sent by the network device in the first time unit.
  • the transceiver 1330 is further configured to send, according to the first time unit, a first uplink signal to the network device according to the first period.
  • the embodiment of the present invention provides a communication device, which does not wait until the secondary cell activation command sent by the network device is received, and then starts the hardware preparation work, but after receiving the indication information sent by the network device, before receiving the secondary cell activation command, Start the hardware preparation work.
  • the indication information can also be an activation command.
  • the communication device can complete the hardware preparation work earlier.
  • the communication device After receiving the secondary cell activation command, the communication device sends the first uplink signal to the network device according to the first period, so that the network device learns that the secondary cell has been activated successfully, and shortens the network device to learn that the secondary cell has been activated. The time taken for the activation to succeed, reducing the activation delay, so that the network device can schedule the secondary cell earlier.
  • the various components in communication device 1300 communicate with one another via a communication connection, i.e., processor 1310, memory 1320, and transceiver 1330, communicating control and/or data signals through internal connection paths.
  • a communication connection i.e., processor 1310, memory 1320, and transceiver 1330, communicating control and/or data signals through internal connection paths.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, a network processor NP or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the present application may be directly implemented as a hardware decoding processor, or may be decoded. The combination of hardware and software modules in the device is completed.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the processor 1310 is further configured to determine a second time unit, where the time unit of the longest activation time arrives or the scheduling sent by the network device is received.
  • the time unit of the command is further configured to send, after the second time unit, the second uplink signal to the network device according to the second period or according to the manner of the network device scheduling, where the second period is greater than the first period.
  • the processor 1310 is specifically configured to: start at least one of RRM measurement, CSI measurement, downlink synchronization, and hardware preparation after receiving the indication information, the hardware preparation
  • the work includes at least one of phase-locked loop adjustment, crystal adjustment, automatic gain control, and RF chain activation.
  • the indication information and the secondary cell activation command may be sent in the form of a MAC CE or in the form of physical layer signaling.
  • the transceiver 1330 before receiving the indication information, is further configured to receive a configuration message of the secondary cell sent by the network device, where the configuration message of the secondary cell At least one of period information of the RRM measurement, a period of the CSI measurement, a configuration of the first period, and configuration information of the second period is included.
  • the first uplink signal includes first channel state information CSI and/or a first sounding reference signal SRS
  • the second uplink signal includes a second CSI and/or a second SRS.
  • the processor 1300 may be implemented by a processing module
  • the memory 1320 may be implemented by a storage module
  • the transceiver 1330 may be implemented by a transceiver module.
  • the communication device 1400 may include a processing module 1410. The storage module 1420 and the transceiver module 1430.
  • the communication device 1300 shown in FIG. 15 or the communication device 1400 shown in FIG. 16 can implement the steps performed by the terminal device in FIG. 6 described above. To avoid repetition, details are not described herein again.
  • FIG. 17 is a schematic block diagram of a network device in accordance with one embodiment of the present invention. It should be understood that the network device embodiment and the method embodiment correspond to each other. A similar description may refer to the method embodiment, and the network device 1500 shown in FIG. 17 may be used to perform the steps corresponding to the network device in FIG.
  • the network device 1500 includes a processor 1510, a memory 1520, and a transceiver 1530.
  • the processor 1510, the memory 1520, and the transceiver 1530 are connected by communication.
  • the memory 1520 stores instructions, and the processor 1510 is configured to execute instructions stored by the memory 1520. 1530 is for performing specific signal transceiving under the driving of the processor 1510.
  • the transceiver 1530 is configured to send, by the terminal device, indication information, where the indication information is used by the terminal device to start hardware preparation work.
  • the transceiver 1530 is further configured to: after transmitting the indication information, send a secondary cell activation command to the terminal device in the first time unit.
  • the transceiver 1530 is further configured to receive, according to the first time unit, the first uplink signal sent by the terminal device according to the first period.
  • the network device provided by the embodiment of the present invention sends the indication information to the terminal device before the secondary cell activation command is sent to the terminal device, where the indication information is used by the terminal device to start hardware preparation work.
  • the terminal device does not wait until the secondary cell activation command sent by the network device is received, and then starts the hardware preparation work. Before receiving the secondary cell activation command, the hardware preparation work is started.
  • the indication information can also be an activation command.
  • Such a terminal device can Complete hardware preparation earlier.
  • the terminal device sends the first uplink signal to the network device according to the first period, so that the network device learns that the secondary cell has been activated successfully, and shortens the network device to learn the secondary cell. The time taken for success has been activated, and the activation delay is reduced so that the network device can schedule the secondary cell earlier.
  • the various components in network device 1500 communicate with one another via a communication connection, i.e., processor 1510, memory 1520, and transceiver 1530, communicating control and/or data signals through internal connection paths.
  • a communication connection i.e., processor 1510, memory 1520, and transceiver 1530, communicating control and/or data signals through internal connection paths.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a CPU, a network processor NP or a combination of a CPU and an NP, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the processor 1510 is configured to: determine a second time unit, where the time unit of the longest activation time arrives or the scheduling sent by the network device is received. The time unit of the command.
  • the transceiver 1530 is further configured to receive, after the second time unit, the second uplink signal sent by the terminal device according to the second period or the manner according to the network device scheduling, where the second period is greater than the first period.
  • the transceiver 1530 before sending the indication information, is further configured to send a configuration message of the secondary cell to the terminal device, where the configuration message of the secondary cell includes the At least one of period information of the RRM measurement, a period of the CSI measurement, a configuration of the first period, and configuration information of the second period.
  • the indication information and the secondary cell activation command may be sent in the form of a MAC CE or in the form of physical layer signaling.
  • the first uplink signal includes first channel state information CSI and/or a first sounding reference signal SRS
  • the second uplink signal includes a second CSI and/or a second SRS.
  • the processor 1510 may be implemented by a processing module
  • the memory 1520 may be implemented by a storage module
  • the transceiver 1530 may be implemented by a transceiver module.
  • the network device 1600 may include a processing module 1610. The storage module 1620 and the transceiver module 1630.
  • the network device 1500 shown in FIG. 17 or the network device 1600 shown in FIG. 18 can implement the steps performed by the network device in FIG. 6 described above. To avoid repetition, details are not described herein again.
  • the embodiment of the present invention further provides a computer readable medium for storing computer program code, the computer program comprising instructions for performing the method for activating a secondary cell in the embodiments of the present invention in FIG. 4, FIG. 5 and FIG. .
  • the readable medium may be a read-only memory (ROM) or a random access memory (RAM), which is not limited in the embodiment of the present invention.
  • the embodiment of the present invention further provides a communication system, which includes the terminal device provided by the embodiment of the present invention and the network device provided by the embodiment of the present invention.
  • the communication system can complete any activation provided by the embodiment of the present invention.
  • the method of the secondary cell can complete any activation provided by the embodiment of the present invention.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本申请提供了一种激活辅小区的方法、通信装置和网络设备。该方法包括:在接收到网络设备发送的辅小区激活命令后,从第一时间单元开始,按照第一周期向该网络设备发送第一上行信号;确定第二时间单元;在该第二时间单元之后,按照第二周期或者基于该网络设备调度的方式向该网络设备发送第二上行信号,该第二周期大于该第一周期。本申请提供的激活辅小区的方法,在激活辅小区的过程中,能够以较短周期发送上行信号,在辅小区激活完成后,以较大的周期或者基于调度的方式发送上行信号。从而解决在辅小区激活过程中,网络资源消耗和激活延时不平衡的问题,提高数据传输效率和用户体验。

