WO2020187132A1 - 数据信道的传输方法及装置 - Google Patents

数据信道的传输方法及装置 Download PDF

Info

Publication number
WO2020187132A1
WO2020187132A1 PCT/CN2020/079052 CN2020079052W WO2020187132A1 WO 2020187132 A1 WO2020187132 A1 WO 2020187132A1 CN 2020079052 W CN2020079052 W CN 2020079052W WO 2020187132 A1 WO2020187132 A1 WO 2020187132A1
Authority
WO
WIPO (PCT)
Prior art keywords
scs
ofdm symbol
pdsch
ofdm symbols
data channel
Prior art date
Application number
PCT/CN2020/079052
Other languages
English (en)
French (fr)
Inventor
刘哲
董朋朋
彭金磷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020187132A1 publication Critical patent/WO2020187132A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation

Definitions

  • This application relates to the field of communication technology, and in particular to a data channel transmission method and device.
  • a wireless communication system in order to make full use of air interface resources (for example, time domain resources, frequency domain resources, and/or code resources, etc.), communication networks of different standards are allowed to share the same air interface resources.
  • air interface resources for example, time domain resources, frequency domain resources, and/or code resources, etc.
  • the fifth generation (5G) communication network and the long term evolution (LTE) communication network can share the same frequency domain resources, that is, the 5G system and the LTE system can be deployed in the same frequency domain.
  • Frequency domain resources When the 5G system and the LTE system share frequency domain resources, how to reduce the interference between the 5G system and the LTE system is a topic that needs to be studied.
  • the embodiments of the present application provide a data channel transmission method and device, which are used to reduce the mutual interference between two signals supporting different subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • a data channel transmission method including: using a first SCS to receive a first signal; wherein the first signal is used in 2 n first orthogonal frequency division multiplexing (OFDM) )
  • the symbol is repeatedly transmitted, the 2 n first OFDM symbols and 1 second OFDM symbol are aligned in the time domain, and the 1 second OFDM symbol is used to transmit the second signal corresponding to the second SCS, so
  • the first SCS is 2 n times the second SCS, where n is a positive integer.
  • repeating the first signal in the time domain is equivalent to performing zero interpolation on the first signal in the frequency domain.
  • the first signal corresponding to the first SCS is repeatedly transmitted on the 2 n first OFDM symbols. Therefore, for a second OFDM symbol corresponding to the 2 n first OFDM symbols, the first signal corresponds to a part of the second SCS.
  • the subcarrier of is equal to 0, so the first signal will not affect the second signal carried on the subcarrier corresponding to this part of the second SCS. In this way, the mutual interference between the first signal corresponding to the first SCS and the second signal corresponding to the second SCS can be reduced.
  • the first signal is repeatedly transmitted on the 2 n first OFDM symbols, including: in the shared frequency domain resource, the first signal is transmitted on the 2 n first OFDM symbols Repeated transmission.
  • the first signal is independently transmitted on 2 n first OFDM symbols.
  • the first signal includes data carried on a physical downlink shared channel (PDSCH), and the second signal includes a reference signal; or, the first signal includes a physical downlink control channel (physical downlink control channel).
  • the second signal includes a reference signal; or, the first signal includes data carried on the PDCCH and data carried on the PDSCH, and the second signal includes a reference signal and data carried on the PDCCH.
  • the reference signal includes a cell reference signal (CRS).
  • the first signal transmitted on the i-th first OFDM symbol among the 2 n first OFDM symbols is obtained after the corresponding frequency domain signal undergoes phase rotation processing, and i is greater than 1 and less than An integer equal to 2 n .
  • receiving the first signal includes: receiving the first signal on the first first OFDM symbol of the 2 n first OFDM symbols. In this way, the process of receiving the first signal can be simplified and the complexity can be reduced.
  • the REs in the first RE set are not used to map the first signal, and the first RE set and the second RE set exist in the frequency domain Overlap
  • the one second OFDM symbol used to send the second signal corresponding to the second SCS includes: in the one second OFDM symbol, the RE in the second set of REs is used to map the first The second signal corresponding to the two SCS.
  • rate matching can be performed on the second signal of the second SCS, so that the interference between the first signal and the second signal can be reduced.
  • 2 n times the subcarrier number of one RE in the first RE set is equal to the subcarrier number of one RE in the second RE set.
  • the method further includes: receiving resource configuration information, where the resource configuration information is used to indicate the position of the second OFDM symbol. Therefore, according to the resource configuration information, the position of the second OFDM symbol can be determined, thereby determining the positions of the 2 n first OFDM symbols, so as to correctly receive the PDSCH.
  • the resource configuration information is also used to determine the frequency domain position of the RE in the second RE set. With this method, since the first RE set and the second RE set overlap in the frequency domain, the position of the RE in the second RE set is determined according to the resource configuration information, and the position of the RE in the first RE set can be determined. In order to receive PDSCH correctly.
  • the method further includes: determining the position of the second OFDM symbol according to the resource configuration information.
  • the method further includes: receiving resource configuration information, where the resource configuration information is used to determine the resource location of the RE in the second RE set.
  • the resource configuration information is used to determine the time domain position (such as symbol position) and frequency domain position (such as subcarrier position) of each RE in the second RE set.
  • the method further includes: determining the location of the RE in the second RE set according to the resource configuration information.
  • the method further includes: receiving scheduling information of the first signal, where the scheduling information is used to indicate a PDSCH coding mechanism, and the code rate indicated by the coding mechanism is less than a first threshold. It can be understood that the code rate of the PDSCH is less than the first threshold, which can improve the correct transmission rate of the PDSCH.
  • a data channel transmission method including: using a first SCS to send a first signal; wherein the first signal is repeatedly transmitted on 2 n first OFDM symbols, and the 2 n The first OFDM symbol and one second OFDM symbol are aligned in the time domain, and the one second OFDM symbol is used to transmit the second signal corresponding to the second SCS, and the first SCS is 2 n of the second SCS. Times, where n is a positive integer.
  • the method further includes: sending resource configuration information, where the resource configuration information is used to indicate the position of the second OFDM symbol.
  • the method further includes: sending scheduling information of the first signal, where the scheduling information is used to indicate an encoding mechanism of the first signal, and the code rate indicated by the encoding mechanism is less than a first threshold.
  • a method for transmitting a data channel including: receiving resource configuration information, where the resource configuration information is used to determine the position of a second OFDM symbol, and the second OFDM symbol is used to transmit a second SCS corresponding to the second SCS.
  • Signal, 1 second OFDM symbol and 2 n first OFDM symbols are aligned in the time domain, 2 n first OFDM symbols are used to repeatedly transmit the first signal corresponding to the first SCS, the first SCS is 2 of the second SCS n times, where n is a positive integer.
  • the method can also be described as: receiving resource configuration information, where the resource configuration information is used to determine the resource position of the second signal corresponding to the second SCS (for example, time domain position, or time domain position and frequency domain position) ,
  • the symbol position at which the second signal is located includes a second OFDM symbol, 1 second OFDM symbol and 2 n first OFDM symbols are aligned in the time domain, and the 2 n first OFDM symbols are used to repeatedly transmit the first OFDM symbol.
  • the first signal corresponding to the SCS, the first SCS is 2 n times the second SCS, where n is a positive integer.
  • the method further includes: receiving the first signal on the first first OFDM symbol among the 2 n first OFDM symbols.
  • the method further includes: receiving scheduling information of the first signal, where the scheduling information is used to indicate an encoding mechanism of the first signal, and the code rate indicated by the encoding mechanism is less than a first threshold.
  • a data channel transmission method including: sending resource configuration information, the resource configuration information is used to indicate the position of a second OFDM symbol, and the second OFDM symbol is used to send a second SCS corresponding to the second SCS.
  • Signal, 1 second OFDM symbol and 2 n first OFDM symbols are aligned in the time domain, 2 n first OFDM symbols are used to repeatedly transmit the first signal corresponding to the first SCS, the first SCS is 2 of the second SCS n times, where n is a positive integer.
  • the method can also be described as: sending resource configuration information, where the resource configuration information is used to indicate the resource position of the second signal corresponding to the second SCS (for example, time domain position, or time domain position and frequency domain position) ,
  • the symbol position at which the second signal is located includes a second OFDM symbol, 1 second OFDM symbol and 2 n first OFDM symbols are aligned in the time domain, and the 2 n first OFDM symbols are used to repeatedly transmit the first OFDM symbol.
  • the first signal corresponding to the SCS, the first SCS is 2 n times the second SCS, where n is a positive integer.
  • the method further includes: repeatedly sending the first signal on the 2 n first OFDM symbols.
  • the method further includes: sending scheduling information of the first signal, where the scheduling information is used to indicate an encoding mechanism of the first signal, and the code rate indicated by the encoding mechanism is less than a first threshold.
  • a device in a fifth aspect, may be a terminal device, or a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect or the third aspect.
  • the modules may be hardware circuits, software, or hardware Circuit combined with software implementation.
  • the device may include a processing module and a communication module.
  • a first communication module for receiving a first signal SCS; wherein said first signal is a repeat transmission, the first on the 2 n of 2 n of the first OFDM symbol and a second OFDM symbol
  • the OFDM symbols are aligned in the time domain, and the one second OFDM symbol is used to transmit the second signal corresponding to the second SCS, and the first SCS is 2n times the second SCS, where n is a positive integer.
  • the processing module is used to process the first signal.
  • the communication module is specifically configured to: receive the first signal on the first first OFDM symbol of the 2 n first OFDM symbols.
  • the communication module is further configured to receive resource configuration information, where the resource configuration information is used to determine the position of the second OFDM symbol.
  • the communication module is further configured to receive scheduling information of the first signal, where the scheduling information is used to indicate an encoding mechanism of the first signal, and the code rate indicated by the encoding mechanism is less than a first threshold.
  • a device in a sixth aspect, may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the second aspect or the fourth aspect.
  • the modules may be hardware circuits, software, or hardware Circuit combined with software implementation.
  • the device may include a processing module and a communication module.
  • the communication module is configured to: transmit a first signal using a first SCS; wherein said first signal is a repeat transmission, the 2 n th first and a second OFDM symbol in a first OFDM symbol of the 2 n Two OFDM symbols are aligned in the time domain, and the 1 second OFDM symbol is used to transmit a second signal corresponding to a second SCS, and the first SCS is 2 n times the second SCS, where n is a positive integer.
  • the processing module is used to generate the first signal.
  • the communication module is further configured to send resource configuration information, where the resource configuration information is used to indicate the position of the second OFDM symbol.
  • the communication module is further configured to send scheduling information of the first signal, where the scheduling information is used to indicate an encoding mechanism of the first signal, and the code rate indicated by the encoding mechanism is less than a first threshold.
  • an embodiment of the present application provides a device including a processor, configured to implement the method described in the first aspect or the third aspect.
  • the device may also include a memory for storing instructions.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect or the third aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the device can be a network device. In a possible device, the device includes:
  • Memory used to store instructions
  • a processor for utilizing the communication interface receiving a first signal using a first the SCS; wherein said first signal is a repeat transmission, the first OFDM symbol of 2 n and 2 n 1 in the first two OFDM symbols Two second OFDM symbols are aligned in the time domain, and the one second OFDM symbol is used to transmit the second signal corresponding to the second SCS.
  • the first SCS is 2 n times the second SCS, where n is positive Integer.
  • the processing module is used to process (for example, demodulate, decode, etc.) the first signal.
  • the receiving the first signal includes: receiving the first signal on the first first OFDM symbol of the 2 n first OFDM symbols.
  • the processor is further configured to use a communication interface to receive resource configuration information, where the resource configuration information is used to determine the position of the second OFDM symbol.
  • the processor is further configured to use a communication interface to receive scheduling information of the first signal, where the scheduling information is used to indicate the coding mechanism of the first signal, and the code rate indicated by the coding mechanism is less than the first signal.
  • a threshold is used to indicate the coding mechanism of the first signal, and the code rate indicated by the coding mechanism is less than the first signal.
  • an embodiment of the present application provides a device including a processor, configured to implement the method described in the second or fourth aspect.
  • the device may also include a memory for storing instructions.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the second aspect or the fourth aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the device can be a network device. In a possible device, the device includes:
  • Memory used to store program instructions
  • a processor for utilizing communication interfaces a first SCS using a first transmit signal; wherein said first signal is a repeat transmission, the first OFDM symbol of 2 n and 2 n 1 in the first two OFDM symbols Two second OFDM symbols are aligned in the time domain, and the one second OFDM symbol is used to transmit the second signal corresponding to the second SCS.
  • the first SCS is 2 n times the second SCS, where n is positive Integer.
  • the processor is further configured to use a communication interface to send resource configuration information, where the resource configuration information is used to indicate the position of the second OFDM symbol.
  • the processor is further configured to use the communication interface to send scheduling information of the first signal, and the scheduling information is used to indicate the coding mechanism of the first signal, and the code rate indicated by the coding mechanism is less than the first signal.
  • a threshold is further configured to use the communication interface to send scheduling information of the first signal, and the scheduling information is used to indicate the coding mechanism of the first signal, and the code rate indicated by the coding mechanism is less than the first signal.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute the method described in the first, second, third, or fourth aspect.
  • a tenth aspect provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the method described in the first, second, third or fourth aspect.
  • a chip in an eleventh aspect, includes a processor, and the processor is configured to execute the data channel transmission method described in any one of the first, second, third, or fourth aspects.
  • the chip also includes a transceiver pin, and the transceiver pin is used to transmit the received code instruction to the processor, so that the processor is used to execute the above-mentioned first aspect, second aspect, third aspect, or The method of any one of the fourth aspects.
  • the code instruction may come from a memory inside the chip or a memory outside the chip.
  • a chip system in a twelfth aspect, includes a processor and may also include a memory, configured to implement the above-mentioned first, second, third, or fourth aspect. Methods.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • a communication system in a thirteenth aspect, includes the device described in the fifth aspect and the device described in the sixth aspect, or the communication system includes the device described in the seventh aspect and the eighth aspect installation.
  • FIG. 1 is a schematic diagram of a resource grid provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of another resource grid provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a frequency spectrum of an LTE reference signal on an OFDM symbol provided by an embodiment of this application;
  • FIG. 4 is a schematic diagram of the spectrum of the NR PDSCH on the OFDM symbol provided by an embodiment of this application;
  • FIG. 5 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a cyclic prefix provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another cyclic prefix provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a cyclic suffix provided by an embodiment of the application.
  • FIG. 9 is a flowchart of a data channel transmission method provided by an embodiment of the application.
  • FIG. 10A is the first schematic diagram of PDSCH repeated transmission provided by an embodiment of this application.
  • FIG. 10B is a second schematic diagram of PDSCH repeated transmission provided by an embodiment of this application.
  • FIG. 10C is a third schematic diagram of PDSCH repeated transmission provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of a sending end sending 2 n first OFDM symbols according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of the receiving end receiving 2 n first OFDM symbols according to an embodiment of the application.
  • FIG. 13A is a schematic diagram of a frequency spectrum of a 30 kHz signal on an OFDM symbol according to an embodiment of the application;
  • FIG. 13B is a schematic diagram of the frequency spectrum of another 30 kHz signal on an OFDM symbol according to an embodiment of the application;
  • FIG. 14 is a schematic diagram of a resource grid provided by an embodiment of this application.
  • 15 is a schematic diagram 1 of a resource pattern provided by an embodiment of this application.
  • FIG. 16 is a second schematic diagram of a resource pattern provided by an embodiment of this application.
  • FIG. 17 is the third schematic diagram of a resource pattern provided by an embodiment of this application.
  • FIG. 18 is a schematic diagram of the location of an RE carrying a reference signal according to an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of a device provided by an embodiment of this application.
  • FIG. 20 is a schematic structural diagram of another device provided by an embodiment of this application.
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems.
  • the technical solutions provided in the embodiments of the present application can be applied but not limited to: 5G, LTE, or future communication systems.
  • 5G can also be called new radio (NR).
  • the communication equipment may include network equipment and terminal equipment.
  • the wireless communication between communication devices may include: wireless communication between a network device and a terminal device, wireless communication between a network device and a network device, and wireless communication between a terminal device and a terminal device.
  • wireless communication can also be simply referred to as "communication”
  • communication can also be described as "data transmission”, “signal transmission”, “information transmission” or “transmission”.
  • transmission may include sending or receiving.
  • the transmission may be uplink transmission, for example, the terminal device may send a signal to the network device; the transmission may also be downlink transmission, for example, the network device may send a signal to the terminal device.
  • the technical solutions provided in the embodiments of the present application are described by taking communication between a network device and a terminal device as an example, where the network device is a scheduling entity, and the terminal device is a subordinate entity.
  • the network device is a scheduling entity
  • the terminal device is a subordinate entity.
  • Those skilled in the art can use this technical solution to perform wireless communication between other scheduling entities and subordinate entities, such as wireless communication between a macro base station and a micro base station, such as device-to-device communication between a first terminal and a second terminal. to device, D2D) communication.
  • the terminal device involved in the embodiment of the present application may also be referred to as a terminal, and may be a device with a wireless transceiver function.
  • the terminal can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed in the air (such as aeroplane, balloon, satellite, etc.).
  • the terminal equipment may be user equipment (UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device, or a computing device with wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device for implementing the function of the terminal may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network equipment involved in the embodiment of the present application includes a base station (BS), and the base station may be a device that is deployed in a wireless access network and can communicate with a terminal wirelessly.
  • Base stations may come in many forms, such as macro base stations, micro base stations, relay stations, and access points.
  • the base station involved in the embodiments of the present application may be a base station in 5G or a base station in LTE, where the base station in 5G may also be called a transmission reception point (TRP) or gNB (gNodeB).
  • TRP transmission reception point
  • gNodeB gNodeB
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system.
  • the device for implementing the functions of the network equipment is the network equipment as an example to describe the technical solutions provided by the embodiments of the present application.
  • the embodiments of the present application take LTE and 5G sharing frequency domain resources as an example to describe the technical solutions provided by the embodiments of the present application.
  • This scenario does not constitute a restriction on the application scenario of the embodiment of the present application.
  • the technical solution provided by the embodiment of the present application can also be used to share air interface resources between other systems, or can be used for sharing between different signals in the same system. Air interface resources.
  • the technical solution provided by the embodiment of the present application can also be used for rate matching between other systems, or can be used for rate matching between different signals in the same system.
  • Table 1 shows frequency domain resources available for operators to deploy LTE carriers
  • Table 2 shows frequency domain resources available for operators to deploy NR carriers in sub6GHz (below 6GHz).
  • FDD frequency division duplex
  • TDD time division duplex
  • NR support is deployed on the same frequency domain resources as LTE carriers.
  • NR and LTE are deployed on band1, band3, band5, or band38.
  • NR and LTE can also be deployed on other shared frequency domain resources, which is not limited in the embodiment of the present application.
  • NR In NR and LTE shared resources, in order to support the normal communication of the LTE system, NR cannot use LTE specific signals or resources of specific channels when using unused resources in LTE. For example, NR cannot use LTE CRS and/or resources in shared resources. Or the resource to which the PDCCH of LTE is to be mapped. That is, in shared resources, NR needs to perform rate matching on the resource to which a specific signal of LTE is to be mapped.
  • the embodiments of the present application are described by taking as an example the signal in NR (for example, PDSCH) that needs to be rate-matched on the resource to which the CRS of LTE is to be mapped.
  • the time-frequency resource used for data transmission can be represented as a resource grid.
  • a resource element (resource element, RE) is a resource unit used for data transmission, or a resource unit used for resource mapping of data to be sent.
  • RE resource element
  • One RE corresponds to one time domain symbol in the time domain, and corresponds to one subcarrier in the frequency domain.
  • the LTE system mainly supports SCS at 15 kHz (kilohertz).
  • NR can support multiple types of subcarrier spacing, such as 15kHz, 30kHz, 60kHz, 120kHz, etc.
  • LTE and NR can either use the same subcarrier interval or different subcarrier intervals.
  • the NR signal needs to be rate-matched on the resources corresponding to the LTE signal to avoid mutual interference between the NR signal and the LTE signal. For example, when NR performs rate matching on the resource to which the CRS of LTE is to be mapped, if both LTE and NR use 15 kHz, in the shared resource, NR does not map the NR PDSCH on the RE used to map the CRS of LTE.
  • the NR PDSCH corresponding to the 15kHz SCS is not mapped to the RE used to carry the LTE CRS, so that the NR PDSCH corresponding to the 15kHz SCS and the LTE CRS do not interfere with each other, and the 15kHz SCS
