CN107211296A - 用于在无线通信系统中激活/停用小区的方法及其装置 - Google Patents

用于在无线通信系统中激活/停用小区的方法及其装置 Download PDF

Info

Publication number
CN107211296A
CN107211296A CN201680006371.8A CN201680006371A CN107211296A CN 107211296 A CN107211296 A CN 107211296A CN 201680006371 A CN201680006371 A CN 201680006371A CN 107211296 A CN107211296 A CN 107211296A
Authority
CN
China
Prior art keywords
scell
csi
enb
subframe
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680006371.8A
Other languages
English (en)
Other versions
CN107211296B (zh
Inventor
朴钟贤
金沂濬
安俊基
徐翰瞥
李承旻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN107211296A publication Critical patent/CN107211296A/zh
Application granted granted Critical
Publication of CN107211296B publication Critical patent/CN107211296B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了无线通信系统中的小区激活/停用方法及其设备。具体地,一种在支持载波聚合的无线通信系统中由UE激活/停用辅小区(SCell)的方法包括以下步骤:从eNB接收SCell添加相关消息;当从所述eNB接收到针对根据所述SCell添加相关消息而添加的多个SCell当中的第一SCell的部分激活相关消息时,部分激活一个或更多个第一SCell;以及当从所述eNB接收到针对根据所述SCell添加相关消息而添加的所述多个SCell当中的第二SCell的完全激活相关消息时,完全激活一个或更多个第二SCell,其中,正常SCell操作被应用于所述第二SCell,并且所述正常SCell操作中的仅一些被应用于所述第一SCell。