Description

激活辅小区的方法、通信装置和网络设备 技术领域
本申请涉及通信领域,更为具体的,涉及通信领域中激活辅小区的方法、通信装置和网络设备。
背景技术
在无线网络通信中,对于一个用户设备(user equipment,UE)而言,主小区(primary cell,PCell)是工作在主频带上的小区。UE在某一个小区进行初始连接建立过程,或开始连接重建立过程中,该小区被指示为主小区。辅小区(secondary cell,SCell)是工作在辅频带上的小区。在初始安全激活流程(initial security activation procedure)之后,通过无线资源控制(radio resource control,RRC)连接重配置消息添加/修改/释放的。一旦RRC连接建立,辅小区就可能被配置以提供额外的无线资源。
目前在辅小区激活的过程中,终端设备先收到网络设备发送的RRC连接重配置消息,如果RRC连接重配置消息里面包含辅小区添加信令,那么终端设备就将该RRC连接配置消息中的载波添加为辅小区。之后,终端设备接收到辅小区的激活命令,表示激活过程开始。在终端设备完成硬件准备工作后,即激活过程完成后,会向网络设备发送上行(uplink,UL)信号,用于通知网络设备该辅小区激活成功。网络设备正确接收到该上行信号后,会向该终端设备发送调度命令(信令或数据),该信令或数据用于通知该终端设备进行数据的接收或者发送。此后,该上行信号将继续按照RRC连接重配置消息中配置信息发送。或者,在没有给终端设备配置发送该上行信号的资源或者配置的该上行信号的发送周期较大时,网络设备会在系统配置的最大激活时间的时间到来后,也会向终端设备发送信令或数据。上行信号的发送周期较长时,激活时延较大。上行信号的发送周期较短时,发送上行信号的网络资源的消耗较大。
发明内容
本申请提供一种激活辅小区的方法、通信装置和网络设备,在激活辅小区的过程中,能够以较短周期发送上行信号,在辅小区激活完成后,以较大的周期或者基于调度的方式发送上行信号。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活延时不平衡的问题,提高数据传输效率和用户体验。
第一方面,提供了一种激活辅小区的方法,该方法包括:终端设备在接收到网络设备发送的辅小区激活命令后,从第一时间单元开始,按照第一周期向该网络设备发送第一上行信号;该终端设备确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者接收到该网络设备发送的信令或数据的时间单元;该终端设备在该第二时间单元之后,按照第二周期发送第二上行信号。该第二周期大于该第一周期,或该终端设备在该第二时间单元之后,基于该网络设备调度的方式向该网络设备发送第二上行信号。
第一方面提供的激活辅小区的方法,在辅小区激活过程中,即从终端设备接收到激活命令后的第一时间单元开始,到接收到调度命令或者到达最长激活时间的时间单元的这段时间内,按照第一周期向网络设备发送该第一上行信号,增大了网络设备接收到用于通知该辅小区已经激活的该第一上行信号的概率,使得网络设备可以更早的接收到该第一上行信号,从而更早的根据该第一上行信号向终端设备发送调度命令,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时。在接收到调度命令后,终端设备以较大的第二周期或基于网络设备调度的方式发送第二上行信号,减少了发送第二上行信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活延时不平衡的问题,提高数据传输效率和用户体验。
在第一方面的一种可能的实现方式中,在该终端设备接收到该辅小区激活命令前,该方法还包括:该终端设备接收该网络设备发送的该辅小区的配置消息,该配置消息包括该第二周期的配置信息和基于该网络设备调度的方式的配置信息中的至少一种,以及该第一周期的配置信息。
在第一方面的一种可能的实现方式中,该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该第二上行信号包括第二CSI和/或第二SRS。
在第一方面的一种可能的实现方式中,该第一时间单元为该终端设备能够向该网络设备发送该第一上行信号的时间单元。
在第一方面的一种可能的实现方式中,该第一周期为1ms或者1个TTI,或一个时隙,或一个sTTI。
第二方面,提供了一种激活辅小区的方法,该方法包括:网络设备在向终端设备发送辅小区激活命令后,从第一时间单元开始,该网络设备按照第一周期接收该终端设备发送的第一上行信号;该网络设备确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者向该终端设备发送调度命令的时间单元;该网络设备在该第二时间单元之后,按照第二周期接收该终端设备发送的第二上行信号,或者基于该网络设备调度的方式接收该第二上行信号,该第二周期大于该第一周期。
第二方面提供的激活辅小区的方法,网络设备在发送激活命令的第一时间单元开始,到发送调度命令或者到达最长激活时间的时间单元的这段时间内,按照较小的第一周期接收该第一上行信号,增大了网络设备接收到用于通知该辅小区已经激活的该第一上行信号的概率,使得网络设备可以更早的接收到该第一上行信号,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时。在发送调度命令后,网络设备以较大的第二周期或基于网络设备调度的方式接收第二上行信号,减少了第二上行信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活延时不平衡的问题,提高数据传输效率和用户体验。
在第二方面的一种可能的实现方式中,在该网络设备向终端设备发送该辅小区激活命令前,该方法还包括:该网络设备向该终端设备发送该辅小区的配置消息,该配置消息包括该第二周期的配置信息和基于该网络设备调度的方式的配置信息中的至少一种,以及述第一周期的配置信息。
在第二方面的一种可能的实现方式中,该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该第二上行信号包括第二CSI和/或第二SRS。
在第二方面的一种可能的实现方式中,该第一时间单元为该终端设备能够向该网络设备发送该第一上行信号的时间单元。
在第二方面的一种可能的实现方式中,该第一周期为1ms或者1个TTI,或一个时隙,或一个短TTI。
第三方面,提供了一种激活辅小区的方法,该方法包括:网络设备在第三时间单元向终端设备发送辅小区激活命令;该网络设备从该第三时间单元开始,按照第一周期向该终端设备发送第一导频信号;该网络设备确定第四时间单元,该第四时间单元为最长激活时间达到的时间单元或者为该网络设备向该终端设备发送调度命令的时间单元;在该第四时间单元之后,该网络设备按照第二周期向该终端设备发送第二导频信号,该第二周期大于该第一周期。
第三方面提供的激活辅小区的方法,在辅小区激活过程中,即网络设备发送激活命令和发送调度命令的这段时间内,网络设备按照较小的第一周期向终端设备发送第一导频信号,增大了终端设备接收到用于下行同步的第一导频信号的概率,可以使得终端设备更早的完成下行同步,进而更早的完成硬件准备工作,从而可以更早的向网络设备发送用于通知该辅小区已经激活成功的上行信号,网络设备便可以根据该上行信号,可以更早的发送调度命令。可以减少网络设备获知辅小区激活成功所用的时间,减小激活时延。在发送调度命令后,网络设备以较大的第二周期发送第二导频信号,减少了发送第二导频信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活时延不平衡的问题,提高数据传输效率和用户体验。
在第三方面的一种可能的实现方式中,在该网络设备发送该辅小区激活命令前,该方法还包括:该网络设备向该终端设备发送该辅小区的配置消息,该配置消息包括该第一周期的配置信息和该第二周期的配置信息。
在第三方面的一种可能的实现方式中,该第一导频信号包括第一解调参考信号DMRS和/或第一波束导频信号,该第二导频信号包括第二DMRS和/或第二波束导频信号。
第四方面,提供了一种激活辅小区的方法,该方法包括:终端设备在第三时间单元接收到网络设备发送的辅小区激活命令;该终端设备从该第三时间单元开始,按照第一周期接收该网络设备发送的第一导频信号;该终端设备确定第四时间单元,该第四时间单元为最长激活时间达到的时间单元或者为该终端设备接收到该网络设备发送的调度命令的时间单元;在该第四时间单元之后,该终端设备按照第二周期接收该网络设备发送的第二导频信号,该第二周期大于该第一周期。
第四方面提供的激活辅小区的方法,在终端设备接收到激活命令和调度命令的这段时间内,终端设备按照较小的第一周期接收第一导频信号,增大了终端设备接收到用于下行同步的第一导频信号的概率,可以使得终端设备更早的完成下行同步,进而更早的完成硬件准备工作。从而可以更早的向网络设备发送用于通知该辅小区已经激活成功的上行信号,可以减少网络设备获知辅小区激活成功所用的时间,减小激活时延。在接收到调度命令后,终端设备以较大的第二周期接收第二导频信号,减少了第二导频信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活时延不平衡的问题,提高数据传输效率和用户体验。
在第四方面的一种可能的实现方式中,在该终端设备接收到该网络设备发送该辅小区 激活命令前,该方法还包括:该终端设备接收该网络设备发送的该辅小区的配置消息,该配置消息包括该第一周期的配置信息和该第二周期的配置信息。
在第四方面的一种可能的实现方式中,该第一导频信号包括第一解调参考信号DMRS和/或第一波束导频信号,该第二导频信号包括第二DMRS和/或第二波束导频信号。
第五方面,提供了一种激活辅小区的方法,该方法包括:终端设备接收网络设备发送的指示信息,该指示信息用于指示该终端设备开始RRM测量,CSI测量、下行同步和硬件准备工作中的至少一个;该终端设备根据该指示信息,开始执行RRM测量,下行同步和/或硬件准备工作;在接收到该指示信息后,该终端设备在第一时间单元接收到网络设备发送的辅小区激活命令;该终端设备从该第一时间单元开始,按照第一周期向该网络设备发送第一上行信号。
第五方面提供的激活辅小区的方法,终端设备不用等到接收到网络设备发送的辅小区激活命令后才开始进行硬件准备工作,而是在接收到网络设备发送的指示信息后,在接收到辅小区激活命令前,就开始硬件准备工作。该指示信息也可以是一种激活命令。这样终端设备可以更早的完成硬件准备工作。在接收到辅小区激活命令后,终端设备就按照第一周期向该网络设备发送第一上行信号,可以使得网络设备更早的获知该辅小区已经激活成功,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时,使得网络设备可以更早的调度该辅小区。
在第五方面的一种可能的实现方式中,该方法还包括:该终端设备确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者接收到该网络设备发送的调度命令的时间单元;该终端设备从第二时间单元之后,按照第二周期或者基于该网络设备调度的方式向该网络设备发送第二上行信号,该第二周期大于该第一周期。该实现方式中,在终端设备接收到辅小区激活命令后,就按照较小的第一周期向该网络设备发送第一上行信号,可以使得网络设备更早的获知该辅小区已经激活成功,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时,在接收到调度命令或者到达最长的激活时间后,终端设备以较大的第二周期或基于网络设备调度的方式发送第二上行信号,减少了发送第二上行信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活延时不平衡的问题,提高数据传输效率和用户体验。
在第五方面的一种可能的实现方式中,该终端设备在接收到该指示信息后,开始RRM测量,CSI测量、下行同步和硬件准备工作中的至少一个,该硬件准备工作包括锁相环调整、晶振调整、自动增益控制、射频链激活中至少一种。
在第五方面的一种可能的实现方式中,该指示信息和该辅小区激活命令以MAC CE的形式发送,或以物理层信令的形式发送。
在第五方面的一种可能的实现方式中,在该终端设备接收到该指示信息前,该方法还包括:该终端设备接收该网络设备发送的该辅小区的配置消息,其中,该辅小区的配置消息包括该RRM测量的周期信息、CSI测量的周期、该第一周期的配置、该第二周期的配置信息中的至少一种。
在第五方面的一种可能的实现方式中,该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该第二上行信号包括第二CSI和/或第二SRS。
第六方面,提供了一种激活辅小区的方法,该方法包括:网络设备向终端设备发送 的指示信息,该指示信息用于该终端设备开始RRM测量,CSI测量、下行同步和硬件准备工作中的至少一个;在发送该指示信息后,该网络设备在第一时间单元向终端设备发送辅小区激活命令;该网络设备从该第一时间单元开始,按照第一周期接收该终端设备发送的第一上行信号。
第六方面提供的激活辅小区的方法,网络设备在向终端设备发送辅小区激活命令前,向该终端设备发送指示信息,该指示信息用于该终端设备开始硬件准备工作。终端设备不用等到接收到网络设备发送的辅小区激活命令后才开始进行硬件准备工作,在接收到辅小区激活命令前,就开始硬件准备工作。该指示信息也可以是一种激活命令。这样终端设备可以更早的完成硬件准备工作。在网络设备发送辅小区激活命令后,终端设备就按照第一周期向该网络设备发送第一上行信号,可以使得网络设备更早的获知该辅小区已经激活成功,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时,使得网络设备可以更早的调度该辅小区。
在第六方面的一种可能的实现方式中,该方法还包括:该网络设备确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者接收到该网络设备发送的调度命令的时间单元;该网络设备从第二时间单元之后,按照第二周期或者基于该网络设备调度的方式接收该终端设备发送的第二上行信号,该第二周期大于该第一周期。该实现方式中,在从网络设备发辅小区激活命令开始,就按照较小的第一周期接收该终端设备发送的第一上行信号,可以使得网络设备更早的获知该辅小区已经激活成功,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时,在网络设备发送调度命令或者到达最长的激活时间后,网络设备以较大的第二周期或基于网络设备调度的方式接收终端设备发送的第二上行信号,减少了第二上行信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活延时不平衡的问题,提高数据传输效率和用户体验。
