WO2023193634A1 - 传输方法、电子设备和存储介质 - Google Patents
传输方法、电子设备和存储介质 Download PDFInfo
- Publication number
- WO2023193634A1 WO2023193634A1 PCT/CN2023/084340 CN2023084340W WO2023193634A1 WO 2023193634 A1 WO2023193634 A1 WO 2023193634A1 CN 2023084340 W CN2023084340 W CN 2023084340W WO 2023193634 A1 WO2023193634 A1 WO 2023193634A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- symbol
- transmission
- symbols
- pilot
- equal
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 466
- 238000000034 method Methods 0.000 title claims abstract description 92
- 238000001514 detection method Methods 0.000 claims description 28
- 230000015654 memory Effects 0.000 claims description 20
- 238000010586 diagram Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0273—Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/20—Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
Definitions
- This application relates to the field of wireless communication technology, for example, to a transmission method, device, electronic equipment and storage medium.
- scheduling-free transmission can reduce signaling overhead and transmission delay, and can also reduce terminal power consumption.
- scheduling-free transmission can also be combined with non-orthogonal transmission to increase the number of access users.
- Common scheduling-free transmission includes two methods, namely configured grant and contention-based grant-free.
- the base station pre-configures or semi-statically configures transmission resources for each UE.
- the resources can include time-frequency resources, pilots, etc.; the base station can ensure that multiple UEs use different resources through configuration to avoid collisions. Convenient for user identification and detection.
- the base station can also be configured to allow some UEs to use the same time-frequency resources and pilots, that is, allowing collisions. Then there will be multiple UEs using the same time-frequency resources and pilots. And a collision occurs.
- transmission resources can be randomly selected for competitive access and transmission.
- multiple UEs use the same time-frequency resources and pilots.
- the scheduling-free transmission method in related technologies can support a certain number of UEs to transmit on the same time-frequency resources in normal coverage scenarios.
- poor coverage or extreme coverage scenarios there are many UEs with weak or poor coverage.
- These UEs have large transmission losses and low signal-to-noise ratios.
- the transmission performance of these UEs cannot be guaranteed, and the number of supported users is small, resulting in poor overall system performance.
- Embodiments of the present application propose a transmission method, electronic device, and storage medium to at least solve the problems in related technologies of poor transmission performance of weak coverage terminals and a small number of supported users.
- the embodiment of this application provides a transmission method, which is applied to the sending end.
- the method includes:
- N is An integer greater than or equal to 1.
- the embodiment of the present application also provides a transmission method, which is applied to the receiving end.
- the method includes:
- N is an integer greater than or equal to 1.
- An embodiment of the present application also provides an electronic device, wherein the electronic device includes:
- memory for storing at least one program
- the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements any of the methods described in the embodiments of this application.
- Embodiments of the present application also provide a computer-readable storage medium, wherein the computer-readable storage medium stores at least one program, and the at least one program is executed by at least one processor to implement any of the embodiments of the present application. 1. The method described.
- Figure 1 is a flow chart of a transmission method provided by an embodiment of the present application.
- Figure 2 is an example diagram of a transmission method provided by an embodiment of the present application.
- Figure 3 is an example diagram of another transmission method provided by an embodiment of the present application.
- Figure 4 is an example diagram of another transmission method provided by the embodiment of the present application.
- Figure 5 is an example diagram of another transmission method provided by the embodiment of the present application.
- Figure 6 is a flow chart of another transmission method provided by an embodiment of the present application.
- Figure 7 is a schematic structural diagram of a transmission device provided by an embodiment of the present application.
- Figure 8 is a schematic structural diagram of another transmission device provided by an embodiment of the present application.
- Figure 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- module means such as “module”, “part” or “unit” used to represent elements are used.
- the suffix is only used to facilitate the description of the present application and has no special meaning in itself. Therefore, “module”, “component” or “unit” may be used interchangeably.
- Figure 1 is a flow chart of a transmission method provided by an embodiment of the present application.
- the embodiments of the present application are applicable to the case of data transmission.
- the method can be performed by a transmission device.
- the device can be implemented by software and/or hardware methods and is generally integrated at the sending end.
- the method provided by the embodiment of this application includes the following steps:
- Step 110 Repeat transmission of the first symbol M times, where the first symbol includes X pilot symbols, X is an integer greater than or equal to 0, and M is an integer greater than or equal to 1.
- Step 120 Repeat transmission of the second symbol N times, where the second symbol includes a data symbol, and N is an integer greater than or equal to 1.
- the accuracy of channel estimation and time-frequency offset estimation can be improved by performing M repeated transmissions on the first symbol including X pilot symbols and N times on the second symbol including data symbols. It supports more terminal devices for data transmission, which can save transmission resources and improve the transmission performance and transmission capacity of the system.
- the method provided by the embodiment of the present application is applied to a transmitter, where the transmitter at least includes a terminal, user equipment UE, a base station, network equipment, and other applicable communication nodes.
- X is equal to 0, the first symbol does not contain any symbol, or the first symbol does not exist; the second symbol includes a data symbol, and the second symbol is repeatedly transmitted N times.
- X is equal to 1, and the first symbol includes a pilot symbol, wherein the one pilot symbol includes A symbols, and A is an integer greater than or equal to 1.
- X is greater than 1, for example, X is 2, or 3, or 4, etc.
- the first symbol includes a plurality of pilot symbols, wherein each pilot symbol includes B symbols, B is an integer greater than or equal to 1.
- the symbols of multiple pilots may be time-divided, that is, the transmission resources used by the symbols of multiple pilots are different in the time domain; or the symbols of multiple pilots may be time-divided. divided, that is, the transmission resources used by the symbols of multiple pilots are different in the frequency domain; or, the symbols of multiple pilots can be time-frequency divided, that is, the transmission resources used by the symbols of multiple pilots They are different in the time domain and frequency domain; or, the symbols of multiple pilots can be code-divided, that is, the symbols of multiple pilots are different, or different sequences are used to generate the symbols of multiple pilots respectively. .
- the first symbol further includes partial data symbols, and correspondingly, the second symbol includes the remaining data symbols except the partial data symbols.
- the data symbols include a total of S symbols, S is an integer greater than or equal to 1, the partial data symbols include Y symbols in the data symbols, Y is an integer greater than or equal to 1 and less than or equal to S, so The remaining data symbols include the remaining (S-Y) symbols in the data symbols.
- the first symbol includes X pilot symbols and partial data symbols, and the first symbol is repeatedly transmitted M times; the second symbol includes the remaining data symbols except the partial data symbols, and the second symbol is Symbols are transmitted repeatedly N times.
- X is equal to 0, the first symbol does not include pilot symbols and only includes part of the data symbols, and the first symbol is repeatedly transmitted M times; the second symbol includes the remaining data except the part of the data symbols. symbol, and repeat the transmission of the second symbol N times.
- the value of M is greater than the value of N, that is, the number of repeated transmissions of the first symbol is greater than the number of repeated transmissions of the second symbol.
- the value of N is greater than the value of M, that is, the number of times of repeated transmission of the second symbol is greater than the number of times of repeated transmission of the first symbol.
- the value of N is equal to the value of M, that is, the number of repeated transmissions of the first symbol and the second symbol is the same.
- the pilot includes at least one of the following: a pilot sequence, a reference signal, pilot energy, and a resource for transmitting the pilot.
- Each pilot symbol may be generated based on one or more of a pilot sequence, a reference signal, pilot energy, and a resource for transmitting the pilot.
- the data symbols include symbols generated by coding and modulating the bits to be sent; or the data symbols include symbols obtained by using sequences to extend or map the symbols generated by coding and modulating; or the data symbols include : Encode the bits to be sent to obtain coded bits, then modulate or map the coded bits into a specified sequence, and use the specified sequence as the data symbol.
- the data symbols or bits to be sent carry at least one of the following information: payload, identity information, information on at least one pilot among the X pilots, sequence information, and transmission resource information.
- identity information information on at least one pilot among the X pilots
- sequence information information on at least one pilot among the X pilots
- transmission resource information may be indicated by dedicated bits, or may be indicated implicitly by designated bits.
- one or more of the information, sequence information, and transmission resource information of at least one pilot among the designated bits to implicitly indicate identification information, at least one pilot among X pilots One or more of the information, sequence information, and transmission resource information.
- the payload may include service data, designated messages, etc.
- the identification information is used by the receiver to determine which transmitter it is receiving data from.
- the sequence information includes information about the sequence used by the transmitter when spreading or mapping symbols, or information about a specified sequence used when mapping bits into a specified sequence, and may also include information about a sequence set. This information is used by the receiver to reconstruct the symbols sent by the transmitter for interference cancellation.
- the information of at least one pilot among the X pilots includes index information or generation information of at least one pilot among the X pilots, and may also include information on the number X of pilots. This information is used by the receiver to reconstruct the pilot symbols in order to eliminate interference to the pilots.
- the transmission resource information includes location information of at least one transmission resource used by the transmitter, may also include information on the quantity of transmission resources used by the transmitter, and may also include information on available transmission resources. This information is used by the receiver to determine on which transmission resources the transmitter transmitted so that detection can be performed on those transmission resources.
- repeated transmission includes: repeated transmission in units of the first designated transmission resource, or repeated mapping and transmission on the second designated transmission resource.
- repeated transmission may include subframe-level repeated transmission, slot-level repeated transmission, symbol-level repeated transmission, intra-subframe repeated transmission, repeated transmission in multiple subframes, transport block repeated transmission, multi-subframe repeated transmission, multi-slot repeated transmission At least one of repeated transmission, multi-symbol repeated transmission, etc.
- performing M repeated transmissions on the first symbol includes: performing M repeated transmissions on the first symbol according to a first designated repeated transmission mode. For example, it can be repeated transmission at the subframe level, repeated transmission at the slot level, symbol level repeated transmission, repeated transmission within a subframe, repeated transmission within multiple subframes, repeated transmission in transport blocks, repeated transmission in multiple subframes, and repeated transmission in multiple slots. At least one of , multi-symbol repeated transmission, etc. performs M repeated transmissions on the first symbol.
- the first symbol can be repeatedly transmitted according to two different repeated transmission modes.
- First, the first symbol is repeatedly transmitted M1 times according to the first repeated transmission mode to obtain the symbol after M1 repeated transmissions, and then The symbols after M1 repeated transmissions are repeatedly transmitted M2 times according to the second repeated transmission mode, where the product of M1 and M2 is M.
- the first repeated transmission mode may include symbol-level repeated transmission, slot-level repeated transmission, intra-subframe repeated transmission, subframe-level repeated transmission, repeated transmission in multiple subframes, transport block repeated transmission, and multi-subframe repeated transmission.
- the second repeated transmission mode may include symbol-level repeated transmission, time At least one of slot-level repeated transmission, intra-subframe repeated transmission, subframe-level repeated transmission, repeated transmission in multiple subframes, transport block repeated transmission, multi-subframe repeated transmission, multi-slot repeated transmission, multi-symbol repeated transmission.
- the first symbol may be extended using a sequence of length L to obtain an extended symbol, and then the extended symbol may be repeatedly transmitted U times, where the product of L and U is M. There is no restriction on the specific mode of repeated transmission.
- the first symbol can be transmitted on multiple transmission resources, and the first symbol can be repeatedly transmitted on each transmission resource, where the number H of transmission resources is the same as the number H of each transmission resource.
- the product of the number of times Q of repeatedly transmitting the first symbol is M.
- the first symbol may be frequency-hopped on multiple transmission resources.
- the first symbol may be repeatedly transmitted on the first transmission resource Q times, and then frequency-hopped to the second transmission resource. , repeat the transmission of the first symbol Q times on the second transmission resource, then hop to the third transmission resource, repeat the transmission of the first symbol Q times on the third transmission resource, and so on, in H transmissions
- multiple frequency hopping can use the same frequency hopping mode, or multiple frequency hopping modes can be used.
- the first frequency hopping is based on the first frequency hopping mode
- the second frequency hopping is based on the second frequency hopping mode.
- the third frequency hopping is based on the first frequency hopping mode
- the fourth frequency hopping is based on the second frequency hopping mode, and so on.
- different frequency hopping modes use different frequency hopping intervals or frequency hopping patterns.