Description

用于在无线通信系统中激活/停用小区的方法及其装置
技术领域
本发明涉及无线通信系统,并且更具体地,涉及用于激活/停用小区以支持快速载波切换的方法和支持该方法的装置。
背景技术
已经开发出在保障用户活动的同时提供语音服务的移动通信系统。然而,移动通信系统的服务覆盖范围已经甚至扩展到数据服务以及语音服务,并且当前,业务的爆发性增长已经导致资源短缺以及针对高速服务的用户需求,从而需要高级的移动通信系统。
对下一代移动通信系统的需要可以包括支持巨量数据业务、每个用户的传送速率的显著增加、对数目显著增加的连接装置的适应、非常低的端到端等待时间和高能量效率。为此,已经研究了诸如小区增强、双连接、大规模多输入多输出(MIMO)、带内全双工、非正交多址(NOMA)、支持超宽带和装置联网这样的各种技术。
发明内容
技术问题
本发明的一个目的是提供用于完全激活和部分激活辅小区的方法。
本发明的另一个目的是提供用于在部分激活的辅小区中执行信道状态信息测量和/或无线电资源监测测量的方法。
本发明将要实现的技术目的不限于前述目的,并且本发明所属的领域中的技术人员可以根据下面的描述清楚地理解其它技术目的。
技术方案
在本发明的一方面,一种在支持载波聚合的无线通信系统中由UE激活/停用辅小区(SCell)的方法包括以下步骤:从eNB接收SCell添加相关消息;当从所述eNB接收到针对根据所述SCell添加相关消息而添加的多个SCell当中的第一SCell的部分激活相关消息时,部分激活一个或更多个第一SCell;以及当从所述eNB接收到针对根据所述SCell添加相关消息而添加的所述多个SCell当中的第二SCell的完全激活相关消息时,完全激活一个或更多个第二SCell,其中,正常SCell操作被应用于所述第二SCell,并且所述正常SCell操作中的仅一些被应用于所述第一SCell。
在本发明的另一方面,一种在支持载波聚合的无线通信系统中激活/停用辅小区(SCell)的UE包括:射频(RF)单元,该RF单元用于发送和接收无线电信号;以及处理器,该处理器用于控制所述RF单元,其中,所述处理器被配置为:从eNB接收SCell添加相关消息;当从所述eNB接收到针对根据所述SCell添加相关消息而添加的多个SCell当中的第一SCell的部分激活相关消息时,部分激活一个或更多个第一SCell;以及当从所述eNB接收到针对根据所述SCell添加相关消息而添加的所述多个SCell当中的第二SCell的完全激活相关消息时,完全激活一个或更多个第二SCell,其中,正常SCell操作被应用于所述第二SCell,并且所述正常SCell操作中的仅一些被应用于所述第一SCell。
优选地,可以向所述第一SCell应用信道状态信息(CSI)测量和/或无线电资源管理(RRM)测量。
优选地,可以配置用于所述CSI测量的测量间隔。
优选地,可以与用于所述CSI测量的参考信号的子帧、CSI干扰测量(CSI-IM)资源的子帧和/或CSI报告子帧关联地隐含配置用于周期CSI测量的测量间隔。
优选地,可以与发送包括用于非周期CSI测量的下行链路控制信息(DCI)中的子帧关联地隐含配置用于非周期CSI测量的测量间隔。
优选地,当所述测量间隔不包括用于所述CSI测量的参考信号或CSI-IM资源时,可以使用用于先前CSI测量的参考信号的子帧和CSI-IM资源的子帧作为用于所述CSI测量的参考资源。
优选地,当所述测量间隔不包括用于所述CSI测量的参考信号或CSI-IM资源时,可以在执行CSI报告时向所述eNB发送OOR(超出范围)。
优选地,所述多个SCell可以在被添加时被初始停用或部分激活。
优选地,在接收到针对所述第二SCell的所述完全激活相关消息之前,可以部分激活所述第二SCell。
优选地,该方法还可以包括以下步骤:当从eNB接收到针对所述第二SCell的部分激活相关消息或部分停用相关消息时,部分激活所述第二SCell。
优选地,该方法还可以包括以下步骤:当从所述eNB接收到针对所述第一SCell或所述第二SCell的SCell停用或完全停用相关消息时,停用所述第一SCell或所述第二SCell。
优选地,该方法还可以包括以下步骤:向所述eNB发送能力相关消息,所述能力相关消息包括能够被所述UE同时部分激活的分量载波(CC)的数目、所述CC的列表以及所述列表中的能够被完全激活的CC的数目。
优选地,所述第二SCell可以被包括在所述第一SCell中。
优选地,可以针对添加的所述多个SCell中的一些,配置公共周期CSI报告模式和/或公共报告资源。
有益效果
根据本发明的实施方式,能够定义部分激活状态和完全激活状态,以提高资源使用效率。
另外,根据本发明的实施方式,在部分激活的小区中执行信道状态信息/无线电资源管理测量和报告,以能够进行有效的快速载波切换。
本发明可得到的优点不限于以上提到的优点,并且本发明所属领域的技术人员可根据以下描述清楚地理解各种其它优点。
附图说明
为了帮助理解本发明而被包括在本文中作为说明书的一部分的附图提供了本发明的实施方式,并且通过以下描述来说明本发明的技术特征。
图1例示了可以应用本发明的实施方式的无线通信系统中的无线电帧的结构。
图2是例示了可以应用本发明的实施方式的无线通信系统中的用于下行链路时隙的资源网格的图。
图3例示了可以应用本发明的实施方式的无线通信系统中的下行链路子帧的结构。
图4例示了可以应用本发明的实施方式的无线通信系统中的上行链路子帧的结构。
图5示出了已知MIMO通信系统的配置。
图6是示出从多个发射天线到单个接收天线的信道的图。
图7示出了可以应用本发明的实施方式的无线通信系统中的分量载波和载波聚合的示例。
图8示出了可以应用本发明的实施方式的根据无线通信系统中的跨载波调度的子帧的结构示例。
图9是例示了可以应用本发明的实施方式的无线通信系统中的时间频率域中的时间-频率资源块的图。
图10是例示了可以应用本发明的实施方式的无线通信系统中的异步HARQ方法的资源分配和重新发送处理的图。
图11是示出了可以应用本发明的实施方式的LTE FDD系统中的下行链路HARQ处理的图。
图12是示出了可以应用本发明的实施方式的LTE FDD系统中的上行链路HARQ处理的图。
图13是例示了可以应用本发明的实施方式的无线通信系统中的基于载波聚合的CoMP系统的图。
图14例示了在可以应用本发明的实施方式的无线通信系统中映射到下行链路资源块对的参考信号模式。
图15例示了适用本发明的无线通信系统中的CSI-RS配置。
图16例示了适用本发明的无线通信系统中的PDCCH和E-PDCCH。
图17例示了根据本发明的实施方式的未经授权频带中的载波聚合。
图18和图19例示了根据本发明的实施方式的小区激活/停用方法。
图20是根据本发明的实施方式的无线通信设备的框图。
具体实施方式
参照附图来更详细地描述本发明的一些实施方式。将连同附图一起公开的详细描述旨在描述本发明的一些示例性实施方式,而不旨在描述本发明的唯一实施方式。以下的详细描述包括更多细节,以提供对本发明的完全理解。然而,本领域技术人员应该理解,本发明可在没有这些细节的情况下实现。
在一些情况下,为了避免本发明的概念模糊,已知结构和装置被省略,或者可基于各个结构和装置的核心功能以框图形式示出。
在本说明书中,基站具有网络的终端节点的含义,基站通过终端节点与装置通信。在本文献中,被描述为由基站执行的特定操作视情形而定可由基站的上层节点执行。即,显而易见的是,在由包括基站的多个网络节点构成的网络中,为了与装置通信而执行的各种操作可由基站或者基站以外的其它网络节点来执行。基站(BS)可被诸如固定站、节点B、eNB(演进节点B)、基站收发系统(BTS)或接入点(AP)的术语代替。另外,该装置可以是固定的或可以具有移动性,并且可被诸如用户设备(UE)、移动站(MS)、用户终端(UT)、移动订户站(MSS)、订户站(SS)、高级移动站(AMS)、无线终端(WT)、机器型通信(MTC)装置、机器对机器(M2M)装置或装置对装置(D2D)装置这样的另一个术语代替。
下文中,下行链路(DL)意指从eNB到UE的通信,而上行链路(UL)意指从UE到eNB的通信。在DL中,发送器可以是eNB的部件,而接收器可以是UE的部件。在UL中,发送器可以是UE的部件,而接收器可以是eNB的部件。
以下描述中所使用的具体术语被提供以帮助理解本发明,并且在不脱离本发明的技术精神的范围的情况下,所述具体术语的使用可被改变为各种形式。
以下技术可以用于诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)以及非正交多址(NOMA)这样的各种无线通信系统。CDMA可以使用诸如通用陆地无线电接入(UTRA)或者CDMA2000这样的无线电技术来实现。TDMA可以使用诸如全球移动通信(GSM)/通用分组无线电服务(GPRS)/用于GSM演进的增强数据率(EDGE)这样的无线电技术来实现。OFDMA可以使用诸如电气和电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20或者演进型UTRA(E-UTRA)这样的无线电技术来实现。UTRA是通用移动通信系统(UMTS)的一部分。第三代合作伙伴计划(3GPP)长期演进(LTE)是使用演进型UMTS陆地无线电接入(E-UTRA)的演进型UMTS(E-UMTS)的一部分,并且3GPP LTE在下行链路中采用OFDMA而在上行链路中采用SC-FMDA。高级LTE(LTE-A)是3GPP LTE的演进。
本发明的实施方式可以由IEEE 802、3GPP和3GPP2(即,无线电接入系统)中的至少一个中公开的标准文献支持。也就是说,属于本发明的实施方式并且为了清楚地揭露本发明的技术精神而未描述的步骤或者部分可以由这些文献支持。此外,该文献中所公开的所有术语都可以通过标准文献来描述。
为了使说明书更清楚,主要描述了3GPP LTE/LTE-A,但是本发明的技术特性不限于此。
可以应用本发明的实施方式的一般系统
图1示出了可以应用本发明的实施方式的无线通信系统中的无线电帧的结构。
3GPP LTE/LTE-A支持可适用于频分双工(FDD)的无线电帧结构类型1以及可适用于时分双工(TDD)的无线电帧结构。
在图1中,时域中的无线电帧的大小被表示为时间单元T_s=1/(15000*2048)的倍数。下行链路和上行链路传输包括具有T_f=307200*T_s=10ms的周期的无线电帧。
图1的(a)例示了类型1无线电帧的结构。类型1无线电帧结构可应用于全双工和半双工FDD二者。
无线电帧包括10个子帧。一个无线电帧包括长度为T_slot=15360*T_s=0.5ms的20个时隙。0至19索引被指派给相应时隙。一个子帧包括时域中的连续2个时隙,并且子帧i包括时隙2i和时隙2i+1。发送一个子帧所花费的时间被称为传输时间周期(TTI)。例如,一个子帧的长度可为1ms,一个时隙的长度可为0.5ms。
在FFD中,在频域中划分上行链路传输和下行链路传输。对于全双工FDD而言,没有限制,而UE不能在半双工FDD操作中同时发送和接收数据。
一个时隙在时域中包括多个正交频分复用(OFDM)符号,在频域中包括多个资源块(RB)。在3GPP LTE中,使用OFDM符号来表示一个符号周期,因为OFDMA用在下行链路中。OFDM符号可以被称为一个SC-FDMA符号或符号周期。RB是资源分配单元并且在一个时隙内包括多个连续的子载波。
图1的(b)例示了帧结构类型2。
帧结构类型2包括两个半帧,每个半帧的长度是153600*T_s=5ms。每个半帧包括5个子帧,每个子帧的长度是30720*T_s=1ms。
在帧结构类型的2TDD系统中,上行链路-下行链路配置是指示上行链路和下行链路是否被分配(或者预留)给所有子帧的规则。表1示出了上行链路-下行链路配置。
[表1]
参照表1,在无线电帧的每个子帧中,“D”指示用于下行链路传输的子帧,“U”指示用于上行链路传输的子帧,“S”指示包括含下行链路导频时隙(DwPTS)、保护周期(GP)和上行链路导频时隙(UpPTS)这三种类型的字段的特殊子帧。
DwPTS被用于UE中的初始小区搜索、同步或信道估计。UpPTS被用于UE的上行链路传输和eNB中的信道估计的同步。GP是用于去除在上行链路与下行链路之间由于下行链路信号的多径延迟而在上行链路中产生的干扰的周期。
每个子帧i包括各自具有T_slot=15360*T_s=0.5ms长度的时隙2i和时隙2i+1。
上行链路-下行链路配置可被分类成7种类型。在每种配置中,下行链路子帧、特殊子帧和上行链路子帧的位置和/或数目是不同的。
执行从下行链路变成上行链路的时间点或执行从上行链路变成下行链路的时间点被称为切换点。切换点的周期意指上行链路子帧和下行链路子帧的改变周期被相等地重复。在切换点的周期中支持5ms和10ms二者。如果切换点的周期具有5ms下行链路-上行链路切换点的周期,则在每个半帧中存在特殊子帧S。如果切换点的周期具有5ms下行链路-上行链路切换点的周期,则在第一个半帧中存在特殊子帧S。
在所有配置中,0个和5个子帧以及DwPTS只用于下行链路传输。子帧之后的UpPTS和子帧一直用于上行链路传输。
eNB和UE二者可以得知此上行链路-下行链路配置作为系统信息。每当上行链路-下行链路配置信息改变时,eNB可通过只向UE发送上行链路-下行链路配置信息的索引来将无线电帧的上行链路-下行链路分配状态的改变通知UE。此外,配置信息是某种下行链路控制信息并且可以通过如同其它调度信息的物理下行链路控制信道(PDCCH)来发送。配置信息可作为广播信息通过广播信道被发送给小区内的所有UE。
表2示出了特殊子帧的配置(DwPTS/GP/UpPTS的长度)。
[表2]
根据图1的示例的无线电帧的结构只是示例。可以按各种方式来改变无线电帧中包括的子帧的数目或者子帧中包括的时隙的数目或时隙中包括的OFDM符号的数目。
图2是例示了可以应用本发明的实施方式的无线通信系统中的用于一个下行链路时隙的资源网格的图。
参照图2,一个下行链路时隙在时域中包括多个OFDM符号。在本文中描述,仅仅出于示例性目的,一个下行链路时隙包括7个OFDMA符号并且一个资源块包括12个子载波,本发明不限于此。
资源网格上的各个元素被称为资源元素,并且一个资源块(RB)包括12×7个资源元素。包括在下行链路时隙中的资源块的数目N^DL取决于下行链路传输带宽。
上行链路时隙的结构可与下行链路时隙的结构相同。
图3示出了可以应用本发明的实施方式的无线通信系统中的下行链路子帧的结构。
参照图3,处于子帧的第一时隙的前部部分中的最多三个OFDM符号对应于分配有控制信道的控制区域,并且其余OFDM符号对应于分配有物理下行链路共享信道(PDSCH)的数据区域。3GPP LTE中所使用的下行链路控制信道包括例如物理控制格式指示符信道(PCFICH)、物理下行链路控制信道(PDCCH)、物理混合ARQ指示符信道(PHICH)。
PFCICH在子帧的第一OFDM符号中发送,承载关于子帧内用于发送控制信道的OFDM符号的数目(即,控制区域的大小)的信息。PHICH是针对上行链路的响应信道并且承载对混合自动重传请求(HARQ)的确认(ACK)/否定确认(NACK)信号。在PDCCH中发送的控制信息被称为下行链路控制信息(DCI)。DCI包括上行链路资源分配信息、下行链路资源分配信息或者针对预定UE组的上行链路发送(Tx)功率控制命令。
PDCCH可承载关于下行链路共享信道(DL-SCH)的资源分配和传输格式(也被称作“下行链路授权”)的信息、关于上行链路共享信道(UL-SCH)的资源分配信息(也被称作“上行链路授权”)、PCH上的寻呼信息、DL-SCH上的系统信息、对诸如PDSCH上发送的随机接入响应这样的上层控制消息的资源分配、针对预定UE组内的各个UE的发送功率控制命令的集合和网络电话(VoIP)的激活等。可在控制区域内发送多个PDCCH,并且UE可监测所述多个PDCCH。PDCCH在单个控制信道元素(CCE)或一些连续CCE的聚合上发送。CCE是逻辑分配单元,用于根据无线电信道的状态为PDCCH提供编码状态。CCE与多个资源元素组对应。通过CCE的数目和CCE所提供的编码速率之间的关联关系来确定PDCCH的格式和PDCCH的可用比特数目。
eNB基于将发送到UE的DCI来确定PDCCH格式,并且将循环冗余校验(CRC)添加至控制信息。根据PDCCH的所有者或用途利用唯一标识符(无线电网络临时标识符(RNTI))对CRC进行掩码处理。如果PDCCH是用于特定UE的PDCCH,则可用UE的唯一标识符(例如,小区-RNTI(C-RNTI))对CRC进行掩码处理。如果PDCCH是针对寻呼消息的PDCCH,则可以用寻呼指示标识符(例如,寻呼-RNTI(P-RNTI))对CRC进行掩码处理。如果PDCCH是针对系统信息(更具体地,系统信息块(SIB))的PDCCH,则可以用系统信息标识符(例如,系统信息RNTI(SI-RNTI))对CRC进行掩模处理。可用随机接入-RNTI(RA-RNTI)对CRC进行掩码处理,以便指示作为对UE发送随机接入前导码的响应的随机接入响应。
图4示出了可以应用本发明的实施方式的无线通信系统中的上行链路子帧的结构。
参照图4,上行链路子帧可在频域中被分成控制区域和数据区域。承载上行链路控制信息的物理上行链路控制信道(PUCCH)被分配给控制区域。承载用户数据的物理上行链路共享信道(PUSCH)被分配给数据区域。为了保持单载波特性,一个UE不同时发送PUCCH和PUSCH。
资源块(RB)对被分配给子帧内的用于一个UE的PUCCH。属于RB对的RB占据两个时隙中的每一个中的不同子载波。可以说分配到PUCCH的RB对在时隙边界上跳频。
多输入多输出(MIMO)
MIMO技术没有使用迄今为止常用的单个发射天线和单个接收天线,而是使用多个发送(Tx)天线和多个接收(Rx)天线。换句话说,MIMO技术是通过在无线通信系统的发送端或接收端使用多输入/输出天线来增加容量或增强性能的技术。下文中,“MIMO”将被称作“多输入/输出天线”。
更具体地,多输入/输出天线技术不取决于单个天线路径以便接收单个总消息,并且通过收集通过多个天线接收的多个数据块来完成总数据。结果,多输入/输出天线技术可在特定系统范围内增加数据传送速率,并且还可通过特定数据传送速率来增大系统范围。
因为下一代移动通信需要比现有移动通信的数据传送速率高得多的数据传送速率,所以预期将使用一种高效的多输入/输出技术。在这种情形下,MIMO通信技术是可广泛用在移动通信UE和中继节点中的下一代移动通信技术,并且作为可克服由于数据通信扩展引起的对另一移动通信的传送量的限制的技术而受到关注。
正在开发的各种传输效率改进技术中的多输入/输出(MIMO)技术作为能够显著改进通信容量和发送/接收性能而甚至无需附加频率分配或功率增加的方法受到最大关注。
图5示出了已知MIMO通信系统的配置。
参照图5,如果发送(Tx)天线的数目增加至N_T并且接收(Rx)天线的数目同时增加至N_R,则与仅在发送机或接收机中使用多个天线的情况下不同,理论信道传输容量与天线数目成比例地增加。因此,传送速率可以提高,并且频率效率可以显著提高。在这种情况下,根据信道传输容量增加的传送速率可理论上增加通过将使用一个天线时的最大传送速率(R_o)乘以以下的速率增量(Ri)而获得的值。
[式1]
Ri=min(NT,NR)
也就是说,在使用4个发射天线和4个接收天线的MIMO通信系统中,例如,与单天线系统相比,理论上可获得四倍的传送速率。
这种多输入/输出天线技术可被分成:空间分集方法,其利用穿过各种信道路径的符号来增加传输可靠性;以及空间复用方案,其通过利用多个发射天线同时发送多个数据符号来提高传送速率。此外,近来,对通过组合这两种方法来正确地获得这两种方法的优点的方法进行了积极研究。
以下,更详细地描述每种方法。
第一,空间分集方案包括同时利用分集增益和编码增益的空时块编码序列和空时网格(Trelis)编码序列方法。通常,网格编码序列方法在比特错误率增强性能和代码生成自由度方面更好,而空时块码序列方法的运算复杂度低。此空间分集增益可对应于与发射天线的数目(N_T)与接收天线的数目(N_R)的乘积(N_T×N_R)对应的量。
第二,空间复用技术是在各个发射天线中发送不同数据流的方法。在这种情况下,在接收机中,在发送机同时发送的数据之间产生相互干扰。接收机在利用正确信号处理技术方案来去除干扰,并且接收数据。这种情况下使用的去噪方法可以包括最大似然检测(MLD)接收机、迫零(ZF)接收机、最小均方误差(MMSE)接收机、对角线-贝尔实验室分层空时(D-BLAST)和垂直-贝尔实验室分层空时。具体地,如果发送端可以获悉信道信息,则可使用奇异值分解(SVD)方法。
第三,可提供使用空间分集和空间复用的组合的方法。如果只将获得空间分集增益,则根据分集程度的增加的性能增强增益逐渐饱和。如果只使用空间复用增益,则在无线电信道中传输可靠性变差。已研究了用于解决问题并且获得这两种增益的方法,这些方法可以包括双空时传输分集块码(双-STTD)方法和空时比特交织编码调制(STBICM)。
为了描述多输入/输出天线系统(诸如上述的系统)中的通信方法,更详细地,可如下通过数学建模来表现通信方法。
首先,如图5中所示,假定存在N_T个发射天线和N_R个接收天线。
首先,以下描述发送信号。如果如上所述存在N_T个发射天线,则可发送信息的最大条数为N_T,可以使用以下向量来表示N_T。
[式2]
在各条发送信息s_1、s_2、...、s_NT中,发送功率可以不同,在这种情况下,如果各个发送功率为P_1、P_2、...、P_NT,则可使用以下向量来表示具有受控制的发送功率的发送信息。
[式3]
在式3中,可以如下使用发送功率的对角矩阵P来表示具有受控制发送功率的发送信息。
[式4]
将式4中具有受控制发送功率的信息向量与权重矩阵W相乘,因此形成实际发送的N_T个发送信号x_1、x_2、...、x_NT。在这种情况下,权重矩阵用于根据传输信道状况来正确地将发送信息分配至天线。可以使用发送信号x_1、x_2、...、x_NT来进行以下表示。
[式5]
在式5中,w_ij表示第i发射天线与第j发送信息之间的权重,W表示权重的矩阵。此矩阵W被称为权重矩阵或预编码矩阵。
可以考虑将发送信号x(诸如,上述发送信号)用于使用空间分集的情况和使用空间复用的情况。
如果使用空间复用,则因为不同的信号被复用并发送,所以信息向量的所有元素具有不同的值。如果使用空间分集,则因为通过多个信道路径发送相同的信号,所以信息向量的所有元素具有相同的值。
可以考虑将空间复用和空间分集混合的方法。换句话说,例如,可以通过3个发射天线利用空间分集来发送相同的信号,并且剩余的不同信号可以被空间复用并发送。
如果存在N_R个接收天线,则如下使用向量y来表示相应天线接收的信号y_1、y_2、...、y_NR。
[式6]
此外,如果对多输入/输出天线通信系统中的信道建模,则可以根据发送/接收天线索引来将信道分类。从发射天线j穿过接收天线i的信道被表示为h_ij。在这种情况下,要注意的是,在索引h_ij的次序中,接收天线的索引在前,而发射天线的索引在后。
多个信道可以被分组并且以向量和矩阵形式来表示。例如,以下描述向量的表示。
图6是示出从多个发射天线到单个接收天线的信道的图。
如图6所示,可以如下地表示从总共N_T个发射天线到达接收天线i的信道。
[式7]
此外,如果通过诸如式7这样的矩阵表达来表示从N_T个发射天线到达N_R个接收天线的所有信道,则它们可以被表示如下。
[式8]
在实际信道中经历信道矩阵H之后,在实际信道中增加了加性高斯白噪声(AWGN)。因此,使用如下的向量来表示分别增加到N_R个接收天线的白AWGN n_1、n_2、...、n_NR。
[式9]
多输入/输出天线通信系统中的发送信号、接收信号、信道和AWGN可以通过对发送信号、接收信号、信道和AWGN(诸如,上述描述的那些)进行建模被表示为具有以下关系。
[式10]
指示信道状态的信道矩阵H的行数和列数由发送/接收天线的数目来确定。在如上所述的信道矩阵H中,行数变成等于接收天线的数目N_R,列数变成等于发射天线的数目N_T。即,信道矩阵H变为N_R×N_T矩阵。
通常,矩阵的秩被定义为独立行或列的数目中的最小数目。因此,矩阵的秩不大于行数或列数。至于图形样式,如下地限制信道矩阵H的秩H。
[式11]
rank(H)≤min(NT,NR)
此外,如果矩阵经受特征值分解,则秩可被定义属于特征值并且非零的特征值的数目。同样地,如果秩经受奇异值分解(SVD),则秩可被定义为非0的奇异值的数目。因此,信道矩阵中的秩的物理含义可以是说在给定信道中可以发送不同信息的最大数目。
在本说明书中,用于MIMO传输的“秩”指示可以通过其在特定时间点并且在特定频率资源中独立发送信号的路径的数目。“层数”指示通过各个路径发送的信号流的数目。通常,因为发送端发送数目与用于发送信号的秩的数目对应的层,所以除非另外有描述,否则秩具有与层数相同的含义。
载波聚合
本发明的实施方式中所考虑的通信环境包括多载波支持环境。也就是说,本发明的实施方式中使用的多载波系统或载波聚合(CA)系统是指在配置目标带宽时聚合并使用具有比目标带宽小的带宽的一个或更多个分量载波(CC)以便支持宽带的系统。
在本发明的实施方式中,多载波意指载波的聚合(或者载波聚合)。在这种情况下,载波的聚合意指连续的载波之间的聚合和非连续的(或非邻近的)载波之间的聚合二者。此外,在下行链路与上行链路之间聚合的CC的数目可以不同。下行链路CC(下文中称作“DLCC”)的数目和上行链路CC(下文中称作“UL CC”)的数目相同的情况被称作对称聚合。DL CC的数目与UL CC的数目不同的情况被称作不对称聚合。此术语“载波聚合”可被诸如载波聚合、带宽聚合或频谱聚合这样的术语取代。
通过聚合两个或更多个分量载波而配置的载波聚合的目的在于在LTE-A系统中支持高达100MHz的带宽。当带宽比目标带宽小的一个或更多个载波被聚合时,被聚合载波的带宽可以限于现有系统中使用的带宽,以便与现有IMT系统保持向后兼容。例如,在现有3GPP LTE系统中,可以支持{1.4,3,5,10,15,20}MHz的带宽。在3GPP LTE高级系统(即,LTE-A)中,可以只使用与现有系统向后兼容的带宽来支持大于带宽20MHz的带宽。此外,在本发明的实施方式中使用的载波聚合系统中,为了支持载波聚合,可以定义新的带宽,而不管现有系统中使用的带宽。
LTE-A系统使用小区的概念以便管理无线电资源。
以上提到的载波聚合环境也可被称为多小区环境。小区被定义为一对下行链路资源(DL CC)和上行链路资源(UL CC)的组合,但是上行链路资源不是必要要素。因此,小区可以由仅仅下行链路资源组成或者由下行链路资源和上行链路资源组成。如果特定UE具有单个配置的服务小区,则它可具有一个DL CC和一个UL CC。如果特定UE具有两个或更多个配置的服务小区,则它具有与小区数目对应的DL CC,并且UL CC的数目可以等于或小于DL CC的数目。
在一些实施方式中,可以用相反方式来配置DL CC和UL CC。也就是说,如果特定UE具有多个配置的服务小区,则还可以支持UL CC的数目大于DL CC的数目的载波聚合环境。也就是说,载波聚合可以被理解为具有不同载波频率(小区的中心频率)的两个或更多个小区的聚合。在这种情况下,应该将“小区”与一般被eNB覆盖的区域的“小区”相区分。
LTE-A系统中使用的小区包括主小区(PCell)和辅小区(SCell)。PCell和SCell可以被用作服务小区。在处于RRC_CONNECTED状态但是未配置载波聚合或者不支持载波聚合的UE中,只存在被配置为仅PCell的一个服务小区。相反,在处于RRC_CONNECTED状态并且配置了载波聚合的UE中,可存在一个或更多个服务小区。在各个服务小区中包括PCell和一个或更多个SCell。
可以通过RRC参数来配置服务小区(PCell和SCell)。PhyCellID是小区的物理层标识符并且具有从0至503的整数值。SCellIndex是用于识别SCell的短标识符并且具有1至7的整数值。ServCellIndex是用于标识服务小区(PCell或SCell)的短标识符并且具有0至7的整数值。向PCell应用值0,并且先前指派SCellIndex,以将其应用于SCell。也就是说,在ServCellIndex中,具有最小小区ID(或小区索引)的小区变成PCell。
PCell意指在主频率上操作的小区(或者主CC)。UE可以使用PCell来执行初始连接建立处理或者连接重新建立处理,并且可以是指在切换处理中指示的小区。另外,PCell意指属于在载波聚合环境下配置的服务小区并且变成控制相关通信的中心的小区。也就是说,UE可以接收仅仅其PCell中的PUCCH并且发送PUCCH,并且可以只使用PCell来获得系统信息或者改变监测过程。对于支持载波聚合环境的UE,演进通用地面无线电接入网络(E-UTRAN)可以仅利用包括移动控制信息(mobilityControlInfo)的RRC连接重新配置(RRCConnectionReconfigutaion)消息来改变PCell以进行切换过程。