在第六方面的一种可能的实现方式中,在该网络设备发送该指示信息前,该方法还包括:该网络设备向该终端设备发送该辅小区的配置消息,其中,该辅小区的配置消息包括该RRM测量的周期信息、CSI测量的周期、该第一周期的配置、该第二周期的配置信息中的至少一种。
在第六方面的一种可能的实现方式中,该指示信息和该辅小区激活命令以MAC CE的形式发送,或以物理层信令的形式发送。
在第六方面的一种可能的实现方式中,该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该第二上行信号包括第二CSI和/或第二SRS。
第七方面,提供了一种通信装置,包括处理器、存储器和收发器,用于支持该通信装置执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第一方面、第四方面和第五方面中任一方面及其各种实现方式中的激活辅小区的方法。
第八方面,提供了一种通信装置,包括处理模块、存储模块和收发模块,用于支持通信装置执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的功能,或者上述第四方面或第四方面的任意可能的实现方式中的终端设备的功能,或者上述第五方面或第五方面的任意可能的实现方式中的通信装置的功能。功能可以通过硬件实现,也可以通 过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第九方面,提供了一种网络设备,包括处理器、存储器和收发器,用于支持该网络设备执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第二方面、第三方面和第六方面中任一方面及其各种实现方式中的激活辅小区的方法。
第十方面,提供了一种网络设备,包括处理模块、存储模块和收发模块,用于支持终端设备执行上述第二方面或第二方面的任意可能的实现方式中的网络设备的功能,或者上述第三方面或第三方面的任意可能的实现方式中的网络设备的功能,或者上述第六方面或第六方面的任意可能的实现方式中的终端设备的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第十一方面,提供了一种通信系统,该通信系统包括上述第七方面或第八方面提供的通信装置及上述第九或第十方面提供的网络设备。该通信系统可以完成上述第一方面、第二方面、第三方面、第四方面、第五方面和第六方面提供的激活辅小区的方法。
第十二方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第一方面或第一方面的任一种可能的实现方式的方法、上述第四方面或第四方面的任一种可能的实现方式的方法、上述第五方面或第五方面的任一种可能的实现方式的方法的指令。
第十三方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第二方面或第二方面的任一种可能的实现方式的方法、上述第三方面或第三方面的任一种可能的实现方式的方法、上述第六方面或第六方面的任一种可能的实现方式的方法的指令。
附图说明
图1是不同的载波聚合模式的示意图。
图2是现有技术中激活辅小区的示意性流程图。
图3是本发明实施例一个典型的应用场景的示意图。
图4是本发明一个实施例的激活辅小区的方法的示意性流程图。
图5是本发明另一个实施例的激活辅小区的方法的示意性流程图。
图6是本发明又一个实施例的激活辅小区的方法的示意性流程图。
图7是本发明一个实施例的通信装置的示意性框图。
图8是本发明另一个实施例的通信装置的示意性框图。
图9是本发明一个实施例的网络设备的示意性框图。
图10是本发明另一个实施例的网络设备的示意性框图。
图11是本发明一个实施例的网络设备的示意性框图。
图12是本发明另一个实施例的网络设备的示意性框图。
图13是本发明一个实施例的通信装置的示意性框图。
图14是本发明另一个实施例的通信装置的示意性框图。
图15是本发明一个实施例的通信装置的示意性框图。
图16是本发明另一个实施例的通信装置的示意性框图。
图17是本发明一个实施例的网络设备的示意性框图。
图18是本发明另一个实施例的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的通信装置可以指终端设备、用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、通信装置、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeb,NB),还可以是LTE系统中的演进型基站(evolutional nodeb,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
对于一个终端设备而言,主小区是工作在主频带(主载波)上的小区,辅小区是工作在辅频带(辅载波)上的小区。该终端设备的服务小区(serving cell)可以是一个辅小区,也可以是一个主小区。对于没有配置载波聚合(carrier aggregation,CA)的终端设备而言,只有一个服务小区,即主小区。对于配置了CA的终端设备而言,服务小区是由主小区和辅小区组成的小区集合。配置了CA的终端设备与1个主小区和最多的4个辅小区相连。图1是不同的载波聚合模式的示意图。在图1中,对于终端设备A,不支持CA,因此只有一个小区,即有一个上行载波和一个下行载波。对于终端设备B,配置了对称的CA模式,聚合了两个载波,同时支持两个上行载波和下行载波。对于终端设备C,配置了不对称的CA模式,有3个下行载波和1个上行载波。在载波聚合模式下,一个终端设备支持 的下行载波的个数大于或者等于上行载波的个数。目前,载波聚合可以最大支持32个载波的聚合,在未来的5G网络中,载波聚合可能支持更多的载波,即终端设备需要增加(激活)的辅小区更多。
图2是现有技术中激活辅小区的示意性流程图。终端设备首先会接收到RRC重配置消息,在接收到该RRC重配置消息后,如果里边包含SCell添加信令,那么UE将把配置消息中的载波添加为辅小区所在的载波。但是该辅小区处于非激活状态,在非激活状态下,终端设备在这个辅小区上不发送上行信号,例如,探测参考信号(sounding reference signal,SRS);不在该辅小区上发送UL数据;不发送该辅小区的信道质量指示(channel quality indicator,CQI)/预编码矩阵指示(pre-coding matrix indicator,PMI)/秩指示(rank indication,RI);不侦听这个辅小区的物理下行控制信道(physical downlink control channel,PDCCH),包括在这个辅小区上的调度以及调度这个辅小区的控制信道;不执行随机接入过程;如果配置了物理上行控制信道(physical uplink control channel,PUCCH),不在物理上行控制信道(physical uplink control channel,PUCCH)上传输。不在这个辅小区的上行共享信道(uplink shared channel)发送数据。如图2所示,终端设备在第T时间单元接收到该辅小区的激活命令,在之后的4ms内,完成激活命令的接收和相关的解码等处理过程。在第T+8时间单元后会向网络设备发一个有效的信道状态信息(channel state information,CSI),用于向网络设备报告目前小区的信道状态。在第T+8至第T+k时间单元之间,如果终端设备完成了硬件准备工作,例如,锁相环调整、晶振调整、自动增益控制、射频链激活等,在完成硬件准备工作后,即辅小区激活完成后,会向网络设备周期性的发送上行信号,用于通知网络设备该辅小区激活成功。例如,该上行信号包括CSI和/或SRS。网络设备收到该上行信号的时间可能早于第T+k时间单元,也可能晚于第T+k时间单元,其中k的值为24或34,当k的值为24时,表明要激活的辅小区已经上报过有效的测量报告,当k的值为34时,表明要激活的辅小区之前没有上报过有效的测量报告。K的值为系统配置的最大激活时间,即到第T+k时间单元时,即使网络设备没有正确接收到该上行信号,也会向终端设备发送调度命令(信令或者数据),用于调度该终端设备进行数据的接收或者发送。该最长激活时间为协议规定或预定义的,是指该终端设备接收到该激活命令后,到该终端设备激活所用的最长时间,例如3GPP 36.133中定义的n+24毫秒或n+34毫秒。
因此,网络设备在接收到该上行信号,或者到达第T+k时间单元,这两个条件中只要满足任意一个,网络设备就会认为这个终端设备的辅小区已激活,并开始执行数据调度。在终端设备接收到调度命令后,终端设备继续按照配置的周期发送上行信号,向网络设备发送该辅小区的CQI/PMI/RI/,侦听这个辅小区的PDCCH,和/或在PUCCH上发送数据,以及打开其他辅小区的去激活计时器,触发该辅小区的功率余量上报动作等。
现有的辅小区激活过程中,当配置的上行信号的发送周期较长或者没有配置上行信号的资源时,网络设备只能等到配置的最大激活时间的时间到达后(即到达第T+K时间单元)才能调度该终端设备的辅小区。这样会造成调度时延。而当配置的上行信号的发送周期较短时,在辅小区激活后,由于还是按照原有的周期发送上行信号,会造成比较严重的网络资源消耗。
基于上述问题,本发明实施例提供了一种激活辅小区的方法,可以解决在辅小区激活 过程中,网络资源消耗和激活时延不平衡的问题,提高数据传输效率和用户体验。
应理解,对于5G或新型无线接入网络(new radio access network,NR)系统,在一个NR基站(NR-NB)下,可能存在一个或多个发送接收点(transmission reception point,TRP),所有的TRP属于同一个小区。其中,每个TRP和终端设备都可以使用本申请实施例的激活辅小区的方法。在另一种场景下,网络设备还可以分为控制单元(control unit,CU)和数据单元(data unit,DU),在一个CU下,可以存在多个DU,其中,每个DU和终端设备都可以使用本申请实施例的激活辅小区的方法。CU-DU分离场景和多TRP场景的区别在于,TRP只是一个射频单元或一个天线设备,而DU中可以实现协议栈功能,例如DU中可以实现物理层功能。
图3是本发明实施例一个典型的应用场景的示意图,如图3所示,本申请的技术方案可以应用在网络设备与终端设备之间进行辅小区激活过程中。终端设备1和终端设备2的服务小区来自同一个网络设备,终端设备1和终端设备2分别与网络设备的多个载波相连,终端设备2的服务小区由主小区和两个辅小区(辅小区1和辅小区2)组成,终端设备1的服务小区由主小区辅小区1组成。多个小区(载波)中的至少部分小区分别形成终端设备1和终端设备2的服务小区。
应理解,本发明实施例仅以图3所示的应用场景为例进行说明,但本发明实施例并不限于此,例如,该系统可以包括更多的终端设备和载波。
下面结合图4详细说明本申请提供的激活辅小区的方法,图4是本发明实施例的激活辅小区的方法100的示意性流程图,该方法100可以应用在图3所示的场景中,当然也可以应用在其他通信场景中,本发明实施例在此不作限制。
如图4所示,该方法100包括:
S110,终端设备在接收到网络设备发送的辅小区激活命令后,从第一时间单元开始,按照第一周期向该网络设备发送第一上行信号。
S120,该网络设备从该第一时间单元开始,按照第一周期接收该第一上行信号。
S130,该终端设备确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者接收到该网络设备发送的调度命令的时间单元。
S140,该终端设备从第二时间单元之后,按照第二周期或者基于该网络设备调度的方式向该网络设备发送第二上行信号,该第二周期大于该第一周期。
S150,该网络设备从第二时间单元开始,按照第二周期基于该网络设备调度的方式接收该第二上行信号。
本发明实施例提供的激活辅小区的方法,在激活过程中,即从终端设备接收到激活命令后的第一时间单元开始到接收到调度命令或者到达最长激活时间的时间单元的这段时间内,按照较小的第一周期向网络设备发送该第一上行信号,增大了网络设备接收到用于通知该辅小区已经激活的该第一上行信号的概率,使得网络设备可以更早的接收到该第一上行信号,从而更早的根据该第一上行信号向终端设备发送调度命令,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时,使得网络设备可以更早的调度该辅小区。在接收到调度命令(信令或数据)或者到达最长的激活时间后,终端设备以较大的第二周期或基于网络设备调度的方式发送第二上行信号,减少了第二上行信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活延时不平衡的问题, 提高数据传输效率和用户体验。
具体而言,在S110中,网络设备会向终端设备发送辅小区激活命令。相应的,终端设备在接收到该辅小区激活命令后,从第一时间单元开始,按照第一周期向该网络设备发送第一上行信号。在终端设备接收到该辅小区激活命令至第一时间单元之间的这段时间内,终端设备完成该辅小区激活命令的接收,即进行解调、译码等处理。
应理解,该第一时间单元是该终端设备能够发送该第一上行信号的时间单元,即能够发送(be capable to transmit)该第一上行信号,具备发送该第一上行信号能力的时间单元。应理解,在第一时间单元,终端设备只是具备了开始发送该第一上行信号的能力,终端设备也可以在第一时间单元之后的某个时间单元开始发送该第一上行参考信号。本发明实施例在此不作限制。在终端设备完成激活命令的接收后,会向网络设备发送有效的CSI报告,该第一上行信号可以包括该有效的CSI报告。可选的,该第一时间单元可以是发送该有效的CSI报告的时间单元。该有效的CSI报告用于告知网络设备该辅小区所在的载波的信道状态。在接收到该激活命令后,该终端设备便开始进行硬件准备工作,例如,锁相环调整、晶振调整、自动增益控制、射频链激活等。终端设备完成硬件准备工作,表明该辅小区已经激活成功。
应理解,该第一时间单元可以是终端设备完成硬件准备的时间单元,该第一时间单元也可以是在终端设备完成硬件准备前的某一时间单元,该第一时间单元还可以是该终端设备能够发送该第一上行信号,并且具备发送SRS、PDCCH检测以及功率余量上报的能力的时间单元。本发明实施例在此不作限制。