  • the corresponding NR PDSCH can make full use of the unused time-frequency resources of the LTE CRS, thereby improving the utilization of shared resources.
  • the resource to which the CRS of LTE is to be mapped can also be described as: resources used to map the CRS of LTE, or resources corresponding to the CRS of LTE, etc.
  • the SCS adopted by NR is different from the SCS adopted by LTE, when NR performs rate matching on the resources corresponding to the CRS of LTE, it may not be possible to avoid mutual interference between signals in NR (such as PDSCH) and CRS of LTE.
  • NR such as PDSCH
  • the resource grid shown in Fig. 1 is an SCS using 15 kHz for LTE
  • the resource grid shown in Fig. 2 is an SCS using 30 kHz for NR.
  • the resource grid shown in FIG. 1 and the resource grid shown in FIG. 2 are for the same time-frequency resource.
  • the black squares indicate REs that carry CRS of LTE.
  • the black squares indicate REs that do not map NR PDSCH, that is, REs that NR PDSCH needs to perform rate matching based on LTE CRS. It can be seen that when the NR PDSCH is transmitted on the resource grid shown in Figure 2, the NR PDSCH performs rate matching on the RE corresponding to the LTE CRS. In the same time-frequency resources, there is an overlap between the REs for rate matching of the NR PDSCH and the REs corresponding to the LTE CRS.
  • the resource grid shown in Figure 1 includes a total of 14 time domain symbols from the first to the fourteenth.
  • Figure 3 is a schematic diagram of the frequency spectrum of LTE CRS on the 5th time domain symbol in the resource grid shown in Figure 1.
  • the bold black arrow in Figure 3 indicates the subcarrier used to carry LTE CRS, and the dashed line indicates that it is not used
  • the subcarriers that carry the LTE CRS, the interval between adjacent subcarriers is 15kHz.
  • the resource grid shown in Figure 2 includes a total of 28 time domain symbols from the first to the 28th.
  • FIG. 4 is a schematic diagram of the frequency spectrum on the 9th or 10th time domain symbol in the resource grid shown in FIG. 2.
  • the solid one-way arrows indicate subcarriers that can carry NR PDSCH
  • the dashed one-way arrows indicate subcarriers that cannot carry NR PDSCH (used for rate matching).
  • the interval between adjacent subcarriers is 30kHz.
  • the bolded two-way arrows in Figure 4 are used to describe the subordinates used to carry LTE CRS on the 5th time domain symbol shown in Figure 1 or on the 9th or 10th time domain symbol shown in Figure 2
  • NR PDSCH signals may cause interference to LTE CRS.
  • Figure 4 includes 12 30kHz subcarriers from subcarrier #0 to subcarrier #11. It can be seen from Figure 4 that the signal energy of 30kHz subcarrier #2 is non-zero at the position of 15kHz subcarrier #3 (the LTE CRS position), and the signal energy of 30kHz subcarrier #3 is at the 15kHz subcarrier. The position of carrier #3 is non-zero. That is, the LTE CRS on the 15kHz subcarrier #3 may be interfered by the NR PDSCH; the LTE CRS on the 15kHz subcarrier #3 may also interfere with the NR PDSCH.
  • the present application provides a data channel transmission method, the specific content of which can be seen below.
  • two communication networks supporting different SCS co-band deployment scenarios include, but are not limited to: a co-band deployment scenario for an NR network and an LTE network, and a co-band deployment scenario for two NR networks.
  • FIG. 5 shows a schematic diagram of a communication system to which the technical solutions provided in the embodiments of the present application are applicable.
  • the communication system may include one or more network devices (only one is shown in FIG. 5) and one or more Terminals (only one is shown in Figure 5).
  • FIG. 5 is only a schematic diagram, and does not constitute a limitation on the application scenarios of the technical solutions provided in this application.
  • the data channel is a channel used to transmit data.
  • the data channel may refer to PDSCH or (physical uplink shared channel, PUSCH).
  • PDSCH physical uplink shared channel
  • PUSCH physical uplink shared channel
  • the following behavior examples are described, and the following behavior is the PDSCH as an example.
  • the data channel may be the PUSCH sent by the terminal for the network device.
  • the reference signal may be a known signal provided by the transmitting end to the receiving end for channel estimation or channel sounding.
  • the reference signals in LTE include LTE CRS, LTE channel state information reference signal (channel state information reference signal, CSI-RS), and LTE demodulation reference signal (demodulation reference signal, DMRS) At least one of them.
  • the reference signal in NR includes at least one of CSI-RS of NR and DMRS of NR.
  • the reference signal may be a DMRS or a sounding reference signal (SRS).
  • the time domain symbol may be an OFDM symbol or a discrete fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM) symbol.
  • the time domain symbol is an OFDM symbol as an example for description.
  • time-domain symbols may also be referred to as symbols for short.
  • a slot can be defined in the resource grid or the time domain of the time-frequency resource, and a slot can include a positive integer number of time-domain symbols, such as 7, 14, 6, or 12 time domain symbols.
  • a subframe may include a positive integer number of time slots. Exemplarily, for a system that supports multiple sub-carrier intervals, when the sub-carrier interval is 15 kilohertz (kHz), one sub-frame includes 1 time slot; when the sub-carrier interval is 30 kHz, one sub-frame includes 2 When the sub-carrier interval is 60kHz, a subframe includes 4 time slots.
  • the subcarrier is the basic unit of frequency domain resources.
  • the subcarrier spacing is used to describe the bandwidth of a subcarrier or the spacing between adjacent subcarriers.
  • the OFDM symbol is the basic unit of time domain resources.
  • An OFDM symbol may include a useful signal and a cyclic prefix (CP), or an OFDM symbol may include a useful signal and a cyclic suffix, or an OFDM symbol may include a useful signal (that is, a cyclic prefix and a cyclic suffix are not included).
  • the effective length of the OFDM symbol is the length of the useful signal.
  • the length of the OFDM symbol is equal to the sum of the effective length of the OFDM symbol and the length of the cyclic prefix.
  • a slot may include a positive integer number of OFDM symbols. For example, for a normal CP (NCP), one slot may include 14 OFDM symbols.
  • one slot can contain 12 OFDM symbols.
  • one slot includes 14 OFDM symbols for illustration.
  • the 14 OFDM symbols are numbered sequentially from smallest to largest, that is, one slot includes OFDM symbol #0 to OFDM symbol #13.
  • OFDM symbol #X indicates that the number of the OFDM symbol is X.
  • the length of the OFDM symbol can be inversely proportional to the subcarrier spacing. In other words, as the subcarrier spacing increases, the length of the OFDM symbol decreases.
  • the length of the OFDM symbol corresponding to 2 n first SCS is equal to the length of the OFDM symbol corresponding to one second SCS, and the first SCS is 2 n times the second SCS, where n is a positive integer.
  • the length of two 30kHz OFDM symbols is equal to the length of one 15kHz OFDM symbol.
  • the length of the time slot is also inversely proportional to the subcarrier spacing. In other words, as the subcarrier spacing increases, the length of the time slot decreases.
  • Table 3 shows the correspondence between the subcarrier spacing and the length of the OFDM symbol and the length of the time slot.
  • resource block (resource block, RB), resource grid
  • RE is the resource granularity used to transmit data.
  • An RE can be used to map a complex symbol.
  • One RE corresponds to one OFDM symbol in the time domain, and corresponds to one subcarrier in the frequency domain.
  • the subcarrier number of the RE may start from 0.
  • the subcarrier number of the RE may be 0-12*K-1
  • K is the number of RBs included in the BWP in the frequency domain.
  • the index of the RE includes the subcarrier number and the number of the OFDM symbol.
  • the index of RE can be expressed as (k, l). Among them, k represents the subcarrier number, and l represents the number of the OFDM symbol.
  • each row in the resource grid shown in FIG. 1 represents a subcarrier, each column represents an OFDM symbol, and each square represents an RE.
  • the index of the first RE in the lower left corner of the resource grid shown in FIG. 1 is (0, 0).
  • RBs can be defined in the resource grid.
  • One RB may include a positive integer number of subcarriers, for example, 6 or 12 subcarriers.
  • the definition of RB can also be extended to the time domain.
  • an RB includes positive integer subcarriers in the frequency domain and a positive integer time domain symbols in the time domain.
  • an RB includes 12 subcarriers in the frequency domain and 7 or 14 in the time domain. Time-frequency resource blocks of time-domain symbols.
  • the resource grid can also be referred to as an RB grid, and the resource grid includes a positive integer number of RBs.
  • the cyclic prefix is to copy the last part of the useful signal in the OFDM symbol to the head of the OFDM symbol. Therefore, the OFDM symbol includes a cyclic prefix and a useful signal, and the cyclic prefix is used to make the transmission of the OFDM symbol resistant to inter-symbol interference (ISI) and inter-channel interference (ICI).
  • ISI inter-symbol interference
  • ICI inter-channel interference
  • the useful signal in the OFDM symbol includes 2048 sampling points, and the cyclic prefix includes the last 144 sampling points of the useful signal (that is, sampling points 1905-2048).
  • the useful signal in the OFDM symbol includes 1024 sampling points, and the cyclic prefix includes the last 72 sampling points of the useful signal (that is, sampling points 953 to 1024).
  • the length of the cyclic prefix of different OFDM symbols may be the same or different. It can be seen from Table 3 that taking the OFDM symbol of 15kHz SCS as an example, since the absolute time length of a sampling point is 1/(2048 ⁇ 15 ⁇ 1000) second, in order to make the 14 OFDM symbols contained in a slot The absolute time length of is 1ms. For every 7 OFDM symbols in 0.5ms, the length of the cyclic prefix of the first OFDM symbol is 160 samples, and the length of the cyclic prefix of the other 6 OFDM symbols is 144 samples point.
  • the cyclic suffix is to copy the front part of the useful signal in the OFDM symbol to the tail of the OFDM symbol.
  • the OFDM symbol includes a useful signal and a cyclic suffix, and the cyclic suffix is used to make the OFDM symbol resistant to ISI and ICI.
  • the useful signal in the OFDM symbol includes 1024 sampling points, and the cyclic suffix includes the first 72 sampling points of the useful signal (that is, sampling points 1 to 72).
  • the sampling points may be based on the sampling points of the 15kHz SCS, that is, the time domain length of the 15kHz signal sampling points or the time interval between adjacent sampling points All are Ts, and will not be described in detail below.
  • the useful signal in the OFDM symbol of the 30kHz SCS also includes 2048 sampling points.
  • the time domain length of the sampling point of the 30kHz signal is actually 1/(2048*30000) second, which is equal to Ts/2. It can be considered that the useful signal of the OFDM symbol of 30kHz SCS includes 1024 sampling points of 15kHz SCS.
  • a BWP can also be referred to as carrier bandwidth part.
  • a BWP includes a continuous positive integer number of resource units, such as a continuous positive integer number of subcarriers, a resource block (resource block, RB), or a resource block group (RB group, RBG). Wherein, one RBG includes a positive integer number of RBs, such as 4 or 8 RBs.
  • a BWP can be a downlink BWP or an uplink BWP. Among them, the uplink BWP is used for the terminal to send a signal to the network device, and the downlink BWP is used for the network device to send a signal to the terminal.
  • the number of positive integers may be 1, 2, 3, or more, which is not limited in the embodiment of the present application.
  • the parameter set (numerology) of the BWP can be independently configured through pre-configuration or the network device sending signaling to the terminal.
  • the numerology of different BWPs may be the same or different.
  • the numerology can be defined by but not limited to one or more of the following parameter information: sub-carrier spacing, cyclic prefix (CP), time unit information, BWP bandwidth, etc.
  • numerology can be defined by subcarrier spacing and CP.
  • the subcarrier spacing can be an integer greater than or equal to zero. For example, it can be 15kHz, 30kHz, 60kHz, 120kHz, 240kHz, 480kHz, etc.
  • the multiple relationship of different subcarrier spacing can be an integer multiple of 2. Of course, other values can also be designed.
  • CP information may include CP length and/or CP type.
  • CP can be NCP or ECP.
  • the time unit is used to represent the time unit in the time domain, for example, it may be a sampling point, a time domain symbol, a mini-slot, a time slot, a subframe, or a radio frame, etc.
  • the time unit information may include the type, length, or structure of the time unit.
  • the time unit length may be: the number of time domain symbols included in a time slot, and/or the number of time domain symbols or time slots included in a subframe, and/or the number of subframes or time slots included in a radio frame.
  • the BWP can be a continuous resource in the frequency domain.
  • BWP may be referred to as carrier bandwidth part, subband bandwidth, narrowband bandwidth, or other names, which are not limited in the embodiments of the present application.
  • the BWP may also include discrete resources in the frequency domain, which is not limited in the embodiment of the present application.
  • A/B can mean A or B.
  • the "and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone These three situations.
  • “at least one” means one or more
  • “plurality” means two or more. The words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • indication may include direct indication and indirect indication, as well as explicit indication and implicit indication.
  • the information indicated by a certain piece of information (resource configuration information as described below) is referred to as information to be indicated, and there are many ways to indicate the information to be indicated in the specific implementation process.
  • the information to be indicated may be directly indicated, such as indicating the information to be indicated itself or the index of the information to be indicated.
  • the information to be indicated may also be indicated indirectly by indicating other information, where there is an association relationship or a mapping relationship between the other information and the information to be indicated.
  • it is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • it is also possible to realize the indication of specific information by means of the arrangement sequence of various information agreed in advance (for example, stipulated in the agreement), thereby reducing the indication overhead to a certain extent.
  • an embodiment of this application provides a channel transmission method. Taking the channel as a data channel and taking the data channel as a PDSCH as an example, the method includes the following steps S101-S102. Optionally, this method can be applied to other data channels or control channels, which is not limited in the embodiment of the present application.
  • the network device uses the first SCS to send the PDSCH to the terminal.
  • step S101 can also be expressed as: the network device sends the PDSCH corresponding to the first SCS to the terminal.
  • the PDSCH is repeatedly transmitted on the 2 n first OFDM symbols.
  • the PDSCH is repeatedly transmitted on the 2 n first OFDM symbols, including: in the shared bandwidth, the NR PDSCH is repeatedly transmitted on each of the 2 n first OFDM symbols.
  • the shared bandwidth may be the bandwidth of frequency domain resources shared by the NR system and the LTE system, which may be expressed as shared RBs, shared subcarriers, and so on.
  • the frequency domain resources used to transmit PDSCH may include shared bandwidth but not unshared bandwidth, and may also include shared bandwidth and unshared bandwidth.
  • the NR PDSCH may be repeatedly transmitted on each symbol of the 2 n first OFDM symbols, or may be independently transmitted, which is not limited in the embodiment of the present application.
  • the non-shared bandwidth when the NR PDSCH on each symbol is independently transmitted, the data transmitted on the same subcarrier of different symbols may be the same or different, which is not limited in the embodiment of the present application.
  • the frequency domain resources used to transmit PDSCH include shared bandwidth but not non-shared bandwidth as an example, and corresponding descriptions are made. .
  • the 2 n first OFDM symbols and 1 second OFDM symbol are aligned in the time domain, and the 1 second OFDM symbol is used to send a reference signal corresponding to a second SCS, and the first SCS is the second SCS 2 n times of, where n is a positive integer.
  • 2 n first OFDM symbols aligned with the second OFDM symbol in the time domain are used to repeatedly transmit PDSCH.
  • the 2 n first OFDM symbols and 1 second OFDM symbol are aligned in the time domain, which may mean that the 2 n first OFDM symbols and 1 second OFDM symbol share the same time domain resources.
  • Fig. 1 and Fig. 2 respectively show resource grids of the same time-frequency resource, the bandwidth of the time-frequency resource is 360 kHz, and the time length is 1 ms.
  • the subcarrier spacing used by the RE in the resource grid is 15kHz.
  • the subcarrier spacing used by the RE in the resource grid is 30kHz.
  • the first OFDM symbol in the resource grid shown in Figure 1 is aligned in the time domain with the first OFDM symbol and the second OFDM symbol in the resource grid shown in Figure 2; By analogy, the fourteenth OFDM symbol in the resource grid shown in FIG.
  • FIG. 1 is aligned with the twenty-seventh OFDM symbol and the twenty-eighth OFDM symbol in the resource grid shown in FIG. 2 in the time domain. That is, one second OFDM symbol in FIG. 1 is aligned in the time domain with the two first OFDM symbols in FIG. 2 in the time domain.
  • the 2n first OFDM symbols are used to repeatedly transmit PDSCH, which includes at least one of the following methods:
  • the first first OFDM symbol includes the useful signal and the cyclic prefix
  • the second first OFDM symbol includes the useful signal and the cyclic suffix
  • the useful signal in the first first OFDM symbol includes samples 1 to 1024
  • the cyclic prefix of the first OFDM symbol includes sampling points 953 to 1024.
  • the useful signal in the second first OFDM symbol includes sampling points 1 to 1024
  • the cyclic suffix of the second first OFDM symbol includes sampling points 1 to 72. It can be seen from FIG. 10A that the last 2048 sampling points of the two first OFDM symbols include two identical sampling points 1 to 1024. That is, when two 30kHz OFDM symbols are used for FFT with a 15kHz signal: After removing the CP of 144 sampling points, under the 2048 sampling point sampling window, sampling points 1 to 1024 are repeated twice in the time domain.
  • the PDSCH data transmitted on the i-th first OFDM symbol is obtained after the corresponding frequency domain signal undergoes phase rotation processing, and i is greater than 1 and less than or equal to 2.
  • An integer of n exemplaryily, the input signal on the k-th subcarrier of the IFFT on the i-th first OFDM symbol is a 1,k e j* ⁇ , where a 1,k represents the k-th sub-carrier on the first OFDM symbol
  • represents the phase size that needs to be rotated when the frequency domain signal is subjected to phase rotation processing.
  • FIG. 11 shows an example of repeated transmission of PDSCH on two first OFDM symbols.
  • the first SCS is 30 kHz
  • the frequency domain resources used to transmit the PDSCH on the first OFDM symbol include the shared bandwidth.
  • the data mapped on the first first OFDM symbol and the second first OFDM symbol are the same, which are a 1,n to a 1,n+k, respectively .
  • a 1,n to a 1,n+k are complex signals, and the values of different data may be the same or different, which is not limited in the embodiment of the present application.
  • corresponding phase rotation can be performed respectively.
  • FIG. 11 shows an example of repeated transmission of PDSCH on two first OFDM symbols.
  • the first SCS is 30 kHz
  • the frequency domain resources used to transmit the PDSCH on the first OFDM symbol include the shared bandwidth.
  • the data mapped on the first first OFDM symbol and the second first OFDM symbol are the same, which are a 1,n to a 1,n+k, respectively .
  • the frequency domain resource used to transmit the PDSCH on the first OFDM symbol may be pre-configured, or may be indicated by the network device for the terminal through signaling (for example, DCI).
  • the frequency domain signals corresponding to the 2 n first OFDM symbols are the same.
  • the phase of the frequency domain signal rotation corresponding to the i-th first OFDM symbol is proportional to i-1.
  • the time domain signal (that is, the useful signal) of the first OFDM symbol will undergo a cyclic shift.
  • the specific implementation manner of the phase rotation processing is: the frequency domain signal is multiplied by the phase rotation factor.
  • the phase rotation factor is used to indicate the phase of the frequency domain signal rotation.
  • the phase rotation factor corresponding to the i-th first OFDM symbol is: The CP length on the i-th OFDM symbol
  • the phase rotation factor corresponding to the frequency domain signal of the i-th first OFDM symbol index or subcarrier numbered k is Specifically, taking Figure 11 as an example, the phase rotation factor corresponding to the frequency domain signal on the subcarrier numbered n on the first OFDM symbol is 1, which is a 1, the signal itself; the second first OFDM symbol
  • the phase rotation factor corresponding to the frequency domain signal on the subcarrier numbered n on the OFDM symbol is Similarly, the phase rotation factor corresponding to the frequency domain signal on the subcarrier numbered n+k on the first first OFDM symbol is 1, which is a 1, the n+k signal itself; the second first OFDM symbol
  • the phase rotation factor corresponding to the frequency domain signal on the subcarrier numbered n is
  • the phase rotation factor corresponding to the i-th first OFDM symbol is: among them
  • N is the number of FFT points
  • I the number of subcarriers contained in an RB. It is the CP length of the symbol i of the subcarrier interval ⁇ , and the unit is the number of sampling points.
  • ⁇ f is the size of the subcarrier interval ⁇ .
  • T c 1/(480 ⁇ 1000 ⁇ 4096).
  • e is a natural constant.
  • j is an imaginary unit, and the square of j is equal to -1.
  • is the ratio of pi.
  • ⁇ 0 the maximum sub-carrier spacing of several carriers configured by RRC signaling.
  • the useful signal in the first first OFDM symbol includes sampling points from 1 to 1024; the cyclic prefix of the first first OFDM symbol includes sampling points from 953 to 1024.
  • the useful signal is cyclically shifted, and the useful signal after cyclic shift includes sampling points 73 to 1024 sequentially. And sampling points from 1 to 72.
  • the cyclic prefix of the second first OFDM symbol includes the last 72 sampling points of the cyclically shifted useful signal (that is, sampling points 1 to 72). It can be seen from FIG. 10B that the last 2048 sampling points of the two first OFDM symbols include two identical sampling points 1 to 1024, for a total of 2048 sampling points. That is, under the sampling window of 2048 sampling points, sampling points 1 to 1024 are repeated twice in the time domain.
  • the useful signal in the first first OFDM symbol includes sampling points from 1 to 512; the cyclic prefix of the first first OFDM symbol includes sampling points from 477 to 512.
  • the useful signal is cyclically shifted.
  • the useful signal after cyclic shift includes sampling points 37 to 512 in turn.
  • sampling points 1 to 36; the cyclic prefix of the second first OFDM symbol includes the last 36 sampling points of the useful signal after cyclic shift (that is, sampling points 1 to 36).
  • the useful signal is cyclically shifted, and the useful signal after cyclic shift includes sampling points 73 to 512 in turn. And sampling points 1 to 72; the cyclic prefix of the third first OFDM symbol includes the last 36 sampling points of the cyclically shifted useful signal (that is, sampling points 37 to 72).
  • the useful signal is cyclically shifted, and the useful signal after cyclic shift includes sampling points 109-512 sequentially.
  • the cyclic prefix of the fourth first OFDM symbol includes the last 36 sampling points (that is, 73 to 108 sampling points) of the cyclically shifted useful signal. It can be seen from FIG. 10C that the last 2048 sampling points of the four first OFDM symbols include four identical sampling points No. 1 to 512. That is, under the sampling window of 2048 sampling points, sampling points 1 to 512 are repeated 4 times in the time domain.
  • the receiving end can remove the cyclic prefix in the i-th first OFDM symbol to obtain the i-th The time domain signal of the first OFDM symbol; the fast Fourier transform corresponding to the first SCS is performed on the time domain signal of the i-th first OFDM symbol to obtain the frequency domain signal after phase rotation processing; and, for the shared bandwidth Divide the phase-processed frequency domain signal by the phase rotation factor to determine the original frequency domain signal.
  • the subcarrier corresponding to the first SCS is referred to as the first subcarrier
  • the subcarrier corresponding to the second SCS is referred to as the second subcarrier.
  • repeating the signal in the time domain is equivalent to interpolating 0 for the signal in the frequency domain.
  • the signal value of the PDSCH of the first SCS is equal to zero. That is, in the 2 n first OFDM symbols, if the number of the second subcarrier in the resource grid starts from 0, the value of the first SCS signal is in the second subcarrier whose number is not an integer multiple of 2 n Where is equal to 0.
  • the PDSCH is on the ninth OFDM symbol
  • the solid one-way arrows indicate subcarriers used to carry PDSCH information
  • the dashed one-way arrows indicate subcarriers not used to carry PDSCH information. Since on the ninth OFDM symbol in FIG. 2, REs (1, 8), (4, 8), (7, 8), and (10, 8) are REs not used to carry PDSCH. Therefore, in FIG.
  • subcarrier #1, subcarrier #4, subcarrier #7, and subcarrier #10 are represented by dashed one-way arrows.
  • the LTE CRS on 15kHz subcarrier #3 will not be affected by NR.
  • the LTE CRS on subcarrier #3 at 15kHz will not interfere with NR PDSCH.
  • RE (1, 8), (4, 8), (7, 8), and (10, 8) are not used to carry NR PDSCH. Therefore, in the method provided in the embodiment of the present application, The NR PDSCH on the ninth OFDM symbol and the tenth OFDM symbol in the resource grid shown in FIG. 2 can perform rate matching based on the LTE CRS.
  • the NR PDSCH is on the ninth OFDM symbol and the tenth OFDM symbol in the resource grid shown in FIG. 2, and there is no need to perform rate based on LTE CRS.