SCell可意指在辅频率(或者辅CC)上操作的小区。可以只向特定UE分配一个PCell,并且可以向特定UE分配一个或更多个SCell。SCell可以在RRC连接建立之后进行配置并且可以用于提供附加无线电资源。在剩余的小区(即,属于载波聚合环境下配置的服务小区并且不包括PCell的SCell)中不存在PUCCH。当向支持载波聚合环境的UE添加SCell时,E-UTRAN可以通过专用信号来提供与处于RRC_CONNECTED状态的相关小区相关的所有类型的系统信息。可以通过释放并添加相关SCell来控制系统信息的改变。在这种情况下,可以使用上层的RRC连接重新配置(RRCConnectionReconfigutaion)消息。E-UTRAN可以针对各个UE发送具有不同参数的专用信号,而非在相关S小区中广播。
在初始安全激活处理开始之后,E-UTRAN可以通过在连接建立处理中添加初始配置的PCell来配置包括一个或更多个SCell的网络。在载波聚合环境中,PCell和SCell可以操作相应分量载波。在下面的实施方式中,主分量载波(PCC)可以用作与PCell相同的含义,并且辅分量载波(SCC)可以用作与SCell相同的含义。
图7示出了可以应用本发明的实施方式的无线通信系统中的分量载波和载波聚合的示例。
图7的(a)例示了LTE系统中使用的单载波结构。CC包括DL CC和UL CC。一个分量载波可以具有20MHz的频率范围。
图7的(b)例示了LTE-A系统中使用的载波聚合结构。图7的(b)示出了各自具有20MHz的频率大小的3个分量载波已被聚合的示例。在图中例示了3个DL CC和3个UL CC,但是DL CC和UL CC的数目不受限制。在载波聚合的情况下,UE可以同时监测3个CC,可以接收下行链路信号/数据,并且可以发送上行链路信号/数据。
如果在特定小区中管理N个DL CC,则网络可以为UE分配M(M≤N)个DL CC。在这种情况下,UE可以仅监测M个有限的DL CC并且接收DL信号。此外,网络为L(L≤M≤N)个DL CC赋予优先权,并且为UE分配主DL CC。在这种情况下,UE必须监测L个DL CC。这种方法可以按相同方式应用于上行链路传输。
下行链路资源的载波频率(或者DL CC)与上行链路资源的载波频率(或者UL CC)之间的链接可以通过诸如RRC消息或者系统信息这样的上层消息来指示。例如,DL资源和UL资源的组合可以通过由系统信息块类型2(SIB2)定义的链接来配置。具体地,所述链接可以意指传输承载UL授权的PDCCH的DL CC与使用该UL授权的UL CC之间的映射关系,并且可以意指传输用于HARQ的数据的DL CC(或者UL CC)与发送HARQ ACK/NACK信号的UL CC(或者DLCC)之间的映射关系。
当在UE中配置一个或更多个SCell时,网络可激活或停用配置的SCell。PCell一直被激活。网络通过发送激活/停用MAC控制元素来激活或停用SCell。
激活/停用MAC控制元素具有固定大小并且由包括7个C字段和1个R字段的单个八位位组组成。C字段被配置用于每个SCell索引(SCellIndex)并且指示SCell的激活/停用。当C字段的值被设置成“1”时,它指示具有对应SCell的索引的SCell被激活。当C字段的值被设置成“0”时,它指示具有对应SCell的索引的SCell被停用。
此外,UE保持用于每个配置的SCell的定时器(sCellDeactivationTimer)并且当定时器期满时停用相关的SCell。所述初始定时器值被应用于定时器(sCellDeactivationTimer)的每个实例并且通过RRC信令来配置。当添加SCell时或者在切换之后,初始Scell已经被停用。
UE在每个TTI中对每个配置的SCell执行以下操作。
-当UE在特定TTI(子帧n)中接收到激活SCell的激活/停用MAC控制元素时,UE在与预定定时对应的TTI(子帧n+8或此后)中激活SCell,并且(重新)启动与对应SCell相关的定时器。UE激活Scell意指UE应用共同的SCell操作,诸如在SCell上传输探测参考信号(SRS)、报告针对SCell的信道质量指示符(CQI)/预编码矩阵指示符(PMI)/秩指示(RI)/预编码类型指示符(PTI)、在SCell上进行PDCCH监测以及针对SCell进行的PDCCH监测。
-当UE在特定TTI(子帧n)中接收到停用SCell的激活/停用MAC控制元素或者与激活的SCell相关的定时器在特定TTI(子帧n)中期满时,UE在与预定定时对应的TTI(子帧n+8或此后)中停用SCell,停止对应SCell的定时器,并且刷新与对应SCell相关的整个HARQ缓冲器。
-对于激活的SCell而言,当激活的SCell上的PDCCH指示上行链路授权或下行链路指派时或者当调度激活的SCell的服务小区上的PDCCH指示上行链路授权或下行链路指派时,UE重新开始与对应SCell相关的定时器。
-当停用SCell时,UE没有发送SCell上的SRS,没有报告针对SCell的CQI/PMI/RI/PTI,并且没有发送SCell上的UL-SCH,并且没有监测SCell上的PDCCH。
跨载波调度
在载波聚合系统中,从调度载波或服务小区的角度看,存在两种类型的自调度方法和跨载波调度方法。跨载波调度可以被称为跨分量载波调度或跨小区调度。
跨载波调度意指PDCCH(DL授权)和PDSCH在不同的DL CC上发送,或者根据DL CC中发送的PDCCH(UL授权)而发送的PUSCH在与通向已经接收到UL授权的DL CC的UL CC链路不同的UL CC上发送。
可按用户特定方式来激活或停用是否要执行跨载波调度,并且可通过上层信令(例如,RRC信令)来半静态地通知每个UE是否要执行跨载波调度。
如果激活跨载波调度,则在PDCCH中需要载波指示符字段(CIF),CIF提供关于通过哪个DL/UL CC发送对应PDCCH所指示的PDSCH/PUSCH的通知。例如,PDCCH可以使用CI向多个CC中的任一个分配PDSCH资源或PUSCH资源。也就是说,如果DL CC上的PDCCH在已经被聚合的多个DL/UL CC中的一个上分配PDSCH或PUSCH资源,则设置CIF。在这种情况下,可以根据CIF来扩展LTE-A版本8的DCI格式。在这种情况下,独立于DCI格式的大小,CIF可以被固定为3比特字段,并且设置的CIF的位置可以被固定。此外,可以重新使用LTE-A版本8的PDCCH结构(相同编码和基于相同CCE的资源映射)。
相反,如果DL CC上的PDCCH在同一DL CC上分配PDSCH资源或者在一个链接的ULCC上分配PUSCH资源,则不设置CIF。在这种情况下,可以使用与LTE-A版本8的PDCCH结构和DCI格式相同的PDCCH结构(相同编码和基于相同CCE的资源映射)和DCI格式。
如果能够进行跨载波调度,则UE需要根据针对每个CC的发送模式和/或带宽来监测在监测CC的控制区域中的针对多个DCI的PDCCH。因此,需要能够支持此需要的搜索空间的配置和PDCCH监测。
在载波聚合系统中,UE DL CC集合指示已经被调度供UE接收PDSCH的DL CC的集合,而UE UL CC集合指示已经被调度供UE调度来发送PUSCH的UL CC的集合。此外,PDCCH监测集合指示在上面执行PDCCH监测的至少一个DL CC的集合。PDCCH监测集合可以与UE DLCC集合相同,或者可以是UE DL CC集合的子集合。PDCCH监测集合可以包括UE DL CC集合内的DL CC中的至少一个。另选地,可以与UE DL CC集合无关地分别限定PDCCH监测集合。PDCCH监测集合中包括的DL CC可以被配置成一直被自调度用于链接的UL CC。可以按UE特定的、UE组特定的或小区特定的方式来配置这样的UE DL CC集合、UE UL CC集合和PDCCH监测集合。
如果已经停用跨载波调度,则这意指PDCCH监测集合一直与UE DL CC集合相同。在此情况下,不需要诸如用于PDCCH监测集合的单独信令这样的指示。然而,如果已经激活跨载波调度,则PDCCH监测集合可以被限定在UE DL CC集合内。与就是说,为了针对UE调度PDSCH或PUSCH,eNB只通过PDCCH监测集合来发送PDCCH。
图8示出了可以应用本发明的实施方式的根据无线通信系统中的跨载波调度的子帧的结构示例。
参照图8,在用于LTE-A UE的DL子帧中聚合3个DL CC。DL CC“A”指示DL CC已经被配置为PDCCH监测DL CC的情况。如果不使用CIF,则每个DL CC可以在没有CIF的情况下发送用于调度其自己的PDSCH的PDCCH。相反,如果通过上层信令使用CIF,则只有一个DL CC“A”可以使用CIF来发送用于调度其自己的PDSCH或另一CC的PDSCH的PDCCH。在这种情况下,没有被配置为PDCCH监测DL CC的DL CC“B”和“C”不发送PDCCH。
混合自动重传请求(HARQ)
在移动通信系统中,一个eNB通过无线信道环境从一个小区/扇区中的多个UE接收数据以及将数据发送到所述多个UE。
在多个载波操作的系统或者按照与该系统相似的方式操作的系统中,eNB通过有线互联网接收分组业务并且使用预定通信方法来将接收到的分组业务发送到UE。在这种情况下,这是eNB确定在哪个定时使用哪个频域向哪个UE发送数据的下行链路调度。
此外,eNB使用预定通信方法从UE接收数据,对接收到的数据进行解调并且通过有线互联网来发送分组业务。这是eNB确定使得哪个UE能够在哪个定时使用哪个频带发送上行链路数据的上行链路调度。通常,具有更好的信道状态的UE使用更多的时间和更多的频率资源来发送和接收数据。
图9是例示了可以应用本发明的实施方式的无线通信系统中的时间频率域中的时间-频率资源块的图。
在多个载波操作的系统或者按照与该系统相似的方式操作的系统中的资源可基本上被分成时域和频域。这些资源可以被定义为资源块。资源块包括特定N个子载波和特定M个子帧或者预定时间单元。在这种情况下,N和M可以是1。
在图9中,一个正方形意指一个资源块,并且一个资源块使用多个子载波作为一个轴并且使用预定时间单元作为另一个轴。在下行链路中,eNB根据预定调度规则为所选择的UE调度一个或更多个资源块,并且使用所分配的资源块将数据发送到所述UE。在上行链路中,eNB根据预定调度规则为所选择的UE调度一个或更多个资源块,并且UE使用上行链路中分配的资源块来发送数据。
在发送调度和数据之后,帧丢失或者受损的错误控制方法包括更高级形式的自动重复应答(ARQ)方法和混合ARQ(HARQ)方法。
基本上,在ARQ方法中,在发送一帧之后,发送方等待确认消息(ACK)。接收方只有在成功接收到所述帧时才发送确认消息(ACK)。如果在接收到的帧中产生错误,则接收方再次发送否定ACK(NACK)消息并且从接收端缓冲器删除关于接收到的具有错误的帧的信息。当接收到ACK信号时,发送方发送后续帧。当接收到NACK信号时,发送方重新发送对应帧。
不同于ARQ方法中,在HARQ方法中,如果接收到的帧不能被解调,则接收端向发送端发送NACK消息,但是在特定时间期间将已经接收到的帧存储在缓冲器中,并且将所存储的帧与之前在重新发送对应帧时接收的帧相组合,因此增加接收的成功率。
近来,广泛使用比基础ARQ方法更有效的HARQ方法。此HARQ方法包括许多类型。HARQ方法可基本上根据重新发送定时被分成同步HARQ和异步HARQ,并且根据信道状态是否被并入重新发送时所使用的资源量中而被分成信道自适应方法和信道非自适应方法。
在同步HARQ方法中,当初始发送失败时,由系统根据预定定时来执行后续重新发送。也就是说,假定在初始发送失败之后每隔四个时间单元执行重新发送时的定时,则eNB和UE不需要另外通知此定时,因为在eNB和UE之间已经约定了该定时。在这种情况下,如果数据发送方已经接收到NACK消息,则在它接收到ACK消息之前每隔四个时间单元重新发送帧。
相比之下,在异步HARQ方法中,重新发送定时可以被重新调度或者可以通过附加信令来执行。执行重新发送之前失败的帧时的定时根据诸如信道状态这样的多个因素而改变。
在信道非自适应HARQ方法中,执行重新发送时的帧、资源块的数目和自适应调制与编码(AMC)的调制,因为在初始发送时它们已经是预定的。相比之下,在信道自适应HARQ方法中,重新发送时的帧、资源块的数目和自适应调制与编码(AMC)的调制根据信道的状态而改变。例如,在信道非自适应HARQ方法中,发送方在初始发送时使用6个资源块来发送数据,而在以相同方式进行后续重新发送时使用6个资源块执行重新发送。相比之下,在信道自适应HARQ方法中,虽然已经使用6个资源块执行了发送,但是后续根据信道状态使用比6个资源块多或少的资源块来执行重新发送。
可基于此分类来执行四个HARQ组合,但是主要使用的HARQ方法包括异步信道自适应HARQ方法和同步信道非自适应HARQ方法。
异步信道自适应HARQ方法能够使重新发送效率最大化,因为重新发送定时和所使用的资源量根据信道状态而自适应性地改变,但是不足之处是增加了开销。因此,一般不考虑将异步信道自适应HARQ方法用于上行链路。
同步信道非自适应HARQ方法的有利之处在于,因为用于重新发送的定时和资源分配已经在系统内被预定,所以很少存在用于重新发送的定时和资源分配的开销,但是不足之处是如果此方法在严重变化的信道状态下被使用,则重新发送效率非常低。
图10是例示了可以应用本发明的实施方式的无线通信系统中的异步HARQ方法的资源分配和重新发送处理的图。
例如,在下行链路的情况下,在执行调度并且发送数据之后,从UE接收ACK/NACK信息。产生时间延迟,直到如图10中所示地发送了下一个数据。由于信道传播延迟和用于数据解码和数据编码所花费的时间而导致产生时间延迟。
对于此延迟时间段,使用独立HARQ处理来发送数据的方法用于无空白数据(blankless data)发送。例如,如果下一个数据发送和后续数据发送之间的最短周期是7个子帧,则若7个独立处理被布置在这7个子帧中,就可以在没有空白的情况下发送数据。
LTE物理层支持PDSCH和PUSCH中的HARQ,并且发送单独的控制信道中的相关接收确认(ACK)反馈。
在LTE FDD系统中,如果LTE FDD系统不在MIMO中操作,则在8ms的恒定往返时间(RTT)中,在上行链路和下行链路二者中都支持8个停止等待(SAW)HARQ处理。
图11是示出了可以应用本发明的实施方式的LTE FDD系统中的下行链路HARQ处理的图,并且图12是示出了可以应用本发明的实施方式的LTE FDD系统中的上行链路HARQ处理的图。
通过3比特大小的唯一HARQ处理标识符(HARQ ID)来限定每个HARQ处理。接收端(即,下行链路HARQ处理中的UE和上行链路HARQ处理中的eNodeB)需要针对重新发送的数据的组合进行个体软缓冲区分配。
此外,对于HARQ操作,在下行链路控制信息内限定新数据指示符(NDI)、冗余版本(RV)和调制与编码方案(MCS)字段。每当开始新的分组发送时,NDI字段被切换。RV字段指示针对发送或重新发送而选择的RV。MCS域指示MCS水平。
在LTE系统中,下行链路HARQ处理是自适应异步方法。因此,用于HARQ处理的下行链路控制信息明确地伴随每次下行链路发送。
在LTE系统中,上行链路HARQ处理是同步方法并且可以包括自适应或非自适应的方法。上行链路非自适应HARQ方案需要针对连续分组发送的预设RV序列(例如,0,2,3,1,0,2,3,1,...)的序列,因为它没有伴随控制信息的明确信令。相比之下,在上行链路自适应HARQ方案中,明确地用信号通知RV。为了使控制信令最小化,还支持RV(或MCS)与其它控制信息组合的上行链路模式。
有限缓冲速率匹配(LBRM)
由于用于保存对数似然比(LLR)以支持HARQ处理(遍及所有HARQ处理)所需要的整个存储器(即,UE HARQ软缓冲区大小),UE实现的复杂性增加。
有限缓冲速率匹配(LBRM)的目的在于保持峰值数据速率并且使对系统性能的影响最小化,并且此外减小UE HARQ软缓冲区大小。针对具有大于预定大小的大小的传输块(TB),LBRM减小了代码块段的虚拟循环缓冲区的长度。使用LBRM,用于TB的母代码速率变为分配给TB大小和TB的UE软缓冲区大小的函数。例如,对于不支持FDD操作的UE类别和最低类别的UE(例如,不支持空间复用的UE类别1和UE类别2),对缓冲区的限制是透明的。也就是说,LBRM不导致软缓冲区的减小。在高类别的UE(即,UE类别3、UE类别4和UE类别5)的情况下,通过假定50%的缓冲区减少和最大TB来计算软缓冲区的大小,所述50%与八个HARQ处理的母代码速率的三分之二对应。由于eNB知道UE的软缓冲区容量,因此代码比特在虚拟循环缓冲区(VCB)中被发送,所述虚拟循环缓冲区可以被存储在UE的HARQ软缓冲区中用于所有给定的TB(重新)传输。
协调多点发送和接收(CoMP)
根据高级LTE的要求,提出CoMP发送以增强系统的性能。
CoMP被称为用于两个或更多个eNB、(接入)点或小区彼此协作并且与UE通信以便平稳地执行特定UE和eNB之间的通信的方案。CoMP也被称为co-MIMO、合作MIMO、网络MIMO等。预期CoMP将改进位于小区边界处的UE的性能并且改进小区(扇区)的平均吞吐量。
在本说明书中,eNB、接入点和小区被用作同一含义。
通常,在频率重用因子为1的多小区环境中,小区间干扰使位于小区边缘的UE的性能和平均小区(或扇区)效率降低。为了减轻小区间干扰,将诸如部分频率重用(FFR)这样的简单被动方法应用于LTE系统,使得在干扰受限的环境中位于小区边缘的UE具有适当的性能效率。然而,作为减少各个小区的频率资源的使用的替代,重用作为UE需要接收的信号的小区间干扰或者减轻小区间干扰的方法更有利。为了实现以上目的,可以使用CoMP发送方案。
适用于下行链路的CoMP方法可被分成联合处理(JP)方法和协调调度/波束成形(CS/CB)方法。
在JP方法的情况下,从对UE执行CoMP的每个eNB前进的数据被瞬时且同时地发送到UE,并且UE将来自各个eNB的信号相组合以便提高接收性能。此外,在CS/CB的情况下,向UE前进的数据通过单个eNB被瞬时发送,并且执行调度或波束成形,使得UE施加于另一个eNB的干扰变成最小。
在JP方法中,可以在CoMP单元的每个点(即,eNB)中使用数据。CoMP单元意指CoMP方法中使用的eNB的集合。JP方法可被细分成联合发送方法和动态小区选择方法。
联合发送方法是通过多个点(即,CoMP单元中的一些点或全部点)来通过PDSCH同时发送信号的方法。也就是说,同时从多个发送点发送被发送至一个UE的数据。通过这种联合发送方法,可以相关地或非相关地改进发送至UE的信号的质量,并且可以主动地去除UE和另一个UE之间的干扰。
动态小区选择方法是由CoMP单元的一个点通过PDSCH发送信号的方法。也就是说,在特定时间发送至一个UE的数据从一个点被发送,并且没有从CoMP单元内的另一个点被发送到UE。可以动态地选择将数据发送给UE的点。
根据CS/CB方法,CoMP单元协调地执行波束成形,以便向一个UE发送数据。也就是说,仅在服务小区中向UE发送数据,但是可以通过CoMP单元内的多个小区之间的协调来确定用户调度/波束成形。
在一些实施方式中,CoMP接收意指接收通过地理上分离开的多个点之间的协调而发送的信号。可以被应用于上行链路的CoMP方法可以被分成联合接收(JR)方法和协调调度/波束成形(CS/CB)方法。
JP方法是通过多个点(也就是说,CoMP单元中的一些点或全部点)来接收通过PDSCH发送的信号的方法。在CS/CB方法中,仅在一个点处接收通过PDSCH发送的信号,但是可以通过CoMP单元内的多个小区之间的协调来确定用户调度/波束成形。
基于CA的CoMP操作
在LTE之后的系统中,可以使用LTE中的载波聚合(CA)功能来实现协调多点(CoMP)发送。
图13是例示了可以应用本发明的实施方式的无线通信系统中的基于载波聚合的CoMP系统的图。
图13例示了主小区(PCell)载波和辅小区(SCell)载波使用频率轴上相同的频带并且被分别分配给地理上彼此分隔开的两个eNB。
服务eNB将PCell分配给UE1,并且提供大量干扰的邻近eNB分配SCell,使得可以执行诸如JT、CS/CB和动态小区选择这样的各种DL/UL CoMP操作。
图13示出了UE将两个eNB分别聚合为PCell和SCell的示例。实际上,UE可以聚合三个或更多个小区,可以执行相同频带中的三个小区中的一些上的CoMP操作,并且可以执行不同频带中的其它小区上的简单CA操作。在这种情况下,PCell不需要参与CoMP操作。
用于接收PDSCH的UE过程
当除了上层参数“mbsfn-SubframeConfigList”所指示的子帧外,UE还检测到执行意图用于UE的DCI格式1、1A、1B、1C、1D、2、2A、2B或2C的服务小区上的PDCCH时,在上层中定义的传输块的数目受限制的情况下,UE在相同子帧中对对应PDSCH进行解码。
UE利用被上面执行意图用于UE的DCI格式1A、1C的SI-RNTI或P-RNTI加扰的CRC根据检测到的PDCCH对PDSCH进行解码,并且假定在上面执行对应PDSCH的资源块(RB)中不存在PRS。
其中配置用于服务小区的载波指示符域(CIF)的UE假定在公共搜索空间内的服务小区的任何PDCCH中不存在CIF。
如果不存在,则当PDCCH CRC被C-RNTI或SPS C-RNTI加扰时,其中配置CIF的UE假定在位于UE特定搜索空间内的PDCCH中存在用于服务小区的CIF。
当通过上层配置UE以使得它对具有被SI-RNTI加扰的CRC的PDCCH进行解码时,UE根据以下表3中定义的组合对PDCCH和对应的PDSCH进行解码。通过SI-RNTI对与PDCCH对应的PDSCH进行加扰初始化。
表3例示了通过SI-RNTI配置的PDCCH和PDSCH。
[表3]
如果通过上层配置UE以使得它对具有被P-RNTI加扰的CRC的PDCCH进行解码时,则UE根据以下表4中定义的组合对PDCCH和对应的PDSCH进行解码。通过P-RNTI对与PDCCH对应的PDSCH进行加扰初始化。
表4例示了通过P-RNTI配置的PDCCH和PDSCH。
[表4]
如果通过上层配置UE以使得它用被RA-RNTI加扰的CRC对PDCCH进行解码,则UE根据以下表5中定义的组合对PDCCH和对应的PDSCH进行解码。通过RA-RNTI对于PDCCH对应的PDSCH进行加扰初始化。
表5例示了通过RA-RNTI配置的PDCCH和PDSCH。
[表5]
UE可以通过上层信令来半静态地配置,使得它按照9种发送模式(包括模式1至模式9)中的任一种来接收通过PDCCH用信号发送的PDSCH数据发送。
在帧结构类型1的情况下,
-UE甚至在具有公共CP的PDCCH的OFDM符号的数目是4的任何子帧中也不接收在天线端口5中发送的PDSCH RB。
-如果虚拟资源块(VRB)对被映射到的2个物理资源块(PRB)中的任一个与同一子帧内发送PBCH或者主或辅同步信号的频率交叠,则UE不接收对应2个PRB中的天线端口5、7、8、9、10、11、12、13或14中发送的PDSCH RB。
-UE不接收分发的VRB资源分配已经被指派到的天线端口7中发送的PDSCH RB。
-如果UE没有接收到所有分配的PDSCH RB,则UE可以跳过传输块的解码。如果UE跳过解码,则物理层指示还未针对上层对传输块进行成功解码。
在帧结构类型2的情况下,
-UE甚至在具有公共CP的PDCCH的OFDM符号的数目是4的任何子帧中也不接收在天线端口5中发送的PDSCH RB。
-如果VRB对被映射到的2个PRB中的任一个与同一子帧内发送PBCH的频率交叠,则UE不接收对应2个PRB中的天线端口5中发送的PDSCH RB。
-如果VRB对被映射到的2个PRB中的任一个与同一子帧内发送主或辅同步信号的频率交叠,则UE不接收对应2个PRB中的天线端口7、8、9、10、11、12、13或14中发送的PDSCHRB。
-如果配置公共CP,则在上行链路-下行链路配置#1或#6中,UE不接收特定子帧内的分发的VRB资源分配已经被指派到的天线端口5中的PDSCH。
-UE不接收分发的VRB资源分配已经被指派到的天线端口7中发送的PDSCH。
-如果UE没有接收到所有分配的PDSCH RB,则UE可以跳过传输块的解码。如果UE跳过解码,则物理层指示还未针对上层成功对传输块进行解码。
如果通过上层配置UE以使得它用被C-RNTI加扰的CRC对PDCCH进行解码时,UE根据以下表6中定义的每个组合对PDCCH和对应的PDSCH进行解码。通过C-RNTI对与PDCCH对应的PDSCH进行加扰初始化。
如果在UE中配置用于服务小区的CIF或者通过上层配置UE以使得它用被C-RNTI加扰的CRC对PDCCH进行解码,则UE对解码后的PDCCH内的CIF值所指示的服务小区的PDSCH进行解码。
当发送模式3、4、8或9的UE接收到DCI格式1A指派时,UE假定PDSCH发送与传输块1相关并且传输块2被停用。
如果UE被设置为发送模式7,则通过C-RNTI对与PDCCH对应的UE特定参考信号进行加扰初始化。
如果在下行链路中使用扩展CP,则UE不支持发送模式8。
如果UE被设置为发送模式9,则当UE检测到具有被上面执行意图用于UE的DCI格式1A或2C的C-RNTI加扰的CRC的PDCCH时,UE对上层参数“mbsfn-SubframeConfigList”所指示的子帧中的对应PDSCH进行解码。然而,排除了通过上层配置成对PMCH进行解码的子帧或通过上层配置成RPS时机的部分的子帧,PRS时机只被配置在MBSFN子帧内并且子帧#0中使用的CP的长度是公共CP。
表6例示了通过C-RNTI配置的PDCCH和PDSCH。
[表6]
如果通过上层配置UE以使得它用被SPS-RNTI加扰的CRC对PDCCH进行解码时,UE根据以下表7中定义的每个组合对主小区的PDCCH和主小区的对应PDSCH进行解码。如果在没有对应PDCCH的情况下发送PDSCH,则应用相同的PDSCH相关配置。通过SPS C-RNTI对与PDCCH对应的PDSCH和没有PDCCH的PDSCH进行加扰初始化。
如果UE被设置为发送模式7,则通过SPS-RNTI对PDCCH和对应的UE特定参考信号进行加扰初始化。
如果UE被设置为发送模式9,则当UE检测到具有被上面执行意图用于UE的DCI格式1A或2C的SPS-RNTI加扰的CRC的PDCCH或者在没有意图用于UE的PDCCH的情况下配置的PDSCH时,UE对上层参数“mbsfn-SubframeConfigList”所指示的子帧中的对应PDSCH进行解码。然而,排除了通过上层配置成对PMCH进行解码的子帧或通过上层配置成RPS时机的部分的子帧,PRS时机只被配置在MBSFN子帧内并且子帧#0中使用的CP长度是公共CP。
表7例示了通过SPS-RNTI配置的PDCCH和PDSCH。
[表7]
如果通过上层配置UE以使得它对具有被临时C-RNTI加扰的CRC的PDCCH进行解码并且被配置成不对具有被C-RNTI加扰的CRC的PDCCH进行解码,则UE根据表8中定义的组合对PDCCH和对应的PDSCH进行解码。通过临时C-RNTI对与PDCCH对应的PDSCH进行加扰初始化。
表8例示了通过临时C-RNTI配置的PDCCH和PDSCH。
[表8]
用于PUSCH发送的UE过程
通过上层信令来半静态地配置UE,使得UE根据以下表9中定义的两种类型的上行链路发送模式1和2中的任一种来执行通过PDCCH用信号发送的PUSCH发送。如果通过上层配置UE以使得它对具有被C-RNTI加扰的CRC的PDCCH进行解码,则UE根据表9中定义的组合对PDCCH进行解码并且发送对应的PUSCH。通过C-RNTI对与PDCCH对应的PUSCH发送和针对同一传输块的PUSCH重新发送进行加扰初始化。发送模式1是直至通过上层信令在UE中指派上行链路发送模式之前的默认上行链路发送模式。
当UE被配置为发送模式2并且接收到DCI格式0上行链路调度授权时,UE假定PDSCH发送与传输块1相关并且传输块2被停用。
表9例示了通过C-RNTI配置的PDCCH和PDSCH。
[表9]
如果通过上层配置UE以使得它对具有被C-RNTI加扰的CRC的PDCCH进行解码并且还被配置成接收按PDCCH次序开始的随机接入过程,则UE根据以下表10中定义的组合对PDCCH进行解码。
表10例示了被设置为用于开始随机接入过程的PDCCH次序的PDCCH集合。
[表10]
DCI格式 搜索空间
DCI格式1A 公共的和通过C-RNTI的用户特定的
如果通过上层配置UE以使得它对具有被SPS C-RNTI加扰的CRC的PDCCH进行解码,则UE根据以下表11中定义的组合对PDCCH进行解码并且发送对应的PUSCH。通过SPS-RNTI对与PDCCH对应的PUSCH发送和针对同一传输块的PUSCH重新发送进行加扰初始化。通过SPSC-RNTI对针对与在没有对应PDCCH的情况下进行PUSCH的最小发送相同的传输块的PUSCH重新发送进行加扰初始化。
表11例示了通过SPS C-RNTI配置的PDCCH和PUSCH。
[表11]