还应理解,在本申请中,时间单元和时刻可以表达相同的含义,都可以用来表示时间的节点,可以相互替换。例如,该第一时间单元可以是第一时刻,该第一时间单元可以在一个子帧,或在一个时隙(slot),或一个短时隙(mini-slot),或一个短传输时间间隔(short transmission time interval,sTTI)上。本发明实施例在此不作限制。
还应理解,该辅小区激活命令可以在媒体接入控制信道单元(media access control channel element,MAC CE)上发送,或是在PDCCH上发送,本发明实施例在此不作限制。
还应理解,该辅小区可以是小区形式,发送主同步信号,辅同步信号,以及广播消息,或该辅小区可以是波束形式,发送波束导频信号。波束导频信号按照一定周期发送,或该辅小区可以是分配单元(distribute unit)形式,该分配单元只包括用户面,该分配单元与中央单元(central unit)连接,该中央单元提供控制面信息。
还应理解,该辅小区激活命令中的辅小区添加或修改信令可以是以辅小区小区组索引的形式发送,也可以是以单个辅小区索引方式发送。本发明实施例在此不作限制。
由于终端设备在第一时间单元时已经具备了发送该第一上行信号的能力,即能够发送(be capable to transmit)该第一上行信号,因此,从第一时间单元开始,会按照第一周期向网络设备发送第一上行信号,用于通知网络设备该辅小区已经激活成功了。相应的,在S120中,该网络设备从第一时间单元开始,也会按照第一周期接收该终端设备发送的第一上行信号。
可选的,第一时间单元可以是从接收到辅小区激活命令的时间单元开始后的第八个子帧,表示终端设备最早在该第八个子帧上,发送一个有效的CSI报告(transmit valid CSI  report),第一时间单元的值也可以是其他值。由于不同资源参数配置不同,该参数配置可以称为“numerology”,例如,不同业务配置的循环前缀(cyclic prefix,CP)长度、传输时间间隔(transmission time interval,TTI)、子载波间隔、符号(symbol)个数、资源块(resource block,RB)位置、时隙长度和帧格式等不同。因此,该第一时间单元和接收到辅小区激活命令的时间单元之间的时长也可以是根据不同numerology对应的值,例如,针对2个符号的TTI长度,可以是16个TTI,针对1ms的TTI长度,可以是8个1ms的子帧。本发明实施例在此不作限制。
应理解,终端设备也可以在第一时间单元之后的某个时间单元,向网络设备发送该第一上行信号。例如,可以在终端设备完成硬件准备的时间单元开始,向网络设备发送该第一上行信号。第一时间单元还可以是在终端设备完成硬件准备前的某一时间单元,也可以是终端设备完成硬件准备后的某一时间单元。本发明实施例在此不作限制。
在S130,该终端设备确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者接收到该网络设备发送的调度命令的时间单元,其中,时间上,第二时间单元在该第一时间单元之后。
具体而言,在网络设备成功接收到该第一上行信号后,便会向终端设备发送调度命令,用于调度该终端设备进行数据的接收或者发送。第二时间单元可以是终端设备接收到该调度命令的时间单元。该调度命令可以是信令或者数据。该第二时间单元也可以是网络设备正确接收到该第一上行信号的时间单元。或者,在系统的配置信息中,会配置一个最大的激活时长,该最长激活时间为协议规定或预定义的,是指终端设备接收到激活命令后,到终端设备激活辅小区所用的最长时间,例如3GPP 36.133中定义的n+24毫秒或n+34毫秒。激活辅小区的最晚的时间不能晚于(no later than)该最长激活时间。
在到达该最大激活时间的时间单元(最晚激活时间),无论网络设备是否正确接收到该第一上行信号,网络设备都会向终端设备发送调度命令。因此,该第二时间单元可以为是最长激活时间到达的时间单元。例如,最大的激活时长的值可以为24ms或34ms,也可以是24个sTTI或34个sTTI,也可以是24个slot或34个slot等。本发明实施例在此不作限制。
S140,该终端设备在该第二时间单元之后,按照第二周期向该网络设备发送第二上行信号,该第二周期大于该第一周期,或者基于该网络设备调度的方式向该网络设备发送第二上行信号,这里不做限定。
S150,该网络设备从第二时间单元开始,按照第二周期接收该第一上行信号。
具体而言,从S140中,在该第二时间单元之后,不需要和之前激活辅小区一样频繁地向网络设备发送第二上行信号,因此,该终端设备按照第二周期或者基于该网络设备调度的方式向该网络设备发送第二上行信号,该第二周期大于该第一周期。基于网络设备调度的方式可以理解为在网络设备需要该终端设备的信息时,便会向该终端设备发调度信息,终端设备接收到该调度信息时,便会向网络设备上报第二上行信号,该基于该网络设备调度的方式是指该网络设备以PDCCH/或MAC CE的方式进行调度。该第二上行信号用于网络设备进行相干解调和检测,以及信道质量的测量等,以便于进行后续的数据传输。这样会减少网络资源的消耗。相应的,在S150中,该网络设备按照第二周期或者基于该网络设备调度的方式接收第二上行信号。
应理解,在该第二时间单元之后,该终端设备还可以停止向网络设备发送该第二上行信号,例如,在该终端设备处于静止的状态或者无数据发送的状态等。或者还可以是基于其他可以降低网络资源消耗的方式向网络设备上报第二上行信号,例如,非周期的方式等。本发明实施例在此不作限制。
还应理解,该终端设备从接收到辅小区的激活命令开始,或者从接收到辅小区的激活命令之后的某个时间开始,会周期性的接收网络设备发送的导频信号,该导频信号用于向终端设备通知该辅小区的相关信息,使终端设备可以快速的与该辅小区取得下行同步,进而更早的完成硬件准备工作,更早的向网络设备发送第一上行信号。可以理解,终端设备越早的接收到该导频信号,可以更早的完成下行同步,可以更早的完成硬件准备工作,即更早的完成该辅小区的激活。这样,终端设备可以更早的向网络设备发送第一上行信号。即在激活过程中,网络设备以较短的周期发送该导频信号,终端设备以较短的第一周期发送该第一上行信号,可以更加有效的缩短通知网络设备该辅小区已经激活所用的时间,使得网络设备更早的获知该辅小区已经激活的通知。在第二时间单元之后,网络设备以较长的周期发送导频信号,终端设备以较长的第二周期或者基于调度的方式发送第二上行信号,可以更有效的节省网络资源。
还应理解,该第一周期可以是系统规定的周期,例如,可以1ms或1个TTI,或者是其他的数值。可选的,该第一周期越短,激活时间将会越短。例如,该第一周期1个slot,或一个sTTI等。本发明实施例在此不作限制。该第二周期大于该第一周期,可选的,该第二周期越长,网络资源的消耗就会越小。
本发明实施例提供的激活辅小区的方法,在激活辅小区的过程中,终端设备按照第一周期向网络设备发送第一上行信号,增加了终端设备发送的用于向网设备通知该辅小区已经激活完成的第一上行参考信号的动作。从而使得网络设备可以更早的根据该第一上行信号发送调度命令,可以减少激活延时。在接收到调度命令后,终端设备以较大的第二周期或基于网络设备调度的方式发送第二上行信号,减少了发送第二上行信号消耗的网络资源。在减少资源消耗的情况下,可以快速通知网络设备该辅小区已经激活,减少激活延时。解决在辅小区激活中,网络资源消耗和激活时延不平衡的问题,提高数据传输效率和用户体验。
可选的,作为一个实施例,在S110之前,该方法还包括:
S109,该网络设备向该终端设备发送该辅小区的配置消息,该配置消息包括该第二周期的配置信息以及该基于网络设备调度的方式的配置信息中至少一种,以及该第一周期的配置信息。
具体而言。在网络设备向终端设备发送该激活命令前,该网络设备会向终端设备发送该辅小区的配置消息,该辅小区的配置消息可以是RRC重配置消息。该配置消息包括该辅小区添加或修改信令,例如,终端设备会根据该辅小区的添加信令,将该配置消息中的载波添加为该辅小区所在的载波,该辅小区就会处于非激活状态。该配置消息包括该第二周期的配置信息以及该基于网络设备调度的方式的配置信息中至少一个,和该第一周期的配置信息。终端设备在获取这些配置信息后,根据协议规定、该配置消息或者其他用于指示终端设备根据该第一周期、该第二周期以及该基于网络设备调度的方式发送该第一上行信号和该第二上行信号的指示信息,例如,该指示信息可以是向终端设备指示在不同时间 段内按照不同的方式去发送该第一上行信号。终端设备根据这些配置信息,在不同的时间段内按照不同的方式发送该第一上行信号和该第二上行信号。网络设备也会根据协议规定或者该配置信息,在不同的时间段内按照不同的方式接收该第一上行信号和该第二上行信号。
应理解,该第一周期、第二周期、基于网络设备调度的方式以及停止发送该第二上行信号等信息可以是通过该配置消息通知给终端设备的,也可以是网络设备和终端设备预先协商好的,即系统预先配置的。本发明实施例在此不作限制。
还应理解,该配置消息还可以包括用于指示终端设备是否需要在不同的时间段内按照不同的周期发送该第一上行信号和该第二上行信号的指示信息。例如,该指示信息可以指示终端设备始终按照相同的方式或者周期发送该第一上行信号和该第二上行信号,也可以是按照该配置消息中包括的不同周期在不同的时间段发送该第一上行信号和该第二上行信号。本发明实施例在此不作限制。
还应理解,该第一周期、第二周期、基于网络设备调度的方式以及停止发送该第二上行信号等配置信息还可以是通过广播消息通知给该终端设备,以及与该终端设备同处于一个网络设备的其他终端设备。本发明实施例在此不作限制。
还应理解。该配置消息可以包括该第二周期的配置信息、基于网络设备调度的方式的配置信息以及停止发送该第二上行信号的配置信息中的任意一种。该配置消息中还可以包括上述三种配置信息的任意组合,终端设备根据其他信息或者条件去选择一种或者在不同的时间段内执行不同的方式。本发明实施例在此不作限制。
可选的,作为一个实施例。该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该第二上行信号包括第二CSI和/或第二SRS。
具体而言,终端设备在完成硬件准备工作后,向网络设备发送的第一上行信号可以包括第一CSI和/或第一SRS,该第一CSI用于向网络设备通知该终端设备的主小区信道和辅小区信道状态,便于网络设备进行上行信道质量测量。该第一SRS为网络设备的调度提供参考,参考的内容可以是该主小区的信道质量和辅小区的信道质量。网络设备根据该第一CSI和/或第一SRS,向该终端设备发送调度该辅小区的调度命令。
该第二上行信号包括第二CSI和/或第二SRS,用于在激活该辅小区之后,向网络设备上报该主小区和辅小区的信道状态信息以及用于网络设备的相干解调和检测,以便于网络设备和终端设备有效的进行数据的传输。
应理解,该第二CSI和第一CSI可以相同。可以不同。该第二SRS可以和该第一SRS相同,可以不同。本发明实施例在此不作限制。
还应理解,该第一CSI和该第二CSI可以通过其他小区或该辅小区发送。第一SRS和该第二SRS则需要通过该辅小区发送。
还应理解,该第一上行信号和该第二上行信号还可以包括其他上行信号,例如,上行解调参考信号等。本发明实施例在此不作限制。
本发明实施例还提供了另一种激活辅小区的方法200,该方法200可以应用在图3所示的场景中,当然也可以应用在其他通信场景中。本发明实施例在此不作限制。
如图5所示,该方法200包括:
S210,网络设备在第三时间单元向终端设备发送辅小区激活命令,相应的,终端设备 在第三时间单元接收到该辅小区激活命令。
S220,该网络设备从该第三时间单元开始,按照第一周期向该终端设备发送第一导频信号。
S230,该终端设备从该第三时间单元开始,按照第一周期接收该网络设备发送的第一导频信号。
S240,该网络设备确定第四时间单元,该第四时间单元为最长激活时间达到的时间单元或者为该网络设备向该终端设备发送调度命令的时间单元。
S250,在该第四时间单元之后,该网络设备按照第二周期向该终端设备发送第二导频信号,该第二周期大于该第一周期。
S260,在该第四时间单元之后,该终端设备按照第二周期接收该网络设备发送的第二导频信号。
本发明实施例提供的激活辅小区的方法,在辅小区激活过程中,即终端设备收到激活命令和收到调度命令的这段时间内,网络设备按照较小的第一周期向终端设备发送第一导频信号,增大了终端设备接收到用于下行同步的第一导频信号的概率,可以使得终端设备更早的完成下行同步,进而更早的完成硬件准备工作,即完成辅小区的激活。从而可以更早的向网络设备发送用于通知该辅小区已经激活成功的上行信号,网络设备便可以根据该上行信号,可以更早的发送调度命令。该调度命令用于调度该终端设备进行数据的接收或者发送。可以减少网络设备获知辅小区激活成功所用的时间,减小激活时延。在发送调度命令后,网络设备以较大的第二周期发送第二导频信号,减少了发送第二导频信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活时延不平衡的问题,提高数据传输效率和用户体验。
具体而言,在S210中,网络设备在第三时间单元向终端设备发送辅小区激活命令,用于向终端设通知开始激活该辅小区。相应的,终端设备在第三时间单元接收到该辅小区激活命令。应理解,在本申请中,时间单元和时间单元可以表达相同的含义,可以互换。例如,该第三时间单元可以是第三时间单元,该第三时间单元可以是在一个子帧,或在一个slot,或一个mini-slot,或一个sTTI上。本发明实施例在此不作限制。
还应理解,该辅小区激活命令可以在MAC CE上发送,或是在PDCCH上发送,本发明实施例在此不作限制。
还应理解,该辅小区激活命令中的辅小区添加或者修改信令可以是以辅小区小区组索引的形式发送,也可以是以单个辅小区索引的方式发送。本发明实施例在此不作限制。
在S220中,该网络设备从该第三时间单元开始,按照第一周期向该终端设备发送第一导频信号,用于该终端设备根据该第一导频信号,完成下行同步、有效的信道状态信息测量,最终完成硬件准备工作,例如,锁相环调整、晶振调整、自动增益控制、射频链激活等。在终端设备完成硬件准备工作后,会向网络设备发送上行信号,例如,可以是CSI和/或SRS,用于通知终端设备的硬件准备工作已经完成。网络设备收到该上行信号后,便会向终端设备发送调度命令,用于调度该终端设备执行数据接收或发送。相应的,在S230中,该终端设备从该第三时间单元开始,按照第一周期接收该网络设备发送的第一导频信号。
在S240中,该网络设备确定第四时间单元,该第四时间单元为最长激活时间达到的 时间单元或者为该网络设备向该终端设备发送调度命令的时间单元。