  • Match for example, as shown in Figure 14.
  • the black squares indicate REs that do not map NR PDSCH, that is, REs that NR PDSCH needs to perform rate matching based on LTE CRS.
  • Fig. 14 has more RE resources available and fewer RE resources that require rate matching.
  • the signal with a 30kHz subcarrier interval is set to 0 at the position of the corresponding 15kHz subcarrier with an odd number, the 30kHz subcarrier
  • the carrier spacing signal does not affect the reference signal carried by the odd-numbered 15kHz subcarrier (for example, the LTE CRS carried by the 15kHz subcarrier numbered 3).
  • the subcarrier interval is numbered from 1 (or other odd numbers) in the frequency domain, in FIG. 13A or FIG. 13B, the signal with the 30kHz subcarrier interval is in the corresponding number.
  • the position of the even-numbered 15kHz sub-carrier is set to 0.
  • the signal of the first SCS is set to 0 at the position corresponding to the second subcarrier whose number is not an integer multiple of 2 n . Therefore, in the shared spectrum, the signal of the first SCS will not affect the signal of the second subcarrier whose corresponding number is not an integer multiple of 2n . In other words, in the shared spectrum, on the RE corresponding to the second SCS whose subcarrier number is not an integer multiple of 2 n , the signal of the first SCS (for example, NR PDSCH) will not affect the reference signal of the corresponding second SCS (E.g. LTE CRS).
  • the first SCS is 60kHz
  • the second SCS is 15kHz
  • the first SCS The signal value of is equal to 0.
  • the signal of the first SCS needs to perform rate matching on the resources corresponding to the signal of the second SCS.
  • any RE in the first RE set corresponding to each first OFDM symbol is not used to map the PDSCH, and the first RE set and the second RE set are not used to map the PDSCH.
  • the RE set has an overlap in the frequency domain.
  • One second OFDM symbol aligned in the time domain with the 2n first OFDM symbols is used to send a reference signal corresponding to the second SCS, including: in the one second OFDM symbol, the second RE
  • the REs in the set are used to map the reference signal corresponding to the second SCS.
  • the first set of REs may be defined within one OFDM symbol or within multiple OFDM symbols.
  • the first set of REs includes 2n first OFDM symbols that are not used for mapping the PDSCH.
  • the first set of REs includes one time slot and one RB resource block that is not used for mapping the PDSCH. RE.
  • the overlap between the first RE set and the second RE set in the frequency domain means that one RE in the first RE set and at least one RE in the second RE set have an overlap in the frequency domain. In other words, one RE in the second RE set and at least one RE in the second RE set overlap in the frequency domain.
  • FIG. 1 and FIG. 2 For a situation where one RE and another RE overlap in the frequency domain, it can be described in conjunction with FIG. 1 and FIG. 2. It can be seen from FIG. 1 and FIG. 2 that the RE with the index (0, 0) in FIG. 1 and the RE with the index (0, 0) or (0, 1) in FIG. 2 overlap in the frequency domain.
  • the RE with the index (3, 4) in FIG. 1 and the RE with the index (1, 8) or (1, 9) in FIG. 2 overlap in the frequency domain.
  • the REs included in the first RE set may be determined according to the REs included in the second RE set.
  • the position of the RE in the first RE set may be determined according to the position of the RE in the second RE set.
  • the second RE set is a subset of the third RE set.
  • the third set of REs corresponding to the second OFDM symbol includes all REs used to carry reference signals on the second OFDM symbol.
  • the third RE set corresponding to OFDM symbol #0 may be ⁇ (0,0), (6,0), (12,0), (18,0) ⁇ .
  • any RE in the third RE set belongs to the second RE set. That is, the second set of REs is equal to the third set of REs.
  • the second OFDM symbol #0 in FIG. 1 is aligned with the first OFDM symbol #0 and the first OFDM symbol #1 in FIG. 2 in the time domain, and the first OFDM symbol #1 in FIG.
  • the second OFDM symbol #4 is aligned with the first OFDM symbol #8 and the first OFDM symbol #9 in FIG. 2 in the time domain.
  • the third RE set corresponding to the second OFDM symbol #4 includes RE ⁇ (3,4), (9,4), (15,4), (21,4) ⁇ , and the first RE set corresponding to the second OFDM symbol #0
  • the three RE sets include RE ⁇ (0,0), (6,0), (12,0), (18,0) ⁇ .
  • the second set of REs is equal to the third set of REs.
  • the first RE set corresponding to the first OFDM symbol #8 and the first OFDM symbol #9 includes RE ⁇ (1,8),(4,8),(7,8),(10,8),(1 ,9),(4,9),(7,9),(10,9) ⁇
  • the first RE set corresponding to the first OFDM symbol #0 and the first OFDM symbol #1 includes RE ⁇ (0,0 ),(3,0),(6,0),(9,0),(0,1),(3,1),(6,1),(9,1) ⁇ .
  • some REs in the third RE set belong to the second RE set.
  • Reference signals of the present application provides a method according to the embodiment, since the 2 n PDSCH in the first OFDM symbol transmission is repeated, and thus carried on the PDSCH subcarrier number is not an integer multiple of 2 n REs on the second OFDM symbol Do not interfere with each other. Therefore, the PDSCH only needs to perform rate matching on the REs on the second OFDM symbol that are numbered an integer multiple of 2 n and used to carry the reference signal. Based on this consideration, REs whose subcarrier numbers are integer multiples of 2 n in the third RE set belong to the second RE set. In this way, the subcarrier numbers of REs in the second RE set are integer multiples of 2n . It is understandable that, in this case, 2 n times the subcarrier number of the RE in the first RE set is equal to the number of one RE in the second RE set.
  • the second OFDM symbol #0 in FIG. 1 is aligned with the first OFDM symbol #0 and the first OFDM symbol #1 in FIG. 2 in the time domain, and the first OFDM symbol #1 in FIG.
  • the second OFDM symbol #4 is aligned with the first OFDM symbol #8 and the first OFDM symbol #9 in FIG. 2 in the time domain.
  • the third RE set corresponding to the second OFDM symbol #4 includes RE ⁇ (3,4), (9,4), (15,4), (21,4) ⁇ , and the second OFDM symbol #0
  • the third RE set includes RE ⁇ (0,0), (6,0), (12,0), (18,0) ⁇ .
  • the REs with subcarrier numbers that are integer multiples of 2 n in the third RE set belong to the second RE set, and n is equal to 1. Since ⁇ (3,4),(9,4),(15,4),(21,4) ⁇ corresponding to the second OFDM symbol #4 does not exist any RE subcarrier number is an integer multiple of 2, Therefore, the RE ⁇ (4,3),(4,9),(4,15),(4,21) ⁇ corresponding to the second OFDM symbol #4 is not included in the second RE set, that is, the second OFDM symbol
  • the second RE set corresponding to #4 is an empty set, so the first RE set corresponding to the first OFDM symbol #8 and the first OFDM symbol #9 is an empty set.
  • the subcarrier numbers of RE(0,0), (6,0), (12,0), (18,0) are all integer multiples of 2, so
  • the second RE set corresponding to the second OFDM symbol #0 includes RE ⁇ (0,0), (6,0), (12,0), (18,0) ⁇ . Therefore, the first set of REs corresponding to the first OFDM symbol #0 and the first OFDM symbol #1 includes RE ⁇ (0,0),(3,0),(6,0),(9,0),(0 ,1),(3,1),(6,1),(9,1) ⁇ .
  • the second RE set and the third RE set may be defined in a second SCS time slot range, or may be defined in a second SCS symbol range, which is not limited in the embodiment of the present application.
  • the first OFDM symbol and the second OFDM symbol are respectively used to describe a type of signal.
  • one or more groups of 2 n first OFDM symbols may be included, which is not limited in the embodiment of the present application.
  • the terminal uses the first SCS to receive the PDSCH from the network device.
  • step S102 may also be expressed as: the terminal receives the PDSCH corresponding to the first SCS from the network device.
  • the terminal may receive PDSCH in the 2 n first OFDM symbol.
  • the gain of the PDSCH received by the terminal can be improved.
  • the first terminal on a first OFDM symbol by 2 n receiving the first PDSCH OFDM symbol the first two OFDM is not 2 n
  • the PDSCH is received on the non-first first OFDM symbol of the symbol. It is beneficial to simplify the process of the terminal receiving the PDSCH.
  • the terminal on the at least one first OFDM symbol by 2 n receiving the first PDSCH OFDM symbol not the first OFDM symbol of 2 n
  • the PDSCH is received on OFDM symbols other than the at least one first OFDM symbol.
  • the at least one first OFDM symbol may be any at least one symbol of the 2 n first OFDM symbols, and its position may be continuous or discrete in the time domain, which is not limited in the embodiment of the present application.
  • the at least one symbol may be the first two symbols, the last symbol, or other possible situations.
  • the steps S101 & S102 are not only applicable to the transmission and reception of PDSCH, but also applicable to the transmission and reception of other downlink channels or downlink signals such as PDCCH and DMRS.
  • the steps S101 & S102 are not only applicable to the transmission and reception of downlink PDSCH signals, but can also be extended to the transmission and reception of uplink signals.
  • the method further includes: pre-configuration or the network device configuring the resource location of the third RE set or the second RE set for the terminal through signaling.
  • Semi-static signaling can also be referred to as higher layer signaling.
  • the signaling may be semi-static signaling and/or dynamic signaling.
  • the semi-static signaling may be radio resource control (RRC) signaling, broadcast messages, system messages, or medium access control (MAC) control elements, CE).
  • RRC radio resource control
  • the broadcast message may include remaining minimum system information (RMSI).
  • the dynamic signaling may be physical layer signaling.
  • the physical layer signaling may be signaling carried by a physical control channel or signaling carried by a physical data channel.
  • the physical data channel may be a downlink channel, such as PDSCH.
  • the physical control channel can be PDCCH, enhanced physical downlink control channel (EPDCCH), narrowband physical downlink control channel (NPDCCH), or machine type communication (MTC) )physical downlink control channel, MPDCCH).
  • the signaling carried by the PDCCH or EPDCCH may also be referred to as downlink control information (downlink control information, DCI).
  • the physical control channel may also be a physical sidelink control channel (physical sidelink control channel), and the signaling carried by the physical sidelink control channel may also be called sidelink control information (SCI).
  • the resource location for configuring the third RE set may be the resource location where the reference signal for configuring the second SCS for the terminal is located.
  • To configure the resource location of the reference signal of the second SCS for the terminal refer to the method of configuring the resource location of the reference signal for the terminal device in LTE 36.211 and 36.331, or refer to the resource location of configuring the reference signal for the terminal device in Reference NR 38.211 and 38.331
  • the method, or other methods of configuring the resource location of the reference signal can be referred to, which is not limited in the embodiment of the present application.
  • the reference signal can be various possible reference signals, such as CRS, or DMRS.
  • the LTE protocol version or the NR protocol version does not constitute a limitation on the application scope of the embodiments of the present application.
  • the resource location configuration method of the reference signal described in the protocol version formulated in the future may also use the embodiments of the present application.
  • the resource location for configuring the second RE set for the terminal device may be the location of the second OFDM symbol where the RE in the second RE set is configured, and the location of the subcarrier where the RE in the second RE set is located in the symbol.
  • the position of the second OFDM symbol where the RE in the second RE set is located and the position of the subcarrier where the RE in the second RE set is located in the symbol either one may be pre-configured, and the other It is the network equipment that configures the terminal through signaling; or both are pre-configured; or both are network equipment that configures the terminal through signaling.
  • the signaling used to configure the resource location of the third RE set or the second RE set may be referred to as resource configuration information.
  • the resource configuration information is used to configure time domain resources and/or frequency domain resources of the reference signal corresponding to the second SCS.
  • the resource configuration information is used to indicate the location of each RE in the fourth RE set.
  • the fourth set of REs includes N second OFDM symbols for carrying reference signals corresponding to the second SCS, that is, the fourth set of REs includes N third sets of REs.
  • N is a positive integer.
  • the fourth RE set is RE ⁇ (0,0),(6,0),(12,0),(18,0); (3,4),(9,4),( 15,4),(21,4); (0,0),(6,7),(12,7),(18,7); (3,11),(9,11),(15, 11),(21,11); ⁇ .
  • the terminal can determine the position of the second OFDM symbol based on the resource configuration information. For example, if the third RE set indicated by the resource configuration information is ⁇ (0,0),(2,1),(4,5) ⁇ , the terminal may determine OFDM symbol #0, OFDM symbol #1, And OFDM symbol #5 has REs that carry the reference signal corresponding to the second SCS, that is, OFDM symbol #0, OFDM symbol #1, and OFDM symbol #5 are used to send the reference signal corresponding to the second SCS. Therefore, the terminal can determine that OFDM symbol #0, OFDM symbol #1, and OFDM symbol #5 are all second OFDM symbols.
  • the terminal can determine N third RE sets based on the resource configuration information. For example, if the fourth RE set indicated by the resource configuration information is ⁇ (0,0),(6,0),(12,0),(18,0); (3,4),(9, 4),(15,4),(21,4); (0,7),(6,7),(12,7),(18,7); (3,11),(9,11) ,(15,11),(21,11); ⁇ , taking all REs in the third RE set as an example, the terminal can determine that the third RE set corresponding to OFDM symbol #0 is ⁇ (0 ,0),(6,0),(12,0),(18,0) ⁇ , the third RE set corresponding to OFDM symbol #4 is ⁇ (3,4),(9,4),(15, 4),(21,4) ⁇ , the third RE set corresponding to OFDM symbol #7 is ⁇ (0,7),(6,7),(12,7),(18,7) ⁇ , OFDM symbol# The third RE set corresponding to 11 is ⁇ (0
  • the terminal may determine the second RE set corresponding to the second OFDM symbol according to the third RE set corresponding to the second OFDM symbol.
  • the second RE set includes REs whose subcarrier numbers are integer multiples of 2 n in the third RE set as an example.
  • the third RE set corresponding to 4 is ⁇ (3,4), (9,4), (15,4), (21,4) ⁇ , and the second RE set corresponding to OFDM symbol #4 is an empty set.
  • the third RE set corresponding to OFDM symbol #7 is ⁇ (0,7), (6,7), (12,7), (18,7) ⁇
  • the second RE corresponding to OFDM symbol #7 The set is ⁇ (0,7),(6,7),(12,7),(18,7) ⁇ .
  • the terminal may determine the first RE set corresponding to the 2 n first OFDM symbols according to the second RE set corresponding to the second OFDM symbol. For example, the second OFDM symbol #0 is aligned with the first OFDM symbol #0 and the first OFDM symbol #1 in the time domain. If the second RE set corresponding to the second OFDM symbol #0 is ⁇ (0,0),(6, 0),(12,0),(18,0) ⁇ , then the first RE set corresponding to the first OFDM symbol #0 and the first OFDM symbol #1 is ⁇ (0,0),(3,0), (6,0),(9,0); (0,1),(3,1),(6,1),(9,1); ⁇ .
  • the resource configuration information when used to indicate the position of each RE in the third RE set, the resource configuration information is used to indirectly indicate the position of at least one second OFDM symbol; and, for each second OFDM symbol , The resource configuration information is also used to indirectly indicate the position of the RE in the second RE set corresponding to the OFDM symbol.
  • the resource configuration information is used to indicate the location of each RE in the fourth RE set, including one of the following situations:
  • Case 1 The resource configuration information is used to indicate the index of each RE in the fourth RE set.
  • the resource configuration information is used to indicate the index of the resource pattern (pattern).
  • the resource pattern uses RB as the granularity, or the frequency domain with the RB granularity and the time domain with the time slot as the granularity, and is used to indicate the position of the RE carrying the reference signal in the resource grid.
  • the resource pattern can be referred to as shown in FIG. 15.
  • the resource configuration information includes: bandwidth, number of antenna ports, offset value, and center position of the carrier.
  • the corresponding resource pattern can refer to Figure 15; when the number of antenna ports is 2, the corresponding resource pattern can refer to Figure 16; when the number of antenna ports is Refer to Figure 17 for the corresponding resource pattern at 4 o'clock.
  • the offset value is used to indicate the cyclic shift in the frequency domain of the RE carrying the reference signal. For example, taking the offset value of 1 and the number of antenna ports of 1 as an example, after the REs carrying the reference signal in the resource pattern shown in FIG. 15 cyclically move in the frequency domain, the resource grid carries the reference signal. Refer to Figure 18 for the location of RE.
  • the offset value ID cell mod6.
  • ID cell represents the identity of the physical cell.
  • the terminal determines the bandwidth size and position of the frequency domain resources through the bandwidth and the center position of the carrier; and the terminal determines the corresponding resource pattern according to the number of antenna ports; after that, the terminal determines according to the offset value and the resource pattern
  • the positions of all REs carrying the reference signal in the resource grid, that is, the fourth set of REs used to carry the reference signal in the resource grid corresponding to the second SCS is determined.
  • the method provided in the embodiment of the present application further includes: the network device sends the PDSCH scheduling information to the terminal.
  • the terminal receives the scheduling information of the PDSCH.
  • the scheduling information of the PDSCH is carried in the DCI.
  • DCI For the introduction of DCI, you can refer to the introduction of NR 38.212 and LTE 36.212, or you can refer to other DCI formats, which are not limited in the embodiment of this application.
  • the scheduling information of the PDSCH is used to indicate the modulation mechanism of the PDSCH, and the code rate of the PDSCH indicated by the modulation mechanism is less than a first threshold.
  • the first threshold is related to the number N of OFDM symbols included in a slot of a first SCS, and the number M of the N OFDM symbols used for repeated PDSCH transmission to reduce ISI interference, and the first threshold may be less than or Equal to (NM)/N.
  • a slot of the first SCS of 30 kHz as shown in FIG. 2 includes 14 OFDM symbols, and the symbols #1 and #9 of the 14 OFDM symbols are used for repeated transmission to reduce ISI interference, so the first threshold may be Less than or equal to 12/14; the spectral efficiency equivalent to the first threshold is equal to the first threshold multiplied by the modulation order used by the PDSCH.
  • the N may also be expressed as the number of OFDM symbols mapped by the PDSCH in the time domain; the M may also be expressed as the number of OFDM symbols used for repeated transmission among the N symbols transmitted by the PDSCH.
  • the first threshold and the number N of OFDM symbols included in the slot of a first SCS, the number M of the N OFDM symbols used for repeated PDSCH transmission to reduce ISI interference, and the BWP and the first SCS The number of RBs N1 of the first SCS overlapped or shared by the two SCSs is related to the number of RBs N2 exclusive to the first SCS in the BWP of the first SCS.
  • the first threshold may be less than or equal to [N*(N1+N2 )-(NM)*N1]/[N*(N1+N2)], for example, one slot of the first SCS of 30kHz shown in Figure 2 includes 14 OFDM symbols, of which the symbols #1 and #9 is used for repeated transmission to reduce ISI interference.
  • the first threshold may be less than or equal to 13/14;
  • the spectral efficiency equivalent to a threshold is equal to the first threshold multiplied by the modulation order used by the PDSCH.
  • the PDSCH scheduling information is used to indicate the modulation mechanism of the PDSCH, including: the PDSCH scheduling information is used to indicate an index of a modulation and coding scheme (modulation and coding scheme, MCS).
  • MCS modulation and coding scheme
  • MCS is used to indicate the modulation method and coding method.
  • MCS is used to indicate the modulation method and coding method.
  • Table 4 when the MCS index is 29, 30, or 31, the code rate and spectrum efficiency are reserved (reserved).
  • the PDSCH scheduling information is used to indicate the time-frequency resources occupied by the PDSCH.
  • the PDSCH scheduling information is also used to indicate the RB occupied by the PDSCH on the BWP of the terminal.
  • the PDSCH is used to indicate the start position of the RB occupied by the PDSCH on the BWP of the terminal and the number of RBs.
  • how to determine the available BWP of the terminal refers to the introduction to the BWP in the previous section, and will not be repeated here.
  • each network element such as a network device and a terminal, includes a hardware structure or a software module corresponding to the function, or a combination of the two, in order to realize the above function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 19 is a schematic structural diagram of an apparatus 1000 provided by an embodiment of the present application.
  • the apparatus 1000 may be a terminal or a network device, which can implement the method provided in the embodiment of the present application; the apparatus 1000 may also be a device that can support the terminal or network equipment to implement the method provided in the embodiment of the present application, and the apparatus 1000 may be installed in the terminal or Network equipment.
  • the apparatus 1000 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the device 1000 can be implemented by a chip system.
  • the device 1000 includes a processing module 1001 and a communication module 1002.
  • the processing module 1001 can generate information for transmission, and can use the communication module 1002 to transmit the information.
  • the processing module 1001 can use the communication module 1002 to receive information and process the received information.
  • the processing module 1001 and the communication module 1002 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or connection between devices, units, or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the coupling can be a wired connection or a wireless connection.
  • the communication module may be a circuit, a module, a bus, an interface, a transceiver, or other device that can implement a transceiver function, and the embodiment of the present application does not limit it.
  • FIG. 20 is an exemplary diagram of an apparatus 2000 for implementing functions of a network device or terminal provided by an embodiment of the application.
  • the apparatus 2000 is used to implement the function of a network device.
  • the device 2000 includes at least one processor 2001 and a communication interface 2002.
  • the processor 2001 is used to implement the function of the network device in the method provided in the embodiment of the present application, and the communication interface 2002 is used to communicate between the device and other devices (such as a terminal).
  • the apparatus 2000 may include a memory 2003.
  • the memory 2003 may be included in the processor 2001.
  • the processor 2001, the communication interface 2002, and the memory 2003 can communicate with each other through an internal connection path (such as a bus).
  • the memory 2003 is used to store instructions.
  • the apparatus 2000 enables the device 2000 to implement the function of the network device in the method provided in the embodiment of the present application.
  • the apparatus 2000 may be in various possible forms, such as a network device, a circuit, or a system on chip (system on chip, SoC), which is not limited in the embodiment of the present application.
  • a network device such as a network device, a circuit, or a system on chip (system on chip, SoC), which is not limited in the embodiment of the present application.
  • SoC system on chip
  • the apparatus 2000 is used to implement the functions of the terminal.
  • the device 2000 includes at least one processor 2001 and a communication interface 2002.
  • the processor 2001 is used to implement the function of the terminal in the method provided in the embodiment of the present application, and the communication interface 2002 is used to communicate between the device and other devices (such as network devices).
  • the apparatus 2000 may include a memory 2003.
  • the memory 2003 may be included in the processor 2001.
  • the processor 2001, the communication interface 2002, and the memory 2003 can communicate with each other through an internal connection path (such as a bus).
  • the memory 2003 is used to store instructions.
  • the processor 2001 executes the instructions stored in the memory 2003, the device 2000 enables the device 2000 to implement the function of the terminal in the method provided in the embodiment of the present application.
  • the device 2000 may be in various possible forms such as a terminal, a circuit, or an SoC, which is not limited in the embodiment of the present application.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, discrete gates or transistor logic devices, or discrete hardware components.
  • the general-purpose processor may be a microprocessor or any form of processor.
  • the communication interface may be a circuit, module, bus, bus interface, transceiver, or other device or module that can implement communication functions.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory may be any other medium used to carry or store program codes in the form of instructions or data structures and which can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the module division of the device is a logical function division, and there may be other division methods in actual implementation.
  • each functional module of the device may be integrated into one module, or each functional module may exist alone, or two or more functional modules may be integrated into one module.
  • the method provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, SSD).
  • the embodiments can be mutually cited.
  • methods and/or terms between method embodiments can be mutually cited, such as functions and/or functions between device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据信道的传输方法及装置,涉及通信技术领域,用于降低两个支持不同子载波间隔的信号之间的互相干扰。该方法包括:终端使用第一SCS接收PDSCH;其中,PDSCH在2n个第一OFDM符号上是重复传输的,2n个第一OFDM符号和1个第二OFDM符号在时域内对齐,该1个第二OFDM符号用于发送第二SCS对应的参考信号,第一SCS是第二SCS的2n倍,其中n为正整数。在两个支持不同SCS的通信网络共频段部署的场景下,本申请实施例所提供的技术方案可以用于降低第一SCS对应的PDSCH和第二SCS对应的参考信号之间的互相干扰。