如果通过上层配置UE以使得该UE独立于该UE是否已经被配置成对具有被C-RNTI加扰的CRC的PDCCH进行解码而对被临时C-RNTI加扰的PDCCH进行解码,则UE根据表12中定义的组合对PDCCH进行解码并且发送对应的PUSCH。通过临时C-RNTI对与PDCCH对应的PUSCH进行加扰初始化。
如果通过上层设置临时C-RNTI,则通过临时C-RNTI对与随机接入响应授权对应的PUSCH发送和针对同一传输块的PUSCH重新发送进行加扰。如若不然,则通过C-RNTI对与随机接入响应授权对应的PUSCH发送和针对同一传输块的PUSCH重新发送进行加扰。
表12例示了通过临时C-RNTI配置的PDCCH。
[表12]
DCI格式 搜索空间
DCI格式0 公共的
如果通过上层配置UE以使得它对具有被TPC-PUCCH-RNTI加扰的CRC的PDCCH进行解码,则UE根据以下表13中定义的组合对PDCCH进行解码。在表13中,指示“3/3A”意指UE根据配置接收DCI格式3或DCI格式。
表13例示了通过TPC-PUCCH-RNTI配置的PDCCH。
[表13]
DCI格式 搜索空间
DCI格式3/3A 公共的
如果通过上层配置UE以使得它对具有被TPC-PUSCH-RNTI加扰的CRC的PDCCH进行解码,则UE根据以下表14中定义的组合对PDCCH进行解码。在表14中,指示“3/3A”包括UE根据配置接收DCI格式3或DCI格式。
表14例示了通过TPC-PUSCH-RNTI配置的PDCCH。
[表14]
DCI格式 搜索空间
DCI格式3/3A 公共的
参考信号(RS)
在无线通信系统中,由于数据通过无线电信道来发送,因此信号可能在发送期间失真。为了使接收机侧精确地接收失真的信号,需要通过使用信道信息来校正所接收的信号的失真。为了检测信道信息,主要使用发送器侧和接收器侧二者都知道的信号发送方法以及用于通过使用当通过信道发送信号时的失真度来检测信道信息的方法。上述信号被称为导频信号或参考信号(RS)。
近来,当在大多数移动通信系统中发送分组时,采用多个发射天线和多个接收天线而不是单个发射天线和单个接收天线来提高发送/接收效率。当通过使用MIMO天线来发送和接收数据时,需要检测发射天线与接收天线之间的信道状态,以便精确地接收信号。因此,各个发射天线需要具有单独的参考信号。
无线通信系统中的参考信号可以被主要分类为两种类型。具体地,存在用于信道信息获取的参考信号和用于数据解调的参考信号。由于前一个参考信号的目的是使用户设备(UE)能够获取下行链路(DL)中的信道信息,因此前一个参考信号应该在宽带上被发送。另外,即使UE在特定子帧中没有接收到DL数据,它也应该通过接收对应参考信号来执行信道测量。此外,对应参考信号可以被用于切换等的移动性管理的测量。后一个参考信号是当eNB发送DL数据时一起发送的参考信号。如果UE接收到对应参考信号,则UE能够执行信道估计,从而对数据进行解调。另外,对应参考信号应该在数据发送区域中被发送。
定义了5种类型的下行链路参考信号。
-小区特定参考信号(CRS)
-多播单频网络参考信号(MBSFN RS)
-UE特定参考信号或解调参考信号(DM-RS)
-定位参考信号(PRS)
-信道状态信息参考信号(CSI-RS)
在每个下行链路天线端口中发送一个RS。
在支持PDSCH发送的小区中的所有下行链路子帧中发送CRS。在天线端口0至3中的一个或更多个中发送CRS。只以Δf=15kHz来发送CRS。
只有当发送物理多播信道(PMCH)时,才在MBSFN子帧的MBSFN区域中发送MBSFNRS。在天线端口4中发送MBSFN RS。只在扩展CP中定义MBSFN RS。
DM-RS被支持用于发送PDSCH并且在天线端口p=5、p=7、p=8或p=7、8、...、υ+6中被发送。在这种情况下,υ是用于PDSCH发送的层的数目。只有当PDSCH发送在对应天线端口中关联时,DM-RS对于解调PDSCH而言才存在并且有效。DM-RS只在对应PDSCH被映射到的资源块(RB)中发送。
如果独立于天线端口“p”而使用与其中发送DM-RS的RE的索引对(k,l)相同的索引对(k,l)的资源元素(RE)来发送除了DM-RS外的物理信道或物理信号中的任一个,则DM-RS不在对应索引对(k,l)的RE中发送。
PRS只在配置用于PRS发送的下行链路子帧内的资源块中发送。
如果公共子帧和MBSFN子帧二者被配置为一个小区内的定位子帧,则配置用于PRS发送的MBSFN子帧内的OFDM符号使用与子帧#0的CP相同的CP。如果只有MBSFN子帧被配置为一个小区内的定位子帧,则对应子帧的MBSFN区域内的配置用于PRS的OFDM符号使用扩展CP。
配置用于PRS发送的子帧内的配置用于PRS发送的OFDM符号的起始点与其中所有OFDM符号都具有与配置用于PRS发送的OFDM符号相同的CP长度的子帧的起始点相同。
在天线端口6中发送PRS。
PRS没有被映射到独立于天线端口“p”而分配给物理广播信道(PBCH)、PSS或SSS的RE(k,l)。
只以Δf=15kHz来定义PRS。
分别使用p=15、p=15,16、p=15,...,18和p=15,...,22在1、2、4或8个天线端口中发送CSI-RS。
只以Δf=15kHz来定义CSI-RS。
更详细地描述参考信号。
CRS是用于获得关于被小区内的所有UE共享的信道的状态和用于切换的测量等信息的参考信号。使用DM-RS对用于仅仅特定UE的数据进行解调。用于解调和信道测量的信息可以使用这些参考信号来提供。也就是说,DM-RS仅用于数据解调,而CRS用于信道信息获取和数据解调这两种目的。
接收器侧(即,终端)从CRS测量信道状态,并且向发送侧(即,eNB)反馈诸如信道质量指示符(CQI)、预编码矩阵索引(PMI)和/或秩指示符(RI)这样的与信道质量关联的指示符。CRS也被称为小区特定RS。相反,与信道状态信息(CSI)的反馈关联的参考信号可以被定义为CSI-RS。
当需要在PDSCH上的数据解调时,可以通过资源元素来发送DM-RS。终端可以通过上层接收是否存在DM-RS,并且仅在对应PDSCH被映射时有效。DM-RS可以被称为UE特定RS或者解调RS(DMRS)。
图14例示了在可以应用本发明的实施方式的无线通信系统中映射到下行链路资源块对的参考信号模式。
参照图14,作为参考信号被映射的单元,下行链路资源块对可以由时域中的一个子帧×频域中的12个子载波来表示。也就是说,一个资源块对在正常循环前缀(CP)的情况下(图14的(a))具有14个OFDM符号的长度,并且在扩展循环前缀(CP)的情况下(图14的(b))具有12个OFDM符号的长度。在资源块网格中表示为'0'、'1'、'2'和'3'的资源元素(RE)分别意指天线端口索引'0'、'1'、'2'和'3'的CRS的位置,并且表示为“D”的资源元素意指DM-RS的位置。
在下文中,当更详细地描述CRS时,CRS被用于估计物理天线的信道并且作为可以由位于小区中的所有终端共同接收的参考信号而分布在整个频带中。也就是说,CRS作为小区特定信号横跨宽带在每个子帧中被发送。另外,CRS可以被用于信道质量信息(CSI)和数据解调。
CRS根据发送器侧(eNB)处的天线阵列被定义为各种格式。RS根据3GPP LTE系统(例如,版本8)中的eNB的发射天线的数目基于最大4个天线端口来发送。发送器侧具有三种类型的天线阵列:三个单发射天线、两个发射天线和四个发射天线。例如,在eNB的发射天线的数目为2的情况下,用于天线#1和天线#2的CRS被发送。又例如,在eNB的发射天线的数目为4的情况下,用于天线#1至#4的CRS被发送。当eNB的发射天线是4个时,在图14中示出一个RB中的CRS图案。
当eNB使用单个发射天线时,排列用于单个天线端口的参考信号。
当eNB使用两个发射天线时,通过使用时分复用(TDM)方案和/或频分复用(FDM)方案来布置用于两个发射天线端口的参考信号。也就是说,对于彼此区分开的两个天线端口,向参考信号分配不同的时间资源和/或不同的频率资源。
此外,当eNB使用四个发射天线时,使用TDM和/或FDM方案来布置用于四个发射天线端口的参考信号。由下行链路信号接收侧(即,终端)测量的信道信息可以被用于对通过使用诸如单发射天线发送、发送分集、闭环空间复用、开环空间复用或多用户MIMO这样的发送方案发送的数据进行解调。
在支持MIMO天线的情况下,当参考信号从特定天线端口被发送时,参考信号根据参考信号的模式被发送到特定资源元素的位置,而不被发送到用于另一天线端口的特定资源元素的位置。也就是说,不同天线之间的参考信号彼此不重复。
将CRS映射到资源块的规则被定义如下。
[式12]
k=6m+(v+vshift)mod6
在式12中,k和l分别表示子载波索引和符号索引,并且p表示天线端口。N_symb^DL表示一个下行链路时隙中的OFDM符号的数目,而N_RB^DL表示被分配到下行链路的无线电资源的数目。n_s表示时隙索引,而N_ID^Cell表示小区ID。mod表示模运算。参考信号的位置根据频域中的v_shift值而改变。由于v_shift取决于小区ID(即,物理层小区ID),因此参考信号的位置根据小区而具有各种频移值。
更详细地,CRS的位置可以根据小区在频域中被移位,以便通过CRS改进信道估计性能。例如,当参考信号以三个子载波的间隔来设置时,一个小区中的参考信号被分配给第3k子载波,并且另一个小区中的参考信号被分配给第3k+1子载波。在一个天线端口方面,参考信号在频域中以六个资源元素的间隔布置,并且以三个资源元素的间隔与分配给另一个天线端口的参考信号分离。
在时域中,参考信号从每个时隙的符号索引0起以恒定的间隔布置。时间间隔根据循环移位长度而被不同地定义。在正常循环移位的情况下,参考信号位于时隙的符号索引0和4处,而在扩展CP的情况下,参考信号位于时隙的符号索引0和3处。用于在两个天线端口之间具有最大值的天线端口的参考信号被限定在一个OFDM符号中。因此,在发送4个发射天线的情况下,用于参考信号天线端口0和1的参考信号位于符号索引0和4(在扩展CP的情况下的符号索引0和3)处,并且用于天线端口2和3的参考信号位于时隙的符号索引1处。用于频域中的天线端口2和3的参考信号的位置在第二时隙中彼此交换。
在下文中,当更详细地描述DM-RS时,DM-RS用于解调数据。用于MIMO天线发送中的特定终端的预编码权重在没有改变的情况下被使用,以便在该终端接收到参考信号时估计与在每个发射天线中发送的传表示物理资源块的数目。输信道关联并且对应的信道。
3GPP LTE系统(例如,版本8)支持最多四个发射天线,并且用于秩1波束成形的DM-RS被限定。用于秩1波束成形的DM-RS还意指用于天线端口索引5的参考信号。
将DM-RS映射到资源块的规则被定义如下。式13示出了正常CP的情况,而式14示出了扩展CP的情况。
[式13]
[式14]
在式13和式14中,k和l分别指示子载波索引和符号索引,并且p指示天线端口。N_sc^RB指示频域中的资源块的大小,并且被表示为子载波的数目。n_PRB指示物理资源块的数目。N_RB^PDSCH指示用于PDSCH发送的资源块的频带。n_s指示时隙索引,并且N_ID^cell指示小区ID。mod指示模运算。参考信号的位置根据频域中的v_shift值而改变。由于v_shift取决于小区ID(即,物理层小区ID),因此参考信号的位置根据小区而具有各种频移值。
在从LTE演进而来的LTE-A中,系统需要被设计成使得可以在下行链路上支持高达8个发射(Tx)天线。因此,还需要支持用于高达8个Tx天线的RS。由于在LTE系统中只定义了用于高达4个天线端口的下行链路RS,因此如果eNB在LTE-A系统中具有4至8个下行链路Tx天线,则需要另外定义并设计用于这些天线端口的RS。作为用于高达8个Tx天线的RS,需要设计以上提到的用于信道测量的RS和用于数据解调的RS。
在设计LTE-A系统时的一个重要考虑是向后兼容性。也就是说,LTE UE需要适当操作并且系统需要支持该操作。需要在时间频率区域中附加定义用于高达8个Tx天线的RS,在时间频率区域中,在RS发送方面,在全频带中的每一个子帧发送LTE中定义的CRS。当在LTE-A系统中的每一个子帧的全频带中添加用于高达8个Tx天线的RS图案时,如同LTE中的CRS,RS开销过度增大。
因此,在LTE-A中新设计的RS被分为用于针对选择MCS、PMI等进行的信道测量的RS(CSI-RS:信道状态信息-RS或信道状态指示-RS)以及用于解调通过8个Tx天线发送的数据的RS(DM-RS:数据解调-RS)。
主要针对信道测量来设计CSI-RS,而传统CRS被用于信道测量、切换测量和数据解调。当然,CSI-RS也可以被用于切换测量。由于只是出于获得关于信道状态的信息的目的来发送CSI-RS,因此与CRS不同,可以不每个子帧发送CSI-RS。为了降低CSI-RS开销,在时域中间歇地发送CSI-RS。
为了进行数据解调,发送专用于对应时间频率区域中调度的UE的DM-RS。也就是说,只在调度UE的区域(即,其中接收到数据的时间频率区域)中发送特定UE的DM-RS。
在LTE-A中,eNB需要针对所有天线端口发送CSI-RS。由于每个子帧的用于高达8个Tx天线端口的CSI-RS的发送造成过量开销,因此作为每个子帧发送CSI-RS的替代方式,通过在时域中间歇地发送CSI-RS来降低开销。也就是说,CSI-RS可以在与一个子帧的整数倍对应的周期中定期发送或者以特定发送模式进行发送。这里,CSI-RS的发送周期或模式可以由eNB来配置。
为了测量CSI-RS,UE必须得知针对UE所属的小区的每个CSI-RS天线端口的CSI-RS的发送子帧索引、发送子帧中的CSI-RS资源元素(RE)的时间频率位置和关于CSI-RS序列的信息。
在LTE-A系统中,eNB需要针对高达8个天线端口中的每一个发送CSI-RS。用于针对不同天线端口来发送CSI-RS的资源需要是正交的。当eNB针对不同天线端口发送CSI-RS时,eNB可以通过将用于天线端口的CSI-RS映射到不同的RE来通过FDM/TDM正交地分配资源。另选地,可以根据CDM来发送CSI-RS,CDM将用于不同天线端口的CSI-RS映射到正交代码。
当eNB将关于CSI-RS的信息告知属于其小区的UE时,eNB需要将关于用于每个天线端口的CSI-RS被映射到的时间频率的信息告知UE。具体地,信息包括其中发送CSI-RS的子帧的数目、CSI-RS传输周期、发送CSI-RS的子帧偏移、用于发送天线的CSI-RS RE的OFDM符号的数目、频率间隔以及频域中的RE的偏移或移位值。
CSI-RS通过1、2、4或8个天线端口发送。这里,使用天线端口p=15、p=15,16、p=15,...,18、p=15,...,22。可以只针对Δf=15kHz的子帧间隔来定义CSI-RS。
根据表15或表16中示出的CSI-RS配置来确定(k',l')和nS的条件(这里,k'是资源块中的子载波索引而l'指示时隙中的OFDM符号索引)。
表15示出了正常CP情况下从CSI-RS配置映射的(k',l')。
[表15]
表16示出了扩展CP情况下从CSI-RS配置映射的(k',l')。
[表16]
参照表15和表16,对于CSI-RS发送,为了在包括异构网络(HetNet)环境的多小区环境中减少小区间干扰(ICI),限定了最大32个(在正常CP的情况下)或最大28个(在扩展CP的情况下)不同的配置。
CSI-RS配置根据小区中的天线端口的数目和CP而不同,相邻小区可以具有不同的最大配置。此外,CSI-RS配置可以被划分为应用于FDD帧和TDD帧两者的情况和仅应用于TDD帧的情况。
基于表15和表16,(k’,l’)和nS根据CSI-RS配置来确定,并且确定每个CSI-RS天线端口用于发送CSI-RS的时间频率资源。
图15是例示了可以应用本发明的无线通信系统中的CSI-RS配置的图。
图15的(a)示出了在通过一个或两个CSI-RS天线端口的CSI-RS发送中可用的20个CSI-RS配置,图15的(b)示出了可由四个CSI-RS天线端口使用的10个CSI-RS配置。图15的(c)示出了在通过八个CSI-RS天线端口的CSI-RS发送中可用的5个CSI-RS配置。
这样,根据每个CSI-RS配置,确定了CSI-RS被发送的无线电资源(即,RE对)。
当一个或两个CSI-RS天线端口被配置用于针对特定小区发送CSI-RS时,根据图15的(a)中示出的20个CSI-RS配置当中的所配置的CSI-RS配置在无线电资源上发送CSI-RS。
类似地,当四个CSI-RS天线端口被配置用于针对特定小区发送CSI-RS时,根据图15的(b)中示出的10个CSI-RS配置当中的所配置的CSI-RS配置在无线电资源上发送CSI-RS。此外,当八个CSI-RS天线端口被配置用于针对特定小区发送CSI-RS时,根据图15的(c)中示出的五个CSI-RS配置当中的所配置的CSI-RS配置在无线电资源上发送CSI-RS。
用于每个天线端口的CSI-RS按照作为CDM的方式被发送到用于两个天线端口中的每一个的相同无线电资源(即{15,16}、{17,18}、{19,20}、...、{21,22})。作为天线端口15和16的示例,虽然各个CSI-RS复杂符号对于天线端口15和16是相同的,但是CSI-RS复杂符号通过被乘以不同的正交代码(例如,Walsh代码)而被映射到相同的无线电资源。对于用于天线端口15的CSI-RS的复杂符号,乘以[1,1],而对于用于天线端口16的CSI-RS的复杂符号,乘以[1,-1],并且复杂符号被映射到相同的无线电资源。这个过程对于天线端口{17,18}、{19,20}和{21,22}来说是相同的。
UE可以通过乘以由所发送的代码所乘的代码来检测用于特定天线端口的CSI-RS。也就是说,为了检测用于天线端口15的CSI-RS,乘以所乘的代码[1 1],而为了检测用于天线端口16的CSI-RS,乘以所乘的代码[1 -1]。
参照图15的(a)至(c),当无线电资源与相同的CSI-RS配置索引对应时,根据包括大量天线端口在内的CSI-RS配置的无线电资源包括根据包括少量的天线端口在内的CSI-RS配置的无线电资源。例如,在CSI-RS配置0的情况下,用于八个天线端口的无线电资源包括用于四个天线端口和一个或两个天线端口的所有无线电资源。
以在小区中使用多个CSI-RS配置。零个或一个CSI-RS配置可以被用于非零功率(NZP)CSI-RS,并且零个或多个CSI-RS配置可以被用于零功率CSI-RS。
针对在作为由上层配置的16位的位图的零功率CSI-RS(ZP-CSI-RS)中被配置为“1”的每个位,UE假定用于与以上表15和表16中的四个CSI-RS列对应的RE的零功率发送(除了与假定由上层配置的NZP CSI-RS的RE交叠的情况)。最高有效位(MSB)与最低CSI-RS配置索引对应,并且位图中的下一位按顺序与下一个CSI-RS配置索引对应。
在仅满足以上表15和表16中的(n_2mod 2)以及CSI-RS子帧配置的条件的下行链路时隙中发送CSI-RS。
在帧结构类型2(TDD)的情况下,在与特殊子帧SS、PBCH或SIB 1(SystemInformationBlockType1)消息发送冲突的子帧或者被配置为发送寻呼消息的子帧中,不发送CSI-RS。
此外,对用于属于天线端口集合S(S={15}、S={15,16}、S={17,18}、S={19,20}或S={21,22}))的特定天线端口的CSI-RS进行发送的RE不用于发送另一个天线端口的PDSCH或CSI-RS。
由于用于发送CSI-RS的时间-频率资源不能用于发送数据,因此数据吞吐量随着CSI-RS开销增加而减小。考虑到这一点,CSI-RS不被配置为在每个子帧中被发送,而是被配置为在与多个子帧对应的特定发送周期中被发送。在这种情况下,与CSI-RS在每个子帧中被发送的情况相比,可以显著地减少CSI-RS发送开销。
在下面的表5中示出用于发送CSI-RS的子帧周期(在下文中,称为“CSI-RS发送周期”TCSI-RS)和子帧偏移(△CSI-RS)。
表17例示了CSI-RS子帧的配置。
[表17]
参照表17,根据CSI-RS子帧配置(ICSI-RS)来确定CSI-RS发送周期(TCSI-RS)和子帧偏移(△CSI-RS)。
表5中的CSI-RS子帧配置被配置为以上表17中的“SubframeConfig”字段和“zeroTxPowerSubframeConfig”字段中的一个。CSI-RS子帧配置可以针对NZP CSI-RS和ZPCSI-RS被单独配置。
包括CSI-RS的子帧满足下面的式15。
[式15]
在式15中,TCSI-RS表示CSI-RS发送周期,△CSI-RS表示子帧偏移值,nf表示系统帧编号,并且ns表示时隙编号。
在针对服务小区设置了发送模式9的UE的情况下,可以对该UE设置单个CSI-RS资源。在针对服务小区设置了发送模式10的UE的情况下,可以对该UE设置一个或更多个CSI-RS资源。
对于每个CSI-RS资源配置,可以通过上层信令来设置以下参数。
-在设置了发送模式10的情况下,CSI-RS资源配置标识符
-CSI-RS端口的数目
-CSI-RS配置(参照表3和表4)
-CSI-RS子帧配置(ICSI-RS;参照表5)
-在配置了发送模式9的情况下,用于CSI反馈的发送功率(Pc)
-在配置了发送模式10的情况下,针对每个CSI过程的用于CSI反馈的发送功率(Pc)。当通过用于CSI过程的上层来设置CSI子帧集CCSI,0和CCSI,1时,针对CSI过程的每个CSI子帧集设置Pc
-伪随机序列发生器参数(nID)
-在设置了发送模式10的情况下,用于假定准协同定位(QCL)类型B UE的QCL加扰标识符(qcl-ScramblingIdentity-r11)、CRS端口计数(crs-PortsCount-r11)、以及包括MBSFN子帧配置列表(mbsfn-SubframeConfigList-r11)参数的上层参数('qcl-CRS-Info-r11')。
当由UE获得的CSI反馈值具有在[-8,15]dB的范围内的值时,由PDSCH EPRE对于CSI-RS EPRE的比率来推定Pc。本文中,PDSCH EPRE与PDSCH EPRE对于CRS EPRE的比率为ρA的符号对应。
在服务小区的相同子帧中,CSI-RS和PMCH不一起被配置。
当按照帧结构类型2配置四个CRS天线端口时,在正常CP(参照表15)的情况下属于[20-31]集合或者在扩展CP(参照表16)的情况下属于[16-27]集合的CSI-RS配置索引没有被配置给UE。
UE可以假定CSI-RS资源配置的CSI-RS天线端口具有与延迟扩展、多普勒扩展、多普勒频移、平均增益和平均延迟的QCL关系。
配置了发送模式10和QCL类型B的UE可以假定与CSI-RS资源配置对应的天线端口0至3和与CSI-RS资源配置对应的天线端口15至22具有与多普勒扩展和多普勒频移的QCL关系。
对于配置了发送模式10的UE,可以设置一个或多更个信道状态信息-干扰测量(CSI-IM)资源配置。
可以通过上层信令针对每个CSI-IM资源配置来配置以下参数。
-ZP CSI-RS配置(参照表15和表16)
-ZP CSI-RS子帧配置(ICSI-RS;参照表17)
CSI-IM资源配置与所配置的ZP CSI-RS资源配置中的一个相同。
在服务小区中的相同子帧中,CSI-IM资源和PMCH不被同时配置。
对于设置了发送模式1至9的UE,可以对用于服务小区的UE设置ZP CSI-RS资源配置。对于设置了发送模式10的UE,可以对用于服务小区的UE设置一个或更多个ZP CSI-RS资源配置。
可以通过上层信令针对ZP CSI-RS资源配置来配置以下参数。
-ZP CSI-RS配置列表(参照表15和表16)
-ZP CSI-RS子帧配置(ICSI-RS;参照表17)
在服务小区中的相同子帧中,ZP CSI-RS资源和PMCH不被同时配置。
跨载波调度和E-PDCCH调度
在3GPP LTE Rel-10系统中,在多个分量载波(CC=(服务)小区)已经被聚合的情形下,如下地定义跨CC调度操作。可以在之前配置一个CC(即,被调度CC),使得仅通过特定一个CC(即,调度CC)来执行DL/UL调度(即,使得接收到用于对应被调度CC的DL/UL授权PDCCH)。此外,对应调度CC可以基本上针对此执行DL/UL调度。换句话说,用于调度跨CC调度关系内的调度/被调度CC的PDCCH的搜索空间(SS)可以完全存在于调度CC的控制信道区域中。
在LTE系统中,如上所述的FDD DL载波或TDD DL子帧使用子帧中的前n个OFDM符号来发送PDCCH、PHICH和PCFICH(即,用于发送各种类型的控制信息的物理信道),并且使用剩余的OFDM符号进行PDSCH发送。在这种情况下,用于每个子帧中的控制信道发送的符号的数目通过诸如PCFICH这样的物理信道动态地传送到UE或者通过RRC信令以半静态方式传送到UE。在这种情况下,特征性地,“n”值可以根据子帧特性和系统特性(例如,FDD/TDD或系统带宽)被设置成1个符号至最多4个符号。
在现有LTE系统中,PDCCH(即,用于DL/UL调度和发送各种类型的控制信息的物理信道)有限制,因为它是通过受约束的OFDM符号来发送的。
因此,可以引入使用FDM/TDM方法被更自由地复用成PDSCH的增强PDCCH(即,E-PDCCH),以替代通过与如同PDCCH的PDSCH分开的OFDM符号发送的控制信道。
图16是例示了可以应用本发明的实施方式的无线通信系统中的PDCCH和E-PDCCH的图。
参照图16,在子帧的前n个OFDM符号中发送传统PDCCH(即,L-PDCCH),并且使用FDM/TDM方法来将E-PDCCH复用成PDSCH并且进行发送。
天线端口之间的准协同定位(QCL)
可以如下地定义准协同定位和准协同位置(QC/QCL)。
如果两个天线端口具有QC/QCL关系(或经受QC/QCL),则UE通过一个天线端口递送的信号的大规模特性可以是从通过另一个天线端口递送的信号推导而来。在这种情况下,大规模特性包括延迟扩展、多普勒扩展、多频移、平均接收功率和接收定时中的一个或更多个。
此外,可以定义以下内容。假定两个天线端口具有QC/QCL关系(或经受QC/QCL),则UE可以假定其一个符号通过一个天线端口递送的信道的大尺寸性质可以是从其一个符号通过另一个天线端口递送的无线信道推导而来的。在这种情况下,大规模特性包括延迟扩展、多普勒扩展、多普勒移位、平均增益和平均延迟中的一个或更多个。
也就是说,如果两个天线端口具有QC/QCL关系(或经受QC/QCL),则它意指来自一个天线端口的无线信道的大规模特性与来自另一个天线端口的无线信道的大规模特性相同。假定考虑发送RS的多个天线端口,如果发送两种类型的不同RS的天线端口具有QCL关系时,来自一个天线端口的无线信道的大规模特性可以被来自另一个天线端口的无线信道的大规模特性取代。
在本说明书中,QC/QCL相关定义没有被区分开。也就是说,QC/QCL构思可以符合定义中的一个。以类似其它形式,QC/QCL构思定义可以按照具有创建的QC/QCL假定的天线端口可以被假定是在同一位置(即,协同位置)发送的方式来改变(例如,UE假定天线端口是在同一发送点发送的天线端口)。本发明的精神包括这些类似修改形式。在本发明的实施方式中,为了方便描述,QC/QCL相关定义可互换地使用。
按照QC/QCL的构思,相对于非QC/QCL天线端口,UE可以不假定来自对应天线端口的无线信道之间的相同大规模特性。也就是说,在这种情况下,UE可以针对每个非QCL天线端口对定时获取和跟踪、频率偏移估计和补偿、延迟估计和多普勒估计执行独立处理。
存在UE能够在能够假定QC/QCL的天线端口之间执行以下操作的优点:
-关于延迟扩展和多普勒扩展,UE可以将来自任一个天线端口的无线信道的功率延迟分布、延迟扩展和多普勒频谱、多普勒扩展估计的结果同等地应用到在进行用于来自另一天线端口的无线信道的信道估计时使用的维纳滤波器。
-关于频移和所接收的定时,UE可以对任一个天线端口执行时间和频率同步,并且随后可以将相同的同步应用于其它线端口的解调。
-关于平均接收功率,UE可以对用于两个或更多个天线端口的参考信号接收功率(RSRP)测量值求平均。
例如,如果用于下行链路数据信道解调的DMRS天线端口已经与服务小区的CRS天线端口经受了QC/QCL,则UE可以按相同方式在通过对应DMRS天线端口进行信道估计时应用从其自己CRS天线端口估计的无线信道的大规模特性,因此提高了基于DMRS的下行链路数据信道的接收性能。
这样的原因在于,可以从CRS更稳定地获得关于大规模特性的估计值,因为CRS是在整个带宽内每个帧以相对高的密度广播的参考信号。相比之下,DMRS相对于特定被调度RB以UE特定方式发送,并且供eNB用于发送的预编码资源块组(PRG)单元的预编码矩阵可以改变。因此,UE接收到的有效信道可以按PRG单元来改变。因此,虽然在UE中已经调度了多个PRG,但是当使用DMRS来估计宽带内的无线信道的大规模特性时,可能出现性能劣化。此外,CSI-RS还可以具有几毫秒至几十毫秒的发送周期,并且每个资源块还平均地具有用于每个天线端口的1个资源元素的低密度。因此,如果CSI-RS用于估计无线信道的大规模特性,则CSI-RS会遭遇性能劣化。