在网络设备成功接收到该上行信号后,便会向终端设备发送调度命令,用于调度该终端设备进行数据的接收或者发送。第四时间单元可以是网络设备向终端设备发送调度命令的时间单元。该第四时间单元也可以是网络设备正确接收到该上行信号的时间单元。或者,在系统的配置信息中,会配置一个最长的激活时长,该最长激活时间为协议规定或预定义的,是指终端设备接收到所述激活命令后,到终端设备激活所用的最长时间,例如3GPP36.133中定义的n+24毫秒或n+34毫秒。激活辅小区的最晚的时间不能晚于(no later than)该最长激活时间的时间单元。在到达该最大激活时间的时间单元(最晚激活时间),无论网络设备是否正确接收到该第一上行信号,网络设备都会向终端设备发送调度命令。因此,该第四时间单元可以为最长激活时间到达的时间单元。例如,最大的激活时长的值可以为24ms或34ms,也可以是24个sTTI或34个sTTI,也可以是24个slot或34个slot等。本发明实施例在此不作限制。
S250,在该第四时间单元之后,该网络设备按照第二周期向该终端设备发送第二导频信号,该第二周期大于该第一周期。
具体而言,在该第四时间单元之后,不需要和发送调度命令之前一样频繁的向终端设备发送第二导频信号。因此,该网络设备按照第二期向该终端设备发送第二导频信号,该第二周期大于该第一周期。该第二导频信号用于后续的网络设备和终端设备之间进行相干解调和检测,以及信信道质量的测量等,以便于进行后续的数据传输。相应的,在S260中,终端设备在该第四时间单元之后,该终端设备按照第二周期接收该网络设备发送的第二导频信号。
应理解,在第四时间单元之后,该网络设备还可以按照其他可以降低网络资源消耗的方式向终端设备发送第二导频信号,例如,非周期的方式等。本发明实施例在此不作限制。
还应理解,该第一周期可以是系统规定的周期,例如,可以1ms,或者是其他的数值。可选的,该第一周期越短,激活时间将会越短。例如,该第一周期可以是1ms,或1个slot,或一个sTTI等。该第二周期大于该第一周期,可选的,该第二周期越长,网络资源的消耗就会越小。
还应理解,在该网络设备向终端设备发送该第一导频信号后,会周期性接收该终端设备发送的上行信号。可以理解。网络设备越早的接收到该上行信号,也会更早获知该辅小区已完成激活。即网络设备以较短的第一周期发送该第一导频信号,终端设备根据该第一导频信号,更早的完成下行同步和硬件准备工作,即更早的完成辅小区的激活。然后终端设备以较小的周期向网络设备发送上行信号。可以减少通知网络设备辅小区已经激活所用的时间。可以更加有效的缩短激活延时。在辅小区激活后,网络设备以较长的第二周期发送第二导频信号,终端设备以较长的周期或者基于调度的方式发送第二上行信号,可以更有效的节省网络资源。
本发明实施例提供的激活辅小区的方法,在激活过程中,网络设备按照较小的第一周期向终端设备发送第一导频信号,可以使得终端设备更早的完成辅小区的激活,从而可以更早的向网络设备发送用于通知该辅小区已经激活完成的上行信号。从而使得网络设备可以更早的根据该上行信号发送调度命令,减少激活延时。在激活完成后,网络设备以较大的第二周期发送第二导频信号,减少了发送第二导频信号消耗的网络资源。解决辅小区激 活过程中和激活后,网络资源消耗和激活时延不平衡的问题,提高数据传输效率和用户体验。
可选的,作为一个实施例,在S210之前,该方法还包括:
S209,该网络设备发送该辅小区的配置消息,该配置消息该第一周期的配置信息和该第二周期的配置信息。
具体而言,在网络设备向终端设备发送该激活命令前,该网络设备会向终端设备发送辅小区的配置消息,该辅小区的配置消息可以是RRC重配置消息。该配置消息包括该辅小区添加或修改信令。例如,终端设备会根据该辅小区添加信令,将该配置消息中的载波添加为该辅小区所在的载波,该辅小区就会处于非激活状态。该配置消息还包括该第一周期的配置信息和该第二周期的配置信息。网络设备根据协议规定、该配置消息或者其他用于指示该网络设备根据该第一周期和该第二周期发送该第一导频信号和该第二导频信号的指示信息,例如,该指示信息可以是向网络设备指示在不同时间段内按照不同的方式去发送该第一导频信号和该第二导频信号。网络设备根据这些信息,在不同的时间段内按照不同的周期去发送该第一导频信号和该第二导频信号。终端也会根据该重配置信息和该指示信息,在不同的时间段内按照不同的周期接收该第一导频信号和第二导频信号。
应理解,该第一周期和第二周期等信息可以是通过该配置消息通知给终端设备的,也可以是网络设备和终端设备预先协商好的,即系统预先配置的。本发明实施例在此不作限制。
还应理解,该配置消息还可以包括用于指示网络设备是否需要在不同的时间段内按照不同的周期发送该第一导频信号的指示信息。例如,该指示信息可以指示网络设备始终按照相同的周期发送该第一导频信号和该第二导频信号,也可以是按照该配置消息中包括的不同周期在不同的时间段发送该第一上行信号和该第二导频信号。即网络设备可以根据该指示信息,确定是否需要在激活辅小区的过程中,按照第一周期发送第一导频信号,在激活辅小区后,按照第二周期发送该第二导频信号。本发明实施例在此不作限制。
还应理解,该第一周期和该第二周期等信息还可以是通过广播消息或RRC专有信令通知其他终端设备,其他终端设备可以根据该第一导频信号的周期信息执行数据的接收,和/或完成更早的下行同步过程。本发明实施例在此不作限制。
可选的,作为一个实施例。该第一导频信号包括第一解调参考信号DMRS和/或第一波束导频信号,该第二导频信号包括第二DMRS和/或第二波束导频信号。
具体而言,网络设备向终端设备发送激活命令后。向终端设备发送的第一导频信号包括第一解调参考信号(demodulation reference signal,DMRS)和/或第一波束导频信号。该第一DMRS和/或第一波束导频信号用于终端设备进行相关检测和数据解调。终端设备根据该第一DMRS和/或第一波束导频信号,完成下行同步、有效的信道状态信息测量和完成硬件准备工作。在完成硬件准备工作后,会向网络设备发送该上行信号。
在激活该辅小区之后,第二DMRS和/或第二波束导频信号用于后续网络设备和终端设备之间进行相干解调和检测,以及信信道质量的测量等。以便于网络设备和终端设备有效的进行数据的传输。
应理解,该第二波束导频信号和第一波束导频信号可以相同。可以不同。该第二 DMRS可以和该第一DMRS可以相同,可以不同。本发明实施例在此不作限制。
还应理解,该第一导频信号和该第二导频信号还可以包括其他下行信号,例如,波束参考信号、小区特定参考信号(cell-specific reference signals,CRS)、主同步信号(primary synchronization signal,SSS)、辅同步信号(secondary synchronization signal,PSS)、同步信号(synchronization signal,SS)块、解调参考信号、位置参考信号。信道状态信息参考信号等。本发明实施例在此不作限制。
本发明实施例还提供了一种激活辅小区的方法300。该方法300可以应用在图3所示的场景中,当然也可以应用在其他通信场景中。本发明实施例在此不作限制。
如图6所示,该方法300包括:
S310,网络设备向终端设备发送指示信息,该指示信息用于指示该终端设备开始硬件准备工作。
S320,该终端设备接收到该指示信息,根据该指示信息,开始无线资源管理RRM测量,CSI测量、下行同步和硬件准备工作中的至少一个。
S330,在网络设备发送该指示信息后,该网络设备在第一时间单元向该终端设备发送辅小区激活命令。
S340,该终端设备在第一时间单元接收到该辅小区激活命令,从该第一时间单元开始按照第一周期向该网络设备发送第一上行信号。相应的,网络设备按照第一周期接收该终端设备发送的第一上行信号,
本发明实施例提供的辅小区激活的方法,终端设备不用等到接收到网络设备发送的辅小区激活命令后才开始进行硬件准备工作,而是在接收到网络设备发送的指示信息后,在接收到辅小区激活命令前,就开始硬件准备工作。该指示信息也可以是一种激活命令。这样可以更早的完成硬件准备工作。在接收到辅小区激活命令后,终端设备就按照第一周期向该网络设备发送第一上行信号,可以使得网络设备更早的获知该辅小区已经激活成功,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时,使得网络设备可以更早的调度该辅小区。
可选的,作为一个实施例,该方法300还包括:
S350,该终端设备确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者接收到该网络设备发送的调度命令的时间单元。
S360,该终端设备从第二时间单元之后,按照第二周期或者基于该网络设备调度的方式向该网络设备发送第二上行信号,该第二周期大于该第一周期。相应的,网络设备按照第二周期接收该终端设备发送的第二上行信号,或者基于该网络设备调度的方式接收该第二上行信号。
本发明实施例提供的辅小区激活的方法,从终端设备接收到辅小区激活命令开始,就按照较小的第一周期向该网络设备发送第一上行信号,可以使得网络设备更早的获知该辅小区已经激活成功,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时,从在接收到调度命令令或者到达最长的激活时间后,终端设备以较大的第二周期或基于网络设备调度的方式发送第二上行信号,减少了发送第二上行信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活延时不平衡的问题,提高数据传输效率和用户体验。
可选的,作为一个实施例,该终端设备在接收到该指示信息后,执行无线资源管理(radio resource management,RRM)测量,CSI测量、下行同步和硬件准备工作中的至少一个,该硬件准备工作包括锁相环调整、晶振调整、自动增益控制、射频链激活中至少一种。本发明实施例在此不作限制。
可选的,作为一个实施例,该指示信息和该辅小区激活命令可以是以MAC CE的形式发送,或以物理层信令的形式发送。本发明实施例在此不作限制。
可选的,作为一个实施例,在该终端设备接收到该指示信息前,该方法还包括:该终端设备接收该网络设备发送的该辅小区的配置消息,其中,该辅小区的配置消息包括该RRM测量的周期信息、CSI测量的周期、该第一周期的配置、该第二周期的配置信息中的至少一种。
可选的,作为一个实施例,该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该第二上行信号包括第二CSI和/或第二SRS。
应理解,上述各个实施例与方法100和方法200中相应的步骤类似,为了简洁,在此不再赘述。
还应理解,在本发明的各个实施例中,上述各过程和各步骤序号的大小并不意味着执行顺序的先后,各过程的执行顺序应该以其功能和内在的逻辑而定,而不应对本发明的实施例的实施过程造成任何限制。
上文结合图1至图6,详细描述了本发明实施例的激活辅小区的方法,下面将结合图7至图18,详细描述本发明实施例的通信装置和网络设备。
图7是本发明一个实施例的通信装置的示意性框图。应理解,该通信装置可以指上述的终端设备,通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例,图7所示的通信装置400可以用于执行对应于图4中终端设备执行的步骤。该通信装置400包括:处理器410、存储器420和收发器430,处理器410、存储器420和收发器430通过通信连接,存储器420存储指令,处理器410用于执行存储器420存储的指令,收发器430用于在处理器410的驱动下执行具体的信号收发。
该收发器430,用于在接收到网络设备发送的辅小区激活命令后,从第一时间单元开始,按照第一周期向该网络设备发送第一上行信号。
该处理器410,用于确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者接收到该网络设备发送的调度命令的时间单元。
该收发器430还用于在该第二时间单元之后,按照第二周期或者基于该网络设备调度的方式向该网络设备发送第二上行信号,该第二周期大于该第一周期。
本发明实施例提供的通信装置,在辅小区激活过程中,即从通信装置接收到激活命令后的第一时间单元开始,到接收到调度命令或者到达最长激活时间的时间单元的这段时间内,按照较小的第一周期向网络设备发送该第一上行信号,增大了网络设备接收到用于通知该辅小区已经激活的该第一上行信号的概率,使得网络设备可以更早的接收到该第一上行信号,从而更早的根据该第一上行信号向通信装置发送调度命令,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时。在接收到调度命令后,通信装置以较大的第二周期或基于网络设备调度的方式发送第二上行信号,减少了发送第二上行信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活延时不平衡 的问题,提高数据传输效率和用户体验。
通信装置400中的各个组件通过通信连接,即处理器410、存储器420和收发器430之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本发明的另一个实施例中,在接收到该辅小区激活命令前,该收发器430还用于接收该网络设备发送的该辅小区的配置消息,该通信装置接收该网络设备发送的该辅小区的配置消息,该配置消息包括该第二周期的配置信息和基于该网络设备调度的方式的配置信息中的至少一种,以及述第一周期的配置信息。
可选的,在本发明的另一个实施例中,该收发器430发送的该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该收发器430发送的该第二上行信号包括第二CSI和/或第二SRS。
可选的,在本发明的另一个实施例中,该第一时间单元为该通信装置能够向该网络设备发送该第一上行信号的时间单元。
应注意,本发明实施例中,处理器410可以由处理模块实现,存储器420可以由存储模块实现,收发器430可以由收发模块实现,如图8所示,通信装置500可以包括处理模块510、存储模块520和收发模块530。
图7所示的通信装置400或图8所示的通信装置500能够实现前述图4中终端设备执行的步骤,为避免重复,这里不再赘述。
图9示出了本发明一个实施例的网络设备600的示意性框图。应理解,网络设备实施例与方法实施例相互对应,类似的描述可以参照方法实施例,如图9所示,该网络设备600包括:处理器610、存储器620和收发器630,处理器610、存储器620和收发器630通过通信连接,存储器620存储指令,处理器610用于执行存储器620存储的指令,收发器630用于在处理器610的驱动下执行具体的信号收发。
该收发器630,用于在向终端设备发送辅小区激活命令后,从第一时间单元开始,该网络设备按照第一周期接收该终端设备发送的第一上行信号。