- repeating the transmission of the first symbol M times includes: transmitting the first symbol on J transmission resources, wherein X of the first symbol included in each of the J transmission resources are The symbol of at least one pilot in the pilot is repeatedly transmitted M times, where J is an integer greater than or equal to 1.
- the first symbol may be transmitted on J transmission resources, and the symbol of at least one pilot in the first symbol may be repeatedly transmitted M times on each transmission resource. It can be understood that different pilot symbols can be transmitted on different transmission resources.
- the value of J may be the same as X
- X pilots included in the first symbol may be One pilot symbol is transmitted repeatedly M times. It can be understood that one pilot symbol can use one transmission resource, and X pilot symbols can be transmitted on different transmission resources.
- the first symbol may be frequency hopping transmitted on J transmission resources, and multiple frequency hopping may adopt one or more frequency hopping modes.
- J The symbol of the second pilot in one symbol is repeatedly transmitted M times, and then the frequency is hopped to the third transmission resource, and the symbol of the third pilot in the first symbol is repeatedly transmitted M times on the third transmission resource.
- the frequency is finally hopped to the X-th transmission resource, and the symbol of the X-th pilot in the first symbol is repeatedly transmitted M times on the X-th transmission resource.
- partial data symbols included in the first symbol are also repeatedly transmitted M times on J transmission resources.
- Data symbols transmitted on different transmission resources can be different.
- performing N repeated transmissions on the second symbol includes: performing N repeated transmissions on the second symbol according to a second designated repeated transmission mode. For example, it can be repeated transmission at the subframe level, repeated transmission at the slot level, symbol level repeated transmission, repeated transmission within a subframe, repeated transmission within multiple subframes, repeated transmission in transport blocks, repeated transmission in multiple subframes, and repeated transmission in multiple slots. , multi-symbol repeated transmission, etc., at least one of the second symbol is repeatedly transmitted N times.
- the second symbol can be repeatedly transmitted according to two different repeated transmission modes.
- the second symbol is repeatedly transmitted N1 times according to the third repeated transmission mode to obtain the symbol after N1 repeated transmissions, and then according to the fourth repeated transmission mode, the symbols after N1 repeated transmissions are repeatedly transmitted N2 times, where the product of N1 and N2 is N.
- the third repeated transmission mode is the same as the first repeated transmission mode
- the fourth repeated transmission mode is the same as the second repeated transmission mode.
- the second symbol may be expanded using a sequence of length G to obtain an expanded symbol, and then the expanded symbol may be repeatedly transmitted R times, where the product of G and R is N.
- the value of G is equal to the value of L value.
- the second symbol can be transmitted on multiple transmission resources, and the second symbol can be repeatedly transmitted on each transmission resource, where the number P of transmission resources is the same as the number of transmission resources on each transmission resource.
- the product of the number of times T of repeated transmission of the second symbol is N.
- the value of P is equal to the value of H.
- the second symbol may be frequency-hopped on multiple transmission resources.
- multiple frequency hopping can use the same frequency hopping mode, or multiple frequency hopping modes can be used.
- the first frequency hopping is based on the first frequency hopping mode
- the second frequency hopping is based on the second frequency hopping mode.
- the third frequency hopping is based on the first frequency hopping mode
- the fourth frequency hopping is based on the second frequency hopping mode, and so on.
- different frequency hopping modes use different frequency hopping intervals or frequency hopping patterns.
- repeating the transmission of the second symbol N times includes: transmitting the second symbol on V transmission resources, where the second symbol includes W groups of data symbols, and on each of the V transmission resources Repeat transmission of at least one group of data symbols in the W group of data symbols N times, where V is an integer greater than or equal to 1, and W is an integer greater than or equal to 1.
- the second symbol can be transmitted on V transmission resources, and the data symbols included in the second symbol can be divided into W data symbol groups.
- Each data symbol group includes one or more data symbols.
- In each At least one data symbol group can be repeatedly transmitted N times on the transmission resource. It can be understood that different data symbol groups can be transmitted on different transmission resources.
- the value of V may be the same as W
- a group of data symbols in the W group of data symbols may be transmitted on each transmission resource. Perform N repeated transmissions. It can be understood that a group of data symbols can use one transmission resource, and W groups of data symbols can be transmitted on different transmission resources.
- the second symbol may be frequency hopping transmitted on V transmission resources, and multiple frequency hopping may adopt one or more frequency hopping modes.
- the W-th group of symbols in the W-group of data symbols are repeatedly transmitted M times on the W-th transmission resource.
- the method provided by the embodiment of the present application can be applied to weak coverage scenarios, poor coverage scenarios, or extreme coverage scenarios, etc., and can be used to enhance coverage; it can also be used for scheduling-free transmission, including weak coverage scenarios, severe coverage scenarios, etc. Scheduling-free transmission in coverage scenarios or extreme coverage scenarios.
- the methods and various implementations provided by the embodiments of this application can improve the channel estimation results and time-frequency offset estimation results of weak coverage UEs, improve the transmission performance of weak coverage UEs, save transmission resources, and improve system transmission performance and transmission capacity.
- more weak coverage UEs can be supported for scheduling-free transmission, and more UEs can be supported for scheduling-free access and transmission, thus improving the performance and capacity of the scheduling-free transmission system.
- Figure 2 is an example diagram of a transmission method provided by an embodiment of the present application.
- the resource units used by the transmitter for data transmission include F subframes.
- the transmitter uses 2 pilots, pilot 1 is located on subframe 1, and pilot 2 is located on subframe 2.
- the other symbols except the 2 pilot symbols are data symbols, used to transmit data, such as payload or service data.
- the transmitter can be a terminal or UE.
- the transmitter uses subframe-level repeated transmission, performing M repeated transmissions on the subframes where the two pilots are located, and performing N repeated transmissions on other subframes. That is to say , the transmitter performs M repeated transmissions on subframe 1 and subframe 2 respectively, and performs N repeated transmissions on subframes 3 to subframe F respectively.
- subframe 1 includes pilot 1 symbols and 2 data symbols
- subframe 2 includes pilot 2 symbols and 2 data symbols.
- subframe 1 may include only symbols of pilot 1
- subframe 2 may include only symbols of pilot 2.
- when the transmitter performs data transmission it can only send data without carrying pilot symbols. Then, subframe 1 and subframe 2 can only include data symbols, and the transmitter transmits data to subframe 1. M repeated transmissions are performed on subframe 2 and subframe 2 respectively, and N repeated transmissions are performed on other subframes.
- pilot 1 contains 12 symbols. Then, pilot 1 can be a sequence of length 12, and the symbols of pilot 1 can be symbols generated based on this sequence. Similarly, pilot 2 can be a sequence of length 12. Then, more UEs can be supported for shared access and transmission through 2 pilots.
- the candidate pilot sets of pilot 1 and pilot 2 each include 12 orthogonal sequences of length 12.
- each UE compete for scheduling-free access, each UE randomly selects a sequence from the candidate pilot set as pilot 1, and randomly selects a sequence as pilot 2, then, the The probability of pilot 1 and pilot 2 colliding at the same time is very low; alternatively, multiple UEs perform preconfigured scheduling-free access, and each UE determines one sequence as pilot 1 and one sequence as pilot from the candidate pilot set. Frequency 2, and at least one of Pilot 1 and Pilot 2 of any two UEs can be different; then, the receiver performs channel estimation, user identification and Multi-user detection enables better scheduling-free transmission performance.
- pilot 1 and pilot 2 may respectively include 1 symbol, 2 symbols, or other numbers of symbols to support shared access and transmission by one or more UEs.
- the symbols of Pilot 1 and Pilot 2 may be located on other subframes.
- the symbols of pilot 1 and pilot 2 may not be continuous.
- the sequences used by pilot 1 and pilot 2 may be all-1 sequences, or come from an orthogonal sequence set, a quasi-orthogonal sequence set, or a non-orthogonal sequence set.
- the pilot symbols are repeated more times, which allows the receiver to obtain better frequency offset estimation results and better channel estimation results during detection, thereby improving the transmission performance of the UE and improving system performance and capacity.
- the two pilots used by the transmitter can be used for channel estimation, frequency offset estimation and user detection respectively, or they can be used jointly for channel estimation, frequency offset estimation and user detection, thus helping to support more UEs. Perform shared access and transmission.
- Figure 3 is an example diagram of another transmission method provided by an embodiment of the present application. As shown in Figure 3, in this example, the symbols of pilot 1 are repeated on subframe 1 and subframe 2, and the symbols of pilot 2 are repeated on subframe 3 and subframe 4.
- the other symbols except the 2 pilot symbols are data symbols, used to transmit data, such as payload or service data.
- the transmitter uses subframe-level repeated transmission, performing M2 repeated transmissions on the subframes where the two pilots are located, and N times on other subframes. That is to say, the transmitter performs M2 repeated transmissions on subframes 1 to 4, and N repeated transmissions on subframes 5 to F.
- subframe 1 and subframe 2 both include symbols of pilot 1 and 2 data symbols
- subframe 3 and subframe 4 both include symbols of pilot 2 and 2 data symbols
- subframe 1 and subframe 2 may only include symbols of pilot 1
- subframe 3 and subframe 4 may only include symbols of pilot 2.
- the transmitter when transmitting data, the transmitter may only send data without carrying pilot symbols. Then, subframes 1 to 4 may only include data symbols, and the transmitter may Subframes 1 to 4 are subjected to M2 repeated transmissions respectively, and other subframes are subjected to N repeated transmissions. In this example, other characteristics of Pilot 1 and Pilot 2 are as described above and will not be described again here.
- the actual number of repeated transmissions of pilot symbols is the same as the number of repeated transmissions of data symbols.
- the two pilots used by the transmitter can be used for channel estimation, frequency offset estimation and user detection respectively, or they can be used jointly for channel estimation, frequency offset estimation and user detection, which helps the system support more UEs for shared access. and transmission.
- the actual number of repeated transmissions of pilot symbols is less than the number of repeated transmissions of data symbols. It can be used in scenarios such as when the system frequency offset is small, the channel estimation performance has met the needs, and the transmission performance of some data symbols can be guaranteed. Then, by using a smaller M2, transmission resources can be saved, or the saved transmission resources can be used for data transmission to reduce the data transmission code rate, which will help improve system performance and capacity.
- the differences between this example and the example shown in Figure 2 include: (1) In the example shown in Figure 2, subframes 3 to subframe F are used for data transmission; in this example, subframes 5 to subframe F are used for data transmission. ; (2) In the example shown in Figure 2, the number of repeated transmissions of data symbols on subframe 1 and subframe 2 is M times. In this example, the number of repeated transmissions of data symbols on subframes 1 to 4 is M2. Second-rate.
- the 2 data symbols of subframe 1 and the 2 data symbols of subframe 2 can be the same, that is, similar to the symbols of pilot 1, the 2 data symbols are in subframe 1, If repetition is performed on subframe 2, then the actual number of repeated transmissions of these two data symbols is 2*M2. Similarly, the two data symbols on subframe 3 and subframe 4 can be processed similarly.
- Figure 4 is an example diagram of another transmission method provided by an embodiment of the present application. As shown in Figure 4, in this example, it is assumed that one subframe includes two time slots. The symbols of pilot 1 are repeated in the two time slots of subframe 1, and the symbols of pilot 2 are repeated in the two time slots of subframe 2. The other symbols except the 2 pilot symbols are data symbols, used to transmit data, such as payload or service data.
- the transmitter uses subframe-level repeated transmission, performing M2 repeated transmissions on the subframes where the two pilots are located, and performing N repeated transmissions on other subframes. That is to say , the transmitter performs M2 repeated transmissions on subframe 1 and subframe 2 respectively, and performs N repeated transmissions on subframes 3 to subframe F respectively.
- FIG. 5 is an example diagram of another transmission method provided by the embodiment of the present application.
- each subframe contains 2 pilot symbols, and the remaining symbols are data symbols.
- the transmitter uses subframe-level repeated transmission, and performs N repeated transmissions of subframes 1 to subframes F respectively. Then, the transmitter maps the symbols of pilot 1 and the symbols of pilot 2 to the pilot symbol positions of the repeated N*F subframe respectively, where the symbol of pilot 1 is repeatedly mapped M times, and the symbol of pilot 2 Repeat mapping M times.
- the indexes of repeated N*F subframes are 1, 2,..., N*F.
- the symbols of pilot 1 are repeatedly mapped to the pilot symbol positions of subframe 1 to subframe F/4, and to the pilot symbol positions of subframe F/2+1 to subframe 3*F/4.
- pilot symbol position ..., the pilot symbol position of subframe (N-1/2)*F+1 to subframe (N-1/4)*F
- the symbol of pilot 2 is repeatedly mapped to the pilot of subframe F/4+1 to subframe F/2
- pilot symbol position from subframe 3*F/4+1 to subframe F ..., pilot symbol position from subframe (N-1/4)*F+1 to subframe N*F
- pilot 1 and pilot 2 are repeated more times, which allows the receiver to obtain better frequency offset estimation results and better channel estimation results during detection, thereby improving the transmission performance of the UE and enhancing System performance and capacity.
- pilot 1 and pilot 2 are both 2F, which is relatively Longer, it can support more UEs for shared access and transmission.
- pilot 1 and pilot 2 have a moderate length and a moderate number of repetitions, moderate frequency offset estimation and channel estimation performance can be obtained, and a moderate frequency offset estimation and channel estimation performance
- the two pilots used by the transmitter are time-divided.
- the two pilots used by the transmitter can be code-divided, frequency-divided, or time-frequency divided.
- various implementations similar to the above examples can be implemented, which are not discussed here. Again.
- the transmitter mainly uses subframe-level repeated transmission.
- the transmitter may adopt other repeated transmission methods, such as slot-level repeated transmission, symbol-level repeated transmission, transport block repeated transmission, multi-subframe repeated transmission, multi-slot repeated transmission, or multi-symbol repeated transmission. Repeated transmissions, etc.
- the transmission resources used by the transmitter may include one or more subcarriers, one or more carriers, one or more resource blocks, or one or more resource units, etc.
- the receiver can also perform time offset estimation based on the received pilot symbols and/or data symbols and use it to improve detection performance.
- the transmitter when the transmitter repeatedly transmits the symbols of pilot 1, symbols of pilot 2 and data symbols, it can also combine frequency hopping transmission, as described in the embodiments and implementation modes of this application. Based on the repeated transmission symbols after frequency hopping transmission, the receiver can perform time offset estimation and frequency offset estimation, and use them to improve detection performance.
- the transmitter performs N repeated transmissions of data symbols, which can be achieved by combining expansion and repetition.
- the transmitter uses two pilots to support more UEs for shared access and transmission.
- the transmitter can use three pilots, thereby further supporting more UEs to perform shared access and transmission.
- various implementations similar to the above examples can be implemented.
- the transmitter can use one pilot to support shared access and transmission by one or more UEs. On this basis, various implementations similar to the above examples can be implemented.
- the above example of this application can support K transmitters to perform shared access and transmission on the same transmission resource, where K is an integer greater than 1, and each transmitter performs transmission according to the method described in the above example. For example, each transmitter generates its Pilot 1 symbols, Pilot 2 symbols, and data symbols, then combines the Pilot 1 symbols, Pilot 2 symbols, and data symbols into a subframe, and repeats as above. transmission, or the data symbols are composed into subframes for repeated transmission, and the symbols of pilot 1 and pilot 2 are repeatedly mapped on the repeated subframes.
- the K transmitters may be K terminals or K UEs.
- the above examples of this application can be applied to scheduling-free transmission.
- the time-frequency offset estimation results and channel estimation of the weakly covered UE can be improved.
- the coverage level of weak coverage UEs is enhanced and the transmission performance of weak coverage UEs is improved, thereby supporting more weak coverage UEs for scheduling-free transmission.
- Figure 6 is a flow chart of another transmission method provided by an embodiment of the present application.
- the embodiments of the present application are applicable to the case of data transmission.
- the method can be performed by a transmission device.
- the device can be implemented by software and/or hardware methods and is generally integrated at the receiving end.
- the method provided by the embodiment of this application includes the following steps:
- Step 200 Obtain the symbols of M repeated transmissions of the first symbol, where the first symbol includes X pilot symbols, X is an integer greater than or equal to 0, and M is an integer greater than or equal to 1.
- Step 210 Obtain the symbols of N repeated transmissions of the second symbol, where the second symbol includes a data symbol, and N is an integer greater than or equal to 1.
- the accuracy of channel estimation and time-frequency offset estimation can be improved, and more terminal devices can be supported to perform data processing.
- Transmission can save transmission resources and improve the transmission performance and transmission capacity of the system.
- the method provided by the embodiment of the present application is applied to a receiver, where the receiver at least includes a base station, network equipment, terminals, user equipment UE, and other applicable communication nodes.
- X is equal to 0, the first symbol does not contain any symbols, or the first symbol does not exist; the second symbol includes data symbols.
- X is equal to 1, and the first symbol includes a pilot symbol, wherein the one pilot symbol includes A symbols, and A is an integer greater than or equal to 1.
- X is greater than 1, for example, X is 2, or 3, or 4, etc.
- the first symbol includes a plurality of pilot symbols, wherein each pilot symbol includes B symbols, B is an integer greater than or equal to 1.
- the first symbol further includes partial data symbols, and correspondingly, the second symbol includes the remaining data symbols except the partial data symbols.
- the data symbols include a total of S symbols, S is an integer greater than or equal to 1, the partial data symbols include Y symbols in the data symbols, Y is an integer greater than or equal to 1 and less than or equal to S, so The remaining data symbols include the remaining (S-Y) symbols in the data symbols.
- the first symbol includes X pilot symbols and the partial data symbols
- the second symbol includes the remaining data symbols except the partial data symbols
- X is equal to 0, the first symbol does not include pilot symbols and only includes part of the data symbols, and the second symbol includes the remaining data symbols except the part of the data symbols.
- the value of M is greater than the value of N.
- the value of N is greater than the value of M.
- the value of N is equal to the value of M.
- the first symbol and M repeated transmissions of the first symbol the second
- the technical features of the symbol and N repeated transmissions of the second symbol are the same as those in the embodiment shown in FIG. 1 .
- the method provided by the embodiment of the present application further includes: detecting the symbols of M repeated transmissions of the first symbol and the symbols of N repeated transmissions of the second symbol, and obtaining the detection results of the data symbols.
- the method provided by the embodiment of the present application can perform designated processing based on the symbols of M repeated transmissions of at least one pilot symbol in the first symbol to obtain the processing results, wherein the designated processing includes at least one of the following: Channel Estimation, frequency offset estimation, time offset estimation, user identification; and then, based on the obtained processing results, the symbols of N repeated transmissions of the second symbol are detected to obtain the detection results of the data symbols.
- the method provided by the embodiment of the present application detects the data symbol contained in the second symbol according to the obtained processing result, and obtains the detection result of the data symbol.
- the method provided by the embodiment of the present application detects the data symbols contained in the first symbol and the second symbol according to the obtained processing results, and obtains the detection results of the data symbols.
- the method provided by the embodiment of the present application can perform the above specified processing based on part of the repeatedly transmitted symbols among the symbols that are repeatedly transmitted M times of the first symbol, and use it for detection.
- the method provided by the embodiment of the present application performs frequency offset compensation on symbols that are repeatedly transmitted M times of the first symbol and symbols that are repeatedly transmitted N times of the second symbol according to a preset frequency offset compensation value.
- the method provided by the embodiment of the present application performs time offset compensation on the symbols of M repeated transmissions of the first symbol and the symbols of N repeated transmissions of the second symbol according to the preset time offset compensation value.
- the method provided by the embodiment of the present application obtains at least one of the following information based on the obtained detection results of the data symbols: payload, identity information, information of at least one pilot among the X pilots, Sequence information, transmission resource information.
- the method provided by the embodiment of the present application demodulates and decodes the acquired detection results of data symbols to obtain the decoding results.
- the method provided by the embodiment of the present application determines whether the obtained decoding result is correct based on the cyclic redundancy check result. For example, if the transmitter uses a contention-free scheduling transmission method, the receiver does not know which UEs have transmitted. After decoding, the receiver can determine the obtained decoding based on the cyclic redundancy check results and other available information. Whether the result is correct and obtain information from the decoding result.
- the method provided by the embodiment of the present application obtains at least one of the following from the obtained decoding result: payload, identification information, information of at least one pilot among X pilots, sequence information, transmission Resource information.
- payload identification information
- information of at least one pilot among X pilots information of at least one pilot among X pilots
- sequence information transmission Resource information.
- transmission resource information may be indicated by dedicated bits, or may be indicated implicitly by designated bits.
- the method provided by the embodiment of the present application can obtain the payload and identification information from the obtained decoding result, and then obtain at least one pilot among the X pilots from the payload and/or identification information.
- the method provided by the embodiment of the present application can obtain the payload from the obtained decoding result, and then obtain the identity information, information of at least one pilot among the X pilots, and sequence information from the payload , one or more of the transmission resource information.
- the payload includes business data, specified messages, etc.
- the identification information is used by the receiver to determine which transmitter it is receiving data from.
- the sequence information includes information about the sequence used by the transmitter when spreading or mapping symbols, or information about a specified sequence used when mapping bits into a specified sequence, and may also include information about a sequence set.
- the receiver can reconstruct the symbols sent by the transmitter based on the sequence information to perform interference cancellation.
- the information of at least one pilot among the X pilots includes index information or generation information of at least one pilot among the X pilots, and may also include information on the number X of pilots.
- the receiving end may reconstruct the pilot symbols according to the information of at least one pilot among the X pilots, so as to perform interference cancellation on the pilots.
- the transmission resource information includes location information of at least one transmission resource used by the transmitter, may also include information on the quantity of transmission resources used by the transmitter, and may also include information on available transmission resources. According to the transmission resource information, the receiver can determine which transmission resources the transmitter has transmitted on, so as to further detect these transmission resources.
- the method provided by the embodiment of the present application reconstructs the symbols of M repeated transmissions of the first symbol and the symbols of N repeated transmissions of the second symbol based on the obtained detection results or decoding results, and performs Interference elimination, obtain interference elimination results. Then, the method provided by the embodiment of the present application performs the next detection based on the interference elimination result.
- the receiver can perform multiple iterations of detection until the detection process is completed when the specified conditions are met.
- the method provided by the embodiment of the present application can be applied to weak coverage scenarios, poor coverage scenarios, or extreme coverage scenarios, etc., and can be used to enhance coverage; it can also be used for scheduling-free transmission, including weak coverage scenarios, severe coverage scenarios, etc. Scheduling-free transmission in coverage scenarios or extreme coverage scenarios.
- the methods and various implementations provided by the embodiments of this application can improve the channel estimation of weakly covered UEs.
- the calculation results and time-frequency offset estimation results can improve the transmission performance of weakly covered UEs, save transmission resources, and improve system transmission performance and transmission capacity.
- more weak coverage UEs can be supported for scheduling-free transmission, and more UEs can be supported for scheduling-free access and transmission, thus improving the performance and capacity of the scheduling-free transmission system.
- Figure 7 is a schematic structural diagram of a transmission device provided by an embodiment of the present application.
- the device can execute the transmission method provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
- the device may be implemented by software and/or hardware.
- the device provided by the embodiment of the present application includes:
- the first sending module 101 is configured to perform M repeated transmissions of the first symbol, where the first symbol includes X pilot symbols, X is an integer greater than or equal to 0, and M is an integer greater than or equal to 1. .
- the second sending module 102 is configured to repeatedly transmit the second symbol N times, where the second symbol includes a data symbol, and N is an integer greater than or equal to 1.
- the first transmitting module 101 performs M repeated transmissions of the first symbol including X pilot symbols
- the second transmitting module 102 performs N repeated transmissions of the second symbol including data symbols, which can improve the performance of the application.
- the accuracy of channel estimation and time-frequency offset estimation supports more terminal devices for data transmission, which can save transmission resources and improve the transmission performance and transmission capacity of the system.
- the first symbol in the device further includes a partial data symbol
- the second symbol includes the remaining data symbols except the partial data symbol
- the value of M in the device is greater than the value of N.
- the value of N in the device is greater than the value of M.
- the first transmitting module 101 in the device is configured to: transmit the first symbol on H transmission resources, wherein the first symbol is transmitted on each of the H transmission resources.
- the first sending module 101 in the device is configured to: send messages on J transmission resources Transmitting the first symbol, wherein a symbol of at least one pilot among the X pilots is repeatedly transmitted M times on each of the J transmission resources, where J is greater than or equal to 1 integer.