也就是说,UE能够通过天线端口之间的QC/QCL假定来执行下行链路参考信号的检测/接收、信道估计和信道状态报告。
小区测量/测量报告
对于在用于保证UE的移动性的多种方法(切换、随机接入、小区搜索等)当中的一种或多种方法,UE向eNB(或网络)报告小区测量的结果。
在3GPP LTE/LTE-A系统中,小区特定参考信号(CRS)在时间轴上通过每个子帧中的第0个、第4个、第7个和第11个OFDM符号来发送,并且基本上被用于小区测量。也就是说,UE分别使用从服务小区和相邻小区接收的CRS来执行小区测量。
小区测量是这样的概念:其包括诸如对服务小区和相邻小区的信号强度或者与总接收功率相比较的信号强度等进行测量的参考信号接收功率(RSRP)、接收信号强度指示符(RSSI)、参考信号接收质量(RSRQ)等这样的无线电资源管理(RRM)测量、以及可以通过从服务小区测量链路质量来评估无线电链路故障的无线电链路监测(RLM)测量。
RSRP是CRS在测量频带中被发送的RE的功率分布的线性平均。为了确定RSRP,可以使用与天线端口'0'对应的CRS(R0)。此外,为了确定RSRP,可以附加地使用与天线端口'1'对应的CRS(R1)。为了确定RSRP而由UE在测量频带和测量持续时间中使用的RE的数目可以在满足对应侧量精度要求的限度内由该UE确定。此外,每个RE的功率可以通过符号的除了CP之外的剩余部分中接收的能量来确定。
通过对应UE在包括与天线端口“0”对应的RS在内的OFDM符号中获得作为从包括同信道的服务小区和非服务小区在内的所有源检测的总接收功率、来自相邻信道的干扰、热噪声等的线性平均的RSSI。当由用于执行RSRQ测量的上层信令指示特定子帧时,通过所指示的子帧中的所有OFDM符号来测量RSSI。
RSRQ通过N×RSRP/RSSI获得。这里,N意指RSSI测量带宽的RB的数目。另外,以上数值表达式中的分子和分母的测量可以通过相同的RB集合来获得。
eNB可以通过上层信令(例如,RRC连接重配置消息)将用于测量的配置信息递送给UE。
RRC连接重配置消息包括'radioResourceConfigDedicated'信息元素(IE)和'measConfig'IE。
'measConfig'IE指定需要由UE执行的测量,并且包括用于频率内移动性、频率间移动性、RAT间移动性的配置信息以及测量间隔配置。
具体地,'measConfig'IE包括指示将从测量中去除的测量对象的列表的'measObjectToRemoveList'和指示将被新添加或修改的列表的'measObjectToAddModList'。另外,根据通信方案,'measObject'包括根'MeasObjectCDMA2000'、'MeasObjctEUTRA'、'MeasObjectGERAN'。
'RadioResourceConfigDedicated'IE被用于建立/修改/释放无线电承载,改变MAC主配置,改变半静态调度(SPS)配置或者改变专用物理配置。
“RadioResourceConfigDedicated”IE包括指示用于服务小区测量的时域测量资源限制模式的“measSubframePattern-Serv”字段。另外,“RadioResourceConfigDedicated”IE包括指示将由UE测量的邻近小区的“measSubframeCellList”和指示用于邻近小区测量的时域测量资源限制模式的“measSubframePattern-Neigh”。
针对测量小区(包括服务小区和邻近小区)配置的时域测量资源限制模式可以指示用于RSRQ测量的每个无线电帧的至少一个子帧。在除了为测量小区配置的时域测量资源限制模式所指示的子帧外的子帧中不执行RSRQ测量。
以这种方式,UE(例如,3GPP Rel-10)需要仅在由用于服务小区测量的子帧模式('measSubframePattern-Serv')和用于邻近小区测量的子帧模式('measSubframePattern-Neigh')设置的时间段中测量RSRQ。
尽管RSRQ的测量不限于此模式下的测量,但是期望仅在用于精度要求的此模式中测量RSRP。
测量
可以根据E-UTRAN使用广播或专用控制来控制UE针对频率内/间移动性而执行的测量。
在RRC_IDLE状态下,UE遵循根据E-UTRAN广播指定的为小区重新选择而定义的测量参数。专用测量控制可以用于RRC_IDLE状态。
在RRC_CONNECTED状态下,UE循序从E-UTRAN递送的RRC所指定的测量配置(例如,UTRAN MEASUREMENT_CONTROL)。
频率内邻近(小区)测量和频率间邻近(小区)测量被如下定义。
相对于频率内邻近(小区)测量,UE在当前小区和目标小区在相同载波频率下操作时执行的邻近小区测量是频率内测量。UE能够在没有测量间隔的情况下执行此测量。
相对于频率间邻近(小区)测量,UE在当前小区和目标小区在不同载波频率下操作时执行的邻近小区测量是频率间测量。UE不能在没有测量间隔的情况下执行此测量。
通过UE的能力和当前操作频率来确定是否支持用于测量的间隙。
UE可以确定是否需要在发送/接收间隙中执行特定小区的测量以及调度器是否需要得知间隙的必要性。
-在相同载波频率和小区带宽的情况下,执行频率内测量并且不支持测量间隔。
-当目标小区和当前小区在相同载波频率下操作并且目标小区的带宽比当前小区的带宽窄时,执行频率内测量并且不支持测量间隔。
-当目标小区和当前小区在相同载波频率下操作并且目标小区的带宽比当前小区的带宽宽时,执行频率内测量并且不支持测量间隔。
-当目标小区和当前小区在不同载波频率下操作,目标小区的带宽比当前小区的带宽窄并且被包括在当前小区的带宽中时,执行频率间测量并且支持测量间隔。
-当目标小区和当前小区在不同载波频率下操作并且目标小区的带宽比当前小区的带宽宽并且当前小区的带宽被包括在目标小区的带宽中时,执行频率间测量并且支持测量间隔。
-在不同载波频率和不交叠带宽的情况下,执行频率间测量并且支持测量间隔。
通过RRC来配置和激活测量间隔模式。
当配置CA时,当前小区是指配置的服务小区集合中的服务小区。因此,可以如下地定义频率内/间测量。
相对于频率内邻近(小区)测量,当配置集合中的服务小区中的一个和目标小区在相同频率下操作时,UE所执行的邻近小区测量是频率内测量。UE能够在没有测量间隔的情况下执行此测量。
相对于频率间邻近(小区)测量,当邻近小区和配置集合中的服务小区在不同频率下操作时,UE所执行的邻近小区测量是频率间测量。UE不能在没有测量间隔的情况下执行此测量。
用于支持快速载波切换的方法
本发明提出了一种方法,通过该方法,UE通过诸如盲检测这样的处理来检测特定信号(例如,前导码、同步信号、CRS、CSI-RS等),以识别TXOP(发送机会)时间段或保留资源时间段(RRP),在TXOP和RRP的情形下,通过未经授权频带的载波来发送和接收信号。
在本说明书中,对应载波资源被占据/确保以便通过未经授权频带在eNB和UE之间进行信号发送和接收的时间段被称为RRP。
这里,RRP可以被定义为单个连续时间段或者被定义为连续时间段的集合。例如,RRP可以由符号、时隙、子帧或无线电帧的单元构成。
本说明书中描述的术语“eNB”能与远程无线电头端(RRH)、eNB、发送点(TP)、接收点(RP)、中继器互换地使用。
为了方便描述,将基于3GPP LTE/LTE-A来描述所提出的方法。然而,所提出的方法能够被应用于除了3GPP LTE/LTE-A外的系统(例如,UTRA)。
随着越来越多的通信装置需要更大的通信能力,高效利用有限的频带在未来的无线通信系统中变得重要。
因此,正在讨论用于诸如LTE/LTE-A系统这样的蜂窝通信系统中的业务卸载的、使用诸如传统Wi-Fi系统中使用的2.4GHz这样的未经授权频带或者诸如最近引起注意的5GHz这样的未经授权频带的方法。
未经授权频带是基于假定通过通信节点之间的竞争来执行无线发送和接收,因此需要每个通信节点在发送信号之前执行信道侦听,以确认其它通信节点不发送信号。这被称为空闲信道评估(CCA)。LTE的eNB或UE会需要执行CCA,以便在未经授权频带中进行信号发送。另外,当LTE/LTE-A的eNB或UE发送信号时,诸如Wi-Fi这样的其它通信节点需要执行CCA,而不造成干扰。例如,CCA阈值被定义为在Wi-Fi标准(801.11ac)中对于非Wi-Fi信号而言是-62dBm而对于Wi-Fi信号而言是-82dBm,这意指STA或AP在除了Wi-Fi信号外的信号在-62dBm或更高被接收时不发送信号,使得不出现干扰。在Wi-Fi系统中,STA或AP可以执行CCA并且在4μs或更长时间内没有检测到超过CCA阈值的信号时发送信号。
本发明考虑通过没有保证被特定系统唯一使用的未经授权频带的载波来发送和接收信号的情形。例如,本发明被应用于图17中示出的情形。
图17例示了根据本发明的实施方式的未经授权频带中的载波聚合。
如图17中所示,在经授权频带的分量载波(CC)(或小区)和未经授权频带的CC(或小区)的载波聚合的情形下,eNB可以向UE发送信号或者UE可以向eNB发送信号。
以下,为了方便描述,经授权频带被称为“LTE-A频带”,未经授权频带被称为“LTE-U频带”或“Ucell”。
在下面对本发明的实施方式的描述中,为了方便描述本发明提出的方法,假定UE被配置成通过作为经授权频带中的一个或更多个分量载波的CC0(PCell)并且通过未经授权频带中的一个或更多个CC执行无线通信的情形。
为了方便描述本发明,假定通过作为经授权频带中的CC的CC0(PCell)并且通过未经授权频带中的CC1、CC2和CC3中的至少一个执行无线通信。
这里,例如,经授权频带的载波可以被翻译为主分量载波(PCC或PCell)并且未经授权频带的载波可以被翻译为辅分量载波(SCC或SCell)。
因此,为了方便起见,本发明中考虑的系统可以被称为证书辅助接入(LAA)系统。LAA是指用于使用载波聚合(CA)来将LTE经授权频带和未经授权频带进行聚合的技术。
然而,本发明中提出的方法不限于LAA系统。本发明中提出的方法可以被扩展并且应用于通过载波聚合来使用多个经授权频带和多个未经授权频带的情形。此外,即使当仅通过未经授权频带在eNB和UE之间发送和接收信号或者通过仅未经授权频带或仅经授权频带的载波聚合在eNB和UE之间发送和接收信号时,也可以扩展和应用这些方法,本发明中提出的方法可以被扩展,并且不仅能够被应用于3GPP LTE系统,而且能够被应用于具有不同特性的系统。
为了执行与UE的发送和接收,例如,在传统载波聚合(CA)系统中使用SCell CC1、CC2和CC3连同PCell CC0,UE需要包括与CC0、CC1、CC2和CC3对应的最多四个独立RF链。
这里,eNB之前配置与“SCell添加”相关的信令并且将其提供给针对CC1、CC2和CC3的UE,并且通过MAC消息来提供指示实际上是否激活任何SCell的激活信令/停用信令。
也就是说,eNB按发送用于操作UE的控制信号的方式来针对每个CC通过MAC层信令提供激活/停用。以下,将描述当接收到激活消息时UE基于标准进行的操作。
当UE在子帧n中接收到针对SCell的激活命令时,对应操作(除了以下操作外)被不比子帧n+8快且不比最小要求晚地应用。
-与CSI报告相关的操作
-与和SCell关联的SCell激活定时器('sCellDeactivationTimer')相关的操作
以上提到的操作被应用于子帧n+8。
当用户在子帧n中接收到针对SCell的停用命令或者针对SCell的SCell停用定时器('sCellDeactivationTimer')在子帧n中期满时,除了与CSI报告相关的操作外的对应操作不比最小要求晚地应用。在子帧n+8中应用CSI报告相关操作。
本发明提出了一种方法,通过该方法,与以上提到的示例不同,不包括SCell中可用的多个RF链的UE能够执行快速载波切换(在LTE-U频带)中。该UE可以是以相对低的成本制造的UE,例如,包括用于PCell的两个RF链和单个激活SCell的UE。
另外,根据本发明的用于快速载波切换的方法也可被应用于以下情况:出于节电池省电等目的,能够针对SCell应用多个RF链的UE只针对PCell和单个激活SCell使用两个RF链。
将基于仅单个RF链(或单个发送器/接收器)可以应用于实现低成本UE的SCell的情况来描述本发明。
在对本发明的描述中,“RF链”是指可以在单独CC中执行发送/接收的模块/组件(发送器/接收器)。例如,在不同IF(中等频率)模块的情况下,RF链意指一次性处理的FFT(快速傅里叶变换)的单元。也就是说,可以按各种方式来实现RF链。
以上提到的UE操作的特性可以被解释为不能同时激活两个或更多个SCell的特性。
因此,为了基于传统CA标准来支持LTE-U频带中的UE操作,仅用于特定CC的SCell添加相关RRC信令被预先提供到UE,然后通过MAC信令来激活所述CC,因为CC1、CC2和CC3中的仅一个可以在任何时间段中被激活,因此不能递送与用于多个CC的SCell添加相关RRC信令。
例如,如果激活的CC是CC2,则当CC2需要被切换至CC3时,可以应用以下操作:停用CC2,重新递送与用于CC3的SCell添加相关RRC信令(即,RRC重新配置消息),然后通过MCA信令来激活CC3。
这些传统操作的问题是每当执行SCell切换时由于不可避免地产生RRC重新配置而导致的RRC水平等待时间(例如,数十毫秒至数百毫秒)。此外,如果如LAA系统中一样在未经授权频带中使用了SCell,则在对应LTE-U频带中CCA有可能占据信道,因此用于CC的加载情形可以相当程度不同地或相对频繁地改变。因此,与经授权频带中的切换相比,用于LTEUE的载波切换(或小区切换)会频繁地出现。因此,需要用于消除或显著减少由于传统操作而导致的以上提到的等待时间的技术。
在本发明的以下描述中,CC(或小区)是指DL CC和/或UL CC。
在本发明的以下描述中,载波切换(或小区切换)是指完全激活的CC(或小区)的切换或者UE的接收器(或接收模块)的目标的切换。
为了解决以上提到的问题,在本发明中,UE可以通过特定能力信令将具有以下将描述的不同性质的至少一条能力相关内容作为预先(例如,在UE的初始接入期间)报告给eNB的UE的能力信息通知eNB。
图18例示了根据本发明的实施方式的小区激活/停用方法。
参照图18,UE向eNB发送包括关于UE能支持的分量载波(CC)(或小区)的信息的UE能力信息(S1801)。
这里,关于UE能支持的CC(或小区)的信息可以包括关于能够被完全UE激活的CC的信息和关于能够被部分UE激活的CC的信息。
这里,关于能够被完全激活的CC的信息和关于能够被部分激活的CC的信息可以按单独的格式或单个格式进行配置并且被包括在UE能力信息中。
将更详细地描述关于UE能支持的CC(或小区)的信息。
1.关于能够被完全激活的CC的信息
指示能够被同时“完全激活”的(SCell)CC的数目(即,能够同时被完全激活的CC的数目,例如,N个CC)的信息和/或与N个特定频带的列表(或CC列表)相关的信息。
-这里,“完全激活”可以等同于当前标准(例如,版本-12)的CA系统中的“能力”。换句话说,CA系统中可用的所有正常SCell操作(例如,SCell中的SRS发送、相对于SCell的CQI/PMI/RI/PTI报告(即,CSI报告)、SCell中的PDCCH监测、用于SCell的PDCCH监测、上行链路/下行链路数据发送和接收等)可以应用于“完全激活的”CC。
另外,UE为了“完全激活的”CC而需要执行的操作可以包括CSI报告和相对于CC的特定RRM测量/报告、与CC关联的UL频带中的PDSCH的下行链路接收和/或上行链路发送(如果存在UL频带)。
另外,UE可以在“完全激活的”CC中执行的操作要素可以是预定的或者在UE中进行配置(例如,通过RRC消息)。
-UE可以将能够被同时完全激活的CC的数目(即,N)发送到eNB。
例如,在成本低的UE(也就是说,包括用于PCell和单个激活SCell的两个RF链的UE)的上述示例中,N可以是1(对于SCell而言)。
UE可以将N条频带列表信息发送到eNB。
例如,UE可以将频带列表信息与关于可以被“部分激活”(以下将进行描述)的频带的列表的信息进行关联,以将对应频带(例如,{CC1}或{band1})通知给eNB。此信息可以是用于另一个可用频带组合的多个候选组合的能力信令。
2.关于可以被部分激活的CC的信息
关于可以被同时“部分激活”的(SCell)CC的数目(即,可以同时被部分激活的CC的数目,例如,M个CC)的信息和/或关于M个特定频带的列表(或CC列表)的信息。
-这里,“部分激活”可以限于UE可以在“完全激活”的情况下执行的操作(例如,正常SCell操作)当中的特定操作(例如,CSI报告、RRM测量/报告等)和/或包括附加操作。
-UE可以将能够被同时部分激活的CC的数目(即,M)发送到eNB。
在成本低的UE(也就是说,包括用于PCell和单个激活SCell的两个RF链的UE)的上述示例中,M可以是3(对于SCell而言),以便支持与本发明中考虑的快速载波切换相关的技术。
例如,所有CC1、CC2和CC3被部分激活,使得可以执行针对CC1、CC2和CC3当中的特定CC的CSI报告,并且可以只针对与N=1对应的特定的完全激活的CC来执行PDSCH/数据的下行链路接收。
另外,UE可以将关于M个频带的列表的信息(例如,按照{CC1,CC2,CC3}或{band1,band2,band3}的方式)通知给eNB。
可以相对于能够被同时完全激活的数目为N的CC和能够被同时部分激活的数目为M的CC的以上提到的参数按照M≥N的方式来预定附加限制,或者可以在UE中设置(例如,通过RRC消息)附加限制。在这种情况下,只有当满足限制条件时,UE才需要将能力信令发送到eNB。
虽然以上1和2中描述的UE能力信令可以被映射到单独的能力信令索引(和/或单独的消息容器)并且被递送到eNB,但是信息1和信息2可以按单个消息格式进行加载并且递送到eNB。
将描述信息1和信息2被配置成单个消息格式的情况。
1)例如,可以如下地配置以上提到的信息1和信息2。
{CC0,CC1(完全/部分),CC2(部分),CC3(部分)},
{CC0,CC1(部分),CC2(完全/部分),CC3(部分)},
{CC0,CC1(部分),CC2(部分),CC3(完全/部分)}
指示对应CC(或频带)具有完全激活和/或部分激活当中的哪一特性的指示符可以按照以上提到的方式连同所述CC(或频带)的标识符一起用信号进行发送。
在以上示例中,不包括完全激活指示符和/或部分激活指示符的CC0是指具有传统CC(或频带)特性的CC(也就是说,只支持激活/停用的CC),并且eNB可以将CC0设置成PCell。CCx(完全/部分)是指具有以上提到的完全激活和部分激活特性的CC(或频带)。
另外,在以上示例中,CC1、CC2和CC3能够被同时部分激活,并且CC1、CC2和CC3中的仅一个(即,CC1、CC2或CC3)可以在特定时间段中被完全激活。
2)又如,可以如下地配置以上提到的信息1和信息2。
{CC0,CC1(完全),CC2(部分),CC3(部分)},
{CC0,CC1(部分),CC2(完全),CC3(部分)},
{CC0,CC1(部分),CC2(部分),CC3(完全)}
指示对应CC(或频带)具有完全激活和/或部分激活当中的哪一特性的指示符可以按照以上提到的方式连同所述CC(或频带)的标识符一起用信号进行发送。这里,CCx(完全)可以被定义为基本上具有部分激活功能的CC。
此外,在以上示例中,不包括完全激活指示符或部分激活指示符的CC0是指具有传统CC(或频带)特性的CC(也就是说,只支持激活/停用的CC),并且eNB可以将CC0设置成PCell。
因此,如在以上示例中一样,CC1、CC2和CC3能够被同时部分激活,并且CC1、CC2和CC3中的仅一个(即,CC1、CC2或CC3)可以在特定时间段中被完全激活。
3)又如,可以如下地配置以上提到的信息1和信息2。
{CC0,CC1,CC2(部分),CC3(部分)},
{CC0,CC1(部分),CC2,CC3(部分)},
{CC0,CC1(部分),CC2(部分),CC3}
指示对应CC(或频带)是否是具有部分激活特性的CC(或频带)的指示符可以按照以上提到的方式连同所述CC(或频带)的标识符一起用信号进行发送。这里,与“完全激活”对应的CC(或频带)不具有附加指示符。
在这种情况下,不包括部分激活指示符的CC是指具有传统CC(或频带)特性的CC(即,仅支持激活/停用的CC)或者能够被完全激活的CC。
因此,当CC0被配置为PCell时,CC1、CC2和CC3能够被同时部分激活,并且CC1、CC2和CC3中的仅一个(即,CC1、CC2或CC3)可以在特定时间段中被完全激活。另外,当CC1被配置为PCell时,CC0、CC2和CC3能够被同时部分激活,并且CC0、CC2和CC3中的仅一个(即,CC0、CC2或CC3)能够在特定时间段中被完全激活。此外,对于CC2或CC3被设置为PCell的情况,同样适用。
在从UE接收到UE能力信令时,eNB在考虑到UE能力信令的情况下发送与SCell添加相关的信令和“部分激活”或“完全激活”信令。下面将参照附图对此进行描述。
图19例示了根据本发明的实施方式的小区激活/停用方法。
在图19中,eNB向UE发送SCell添加相关消息(S1901)。
这里,SCell添加相关消息是可以被递送到UE的RRC消息(例如,RRC连接重新配置消息)。
另外,可以通过PCell来发送SCell添加相关消息。
如上所述,当如图18中示出的示例一样eNB从UE接收到能力信令时,eNB需要在递送RRC信令时提供与SCell添加相关的RRC信令,与SCell添加相关的RRC信令不违反UE的能力特性组合。这里,UE不期望eNB没有提供此RRC信令的情况,并且这种情况可以被视为错误情况。
这里,从UE已经完成SCell添加相关消息的接收时起,基于SCell添加相关消息而添加的Scell可以默认处于停用状态。也就是说,当添加SCell时,可以初始地停用SCell。
另外,从UE已经完成SCell添加相关消息的接收时起,基于SCell添加相关消息而添加的SCell可以默认处于“部分激活”状态。与就是说,当添加SCell时,可以初始地部分激活SCell。在这种情况下,还可在S1901中设置附加标识符或类似信息,使得UE能够识别默认能够“部分激活”。
另外地/另选地,基于SCell附加相关消息而添加的SCell当中的能够被“完全激活”(一定时间段内)的CC的数目是x,并且还可以在S1901中设置附加标识符或类似信息,使得UE能够识别只有x个CC能够被完全激活(一定时间段内)。通过发送此信息,eNB能够确认UE通过能力信令而发送的能够被同时“完全激活”的CC的数目。
例如,当能够被同时完全激活的(用于SCell)的CC的数目是N=1并且能够被同时部分激活的(用于SCell)的CC的数目是M=3时,假定eNB相对于以下CC(或频带)组合接收UE能力信令的情况。
{CC0,CC1(完全/部分),CC2(部分),CC3(部分)},
{CC0,CC1(部分),CC2(完全/部分),CC3(部分)},
{CC0,CC1(部分),CC2(部分),CC3(完全/部分)}
这里,UE可以使用作为PCell的CC0与eNB链接。{CC1,CC2,CC3}可以是SCell目标并且eNB可以向UE提供与用于{CC1,CC2,CC3}的SCell添加相关的RRC信令。另选地,eNB可以提供用于{CC1,CC2,CC3}列表的SCell添加相关RRC信令。
这里,UE能够用来识别{CC1,CC2,CC3}能够默认被“部分激活”的附加标识符或类似信息可以连同RRC信令一起提供。
另外地/另选地,N=1和进而{CC1,CC2,CC3}中的仅一个能够被“完全激活”(在特定时间段内),并且可以附加地提供UE能够用来识别仅一个CC能够被完全激活的附加标识符或类似信息。
在此情形下,从UE已经完成SCell添加相关RRC信令的接收时起,{CC1,CC2,CC3}可以默认处于停用状态。
此后,eNB可以针对每个CC(或针对特定CC群组)向UE发送与完全激活或部分激活相关的消息(S1902)。
当UE接收到与用于特定CC(或CC组)的完全激活相关的消息时,UE完全激活CC(或CC组)。
另一方面,当UE接收到与用于特定CC(或CC组)的部分激活相关的消息时,UE部分激活CC(或CC组)。
可以通过动态信令(例如,DCI)或MAC信令(例如,MAC控制元素(CE)命令)来递送完全激活相关消息或部分激活相关消息。
此外,可以通过PCell来发送完全激活相关消息或部分激活相关消息。
如上所述,从UE已经完成SCell添加相关RRC信令的接收时起,基于SCell添加相关消息而添加的Scell可以默认处于停用状态。在这种情况下,eNB可以针对每个CC(或用于特定CC组)向UE发送完全激活或部分激活相关消息。
另一方面,从UE已经完成SCell添加相关RRC信令的接收时起,基于SCell添加相关消息而添加的SCell可以默认处于“部分激活”状态。在这种情况下,eNB可以针对与完全激活目标对应的CC向UE发送完全激活相关消息。
此后,eNB可以针对每个CC(或用于特定CC组)向UE发送完全激活或部分激活相关消息(S1903)。
可以通过动态信令(例如,通过DCI作为停用信息或部分停用信息递送)或MAC信令(例如,MAC CE命令)来递送完全激活相关消息或部分激活相关消息。
另外,可以通过PCell来发送完全激活相关消息或部分激活相关消息。
1)首先,当UE接收到针对CCx的“部分停用”相关消息时,UE执行以下操作中的至少一个:
-UE使CCx退回到只接收到“部分激活”相关消息的状态。也就是说,UE部分激活CCx。
因此,UE针对CCx来仅执行相对于CCx已经被部分激活而没有被完全激活的状态的操作(例如,CSI报告和/或RRM测量/报告)。
-可以不针对部分激活CCx的操作来定义诸如“部分停用”相关消息这样的附加消息。
也就是说,如果在CCx处于完全激活状态的同时递送“部分激活”相关消息,则UE将“部分激活”相关消息识别为指示退回的消息并且基于该消息进行操作,该消息用于指示UE只执行相对于CCx已经被部分激活的状态的操作(例如,CSI报告和/或RRM测量/报告)。
2)如果UE接收到针对CCx的“完全停用”相关消息(或停用相关消息)时,UE执行以下操作中的至少一个:
-UE可以将该消息识别为CCx被完全停用,如同传统的SCell停用。
-可以不针对完全激活CCx的操作来定义诸如“完全停用”相关消息这样的附加消息。也就是说,对于该操作,可以递送传统的SCell停用相关消息。在这种情况下,UE可以完全停用CCx。
-当CCx当前处于部分激活状态或完全激活状态时,可以接收以上提到的“完全停用”相关消息或传统SCell停用相关消息。也就是说,当UE接收到针对CCx的“完全停用”相关消息或传统SCell停用相关消息时,UE可以独立于CCx状态而完全完全停用CC。
-另选地,用于只在部分激活状态下接收“完全停用”相关消息或传统SCell停用相关消息的过程可以被预定义或在UE中配置(例如,通过RRC消息)。也就是说,为了完全停用CCx,从完全停用状态退回到部分激活状态(例如,通过部分停用/激活相关消息)并随后在部分激活状态下完全停用CCx的过程可以被预定义或在UE中配置(例如,通过RRC消息)。
将描述UE针对“部分激活”状态或“完全激活”状态下的CC(或SCell)进行的操作。
A.对于“部分激活”状态下的CCx,UE可以执行以下操作中的至少一个。
这可对应于UE已经接收到针对(例如,在接收到SCell添加相关消息之后处于停用状态或完全激活状态的)CCx的“部分激活”相关消息的情况、UE已经接收到针对(例如,处于完全激活状态下的)CCx的“部分停用”相关状态的情况或者基于SCell添加相关消息而添加的SCell初始处于“部分激活”状态的情况。
1)UE通过配置用于CCx的CSI处理来测量CSI-RS(和CSI-IM),并且将与其关联设置的CSI报告相关操作初始化。
-周期CSI报告(P-CSI报告)
当UE在第n子帧中接收到“部分激活”相关消息(或SCell添加相关消息或“部分停用”相关消息)时,UE可以执行来自第(n+k)子帧的P-CSI报告。这里,可以在UE中附加地预定义或设置特定值k(例如,通过RRC消息)。
对于相对于针对P-CSI报告的CCx进行的CSI测量,可以设置以下将描述的附加“测量间隔”。
在本发明中,“测量间隔”是指相对于针对UE的操作的配置,以便对不同CC执行特定测量(例如,CSI测量和/或RRM测量)。也就是说,UE将接收器(或接收模块)的目标从特定激活CC切换成与测量目标对应的CC,并且针对测量间隔时间段执行测量,然后在测量间隔时间段期满之前将接收器切换成激活的CC。结果,激活的CC在测量间隔时间段期间经历服务中断。
测量间隔可以被设置为周期形式,并且关于测量间隔的起始点的信息可以被按照“动态测量间隔”的方式动态指示(例如,通过DCI或MSC CE),与以下的描述类似。