该处理器610,用于确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者向该终端设备发送调度命令的时间单元。
该收发器630还用于在该第二时间单元之后,按照第二周期或者基于该网络设备调度的方式接收该终端设备发送的第二上行信号,该第二周期大于该第一周期。
本发明实施例提供的网络设备,在辅小区激活过程中,即在发送激活命令的第一时间单元开始,到发送调度命令或者到达最长激活时间的时间单元的这段时间内,按照较小的第一周期接收该第一上行信号,增大了网络设备接收到用于通知该辅小区已经激活的该第一上行信号的概率,使得网络设备可以更早的接收到该第一上行信号,从而更早的根据该第一上行信号向终端设备发送调度命令,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时。在发送调度命令后,网络设备以较大的第二周期或基于网络设备调度的方式接收第二上行信号,减少了第二上行信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活延时不平衡的问题,提高数据传输效率和用户体验。
网络设备600中的各个组件通过通信连接,即处理器610、存储器620和收发器630之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,网络处理器NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本发明的另一个实施例中,在发送到该辅小区激活命令前,该收发器630还用于向该终端设备发送该辅小区的配置消息,该终端设备接收该网络设备发送的该辅小区的配置消息,该配置消息包括该第二周期的配置信息和基于该网络设备调度的方式的配置信息中的至少一种,以及述第一周期的配置信息。
可选的,在本发明的另一个实施例中,该收发器630接收的该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该收发器接收的该第二上行信号包括第二CSI和/或第二SRS。
可选的,在本发明的另一个实施例中,该第一时间单元为该终端设备能够向该网络设备发送该第一上行信号的时间单元。
应注意,在发明实施例中,处理器610可以由处理模块实现,存储器620可以由存储模块实现,收发器630可以由收发模块实现,如图10所示,网络设备700可以包括处理模块710、存储模块720和收发模块730。
图9所示的网络设备600或图10所示的网络设备700能够实现前述图4中网络设备执行的步骤,为避免重复,这里不再赘述。
图11是本发明一个实施例的网络设备的示意性框图。应理解,网络设备实施例与方法实施例相互对应,类似的描述可以参照方法实施例,图11所示的网络设备800可以用 于执行对应于图5中网络设备执行的步骤。该网络设备800包括:处理器810、存储器820和收发器830,处理器810、存储器820和收发器830通过通信连接,存储器820存储指令,处理器810用于执行存储器820存储的指令,收发器830用于在处理器810的驱动下执行具体的信号收发。
该收发器830,用于在第三时间单元向终端设备发送辅小区激活命令。
该收发器830还用于从该第三时间单元开始,按照第一周期向该终端设备发送第一导频信号。
该处理器810,用于确定第四时间单元,该第四时间单元为最长激活时间达到的时间单元或者为该网络设备向该终端设备发送调度命令的时间单元。
该收发器830还用于在该第四时间单元之后,按照第二周期向该终端设备发送第二导频信号,该第二周期大于该第一周期。
本发明实施例提供的网络设备,在辅小区激活过程中,即网络设备发送激活命令和发送调度命令的这段时间内,网络设备按照较小的第一周期向终端设备发送第一导频信号,增大了终端设备接收到用于下行同步的第一导频信号的概率,可以使得终端设备更早的完成下行同步,进而更早的完成硬件准备工作,即完成辅小区的激活。从而可以更早的向网络设备发送用于通知该辅小区已经激活成功的上行信号,网络设备便可以根据该上行信号,可以更早的发送调度命令。可以减少网络设备获知辅小区激活成功所用的时间,减小激活时延。在发送调度命令后,网络设备以较大的第二周期发送第二导频信号,减少了发送第二导频信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活时延不平衡的问题,提高数据传输效率和用户体验。
网络设备800中的各个组件通过通信连接,即处理器810、存储器820和收发器830之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,网络处理器NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本发明的另一个实施例中,在发送到该辅小区激活命令前,该收发器830还用于向该终端设备发送该辅小区的配置消息,该配置消息包括该第一周期的配置信息和该第二周期的配置信息。
可选的,在本发明的另一个实施例中,该收发器830发送的该第一导频信号包括第一小区特定参考信号CRS和/或第一解调参考信号DMRS,该收发器830发送的该第二导频信号包括第二CRS和/或第二DMRS。
应注意,在发明实施例中,处理器810可以由处理模块实现,存储器820可以由存储 模块实现,收发器830可以由收发模块实现,如图12所示,网络设备900可以包括处理模块910、存储模块920和收发模块930。
图11所示的网络设备800或图12所示的网络设备900能够实现前述图5中网络设备执行的步骤,为避免重复,这里不再赘述。
图13示出了本发明一个实施例的通信装置1100的示意性框图。应理解,该通信装置可以指上述的终端设备,通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例,如图13所示,该通信装置1100包括:处理器1110、存储器1120和收发器1130,处理器1110、存储器1120和收发器1130通过通信连接,存储器1120存储指令,处理器1110用于执行存储器1120存储的指令,收发器1130用于在处理器1110的驱动下执行具体的信号收发。
该收发器1130,用于在第三时间单元接收到网络设备发送的辅小区激活命令。
该收发器1130还用于从该第三时间单元开始,按照第一周期接收该网络设备发送的第一导频信号。
该处理器1110,用于确定第四时间单元,该第四时间单元为最长激活时间达到的时间单元或者为该通信装置接收到该网络设备发送的调度命令的时间单元。
该收发器1130还用于在该第四时间单元之后,按照第二周期接收该网络设备发送的第二导频信号,该第二周期大于该第一周期。
本发明实施例提供的通信装置,在辅小区激活过程中,即通信装置接收到激活命令和调度命令的这段时间内,通信装置按照较小的第一周期接收第一导频信号,增大了通信装置接收到用于下行同步的第一导频信号的概率,可以使得通信装置更早的完成下行同步,进而更早的完成硬件准备工作,即完成辅小区的激活。从而可以更早的向网络设备发送用于通知该辅小区已经激活成功的上行信号,可以减少网络设备获知辅小区激活成功所用的时间,减小激活时延。在接收到调度命令后,通信装置以较大的第二周期接收第二导频信号,减少了第二导频信号消耗的网络资源。从而解决在辅小区激活过程中和激活后,网络资源消耗和激活时延不平衡的问题,提高数据传输效率和用户体验。
通信装置1100中的各个组件通过通信连接,即处理器1110、存储器1120和收发器1130之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,网络处理器NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本发明的另一个实施例中,在接收到该辅小区激活命令前,该收发器1130还用于接收该网路设备发送的该辅小区的配置消息,该配置消息包括该第一周期的配置信 息和该第二周期的配置信息。
可选的,在本发明的另一个实施例中,该收发器1130接收的该第一导频信号包括第一解调参考信号DMRS和/或第一波束导频信号,该收发器1130接收的该第二导频信号包括第二DMRS和/或第二波束导频信号。
应注意,在发明实施例中,处理器1100可以由处理模块实现,存储器1120可以由存储模块实现,收发器1130可以由收发模块实现,如图14所示,通信装置1200可以包括处理模块1210、存储模块1220和收发模块1230。
图13所示的通信装置1100或图14所示的通信装置1200能够实现前述图5中终端设备执行的步骤,为避免重复,这里不再赘述。
图15示出了本发明一个实施例的通信装置1300的示意性框图。应理解,该通信装置可以指上述的终端设备,通信装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例,如图15所示,该通信装置1300包括:处理器1310、存储器1320和收发器1330,处理器1310、存储器1320和收发器1330通过通信连接,存储器1320存储指令,处理器1310用于执行存储器1320存储的指令,收发器1330用于在处理器1310的驱动下执行具体的信号收发。
该收发器1330,用于接收网络设备发送的指示信息,该指示信息用于指示该通信装置开始硬件准备工作。
该处理器1310,用于根据该指示信息,开始RRM测量,CSI测量、下行同步和硬件准备工作中的至少一个。
该收发器1330还用于在接收到该指示信息后,在第一时间单元接收到网络设备发送的辅小区激活命令。
该收发器1330还用于从该第一时间单元开始,按照第一周期向该网络设备发送第一上行信号。
本发明实施例提供通信装置,不用等到接收到网络设备发送的辅小区激活命令后才开始进行硬件准备工作,而是在接收到网络设备发送的指示信息后,在接收到辅小区激活命令前,就开始硬件准备工作。该指示信息也可以是一种激活命令。这样通信装置可以更早的完成硬件准备工作。在接收到辅小区激活命令后,通信装置就按照第一周期向该网络设备发送第一上行信号,可以使得网络设备更早的获知该辅小区已经激活成功,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时,使得网络设备可以更早的调度该辅小区。
通信装置1300中的各个组件通过通信连接,即处理器1310、存储器1320和收发器1330之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,网络处理器NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理 器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本发明的另一个实施例中,该处理器1310还用于确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者接收到该网络设备发送的调度命令的时间单元。该收发器1330还用于从第二时间单元之后,按照第二周期或者基于该网络设备调度的方式向该网络设备发送第二上行信号,该第二周期大于该第一周期。
可选的,在本发明的另一个实施例中,该处理器1310具体用于在接收到该指示信息后,开始RRM测量,CSI测量、下行同步和硬件准备工作中的至少一个,该硬件准备工作包括锁相环调整、晶振调整、自动增益控制、射频链激活中至少一种。
可选的,在本发明的另一个实施例中,该指示信息和该辅小区激活命令可以是以MAC CE的形式发送,或以物理层信令的形式发送。
可选的,在本发明的另一个实施例中,在接收到该指示信息前,该收发器1330还用于接收该网络设备发送的该辅小区的配置消息,其中,该辅小区的配置消息包括该RRM测量的周期信息、CSI测量的周期、该第一周期的配置、该第二周期的配置信息中的至少一种。
可选的,在本发明的另一个实施例中,该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该第二上行信号包括第二CSI和/或第二SRS。
应注意,在发明实施例中,处理器1300可以由处理模块实现,存储器1320可以由存储模块实现,收发器1330可以由收发模块实现,如图16所示,通信装置1400可以包括处理模块1410、存储模块1420和收发模块1430。
图15所示的通信装置1300或图16所示的通信装置1400能够实现前述图6中终端设备执行的步骤,为避免重复,这里不再赘述
图17是本发明一个实施例的网络设备的示意性框图。应理解,网络设备实施例与方法实施例相互对应,类似的描述可以参照方法实施例,图17所示的网络设备1500可以用于执行对应于图6中网络设备执行的步骤。该网络设备1500包括:处理器1510、存储器1520和收发器1530,处理器1510、存储器1520和收发器1530通过通信连接,存储器1520存储指令,处理器1510用于执行存储器1520存储的指令,收发器1530用于在处理器1510的驱动下执行具体的信号收发。
该收发器1530,用于终端设备发送指示信息,该指示信息用于该终端设备开始硬件准备工作。
该收发器1530还用于发送该指示信息后,在第一时间单元向终端设备发送辅小区激活命令。
该收发器1530还用于从该第一时间单元开始,按照第一周期接收该终端设备发送的第一上行信号。
本发明实施例提供的网络设备,在向终端设备发送辅小区激活命令前,向该终端设备发送指示信息,该指示信息用于该终端设备开始硬件准备工作。终端设备不用等到接收到网络设备发送的辅小区激活命令后才开始进行硬件准备工作,在接收到辅小区激活命令前,就开始硬件准备工作。该指示信息也可以是一种激活命令。这样终端设备可以 更早的完成硬件准备工作。在网络设备发送辅小区激活命令后,终端设备就按照第一周期向该网络设备发送第一上行信号,可以使得网络设备更早的获知该辅小区已经激活成功,缩短了网络设备获知该辅小区已经激活成功所用的时间,减小激活延时,使得网络设备可以更早的调度该辅小区。
网络设备1500中的各个组件通过通信连接,即处理器1510、存储器1520和收发器1530之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是CPU,网络处理器NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本发明的另一个实施例中,该处理器1510用于:确定第二时间单元,该第二时间单元为最长激活时间到达的时间单元或者接收到该网络设备发送的调度命令的时间单元。该收发器1530还用于从第二时间单元之后,按照第二周期或者基于该网络设备调度的方式接收该终端设备发送的第二上行信号,该第二周期大于该第一周期。