- the second sending module 102 in the device is configured to: transmit the second symbol on V transmission resources, where the second symbol includes W groups of data symbols, and on the V transmission resources On each transmission resource of the resource, at least one group of data symbols in the W groups of data symbols is repeatedly transmitted N times, where V is an integer greater than or equal to 1, and W is an integer greater than or equal to 1.
- the data symbols in the device include at least one of the following information: payload, identity information, information on at least one pilot among the X pilots, sequence information, and transmission resource information.
- Figure 8 is a schematic structural diagram of another transmission device provided by an embodiment of the present application.
- the device can execute the transmission method provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
- the device may be implemented by software and/or hardware.
- the device provided by the embodiment of the present application includes:
- the first acquisition module 201 is used to acquire the symbols of M repeated transmissions of the first symbol, where the first symbol includes X pilot symbols, X is an integer greater than or equal to 0, and M is greater than or equal to 1. integer.
- the second acquisition module 202 is configured to acquire symbols of N repeated transmissions of the second symbol, where the second symbol includes a data symbol, and N is an integer greater than or equal to 1.
- the first acquisition module 201 acquires the symbols of M repeated transmissions of the first symbol and the second acquisition module 202 acquires the symbols of N repeated transmissions of the second symbol, which can improve the performance of channel estimation and time-frequency offset estimation. Accuracy, supporting more terminal devices for data transmission, saving transmission resources, and improving system transmission performance and transmission capacity.
- the first symbol in the device further includes a partial data symbol
- the second symbol includes the remaining data symbols except the partial data symbol
- the value of M in the device is greater than the value of N.
- the value of N in the device is greater than the value of M.
- the device further includes:
- a detection module configured to detect the symbols of M repeated transmissions of the first symbol and the symbols of N repeated transmissions of the second symbol, and obtain the symbols of the M repeated transmissions of the first symbol and the N repeated transmissions of the second symbol. The detection result of the symbol.
- the device further includes:
- the third acquisition module is configured to acquire at least one of the following information according to the detection result: payload, identity identification information, information on at least one pilot among the X pilots, sequence information, and transmission resource information.
- Figure 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- the electronic device includes a processor 62 and a memory 61; the number of processors 62 in the electronic device can be one or more, and one processor 62 is taken as an example in Figure 9; the processor 62 and the memory 61 in the electronic device can be connected through a bus or a bus.
- Figure 9 takes connection via bus as an example.
- the memory 61 can be used to store software programs, computer executable programs and modules, such as programs corresponding to any transmission method in the embodiment of the present application, and modules corresponding to the transmission device in the embodiment of the present application.
- the processor 62 executes software programs, instructions and modules stored in the memory 61 to perform various functions and data processing of the electronic device, that is, to implement the above-mentioned transmission method.
- the memory 61 may mainly include a stored program area and a stored data area, where the stored program area may store an operating system and a program required for at least one function; the stored data area may store data created according to the use of the electronic device, etc.
- the memory 61 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
- memory 61 may further include memory located remotely relative to processor 62, and these remote memories may be connected to the electronic device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
- Embodiments of the present application also provide a storage medium containing computer-executable instructions, which are used to perform a transmission method when executed by a computer processor.
- the transmission method includes: repeating transmission of the first symbol M times, wherein the first symbol includes X pilot symbols, X is an integer greater than or equal to 0, and M is greater than or an integer equal to 1; perform repeated transmission of the second symbol N times, wherein the second symbol includes a data symbol, and N is an integer greater than or equal to 1.
- the transmission method includes: obtaining symbols of M repeated transmissions of the first symbol, wherein the first symbol includes X pilot symbols, X is an integer greater than or equal to 0, M is an integer greater than or equal to 1; obtain symbols that are repeatedly transmitted N times of the second symbol, where the second symbol includes a data symbol, and N is an integer greater than or equal to 1.
- the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (Read-Only Memory, ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a computer device (can be a personal computer, server, or network device, etc.) to execute the application multiple times method described in each embodiment.
- a computer-readable storage medium such as a computer floppy disk, read-only memory (Read-Only Memory, ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc.
- a computer device can be a personal computer, server, or network device, etc.
- the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of multiple
- the physical components execute cooperatively.
- Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
- Corresponding software can be distributed on computer-readable media, which can include computer storage media (or non-transitory media) and communication media (or transitory media).
- computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
- Computer storage media include but are not limited to RAM, ROM, Electrically Erasable Programmable Read Only Memory (EEPROM), flash memory or other memory technologies, portable compact disk read-only memory (Compact Disk Read-Only Memory, CD-ROM), Digital Versatile Disc (Digital Video Disc, DVD) or other optical discs Storage, magnetic cartridges, tapes, disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and can be accessed by a computer.
- communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种传输方法、电子设备和存储介质,其中,该方法包括:对第一符号进行M次重复传输,其中,所述第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数;对第二符号进行N次重复传输,其中,所述第二符号包括数据符号,N为大于或等于1的整数。
Description
本申请涉及无线通信技术领域,例如涉及一种传输方法、装置、电子设备和存储介质。
免调度传输(Grant-free transmission)中用户设备(User Equipment,UE)可以自主发送数据,不再需要发送调度请求和等待动态调度。因此,免调度传输可以降低信令开销和传输时延,还可以降低终端功耗。此外,免调度传输还可以与非正交传输结合,提升接入用户数量。
常见的免调度传输包括两种方式,分别为预配置免调度(configured grant)和竞争免调度(contention-based grant-free)。对于预配置免调度,基站为每个UE预配置或者半静态配置传输资源,该资源可以包括时频资源、导频等;基站可以通过配置保证多个UE使用的资源不同,从而避免发生碰撞,便于用户识别与检测。然而在UE数量较多的情况下,基站也可以通过配置允许一些UE使用的时频资源和导频等相同,即允许碰撞,那么就会出现多个UE使用的时频资源和导频均相同而产生碰撞的情况。对于竞争免调度,当UE有业务传输需求时,可以随机选择传输资源进行竞争接入和传输,也会出现多个UE使用相同的时频资源和导频的情况。相关技术中的免调度传输方法在常规覆盖场景下可以支持一定数量的UE在相同的时频资源上进行传输,但是,在恶劣覆盖或极端覆盖场景下,存在很多弱覆盖或覆盖差的UE,这些UE的传输损耗很大、信号噪声比很低,按照相关技术中的传输方法,无法保障这些UE的传输性能,并且支持的用户数量较少,从而造成系统整体性能不好。
发明内容
本申请实施例提出一种传输方法、电子设备和存储介质,以至少解决相关技术中弱覆盖终端的传输性能差、支持用户数量少的问题。
本申请实施例提供了一种传输方法,应用于发送端,该方法包括:
对第一符号进行M次重复传输,其中,所述第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数;
对第二符号进行N次重复传输,其中,所述第二符号包括数据符号,N为
大于或等于1的整数。
本申请实施例还提供了一种传输方法,应用于接收端,该方法包括:
获取第一符号的M次重复传输的符号,其中,所述第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数;
获取第二符号的N次重复传输的符号,其中,所述第二符号包括数据符号,N为大于或等于1的整数。
本申请实施例还提供了一种电子设备,其中,该电子设备包括:
至少一个处理器;
存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如本申请实施例中任一所述方法。
本申请实施例还提供了一种计算机可读存储介质,其中,该计算机可读存储介质存储有至少一个程序,所述至少一个程序被至少一个处理器执行,以实现如本申请实施例中任一所述方法。
图1是本申请实施例提供的一种传输方法的流程图;
图2是本申请实施例提供的一种传输方法的示例图;
图3是本申请实施例提供的另一种传输方法的示例图;
图4是本申请实施例提供的另一种传输方法的示例图;
图5是本申请实施例提供的另一种传输方法的示例图;
图6是本申请实施例提供的另一种传输方法的流程图;
图7是本申请实施例提供的一种传输装置的结构示意图;
图8是本申请实施例提供的另一种传输装置的结构示意图;
图9是本申请实施例提供的一种电子设备的结构示意图。
应当理解,此处所描述的具体实施仅仅用于解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”
后缀仅为了有利于本申请的说明,其本身没有特有的意义,因此,“模块”、“部件”或“单元”可以混合地使用。
图1是本申请实施例提供的一种传输方法的流程图。本申请实施例可适用于数据传输的情况,该方法可以由传输装置来执行,该装置可以通过软件和/或硬件的方法实现,一般集成在发送端。如图1所示,本申请实施例提供的方法包括如下步骤:
步骤110、对第一符号进行M次重复传输,其中,第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数。
步骤120、对第二符号进行N次重复传输,其中,第二符号包括数据符号,N为大于或等于1的整数。
本申请实施例,通过对包括X个导频的符号的第一符号进行M次重复传输,以及对包括数据符号的第二符号进行N次重复传输,可提高信道估计以及时频偏估计的准确性,支持更多的终端设备进行数据传输,可节省传输资源,提升系统的传输性能和传输容量。
本申请实施例有多种实施方式,包括且不限于以下提供的实施方式和示例。需要说明的是,在不冲突的情况下,本申请实施例、实施方式和示例中的特征可以相互任意组合。
在一个实施方式中,本申请实施例提供的方法应用于发射机中,其中,发射机至少包括终端、用户设备UE、基站、网络设备以及其他适用的通信节点。
在一个实施方式中,X等于0,第一符号不包含任何符号,或者第一符号不存在;第二符号包括数据符号,对第二符号进行N次重复传输。
在一个实施方式中,X等于1,第一符号包括一个导频的符号,其中,所述一个导频的符号包括A个符号,A为大于或等于1的整数。
在一个实施方式中,X大于1,例如X为2、或3、或4、...等,第一符号包括多个导频的符号,其中,每个导频的符号包括B个符号,B为大于或等于1的整数。
该实施方式中,多个导频的符号之间可以是时分的,即多个导频的符号使用的传输资源在时域上是不同的;或者,多个导频的符号之间可以是频分的,即多个导频的符号使用的传输资源在频域上是不同的;或者,多个导频的符号之间可以是时频分的,即多个导频的符号使用的传输资源在时域和频域上是不同的;或者,多个导频的符号之间可以是码分的,即多个导频的符号不同、或者使用不同的序列来分别生成多个导频的符号。
在一个实施方式中,第一符号还包括部分数据符号,相应的,第二符号包括除所述部分数据符号之外的其余数据符号。
例如,数据符号总共包括S个符号,S为大于或等于1的整数,所述部分数据符号包括所述数据符号中的Y个符号,Y为大于或等于1且小于或等于S的整数,所述其余数据符号包括所述数据符号中的其余(S-Y)个符号。
该实施方式中,第一符号包括X个导频的符号和部分数据符号,对第一符号进行M次重复传输;第二符号包括除所述部分数据符号之外的其余数据符号,对第二符号进行N次重复传输。
在一个实施方式中,X等于0,第一符号不包含导频符号,仅包括部分数据符号,对第一符号进行M次重复传输;第二符号包括除所述部分数据符号之外的其余数据符号,对第二符号进行N次重复传输。
在一个实施方式中,M的取值大于N的取值,即对第一符号进行重复传输的次数大于对第二符号进行重复传输的次数。
在一个实施方式中,N的取值大于M的取值,即对第二符号进行重复传输的次数大于对第一符号进行重复传输的次数。
在一个实施方式中,N的取值等于M的取值,即对第一符号和第二符号进行重复传输的次数相同。
在一个实施方式中,导频包括以下至少之一:导频序列、参考信号、导频能量、传输导频的资源。每个导频的符号可以是根据导频序列、参考信号、导频能量、传输导频的资源中的一种或者多种生成的。
在一个实施方式中,数据符号包括对待发送比特进行编码调制后生成的符号;或者,数据符号包括采用序列对编码调制后生成的符号进行扩展或映射等处理后得到的符号;或者,数据符号包括:对待发送比特进行编码得到编码比特,然后将编码比特调制或映射为指定序列,将所述指定序列作为所述数据符号。
在一个实施方式中,数据符号或待发送比特中携带以下信息至少之一:有效载荷、身份识别信息、X个导频中至少一个导频的信息、序列信息、传输资源信息。其中,身份识别信息、X个导频中至少一个导频的信息、序列信息、传输资源信息中的一个或多个可以通过专用比特来指示,也可以通过指定比特来隐含指示。
例如,通过有效载荷和/或身份识别信息中的指定比特来隐含指示X个导频中至少一个导频的信息、序列信息、传输资源信息中的一个或多个;或者,通过有效载荷中的指定比特来隐含指示身份识别信息、X个导频中至少一个导频
的信息、序列信息、传输资源信息中的一个或多个。
该实施方式中,有效载荷可以包括业务数据、指定消息等。身份识别信息用于供接收机确定其接收的是哪一个发射机发送的数据。
序列信息包括发射机对符号进行扩展或映射处理时采用的序列的信息、或者将比特映射为指定序列时采用的指定序列的信息,还可以包括序列集合的信息。该信息用于供接收机对发射机发送的符号进行重构,以便进行干扰消除。
X个导频中至少一个导频的信息包括X个导频中至少一个导频的索引信息或生成信息,还可以包括导频数量X的信息。该信息用于供接收机对导频符号进行重构,以便对导频进行干扰消除。
传输资源信息包括发射机使用的至少一个传输资源的位置信息,还可以包括发射机使用的传输资源的数量信息,还可以包括可用传输资源的信息。该信息用于供接收机确定发射机在哪些传输资源上进行了传输,以便在这些传输资源上进行检测。
在一个实施方式中,重复传输包括:以第一指定传输资源为单位进行重复传输,或者,在第二指定传输资源上进行重复映射并传输。
例如,重复传输可以包括子帧级重复传输、时隙级重复传输、符号级重复传输、子帧内重复传输、在多个子帧内重复传输、传输块重复传输、多子帧重复传输、多时隙重复传输、多符号重复传输等至少之一。
在一个实施方式中,对第一符号进行M次重复传输,包括:对第一符号按照第一指定重复传输模式进行M次重复传输。例如,可以按照子帧级重复传输、时隙级重复传输、符号级重复传输、子帧内重复传输、在多个子帧内重复传输、传输块重复传输、多子帧重复传输、多时隙重复传输、多符号重复传输等至少之一对第一符号进行M次重复传输。
在一个实施方式中,对第一符号进行M次重复传输,包括:对第一符号按照第一重复传输模式进行M1次重复传输,然后按照第二重复传输模式进行M2次重复传输,其中,M1和M2为大于或等于1的整数,且M=M1*M2。
该实施方式中,可以按照两种不同的重复传输模式对第一符号进行重复传输,先按照第一重复传输模式对第一符号进行M1次重复传输,得到M1次重复传输后的符号,然后再按照第二重复传输模式对M1次重复传输后的符号进行M2次重复传输,其中,M1与M2的乘积为M。其中,第一重复传输模式可以包括符号级重复传输、时隙级重复传输、子帧内重复传输、子帧级重复传输、在多个子帧内重复传输、传输块重复传输、多子帧重复传输、多时隙重复传输、多符号重复传输等至少之一,第二重复传输模式可以包括符号级重复传输、时
隙级重复传输、子帧内重复传输、子帧级重复传输、在多个子帧内重复传输、传输块重复传输、多子帧重复传输、多时隙重复传输、多符号重复传输等至少之一。
在一个实施方式中,对第一符号进行M次重复传输,包括:采用长度为L的序列扩展第一符号得到扩展后的符号,对扩展后的符号进行U次重复传输,其中,L为大于1的整数,U为大于或等于1的整数,且M=L*U。
该实施方式中,可以先使用长度为L的序列对第一符号进行扩展,得到扩展后的符号,然后对扩展后的符号进行U次重复传输,其中,L与U的乘积为M。这里对重复传输的具体模式不做限制。
在一个实施方式中,对第一符号进行M次重复传输,包括:在H个传输资源上传输第一符号,其中,在H个传输资源的每个传输资源上对第一符号进行Q次重复传输,其中,H为大于或等于1的整数,Q为大于或等于1的整数,且M=H*Q。
该实施方式中,第一符号可以在多个传输资源上进行传输,并且可以在每个传输资源上对第一符号进行多次重复传输,其中,传输资源的个数H与在每个传输资源上重复传输第一符号的次数Q的乘积为M。
在一个示例性的实施方式中,第一符号可以在多个传输资源上进行跳频传输,例如,在第1传输资源上对第一符号进行Q次重复传输,然后跳频到第2传输资源,在第2传输资源上对第一符号进行Q次重复传输,然后跳频到第3传输资源,在第3传输资源上对第一符号进行Q次重复传输,以此类推,在H个传输资源上进行跳频传输,并且第一符号的重复传输总次数为M=H*Q。其中,多次跳频可以采用相同的跳频模式,也可以采用多种跳频模式,例如,第一次跳频按照第一跳频模式进行跳频,第二次跳频按照第二跳频模式进行跳频,第三次跳频按照第一跳频模式进行跳频,第四次跳频按照第二跳频模式进行跳频,以此类推,等等。在一种示例中,不同跳频模式采用不同的跳频间隔或者跳频图样。
在一个实施方式中,对第一符号进行M次重复传输,包括:在J个传输资源上传输第一符号,其中,在J个传输资源的每个传输资源上对第一符号包含的X个导频中至少一个导频的符号进行M次重复传输,其中,J为大于或等于1的整数。
该实施方式中,第一符号可以在J个传输资源上传输,在每个传输资源上可以对第一符号中的至少一个导频的符号进行M次重复传输。可以理解的是,不同的传输资源上可以传输不同导频的符号。
在一个示例性的实施方式中,J的取值可以与X相同,第一符号可以在J=X个传输资源上传输,在每个传输资源上可以对第一符号包含的X个导频中一个导频的符号进行M次重复传输。可以理解的是,一个导频的符号可以使用一个传输资源,X个导频的符号可以在不同的传输资源上传输。
在一个示例性的实施方式中,第一符号可以在J个传输资源上进行跳频传输,并且,多次跳频可以采用一种或多种跳频模式。这里以J=X为例,可以在第1传输资源上对第一符号中第1个导频的符号进行M次重复传输,然后跳频到第2传输资源,在第2传输资源上对第一符号中第2个导频的符号进行M次重复传输,然后跳频到第3传输资源,在第3传输资源上对第一符号中第3个导频的符号进行M次重复传输,以此类推,最后跳频到第X传输资源,在第X输资源上对第一符号中第X个导频的符号进行M次重复传输。
在一个示例性的实施方式中,还在J个传输资源上对第一符号包含的部分数据符号进行M次重复传输。在不同传输资源上传输的数据符号可以是不同的。
在一个实施方式中,对第二符号进行N次重复传输,包括:对第二符号按照第二指定重复传输模式进行N次重复传输。例如,可以按照子帧级重复传输、时隙级重复传输、符号级重复传输、子帧内重复传输、在多个子帧内重复传输、传输块重复传输、多子帧重复传输、多时隙重复传输、多符号重复传输等至少之一对第二符号进行N次重复传输。
在一个实施方式中,对第二符号进行N次重复传输,包括:对第二符号按照第三重复传输模式进行N1次重复传输,然后按照第四重复传输模式进行N2次重复传输,其中,N1和N2为大于或等于1的整数,且N=N1*N2。
该实施方式中,可以按照两种不同的重复传输模式对第二符号进行重复传输,先按照第三重复传输模式对第二符号进行N1次重复传输,得到N1次重复传输后的符号,然后再按照第四重复传输模式对N1次重复传输后的符号进行N2次重复传输,其中,N1与N2的乘积为N。这里对第三重复传输模式、第四重复传输模式不做限制。在一种示例中,第三重复传输模式与第一重复传输模式相同,第四重复传输模式与第二重复传输模式相同。
在一个实施方式中,对第二符号进行N次重复传输,包括:采用长度为G的序列扩展第二符号得到扩展后的符号,对扩展后的符号进行R次重传传输,其中,G为大于1的整数,R为大于或等于1的整数,且N=G*R。
该实施方式中,可以先使用长度为G的序列对第二符号进行扩展,得到扩展后的符号,然后对扩展后的符号进行R次重复传输,其中,G与R的乘积为N。这里对重复传输的具体模式不做限制。在一种示例中,G的取值等于L的取
值。
在一个实施方式中,对第二符号进行N次重复传输,包括:在P个传输资源上传输第二符号,其中,在P个传输资源的每个传输资源上对第二符号进行T次重复传输,其中,P为大于或等于1的整数,T为大于或等于1的整数,且N=P*T。
该实施方式中,第二符号可以在多个传输资源上进行传输,并且可以在每个传输资源上对第二符号进行多次重复传输,其中,传输资源的个数P与在每个传输资源上重复传输第二符号的次数T的乘积为N。在一种示例中,P的取值等于H的取值。
在一个示例性的实施方式中,第二符号可以在多个传输资源上进行跳频传输,例如,在第一传输资源上对第二符号进行T次重复传输,然后跳频到第二传输资源,在第二传输资源上对第二符号进行T次重复传输,然后跳频到第三传输资源,在第三传输资源上对第二符号进行T次重复传输,以此类推,在P个传输资源上进行跳频传输,并且第二符号的重复传输总次数为N=P*T。其中,多次跳频可以采用相同的跳频模式,也可以采用多种跳频模式,例如,第一次跳频按照第一跳频模式进行跳频,第二次跳频按照第二跳频模式进行跳频,第三次跳频按照第一跳频模式进行跳频,第四次跳频按照第二跳频模式进行跳频,以此类推,等等。在一种示例中,不同跳频模式采用不同的跳频间隔或者跳频图样。
在一个实施方式中,对第二符号进行N次重复传输,包括:在V个传输资源上传输第二符号,其中,第二符号包括W组数据符号,在V个传输资源的每个传输资源上对W组数据符号中的至少一组数据符号进行N次重复传输,其中,V为大于或等于1的整数,W为大于或等于1的整数。
该实施方式中,第二符号可以在V个传输资源上进行传输,第二符号包括的数据符号可以划分为W个数据符号组,每个数据符号组包括一个或多个数据符号,在每个传输资源上可以对至少一个数据符号组进行N次重复传输。可以理解的是,不同的传输资源上可以传输不同的数据符号组。
在一个示例性的实施方式中,V的取值可以与W相同,第二符号可以在V=W个传输资源上传输,在每个传输资源上可以对W组数据符号中的一组数据符号进行N次重复传输。可以理解的是,一组数据符号可以使用一个传输资源,W组数据符号可以在不同的传输资源上传输。
在一个示例性的实施方式中,第二符号可以在V个传输资源上进行跳频传输,并且,多次跳频可以采用一种或多种跳频模式。这里以V=W为例,可以在
第一传输资源上对W组数据符号中的第一组符号进行N次重复传输,然后跳频到第二传输资源,在第二传输资源上对W组数据符号中的第二组符号进行N次重复传输,然后跳频到第三传输资源,在第三传输资源上对W组数据符号中的第三组符号进行N次重复传输,以此类推,最后跳频到第W传输资源,在第W传输资源上对W组数据符号中的第W组符号进行M次重复传输。
在一个实施方式中,本申请实施例提供的方法可以应用于弱覆盖场景、恶劣覆盖场景、或极端覆盖场景等,可以用于增强覆盖;还可以用于免调度传输,包括弱覆盖场景、恶劣覆盖场景、或极端覆盖场景等场景下的免调度传输。
本申请实施例提供的方法以及多种实施方式可以改善弱覆盖UE的信道估计结果以及时频偏估计结果,改善弱覆盖UE的传输性能,也可以节省传输资源,提升系统传输性能和传输容量。当应用于免调度传输时,可以支持更多的弱覆盖UE进行免调度传输,进一步可以支持更多的UE进行免调度接入与传输,从而提升了免调度传输系统的性能和容量。
图2是本申请实施例提供的一种传输方法的示例图。如图2所示,本示例中,在未进行重复传输时,发射机用于数据传输的资源单元包括F个子帧。发射机采用了2个导频,导频1位于子帧1上,导频2位于子帧2上。除了2个导频的符号之外的其他符号为数据符号,用于传输数据,例如有效载荷或业务数据等。本示例中,发射机可以为终端或UE。
为了保证弱覆盖或覆盖差的UE的传输性能,发射机采用子帧级重复传输,对2个导频所在的子帧进行M次重复传输,对其他子帧进行N次重复传输,也就是说,发射机对子帧1、子帧2分别进行M次重复传输,对子帧3至子帧F分别进行N次重复传输。
本示例中,子帧1包括导频1的符号和2个数据符号,子帧2包括导频2的符号和2个数据符号。在本示例的另一种情况下,子帧1可以仅包括导频1的符号,子帧2可以仅包括导频2的符号。在本示例的又一种情况下,发射机进行数据传输时,可以仅发送数据,不携带导频符号,那么,子帧1和子帧2可以仅包括数据符号,并且,发射机对子帧1和子帧2分别进行M次重复传输,对其他子帧分别进行N次重复传输。
本示例中,导频1包含12个符号,那么,导频1可以是一条长度为12的序列,导频1的符号可以是根据这条序列生成的符号。同理,导频2可以是一条长度为12的序列。那么,通过2个导频可以支持更多的UE进行共享接入与传输。例如,导频1和导频2的候选导频集合均包括12个长度为12的正交序
列或准正交序列,多个UE进行竞争免调度接入,每个UE从候选导频集合中随机选择一条序列作为导频1,随机选择一条序列作为导频2,那么,多个UE的导频1和导频2同时发生碰撞的概率很低;或者,多个UE进行预配置免调度接入,每个UE从候选导频集合中确定一条序列作为导频1,确定一条序列作为导频2,并且,可以令任意两个UE的导频1和导频2中至少有一个导频是不同的;然后,接收机根据导频1和/或导频2进行信道估计、用户识别以及多用户检测,从而可以获取更好的免调度传输性能。
在本示例的另一种情况下,导频1和导频2可以分别包括1个符号、2个符号或其他数量的符号,用于支持一个或多个UE进行共享接入与传输。在本示例的又一种情况下,导频1和导频2的符号可以位于其他子帧上。在本示例的又一种情况下,导频1和导频2的符号均可以不是连续的。在本示例的又一种情况下,导频1和导频2使用的序列可以为全1序列,或者来自于正交序列集合、准正交序列集合或非正交序列集合。
本示例中,在一种情况下,M大于N,例如,M=16,N=8,或者,M=32,N=16,等等。这种情况下,导频符号的重复次数较多,可以使得接收机在检测时获得更好的频偏估计结果以及更好的信道估计结果,从而可以改善UE的传输性能,提升系统性能和容量。
在另一种情况下,M等于N,例如,M=8,N=8,或者,M=16,N=16,等等。这种情况下,发射机采用的2个导频可以分别用于信道估计、频偏估计以及用户检测,也可以联合用于信道估计、频偏估计以及用户检测,从而有利于支持更多的UE进行共享接入与传输。
在又一种情况下,M小于N,例如,M=8,N=16,或者,M=16,N=32,等等。这种情况可以用于例如系统频偏较小、信道变化较小、信道估计性能已经满足需要、部分数据符号的传输性能已经可以得到保障等场景。那么,通过采用较小的M,可以节省传输资源,或者将节省的传输资源用于数据传输则可以降低数据传输的码率,从而有利于提升系统性能和容量。
图3是本申请实施例提供的另一种传输方法的示例图。如图3所示,本示例中,导频1的符号在子帧1和子帧2上进行重复,导频2的符号在子帧3和子帧4上进行重复。除了2个导频的符号之外的其他符号为数据符号,用于传输数据,例如有效载荷或业务数据等。
为了保证弱覆盖或覆盖差的UE的传输性能,发射机采用子帧级重复传输,对2个导频所在的子帧进行M2次重复传输,对其他子帧进行N次重复传输,
也就是说,发射机对子帧1至子帧4分别进行M2次重复传输,对子帧5至子帧F分别进行N次重复传输。
本示例中,子帧1、子帧2均包括导频1的符号和2个数据符号,子帧3、子帧4均包括导频2的符号和2个数据符号。在本示例的另一种情况下,子帧1、子帧2可以仅包括导频1的符号,子帧3、子帧4可以仅包括导频2的符号。在本示例的又一种情况下,发射机进行数据传输时,可以仅发送数据,不携带导频符号,那么,子帧1至子帧4可以仅包括数据符号,并且,发射机对子帧1至子帧4分别进行M2次重复传输,对其他子帧分别进行N次重复传输。本示例中,关于导频1和导频2的其他特征如上文所述,这里不再赘述。
本示例中,在一种情况下,例如,M2=N=8,或者,M2=N=16,等等。由于导频1已经在子帧1、子帧2上进行了M1=2次重复传输,导频2已经在子帧3、子帧4上进行了M1=2次重复传输,那么,导频符号实际进行了M1*M2=2*M2次重复传输,多于数据符号的重复传输次数。导频符号的重复次数较多,可以使得接收机在检测时获得更好的频偏估计结果以及更好的信道估计结果,从而可以改善UE的传输性能,提升系统性能和容量。
在另一种情况下,例如,M2=8,N=16,或者,M2=16,N=32,等等。这种情况下,导频符号的实际重复传输次数与数据符号的重复传输次数相同。发射机采用的2个导频可以分别用于信道估计、频偏估计以及用户检测,也可以联合用于信道估计、频偏估计以及用户检测,从而有利于系统支持更多的UE进行共享接入与传输。
在又一种情况下,例如,M2=4,N=16,或者,M2=8,N=32,等等。这种情况下,导频符号的实际重复传输次数少于数据符号的重复传输次数。可以用于例如系统频偏较小、信道估计性能已经满足需要、部分数据符号的传输性能已经可以得到保障等场景。那么,通过采用较小的M2,可以节省传输资源,或者将节省的传输资源用于数据传输则可以降低数据传输的码率,从而有利于提升系统性能和容量。
本示例与图2所示的示例不同的地方包括:(1)图2所示的示例中子帧3至子帧F用于数据传输,本示例中子帧5至子帧F用于数据传输;(2)图2所示的示例中子帧1、子帧2上的数据符号的重复传输次数为M次,本示例中子帧1至子帧4上的数据符号的重复传输次数为M2次。
在本示例的另一种情况下,子帧1的2个数据符号和子帧2的2个数据符号可以相同,也就是说,与导频1的符号类似,2个数据符号在子帧1、子帧2上进行重复,那么,这2个数据符号的实际重复传输次数为2*M2。同理,子帧3和子帧4上的2个数据符号可以类似处理。
图4是本申请实施例提供的另一种传输方法的示例图。如图4所示,本示例中,假设一个子帧包括两个时隙。导频1的符号在子帧1的两个时隙上进行重复,导频2的符号在子帧2的两个时隙上进行重复。除了2个导频的符号之外的其他符号为数据符号,用于传输数据,例如有效载荷或业务数据等。
为了保证弱覆盖或覆盖差的UE的传输性能,发射机采用子帧级重复传输,对2个导频所在的子帧进行M2次重复传输,对其他子帧进行N次重复传输,也就是说,发射机对子帧1、子帧2分别进行M2次重复传输,对子帧3至子帧F分别进行N次重复传输。
可以看到,本示例与图3所示的示例不同的地方是:图3所示的示例中,导频1和导频2的符号数量较多或长度较长,导频1和导频2先分别在M1=2个子帧上重复,然后进行M2次子帧级重复传输;本示例中,导频1和导频2的符号数量较少或长度较短,导频1和导频2先分别在M1=2个时隙上重复,然后进行M2次子帧级重复传输。
图5是本申请实施例提供的另一种传输方法的示例图。如图5所示,本示例中,每个子帧包含2个导频符号,其余符号为数据符号。为了保证弱覆盖或覆盖差的UE的传输性能,发射机采用子帧级重复传输,对子帧1至子帧F分别进行N次重复传输。然后,发射机将导频1的符号和导频2的符号分别映射到重复后的N*F子帧的导频符号位置,其中,导频1的符号重复映射M次,导频2的符号重复映射M次。
假设重复后的N*F个子帧的索引为1、2、...、N*F。本示例中,在一种情况下,将导频1的符号重复映射到子帧1至子帧F/4的导频符号位置、子帧F/2+1至子帧3*F/4的导频符号位置、...、子帧(N-1/2)*F+1至子帧(N-1/4)*F的导频符号位置,那么,导频1的符号总计重复映射M=2*N次,也就是说,导频1的符号重复传输M=2*N次;将导频2的符号重复映射到子帧F/4+1至子帧F/2的导频符号位置、子帧3*F/4+1至子帧F的导频符号位置、...、子帧(N-1/4)*F+1至子帧N*F的导频符号位置,那么,导频2的符号总计重复映射M=2*N次,也就是说,导频2的符号重复传输M=2*N次。这种情况下,导频1和导频2的重复次数较多,可以使得接收机在检测时获得更好的频偏估计结果以及更好的信道估计结果,从而可以改善UE的传输性能,提升系统性能和容量。
在另一种情况下,将导频1的符号重复映射到子帧1至子帧F的导频符号位置、子帧2F+1至子帧3F的导频符号位置、...、子帧(N-2)*F+1至子帧(N-1)*F
的导频符号位置,那么,导频1的符号总计重复映射M=N/2次,也就是说,导频1的符号重复传输M=N/2次;将导频2的符号重复映射到子帧F+1至子帧2F的导频符号位置、子帧3F+1至子帧4F的导频符号位置、...、子帧(N-1)*F+1至子帧N*F的导频符号位置,那么,导频2的符号总计重复映射M=N/2次,也就是说,导频2的符号重复传输M=N/2次。这里假设N为偶数。这种情况下,导频1和导频2的重复次数较少,可以用于例如系统频偏较小、信道变化较小等场景,而导频1和导频2的长度均为2F,相对较长,可以支持更多的UE进行共享接入与传输。
在又一种情况下,将导频1的符号重复映射到子帧1至子帧F/2的导频符号位置、子帧F+1至子帧3*F/2的导频符号位置、...、子帧(N-1)*F+1至子帧(N-1/2)*F的导频符号位置,那么,导频1的符号总计重复映射M=N次,也就是说,导频1的符号重复传输M=N次;将导频2的符号重复映射到子帧F/2+1至子帧F的导频符号位置、子帧3*F/2+1至子帧2*F的导频符号位置、...、子帧(N-1/2)*F+1至子帧N*F的导频符号位置,那么,导频2的符号总计重复映射M=N次,也就是说,导频2的符号重复传输M=N次。这种情况下,导频1和导频2的长度适中、重复次数适中,可以获得适中的频偏估计以及信道估计性能,可以支持适中的接入用户数量。
本申请上述示例中,发射机采用的2个导频是时分的。在本申请的其他示例中,发射机采用的2个导频可以是码分的、频分的、或时频分的,在此基础上可以实现与上述示例类似的多种实施方式,这里不再赘述。
本申请上述示例中,发射机主要采用子帧级重复传输。在本申请的其他示例中,发射机可以采用其他重复传输方法,例如,时隙级重复传输,符号级重复传输,传输块重复传输,多子帧重复传输,多时隙重复传输,或者,多符号重复传输等。
本申请上述示例中,发射机使用的传输资源可以包括1个或多个子载波、1个或多个载波、一个或多个资源块、或者一个或多个资源单元等。当发射机使用的传输资源在频域上包括多个资源时,例如多个子载波,接收机还可以根据接收到的导频符号和/或数据符号进行时偏估计,并用于改善检测性能。
本申请上述示例中,发射机在对导频1的符号、导频2的符号和数据符号进行重复传输时,还可以结合跳频传输,如本申请实施例以及实施方式所述。根据跳频传输后的重复传输符号,接收机可以进行时偏估计以及频偏估计,并用于改善检测性能。
本申请上述示例中,发射机在对数据符号进行N次重复传输时,也可以按照一种重复传输模式进行N1次重复传输,然后按照另外一种重复传输模式进行N2次重复传输,并且,N=N1*N2。
本申请上述示例中,发射机对数据符号进行N次重复传输,可以通过扩展和重复结合的方式来实现,例如,发射机采用长度为G的序列对数据符号进行扩展处理,得到扩展后的符号,然后对扩展后的符号进行R次重复传输,并且,N=G*R。
本申请上述示例中,发射机采用2个导频,目的是支持更多UE进行共享接入与传输。在本申请的另一个示例中,发射机可以采用3个导频,从而可以进一步支持更多的UE进行共享接入与传输,在此基础上可以实现与上述示例类似的多种实施方式。在本申请的又一个示例中,发射机可以采用1个导频,支持一个或多个UE进行共享接入与传输,在此基础上可以实现与上述示例类似的多种实施方式。
本申请上述示例可以支持K个发射机在相同的传输资源上进行共享接入与传输,其中,K为大于1的整数,每个发射机按照上述示例所述的方法进行传输。例如,每个发射机生成其导频1的符号、导频2的符号以及数据符号,然后,将导频1的符号、导频2的符号以及数据符号组成子帧,并按照上述示例进行重复传输,或者,将数据符号组成子帧进行重复传输,并将导频1的符号、导频2的符号在重复后的子帧上进行重复映射。在一种示例中,K个发射机可以为K个终端或K个UE。
本申请上述示例可以应用于免调度传输,通过对2个导频的符号分别进行M次重复传输,以及对数据符号进行N次重复传输,可以改善弱覆盖UE的时频偏估计结果以及信道估计结果,增强弱覆盖UE的覆盖水平,改善弱覆盖UE的传输性能,从而可以支持更多的弱覆盖UE进行免调度传输;也可以节省传输资源或降低数据传输的码率,从而可以提升系统传输性能和传输容量。因此,本申请上述示例提供的方法可以支持更多的UE进行免调度增强覆盖接入与传输,可以提升免调度传输系统的性能和容量。
图6是本申请实施例提供的另一种传输方法的流程图。本申请实施例可适用于数据传输的情况,该方法可以由传输装置来执行,该装置可以通过软件和/或硬件的方法实现,一般集成在接收端。如图6所示,本申请实施例提供的方法包括如下步骤:
步骤200、获取第一符号的M次重复传输的符号,其中,第一符号包括X
个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数。
步骤210、获取第二符号的N次重复传输的符号,其中,第二符号包括数据符号,N为大于或等于1的整数。
本申请实施例,通过获取第一符号的M次重复传输的符号以及第二符号的N次重复传输的符号,可提高信道估计以及时频偏估计的准确性,支持更多的终端设备进行数据传输,可节省传输资源,提升系统的传输性能和传输容量。
本申请实施例有多种实施方式,包括且不限于以下提供的实施方式和示例。需要说明的是,在不冲突的情况下,本申请实施例、实施方式和示例中的特征可以相互任意组合。
在一个实施方式中,本申请实施例提供的方法应用于接收机中,其中,接收机至少包括基站、网络设备、终端、用户设备UE以及其他适用的通信节点。
在一个实施方式中,X等于0,第一符号不包含任何符号,或者第一符号不存在;第二符号包括数据符号。
在一个实施方式中,X等于1,第一符号包括一个导频的符号,其中,所述一个导频的符号包括A个符号,A为大于或等于1的整数。
在一个实施方式中,X大于1,例如X为2、或3、或4、...等,第一符号包括多个导频的符号,其中,每个导频的符号包括B个符号,B为大于或等于1的整数。
在一个实施方式中,第一符号还包括部分数据符号,相应的,第二符号包括除所述部分数据符号之外的其余数据符号。
例如,数据符号总共包括S个符号,S为大于或等于1的整数,所述部分数据符号包括所述数据符号中的Y个符号,Y为大于或等于1且小于或等于S的整数,所述其余数据符号包括所述数据符号中的其余(S-Y)个符号。
该实施方式中,第一符号包括X个导频的符号和所述部分数据符号,第二符号包括除所述部分数据符号之外的其余数据符号。
在一个实施方式中,X等于0,第一符号不包含导频符号,仅包括部分数据符号,第二符号包括除所述部分数据符号之外的其余数据符号。
在一个实施方式中,M的取值大于N的取值。
在一个实施方式中,N的取值大于M的取值。
在一个实施方式中,N的取值等于M的取值。
可以理解的是,本实施例中第一符号以及第一符号的M次重复传输、第二
符号以及第二符号的N次重复传输的技术特征与图1所示的实施例中的技术特征相同。
在一个实施方式中,本申请实施例提供的方法还包括:对第一符号的M次重复传输的符号以及第二符号的N次重复传输的符号进行检测,获取数据符号的检测结果。
该实施方式中,本申请实施例提供的方法可以根据第一符号中至少一个导频的符号的M次重复传输的符号进行指定处理,获取处理结果,其中,指定处理包括以下至少之一:信道估计、频偏估计、时偏估计、用户识别;然后,根据所获取的处理结果对第二符号的N次重复传输的符号进行检测,获取数据符号的检测结果。
在一种示例中,本申请实施例提供的方法根据所获取的处理结果对第二符号中包含的数据符号进行检测,获取数据符号的检测结果。
在一种示例中,本申请实施例提供的方法根据所获取的处理结果对第一符号、第二符号中包含的数据符号进行检测,获取数据符号的检测结果。
在一种示例中,本申请实施例提供的方法可以根据第一符号的M次重复传输的符号中的部分重复传输符号进行上述指定处理,并用于检测。
在一个实施方式中,本申请实施例提供的方法根据预设的频偏补偿值对第一符号的M次重复传输的符号、以及第二符号的N次重复传输的符号进行频偏补偿。
在一个实施方式中,本申请实施例提供的方法根据预设的时偏补偿值对第一符号的M次重复传输的符号、以及第二符号的N次重复传输的符号进行时偏补偿。
在一个实施方式中,本申请实施例提供的方法根据所获取的数据符号的检测结果获取以下信息至少之一:有效载荷、身份识别信息、所述X个导频中至少一个导频的信息、序列信息、传输资源信息。
在一个实施方式中,本申请实施例提供的方法对所获取的数据符号的检测结果进行解调译码,获取译码结果。
在一种示例中,本申请实施例提供的方法根据循环冗余校验结果确定所获取的译码结果是否正确。例如,发射机采用了竞争免调度传输方式,那么,接收机并不知道哪些UE进行了传输,接收机在译码后可以根据循环冗余校验结果以及其他可用的信息确定所获取的译码结果是否正确,并从译码结果中获取信息。
在一种示例中,本申请实施例提供的方法从所获取的译码结果中获取以下至少之一:有效载荷、身份识别信息、X个导频中至少一个导频的信息、序列信息、传输资源信息。其中,身份识别信息、X个导频中至少一个导频的信息、序列信息、传输资源信息中的一个或多个可以通过专用比特来指示,也可以通过指定比特来隐含指示。
在一种示例中,本申请实施例提供的方法可以从所获取的译码结果中获取有效载荷和身份识别信息,然后从有效载荷和/或身份识别信息中获取X个导频中至少一个导频的信息、序列信息、传输资源信息中的一个或多个。
在一种示例中,本申请实施例提供的方法可以从所获取的译码结果中获取有效载荷,然后从有效载荷中获取身份识别信息、X个导频中至少一个导频的信息、序列信息、传输资源信息中的一个或多个。
上述示例中,有效载荷包括业务数据、指定消息等。身份识别信息用于供接收机确定其接收的是哪一个发射机发送的数据。
序列信息包括发射机对符号进行扩展或映射处理时采用的序列的信息、或者将比特映射为指定序列时采用的指定序列的信息,还可以包括序列集合的信息。接收机可以根据所述序列信息对发射机发送的符号进行重构,以便进行干扰消除。
X个导频中至少一个导频的信息包括X个导频中至少一个导频的索引信息或生成信息,还可以包括导频数量X的信息。接收端可以根据所述X个导频中至少一个导频的信息对导频符号进行重构,以便对导频进行干扰消除。
传输资源信息包括发射机使用的至少一个传输资源的位置信息,还可以包括发射机使用的传输资源的数量信息,还可以包括可用传输资源的信息。接收机根据所述传输资源信息,可以确定发射机在哪些传输资源上进行了传输,以便进一步对这些传输资源进行检测。
在一个实施方式中,本申请实施例提供的方法根据所获取的检测结果或译码结果重构第一符号的M次重复传输的符号、以及第二符号的N次重复传输的符号,并进行干扰消除,获取干扰消除结果。然后,本申请实施例提供的方法根据干扰消除结果进行下一次检测。接收机可以进行多次迭代检测,直到满足指定条件后结束检测过程。
在一个实施方式中,本申请实施例提供的方法可以应用于弱覆盖场景、恶劣覆盖场景、或极端覆盖场景等,可以用于增强覆盖;还可以用于免调度传输,包括弱覆盖场景、恶劣覆盖场景、或极端覆盖场景等场景下的免调度传输。
本申请实施例提供的方法以及多种实施方式可以改善弱覆盖UE的信道估
计结果以及时频偏估计结果,改善弱覆盖UE的传输性能,也可以节省传输资源,提升系统传输性能和传输容量。当应用于免调度传输时,可以支持更多的弱覆盖UE进行免调度传输,进一步可以支持更多的UE进行免调度接入与传输,从而提升了免调度传输系统的性能和容量。
图7是本申请实施例提供的一种传输装置的结构示意图。该装置可执行本申请任意实施例提供的传输方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现。如图7所示,本申请实施例提供的装置包括:
第一发送模块101,用于对第一符号进行M次重复传输,其中,所述第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数。
第二发送模块102,用于对第二符号进行N次重复传输,其中,所述第二符号包括数据符号,N为大于或等于1的整数。
本申请实施例,通过第一发送模块101对包括X个导频的符号的第一符号进行M次重复传输,第二发送模块102对包括数据符号的第二符号进行N次重复传输,可提高信道估计以及时频偏估计的准确性,支持更多的终端设备进行数据传输,可节省传输资源,提升系统的传输性能和传输容量。
在一个实施方式中,所述装置中第一符号还包括部分数据符号,相应的,所述第二符号包括除所述部分数据符号之外的其余数据符号。
在一个实施方式中,所述装置中M的取值大于所述N的取值。
在一个实施方式中,所述装置中N的取值大于所述M的取值。
在一个实施方式中,所述装置中第一发送模块101用于:对所述第一符号按照第一重复传输模式进行M1次重复传输,然后按照第二重复传输模式进行M2次重复传输,其中,M1和M2为大于或等于1的整数,且M=M1*M2。
在一个实施方式中,所述装置中第一发送模块101用于:采用长度为L的序列扩展所述第一符号得到扩展后的符号,对所述扩展后的符号进行U次重复传输,其中,L为大于1的整数,U为大于或等于1的整数,且M=L*U。
在一个实施方式中,所述装置中第一发送模块101用于:在H个传输资源上传输所述第一符号,其中,在所述H个传输资源的每个传输资源上对所述第一符号进行Q次重复传输,其中,H为大于或等于1的整数,Q为大于或等于1的整数,且M=H*Q。
在一个实施方式中,所述装置中第一发送模块101用于:在J个传输资源上
传输所述第一符号,其中,在所述J个传输资源的每个传输资源上对所述X个导频中至少一个导频的符号进行M次重复传输,其中,J为大于或等于1的整数。
在一个实施方式中,所述装置中第二发送模块102用于:对所述第二符号按照第三重复传输模式进行N1次重复传输,然后按照第四重复传输模式进行N2次重复传输,其中,N1和N2为大于或等于1的整数,且N=N1*N2。
在一个实施方式中,所述装置中第二发送模块102用于:采用长度为G的序列扩展所述第二符号得到扩展后的符号,对所述扩展后的符号进行R次重传传输,其中,G为大于1的整数,R为大于或等于1的整数,且N=G*R。
在一个实施方式中,所述装置中第二发送模块102用于:在P个传输资源上传输所述第二符号,其中,在所述P个传输资源的每个传输资源上对所述第二符号进行T次重复传输,其中,P为大于或等于1的整数,T为大于或等于1的整数,且N=P*T。
在一个实施方式中,所述装置中第二发送模块102用于:在V个传输资源上传输所述第二符号,其中,所述第二符号包括W组数据符号,在所述V个传输资源的每个传输资源上对所述W组数据符号中的至少一组数据符号进行N次重复传输,其中,V为大于或等于1的整数,W为大于或等于1的整数。
在一个实施方式中,所述装置中数据符号包括以下信息至少之一:有效载荷、身份识别信息、所述X个导频中至少一个导频的信息、序列信息、传输资源信息。
图8是本申请实施例提供的另一种传输装置的结构示意图。该装置可执行本申请任意实施例提供的传输方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现。如图8所示,本申请实施例提供的装置包括:
第一获取模块201,用于获取第一符号的M次重复传输的符号,其中,所述第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数。
第二获取模块202,用于获取第二符号的N次重复传输的符号,其中,所述第二符号包括数据符号,N为大于或等于1的整数。
本申请实施例,通过第一获取模块201获取第一符号的M次重复传输的符号以及第二获取模块202获取第二符号的N次重复传输的符号,可提高信道估计以及时频偏估计的准确性,支持更多的终端设备进行数据传输,可节省传输资源,提升系统的传输性能和传输容量。
在一个实施方式中,所述装置中第一符号还包括部分数据符号,相应的,所述第二符号包括除所述部分数据符号之外的其余数据符号。
在一个实施方式中,所述装置中M的取值大于所述N的取值。
在一个实施方式中,所述装置中N的取值大于所述M的取值。
在一个实施方式中,所述装置还包括:
检测模块,用于检测第一符号的M次重复传输的符号以及第二符号的N次重复传输的符号,获取所述第一符号的M次重复传输的符号以及第二符号的N次重复传输的符号的检测结果。
进一步的,在一个实施方式中,所述装置还包括:
第三获取模块,用于根据所述检测结果获取以下信息至少之一:有效载荷、身份识别信息、所述X个导频中至少一个导频的信息、序列信息、传输资源信息。
图9是本申请实施例提供的一种电子设备的结构示意图。该电子设备包括处理器62、存储器61;电子设备中处理器62的数量可以是一个或多个,图9中以一个处理器62为例;电子设备中处理器62、存储器61可以通过总线或其他方式连接,图9中以通过总线连接为例。
存储器61作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的任一传输方法对应的程序、本申请实施例中的传输装置对应的模块(第一发送模块101和第二发送模块102,和/或,第一获取模块201和第二获取模块202)。处理器62通过运行存储在存储器61中的软件程序、指令以及模块,从而执行电子设备的多种功能以及数据处理,即实现上述的传输方法。
存储器61可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可进一步包括相对于处理器62远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种传输方法。
在一种实施方式中,所述传输方法包括:对第一符号进行M次重复传输,其中,所述第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数;对第二符号进行N次重复传输,其中,所述第二符号包括数据符号,N为大于或等于1的整数。
在一种实施方式中,所述传输方法包括:获取第一符号的M次重复传输的符号,其中,所述第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数;获取第二符号N次重复传输的符号,其中,所述第二符号包括数据符号,N为大于或等于1的整数。通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。
值得注意的是,上述装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多个功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域普通技术人员可以理解,上文中所公开方法中的全部或一些步骤、装置、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。一些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。相应的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、电可擦式可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)、闪存或其他存储器技术、便携式光盘只读存储器(Compact Disk Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘
存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上内容参照附图说明了本申请的可选实施例,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。
Claims (21)
- 一种传输方法,应用于发送端,包括:对第一符号进行M次重复传输,其中,所述第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数;对第二符号进行N次重复传输,其中,所述第二符号包括数据符号,N为大于或等于1的整数。
- 根据权利要求1所述方法,其中,所述第一符号还包括部分数据符号,所述第二符号包括除所述部分数据符号之外的其余数据符号。
- 根据权利要求1所述方法,其中,所述M的取值大于所述N的取值。
- 根据权利要求1所述方法,其中,所述N的取值大于所述M的取值。
- 根据权利要求1所述方法,其中,所述对第一符号进行M次重复传输,包括:对所述第一符号按照第一重复传输模式进行M1次重复传输,然后对所述第一符号的M1次重复传输的符号按照第二重复传输模式进行M2次重复传输,其中,M1和M2为大于或等于1的整数,且M=M1*M2。
- 根据权利要求1所述方法,其中,所述对第一符号进行M次重复传输,包括:采用长度为L的序列扩展所述第一符号得到扩展后的符号,对所述扩展后的符号进行U次重复传输,其中,L为大于1的整数,U为大于或等于1的整数,且M=L*U。
- 根据权利要求1所述方法,其中,所述对第一符号进行M次重复传输,包括:在H个传输资源上传输所述第一符号,其中,在所述H个传输资源的每个传输资源上对所述第一符号进行Q次重复传输,其中,H为大于或等于1的整数,Q为大于或等于1的整数,且M=H*Q。
- 根据权利要求1所述方法,其中,所述对第一符号进行M次重复传输,包括:在J个传输资源上传输所述第一符号,其中,在所述J个传输资源的每个传输资源上对所述X个导频中至少一个导频的符号进行M次重复传输,其中,J为大于或等于1的整数。
- 根据权利要求1所述方法,其中,所述对第二符号进行N次重复传输,包括:对所述第二符号按照第三重复传输模式进行N1次重复传输,然后对所述第二符号的N1次重复传输的符号按照第四重复传输模式进行N2次重复传输,其中,N1和N2为大于或等于1的整数,且N=N1*N2。
- 根据权利要求1所述方法,其中,所述对第二符号进行N次重复传输,包括:采用长度为G的序列扩展所述第二符号得到扩展后的符号,对所述扩展后的符号进行R次重传传输,其中,G为大于1的整数,R为大于或等于1的整数,且N=G*R。
- 根据权利要求1所述方法,其中,所述对第二符号进行N次重复传输,包括:在P个传输资源上传输所述第二符号,其中,在所述P个传输资源的每个传输资源上对所述第二符号进行T次重复传输,其中,P为大于或等于1的整数,T为大于或等于1的整数,且N=P*T。
- 根据权利要求1所述方法,其中,所述对第二符号进行N次重复传输,包括:在V个传输资源上传输所述第二符号,其中,所述第二符号包括W组数据符号,在所述V个传输资源的每个传输资源上对所述W组数据符号中的至少一组数据符号进行N次重复传输,其中,V为大于或等于1的整数,W为大于或等于1的整数。
- 根据权利要求1所述方法,其中,所述数据符号包括以下信息至少之一:有效载荷、身份识别信息、所述X个导频中至少一个导频的信息、序列信息、传输资源信息。
- 一种传输方法,应用于接收端,包括:获取第一符号的M次重复传输的符号,其中,所述第一符号包括X个导频的符号,X为大于或等于0的整数,M为大于或等于1的整数;获取第二符号的N次重复传输的符号,其中,所述第二符号包括数据符号,N为大于或等于1的整数。
- 根据权利要求14所述方法,其中,所述第一符号还包括部分数据符号,所述第二符号包括除所述部分数据符号之外的其余数据符号。
- 根据权利要求14所述方法,其中,所述M的取值大于所述N的取值。
- 根据权利要求14所述方法,其中,所述N的取值大于所述M的取值。
- 根据权利要求14所述方法,还包括:检测所述第一符号的M次重复传输的符号以及所述第二符号的N次重复传输的符号,获取所述第一符号的M次重复传输的符号以及所述第二符号的N次重复传输的符号的检测结果。
- 根据权利要求18所述方法,还包括:根据所述检测结果获取以下信息至少之一:有效载荷、身份识别信息、所述X个导频中至少一个导频的信息、序列信息、传输资源信息。
- 一种电子设备,包括:至少一个处理器;存储器,设置为存储至少一个程序;当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-19中任一所述方法。
- 一种计算机可读存储介质,存储有至少一个程序,所述至少一个程序被至少一个处理器执行,以实现如权利要求1-19中任一所述方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210362339.0 | 2022-04-07 | ||
CN202210362339.0A CN116939521A (zh) | 2022-04-07 | 2022-04-07 | 一种传输方法、电子设备和存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023193634A1 true WO2023193634A1 (zh) | 2023-10-12 |
Family
ID=88244004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/084340 WO2023193634A1 (zh) | 2022-04-07 | 2023-03-28 | 传输方法、电子设备和存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116939521A (zh) |
WO (1) | WO2023193634A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110149661A (zh) * | 2018-02-13 | 2019-08-20 | 中兴通讯股份有限公司 | 信道传输方法和装置、网络设备及计算机可读存储介质 |
CN110611958A (zh) * | 2019-08-16 | 2019-12-24 | 中兴通讯股份有限公司 | 传输资源配置方法、装置和计算机存储介质 |
WO2020187132A1 (zh) * | 2019-03-18 | 2020-09-24 | 华为技术有限公司 | 数据信道的传输方法及装置 |
CN111901055A (zh) * | 2020-02-14 | 2020-11-06 | 中兴通讯股份有限公司 | 一种数据传输方法、装置、设备和存储介质 |
CN112583528A (zh) * | 2019-09-30 | 2021-03-30 | 华为技术有限公司 | 确定传输块大小的方法和装置 |
WO2021207959A1 (zh) * | 2020-04-15 | 2021-10-21 | Oppo广东移动通信有限公司 | 重复传输方法、装置及可读存储介质 |
-
2022
- 2022-04-07 CN CN202210362339.0A patent/CN116939521A/zh active Pending
-
2023
- 2023-03-28 WO PCT/CN2023/084340 patent/WO2023193634A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110149661A (zh) * | 2018-02-13 | 2019-08-20 | 中兴通讯股份有限公司 | 信道传输方法和装置、网络设备及计算机可读存储介质 |
WO2020187132A1 (zh) * | 2019-03-18 | 2020-09-24 | 华为技术有限公司 | 数据信道的传输方法及装置 |
CN110611958A (zh) * | 2019-08-16 | 2019-12-24 | 中兴通讯股份有限公司 | 传输资源配置方法、装置和计算机存储介质 |
CN112583528A (zh) * | 2019-09-30 | 2021-03-30 | 华为技术有限公司 | 确定传输块大小的方法和装置 |
CN111901055A (zh) * | 2020-02-14 | 2020-11-06 | 中兴通讯股份有限公司 | 一种数据传输方法、装置、设备和存储介质 |
WO2021207959A1 (zh) * | 2020-04-15 | 2021-10-21 | Oppo广东移动通信有限公司 | 重复传输方法、装置及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN116939521A (zh) | 2023-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10797844B2 (en) | Terminal device, base station device, communication method, and integrated circuit for processing demodulation reference signals | |
CN114745085B (zh) | 无线通信系统中发送和接收控制信道的方法、装置和系统 | |
CN109995497B (zh) | 下行控制信息传输方法 | |
US10523372B2 (en) | Method and apparatus for the transmission of uplink control information | |
ES2362158T3 (es) | Método de transmisión de una solicitud de planificación en un sistema de comunicaciones inalámbrico. | |
CN102739368B (zh) | 无线通信系统中控制信息的编码和复用 | |
ES2707601T3 (es) | Aplicación de códigos de saltos de secuencia y de cobertura ortogonal a señales de referencia de enlace ascendente | |
CN107710842B (zh) | 传输上行数据的方法和设备 | |
KR101852706B1 (ko) | 다운링크 제어 채널의 반복 수량을 결정하기 위한 방법 및 장치 | |
KR20200004378A (ko) | 동기화 신호 타이밍 정보를 전달하기 위한 기술 | |
KR20230082057A (ko) | Nb iot 시스템들에서의 스케줄링 요청을 위한 방법 및 장치 | |
CN111770572B (zh) | 确定反馈信息的方法和通信装置 | |
US9426800B2 (en) | Terminal device, base station device, and integrated circuit to determine parameters related to demodulation reference signals (DMRS) | |
US10375626B2 (en) | Method and apparatus for transmitting downlink response to uplink transmission, and method and apparatus for transmitting synchronization signal | |
CN108282864B (zh) | 通信方法、网络侧设备和终端设备 | |
CN110535595B (zh) | 测量参考信号传输方法、装置、通信节点设备及存储介质 | |
KR20220035419A (ko) | 하이브리드 자동 반복 요청 절차를 위한 방법 및 장치 | |
EP3457739A1 (en) | Transmission method and apparatus, transmission system, and storage medium | |
BR112020004386A2 (pt) | métodos e dispositivos de alocação de recursos de canal para controle uplink | |
WO2023193634A1 (zh) | 传输方法、电子设备和存储介质 | |
US20230224110A1 (en) | Data transmission method and apparatus, transmitter, receiver, and storage medium | |
CN110972285A (zh) | 通信方法及装置 | |
CN111543011B (zh) | 用于生成扩展序列码本的方法和装置 | |
US20240121056A1 (en) | Demodulation reference signal port mapping and indication schemes | |
CN115150944A (zh) | 资源指示方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23784198 Country of ref document: EP Kind code of ref document: A1 |