这里,可以通过PCell的上行链路资源来执行CSI测量结果的报告。
如上所述,测量间隔可以按周期方式(例如,周期和偏移)设置。
另选地,用于CSI测量的特定参考信号(例如,CSI-RS)的发送时间(或发送时间的定时)(例如,子帧)关联的测量间隔和诸如CCx中的CSI-IM和/或CSI报告时间这样的干扰测量资源(例如,子帧)的自动(或隐含)配置可以被预定义或在UE中配置(例如,通过RRC消息)。
例如,假定CSI-RS发送时间是t1[子帧],CSI-IM发送时间是t2[子帧],配置通过与CCx关联的上行链路资源(例如,PCell的上行链路资源)的报告,并且CSI报告时间是t3[子帧]。
这里,基于CSI-RS发送时间(或者在此之前和/或在此之后)将测量间隔自动地(或隐含地)设置成特定时间段可以被预定义或在UE中配置(例如,通过RRC消息)。
也就是说,测量间隔可以被自动地(或隐含地)配置成从t1-m1[子帧]到t1+m2[子帧]的时间段。例如,m1=m2=2。
也就是说,在考虑到UE切换并调谐至CCx所需的时间的情况下,时间m1(例如,m1=2)可以被预定义或在UE中配置(例如,通过RRC消息)。另外,在考虑到UE切换并调谐至前一CC所需的时间的情况下,时间m2(例如,m2=2)可以被预定义或在UE中配置(例如,通过RRC消息)。
换句话说,此时间可以是按照标准预定义的或者通过RRC信令在个体UE中配置的。
此外,UE可以通过特定能力信令将这些值附加地通知给eNB。在这种情况下,eNB可以将从UE接收到的值(即,m1和/或m2)设置于UE或者将改变后的值设置于UE。
如上所述,基于CSI-IM发送时间(或者在此之前和/或在此之后)将测量间隔自动地(或隐含地)配置成特定时间段可以被预定义或在UE中配置(例如,通过RRC消息)。
在以上提到的示例中,测量间隔可以被自动地(或隐含地)配置成从t2-m1[子帧]到t1+m2[子帧]的时间段。
另外,当配置通过与CCx关联的上行链路资源进行CSI报告时,基于CSI报告时间将测量间隔自动地(或隐含地)设置成预定(之前)时间段可以被预定义或在UE中配置(例如,通过RRC消息)。
在以上提到的示例中,测量间隔可以被自动地(或隐含地)配置成从t3-m1[子帧]到t3+m2[子帧]的时间段。
当在以上提到的条件下产生(或计算)的测量间隔时间段交叠时,获得时间段的并集以自动地(或隐含地)配置(或保持)更长的测量间隔时间段。
为了通过使测量间隔最小化而将用于激活小区(例如,PCell)的服务中断最小化,期望将资源发送时间(用于计算测量间隔的参考时间)对齐。例如,期望将参考时间t1和t2对齐。
另外,例如,诸如以上示例中的m1和m2这样的参数值可以被设置成用于参考时间t1、t2和t3的不同值。
-非周期CSI报告(A-CSI报告)
需要在与A-CSI触发相关的DCI被直接发送到CCx时被施加的与A-CSI触发相关的DCI字段配置和RRC参数设置可以与在从另一个CC(例如,PCell)发送与A-CSI触发相关的DCI时的字段配置和RRC参数设置分开配置。换句话说,对于部分激活状态下的PCell和SCell或者对于完全激活状态下的SCell和部分激活状态下的SCell,可以配置独立的A-CSI触发DCI字段并且可以设置A-CSI相关RRC参数。
相关配置信息可以之前被提供到UE或者连同对应部分激活相关消息被提供到UE。
作为当对应A-CSI触发通过DCI在第t子帧中发送时的UE操作,当在传统情况下CSI参考资源定时是第t+d1子帧(例如,在FDD中,d1=0)时,将第(t+d2)子帧识别为作为单独参考定时的CSI参考资源定时的新操作可以被预定义或在UE中配置(例如,通过RRC消息)。
例如,d2=1或d2=2。相比于发送A-CSI触发时将参考资源定时按d2子帧延迟到未来定时的原因被如下地发送。对于UE在CCx中进行的CSI测量,需要预定时间以设置特定的单独“测量间隔”并且将处于完全激活的CCy中的发送/接收RF链移至CCx并调谐至CCx,因为CCx处于部分激活状态。这里,在考虑到UE完成A-CSI触发DCI的解码的时间的情况下,值D2可以被预定义或在UE中配置(例如,通过RRC消息)。
在根据当前LTE/LTE-A标准的CSI参考资源的定义中,与“n–n_CQI_ref”对应的子帧定时按照以下方式被确定为根据针对特定条件而确定的值n_CQI_ref的时域中的参考资源。另外,将当假定参考资源中的PDSCH发送时没有超过10%的BLER(块错误率)的最大CQI和被假定获得CQI的RI和PMI一起作为CSI进行报告。
另外,A-CSI触发时间和A-CSI报告时间之间的间隙由于延迟会需要比传统间隔Xms(例如,X=4)宽。因此,替代X ms的X1ms(例如,X1=6或X1=8)可以在UE中被附加定义或者设置(例如,通过RRC消息)。
此外,可以新定义和应用A-CSI相关上行链路授权定时。例如,与当在第n子帧中发送上行链路授权时在第n+4子帧中发送上行链路信号以及eNB在FDD中在第n+8子帧中通过PHICH发送ACK/NACK的定时不同的定时(例如,6至8个子帧)可以被单独定义或在UE中设置(例如,通过RRC消息)。这里,将不同定时单独应用于(A-CSI)触发DCI和上行链路授权DCI可以被预定义或在UE中设置(例如,通过RRC消息)。例如,可以在上行链路授权DCI的情况下设置与4个子帧对应的定时,而可以在A-CSI触发DCI的情况下设置与6或8个子帧对应的定时。
为了进行该操作,可以与传统的“测量间隔”(用于没有支持完全/部分激活的小区的RRM测量的“测量间隔”)分开地在UE中预定义或设置用于CSI测量的“测量间隔”(例如,通过RRC消息)。另外,用于CSI测量的“测量间隔”可以与针对部分激活状态下的SCell或者在UE中配置的SCell的RRM测量的“测量间隔”相同地定义,或者与用于RRM测量的“测量间隔”分开地在UE中定义或设置(例如,通过RRC消息)。
更具体地,用于CSI测量的附加“测量间隔”可以不具有固定时间段,并且当触发用于部分激活的特定CCx的CSI测量的A-CSI报告时基于A-CSI报告触发定时(在此之后)将测量间隔自动地(或隐含地)设置成预定时间段可以被预定义或在UE中配置(例如,通过RRC消息)。
例如,当在第t子帧中触发A-CSI报告时,用于CSI测量的测量间隔可以基于触发时间被自动地(或隐含地)配置成从第t+t1子帧到第t+t2子帧的时间段。
换句话说,可以与特定A-CSI触发消息(例如,DCI)发送时间关联地隐含确定此附加“测量间隔”。例如,t1=1和t2=4。在这种情况下,UE在接收到A-CSI触发的子帧之后的总共四个子帧内中断CCy中的发送/接收,并且执行CCx中的CSI测量。另外,当在与CCx关联的上行链路资源中配置CSI报告时,UE使用上行链路资源来执行CSI报告。
-可以在独立于以上提到的P-CSI报告或A-CSI报告的情况下产生在特定“测量间隔(或窗口)”中不存在用于CSI测量的RS(例如,CSI-RS)或CSI-IM的情况(因为只有当CCA导致对应CC例如对应于LAA环境中的“信道空闲”时,eNB才可以执行发送)。在这种情况下,UE可以重复返回之前测量间隔(或窗口)的操作,将其中出现最近CSI测量RS(例如,CSI-RS)和/或CSI-IM的子帧视为参考资源定时并且导出CSI。
另外,为了防止过量返回之前时间(其会造成过量CSI老化),与特定最大有效时间段相关的值可以被预定义或在UE中配置(例如,通过RRC信令)。这里,有效时间值可以被确定为绝对时间单元的值(例如,单位为ms的值、单位为子帧的值等)。另选地,有效时间值可以被确定为从之前值到最近值的D测量窗口。
另选地,当UE没有接收到对应测量窗口中的有效CSI-RS(和/或CSI-IM)时,执行将该事实通知给eNB的操作的执行可以在UE中被定义或设置(例如,通过RRC信令)。
例如,传统OOR(超出范围)信令在CSI报告时间处的反馈可以在UE中被定义或配置(例如,通过RRC信令)。另选地,在除了CSI报告时间外的时间,与OOR分开定义的信令可以被递送到eNB。
用于“CSI-IM没有被接收到”的确定条件可以被定义为(例如,通过RRC信令)在UE中还未成功接收/检测到或设置其它相关信号(例如,前导码、RS等的条件)。例如,当eNB通过DCI向UE告知将在特定子帧中不发送信号时(例如,因为只有在CCA导致对应CC对应于LAA环境中的“信道空闲”时,eNB才可以执行发送),如果子帧对应于其中出现CSI-IM的子帧,则UE可以确定“还未接收到CSI-IM”。此外,当UE盲检测RS(例如,CRS)以检测LAA环境中的对应CC中的eNB所占据的初始子帧时,如果UE从中还未检测到RS的初始子帧对应于其中出现CSI-IM的子帧,则UE可以确定“还未接收到CSI-IM”。
另选地,由于网络能够识别到在对应测量窗口中还未发送RS或CSI-IM的事实,因此如果UE没有对测量结果执行过量平均,则eNB可以适宜地处理/校正UE所报告的CSI测量结果。为此,eNB可以设置D’,使得UE在从之前的测量窗口到最近的测量窗口的D’个测量窗口(例如,D’=1、D=5等)内执行求平均。
另选地,在与A-CSI触发关联的测量间隔的自动地(或隐含地)设置的相关操作中,当eNB根据与测量目标对应的CCx的CCA结果安全地占据信道时,发送用于CSI测量的RS(例如,CRI-RS)和CSI-IM,并且可以将A-CSI触发连同RS和CSI-IM一起发送到UE。因此,在A-CSI触发期间,不存在在测量窗口中不出现CSI-RS或CSI-IM的情况。在这种情况下,以上提到的另外提出的操作可以被限制地只应用于与周期CSI报告相关的CSI测量操作。
-可以通过用于指示设置的附加动态指示(例如,不同的DCI或DCI字段)将本发明中提出的与附加测量窗口相关的配置用信号发送到UE(通过经由信令之前指定或设置的未经授权频带中的CC)。
这里,如果设计出于此目的附加DCI(或附加DCI字段),则例如即使当附加DCI(或附加DCI字段)所指示的特定CCx当前没有被(完全)激活时UE也进行的附加DCI监测可以在UE中被定义或设置(例如,通过RRC信令)。这里,CCx可以是部分激活或停用的CC或者没有通过载波选择而选择的CC,如在以上提到的示例中一样。
这些操作可以被应用于P-CSI和A-CSI相关测量窗口的设置。更典型地,这些操作可以被限于用信号发送基于A-CSI触发的CSI测量有效窗口(即,CSI测量平均时间段)的目的。
2)UE根据预定义或在UE中设置的操作规则来将特定RRM测量和报告(例如,频率间RSRP和RSRQ)初始化。
也就是说,UE可以独立于针对CCx的RRM测量和报告具有频率间形式或频率内形式而基于当前标准中定义的RRC配置来分别执行RRM测量和报告。
然而,对于应用“部分激活”状态的特定CCx,“部分激活”相关消息被识别为触发特定频率内/频率间RRM测量和报告操作的开始,因此UE可以执行与其相关的预定操作。
这里,RRM测量结果报告可以在与CCx关联的上行链路资源(例如,PCell的上行链路资源)上执行。
如上所述,根据本发明的实施方式,在部分激活的CC中执行CSI测量和报告。虽然在部分激活的CC中没有发送数据,但是在CC中执行CSI测量和报告,因此eNB可以获取关于CC的信道状态信息并且使用所述信道状态信息来确定是否要完全激活CC。另外,由于eNB在完全激活CC时得知信道状态信息,因此eNB可以确定用于执行有效的数据发送和接收的合适的调制与编码方案(MCS)。
B.UE可以针对“完全激活”状态下的CCx执行以下操作中的至少一个。
这对应于UE接收相对于CCx的“完全激活”相关消息的情况。
可以激活诸如相对于对应CC的CSI报告和特定RRM测量/报告、在当与CC关联的UL频带时在该UL频带中的PDSCH的下行链路接收和/或上行链路发送这样的能在传统激活的SCell中执行的所有功能。此外,可以添加新的增强操作。
已经接收到针对其的“完全激活”相关消息的CCx应该是已经被“部分激活”的CC的限制条件可以在UE中被定义或配置。在这种情况下,当针对还未被“部分激活”的CC接收到“完全激活”相关图像时,UE可以将“完全激活”消息是无效的事实视为错误情况。
另选地,“完全激活”相关消息可以被定义为即使当对应CCx还未在UE中被“部分激活”或者配置时也能够被递送。在这种情况下,UE能够识别出可以针对已经接收到针对其的“完全激活”相关消息的CC来执行与完全激活对应的操作以及与部分激活对应的操作。
当使用上述操作时,可以产生作为以上提到的低成本UE的示例性操作的以下操作。
-假定CC0像PCell一样操作并且UE已经基于能力信令(M=3)针对{CC1,CC2,CC3}从eNB接收到SCell添加相关RRC信令。另外,假定{CC1,CC2,CC3}全部都可以处于部分激活状态,并且通过SCell添加相关RRC信令来递送指示{CC1,CC2,CC3}中的仅一个(N=1)能够被完全激活(在特定时间段中)的信息。此外,假定{CC1,CC2,CC3}在添加SCell时被初始地停用。
a)随后,UE针对CC1和CC3从eNB接收“部分激活”消息。也就是说,CC1和CC3被切换至部分激活状态,但是CC2保持停用状态。
每个CC的激活/停用状态如下。
<CC1:部分,CC2:停用,CC3:部分>
在这种情况下,UE可以针对部分激活的CC1和CC3执行CSI报告。
这里,当A-CSI触发被递送到UE时,UE在以上提到的附加测量间隔中针对CC1和CC3执行CSI测量(也就是说,在测量间隔中将接收器(或接收模块的目标)从与PCell对应的CC0切换成CC1或CC3并且执行CSI测量),并且根据定义的规则来执行CSI报告。另外,如上所述,UE可以在针对P-CSI报告的附加测量间隔中针对CC1和CC3执行CSI测量。
此外,如上所述,UE可以针对CC1和CC3执行RRM测量。
b)此后,UE从eNB接收针对CC3的“完全激活”相关消息。也就是说,CC1处于部分激活状态并且CC2仍然保持停用状态,但是CC3被切换成完全激活状态。
每个CC的激活/停用状态如下。
<CC1:部分,CC2:停用,CC3:完全>
因此,通过CC3正常地初始化附加SCell发送/接收,因此UE可以不仅从PCell而且从CC3接收数据,以获得吞吐量和能力提高效果。
另外,UE针对CC1周期性地或非周期性地附加执行CSI报告。间歇性地保持CSI测量和报告操作,因为可以基于信道感测结果的统计(特别地,在LAA环境中)来频繁地改变特定可用的CC,并且CC1以高速率处于可用状态。
c)随后,当因为CCA的结果是CC3因另一通信装置(例如,Wi-Fi系统的无线通信装置)而频繁忙碌(或占据),所以eNB旨在执行UE快速“SCell切换”成CC1时,eNB将用于将CC1切换成完全激活状态的消息连同用于将CC3切换成部分激活状态的消息(例如,部分停用/激活消息)一起发送到UE,并且UE接收所述消息。也就是说,CC1切换成完全激活状态,CC2仍然保持停用状态并且CC3切换成部分激活状态。
每个CC的激活/停用状态如下。
<CC1:完全,CC2:停用,CC3:部分>
因此,通过CC1替代CC3正常地初始化SCell发送/接收,并且UE针对CC3仅执行(周期的/非周期的)CSI测量和报告操作。
另外,如上所述,UE可以针对CC3执行RRM测量。
d)然后,当CC3的可用性减小时,eNB发送用于停用CC3的消息并且UE接收该消息。因此,仅处于完全激活状态的CC1被用于发送和接收。也就是说,CC1处于完全激活状态并且CC2和CC3切换成停用状态。
<CC1:完全,CC2:停用,CC3:停用>
-当eNB出于诸如UE移动到其它区域这样的各种原因而将SCell添加相关RRC信令重新递送到UE时,会出现RRC重新配置。在这种情况下,可以基于更新后的RRC配置来重新应用与以上提到的操作相似的操作。
虽然CC0是PCell并且{CC1,CC2,CC3}对应于以上描述中的SCell目标的频带列表,但是本发明不限于此。
也就是说,由一个或更多个CC构成的“CC组”可以被配置,每个组中的一些CC可以被部分激活,并且能够被部分激活的CC当中的仅一些CC能够被完全激活。
例如,除了作为与附加SCell目标对应的频带列表的上述示例之外,可以应用{CC4,CC5,CC6}作为附加对(或CC组)。
换句话说,UE可以将指示{CC1,CC2,CC3}中的仅一个能够被完全激活的能力信令作为N=1递送到eNB,并且同时将指示{CC4,CC5,CC6}中的仅一个能够被完全激活的能力信令作为N=1递送到eNB。
在这种情况下,{CC1,CC2,CC3}中的一些可以被部分激活,并且例如CC2能够被完全激活,并且同时地,{CC4,CC5,CC6}中的一些可以被部分激活并且例如CC4能够被完全激活。这意指UE之前递送表示三个RF链能够通过能力信令被同时应用的信息。在以上示例中,可以在CC0、CC2和CC4被同时完全激活的状态下执行正常的SCell发送/接收。
也就是说,如上所述,可以形成诸如{CC1,CC2,CC3}或{CC4,CC5,CC6}这样的特定“CC组”,该CC组中的一些CC能够被部分激活,并且部分激活的CC中的仅一些(例如,N=1)能够被完全激活。
根据用于应用本发明的关键提议的另一个实施方式,在没有按新形式应用以上提到的UE能力信令的情况下,即,在没有特别添加/修改的CA能力信令的情况下,UE能够按照以下方式支持快速载波切换。也就是说,可以不执行图18的过程。换句话说,即使当UE使用与传统CA方法相似的能力信令方法来操作(诸如,将与传统CA组合能力相同的CA组合能力发送到eNB)时,可以提供以下实施方式。
为了方便描述,将以特定频带(或频带组合)中能够具有两个CC的CA的UE的情况(比如,UE将关于CC1和CC2的频带组合的能力信令发送到eNB的情况)为例进行说明。
1)eNB可以针对UE设置CC1和CC2的CA。也就是说,如UE发送的能力信令所指示的,CA可以只针对CC1和CC2进行设置。
然而,可以之前针对CC3和CC4设置CSI测量和/或报告时间段,或者可以执行非周期CSI触发。
如上所述,eNB可以通过RRC信令(例如,SCell添加相关RRC消息、附加RRC信令等)针对CC3和CC4设置CSI测量和与CSI测量相关的RS(例如,CSI-RS)和/或报告时间段。在这种情况下,可以如上所述地设置用于P-CSI测量和报告的测量间隔。
另外,可以之前通过RRC信令来配置诸如与A-CSI报告相关的RRC参数这样的相关信息,使得eNB可以执行非周期CSI触发。这里,A-CSI触发可以在设定的CC(即,CC1或CC2)中发送。此外,即使在这种情况下,也可以如上所述地设置用于A-CSI测量和报告的测量间隔。
UE可以在相对于CC3或CC4的CSI测量和/或报告必需的时间段内中断CC1和CC2中的接收,并且在CC3或CC4中执行CSI测量和/或报告。另选地,eNB可以在针对CC3和CC4的CSI测量和/或报告时间停用CC1和CC2,并且在针对CC3和CC4的CSI测量和/或报告终止的时间重新激活CC1和CC2。
此外,即使在这种情况下,也可以如上所述地设置与周期或非周期CSI测量相关的测量间隔。
2)这种方法确保了“对于UE而言,将可以被同时激活的CC的数目限于B(≤设定CC的数目)”。也就是说,eNB可以在针对A个CC设置CA时,向UE发送指示在特定时间段中激活最多为B个CC的指示。这里,可以基于UE报告的并且被eNB用信号发送到UE的特定能力信令来确定B。
例如,eNB针对UE配置CC1、CC2、CC3和CC4的CA(在这种情况下,A=4)。这里,eNB可以确保针对UE的特定时间段(或特定时间)中的最多为B个的CC的层1(L1)/层2(L2)激活。这是基于UE报告的特定UE能力确定的,或者是通过eNB确定的并且通过RRC信令用信号发送到UE。
UE只针对B个激活的CC执行CSI测量和报告。
另选地,可以针对已经针对其发送激活相关消息的特定CC,立即初始化预定的特定CSI报告。例如,当特定CC被激活时,UE能够识别将通过出于此目的而预先定义/配置的特定上行链路资源(例如,PUSCH资源)自动递送A-CSI触发。这是因为eNB可以不具有相对于对应CC的除了RRM报告信息外的CSI报告相关信息。
这里,UE可以针对甚至CA小区(例如,CC3和CC4)也将下行链路同步和/或信道跟踪保持于预定水平,超出由此发送的能力。另选地,将下行链路同步和/或信道跟踪保持于特定水平或更高可以是预定的,因为即使CC当前被停用时,CC也可以通过快速载波切换在任何时间被激活,如根据本发明的操作中一样。
这里,每个UE可以针对其保持下行链路同步和/或信道跟踪的CC的最大数目“L”(例如,在这个示例中,L=A,L=A=4)能够通过特定能力信令或附加信令用信号发送到eNB。
另选地,用于此操作的多个UE类别可以是预定的。另外,在本发明中提出的各种能力相关参数(例如,N、M等)以及值L可以是针对每个UE类别而预定的。在这种情况下,UE可以用信号向eNB发送预定UE类别当中的UE所属的UE类别。
此外,可以根据特定标准来固定与值L相关的参数。例如,根据该标准实现的所有UE根据值L而需要具有以上提到的下行链路同步和/或信道跟踪能力,并且个体UE可以具有操纵不同数目的CC的能力。
另外,虽然已经针对其配置CA但是已经被停用的CC(例如,CC3和CC4)以及针对所述CC不执行RRM(例如,频率间/频率内)测量和报告的操作可以在UE中被定义或配置(例如,通过RRC信令)。
在本发明中提出的另一个实施方式中,为了进行快速载波切换,针对特定CC(例如,在以上示例中,CC1、CC2和CC3)的公共周期CSI报告模式和/或报告资源的设置可以被预定义或在UE中配置(例如,通过RRC信令)。当CC当中的特定CC被部分激活或完全激活时,UE可以被配置成通过设定的报告资源来执行CSI反馈。
因此,可以使用公共报告资源,因此减少了网络开销。当操作UE以只报告特定CC中的一个时,能够在通过以上提到的设置来增加资源利用效率的同时应用快速载波切换。
可应用本发明的实施方式的一般设备
图20例示了根据本发明的实施方式的无线通信设备的框图。
参照图20,无线通信系统包括eNB 2010和位于eNB 2010的区域内的多个UE 2020。
eNB 2010包括处理器2011、存储器2012和射频(RF)单元2013。处理器2011实现在图1至图19中提出的功能、处理和/或方法。无线接口协议的层可以由处理器2011实现。存储器2012连接到处理器2011并且存储用于驱动处理器2011的各条信息。RF单元2013连接到处理器2011,并且发送和/或接收无线电信号。
UE 2020包括处理器2021、存储器2022和RF单元2023。处理器2021实现在图1至图19中提出的功能、处理和/或方法。无线接口协议的层可以由处理器2021实现。存储器2022连接到处理器2021并且存储用于驱动处理器2021的各条信息。RF单元2023连接到处理器2021,并且发送和/或接收无线电信号。
存储器2012和2022可以在处理器2011、2021的内部或外部并且可以通过各种熟知装置连接到处理器2011、2021。此外,eNB 2010和/或UE 2020可以具有单个天线或多个天线。
在以上提到的实施方式中,本发明的元件和特征已经按照特定方式进行了组合。这些元件或特征中的每一个可以被认为是可选的,除非另外明确描述。这些元件或特征中的每一个可以按不与其它元件或特征组合这样的方式来实现。此外,这些元件和/或特征中的一些可以被组合,以形成本发明的实施方式。可以改变结合本发明的实施方式中描述的操作的顺序。实施方式的一些元件或特征可以被包含在另一个实施方式中,或者可以被另一个实施方式的对应元件或特征替换。显而易见,实施方式可以通过将在权利要求书中没有明确引用关系的权利要求来构造或者可以在提交申请之后通过修改被包括作为新权利要求。
本发明的实施方式可以通过各种方式(例如,硬件、固件、软件及其组合)来实现。在由硬件实现的情况下,本发明的实施方式可以使用一个或更多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理器件(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器和/或微处理器来实现。
在由固件或软件实现的情况下,本发明的实施方式可以按照执行以上提到的功能或操作的模块、过程或功能的形式来实现。软件代码可以被存储在存储器中,并且由处理器驱动。存储器可以位于处理器的内部或外部,并且可以利用各种已知手段与处理器交换数据。
本领域的技术人员显而易见的是,可以在不脱离本发明的必要特性的情况下按照其它特定形式来实现本发明。因此从,具体实施方式不应该被理解为所有方面都是限制性的,而是应该被理解为是例示性的。本发明的范围应该通过对所附权利要求的合理分析来确定,并且在本发明的等同范围内的所有修改被包括在本发明的范围内。
工业实用性
虽然已经描述了其中根据本发明的无线通信系统中的小区激活/停用方法应用于3GPP LTE/LTE-A的示例,但是本发明适用于除了3GPP LTE/LTE-A之外的各种无线通信系统。
权利要求书(按照条约第19条的修改)
1.一种在支持载波聚合的无线通信系统中由UE激活/停用辅小区SCell的方法,该方法包括以下步骤:
从eNB接收SCell添加相关消息;
当从所述eNB接收到针对根据所述SCell添加相关消息而添加的多个SCell当中的第一SCell的部分激活相关消息时,部分激活一个或更多个第一SCell;以及
当从所述eNB接收到针对根据所述SCell添加相关消息而添加的所述多个SCell当中的第二SCell的完全激活相关消息时,完全激活一个或更多个第二SCell,
其中,正常SCell操作被应用于所述第二SCell,并且所述正常SCell操作中的仅一些被应用于所述第一SCell。
2.根据权利要求1所述的方法,其中,向所述第一SCell应用信道状态信息CSI测量和/或无线电资源管理RRM测量。
3.根据权利要求2所述的方法,其中,配置用于所述CSI测量的测量间隔。
4.根据权利要求3所述的方法,其中,与用于所述CSI测量的参考信号的子帧、CSI干扰测量CSI-IM资源的子帧和/或CSI报告子帧关联地隐含配置用于周期CSI测量的测量间隔。
5.根据权利要求3所述的方法,其中,与发送包括用于非周期CSI测量的触发的下行链路控制信息DCI的子帧关联地隐含配置用于非周期CSI测量的测量间隔。
6.根据权利要求3所述的方法,其中,当所述测量间隔不包括用于所述CSI测量的参考信号或CSI-IM资源时,使用用于先前CSI测量的参考信号的子帧和CSI-IM资源的子帧作为用于所述CSI测量的参考资源。
7.根据权利要求4所述的方法,其中,当所述测量间隔不包括用于所述CSI测量的参考信号或CSI-IM资源时,在执行CSI报告时向所述eNB发送超出范围OOR。
8.根据权利要求1所述的方法,其中,所述多个SCell在被添加时被初始停用或部分激活。
9.根据权利要求8所述的方法,其中,在接收到针对所述第二SCell的所述完全激活相关消息之前,已经部分激活所述第二SCell。
10.根据权利要求1所述的方法,该方法还包括以下步骤:当从所述eNB接收到针对所述第二SCell的部分激活相关消息或部分停用相关消息时,部分激活所述第二SCell。
11.根据权利要求1所述的方法,该方法还包括以下步骤:当从所述eNB接收到针对所述第一SCell或所述第二SCell的SCell停用或完全停用相关消息时,停用所述第一SCell或所述第二SCell。
12.根据权利要求1所述的方法,该方法还包括以下步骤:向所述eNB发送能力相关消息,所述能力相关消息包括能够被所述UE同时部分激活的分量载波CC的数目、所述CC的列表以及所述列表中的能够被完全激活的CC的数目。
13.根据权利要求1所述的方法,其中,所述第二SCell被包括在所述第一SCell中。
14.根据权利要求1所述的方法,其中,针对所述多个SCell中的一些,配置公共周期CSI报告模式和/或公共报告资源。
15.一种在支持载波聚合的无线通信系统中激活/停用辅小区SCell的UE,该UE包括:
射频RF单元,该RF单元用于发送和接收无线电信号;以及
处理器,该处理器用于控制所述RF单元,
其中,所述处理器被配置为:
从eNB接收SCell添加相关消息;
当从所述eNB接收到针对根据所述SCell添加相关消息而添加的多个SCell当中的第一SCell的部分激活相关消息时,部分激活一个或更多个第一SCell;以及
当从所述eNB接收到针对根据所述SCell添加相关消息而添加的所述多个SCell当中的第二SCell的完全激活相关消息时,完全激活一个或更多个第二SCell,
其中,正常SCell操作被应用于所述第二SCell,并且所述正常SCell操作中的仅一些被应用于所述第一SCell。
说明或声明(按照条约第19条的修改)
申请人已经在国际专利申请PCT/KR2016/000588的权利要求1和15中将“S”(韩文文字)和“S”(韩文文字)修改为“SCell”。这些修改是在提交的原始说明书的第[0510]段和第[0519]段(对应于中文说明书的第56页第2-5行和第22-24行)的范围内的合法更正。