可选的,在本发明的另一个实施例中,在发送该指示信息前,该收发器1530还用于向该终端设备发送该辅小区的配置消息,其中,该辅小区的配置消息包括该RRM测量的周期信息、CSI测量的周期、该第一周期的配置、该第二周期的配置信息中的至少一种。
可选的,在本发明的另一个实施例中,指示信息和该辅小区激活命令可以是以MAC CE的形式发送,或以物理层信令的形式发送。
可选的,在本发明的另一个实施例中,该第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,该第二上行信号包括第二CSI和/或第二SRS。
应注意,在发明实施例中,处理器1510可以由处理模块实现,存储器1520可以由存储模块实现,收发器1530可以由收发模块实现,如图18所示,网络设备1600可以包括处理模块1610、存储模块1620和收发模块1630。
图17所示的网络设备1500或图18所示的网络设备1600能够实现前述图6中网络设备执行的步骤,为避免重复,这里不再赘述。
本发明实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述图4、图5和图6中本发明实施例的激活辅小区的方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本发明实施例对此不做限制。
本发明实施例还提供了一种通信系统,该通信系统包括上述本发明实施例提供的终端设备和上述本发明实施例提供网络设备,该通信系统可以完成本发明实施例提供的任一种激活辅小区的方法。
应理解,本文中术语“和/或”以及“A或B中的至少一种”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种激活辅小区的方法,其特征在于,包括:
    终端设备在接收到网络设备发送的辅小区激活命令后,从第一时间单元开始,按照第一周期向所述网络设备发送第一上行信号;
    所述终端设备确定第二时间单元,所述第二时间单元为最长激活时间到达的时间单元或者接收到所述网络设备发送的调度命令的时间单元;
    所述终端设备在所述第二时间单元之后,按照第二周期或者基于所述网络设备调度的方式向所述网络设备发送第二上行信号,所述第二周期大于所述第一周期。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端设备接收到所述辅小区激活命令前,所述方法还包括:
    所述终端设备接收所述网络设备发送的所述辅小区的配置消息,所述配置消息包括所述第二周期的配置信息和基于所述网络设备调度的方式的配置信息中的至少一种,以及所述第一周期的配置信息。
  3. 根据权利要1或2所述的方法,其特征在于,所述第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,所述第二上行信号包括第二CSI和/或第二SRS。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一时间单元为所述终端设备能够向所述网络设备发送所述第一上行信号的时间单元。
  5. 一种激活辅小区的方法,其特征在于,包括:
    网络设备在向终端设备发送辅小区激活命令后,从第一时间单元开始,所述网络设备按照第一周期接收所述终端设备发送的第一上行信号;
    所述网络设备确定第二时间单元,所述第二时间单元为最长激活时间到达的时间单元或者向所述终端设备发送调度命令的时间单元;
    所述网络设备在所述第二时间单元之后,按照第二周期或者基于所述网络设备调度的方式接收所述终端设备发送的第二上行信号,所述第二周期大于所述第一周期。
  6. 根据权利要求5所述的方法,其特征在于,在所述网络设备向终端设备发送所述辅小区激活命令前,所述方法还包括:
    所述网络设备向所述终端设备发送所述辅小区的配置消息,所述配置消息包括所述第二周期的配置信息和基于所述网络设备调度的方式的配置信息中的至少一种,以及所述第一周期的配置信息。
  7. 根据权利要5或6所述的方法,其特征在于,所述第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,所述第二上行信号包括第二CSI和/或第二SRS。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述第一时间单元为所述终端设备能够向所述网络设备发送所述第一上行信号的时间单元。
  9. 一种激活辅小区的方法,其特征在于,包括:
    网络设备在第三时间单元向终端设备发送辅小区激活命令;
    所述网络设备从所述第三时间单元开始,按照第一周期向所述终端设备发送第一导频信号;
    所述网络设备确定第四时间单元,所述第四时间单元为最长激活时间达到的时间单元或者为所述网络设备向所述终端设备发送调度命令的时间单元;
    在所述第四时间单元之后,所述网络设备按照第二周期向所述终端设备发送第二导频信号,所述第二周期大于所述第一周期。
  10. 根据权利要求9所述的方法,其特征在于,在所述网络设备发送所述辅小区激活命令前,所述方法还包括:
    所述网络设备向所述终端设备发送所述辅小区的配置消息,所述配置消息包括所述第一周期的配置信息和所述第二周期的配置信息。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一导频信号包括第一解调参考信号DMRS和/或第一波束导频信号,所述第二导频信号包括第二DMRS和/或第二波束导频信号。
  12. 一种激活辅小区的方法,其特征在于,包括:
    终端设备在第三时间单元接收到网络设备发送的辅小区激活命令;
    所述终端设备从所述第三时间单元开始,按照第一周期接收所述网络设备发送的第一导频信号;
    所述终端设备确定第四时间单元,所述第四时间单元为最长激活时间达到的时间单元或者为所述终端设备接收到所述网络设备发送的调度命令的时间单元;
    在所述第四时间单元之后,所述终端设备按照第二周期接收所述网络设备发送的第二导频信号,所述第二周期大于所述第一周期。
  13. 根据权利要求12所述的方法,其特征在于,在所述终端设备接收到所述网络设备发送所述辅小区激活命令前,所述方法还包括:
    所述终端设备接收所述网络设备发送的所述辅小区的配置消息,所述配置消息包括所述第一周期的配置信息和所述第二周期的配置信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一导频信号包括第一解调参考信号DMRS和/或第一波束导频信号,所述第二导频信号包括第二DMRS和/或第二波束导频信号。
  15. 一种通信装置,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述收发器,用于在接收到网络设备发送的辅小区激活命令后,从第一时间单元开始,按照第一周期向所述网络设备发送第一上行信号;
    所述处理器,用于确定第二时间单元,所述第二时间单元为最长激活时间到达的时间单元或者接收到所述网络设备发送的调度命令的时间单元;
    所述收发器还用于在所述第二时间单元之后,按照第二周期或者基于所述网络设备调度的方式向所述网络设备发送第二上行信号,所述第二周期大于所述第一周期。
  16. 根据权利要求15所述的通信装置,其特征在于,在接收到所述辅小区激活命令前,所述收发器还用于接收所述网络设备发送的所述辅小区的配置消息,所述配置消息包括所述第二周期的配置信息和基于所述网络设备调度的方式的配置信息中的至少一种,以及述第一周期的配置信息。
  17. 根据权利要求15或16所述的通信装置,其特征在于,所述收发器发送的所述第 一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,所述收发器发送的所述第二上行信号包括第二CSI和/或第二SRS。
  18. 根据权利要求15至17中任一项所述的通信装置,其特征在于,所述第一时间单元为所述通信装置能够向所述网络设备发送所述第一上行信号的时间单元。
  19. 一种网络设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述收发器,用于在向终端设备发送辅小区激活命令后,从第一时间单元开始,所述网络设备按照第一周期接收所述终端设备发送的第一上行信号;
    所述处理器,用于确定第二时间单元,所述第二时间单元为最长激活时间到达的时间单元或者向所述终端设备发送调度命令的时间单元;
    所述收发器还用于在所述第二时间单元之后,按照第二周期或者基于所述网络设备调度的方式接收所述终端设备发送的第二上行信号,所述第二周期大于所述第一周期。
  20. 根据权利要求19所述的网络设备,其特征在于,在发送所述辅小区激活命令前,所述收发器还用于向所述终端设备发送所述辅小区的配置消息,所述配置消息包括所述第二周期的配置信息和基于所述网络设备调度的方式的配置信息中的至少一种,以及述第一周期的配置信息。
  21. 根据权利要求19或20所述的网络设备,其特征在于,所述收发器接收的所述第一上行信号包括第一信道状态信息CSI和/或第一探测参考信号SRS,所述收发器接收的所述第二上行信号包括第二CSI和/或第二SRS。
  22. 根据权利要求19至21中任一项所述的网络设备,其特征在于,所述第一时间单元为所述终端设备能够向所述网络设备发送所述第一上行信号的时间单元。
  23. 一种网络设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述收发器,用于在第三时间单元向终端设备发送辅小区激活命令;
    所述收发器还用于从所述第三时间单元开始,按照第一周期向所述终端设备发送第一导频信号;
    所述处理器,用于确定第四时间单元,所述第四时间单元为最长激活时间达到的时间单元或者为所述网络设备向所述终端设备发送调度命令的时间单元;
    所述收发器还用于在所述第四时间单元之后,按照第二周期向所述终端设备发送第二导频信号,所述第二周期大于所述第一周期。
  24. 根据权利要求23所述的网络设备,其特征在于,在发送到所述辅小区激活命令前,所述收发器还用于向所述终端设备发送所述辅小区的配置消息,所述配置消息包括所述第一周期的配置信息和所述第二周期的配置信息。
  25. 根据权利要求23或24所述的网络设备,其特征在于,所述收发器发送的所述第一导频信号包括第一解调参考信号DMRS和/或第一波束导频信号,所述收发器发送的所述第二导频信号包括第二DMRS和/或第二波束导频信号。
  26. 一种通信装置,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述收发器,用于在第三时间单元接收到网络设备发送的辅小区激活命令;
    所述收发器还用于从所述第三时间单元开始,按照第一周期接收所述网络设备发送的第一导频信号;
    所述处理器,用于确定第四时间单元,所述第四时间单元为最长激活时间达到的时间单元或者为所述通信装置接收到所述网络设备发送的调度命令的时间单元;
    所述收发器还用于在所述第四时间单元之后,按照第二周期接收所述网络设备发送的第二导频信号,所述第二周期大于所述第一周期。
  27. 根据权利要求26所述的通信装置,其特征在于,在接收到所述辅小区激活命令前,所述收发器还用于接收所述网路设备发送的所述辅小区的配置消息,所述配置消息包括所述第一周期的配置信息和所述第二周期的配置信息。
  28. 根据权利要求26或27所述的通信装置,其特征在于,所述收发器发送的所述第一导频信号包括第一解调参考信号DMRS和/或第一波束导频信号,所述收发器发送的所述第二导频信号包括第二DMRS和/或第二波束导频信号。
  29. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序用于执行根据权利要求1至14中任一项所述的激活辅小区的方法的指令。
  30. 一种通信装置,包含至少一个处理器和存储器,所述存储器上存储有计算机程序,其特征在于,所述至少一个处理器执行所述计算机程序,以实现权利要求1-14任一项所述的方法。
PCT/CN2017/097093 2017-08-11 2017-08-11 激活辅小区的方法、通信装置和网络设备 WO2019028832A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112020002780-4A BR112020002780A2 (pt) 2017-08-11 2017-08-11 método para ativar célula secundária, aparelho de comunicações, dispositivo de rede, e meio de armazenamento legível por computador
PCT/CN2017/097093 WO2019028832A1 (zh) 2017-08-11 2017-08-11 激活辅小区的方法、通信装置和网络设备
JP2020529786A JP2020530735A (ja) 2017-08-11 2017-08-11 セカンダリ・セルをアクティベートする方法、通信装置、及びネットワーク・デバイス
EP17920712.1A EP3661271A4 (en) 2017-08-11 2017-08-11 METHOD OF ACTIVATING A SECONDARY CELL, COMMUNICATION DEVICE, AND NETWORK DEVICE
CN201780093664.9A CN110999408A (zh) 2017-08-11 2017-08-11 激活辅小区的方法、通信装置和网络设备
US16/786,370 US20200186318A1 (en) 2017-08-11 2020-02-10 Method for activating secondary cell, communications apparatus, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097093 WO2019028832A1 (zh) 2017-08-11 2017-08-11 激活辅小区的方法、通信装置和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/786,370 Continuation US20200186318A1 (en) 2017-08-11 2020-02-10 Method for activating secondary cell, communications apparatus, and network device

Publications (1)

Publication Number Publication Date
WO2019028832A1 true WO2019028832A1 (zh) 2019-02-14

Family

ID=65272689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097093 WO2019028832A1 (zh) 2017-08-11 2017-08-11 激活辅小区的方法、通信装置和网络设备

Country Status (6)

Country Link
US (1) US20200186318A1 (zh)
EP (1) EP3661271A4 (zh)
JP (1) JP2020530735A (zh)
CN (1) CN110999408A (zh)
BR (1) BR112020002780A2 (zh)
WO (1) WO2019028832A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143558A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 信道测量方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127035A1 (zh) * 2017-12-26 2019-07-04 Oppo广东移动通信有限公司 激活与去激活辅小区的方法和终端设备
EP3753371B1 (en) * 2018-02-15 2022-12-14 Nokia Technologies Oy Methods and apparatuses for faster radio frequency activation
WO2019183827A1 (en) * 2018-03-28 2019-10-03 Zte Corporation Channel state information feedback methods and systems
CN113595696B (zh) * 2020-04-30 2022-12-27 华为技术有限公司 通信方法、装置及系统
CN113840320A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种用于双连接系统的通信方法及装置
CN115413039A (zh) * 2022-08-15 2022-11-29 中国联合网络通信集团有限公司 通信方法、网络设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066160A (zh) * 2013-03-21 2014-09-24 普天信息技术研究院有限公司 辅小区的激活方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102156886B1 (ko) * 2012-09-25 2020-09-17 삼성전자주식회사 통신 시스템에서 복수의 셀을 이용하는 방법 및 장치
JP6192288B2 (ja) * 2012-11-30 2017-09-06 株式会社Nttドコモ 移動局及び制御方法
CN104919748B (zh) * 2013-01-18 2018-01-26 瑞典爱立信有限公司 用于检测服务小区的激活的方法和节点
WO2015109490A1 (zh) * 2014-01-23 2015-07-30 华为技术有限公司 通信方法、用户设备和基站
EP2941063B1 (en) * 2014-04-29 2017-11-01 NTT Docomo, Inc. Macro-Cell Assisted Small Cell Discovery and Activation
US20160301513A1 (en) * 2015-04-08 2016-10-13 Intel IP Corporation Systems, methods, and devices for component carrier management in carrier aggregation systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066160A (zh) * 2013-03-21 2014-09-24 普天信息技术研究院有限公司 辅小区的激活方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) ; Requirements for Support of Radio Resource Management (Release 13)", 3GPP TS 36.133, no. V13.8.0, 30 June 2017 (2017-06-30), XP051336641 *
ERICSSON: "Draft CR for Introduction of Requirements for sTTI and Reduced Processing Time", R4-1702894, 7 April 2017 (2017-04-07), XP051246148 *
See also references of EP3661271A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143558A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 信道测量方法和装置

Also Published As

Publication number Publication date
EP3661271A4 (en) 2020-10-14
CN110999408A (zh) 2020-04-10
EP3661271A1 (en) 2020-06-03
JP2020530735A (ja) 2020-10-22
BR112020002780A2 (pt) 2020-07-28
US20200186318A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
CN109963296B (zh) 用于控制SCell状态的方法和装置
CN111345050B (zh) 对无线通信设备能力的临时处理
TWI689219B (zh) 傳輸資料的方法、終端設備和網路設備
WO2019028832A1 (zh) 激活辅小区的方法、通信装置和网络设备
WO2018028271A1 (zh) 一种控制信息传输方法、设备以及通信系统
KR20150060876A (ko) 동적 tdd 업링크/다운링크 구성을 위한 방법들
US11240869B2 (en) Discontinuous reception method and device
JP2020502918A (ja) 上りリンク伝送制御方法及びその装置、通信システム
US20230048959A1 (en) Channel monitoring method, electronic device, and storage medium
JP2022538211A (ja) Bwpの管理方法および装置、端末
US11228933B2 (en) Method for transmitting information and terminal device
CN112887066B (zh) Cdrx参数的配置方法及装置
WO2017113206A1 (zh) 一种数据通信的方法、终端设备及网络设备
WO2018126833A1 (zh) 无线通信的方法和设备
WO2018027818A1 (zh) 信息传输方法、基站和用户设备
US11196530B2 (en) Method for switching status of secondary carrier, terminal device, and network device
JP2022505017A (ja) キャリア処理方法、端末、ネットワーク装置及び記憶媒体
CN116569610A (zh) 无线通信方法和设备
WO2022188649A1 (zh) 通信方法和装置
WO2017049537A1 (zh) 传输信道状态信息的方法和设备
WO2022151266A1 (zh) 一种媒体接入访问mac信令适用时间的确定方法和装置
WO2017049487A1 (zh) 终端设备、网络设备、上行发送方法和上行接收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020002780

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017920712

Country of ref document: EP

Effective date: 20200228

ENP Entry into the national phase

Ref document number: 112020002780

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200210