Description

数据信道的传输方法及装置
本申请要求于2019年03月18日提交国家知识产权局、申请号为201910205525.1、申请名称为“数据信道的传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及数据信道的传输方法及装置。
背景技术
在无线通信系统中,为了充分利用空口资源(例如时域资源、频域资源、和/或码资源等),允许不同制式的通信网络共享相同的空口资源。例如,为了充分利用频域资源,第五代(5rd generation,5G)通信网络和长期演进(long term evolution,LTE)通信网络可以共享相同的频域资源,即5G系统和LTE系统可以部署在相同的频域资源上。当5G系统和LTE系统共享频域资源时,如何降低5G系统和LTE系统之间的干扰是需要重点研究的课题。
发明内容
本申请实施例提供一种数据信道的传输方法及装置,用于降低两个支持不同子载波间隔(subcarrier spacing,SCS)的信号之间的互相干扰。
第一方面,提供一种数据信道的传输方法,包括:使用第一SCS接收第一信号;其中,所述第一信号在2 n个第一正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的第二信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。
基于该技术方案,对于第一信号来说,将该第一信号在时域上重复,相当于对该第一信号在频域上进行插0。第一SCS对应的第一信号在2 n个第一OFDM符号上是重复传输的,因此,对于2 n个第一OFDM符号对应的一个第二OFDM符号上,第一信号在一部分第二SCS对应的子载波是等于0的,从而第一信号不会影响到这一部分第二SCS对应的子载波上承载的第二信号。这样一来,能够降低第一SCS对应的第一信号与第二SCS对应的第二信号之间的互相干扰。
一种可能的设计中,所述第一信号在2 n个第一OFDM符号上是重复传输的,包括:在共享频域资源中,所述第一信号在2 n个第一OFDM符号上是重复传输的。可选地,在非共享频域资源中,所述第一信号在2 n个第一OFDM符号上是独立传输的。
一种可能的设计中,第一信号包括物理下行共享信道(physical downlink shared channel,PDSCH)上携带的数据,第二信号包括参考信号;或者,第一信号包括物理下行控制信道(physical downlink control channel,PDCCH)上携带的数据,第二信号包括参考信号;或者,第一信号包括PDSCH上携带的数据,第二信号包括参考信号和PDCCH上携带的数据;或者,第一信号包括PDCCH上携带的数据和PDSCH上携带的数据,第二信号包括参考信号;或者,第一信号包括PDCCH上携带的数据和PDSCH上携带的数据,第二信 号包括参考信号和PDCCH上携带的数据。可选地,所述参考信号包括小区参考信号(cell reference signal,CRS)。
一种可能的设计中:对于所述2 n个第一OFDM符号,当n=1时,所述两个第一OFDM符号中的第一个第一OFDM符号包括循环前缀,第二个第一OFDM符号包括循环后缀。通过该方法,能够简单地实现第一信号在两个第一OFDM符号上的重复传输,简化系统设计的复杂度。
一种可能的设计中,所述2 n个第一OFDM符号中第i个第一OFDM符号上传输的第一信号是对应的频域信号经过相位旋转处理后得到的,i为大于1且小于等于2 n的整数。通过该方法,可以兼容传统的信号接收算法,无需额外设计新的接收算法,从而可以简化系统设计。
一种可能的设计中,接收第一信号,包括:在所述2 n个第一OFDM符号的第一个第一OFDM符号上接收所述第一信号。这样一来,可以简化接收第一信号的流程,降低复杂度。
一种可能的设计中,在所述2 n个第一OFDM符号上,第一RE集合中的RE不用于映射所述第一信号,所述第一RE集合和第二RE集合在频域内存在重叠部分;
所述1个第二OFDM符号用于发送所述第二SCS对应的第二信号,包括:在所述1个第二OFDM符号中,所述第二RE集合中的RE用于映射所述第二SCS对应的第二信号。通过该方法,可以针对第二SCS的第二信号进行速率匹配,从而可以降低第一信号和第二信号之间的干扰。
一种可能的设计中,所述第一RE集合中一个RE的子载波编号的2 n倍等于所述第二RE集合中一个RE的子载波编号。通过该方法,可以增加第一信号的可用资源,从而可以提高系统的数据传输速率。
一种可能的设计中,该方法还包括:接收资源配置信息,该资源配置信息用于指示所述第二OFDM符号的位置。从而,根据该资源配置信息,可以确定第二OFDM符号的位置,从而确定2 n个第一OFDM符号的位置,以便于正确接收PDSCH。可选地,该资源配置信息还用于确定第二RE集合中RE的频域位置。通过该方法,由于第一RE集合和第二RE集合在频域上存在重叠部分,因此根据资源配置信息,确定第二RE集合中RE的位置,进而能够确定第一RE集合中RE的位置,以便于正确接收PDSCH。可选地,该方法还包括:根据该资源配置信息确定所述第二OFDM符号的位置。
一种可能的设计中,该方法还包括:接收资源配置信息,该资源配置信息用于确定第二RE集合中RE的资源位置。例如,该资源配置信息用于确定第二RE集合中的各RE的时域位置(如符号位置)和频域位置(如子载波位置)。可选地,该方法还包括:根据该资源配置信息确定所述第二RE集合中的RE的位置。
一种可能的设计中,该方法还包括:接收第一信号的调度信息,该调度信息用于指示PDSCH的编码机制,所述编码机制所指示的码率小于第一阈值。可以理解的是,PDSCH的码率小于第一阈值,可以提高PDSCH的正确传输率。
第二方面,提供一种数据信道的传输方法,包括:使用第一SCS发送第一信号;其中,所述第一信号在2 n个第一OFDM符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的第二信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。
一种可能的设计中,该方法还包括:发送资源配置信息,该资源配置信息用于指示所述第二OFDM符号的位置。
一种可能的设计中,该方法还包括:发送第一信号的调度信息,该调度信息用于指示第一信号的编码机制,所述编码机制所指示的码率小于第一阈值。
针对所述第一信号、第二信号以及资源配置信息的相关介绍请参考第一方面,这里不再赘述。
第三方面,提供一种数据信道的传输方法,包括:接收资源配置信息,该资源配置信息用于确定第二OFDM符号的位置,所述第二OFDM符号用于发送第二SCS对应的第二信号,1个第二OFDM符号和2 n个第一OFDM符号在时域内对齐,2 n个第一OFDM符号用于重复传输第一SCS对应的第一信号,第一SCS是第二SCS的2 n倍,其中n为正整数。
可选地,该方法还可以描述为:接收资源配置信息,所述资源配置信息用于确定第二SCS对应的第二信号的资源位置(例如时域位置,或者时域位置和频域位置),所述第二信号所在的符号位置包括第二OFDM符号,1个第二OFDM符号和2 n个第一OFDM符号在时域内对齐,所述2 n个第一OFDM符号用于重复传输第一SCS对应的第一信号,第一SCS是第二SCS的2 n倍,其中n为正整数。
针对所述第一信号、第二信号以及资源配置信息的相关介绍请参考第一方面,这里不再赘述。
一种可能的设计中,该方法还包括:在2 n个第一OFDM符号中的第一个第一OFDM符号上接收第一信号。
一种可能的设计中,该方法还包括:接收第一信号的调度信息,该调度信息用于指示第一信号的编码机制,所述编码机制所指示的码率小于第一阈值。
第四方面,提供一种数据信道的传输方法,包括:发送资源配置信息,该资源配置信息用于指示第二OFDM符号的位置,所述第二OFDM符号用于发送第二SCS对应的第二信号,1个第二OFDM符号和2 n个第一OFDM符号在时域内对齐,2 n个第一OFDM符号用于重复传输第一SCS对应的第一信号,第一SCS是第二SCS的2 n倍,其中n为正整数。
可选地,该方法还可以描述为:发送资源配置信息,所述资源配置信息用于指示第二SCS对应的第二信号的资源位置(例如时域位置,或者时域位置和频域位置),所述第二信号所在的符号位置包括第二OFDM符号,1个第二OFDM符号和2 n个第一OFDM符号在时域内对齐,所述2 n个第一OFDM符号用于重复传输第一SCS对应的第一信号,第一SCS是第二SCS的2 n倍,其中n为正整数。
一种可能的设计中,该方法还包括:在2 n个第一OFDM符号上重复发送第一信号。
一种可能的设计中,该方法还包括:发送第一信号的调度信息,该调度信息用于指示第一信号的编码机制,所述编码机制所指示的码率小于第一阈值。
针对所述第一信号、第二信号以及资源配置信息的相关介绍请参考第一方面,这里不再赘述。
第五方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面或第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模 块。示例性地,
所述通信模块用于使用第一SCS接收第一信号;其中,所述第一信号在2 n个第一OFDM符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的第二信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。所述处理模块用于处理所述第一信号。
一种可能的设计中,所述通信模块具体用于:在所述2 n个第一OFDM符号的第一个第一OFDM符号上接收所述第一信号。
一种可能的设计中,所述通信模块还用于:接收资源配置信息,该资源配置信息用于确定所述第二OFDM符号的位置。
一种可能的设计中,所述通信模块还用于:接收第一信号的调度信息,该调度信息用于指示第一信号的编码机制,所述编码机制所指示的码率小于第一阈值。
针对所述第一信号、第二信号以及资源配置信息的相关介绍请参考第一方面,这里不再赘述。
第六方面,提供一种装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第二方面或第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性地,
所述通信模块用于:使用第一SCS发送第一信号;其中,所述第一信号在2 n个第一OFDM符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的第二信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。所述处理模块用于生成所述第一信号。
一种可能的设计中,所述通信模块还用于:发送资源配置信息,该资源配置信息用于指示所述第二OFDM符号的位置。
一种可能的设计中,所述通信模块还用于:发送第一信号的调度信息,该调度信息用于指示第一信号的编码机制,所述编码机制所指示的码率小于第一阈值。
针对所述第一信号、第二信号以及资源配置信息的相关介绍请参考第二方面,这里不再赘述。
第七方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面或第三方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面或第三方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储指令;
处理器,用于利用通信接口:使用第一SCS接收第一信号;其中,所述第一信号在2 n个第一OFDM符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的第二信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。所述处理模块用于处理(例如解调、译码等) 所述第一信号。
一种可能的设计中,所述接收第一信号,包括:在所述2 n个第一OFDM符号的第一个第一OFDM符号上接收所述第一信号。
一种可能的设计中,所述处理器还用于利用通信接口:接收资源配置信息,该资源配置信息用于确定所述第二OFDM符号的位置。
一种可能的设计中,所述处理器还用于利用通信接口:接收第一信号的调度信息,该调度信息用于指示第一信号的编码机制,所述编码机制所指示的码率小于第一阈值。
针对所述第一信号、第二信号以及资源配置信息的相关介绍请参考第一方面,这里不再赘述。
第八方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二方面或第四方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面或第四方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口,其它设备可以为网络设备。在一种可能的设备中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口:使用第一SCS发送第一信号;其中,所述第一信号在2 n个第一OFDM符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的第二信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。
一种可能的设计中,所述处理器还用于利用通信接口:发送资源配置信息,该资源配置信息用于指示所述第二OFDM符号的位置。
一种可能的设计中,所述处理器还用于利用通信接口:发送第一信号的调度信息,该调度信息用于指示第一信号的编码机制,所述编码机制所指示的码率小于第一阈值。
针对所述第一信号、第二信号以及资源配置信息的相关介绍请参考第二方面,这里不再赘述。
第九方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面、第二方面、第三方面或第四方面所述的方法。
第十方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面、第二方面、第三方面或第四方面所述的方法。
第十一方面,提供一种芯片,该芯片包括处理器,处理器用于执行上述第一方面、第二方面、第三方面、或第四方面任一方面所述的数据信道的传输方法。一种可能的设计中,该芯片还包括收发管脚,收发管脚用于将接收的代码指令传输至处理器,以使得处理器用于执行上述第一方面、第二方面、第三方面、或第四方面中任一方面所述的方法。可选的,该代码指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。
第十二方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面、第二方面、第三方面、或第四方面中任一项方面所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,提供一种通信系统,该通信系统包括第五方面所述的装置和第六方面所 述的装置,或者,该通信系统包括第七方面所述的装置和第八方面所述的装置。
附图说明
图1为为本申请实施例提供的一种资源栅格的的示意图;
图2为为本申请实施例提供的另一种资源栅格的示意图;
图3为为本申请实施例提供的LTE的参考信号在OFDM符号上的频谱示意图;
图4为为本申请实施例提供的NR PDSCH在OFDM符号上的频谱示意图;
图5为本申请实施例提供的一种通信系统的示意图;
图6为本申请实施例提供的一种循环前缀的示意图;
图7为本申请实施例提供的另一种循环前缀的示意图;
图8为本申请实施例提供的一种循环后缀的示意图;
图9为本申请实施例提供的一种数据信道的传输方法的流程图;
图10A为本申请实施例提供的PDSCH重复传输的示意图一;
图10B为本申请实施例提供的PDSCH重复传输的示意图二;
图10C为本申请实施例提供的PDSCH重复传输的示意图三;
图11为本申请实施例提供的发送端发送2 n个第一OFDM符号的示意图;
图12为本申请实施例提供的接收端接收2 n个第一OFDM符号的示意图;
图13A为本申请实施例提供的一种30kHz的信号在OFDM符号上的频谱示意图;
图13B为本申请实施例提供的另一种30kHz的信号在OFDM符号上的频谱示意图;
图14为本申请实施例提供的一种资源栅格的示意图;
图15为本申请实施例提供的一种资源图样的示意图一;
图16为本申请实施例提供的一种资源图样的示意图二;
图17为本申请实施例提供的一种资源图样的示意图三;
图18为本申请实施例提供的一种承载参考信号的RE的位置的示意图;
图19为本申请实施例提供的一种装置的结构示意图;
图20为本申请实施例提供的另一种装置的结构示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统。例如,本申请实施例提供的技术方案可以应用但不限于:5G、LTE或未来通信系统。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。其中,通信设备可以包括网络设备和终端设备。通信设备间的无线通信可以包括:网络设备和终端设备间的无线通信、网络设备和网络设备间的无线通信、以及终端设备和终端设备间的无线通信。在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信号传输”、“信息传输”或“传输”等。在本申请实施例中,传输可以包括发送或接收。示例性地,传输可以是上行传输,例如可以是终端设备向网络设备发送信号;传输也可以是下行传输,例如可以是网络设备向终端设备发送信号。
本申请实施例提供的技术方案以网络设备和终端设备之间的通信为例进行描述,其中网络设备为调度实体,终端设备为从属实体。本领域技术人员可以将该技术方案用于进行 其它调度实体和从属实体间的无线通信,例如宏基站和微基站之间的无线通信,例如第一终端和第二终端间的设备到设备(device to device,D2D)通信。
本申请实施例涉及的终端设备还可以称为终端,可以是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的技术方案。
本申请实施例涉及的网络设备包括基站(base station,BS),基站可以是一种部署在无线接入网中能够和终端进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的基站,其中,5G中的基站还可以称为传输接收点(transmission reception point,TRP)或gNB(gNodeB)。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例以LTE和5G共享频域资源为例,描述本申请实施例提供的技术方案。该场景并不构成对本申请实施例的应用场景的限制,例如本申请实施例提供的技术方案也可以用于其它系统之间共享空口资源,或者可以用于同一个系统中不同的信号之间共享空口资源。或者描述为:本申请实施例提供的技术方案也可以用于其它系统之间的速率匹配,或者可以用于同一个系统中不同的信号之间的速率匹配。
示例性地,表1所示是可用于运营商部署LTE载波的频域资源,表2所示是在sub6GHz(6GHz以下)可用于运营商部署NR载波的频域资源。在表1和表2中,FDD是频分双工(frequency division duplex),TDD是时分双工(time division duplex)。终端和网络设备进行通信时,所使用的载波频率越低,路损衰减越小,小区覆盖越好。因此,为了提升小区覆盖并充分利用LTE载波未使用的频域资源,NR支持和LTE载波部署在相同的频域资源上,例如NR和LTE都部署在band1、band3、band5、或band38上。NR和LTE还可以部署在其它的共享频域资源上,本申请实施例不做限制。
表1 LTE的可用频段
Figure PCTCN2020079052-appb-000001
Figure PCTCN2020079052-appb-000002
表2 NR在6GHz以下的可用频段
Figure PCTCN2020079052-appb-000003
在NR和LTE共享资源中,为了支持LTE系统的正常通信,NR在使用LTE未使用的资源时,不能使用LTE特定信号或者特定信道的资源,例如NR在共享资源中不能使用LTE的CRS和/或LTE的PDCCH要映射至的资源。即,在共享资源中,NR需要在LTE的特 定信号要映射至的资源上进行速率匹配。本申请实施例以NR中的信号(例如PDSCH)需要在LTE的CRS要映射至的资源上进行速率匹配为例进行描述。
在NR或LTE中,网络设备和终端可以通过时频资源进行数据传输。用于进行数据传输的时频资源可以被表示为资源栅格。资源栅格中,资源元素(resource element,RE)是用于进行数据传输的资源单位,或者是用于对待发送数据进行资源映射的资源单位。一个RE在时域上对应一个时域符号,在频域上对应一个子载波。
LTE系统主要支持15kHz(千赫兹)的SCS。为了支持各种业务需求和/或应用场景,NR可以支持多种类型的子载波间隔,例如15kHz、30kHz、60kHZ、120kHz等。当LTE和NR共享频域资源时时,LTE和NR既可以使用相同的子载波间隔,也可以使用不同的子载波间隔。
若NR采用的SCS与LTE采用的SCS相同,NR的信号在LTE的信号所对应的资源上需要进行速率匹配,以避免NR的信号与LTE的信号之间的互相干扰。例如,NR在LTE的CRS要映射至的资源上进行速率匹配时,如果LTE和NR都是使用15kHz,在共享资源中,NR在用于映射LTE的CRS的RE上不映射NR PDSCH。例如,在共享资源中,15kHz的SCS对应的NR PDSCH不映射到用于承载LTE的CRS的RE上,可以使得15kHz的SCS对应的NR PDSCH与LTE的CRS之间互不干扰,同时15kHz的SCS对应的NR PDSCH能够充分利用LTE的CRS未使用的时频资源,从而可以提高共享资源的利用率。其中,LTE的CRS要映射至的资源还可以描述为:用于映射LTE的CRS的资源、或LTE的CRS对应的资源等。
然而,若NR采用的SCS与LTE的采用的SCS不同,NR在LTE的CRS对应的资源上做速率匹配时,可能无法避免NR中的信号(如PDSCH)与LTE的CRS之间的互相干扰。示例性的,以NR网络采用的SCS为30kHz为例,结合图1和图2进行说明。图1所示的资源栅格为LTE采用15kHz的SCS,图2所示的资源栅格为NR采用30kHz的SCS。图1所示的资源栅格和图2所示的资源栅格是针对相同的时频资源。在图1中,黑色方块表示承载LTE的CRS的RE。在图2中,黑色方块表示不映射NR PDSCH的RE,即表示NR PDSCH基于LTE CRS需要进行速率匹配的RE。可见,当NR PDSCH在图2所示的资源栅格上传输时,NR PDSCH在LTE CRS对应的RE上进行速率匹配。在相同的时频资源中,NR PDSCH进行速率匹配的RE中和LTE CRS对应的RE中存在重叠部分。
图1所示的资源栅格中共包括第1个至第14个共14个时域符号。图3为LTE的CRS在图1所示的资源栅格中的第5个时域符号上的频谱示意图,图3中加粗的黑色箭头表示用于承载LTE CRS的子载波,虚线表示不用于承载LTE CRS的子载波,相邻子载波之间的间隔为15kHz。图2所示的资源栅格中共包括第1个至第28个共28个时域符号。图4为图2所示的资源栅格中第9或第10个时域符号上的频谱示意图。图4中实线的单向箭头表示可以承载NR PDSCH的子载波,虚线的单向箭头表示不可以承载NR PDSCH的子载波(用于进行速率匹配),相邻子载波之间的间隔为30kHz。图4中加粗的双向箭头用于描述在图1所示的第5个时域符号上或者在图2所示的第9或第10个时域符号上,在用于承载LTE CRS的子载波位置上,NR PDSCH的信号可能会对LTE CRS造成的干扰。
图4中包括子载波#0至子载波#11共12个30kHz子载波。从图4中可以看出,30kHz的子载波#2的信号能量在15kHz的子载波#3的位置处(LTE CRS位置处)是非零的,30kHz 的子载波#3的信号能量在15kHz的子载波#3的位置处是非零的。即,15kHz的子载波#3上的LTE CRS可能会受到NR PDSCH的干扰;15kHz的子载波#3上的LTE CRS同样可能会干扰NR PDSCH。
从上述示例可见,在两个支持不同SCS的通信网络共频段部署的场景中,由于第一SCS与第二SCS不正交,第一SCS对应的信号与第二SCS对应的信号之间会互相干扰。为了解决这一技术问题,本申请提供一种数据信道的传输方法,其具体内容可参见下文。
需要说明的,两个支持不同SCS的通信网络共频段部署的场景,包括但不限于:NR网络与LTE网络共频段部署的场景,两个NR网络共频段部署的场景等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
示例性的,图5给出了本申请实施例提供的技术方案所适用的一种通信系统示意图,该通信系统可以包括一个或多个网络设备(图5仅示出了一个)以及一个或多个终端(图5中仅示出一个)。图5仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
为了便于理解,以下对本申请所涉及的术语进行简单介绍。
1、数据信道
数据信道为用于传输数据的信道。可选的,数据信道可以指PDSCH或(physical uplink shared channel,PUSCH)。本申请实施例以下行为例进行描述,以下行数据信道是PDSCH为例进行描述。当本申请实施例提供的技术方案应用于上行时,其数据信道可以是终端为网络设备发送的PUSCH。
2、参考信号(reference signal,RS)
参考信号可以是由发送端提供给接收端用于信道估计或信道探测的一种已知信号。在本申请实施例中,LTE中的参考信号包括LTE的CRS、LTE的信道状态信息参考信号(channel state information reference signal,CSI-RS)、和LTE的解调参考信号(demodulation reference signal,DMRS)中至少一种。NR中的参考信号包括NR的CSI-RS、和NR的DMRS中至少一种。当本申请实施例提供的技术方案应用于上行时,参考信号可以是DMRS或者探测参考信号(sounding reference signal,SRS)等。
3、时域符号、时隙、子载波间隔
在本申请实施例中,时域符号可以是OFDM符号或者离散傅立叶变换扩展正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)符号。本申请实施例以时域符号是OFDM符号为例进行描述。本申请实施例中还可以把时域符号简称为符号。
在资源栅格或者时频资源的时域可以定义时隙(slot),一个时隙中可以包括正整数个时域符号,例如7个、14个、6个或12个。一个子帧中可以包括正整数个时隙。示例性地,对于支持多种子载波间隔的系统,当子载波间隔为15千赫兹(kHz)时,一个子帧中包括1个时隙;当子载波间隔为30kHz时,一个子帧中包括2个时隙;当子载波间隔为60kHz时,一个子帧中包括4个时隙。
子载波是频域资源的基本单位。子载波间隔用于描述子载波的带宽或者描述相邻子载 波之间的间隔。
OFDM符号是时域资源的基本单位。OFDM符号中可以包括有用信号和循环前缀(cyclic prefix,CP),或者OFDM符号中可以包括有用信号和循环后缀,或者OFDM符号中包括有用信号(即不包括循环前缀和循环后缀)。OFDM符号的有效长度即为有用信号的长度。OFDM符号的长度等于OFDM符号的有效长度与循环前缀的长度之和。一个时隙中可以包括正整数个OFDM符号。例如,对于普通CP(normal CP,NCP),一个时隙可以包括14个OFDM符号。对于扩展CP(extended CP,ECP),1个时隙可以包含12个OFDM符号。本申请实施例以1个时隙包含14个OFDM符号进行举例说明。在1个时隙中,14个OFDM符号按照从小到大的顺序依次编号,也就是说,一个时隙包含OFDM符号#0~OFDM符号#13。其中,OFDM符号#X,表示该OFDM符号的编号为X。
需要说明的是,OFDM符号的长度可以反比于子载波间隔。换句话说,随着子载波间隔的增大,OFDM符号的长度减小。例如2 n个第一SCS对应的OFDM符号的长度等于一个第二SCS对应的OFDM符号长度,第一SCS是所述第二SCS的2 n倍,其中n为正整数。例如2个30kHz的OFDM符号的长度等于1个15kHz OFDM符号的长度。
与OFDM符号的长度相似,时隙的长度也反比于子载波间隔。换句话说,随着子载波间隔的增大,时隙的长度减少。
示例性的,表3示出子载波间隔与OFDM符号的长度、时隙的长度之间的对应关系。
表3
Figure PCTCN2020079052-appb-000004
4、RE、资源块(resource block,RB)、资源栅格
RE是用于传输数据的资源粒度。一个RE可以用于映射一个复数符号。一个RE在时域上对应一个OFDM符号,在频域上对应一个子载波。在本申请实施例中,RE的子载波编号可以从0开始。在带宽部分(bandwidth part,BWP)中,RE的子载波编号可以为0~12*K-1,K为该BWP在频域上包含的RB的数目。
在本申请实施例中,RE的索引包括子载波编号以及OFDM符号的编号。RE的索引可以表示为(k,l)。其中,k表示子载波编号,l表示OFDM符号的编号。结合图1进行举例说明,图1所示的资源栅格中每一行表示一个子载波,每一列表示一个OFDM符号,每一个方块代表一个RE。示例性地,图1所示的资源栅格中左下角的第一个RE的索引为(0,0)。
为了便于描述,本申请实施例可以使用(k,l)代表对应的RE,在此统一说明,以下不再赘述。
在频域,在资源栅格中可以定义RB。一个RB中可以包括正整数个子载波,例如6 个或12个。RB的定义还可以扩展到时域,例如一个RB在频域包括正整数子载波且时域包括正整数个时域符号,例如一个RB是频域包括12个子载波且时域包括7个或14个时域符号的时频资源块。
资源栅格又可以称为RB栅格(grid),资源栅格包括正整数个RB。
5、循环前缀、循环后缀
循环前缀是将OFDM符号中有用信号的最后一部分复制到OFDM符号的头部。从而,OFDM符号包括循环前缀和有用信号,循环前缀用于使得OFDM符号的传输可以抵抗符号间干扰(inter-symbol interference,ISI)和信道间干扰(inter-channel interference,ICI)。
如图6所示,以15kHz的SCS的OFDM符号为例,OFDM符号中有用信号包括2048个采样点,循环前缀包括有用信号的最后144个采样点(也即1905~2048号采样点)。
如图7所示,以30kHz的SCS的OFDM符号为例,OFDM符号中有用信号包括1024个采样点,循环前缀包括有用信号的最后72个采样点(也即953~1024号采样点)。
对于同一SCS的不同的OFDM符号来说,不同OFDM符号的循环前缀的长度可以相同,也可以不同。从表3可以看出,以15kHz的SCS的OFDM符号为例,由于一个采样点的绝对时间长度为1/(2048×15×1000)秒,为了使得1个时隙所包含的14个OFDM符号的绝对时间长度为1ms,对于每0.5ms中的7个OFDM符号来说,第一个OFDM符号的循环前缀的长度为160个采样点,其他6个OFDM符号的循环前缀的长度为144个采样点。
循环后缀是将OFDM符号中有用信号的前面一部分复制到OFDM符号的尾部。从而,OFDM符号包括有用信号和循环后缀,循环后缀用于使得OFDM符号能够抵抗ISI和ICI。
如图8所示,以30kHz的SCS的OFDM符号为例,OFDM符号中有用信号包括1024个采样点,循环后缀包括有用信号的前面72个采样点(也即1~72号采样点)。
在本申请实施例中,为了便于描述,如无特殊说明,采样点可以均是基于15kHz的SCS的采样点,也即上述15kHz信号采样点的时域长度或相邻采样点之间的时间间隔均为Ts,以下不再赘述。
可以理解的是,若30kHz SCS的信号的快速傅立叶变换(fast fourier transformation,FFT)的点数(size)为2048,30kHz的SCS的OFDM符号中有用信号也包括2048个采样点。此时,30kHz信号的采样点的时域长度为实际上为1/(2048*30000)秒,等于Ts/2,即可认为30kHz SCS的OFDM符号的有用信号包括1024个15kHz SCS的采样点。
6、BWP
BWP也可以称为载波带宽部分(carrier bandwidth part)。在频域,一个BWP中包括连续正整数个资源单元,比如包括连续正整数个子载波、资源块(resource block,RB)、或者资源块组(RB group,RBG)。其中,一个RBG中包括正整数个RB,例如4个或8个等。一个BWP可以是一个下行BWP或一个上行BWP。其中,上行BWP用于终端向网络设备发送信号,下行BWP用于网络设备向终端发送信号。在本申请实施例中,正整数个可以是1个、2个、3个或者更多个,本申请实施例对此不做限制。
针对每个BWP,可以通过预配置或者网络设备向终端发送信令的方式,独立配置该BWP的参数集(numerology)。不同BWP的numerology可能相同,也可能不同。numerology可以通过但不限于以下参数信息中的一种或多种定义:子载波间隔,循环前缀(cyclic  prefix,CP)、时间单位的信息、BWP的带宽等。例如,numerology可以由子载波间隔和CP来定义。
子载波间隔可以为大于等于0的整数。例如,可以为15kHz、30kHz、60kHz、120kHz、240kHz、480kHz等。不同子载波间隔的倍数关系可以为2的整数倍。当然也可以设计为其他的值。
CP信息可以包括CP长度和/或CP类型。例如,CP可以为NCP,或者ECP。
时间单位用于表示时域内的时间单元,例如可以为采样点,时域符号,微时隙,时隙,子帧,或者无线帧等等。时间单位的信息可以包括时间单位的类型,长度,或者结构等。时间单位长度可以是:时隙中包括的时域符号个数、和/或子帧中包括的时域符号或时隙个数、和/或无线帧中包括的子帧或时隙个数。
BWP可以为频域上一段连续的资源。BWP可以称为载波带宽部分(carrier bandwidth part)、子带(subband)带宽、窄带(narrowband)带宽、或者其他的名称,本申请实施例对其名称并不做限定。可选地,BWP中也可以包括频域上离散的资源,本申请实施例不做限制。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的资源配置信息)所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种。例如,可以直接指示所述待指示信息,例如指示所述待指示信息本身或者所述待指示信息的索引等。又例如,也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系或映射关系。又例如,还可以仅仅指示所述待指示信息的一部分,而所述待指示信息的其他部分则是已知的或者提前约定的。另外,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
下面结合说明书附图,对本申请实施例所提供的技术方案进行具体介绍。
如图9所示,为本申请实施例提供一种信道的传输方法,以该信道是数据信道,以数据信道是PDSCH为例,该方法包括以下步骤S101-S102。可选地,该方法可以应用于其它数据信道或者控制信道,本申请实施例不做限制。
S101、网络设备使用第一SCS向终端发送PDSCH。
可选的,步骤S101还可以表述为:网络设备向终端发送第一SCS对应的PDSCH。
其中,PDSCH在2 n个第一OFDM符号上是重复传输的。
可选地,PDSCH在2 n个第一OFDM符号上是重复传输的,包括:在共享带宽中,NR  PDSCH在2 n个第一OFDM符号的各符号上是重复传输的。例如,在共享带宽中,不同符号的相同子载波上传输的数据是相同的。其中,共享带宽可以是NR系统和LTE系统共享的频域资源的带宽,其可以表现为为共享的RB、共享子载波等。
可选地,用于传输PDSCH的频域资源(例如BWP中或者用于传输PDSCH的RB中)可以包括共享带宽而不包括非共享带宽,也可以包括共享带宽和非共享带宽。在非共享带宽中,NR PDSCH在2 n个第一OFDM符号的各符号上可以是重复传输的,或者可以是各自独立传输的,本申请实施例不做限制。在非共享带宽中,当各符号上的NR PDSCH是独立传输时,不同符号的相同子载波上传输的数据可以相同,也可以不同,本申请实施例不做限制。
在下述实施例中,为了简化描述,并便于在时域理解本申请实施例提供的方法,可以以用于传输PDSCH的频域资包括共享带宽而不包括非共享带宽为例,进行相应的描述。
该2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的参考信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。换而言之,在1个第二OFDM符号用于发送第二SCS对应的参考信号的情况下,与该第二OFDM符号在时域内对齐的2 n个第一OFDM符号用于重复传输PDSCH。
需要说明的是,2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,可以是指:2 n个第一OFDM符号与1个第二OFDM符号共享相同的时域资源。
结合图1和图2进行举例说明,图1和图2分别示出相同时频资源的资源栅格,该时频资源的带宽为360kHz,时间长度为1ms。图1中,该资源栅格中RE采用的子载波间隔为15kHz。图2中,该资源栅格中RE采用的子载波间隔为30kHz。从图1和图2可以看出,图1所示的资源栅格中第一个OFDM符号在时域内对齐图2所示资源栅格中第一个OFDM符号和第二个OFDM符号;以此类推,图1所示的资源栅格中第十四个OFDM符号在时域内对齐图2所示资源栅格中的第二十七个OFDM符号和第二十八个OFDM符号。也即,图1中的1个第二OFDM符号在时域上和图2中的2个第一OFDM符号在时域上对齐。
在本申请实施例中,2 n个第一OFDM符号用于重复传输PDSCH,至少包括以下方式之一:
方式一、对于所述2 n个第一OFDM符号,当n=1时,所述两个第一OFDM符号中的第一个第一OFDM符号包括循环前缀,第二个第一OFDM符号包括循环后缀。
也即,在两个第一OFDM符号中,第一个第一OFDM符号包括有用信号和循环前缀,第二个第一OFDM符号包括有用信号和循环后缀。
结合图10A进行举例说明,以第一SCS为30kHz,第二SCS为15kHz为例,针对共享带宽中映射的PDSCH的时域信号,第一个第一OFDM符号中有用信号包括1~1024号采样点,第一个第一OFDM符号的循环前缀包括953~1024号采样点。第二个第一OFDM符号中有用信号包括1~1024号采样点,第二个第一OFDM符号的循环后缀包括1~72号采样点。从图10A中可以看出,两个第一OFDM符号的最后2048个采样点包括2个相同的1~1024号采样点。也即,两个30kHz的OFDM符号以15kHz信号做FFT时:去144个采样点的CP之后,2048采样点采样窗口下,1~1024号采样点在时域上重复了2次。
方式二、在所述2 n个第一OFDM符号中,第i个第一OFDM符号上传输的PDSCH的 数据是对应的频域信号经过相位旋转处理后得到的,i为大于1且小于等于2 n的整数。示例性地,第i个第一OFDM符号上的IFFT的第k个子载波上的输入信号为a 1,ke j*ω,a 1,k表示第1个第一OFDM符号上第k个子载波上的频域信号;ω表示对该频域信号进行相位旋转处理时需要旋转的相位大小。
例如图11所示为2个第一OFDM符号上重复发送PDSCH的示例。例如,第一SCS是30kHz,第一OFDM符号上用于发送PDSCH的频域资源包括共享带宽。在共享带宽中,在相同的子载波上,第一个第一OFDM符号上和第二个第一OFDM符号上映射的数据相同,分别为a 1,n至a 1,n+k。其中,a 1,n至a 1,n+k为复数信号,不同数据的值可以相同,也可以不同,本申请实施例不做限制。对于第二个OFDM符号上的a 1,n至a 1,n+k,可以分别进行相应的相位旋转。可选地,如图11所示,当第一OFDM符号上用于发送PDSCH的频域资源包括非共享带宽时,在非共享带宽中,在相同的子载波,第一个第一OFDM符号上和第二个第一OFDM符号上映射各自的数据。在本申请实施例中,用于发送PDSCH的频域资源可以是预配置的,也可以是网络设备通过信令(例如DCI)为终端指示的。
可以理解的是,在共享带宽中,在相同的子载波上,所述2 n个第一OFDM符号对应的频域信号是相同的。
可选地,在相位旋转处理过程中,第i个第一OFDM符号对应的频域信号旋转的相位正比于i-1。
需要说明的是,对第一OFDM符号上的频域信号进行相位旋转处理后,第一OFDM符号的时域信号(也即有用信号)会发生循环移位。
可选的,相位旋转处理的具体实现方式为:频域信号乘以相位旋转因子。相位旋转因子用于指示频域信号旋转的相位。
在数字域,对于索引或编号为k的子载波,第i个第一OFDM符号对应的相位旋转因子为:
Figure PCTCN2020079052-appb-000005
其中第i个OFDM符号上的CP长度
Figure PCTCN2020079052-appb-000006
例如:第i个第一OFDM符号索引或编号为k的子载波的频域信号对应的相位旋转因子为
Figure PCTCN2020079052-appb-000007
具体的,以图11为例,第1个第一OFDM符号上编号为n的子载波上的频域信号对应的相位旋转因子为1,即为a 1,n信号本身;第2个第一OFDM符号上编号为n的子载波上的频域信号对应的相位旋转因子为
Figure PCTCN2020079052-appb-000008
类似的,第1个第一OFDM符号上编号为n+k的子载波上的频域信号对应的相位旋转因子为1,即为a 1,n+k信号本身;第2个第一OFDM符号上编号为n的子载波上的频域信号对应的相位旋转因子为
Figure PCTCN2020079052-appb-000009
在模拟域,对于索引或编号为k的子载波,第i个第一OFDM符号对应的相位旋转因子为:
Figure PCTCN2020079052-appb-000010
其中
Figure PCTCN2020079052-appb-000011
Figure PCTCN2020079052-appb-000012
其中N是FFT点数,
Figure PCTCN2020079052-appb-000013
为一个RB包含的子载波数目。
Figure PCTCN2020079052-appb-000014
为子载波间隔μ的符号i的CP长度,单位是采样点个数。Δf为子载波间隔μ的大小。T c=1/(480×1000×4096)。e为自然常数。j为虚数单位,j的平方等于-1。π是圆周率。
Figure PCTCN2020079052-appb-000015
表示RRC信令配置的子载波间隔为μ的载波包含的RB数目,x表示上行或下行。
Figure PCTCN2020079052-appb-000016
RRC信令配置的子载波间 隔为u的载波最小的RB编号相对于一个参考点偏移的RB数目。μ 0,RRC信令配置的若干个载波的最大子载波间隔。
需要说明的是,子载波间隔为μ表示子载波间隔为15kHz乘以2的μ次方。例如μ=0,对应15kHz的SCS;μ=1,对应30kHz的SCS;μ=2,对应60kHz的SCS;μ=3,对应120kHz的SCS;μ=4,对应240kHz的SCS。
结合图10B进行举例说明,假设第一SCS为30kHz,第二SCS为15kHz。(1)第一个第一OFDM符号中有用信号包括1~1024号采样点;第一个第一OFDM符号的循环前缀包括953~1024号采样点。(2)对于第二个第一OFDM符号来说,由于对应的频域信号经过相位旋转处理,因此有用信号发生了循环移位,循环移位后的有用信号依次包括73~1024号采样点,以及1~72号采样点。在这种情况下,第二个第一OFDM符号的循环前缀包括循环移位后的有用信号的最后72个采样点(也即1~72号采样点)。从图10B中可以看出,两个第一OFDM符号的最后2048个采样点包括2个相同的1~1024号采样点,共2048个采样点。也即,在2048采样点的采样窗口下,1~1024号采样点在时域上重复了2次。
结合图10C进行举例说明,假设第一SCS为60kHz,第二SCS为15kHz。(1)第一个第一OFDM符号中有用信号包括1~512号采样点;第一个第一OFDM符号的循环前缀包括477~512号采样点。(2)对于第二个第一OFDM符号来说,由于对应的频域信号经过相位旋转处理,因此有用信号发生了循环移位,循环移位后的有用信号依次包括37~512号采样点,以及1~36号采样点;第二个第一OFDM符号的循环前缀包括循环移位后的有用信号的最后36个采样点(也即1~36号采样点)。(3)对于第三个第一OFDM符号来说,由于对应的频域信号经过相位旋转处理,因此有用信号发生了循环移位,循环移位后的有用信号依次包括73~512号采样点,及1~72号采样点;第三个第一OFDM符号的循环前缀包括循环移位后的有用信号的最后36个采样点(也即37~72号采样点)。(4)对于第四个第一OFDM符号来说,由于对应的频域信号经过相位旋转处理,因此有用信号发生了循环移位,循环移位后的有用信号依次包括109~512号采样点,以及1~108号样点;第四个第一OFDM符号的循环前缀包括循环移位后的有用信号的最后36个采样点(也即73~108采样点)。从图10C中可以看出,四个第一OFDM符号的最后2048个采样点包括4个相同的1~512号采样点。也即,在2048采样点的采样窗口下,1~512号采样点在时域上重复了4次。
针对方式二,如图12所示,对于2 n个第一OFDM符号中的第i个第一OFDM符号,接收端可以通过去除第i个第一OFDM符号中的循环前缀,以获取第i个第一OFDM符号的时域信号;并对第i个第一OFDM符号的时域信号进行第一SCS对应的快速傅立叶变换,以获取经过相位旋转处理后的频域信号;并且,针对共享带宽中的子载波,将该经过相位处理后的频域信号除以所述相位旋转因子,确定原始的频域信号。
下面为了便于说明,将第一SCS对应的子载波简称为第一子载波,第二SCS对应的子载波简称为第二子载波。对于一个信号,将该信号在时域上重复,相当于对该信号在频域上进行插0。因此,若PDSCH在2 n个第一OFDM符号上是重复传输的,则在2 n个第一OFDM符号中任一个第一OFDM符号上,相邻的两个第一子载波之间,在对应于第二SCS的位置处,第一SCS的PDSCH的信号值是等于0的。也就是说,在该2 n个第一OFDM符号中,若资源栅格中第二子载波的编号从0开始,则第一SCS的信号的值在编号不是2 n整 数倍的第二子载波处是等于0的。
以第一SCS为30kHz,第二SCS为15kHz为例,若PDSCH在图2所示的资源栅格中第九个OFDM符号和第十个OFDM符号上重复传输,则PDSCH在第九个OFDM符号上的频谱可参考图13A。在图13A中,实线的单向箭头表示用于承载PDSCH的信息的子载波,虚线的单向箭头表示不用于承载PDSCH的信息的子载波。由于在图2中的第九个OFDM符号上,RE(1,8)、(4,8)、(7,8)、以及(10,8)为不用于承载PDSCH的RE。因此,在图13A中,子载波#1、子载波#4、子载波#7、以及子载波#10以虚线的单向箭头表示。和图4进行对比,图13A所示的传输方法中,由于NR PDSCH在15kHz的子载波#3的位置处的信号能量等于0,因此,15kHz的子载波#3上的LTE CRS不会受到NR PDSCH的干扰,15kHz的子载波#3上的LTE CRS也不会干扰NR PDSCH。按照图13A的方式,在RE(1,8)、(4,8)、(7,8)、以及(10,8)不用于承载NR PDSCH,因此,在本申请实施例提供的方法中,NR PDSCH在图2所示的资源栅格中第九个OFDM符号和第十个OFDM符号上,可以基于LTE CRS进行速率匹配。
以第一SCS为30kHz,第二SCS为15kHz为例,若PDSCH在图14所示的资源栅格中第九个OFDM符号和第十个OFDM符号上重复传输,则PDSCH在第九个OFDM符号上的频谱可参考图13B。在图13B中,实线的单向箭头表示用于承载PDSCH的信息的子载波。由于在图14中的第九个OFDM符号上,RE(1,8)、(4,8)、(7,8)、以及(10,8)为可以用于承载PDSCH的RE。因此,相比于图13A,图13B中子载波#1、子载波#4、子载波#7、以及子载波#10以实线的单向箭头表示。可选地,相对图2,在本申请实施例提供的方法中,NR PDSCH在图2所示的资源栅格中第九个OFDM符号和第十个OFDM符号上,不需要基于LTE CRS进行速率匹配,例如图14所示。在图14中,黑色方块表示不映射NR PDSCH的RE,即表示NR PDSCH需要基于LTE CRS进行速率匹配的RE。图14相比于图2而言,可用的RE资源更多,需要速率匹配的RE资源更少。
从图13A或者图13B中可以看出,通过本申请实施例提供的方法,由于30kHz子载波间隔的信号在对应的编号为奇数的15kHz的子载波所处位置是置0的,因此,30kHz子载波间隔的信号不会影响到编号为奇数的15kHz的子载波所承载的参考信号(例如编号为3的15kHz的子载波所承载的LTE CRS)。根据上述方法,本领域技术人员可以理解,当子载波间隔在频域中从1(也可以是其它奇数)开始编号时,在图13A或者图13B中,30kHz子载波间隔的信号在对应的编号为偶数的15kHz的子载波所处位置是置0的。
从上述分析可以获知,由于第一SCS的信号在对应于编号不是2 n整数倍的第二子载波所处的位置是置0的。因此,在共享频谱中,第一SCS的信号不会影响到对应的编号不是2 n整数倍的第二子载波的信号。换而言之,在共享频谱中,在子载波编号不是2 n整数倍的第二SCS对应的RE上,第一SCS的信号(例如NR PDSCH)不会影响到对应的第二SCS的参考信号(例如LTE CRS)。例如,在共享频谱中,第一SCS是60kHz,第二SCS是15kHz,则在编号为1、2、3或其它编号不等于4的整数倍的第二子载波对应的位置处,第一SCS的信号值等于0。
为了进一步降低共享频谱中第一SCS的信号与第二SCS的信号之间的互相干扰,第一SCS的信号需要在第二SCS的信号所对应的资源上进行速率匹配。具体到本申请方案中,在所述2 n个第一OFDM符号上,每一个第一OFDM符号对应的第一RE集合中的任 意一个RE不用于映射所述PDSCH,第一RE集合和第二RE集合在频域内存在重叠部分。与所述2 n个第一OFDM符号在时域对齐的1个第二OFDM符号用于发送第二SCS对应的参考信号,包括:在所述1个第二OFDM符号中,所述第二RE集合中的RE用于映射所述第二SCS对应的参考信号。可选地,所述第一RE集合可以在一个OFDM符号内定义,也可以在多个OFDM符号内定义。例如,所述第一RE集合包括2 n个第一OFDM符号上不用于映射所述PDSCH的RE,例如所述第一RE集合包括一个时隙和一个RB的资源块中不用于映射所述PDSCH的RE。
需要说明的是,第一RE集合和第二RE集合在频域内存在重叠部分,是指:第一RE集合中的一个RE与第二RE集合中的至少一个RE在频域内存在重叠部分。或者说,第二RE集合中的一个RE与第二RE集合中的至少一个RE在频域内存在重叠部分。
对于一个RE与另一个RE在频域内存在重叠部分的情形,可以结合图1和图2进行说明。从图1和图2中可以看出,图1中索引为(0,0)的RE与图2中索引为(0,0)或者(0,1)的RE在频域上存在重叠部分。图1中索引为(3,4)的RE与图2中索引为(1,8)或者(1,9)的RE在频域上存在重叠部分。
可以理解的是,由于第一RE集合和第二RE集合在频域上存在重叠部分,因此第一RE集合所包含的RE可以根据第二RE集合所包含的RE来确定。或者说,第一RE集合中的RE的位置可以根据第二RE集合中RE的位置来确定。
可选的,对于一个第二OFDM符号来说,第二RE集合是第三RE集合的子集。第二OFDM符号对应的第三RE集合包括第二OFDM符号上所有用于承载参考信号的RE。结合图1为例,OFDM符号#0对应的第三RE集合可以为{(0,0),(6,0),(12,0),(18,0)}。
一种实现方式,对于一个第二OFDM符号来说,第三RE集合中的任意一个RE均属于第二RE集合。也就是说,第二RE集合等于第三RE集合。
示例性的,结合图1和图2进行说明,图1中的第二OFDM符号#0在时域内对齐图2中的第一OFDM符号#0和第一OFDM符号#1,图1中的第二OFDM符号#4在时域内对齐图2中的第一OFDM符号#8和第一OFDM符号#9。第二OFDM符号#4对应的第三RE集合包括RE{(3,4),(9,4),(15,4),(21,4)},以及第二OFDM符号#0对应的第三RE集合包括RE{(0,0),(6,0),(12,0),(18,0)}。第二RE集合等于第三RE集合。从而,第一OFDM符号#8和第一OFDM符号#9对应的第一RE集合包括RE{(1,8),(4,8),(7,8),(10,8),(1,9),(4,9),(7,9),(10,9)},以及第一OFDM符号#0和第一OFDM符号#1对应的第一RE集合包括RE{(0,0),(3,0),(6,0),(9,0),(0,1),(3,1),(6,1),(9,1)}。
作为另一种实现方式,对于一个第二OFDM符号来说,第三RE集合中的部分RE属于第二RE集合。
根据本申请实施例提供的方法,由于PDSCH在2 n个第一OFDM符号上是重复传输的,因此PDSCH与第二OFDM符号上子载波编号不是2 n的整数倍的RE上承载的参考信号之间互不干扰。因此,PDSCH仅需对第二OFDM符号上子载波编号为2 n的整数倍且用于承载参考信号的RE进行速率匹配。基于这种考虑,第三RE集合中子载波编号为2 n的整数倍的RE属于第二RE集合。这样一来,第二RE集合中的RE的子载波编号为2 n的整数倍。可以理解的是,在这种情况下,所述第一RE集合中RE的子载波编号的2 n倍等于所述第二RE集合中的一个RE的编号。
示例性的,结合图1和图14进行说,图1中的第二OFDM符号#0在时域内对齐图2中的第一OFDM符号#0和第一OFDM符号#1,图1中的第二OFDM符号#4在时域内对齐图2中的第一OFDM符号#8和第一OFDM符号#9。第二OFDM符号#4对应的第三RE集合包括RE{(3,4),(9,4),(15,4),(21,4)},以及以及第二OFDM符号#0对应的第三RE集合包括RE{(0,0),(6,0),(12,0),(18,0)}。假设第三RE集合中子载波编号为2 n的整数倍的RE属于第二RE集合,以及n等于1。由于第二OFDM符号#4对应的{(3,4),(9,4),(15,4),(21,4)}中不存在任何一个RE的子载波编号为2的整数倍,因此,第二OFDM符号#4对应的RE{(4,3),(4,9),(4,15),(4,21)}不包括于第二RE集合中,即第二OFDM符号#4对应的第二RE集合为空集,从而第一OFDM符号#8和第一OFDM符号#9对应的第一RE集合为空集。第二OFDM符号#0对应的第三RE集合中,RE(0,0),(6,0),(12,0),(18,0)的子载波编号均为2的整数倍,因此第二OFDM符号#0对应的第二RE集合包括RE{(0,0),(6,0),(12,0),(18,0)}。从而,第一OFDM符号#0和第一OFDM符号#1对应的第一RE集合包括RE{(0,0),(3,0),(6,0),(9,0),(0,1),(3,1),(6,1),(9,1)}。
在本申请实施例中,第二RE集合和第三RE集合可以在一个第二SCS时隙范围中定义,也可以在一个第二SCS符号范围中定义,本申请实施例不做限制。在本申请实施例中,第一OFDM符号和第二OFDM符号分别用于描述一类信号。在一块时频资源的时域中,可以包括一组或多组2 n个第一OFDM符号,本申请实施例不做限制。
S102、终端使用第一SCS从网络设备接收PDSCH。
可选的,步骤S102也可以表述为:终端从网络设备接收第一SCS对应的PDSCH。
作为一种实现方式,当PDSCH在2 n个第一OFDM符号上重复传输时,终端可以在2 n个第一OFDM符号上接收PDSCH。通过该方法,能够提高终端接收到的PDSCH的增益。
作为另一种实现方式,当PDSCH在2 n个第一OFDM符号上重复传输时,终端在2 n个第一OFDM符号的第一个第一OFDM符号上接收PDSCH,不在2 n个第一OFDM符号的非第一个第一OFDM符号上接收PDSCH。有利于简化终端接收PDSCH的流程。
作为另一种实现方式,当PDSCH在2 n个第一OFDM符号上重复传输时,终端在2 n个第一OFDM符号的至少一个第一OFDM符号上接收PDSCH,不在2 n个第一OFDM符号中除该至少一个第一OFDM符号以外的OFDM符号上接收PDSCH。该方法有利于简化终端接收PDSCH的流程。该至少一个第一OFDM符号可以是该2 n个第一OFDM符号中的任意至少一个符号,其位置在时域可以是连续的,也可以是离散的,本申请实施例不做限制。例如,该至少一个符号可以是前两个符号、最后一个符号或者其它可能的情况。
所述步骤S101&步骤S102不仅适用于PDSCH的传输和接收,还适用于PDCCH、DMRS等其他的下行信道或下行信号的传输和接收。可选地,所述步骤S101&步骤S102不仅适用于下行PDSCH信号的传输和接收,还可以将其扩展到上行信号的传输和接收。
可选地,该方法还包括:预配置或者网络设备通过信令为终端配置第三RE集合或第二RE集合的资源位置。半静态信令也可以称为高层信令。在本申请实施例中,信令可以是半静态信令和/或动态信令。
在本申请实施例中,半静态信令可以是无线资源控制(radio resource control,RRC)信令、广播消息、系统消息、或媒体接入控制(medium access control,MAC)控制元素(control element,CE)。其中,广播消息可以包括剩余最小系统消息(remaining minimum system  information,RMSI)。
在本申请实施例中,动态信令可以是物理层信令。物理层信令可以是物理控制信道携带的信令或者物理数据信道携带的信令。其中,物理数据信道可以是下行信道,例如PDSCH。物理控制信道可以是PDCCH、增强物理下行控制信道(enhanced physical downlink control channel,EPDCCH)、窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)或机器类通信物理下行控制信道(machine type communication(MTC)physical downlink control channel,MPDCCH)。其中,PDCCH或EPDCCH携带的信令还可以称为下行控制信息(downlink control information,DCI)。物理控制信道还可以是物理副链路控制信道(physical sidelink control channel),物理副链路控制信道携带的信令还可以称为副链路控制信息(sidelink control information,SCI)。
配置第三RE集合的资源位置可以是为终端配置第二SCS的参考信号所在的资源位置。为终端配置第二SCS的参考信号所在的资源位置可以参考LTE 36.211和36.331中为终端设备配置参考信号的资源位置的方式,或者参考参考NR 38.211和38.331中为终端设备配置参考信号的资源位置的方式,或者可以参考其他配置参考信号的资源位置的方式,本申请实施例不做限制。其中,该参考信号可以是各种可能的参考信号,如CRS、或DMRS等。LTE的协议版本或者NR的协议版本不构成对本申请实施例的应用范围的限制,例如将来制定的协议版本中描述的参考信号的资源位置的配置方式也可以使用本申请实施例。
为终端设备配置第二RE集合的资源位置可以是配置第二RE集合中的RE所在的第二OFDM符号的位置,和该符号中第二RE集合中的RE所在的子载波的位置。其中,对于第二RE集合中的RE所在的第二OFDM符号的位置和该符号中第二RE集合中的RE所在的子载波的位置,二者中的任意一个可以是预配置的,另一个是网络设备通过信令为终端配置的;或者二者都是预配置的;或者二者都是网络设备通过信令为终端配置。
用于配置第三RE集合或第二RE集合的资源位置的信令可以称为资源配置信息。可选地,所述资源配置信息用于配置第二SCS对应的参考信号的时域资源和/或频域资源。
以一个第三RE集合和第一第二RE集合定义在一个第二SCS符号上为例。作为一种实现方式,所述资源配置信息用于指示第四RE集合中每一个RE的位置。所述第四RE集合包括N个第二OFDM符号上用于承载第二SCS对应的参考信号的RE,也就是说,所述第四RE集合包括N个第三RE集合。N为正整数。本领域技术人员可以理解,当所述第三RE集合是定义在该N个第二OFDM符号上时,即第三RE集合中包括该N个第二OFDM符号上的参考信号的RE时,所述资源配置信息用于指示第四RE集合中每一个RE的位置等效于:所述资源配置信息用于指示第三RE集合中每一个RE的位置。
以图1为例,第四RE集合为RE{(0,0),(6,0),(12,0),(18,0);(3,4),(9,4),(15,4),(21,4);(0,0),(6,7),(12,7),(18,7);(3,11),(9,11),(15,11),(21,11);}。
终端基于资源配置信息,能够确定第二OFDM符号的位置。举例来说,若资源配置信息所指示的第三RE集合为{(0,0),(2,1),(4,5)},则终端可以确定OFDM符号#0、OFDM符号#1、以及OFDM符号#5上有承载第二SCS对应的参考信号的RE,也就是说OFDM符号#0、OFDM符号#1、以及OFDM符号#5用于发送第二SCS对应的参考信号。从而,终端能够确定OFDM符号#0、OFDM符号#1、以及OFDM符号#5均为第二OFDM符号。
此外,终端基于资源配置信息,可以确定N个第三RE集合。举例来说,若资源配置 信息所指示的第四RE集合为{(0,0),(6,0),(12,0),(18,0);(3,4),(9,4),(15,4),(21,4);(0,7),(6,7),(12,7),(18,7);(3,11),(9,11),(15,11),(21,11);},以第三RE集合中的全部RE属于第二RE集合为例,则终端能够确定OFDM符号#0对应的第三RE集合为{(0,0),(6,0),(12,0),(18,0)},OFDM符号#4对应的第三RE集合为{(3,4),(9,4),(15,4),(21,4)},OFDM符号#7对应的第三RE集合为{(0,7),(6,7),(12,7),(18,7)},OFDM符号#11对应的第三RE集合为{(3,11),(9,11),(15,11),(21,11)}。
在确定N个第三RE集合之后,终端可以根据一个第二OFDM符号对应的第三RE集合,确定该第二OFDM符号对应的第二RE集合。以第三RE集合中的部分RE属于第二RE集合,即第二RE集合包括第三RE集合中子载波编号为2 n整数倍的RE为例,以n=1为例,假设OFDM符号#4对应的第三RE集合为{(3,4),(9,4),(15,4),(21,4)},则OFDM符号#4对应的第二RE集合为空集。或者,假设OFDM符号#7对应的第三RE集合为{(0,7),(6,7),(12,7),(18,7)},则OFDM符号#7对应的第二RE集合为{(0,7),(6,7),(12,7),(18,7)}。
在确定一个第二OFDM符号对应的第二RE集合,终端可以根据该第二OFDM符号对应的第二RE集合,确定2 n个第一OFDM符号对应的第一RE集合。例如,第二OFDM符号#0在时域内对齐第一OFDM符号#0和第一OFDM符号#1,若第二OFDM符号#0对应的第二RE集合为{(0,0),(6,0),(12,0),(18,0)},则第一OFDM符号#0和第一OFDM符号#1对应的第一RE集合为{(0,0),(3,0),(6,0),(9,0);(0,1),(3,1),(6,1),(9,1);}。
也就是说,当资源配置信息用于指示第三RE集合中每一个RE的位置时,资源配置信息用于间接指示至少一个第二OFDM符号的位置;以及,对于每一个第二OFDM符号来说,资源配置信息还用于间接指示该OFDM符号对应的第二RE集合中RE的位置。
可选的,所述资源配置信息用于指示第四RE集合中每一个RE的位置,包括以下情形之一:
情形一、所述资源配置信息用于指示第四RE集合中每一个RE的索引。
情形二、所述资源配置信息用于指示资源图样(pattern)的索引。其中,资源图样以RB为粒度,或者频域以RB为粒度且时域以时隙为粒度,用于指示资源栅格中承载参考信号的RE的位置。示例性的,资源图样可以参考图15所示。
可选地,所述资源配置信息包括:带宽、天线端口的数目、偏移值、载波的中心位置。
需要说明的是,天线端口的数目与资源图样存在预设的对应关系。以参考信号为CRS为例,当天线端口的数目为1时,对应的资源图样可参考图15;当天线端口的数目为2时,对应的资源图样可参考图16;当天线端口的数目为4时,对应的资源图样可参考图17。
偏移值用于指示承载参考信号的RE在频域上的循环移位。举例来说,以偏移值为1,天线端口的数目为1为例,在图15所示的资源图样中承载参考信号的RE在频域上循环移动后,资源栅格中承载参考信号的RE的位置可参考图18。
作为一种实现方式,偏移值=ID cellmod6。其中,ID cell表示物理小区的标识。
这样一来,终端通过带宽和载波的中心位置,确定频域资源的带宽大小和位置;并且,终端根据天线端口的数目,确定对应的资源图样;之后,终端根据偏移值和资源图样,确定资源栅格中所有承载参考信号的RE的位置,即确定第二SCS对应的资源栅格中用于承载所述参考信号的第四RE集合。
以上仅是对资源配置信息的示例,本申请实施例不限于此。
可选地,网络设备和终端传输NR PDSCH时,本申请实施例提供的方法还包括:网络设备向终端发送所述PDSCH的调度信息。相应的,终端接收所述PDSCH的调度信息。
其中,所述PDSCH的调度信息承载于DCI中。针对DCI的介绍可以参考NR 38.212和LTE 36.212的介绍,或者可以参考其他的DCI的格式,本申请实施例不做限制。
所述PDSCH的调度信息用于指示所述PDSCH的调制机制,所述调制机制所指示PDSCH的码率小于第一阈值。
可选的,所述第一阈值与一个第一SCS的slot中包含的OFDM符号数目N、N个OFDM符号中用于重复传输PDSCH降ISI干扰的数目M相关,所述第一阈值可以小于或者等于(N-M)/N。例如,如图2所示的30kHz的第一SCS的一个slot中包括14个OFDM符号,其中14个OFDM符号中符号#1和#9用于重复传输降ISI干扰,因此所述第一阈值可以小于或等于12/14;第一阈值等效的频谱效率等于第一阈值乘以PDSCH所使用的调制阶数。可选的,所述N也可以表示为所述PDSCH在时域映射的OFDM符号数目;所述M也可以表示为所述PDSCH传输的N个符号中用于重复传输的OFDM符号数目。
可选的,所述第一阈值与一个第一SCS的slot中包含的OFDM符号数目N、N个OFDM符号中用于重复传输PDSCH降ISI干扰的数目M、和第一SCS的BWP中和第二SCS重叠的或共享的第一SCS的RB数目N1、第一SCS的BWP中第一SCS独享的RB数目N2相关,所述所述第一阈值可以小于或者等于[N*(N1+N2)-(N-M)*N1]/[N*(N1+N2)],例如图2所示的30kHz的第一SCS的一个slot中包括14个OFDM符号,其中14个OFDM符号中符号#1和#9用于重复传输降ISI干扰、此外假设第一SCS的BWP中共享的RB数目N1等于10、独享的RB数目N2等于10,因此所述第一阈值可以小于或等于13/14;第一阈值等效的频谱效率等于第一阈值乘以PDSCH所使用的调制阶数。可选的,所述N也可以表示为所述PDSCH在时域映射的OFDM符号数目;所述M也可以表示为所述PDSCH传输的N个符号中用于重复传输的OFDM符号数目;所述N1也可以表示为所述PDSCH在频域上映射的共享的第一SCS的RB数目;所述N2也可以表示为所述PDSCH在频域上映射的独享的第一SCS的RB数目。
可选的,所述PDSCH的调度信息用于指示所述PDSCH的调制机制,包括:所述PDSCH的调度信息用于指示调制与编码策略(modulation and coding scheme,MCS)的索引。
需要说明的是,MCS用于指示调制方式、编码方式。示例性的,MCS的索引、调制阶数、码率与频谱效率之间存在预设的对应关系,参见表4。在表4中,MCS的索引为29、30或者31时,码率和频谱效率是预留(reserved)的。
表4
Figure PCTCN2020079052-appb-000017
Figure PCTCN2020079052-appb-000018
可选的,所述PDSCH的调度信息用于指示PDSCH所占用的时频资源。例如,所述PDSCH的调度信息还用于指示终端的BWP上PDSCH所占用的RB。具体的,所述PDSCH用于指示在终端的BWP上PDSCH所占用的RB的起始位置,以及RB的个数。
其中,终端的BWP如何确定可用参考前文对BWP的介绍,在此不再赘述。
上述主要从网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,每一个网元,例如网络设备和终端,为了实现上述功能,其包含了执行该功能相应的硬件结构或软件模块,或两者结合。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图19是本申请实施例提供的装置1000的结构示意图。其中,装置1000可以是终端或者网络设备,能够实现本申请实施例提供的方法;装置1000也可以是能够支持终端或者网络设备实现本申请实施例提供的方法的装置,装置1000可以安装在终端或者网络设备中。装置1000可以是硬件结构、软件模块、或硬件结构加软件模块。装置1000可以由芯片系统实现。
[根据细则91更正 25.03.2020] 
装置1000中包括处理模块1001和通信模块1002。处理模块1001可以生成用于发送的信息,并可以利用通信模块1002发送该信息。处理模块1001可以利用通信模块1002接收信息,并处理该接收到的信息。处理模块1001和通信模块1002耦合。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或连接,其可以是电性, 机械或其它的形式,用于装置、单元或模块之间的信息交互。耦合可以是有线连接,也可以是无线连接。
在本申请实施例中,通信模块可以是电路、模块、总线、接口、收发器或者其它可以实现收发功能的装置,本申请实施例不做限制。
图20为本申请实施例提供的用于实现网络设备或终端的功能的装置2000的示例图。
在一种可能的实现中,装置2000用于实现网络设备的功能。
装置2000包括至少一个处理器2001和通信接口2002。处理器2001用于实现本申请实施例提供的方法中网络设备的功能,通信接口2002用于该装置和其它设备(如终端)之间进行通信。
可选地,装置2000可以包括存储器2003。可选地,存储器2003可以包括于处理器2001中。其中,处理器2001、通信接口2002和存储器2003可以通过内部连接通路(例如总线)互相通信。存储器2003用于存储指令,处理器2001执行存储器2003存储的指令时,使得装置2000实现本申请实施例提供的方法中网络设备的功能。
装置2000可以是网络设备、电路或片上系统(system on chip,SoC)等各种可能的形式,本申请实施例不做限定。
在一种可能的实现中,装置2000用于实现终端的功能。
装置2000包括至少一个处理器2001和通信接口2002。处理器2001用于实现本申请实施例提供的方法中终端的功能,通信接口2002用于该装置和其它设备(如网络设备)之间进行通信。
可选地,装置2000可以包括存储器2003。可选地,存储器2003可以包括于处理器2001中。其中,处理器2001、通信接口2002和存储器2003可以通过内部连接通路(例如总线)互相通信。存储器2003用于存储指令,处理器2001执行存储器2003存储的指令时,使得装置2000实现本申请实施例提供的方法中终端的功能。
装置2000可以是终端、电路或SoC等各种可能的形式,本申请实施例不做限定。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者任何形式的处理器等。
在本申请实施例中,通信接口可以是电路、模块、总线、总线接口、收发器等可以实现通信功能的装置或模块。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,也可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。或者,存储器可以是用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请的装置实施例中,装置的模块划分是一种逻辑功能划分,实际实现时可以有另外的划分方式。例如,装置的各功能模块可以集成于一个模块中,也可以是各个功能模块单独存在,也可以两个或两个以上功能模块集成在一个模块中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组 合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如SSD)等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。尽管在此结合各实施例对本申请进行了描述,然而,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上各实施例仅用以说明本申请的技术方案,并不用于限定其保护范围。凡在本申请的技术方案的基础上所做的修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (26)

  1. 一种数据信道的传输方法,其特征在于,所述方法包括:
    使用第一子载波间隔SCS接收物理下行共享信道PDSCH;其中,所述PDSCH在2 n个第一正交频分复用OFDM符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的参考信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。
  2. 根据权利要求1所述的数据信道的传输方法,其特征在于,对于所述2 n个第一OFDM符号,当n=1时,所述两个第一OFDM符号中的第一个第一OFDM符号包括循环前缀,第二个第一OFDM符号包括循环后缀。
  3. 根据权利要求1所述的数据信道的传输方法,其特征在于,所述2 n个第一OFDM符号中第i个第一OFDM符号上传输的PDSCH的数据是对应的频域信号经过相位旋转处理后得到的,i为大于1且小于等于2 n的整数。
  4. 根据权利要求1至3任一项所述的数据信道的传输方法,其特征在于,在所述2 n个第一OFDM符号上,第一RE集合中的RE不用于映射所述PDSCH,所述第一RE集合和第二RE集合在频域内存在重叠部分;
    所述1个第二OFDM符号用于发送所述第二SCS对应的参考信号,包括:在所述1个第二OFDM符号中,所述第二RE集合中的RE用于映射所述第二SCS对应的参考信号。
  5. 根据权利要求4所述的数据信道的传输方法,其特征在于,所述第一RE集合中一个RE的子载波编号的2 n倍等于所述第二RE集合中一个RE的子载波编号。
  6. 根据权利要求1至5任一项所述的数据信道的传输方法,其特征在于,所述接收PDSCH,包括:
    在所述2 n个第一OFDM符号的第一个第一OFDM符号上接收所述PDSCH。
  7. 根据权利要求1至6任一项所述的数据信道的传输方法,其特征在于,所述方法还包括:
    接收资源配置信息,所述资源配置信息用于确定所述第二OFDM符号的位置。
  8. 根据权利要求7所述的数据信道的传输方法,其特征在于,所述资源配置信息还用于确定第二RE集合中的RE的位置。
  9. 一种数据信道的传输方法,其特征在于,包括:
    使用第一子载波间隔SCS发送物理下行共享信道PDSCH;其中,所述PDSCH在2 n个第一正交频分复用OFDM符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的参考信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。
  10. 根据权利要求9所述的数据信道的传输方法,其特征在于,对于所述2 n个第一OFDM符号,当n=1时,所述两个第一OFDM符号中的第一个第一OFDM符号包括循环前缀,第二个第一OFDM符号包括循环后缀。
  11. 根据权利要求9所述的数据信道的传输方法,其特征在于,所述2 n个第一OFDM符号中第i个第一OFDM符号上传输的PDSCH的数据是对应的频域信号经过相位旋转处理后得到的,i为大于1且小于等于2 n的整数。
  12. 根据权利要求9至11任一项所述的数据信道的传输方法,其特征在于,在所述2 n个第一OFDM符号上,第一RE集合中的RE不用于映射所述PDSCH,所述第一RE集合和第二RE集合在频域内存在重叠部分;
    所述1个第二OFDM符号用于发送所述第二SCS对应的参考信号,包括:在所述1个第二OFDM符号中,所述第二RE集合中的RE用于映射所述第二SCS对应的参考信号。
  13. 根据权利要求12所述的数据信道的传输方法,其特征在于,所述第一RE集合中一个RE的子载波编号的2 n倍等于所述第二RE集合中的一个RE的子载波编号。
  14. 根据权利要求9至13任一项所述的数据信道的传输方法,其特征在于,所述方法还包括:
    发送资源配置信息,所述资源配置信息用于指示所述第二OFDM符号的位置。
  15. 根据权利要求14所述的数据信道的传输方法,其特征在于,所述资源配置信息还用于指示第二RE集合中的RE的位置。
  16. 一种数据信道的传输方法,其特征在于,包括:
    接收资源配置信息,该资源配置信息用于确定第二正交频分复用OFDM符号的位置,所述第二OFDM符号用于传输第二子载波间隔SCS对应的第二信号,1个第二OFDM符号和2 n个第一OFDM符号在时域内对齐,2 n个第一OFDM符号用于重复传输第一SCS对应的第一信号,第一SCS是第二SCS的2 n倍,其中n为正整数。
  17. 一种数据信道的传输方法,其特征在于,包括:
    发送资源配置信息,该资源配置信息用于指示第二正交频分复用OFDM符号的位置,所述第二OFDM符号用于传输第二子载波间隔SCS对应的第二信号,1个第二OFDM符号和2 n个第一OFDM符号在时域内对齐,2 n个第一OFDM符号用于重复传输第一SCS对应的第一信号,第一SCS是第二SCS的2 n倍,其中n为正整数。
  18. 一种装置,其特征在于,用于实现如权利要求1至8和16任一项所述的数据信道的传输方法。
  19. 一种装置,其特征在于,包括:处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至8和16任一项所述的数据信道的传输方法。
  20. 一种装置,其特征在于,包括处理器和通信接口,
    所述处理器利用所述通信接口,使用第一子载波间隔SCS接收物理下行共享信道PDSCH;其中,所述PDSCH在2 n个第一正交频分复用OFDM符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的参考信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。
  21. 一种装置,其特征在于,用于实现如权利要求9至15和17任一项所述的数据信道的传输方法。
  22. 一种装置,其特征在于,包括:处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求9至15和17任一项所述的数据信道的传输方法。
  23. 一种装置,其特征在于,包括处理器和通信接口,
    所述处理器利用所述通信接口,使用第一子载波间隔SCS发送物理下行共享信道 PDSCH;其中,所述PDSCH在2 n个第一正交频分复用OFDM符号上是重复传输的,所述2 n个第一OFDM符号和1个第二OFDM符号在时域内对齐,所述1个第二OFDM符号用于发送第二SCS对应的参考信号,所述第一SCS是所述第二SCS的2 n倍,其中n为正整数。
  24. 一种通信系统,包括权利要求18至20任一项所述的装置,和权利要求21至23任一项所述的装置。
  25. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至17任一项所述的数据信道的传输方法。
  26. 一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至17任一项所述的数据信道的传输方法。
PCT/CN2020/079052 2019-03-18 2020-03-12 数据信道的传输方法及装置 WO2020187132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910205525.1A CN111726311B (zh) 2019-03-18 2019-03-18 数据信道的传输方法及装置
CN201910205525.1 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020187132A1 true WO2020187132A1 (zh) 2020-09-24

Family

ID=72519574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079052 WO2020187132A1 (zh) 2019-03-18 2020-03-12 数据信道的传输方法及装置

Country Status (2)

Country Link
CN (1) CN111726311B (zh)
WO (1) WO2020187132A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115250220A (zh) * 2021-04-26 2022-10-28 华为技术有限公司 无线局域网中的通信方法及相关装置
WO2023193634A1 (zh) * 2022-04-07 2023-10-12 中兴通讯股份有限公司 传输方法、电子设备和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117354811B (zh) * 2023-12-04 2024-03-12 四川恒湾科技有限公司 一种o-ru的动态频谱共享方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219204A1 (zh) * 2016-06-20 2017-12-28 广东欧珀移动通信有限公司 信息传输方法和装置
WO2018024065A1 (en) * 2016-08-04 2018-02-08 Huawei Technologies Co., Ltd. Symbol and subframe alignment in a wireless communication system
WO2018102408A1 (en) * 2016-11-30 2018-06-07 Qualcomm Incorporated Synchronization signal options for 5g/new radio
CN108282302A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种参考信号发送方法、接收方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL190659A0 (en) * 2008-04-07 2008-12-29 Mariana Goldhamer Wireless communication network with relay stations
WO2017113425A1 (zh) * 2015-12-31 2017-07-06 华为技术有限公司 传输数据的方法和用户设备
CN108023665A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 一种数据传输方法及装置、电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219204A1 (zh) * 2016-06-20 2017-12-28 广东欧珀移动通信有限公司 信息传输方法和装置
WO2018024065A1 (en) * 2016-08-04 2018-02-08 Huawei Technologies Co., Ltd. Symbol and subframe alignment in a wireless communication system
WO2018102408A1 (en) * 2016-11-30 2018-06-07 Qualcomm Incorporated Synchronization signal options for 5g/new radio
CN108282302A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种参考信号发送方法、接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining Issues on Simultaneous Reception and Transmission over CCs and BWPs", "3GPP TSG RAN WG1 MEETING #93 R1-1805955", 11 May 2018 (2018-05-11), XP051461663, DOI: 20200512105544A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115250220A (zh) * 2021-04-26 2022-10-28 华为技术有限公司 无线局域网中的通信方法及相关装置
WO2023193634A1 (zh) * 2022-04-07 2023-10-12 中兴通讯股份有限公司 传输方法、电子设备和存储介质

Also Published As

Publication number Publication date
CN111726311B (zh) 2021-10-22
CN111726311A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2018210243A1 (zh) 一种通信方法和装置
US11363499B2 (en) Resource configuration method, apparatus, and system
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2018201860A1 (zh) 上报端口信息的方法、终端设备和网络设备
WO2022022579A1 (zh) 一种通信方法及装置
JP2020503732A (ja) 情報伝送方法、端末装置及びネットワーク装置
WO2021017995A1 (zh) 控制信息传输方法及装置
WO2019228511A1 (zh) 资源配置方法、网络设备和终端
EP4195834A1 (en) Communication method and apparatus
WO2020199864A1 (zh) 数据压缩方法及装置
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2018228243A1 (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
US20220052812A1 (en) Communication method and apparatus
TW201826747A (zh) 資源映射的方法和通訊設備
WO2021197225A1 (zh) 一种通信方法和装置
WO2018228460A1 (zh) 相位跟踪参考信号处理方法与装置
WO2023066050A1 (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
CN110971554B (zh) 数据传输方法及装置
WO2021134600A1 (zh) 信号传输的方法及装置
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2019062789A1 (zh) 一种时域信息的确定方法及装置
WO2023142120A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
CN112398625B (zh) 一种通信方法及装置
WO2024011483A1 (zh) 通信方法、终端设备及网络设备
WO2023284548A1 (zh) 发送物理层协议数据单元的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774709

Country of ref document: EP

Kind code of ref document: A1