Claims (15)

1.一种在支持载波聚合的无线通信系统中由UE激活/停用辅小区SCell的方法,该方法包括以下步骤:
从eNB接收SCell添加相关消息;
当从所述eNB接收到针对根据所述SCell添加相关消息而添加的多个SCell当中的第一SCell的部分激活相关消息时,部分激活一个或更多个第一SCell;以及
当从所述eNB接收到针对根据所述SCell添加相关消息而添加的所述多个SCell当中的第二SCell的完全激活相关消息时,完全激活一个或更多个第二SCell,
其中,正常SCell操作被应用于所述第二SCell,并且所述正常SCell操作中的仅一些被应用于所述第一SCell。
2.根据权利要求1所述的方法,其中,向所述第一SCell应用信道状态信息CSI测量和/或无线电资源管理RRM测量。
3.根据权利要求2所述的方法,其中,配置用于所述CSI测量的测量间隔。
4.根据权利要求3所述的方法,其中,与用于所述CSI测量的参考信号的子帧、CSI干扰测量CSI-IM资源的子帧和/或CSI报告子帧关联地隐含配置用于周期CSI测量的测量间隔。
5.根据权利要求3所述的方法,其中,与发送包括用于非周期CSI测量的触发的下行链路控制信息DCI的子帧关联地隐含配置用于非周期CSI测量的测量间隔。
6.根据权利要求3所述的方法,其中,当所述测量间隔不包括用于所述CSI测量的参考信号或CSI-IM资源时,使用用于先前CSI测量的参考信号的子帧和CSI-IM资源的子帧作为用于所述CSI测量的参考资源。
7.根据权利要求4所述的方法,其中,当所述测量间隔不包括用于所述CSI测量的参考信号或CSI-IM资源时,在执行CSI报告时向所述eNB发送超出范围OOR。
8.根据权利要求1所述的方法,其中,所述多个SCell在被添加时被初始停用或部分激活。
9.根据权利要求8所述的方法,其中,在接收到针对所述第二SCell的所述完全激活相关消息之前,已经部分激活所述第二SCell。
10.根据权利要求1所述的方法,该方法还包括以下步骤:当从所述eNB接收到针对所述第二SCell的部分激活相关消息或部分停用相关消息时,部分激活所述第二SCell。
11.根据权利要求1所述的方法,该方法还包括以下步骤:当从所述eNB接收到针对所述第一SCell或所述第二SCell的SCell停用或完全停用相关消息时,停用所述第一SCell或所述第二SCell。
12.根据权利要求1所述的方法,该方法还包括以下步骤:向所述eNB发送能力相关消息,所述能力相关消息包括能够被所述UE同时部分激活的分量载波CC的数目、所述CC的列表以及所述列表中的能够被完全激活的CC的数目。
13.根据权利要求1所述的方法,其中,所述第二SCell被包括在所述第一SCell中。
14.根据权利要求1所述的方法,其中,针对所述多个SCell中的一些,配置公共周期CSI报告模式和/或公共报告资源。
15.一种在支持载波聚合的无线通信系统中激活/停用辅小区SCell的UE,该UE包括:
射频RF单元,该RF单元用于发送和接收无线电信号;以及
处理器,该处理器用于控制所述RF单元,
其中,所述处理器被配置为:
从eNB接收SCell添加相关消息;
当从所述eNB接收到针对根据所述SCell添加相关消息而添加的多个SCell当中的第一SCell的部分激活相关消息时,部分激活一个或更多个第一SCell;以及
当从所述eNB接收到针对根据所述SCell添加相关消息而添加的所述多个SCell当中的第二SCell的完全激活相关消息时,完全激活一个或更多个第二SCell,
其中,正常SCell操作被应用于所述第二SCell,并且所述正常SCell操作中的仅一些被应用于所述第一SCell。
CN201680006371.8A 2015-01-20 2016-01-20 用于在无线通信系统中激活/停用小区的方法及其装置 Active CN107211296B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562105723P 2015-01-20 2015-01-20
US62/105,723 2015-01-20
PCT/KR2016/000588 WO2016117928A1 (ko) 2015-01-20 2016-01-20 무선 통신 시스템에서 셀 활성화/비활성화 방법 및 이를 위한 장치

Publications (2)

Publication Number Publication Date
CN107211296A true CN107211296A (zh) 2017-09-26
CN107211296B CN107211296B (zh) 2020-11-03

Family

ID=56417389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680006371.8A Active CN107211296B (zh) 2015-01-20 2016-01-20 用于在无线通信系统中激活/停用小区的方法及其装置

Country Status (4)

Country Link
US (1) US10455635B2 (zh)
KR (1) KR102543750B1 (zh)
CN (1) CN107211296B (zh)
WO (1) WO2016117928A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062616A1 (zh) * 2017-09-29 2019-04-04 电信科学技术研究院有限公司 一种终端能力控制方法、终端及基站
CN109644352A (zh) * 2017-12-26 2019-04-16 Oppo广东移动通信有限公司 激活与去激活辅小区的方法和终端设备
CN109802776A (zh) * 2017-11-16 2019-05-24 维沃移动通信有限公司 一种模糊期消除的方法、终端设备及网络设备
WO2019134619A1 (zh) * 2018-01-04 2019-07-11 维沃移动通信有限公司 状态处理方法、终端和基站
CN110167163A (zh) * 2018-02-14 2019-08-23 维沃移动通信有限公司 参考信号发送和接收方法及装置
CN110475364A (zh) * 2018-05-09 2019-11-19 维沃移动通信有限公司 一种非周期跟踪参考信号的接收方法及终端
CN111418169A (zh) * 2017-11-17 2020-07-14 高通股份有限公司 在lte载波聚合的新scell状态下报告非周期性cqi的方法和装置
WO2020143558A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 信道测量方法和装置
CN111512665A (zh) * 2017-11-10 2020-08-07 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111771402A (zh) * 2018-06-29 2020-10-13 华为技术有限公司 通信方法及装置
CN112055374A (zh) * 2019-06-06 2020-12-08 华为技术有限公司 用于激活辅小区的方法和装置
CN112088518A (zh) * 2018-05-11 2020-12-15 高通股份有限公司 具有多个发送接收点的超可靠低延时通信
CN113489580A (zh) * 2021-07-30 2021-10-08 中国联合网络通信集团有限公司 一种载波聚合辅小区的配置方法和装置
CN113826412A (zh) * 2019-05-14 2021-12-21 上海诺基亚贝尔股份有限公司 辅小区的激活
US11362707B2 (en) 2019-01-11 2022-06-14 Huawei Technologies Co., Ltd. Precoding vector indicating and determining method and communications apparatus
CN114930879A (zh) * 2020-01-14 2022-08-19 华为技术有限公司 一种多播业务传输方法及装置

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111066B2 (en) * 2015-01-28 2018-10-23 Hfi Innovation Inc. Methods to support measurements for user equipment
KR101987525B1 (ko) * 2015-03-09 2019-06-12 주식회사 케이티 채널상태정보 전송 방법 및 그 장치
US10123348B2 (en) 2015-04-01 2018-11-06 Qualcomm Incorporated Enhanced carrier aggregation activation and scheduling request procedures
JP6890093B2 (ja) * 2015-04-09 2021-06-18 アップル インコーポレイテッドApple Inc. キャリアアグリゲーションの測定ギャップのためのユーザ装置の無線周波数及び帯域能力
WO2017190273A1 (en) * 2016-05-03 2017-11-09 Qualcomm Incorporated Dynamic csi-rs transmission for enhanced fd-mimo
US10608856B2 (en) * 2016-06-16 2020-03-31 Samsung Electronics Co., Ltd. Transmission of reference signals in a communication system
JP7157512B2 (ja) * 2016-06-20 2022-10-20 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
JP6718102B2 (ja) * 2016-08-10 2020-07-08 京セラ株式会社 無線端末
US10009080B2 (en) * 2016-10-14 2018-06-26 Qualcomm Incorporated Reference signal measurements
CN108023629A (zh) * 2016-11-03 2018-05-11 株式会社Ntt都科摩 波束确定方法、下行传输解调方法、用户设备和基站
KR102074790B1 (ko) 2016-12-08 2020-02-10 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) Csi-rs에 대해 사용되는 컴포넌트 조합의 획득 및 표시
US10869332B2 (en) * 2017-07-12 2020-12-15 Qualcomm Incorporated Transmission scheme for multiple component carriers in adjacent subframes
CN109391986B (zh) * 2017-08-11 2021-10-01 华为技术有限公司 一种辅小区激活方法、接入网设备、通信装置以及系统
US10945280B2 (en) * 2017-09-08 2021-03-09 Sharp Kabushiki Kaisha User equipments, base stations and methods for uplink transmission without grant
WO2019047186A1 (zh) * 2017-09-08 2019-03-14 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
WO2019054749A1 (ko) * 2017-09-12 2019-03-21 엘지전자 주식회사 무선 통신 시스템에서 csi-rs에 기초하여 측정을 수행하는 방법 및 이를 위한 장치
TWI679907B (zh) * 2017-09-20 2019-12-11 華碩電腦股份有限公司 無線通訊系統中波束決定的方法和設備
US10674498B2 (en) 2017-10-12 2020-06-02 Qualcomm Incorporated Accelerated cell activation in wireless communication
US11025372B2 (en) * 2017-10-26 2021-06-01 Qualcomm Incorporated Semi-persistent scheduling management in new radio
CN109756295B (zh) * 2017-11-02 2024-04-12 华为技术有限公司 一种通信方法及装置
EP3718334A4 (en) * 2018-01-05 2021-08-25 Samsung Electronics Co., Ltd. SECONDARY CELL BEAM RECOVERY APPARATUS AND METHOD
EP3745792B1 (en) * 2018-02-13 2023-12-13 Huawei Technologies Co., Ltd. Communication method and device
EP3745765A4 (en) 2018-02-13 2021-01-13 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
WO2019158811A1 (en) * 2018-02-15 2019-08-22 Nokia Technologies Oy Methods and apparatuses for faster radio frequency activation
WO2019212247A1 (en) * 2018-05-04 2019-11-07 Lg Electronics Inc. Method and apparatus for enhancing measurement rule on unlicensed frequency in wireless communication system
CN110621022A (zh) * 2018-06-19 2019-12-27 维沃移动通信有限公司 一种资源指示方法、装置及系统
US11196512B2 (en) * 2018-06-29 2021-12-07 Qualcomm Incorporated Resolving decodability for subsequent transmissions whose throughput exceeds a threshold
WO2020067811A1 (en) * 2018-09-27 2020-04-02 Samsung Electronics Co., Ltd. An apparatus and a method for determining activation state of secondary cell and user equipment in wireless communication system
CN111756497B (zh) * 2019-03-29 2023-06-23 华为技术有限公司 通信方法及装置
AU2019438908A1 (en) * 2019-03-29 2021-09-30 Ntt Docomo, Inc. User device and communication method
US11546090B2 (en) * 2019-05-02 2023-01-03 Ofinno, Llc Hybrid automatic repeat request process
US20210013941A1 (en) * 2019-07-09 2021-01-14 Qualcomm Incorporated Channel state information (csi) for unlicensed spectrum
US11463227B2 (en) * 2019-08-16 2022-10-04 Mediatek Inc. Activated secondary cells transition between dormancy behavior and active behavior in 5G NR system
EP4027687A4 (en) * 2019-09-26 2022-10-05 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS FOR SECONDARY CELL ACTIVATION
US11405888B2 (en) * 2019-10-09 2022-08-02 Qualcomm Incorporated Reporting enhancements for positioning
US20210153116A1 (en) * 2019-11-18 2021-05-20 Qualcomm Incorporated Configuration for secondary cell dormancy indications
WO2021196149A1 (en) * 2020-04-03 2021-10-07 Qualcomm Incorporated Handling mac-ce update for non-activated cells
CN113595696B (zh) * 2020-04-30 2022-12-27 华为技术有限公司 通信方法、装置及系统
US11777678B2 (en) * 2020-09-17 2023-10-03 Qualcomm Incorporated Techniques for serving cell activation and deactivation using reference signals
US11910239B1 (en) * 2020-12-18 2024-02-20 Sprint Spectrum Lp Assigning component carriers for relay nodes
US11902951B2 (en) * 2021-09-30 2024-02-13 Qualcomm Incorporated Optimized component carrier activation and deactivation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201911A1 (en) * 2012-02-07 2013-08-08 Telefonaktiebolaget L M Ericsson (Publ) Network Node, User Equipment and Methods Therein for Adjusting the Transmit Timing of Uplink Transmissions
CN103299565A (zh) * 2011-01-11 2013-09-11 三星电子株式会社 支持载波聚合的移动通信系统的副载波激活/去激活方法和装置
CN103493412A (zh) * 2011-02-21 2014-01-01 三星电子株式会社 使用载波聚合的时分双工移动通信系统中激活或停用副载波的方法和装置
CN103503535A (zh) * 2011-04-29 2014-01-08 诺基亚西门子网络公司 用于去激活用户设备的主小区和辅小区之一的方法和设备
CN103597757A (zh) * 2011-04-05 2014-02-19 三星电子株式会社 载波聚合系统中用于载波激活的方法和设备
CN103634910A (zh) * 2012-08-29 2014-03-12 中兴通讯股份有限公司 删除分量载波的方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201967138U (zh) * 2009-11-19 2011-09-07 交互数字专利控股公司 无线发射/接收单元
ES2788301T3 (es) * 2010-11-17 2020-10-21 Lg Electronics Inc Método y dispositivo para notificar aperiódicamente información de estado de canal en un sistema de conexión inalámbrica
WO2012173430A2 (ko) * 2011-06-15 2012-12-20 엘지전자 주식회사 무선 접속 시스템에서 신호 전송 방법 및 이를 위한 장치
KR20140132336A (ko) * 2012-01-16 2014-11-17 엘지전자 주식회사 무선 통신 시스템에서 복조참조신호 전송 방법 및 장치
WO2013147680A2 (en) 2012-03-26 2013-10-03 Telefonaktiebolaget L M Ericsson (Publ) Handling band combinations with reduced performance in carrier aggregation
EP3402279B1 (en) * 2012-10-02 2020-06-24 LG Electronics Inc. Method and apparatus for supporting a carrier aggregation group in a wireless communication system
US9936527B2 (en) 2013-01-16 2018-04-03 Lg Electronics Inc. Method and apparatus for configuring cell in wireless communication system
US10141983B2 (en) * 2014-05-08 2018-11-27 Samsung Electronics Co., Ltd. Method for activating pSCell and SCell in mobile communication system supporting dual connectivity
CN105284148B (zh) * 2014-05-19 2020-02-21 华为技术有限公司 一种基站设备、用户设备及信道状态信息的上报方法
US10028279B2 (en) * 2014-12-19 2018-07-17 Futurewei Technologies, Inc. Communications in a wireless network for carrier selection and switching
ES2798602T3 (es) * 2015-01-29 2020-12-11 Ntt Docomo Inc Dispositivo de usuario y método de medición de célula

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299565A (zh) * 2011-01-11 2013-09-11 三星电子株式会社 支持载波聚合的移动通信系统的副载波激活/去激活方法和装置
CN103493412A (zh) * 2011-02-21 2014-01-01 三星电子株式会社 使用载波聚合的时分双工移动通信系统中激活或停用副载波的方法和装置
CN103597757A (zh) * 2011-04-05 2014-02-19 三星电子株式会社 载波聚合系统中用于载波激活的方法和设备
CN103503535A (zh) * 2011-04-29 2014-01-08 诺基亚西门子网络公司 用于去激活用户设备的主小区和辅小区之一的方法和设备
US20130201911A1 (en) * 2012-02-07 2013-08-08 Telefonaktiebolaget L M Ericsson (Publ) Network Node, User Equipment and Methods Therein for Adjusting the Transmit Timing of Uplink Transmissions
CN103634910A (zh) * 2012-08-29 2014-03-12 中兴通讯股份有限公司 删除分量载波的方法及装置

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587757A (zh) * 2017-09-29 2019-04-05 电信科学技术研究院 一种终端能力控制方法、终端及基站
CN109587757B (zh) * 2017-09-29 2021-02-12 电信科学技术研究院 一种终端能力控制方法、终端及基站
WO2019062616A1 (zh) * 2017-09-29 2019-04-04 电信科学技术研究院有限公司 一种终端能力控制方法、终端及基站
CN111512665A (zh) * 2017-11-10 2020-08-07 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111512665B (zh) * 2017-11-10 2024-03-12 株式会社Ntt都科摩 终端、无线通信方法、基站以及系统
CN109802776A (zh) * 2017-11-16 2019-05-24 维沃移动通信有限公司 一种模糊期消除的方法、终端设备及网络设备
CN111418169A (zh) * 2017-11-17 2020-07-14 高通股份有限公司 在lte载波聚合的新scell状态下报告非周期性cqi的方法和装置
CN111418169B (zh) * 2017-11-17 2023-04-04 高通股份有限公司 在lte载波聚合的新scell状态下报告非周期性cqi的方法和装置
WO2019127035A1 (zh) * 2017-12-26 2019-07-04 Oppo广东移动通信有限公司 激活与去激活辅小区的方法和终端设备
US11129064B2 (en) 2017-12-26 2021-09-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of activating and deactivating secondary cell and terminal device
CN109644352B (zh) * 2017-12-26 2020-12-01 Oppo广东移动通信有限公司 激活与去激活辅小区的方法和终端设备
CN109644352A (zh) * 2017-12-26 2019-04-16 Oppo广东移动通信有限公司 激活与去激活辅小区的方法和终端设备
WO2019134619A1 (zh) * 2018-01-04 2019-07-11 维沃移动通信有限公司 状态处理方法、终端和基站
CN110167163A (zh) * 2018-02-14 2019-08-23 维沃移动通信有限公司 参考信号发送和接收方法及装置
CN110167163B (zh) * 2018-02-14 2021-02-02 维沃移动通信有限公司 参考信号发送和接收方法及装置
US11483045B2 (en) 2018-02-14 2022-10-25 Vivo Mobile Communication Co., Ltd. Method and device of transmitting and receiving reference signal
CN110475364B (zh) * 2018-05-09 2021-03-26 维沃移动通信有限公司 一种非周期跟踪参考信号的接收方法及终端
CN110475364A (zh) * 2018-05-09 2019-11-19 维沃移动通信有限公司 一种非周期跟踪参考信号的接收方法及终端
US11509444B2 (en) 2018-05-09 2022-11-22 Vivo Mobile Communication Co., Ltd. Method for receiving aperiodic tracking reference signal and terminal
CN112088518A (zh) * 2018-05-11 2020-12-15 高通股份有限公司 具有多个发送接收点的超可靠低延时通信
US11705951B2 (en) 2018-05-11 2023-07-18 Qualcomm Incorporated Ultra-reliable low latency communication with multiple transmission-reception points
US11190258B2 (en) 2018-05-11 2021-11-30 Qualcomm Incorporated Ultra-reliable low latency communication with multiple transmission-reception points
CN112088518B (zh) * 2018-05-11 2022-03-08 高通股份有限公司 用于具有多个发送接收点的超可靠低延时通信的方法、装置
CN111771402A (zh) * 2018-06-29 2020-10-13 华为技术有限公司 通信方法及装置
CN111771402B (zh) * 2018-06-29 2021-12-10 华为技术有限公司 通信方法及装置
WO2020143558A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 信道测量方法和装置
US11362707B2 (en) 2019-01-11 2022-06-14 Huawei Technologies Co., Ltd. Precoding vector indicating and determining method and communications apparatus
CN111436133B (zh) * 2019-01-11 2023-07-14 华为技术有限公司 信道测量方法和装置
CN111436133A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 信道测量方法和装置
CN113826412A (zh) * 2019-05-14 2021-12-21 上海诺基亚贝尔股份有限公司 辅小区的激活
CN113826412B (zh) * 2019-05-14 2023-08-29 上海诺基亚贝尔股份有限公司 辅小区的激活
CN112055374A (zh) * 2019-06-06 2020-12-08 华为技术有限公司 用于激活辅小区的方法和装置
CN114930879A (zh) * 2020-01-14 2022-08-19 华为技术有限公司 一种多播业务传输方法及装置
CN114930879B (zh) * 2020-01-14 2023-11-17 华为技术有限公司 一种多播业务传输方法及装置
CN113489580B (zh) * 2021-07-30 2022-09-02 中国联合网络通信集团有限公司 一种载波聚合辅小区的配置方法和装置
CN113489580A (zh) * 2021-07-30 2021-10-08 中国联合网络通信集团有限公司 一种载波聚合辅小区的配置方法和装置

Also Published As

Publication number Publication date
KR20170106313A (ko) 2017-09-20
US20180007731A1 (en) 2018-01-04
WO2016117928A1 (ko) 2016-07-28
CN107211296B (zh) 2020-11-03
KR102543750B1 (ko) 2023-06-15
US10455635B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
CN107211296A (zh) 用于在无线通信系统中激活/停用小区的方法及其装置
CN106664280B (zh) 在无线通信系统中收发数据的方法和装置
US10368363B2 (en) Uplink data transmission method in wireless communication system and device therefor
US10193608B2 (en) Method for transmitting/receiving channel state information in wireless communication system and device therefor
CN104704755B (zh) 在无线通信系统中通过考虑天线端口关系收发下行链路信号的方法和设备
CN104704754B (zh) 在无线通信系统中通过考虑天线端口关系收发下行链路信号的方法和设备
CN104641582B (zh) 在无线通信系统中考虑天线端口关系发送/接收下行链路信号的方法和装置
CN104704750B (zh) 在无线通信系统中通过考虑天线端口关系收发下行链路信号的方法和设备
CN104685807B (zh) 在无线通信系统中考虑天线端口关系的下行链路信号收发方法和装置
KR102086518B1 (ko) 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 이를 위한 장치
US10123338B2 (en) Method and apparatus for allocating resources in wireless access system supporting FDR transmission
CN104145431B (zh) 用于终端在无线通信系统中接收下行链路信号的方法及其装置
US20230027172A1 (en) Techniques and apparatuses for improving new radio coverage
CN105284063B (zh) 用于在支持fdr发送的无线接入系统中发送/接收信号的方法和装置
CN106664729A (zh) 在支持载波聚合的无线通信系统中通过用户设备将信号发送到enb以及从enb接收信号的方法和设备
CN106716887A (zh) 无线通信系统中执行测量的方法及其装置
US9929756B2 (en) Method and apparatus for cancelling interference and receiving signal in wireless communication system
TW201832610A (zh) 追蹤參考信號配置設計
US9882590B2 (en) Method and apparatus for cancelling interference and receiving signal in wireless communication system
EP4024750B1 (en) Method for cell cyclic downlink transmission in wireless communication system and apparatus therefor
US20180184433A1 (en) Method and apparatus for cancelling interference and receiving signal in wireless communication system
CN106664147A (zh) 用于在支持fdr传输的无线接入系统中接收信号的方法和装置
US10257745B2 (en) Method and apparatus for cancelling interference and receiving signal in wireless communication system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant