WO2020200176A1 - 确定传输资源的方法及装置 - Google Patents

确定传输资源的方法及装置 Download PDF

Info

Publication number
WO2020200176A1
WO2020200176A1 PCT/CN2020/082165 CN2020082165W WO2020200176A1 WO 2020200176 A1 WO2020200176 A1 WO 2020200176A1 CN 2020082165 W CN2020082165 W CN 2020082165W WO 2020200176 A1 WO2020200176 A1 WO 2020200176A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain resource
transmission
indication information
resource allocation
Prior art date
Application number
PCT/CN2020/082165
Other languages
English (en)
French (fr)
Inventor
徐修强
陈雁
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910364667.2A external-priority patent/CN111770577B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020200176A1 publication Critical patent/WO2020200176A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for determining transmission resources.
  • This application provides a method and device for determining transmission resources, which can reduce the signaling overhead of the communication system.
  • a method for determining transmission resources including: a terminal receives indication information from a network device, the indication information is used to indicate an entry in a time domain resource allocation table, in the time domain resource allocation table The at least one entry in the includes information used to indicate multiple time domain resources and information used to indicate one or more RVs; the terminal determines whether to transmit PUSCH or PUSCH according to the indication information and the time domain resource allocation table. Time domain resources and RV of one or more transmission occasions of the PDSCH.
  • the entries in the time domain resource allocation table are only used to determine the time domain resources of the transmission timing, and are not used to determine the RV used for the transmission timing.
  • the RV corresponding to each transmission timing needs to be additionally indicated by the DCI.
  • the entries in the time domain resource allocation table may include information for indicating RV.
  • the network device does not need to indicate the RV corresponding to the transmission timing through the DCI, thereby reducing the DCI information. Order overhead.
  • the method further includes: the terminal receives configuration information from the network device, and the configuration information is used to configure the time domain resource allocation table.
  • the terminal receives configuration information from the network device, and the configuration information is used to configure the time domain resource allocation table.
  • the at least one entry in the time domain resource allocation table further includes multiple first offset values, and the multiple first offset values are used to determine the multiple The time slot where the time domain resource of the transmission timing is located.
  • the network device sends the value of timeDomainOffset through RRC signaling to enable the terminal to determine the time slot where a time domain resource is located.
  • one entry in the time domain resource allocation table may include information used to indicate multiple time domain resources. In this case, the terminal needs to determine the time slots where multiple time domain resources are located. At this time, the network device needs to send multiple timeDomainOffset values through RRC signaling, so that the terminal can determine the time slot where multiple time domain resources used for repeated transmission are located.
  • multiple first offset values are configured in the entries in the time domain resource allocation table to determine the time slot in which time domain resources of multiple transmission opportunities are located, so that the terminal can quickly determine multiple time domains
  • the time slot where the resource is located reduces the implementation complexity of the terminal.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the method further includes: the terminal receives the PDCCH from the network device, and the The PDCCH carries the DCI used to schedule the PUSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n; accordingly, the terminal according to the indication information and the time domain resource
  • the allocation table determines the time domain resources for transmitting one or more transmission occasions of the PUSCH, including: the terminal according to the subcarrier interval of the PUSCH, the subcarrier interval of the PDCCH, the n and the indication information;
  • the first offset value corresponding to the k-th time domain resource included in the indicated entry and the second offset value included in the entry indicated by the indication information determine the first offset value of the one or more transmission opportunities
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is: Among them, u PUSCH is a parameter that characterizes the sub-carrier spacing of the PUSCH, u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH, and C1 is the corresponding k-th time domain included in the entry indicated by the indication information The first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the method further includes: the terminal receives the PDCCH from the network device, and the The PDCCH carries the DCI used to schedule the PDSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n; accordingly, the terminal according to the indication information and the time domain resource
  • the allocation table determines the time domain resources used to transmit one or more transmission occasions of the PDSCH, including: the terminal according to the subcarrier interval of the PDSCH, the subcarrier interval of the PDCCH, the n and the indication information;
  • the first offset value corresponding to the k-th time domain resource included in the indicated entry and the second offset value included in the entry indicated by the indication information determine the first offset value of the one or more transmission opportunities
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is:
  • u PDSCH is a parameter that characterizes the sub-carrier spacing of the PDSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH
  • C1 is the corresponding k-th time domain included in the entry indicated by the indication information
  • the first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • the DCI further includes a redundancy version indication field, when the table entry indicated by the indication information contains information of RVs corresponding to multiple time domain resources used for repeated data transmission
  • the redundancy version indication field is used to determine the maximum number of time domain resources for repeated transmission or the maximum number of repeated transmissions or the maximum number of time slots for repeated transmission.
  • the method further includes: the terminal receives from the network device type 1 uplink unlicensed transmission configuration information, the configuration information includes the indication information and the third offset value Configuration information; the time slot in which the k-th transmission opportunity of the one or more transmission opportunities is located is based on the third offset value and the corresponding k-th time domain resource included in the entry indicated by the indication information
  • the first offset value of is determined, and k is an integer greater than 0.
  • the value of timeDomainOffset is sent through RRC signaling to enable the terminal to determine the time slot where a time domain resource is located.
  • one entry in the time domain resource allocation table may include information used to indicate multiple time domain resources.
  • the terminal needs to determine the time slots where multiple time domain resources are located.
  • the network device needs to send multiple timeDomainOffset values through RRC signaling, so that the terminal can determine the time slot where multiple time domain resources used for repeated transmission are located.
  • the terminal learns the values of multiple timeDomainOffsets, it still needs to learn the correspondence between the values of multiple timeDomainOffsets and multiple time domain resources, so the implementation process is more complicated.
  • multiple first offset values are configured in the entries in the time domain resource allocation table to determine the time slot where the time domain resources of multiple transmission opportunities are located, so that the terminal can quickly determine multiple time slots.
  • the time slot where the domain resource is located reduces the terminal's implementation complexity.
  • At least one first time domain resource of the plurality of time domain resources corresponds to an RV with an index of 0, and the first time domain resource is an RV of the plurality of time domain resources Contains the time domain resource with the largest number of symbols.
  • the data using RV0 can have more check bits and improve the decoding performance of the receiving end.
  • the value of the RV index corresponding to each first time domain resource in the at least one first time domain resource is in accordance with the RV sequence ⁇ 0, 2, 3, 1 ⁇ or ⁇ 0 , 3, 0, 3 ⁇ in the permutation cycle of the RV index.
  • at least two of the multiple time-domain resources with the largest number of symbols correspond to different RVs. In this case, compared with the time domain resources with the largest number of symbols all using the same RV, the decoding capability of the receiving end can be improved.
  • a method for determining transmission resources including: a network device sends instruction information to a terminal, where the instruction information is used to indicate an entry in a time domain resource allocation table, and the time domain resource allocation table is The at least one entry of includes information used to indicate multiple time domain resources and information used to indicate one or more RVs; the network device determines to transmit PUSCH based on the indication information and the time domain resource allocation table Or the time domain resources and RV of one or more transmission opportunities of the PDSCH.
  • the entries in the time domain resource allocation table are only used to determine the time domain resources of the transmission timing, and are not used to determine the RV used for the transmission timing.
  • the RV corresponding to each transmission timing needs to be additionally indicated by the DCI.
  • the entries in the time domain resource allocation table may include information for indicating RV.
  • the network device does not need to indicate the RV corresponding to the transmission timing through the DCI, so that the DCI information can be reduced. Order overhead.
  • the method further includes: the network device sends configuration information to the terminal, and the configuration information is used to configure the time domain resource allocation table.
  • the network device sends configuration information to the terminal, and the configuration information is used to configure the time domain resource allocation table.
  • the at least one entry in the time domain resource allocation table further includes multiple first offset values, and the multiple first offset values are used to determine the multiple The time slot where the time domain resource of the transmission timing is located.
  • the value of timeDomainOffset is sent through RRC signaling to enable the terminal to determine the time slot where a time domain resource is located.
  • one entry in the time domain resource allocation table may include information used to indicate multiple time domain resources. In this case, the terminal needs to determine the time slots where multiple time domain resources are located. At this time, the network device needs to send multiple timeDomainOffset values through RRC signaling, so that the terminal can determine the time slot where multiple time domain resources used for repeated transmission are located.
  • multiple first offset values are configured in the entries in the time domain resource allocation table to determine the time slot in which time domain resources of multiple transmission opportunities are located, so that the terminal can quickly determine multiple time domains
  • the time slot where the resource is located reduces the implementation complexity of the terminal.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the method further includes: the network device sends the PDCCH to the terminal, and the The PDCCH carries the DCI used to schedule the PUSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n; accordingly, the network device is based on the indication information and the time domain
  • the resource allocation table determines the time domain resources used for transmitting one or more transmission occasions of the PUSCH, including: the network device according to the subcarrier interval of the PUSCH, the subcarrier interval of the PDCCH, the n, the indication
  • the first offset value corresponding to the k-th time domain resource included in the entry indicated by the information and the second offset value included in the entry indicated by the indication information determine that the one or more transmission opportunities K is an integer greater than 0 in the time slot where the time domain resource of the k-th transmission opportunity is located.
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is: Among them, u PUSCH is a parameter that characterizes the sub-carrier spacing of the PUSCH, u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH, and C1 is the corresponding k-th time domain included in the entry indicated by the indication information The first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the method further includes: the network device sends the PDCCH to the terminal, and the The PDCCH carries the DCI for scheduling the PDSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n; accordingly, the network device is based on the indication information and the time domain
  • the resource allocation table determines the time domain resources used for transmitting one or more transmission occasions of the PDSCH, including: the network device according to the subcarrier interval of the PDSCH, the subcarrier interval of the PDCCH, the n, the indication
  • the first offset value corresponding to the k-th time domain resource included in the entry indicated by the information and the second offset value included in the entry indicated by the indication information determine that the one or more transmission opportunities K is an integer greater than 0 in the time slot where the time domain resource of the k-th transmission opportunity is located.
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is:
  • u PDSCH is a parameter that characterizes the sub-carrier spacing of the PDSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH
  • C1 is the corresponding k-th time domain included in the entry indicated by the indication information
  • the first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • the DCI further includes a redundancy version indication field, when the table entry indicated by the indication information contains information of RVs corresponding to multiple time domain resources used for repeated data transmission
  • the redundancy version indication field is used to determine the maximum number of time domain resources for repeated transmission or the maximum number of repeated transmissions or the maximum number of time slots for repeated transmission.
  • the method further includes: the network device sends configuration information of type 1 uplink unlicensed transmission to the terminal, where the configuration information includes the indication information and a third offset value
  • the configuration information of the one or more transmission opportunities; the time slot in which the k-th transmission opportunity of the one or more transmission opportunities is located is based on the third offset value and the corresponding k-th time domain contained in the table entry indicated by the indication information
  • the first offset value of the resource is determined, and k is an integer greater than 0.
  • the value of timeDomainOffset is sent through RRC signaling to enable the terminal to determine the time slot where a time domain resource is located.
  • one entry in the time domain resource allocation table may include information used to indicate multiple time domain resources.
  • the terminal needs to determine the time slots where multiple time domain resources are located.
  • the network device needs to send multiple timeDomainOffset values through RRC signaling, so that the terminal can determine the time slot where multiple time domain resources used for repeated transmission are located.
  • the terminal learns the values of multiple timeDomainOffsets, it still needs to learn the correspondence between the values of multiple timeDomainOffsets and multiple time domain resources, so the implementation process is more complicated.
  • multiple first offset values are configured in the entries in the time domain resource allocation table to determine the time slot in which time domain resources of multiple transmission opportunities are located, so that the terminal can quickly determine multiple time domains The time slot where the resource is located reduces the implementation complexity of the terminal.
  • At least one first time domain resource of the plurality of time domain resources corresponds to an RV with an index of 0, and the first time domain resource is an RV of the plurality of time domain resources Contains the time domain resource with the largest number of symbols.
  • the data using RV0 can have more check bits and improve the decoding performance of the receiving end.
  • the value of the RV index corresponding to each first time domain resource in the at least one first time domain resource is in accordance with the RV sequence ⁇ 0, 2, 3, 1 ⁇ or ⁇ 0 , 3, 0, 3 ⁇ in the permutation cycle of the RV index.
  • at least two of the multiple time-domain resources with the largest number of symbols correspond to different RVs. In this case, compared with using the same RV for all time domain resources with the largest number of symbols, the decoding capability of the receiving end can be improved.
  • a method for determining transmission resources including: a terminal receives indication information from a network device, the indication information is used to indicate an entry in a time domain resource allocation table, in the time domain resource allocation table The at least one entry of includes information for indicating multiple time domain resources and multiple first offset values, and the multiple first offset values are used to determine the time domain resources of the multiple transmission opportunities are located. Slot; the terminal determines the time domain resources used to transmit one or more transmission opportunities of PUSCH or PDSCH according to the indication information and the time domain resource allocation table.
  • timeDomainOffset In type1 uplink unlicensed transmission, the value of timeDomainOffset is currently sent through RRC signaling to enable the terminal to determine the time slot in which a time domain resource is located.
  • one entry in the time domain resource allocation table may include information used to indicate multiple time domain resources.
  • the terminal needs to determine the time slots where multiple time domain resources are located.
  • the network device needs to send multiple timeDomainOffset values through RRC signaling, so that the terminal can determine the time slot where multiple time domain resources used for repeated transmission are located.
  • the terminal learns the values of multiple timeDomainOffsets it still needs to learn the correspondence between the values of multiple timeDomainOffsets and multiple time domain resources, so the implementation process is more complicated.
  • multiple first offset values are configured in the entries in the time domain resource allocation table to determine the time slot where the time domain resources of multiple transmission opportunities are located, so that the terminal can quickly determine the multiple The time slot where the time domain resources are located reduces the complexity of terminal implementation.
  • the method further includes: the terminal receives configuration information from the network device, and the configuration information is used to configure the time domain resource allocation table.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the method further includes: the terminal receives the PDCCH from the network device, and the The PDCCH carries the DCI used to schedule the PUSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n; accordingly, the terminal according to the indication information and the time domain resource
  • the allocation table determines the time domain resources for transmitting one or more transmission occasions of the PUSCH, including: the terminal according to the subcarrier interval of the PUSCH, the subcarrier interval of the PDCCH, the n and the indication information;
  • the first offset value corresponding to the k-th time domain resource included in the indicated entry and the second offset value included in the entry indicated by the indication information determine the first offset value of the one or more transmission opportunities
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is: Among them, u PUSCH is a parameter that characterizes the sub-carrier spacing of the PUSCH, u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH, and C1 is the corresponding k-th time domain included in the entry indicated by the indication information The first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the method further includes: the terminal receives the PDCCH from the network device, and the The PDCCH carries the DCI used to schedule the PDSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n; accordingly, the terminal according to the indication information and the time domain resource
  • the allocation table determines the time domain resources used to transmit one or more transmission occasions of the PDSCH, including: the terminal according to the subcarrier interval of the PDSCH, the subcarrier interval of the PDCCH, the n and the indication information;
  • the first offset value corresponding to the k-th time domain resource included in the indicated entry and the second offset value included in the entry indicated by the indication information determine the first offset value of the one or more transmission opportunities
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is:
  • u PDSCH is a parameter that characterizes the sub-carrier spacing of the PDSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH
  • C1 is the corresponding k-th time domain included in the entry indicated by the indication information
  • the first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • the method further includes: the terminal receives configuration information of type 1 uplink unlicensed transmission from the network device, the configuration information includes the indication information and a third offset value The configuration information of the one or more transmission opportunities; the time slot in which the k-th transmission opportunity of the one or more transmission opportunities is located is based on the third offset value and the corresponding k-th time domain contained in the table entry indicated by the indication information The first offset value of the resource is determined, and k is an integer greater than 0.
  • a method for determining transmission resources including: a network device sends instruction information to a terminal, where the instruction information is used to indicate an entry in a time domain resource allocation table, and the time domain resource allocation table is The at least one entry of includes information for indicating multiple time domain resources and multiple first offset values, and the multiple first offset values are used to determine the time domain resources of the multiple transmission opportunities are located. Slot; the network device determines the time domain resources used to transmit one or more transmission occasions of the PUSCH or PDSCH based on the indication information and the time domain resource allocation table.
  • the value of timeDomainOffset is sent through RRC signaling to enable the terminal to determine the time slot where a time domain resource is located.
  • one entry in the time domain resource allocation table may include information used to indicate multiple time domain resources.
  • the terminal needs to determine the time slots where multiple time domain resources are located.
  • the network device needs to send multiple timeDomainOffset values through RRC signaling, so that the terminal can determine the time slot where multiple time domain resources used for repeated transmission are located.
  • the terminal learns the values of multiple timeDomainOffsets it still needs to learn the correspondence between the values of multiple timeDomainOffsets and multiple time domain resources, so the implementation process is more complicated.
  • multiple first offset values are configured in the entries in the time domain resource allocation table to determine the time slot where the time domain resources of multiple transmission opportunities are located, so that the terminal can quickly determine The time slot where multiple time domain resources are located reduces the implementation complexity of the terminal.
  • the method further includes: the network device sends configuration information to the terminal, and the configuration information is used to configure the time domain resource allocation table.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the method further includes: the network device sends the PDCCH to the terminal, and the The PDCCH carries the DCI used to schedule the PUSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n; accordingly, the network device is based on the indication information and the time domain
  • the resource allocation table determines the time domain resources used for transmitting one or more transmission occasions of the PUSCH, including: the network device according to the subcarrier interval of the PUSCH, the subcarrier interval of the PDCCH, the n, the indication
  • the first offset value corresponding to the k-th time domain resource included in the entry indicated by the information and the second offset value included in the entry indicated by the indication information determine that the one or more transmission opportunities K is an integer greater than 0 in the time slot where the time domain resource of the k-th transmission opportunity is located.
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is: Among them, u PUSCH is a parameter that characterizes the sub-carrier spacing of the PUSCH, u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH, and C1 is the corresponding k-th time domain included in the entry indicated by the indication information The first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the method further includes: the network device sends the PDCCH to the terminal, and the The PDCCH carries the DCI for scheduling the PDSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n; accordingly, the network device is based on the indication information and the time domain
  • the resource allocation table determines the time domain resources used for transmitting one or more transmission occasions of the PDSCH, including: the network device according to the subcarrier interval of the PDSCH, the subcarrier interval of the PDCCH, the n, the indication
  • the first offset value corresponding to the k-th time domain resource included in the entry indicated by the information and the second offset value included in the entry indicated by the indication information determine that the one or more transmission opportunities K is an integer greater than 0 in the time slot where the time domain resource of the k-th transmission opportunity is located.
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is:
  • u PDSCH is a parameter that characterizes the sub-carrier spacing of the PDSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH
  • C1 is the corresponding k-th time domain included in the entry indicated by the indication information
  • the first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • the method further includes: the network device sends configuration information of type 1 uplink unlicensed transmission to the terminal, where the configuration information includes the indication information and a third offset value
  • the configuration information of the one or more transmission opportunities; the time slot in which the k-th transmission opportunity of the one or more transmission opportunities is located is based on the third offset value and the corresponding k-th time domain contained in the table entry indicated by the indication information
  • the first offset value of the resource is determined, and k is an integer greater than 0.
  • the value of timeDomainOffset is sent through RRC signaling to enable the terminal to determine the time slot where a time domain resource is located.
  • one entry in the time domain resource allocation table may include information used to indicate multiple time domain resources.
  • the terminal needs to determine the time slots where multiple time domain resources are located.
  • the network device needs to send multiple timeDomainOffset values through RRC signaling, so that the terminal can determine the time slot where multiple time domain resources used for repeated transmission are located.
  • the terminal learns the values of multiple timeDomainOffsets, it still needs to learn the correspondence between the values of multiple timeDomainOffsets and multiple time domain resources, so the implementation process is more complicated.
  • multiple first offset values are configured in the entries in the time domain resource allocation table to determine the time slot in which time domain resources of multiple transmission opportunities are located, so that the terminal can quickly determine multiple time domains The time slot where the resource is located reduces the implementation complexity of the terminal.
  • an apparatus for determining transmission resources including: a communication unit and a processing unit; the communication unit is configured to receive indication information from a network device, and the indication information is used to indicate the information in the time domain resource allocation table One entry, at least one entry in the time domain resource allocation table includes information for indicating multiple time domain resources and information for indicating one or more RVs; the processing unit is configured to The indication information and the time domain resource allocation table determine the time domain resources and RVs used to transmit one or more transmission occasions of the PUSCH or PDSCH.
  • the communication unit is further configured to receive configuration information from the network device, and the configuration information is used to configure the time domain resource allocation table.
  • the at least one entry in the time domain resource allocation table further includes multiple first offset values, and the multiple first offset values are used to determine the multiple The time slot where the time domain resource of the transmission timing is located.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the communication unit is further configured to receive the PDCCH from the network device, and the PDCCH Carry the DCI used to schedule the PUSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n
  • the processing unit is specifically configured to: according to the subcarrier interval of the PUSCH, The subcarrier interval of the PDCCH, the n, the first offset value corresponding to the k-th time domain resource included in the entry indicated by the indication information, and the first offset value included in the entry indicated by the indication information
  • the second offset value determines the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located, and k is an integer greater than 0.
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is: Among them, u PUSCH is a parameter that characterizes the sub-carrier spacing of the PUSCH, u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH, and C1 is the corresponding k-th time domain included in the entry indicated by the indication information The first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the communication unit is further configured to receive a PDCCH from the network device, and the PDCCH Carrying the DCI for scheduling the PDSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n
  • the processing unit is specifically configured to: according to the subcarrier interval of the PDSCH, The subcarrier interval of the PDCCH, the n, the first offset value corresponding to the k-th time domain resource included in the entry indicated by the indication information, and the first offset value included in the entry indicated by the indication information
  • the second offset value determines the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located, and k is an integer greater than 0.
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is:
  • u PDSCH is a parameter that characterizes the sub-carrier spacing of the PDSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH
  • C1 is the corresponding k-th time domain included in the entry indicated by the indication information
  • the first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • the DCI further includes a redundancy version indication field, when the table entry indicated by the indication information contains information of RVs corresponding to multiple time domain resources used for repeated data transmission
  • the redundancy version indication field is used to determine the maximum number of time domain resources for repeated transmission or the maximum number of repeated transmissions or the maximum number of time slots for repeated transmission.
  • the communication unit is further configured to receive configuration information of type 1 uplink unlicensed transmission from the network device, where the configuration information includes the indication information and the third offset value.
  • Configuration information; the time slot in which the k-th transmission opportunity of the one or more transmission opportunities is located is based on the third offset value and the corresponding k-th time domain resource included in the entry indicated by the indication information
  • the first offset value of is determined, and k is an integer greater than 0.
  • At least one first time domain resource of the plurality of time domain resources corresponds to an RV with an index of 0, and the first time domain resource is an RV of the plurality of time domain resources Contains the time domain resource with the largest number of symbols.
  • the value of the RV index corresponding to each first time domain resource in the at least one first time domain resource is in accordance with the RV sequence ⁇ 0, 2, 3, 1 ⁇ or ⁇ 0 , 3, 0, 3 ⁇ in the permutation cycle of the RV index.
  • an apparatus for determining transmission resources including: a communication unit and a processing unit; the communication unit is configured to send indication information to a terminal, and the indication information is used to indicate one of the time domain resource allocation tables Entry, at least one entry in the time domain resource allocation table includes information for indicating multiple time domain resources and information for indicating one or more RVs; the processing unit is configured to The information and the time domain resource allocation table determine the time domain resources and RVs used for transmitting one or more transmission occasions of the PUSCH or PDSCH.
  • the communication unit is further configured to send configuration information to the terminal, and the configuration information is used to configure the time domain resource allocation table.
  • the at least one entry in the time domain resource allocation table further includes multiple first offset values, and the multiple first offset values are used to determine the multiple The time slot where the time domain resource of the transmission timing is located.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the communication unit is also used to send a PDCCH to the terminal, and the PDCCH carries The DCI is used to schedule the PUSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n;
  • the processing unit is specifically configured to: according to the PUSCH subcarrier interval, The subcarrier interval of the PDCCH, the n, the first offset value corresponding to the kth time domain resource included in the entry indicated by the indication information, and the first offset value included in the entry indicated by the indication information
  • the second offset value determines the time slot where the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located, and k is an integer greater than 0.
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is: Among them, u PUSCH is a parameter that characterizes the sub-carrier spacing of the PUSCH, u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH, and C1 is the corresponding k-th time domain included in the entry indicated by the indication information The first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • each entry in the time domain resource allocation table further includes a second offset value
  • the communication unit is also used to send a PDCCH to the terminal, and the PDCCH carries There is a DCI used to schedule the PDSCH, the DCI carries the indication information, and the index of the time slot in which the DCI is located is n;
  • the processing unit is specifically configured to: according to the subcarrier interval of the PDSCH, The subcarrier interval of the PDCCH, the n, the first offset value corresponding to the kth time domain resource included in the entry indicated by the indication information, and the first offset value included in the entry indicated by the indication information
  • the second offset value determines the time slot where the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located, and k is an integer greater than 0.
  • the index of the time slot in which the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is located is:
  • u PDSCH is a parameter that characterizes the sub-carrier spacing of the PDSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of the PDCCH
  • C1 is the corresponding k-th time domain included in the entry indicated by the indication information
  • the first offset value of the resource, and C2 is the second offset value included in the entry indicated by the indication information.
  • the DCI further includes a redundancy version indication field, when the table entry indicated by the indication information contains information of RVs corresponding to multiple time domain resources used for repeated data transmission
  • the redundancy version indication field is used to determine the maximum number of time domain resources for repeated transmission or the maximum number of repeated transmissions or the maximum number of time slots for repeated transmission.
  • the communication unit is further configured to send configuration information of type 1 uplink unlicensed transmission to the terminal, where the configuration information includes the indication information and the configuration of the third offset value Information; the time slot in which the k-th transmission opportunity of the one or more transmission opportunities is located is based on the third offset value and the corresponding k-th time domain resource contained in the entry indicated by the indication information
  • the first offset value is determined, and k is an integer greater than zero.
  • At least one first time domain resource of the plurality of time domain resources corresponds to an RV with an index of 0, and the first time domain resource is an RV of the plurality of time domain resources Contains the time domain resource with the largest number of symbols.
  • the value of the RV index corresponding to each first time domain resource in the at least one first time domain resource is in accordance with the RV sequence ⁇ 0, 2, 3, 1 ⁇ or ⁇ 0 , 3, 0, 3 ⁇ in the permutation cycle of the RV index.
  • a device for determining transmission resources has a function of implementing any of the methods provided in the third aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the device may include a communication unit and a processing unit.
  • the processing unit is used to perform processing actions in the third aspect (for example, actions other than sending and/or receiving), and the communication unit is used to perform sending in the third aspect. And/or received actions.
  • the actions executed by the communication unit are executed under the control of the processing unit.
  • the communication unit includes a sending unit and a receiving unit.
  • the sending unit is configured to execute the sending action in the third aspect
  • the receiving unit is configured to execute the receiving action in the third aspect.
  • the device can exist in the form of a chip.
  • a device for determining transmission resources has the function of implementing any of the methods provided in the fourth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the device may include a communication unit and a processing unit.
  • the processing unit is used to perform the processing actions in the fourth aspect (for example, actions other than sending and/or receiving), and the communication unit is used to perform the sending in the fourth aspect. And/or received actions.
  • the actions executed by the communication unit are executed under the control of the processing unit.
  • the communication unit includes a sending unit and a receiving unit. In this case, the sending unit is used to perform the sending action in the fourth aspect, and the receiving unit is used to perform the receiving action in the fourth aspect.
  • the device can exist in the form of a chip.
  • a device for determining transmission resources including a processor.
  • the processor is connected to the memory, and the memory is used to store computer-executable instructions, and the processor executes the computer-executable instructions stored in the memory, thereby implementing any one of the methods provided in the first, second, third, or fourth aspects.
  • the memory and the processor can be integrated together or can be independent devices. In the latter case, the memory may be located in the device for determining the transmission resource or outside the device for determining the transmission resource.
  • the processor includes a logic circuit and also includes at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • the device for determining the transmission resource further includes a communication interface and a communication bus, and the processor, the memory and the communication interface are connected through the communication bus.
  • the communication interface is used to perform the sending and receiving actions in the corresponding method.
  • the communication interface may also be called a transceiver.
  • the communication interface includes at least one of a transmitter and a receiver. In this case, the transmitter is used to perform the sending action in the corresponding method, and the receiver is used to perform the receiving action in the corresponding method.
  • the device for determining the transmission resource exists in the form of a chip product.
  • a communication system including: the device for determining transmission resources provided by the fifth aspect and the device for determining transmission resources provided by the sixth aspect; or the device for determining transmission resources provided by the seventh aspect and the eighth aspect A device for determining transmission resources provided by the aspect.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute any of the first, second, third, or fourth aspects. method.
  • a computer program product containing instructions is provided.
  • the instructions run on a computer, the computer executes any one of the methods provided in the first, second, third, or fourth aspects.
  • FIG. 1 is a schematic diagram of the composition of a network architecture provided by an embodiment of the application
  • FIGS. 2 and 3 are schematic diagrams of time domain resources occupied by data provided by an embodiment of this application;
  • FIG. 4 is a flowchart of a method for determining transmission resources according to an embodiment of the application
  • 5 and 6 are schematic diagrams of time domain resources occupied by various data provided by embodiments of the application.
  • FIG. 7 is a flowchart of a method for determining transmission resources according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of the composition of a communication device provided by an embodiment of this application.
  • 9 and 10 are respectively schematic diagrams of the hardware structure of a communication device according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of the hardware structure of a network device provided by an embodiment of this application.
  • A/B can mean A or B.
  • the "and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone These three situations.
  • “at least one” means one or more
  • “plurality” means two or more. The words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • LTE long term evolution
  • NR new radio
  • M2M machine-to-machine
  • macro and micro communications enhanced mobile broadband (eMBB), ultra-reliable&low latency communication (URLLC), Massive machine type communication (mMTC), internet of things (IoT), industrial IoT (IIoT) and other scenarios.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable&low latency communication
  • mMTC massive machine type communication
  • IoT internet of things
  • IIoT industrial IoT
  • IIoT industrial IoT
  • FIG. 1 shows a schematic diagram of a communication system to which the technical solution provided in this application is applicable.
  • the communication system may include at least one network device (only one is shown in FIG. 1) and at least one terminal (six are shown in FIG. 1, which are terminal 1 to terminal 6).
  • One or more of the terminal 1 to the terminal 6 may communicate with the network device to transmit one or more of data (uplink data and/or downlink data) and signaling.
  • the terminal 4 to the terminal 6 may also form another communication system to which the technical solution provided in this application is applicable.
  • the sending entity and the receiving entity are both terminals.
  • the terminal 4 to the terminal 6 can form a car networking system
  • the terminal 4 can send data or signaling to the terminal 5, and the terminal 5 receives the data or signaling sent by the terminal 4.
  • the following description is based on an example in which the technical solutions provided in the embodiments of the present application are applied between a network device and a terminal. It is understandable that when the technical solution provided by the embodiments of the present application is applied between two terminals (denoted as terminal A and terminal B), the network equipment in the following embodiments is replaced by terminal A, and the terminal is replaced by terminal B is fine.
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can know that with the evolution of network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • a network device is an entity on the network side that is used to send signals, or receive signals, or send and receive signals.
  • the network equipment may be a device deployed in a radio access network (RAN for short) to provide a wireless communication function for a terminal, for example, a base station.
  • the network equipment may be various forms of macro base stations, micro base stations (also called small stations), relay stations, access points (AP for short), etc., and may also include various forms of control nodes, such as network controllers.
  • the control node may be connected to multiple base stations and configure resources for multiple terminals under the coverage of the multiple base stations.
  • the names of devices with base station functions may be different.
  • the global system for mobile communication (GSM) or code division multiple access (CDMA) network can be called base transceiver station (BTS), and broadband code It can be called a base station (NodeB) in wideband code division multiple access (WCDMA for short), and it can be called an evolved NodeB (evolved NodeB, eNB or eNodeB) in a 5G communication system or an NR communication system. It is called the next generation node base station (gNB for short), and this application does not limit the specific name of the base station.
  • the network equipment can also be the wireless controller in the cloud radio access network (CRAN) scenario, the network equipment in the future evolved public land mobile network (PLMN), and the transmission and receiving node (transmission and reception point, TRP for short), etc.
  • CRAN cloud radio access network
  • PLMN future evolved public land mobile network
  • TRP transmission and receiving node
  • a terminal is an entity on the user side that is used to receive signals, or send signals, or receive signals and send signals.
  • the terminal is used to provide users with one or more of voice services and data connectivity services.
  • the terminal can also be called user equipment (UE), terminal equipment, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication equipment, user agent or User device.
  • UE user equipment
  • the terminal can be a mobile station (MS), subscriber unit (subscriber unit), drone, IoT device, station (ST) in wireless local area networks (WLAN), cell phone (cellular phone), smart phone (smart phone), cordless phone, wireless data card, tablet computer, session initiation protocol (SIP) phone, wireless local loop (wireless local loop, WLL) station, Personal digital assistant (PDA) equipment, laptop computer, machine type communication (MTC) terminal, handheld device with wireless communication function, computing device or connected to wireless modem Other processing equipment, vehicle-mounted equipment, wearable equipment (also called wearable smart equipment).
  • the terminal may also be a terminal in a next-generation communication system, for example, a terminal in a 5G communication system or a terminal in a future evolved PLMN, a terminal in an NR communication system, and so on.
  • one time slot includes 14 orthogonal frequency division multiplexing (OFDM for short) symbols (symbols for short).
  • OFDM orthogonal frequency division multiplexing
  • one time slot includes 14 symbols.
  • 14 symbols are numbered in order from smallest to largest, with the smallest number being 0 and the largest number being 13.
  • the symbol whose index (ie, the number) is i is marked as symbol #i
  • a time slot includes symbols #0 to symbol #13.
  • the time slot with the index (ie, the number) j is denoted as time slot #j in the following in this application. j is an integer greater than or equal to 0, and i is an integer greater than or equal to 0 and less than or equal to 13.
  • the transmission scenarios applicable to this application include: uplink transmission based on dynamic scheduling, downlink transmission based on dynamic scheduling, downlink transmission based on Semi-Persistent Scheduling (SPS), and uplink transmission without authorization.
  • SPS Semi-Persistent Scheduling
  • the uplink unlicensed transmission means that the uplink transmission of the terminal does not need to be completed through the dynamic scheduling of the network equipment.
  • the terminal does not need to send a scheduling request (scheduling request, referred to as SR) to the network device and wait for the network device's Dynamic grant (dynamic grant), but can directly use the transmission resources pre-allocated by the network device and the designated transmission parameters to send uplink data to the network device.
  • SR scheduling request
  • Dynamic grant dynamic grant
  • Uplink authorization-free transmission can also be called: uplink scheduling-free transmission, uplink data transmission without dynamic grant (UL data transmission without dynamic grant), uplink transmission without dynamic scheduling, configured grant (CG) transmission, high-level configuration transmission Wait.
  • uplink scheduling-free transmission uplink data transmission without dynamic grant
  • UL data transmission without dynamic grant uplink transmission without dynamic scheduling
  • CG configured grant
  • high-level configuration transmission Wait high-level configuration transmission Wait.
  • uplink unauthorized transmission There are two types of uplink unauthorized transmission: physical uplink shared channel (PUSCH) transmission (type 1 PUSCH transmission with a configured grant, or PUSCH transmission with type 1 configured grant based on the first type of configuration authorization, or Type 1 configured grant PUSCH transmission and PUSCH transmission based on the second type of configuration authorization (type 2 PUSCH transmission with a configured grant, or PUSCH transmission with type 2 configured grant, or type 2 configured grant PUSCH transmission).
  • PUSCH physical uplink shared channel
  • the existing configuration method of PUSCH transmission based on the first type of configuration authorization is: the network device configures all transmission resources and transmission parameters for the terminal through high-level parameters (such as ConfiguredGrantConfig). For example: time domain resource cycle, open-loop power control related parameters, waveform, redundancy version (RV) sequence, number of repetitions, frequency hopping mode, resource allocation type, hybrid automatic repeat request (hybrid automatic repeat request) , HARQ for short) process number, demodulation reference signal (de-modulation reference signal, DMRS) related parameters, modulation and coding scheme (MCS) table, resource block group (RBG) size , And all transmission resources and transmission parameters including time domain resources, frequency domain resources, MCS, etc.
  • the terminal can immediately use the configured transmission parameters to perform PUSCH transmission on the configured time-frequency resources.
  • the existing configuration method of PUSCH transmission based on the second type of configuration authorization is divided into the following two steps: First, the network device configures part of the transmission resources and transmission parameters to the terminal through high-level parameters (such as ConfiguredGrantConfig). For example: the period of time domain resources, open-loop power control related parameters, waveform, RV sequence, number of repetitions, frequency hopping mode, resource allocation type, HARQ process number, DMRS related parameters, MCS table, RBG size. After that, the network device sends downlink control information (DCI) (for example, configuration-specific DCI) to the terminal, so that the terminal activates PUSCH transmission authorized based on the second type of configuration, and configures both time domain resources and frequency domain at the same time. Transmission resources and transmission parameters including resources, DMRS related parameters, MCS, etc. It should be noted that the PUSCH transmission authorized by the second type of configuration can be used after being activated.
  • DCI downlink control information
  • the PUSCH transmission authorized based on the first type of configuration is referred to as type 1 uplink unlicensed transmission for short
  • the PUSCH transmission based on the second type of configuration authorized is referred to as type 2 uplink unlicensed transmission for short.
  • the transmission timing includes time domain resources for transmitting data once.
  • a transmission opportunity includes one or more symbols.
  • multiple copies of the same data are repeatedly sent on multiple transmission opportunities.
  • one data transmission at one transmission opportunity can be called a repeated transmission.
  • the multiple copies of the same data refer to multiple copies of the same or different RVs obtained after the same information bit is subjected to channel coding.
  • Time slot aggregation transmission and repeated transmission refer to the transmission of multiple copies of the same data, but they are defined because of different transmission scenarios. Different names. Among them, the transmission method of transmitting multiple copies of the same data based on dynamic scheduling is called time slot aggregation transmission. The transmission method based on SPS or uplink unauthorized transmission of multiple copies of the same data is called repeated transmission. SPS-based repeated transmission may also be referred to as bundling transmission.
  • the transmission timing used to transmit a PUSCH or physical downlink shared channel cannot include a slot boundary and an uplink/downlink symbol switching point (DL/UL switching point). Therefore, in the time slot aggregate transmission or repeated transmission, it supports different times of repeated transmission and uses transmission opportunities containing different numbers of symbols to make full use of the available symbols in the time slot, thereby reducing data transmission delay and improving transmission reliability the goal of.
  • the time slot boundary refers to the boundary between two time slots.
  • the uplink and downlink symbol switching point refers to the boundary between the uplink symbol and the downlink symbol.
  • Available symbols refer to symbols that can be used for PUSCH or PDSCH transmission. Whether a symbol is available depends on the application scenario. For example, for downlink data transmission, uplink symbols are unusable symbols. For uplink data transmission, downlink symbols are unusable symbols.
  • TDD time-division duplexing
  • the network device configures the first symbol (ie symbol #0) and the eighth symbol ( That is, symbol #7) is a downlink symbol (represented by D), the second symbol (ie, symbol #1) and the ninth symbol (ie, symbol #8) are configured as flexible symbols (represented by F), and other symbols are configured for uplink Symbol (indicated by U).
  • the uplink data is ready on the 12th symbol of slot #1 (ie symbol #11), in order to reduce the waiting time delay, it should be allowed to start transmitting the data from the 13th symbol of slot #1 (ie symbol #12). Upstream data.
  • the transmission of the uplink data will not start until the third symbol (ie symbol #2) of time slot #2, and a delay of 4 symbols will be introduced.
  • this delay Is unacceptable.
  • the uplink data can start from the 13th symbol of slot #1 (ie symbol #12). ) Starts and ends at the 12th symbol (ie symbol #11) of time slot #2, which is repeated 3 times in total.
  • the first repetition is located on the 13th symbol (ie symbol #12) and the 14th symbol (ie symbol #13) of time slot #1
  • the second repetition is located on the third symbol (ie symbol #13) of time slot #2. That is, the symbol #2) to the seventh symbol (that is, symbol #6)
  • the third repetition is on the 10th symbol (that is, symbol #9) to the 12th symbol (that is, symbol #11) of slot #2 .
  • the time domain resource allocation table is used to allocate time domain resources.
  • the network equipment configures a time domain resource allocation table for the terminal through high-level signaling.
  • the table contains at most 16 entries (that is, 16 entries).
  • After configuring the time domain resource allocation table refer to Table 1.
  • DCI for example, DCI
  • the Time domain resource assignment field indicates which row of the time domain resource allocation table is allocated to the terminal.
  • RRC radio resource control
  • Each row in the time-domain resource allocation table used for uplink transmission contains 3 parameters: K 2 , mapping type (mappingType), start symbol and length (startSymbolAndLength).
  • K 2 is the time domain offset of PUSCH transmission.
  • the time slot for PUSCH transmission may be time slot #(n1+K 2 ), where n1 is the time slot where the DCI of the PUSCH is scheduled.
  • the mapping type is used to indicate the mapping type of PUSCH transmission, and the mapping type can be mapping type A or mapping type B.
  • the start symbol and length are also called Start and Length Indicator Value (SLIV), which is used to determine the start symbol S of the allocated time domain resource in the time slot (that is, the time domain resource The first symbol in) and the length L (that is, the number of symbols contained in the time domain resource).
  • SIV Start and Length Indicator Value
  • Each row in the time domain resource allocation table used for downlink transmission contains 3 parameters: K 0 , mapping type, starting symbol, and length.
  • K 0 is the time domain offset of PDSCH transmission.
  • the time slot for PDSCH transmission may be time slot #(n2+K 0 ), where n2 is the time slot in which the DCI of the PDSCH is scheduled.
  • the mapping type is used to indicate the mapping type of PDSCH transmission, and the mapping type can be mapping type A or mapping type B.
  • the start symbol and length are also called SLIV, which are used to determine the start symbol S (that is, the first symbol in the time domain resource) and length L (that is, the time domain resource) of the allocated time domain resource in the time slot. The number of symbols included).
  • the terminal uses the default table.
  • the default uplink time domain resource allocation table may be the tables 6.1.2.1.1-2, 6.1.2.1.1-3, and 6.1.2.1.1-4 in 3GPP TS38.214.
  • the default downlink time domain resource allocation table can be the tables 5.1.2.1.1-2, 5.1.2.1.1-3, 5.1.2.1.1-4, 5.1.2.1.1-5 in 3GPP TS38.214.
  • Table 2 the specific content contained in Table 6.1.2.1.1-2 in the default uplink time domain resource allocation table can be found in Table 2. Among them, the value of j in Table 2 is related to the uplink sub-carrier spacing. For details, see Table 3.
  • u PUSCH is a parameter used to characterize the uplink subcarrier spacing.
  • 0, 1, and 2 in the left column of Table 3 each represent a kind of uplink subcarrier spacing.
  • the network equipment indicates to the terminal the 16 combinations through RRC signaling (for example, the timeDomainAllocation parameter in RRC signaling)
  • RRC signaling for example, the timeDomainAllocation parameter in RRC signaling
  • a combination of type 1 uplink unlicensed transmission has a special RRC parameter (for example, timeDomainOffset) indicating the time slot offset.
  • timeDomainOffset for example, timeDomainOffset
  • the terminal determines the starting time slot of the unlicensed transmission resource according to timeDomainOffset, for example, when timeDomainOffset When the indicated value is 100, the terminal determines that the unlicensed transmission resource starts at time slot #100. Therefore, for type1 uplink unlicensed transmission, the terminal does not use K 2 in the combination.
  • IR incremental redundancy
  • the RV used for each PDSCH transmission or PUSCH transmission passes through the transmission timing index p (0 ⁇ p ⁇ K) corresponding to this transmission.
  • K is the time slot aggregation factor, that is, the repetitive transmission.
  • the number of time slots) and the rv id indicated by the RV indicator field in the DCI used to schedule the PDSCH or PUSCH are jointly determined, and the rv id refers to the index of the RV.
  • the RV corresponding to the transmission occasion with index p used to transmit PDSCH is determined by Table 4
  • the RV corresponding to the transmission occasion with index p used to transmit PUSCH is determined by Table 5.
  • "Mod" in Table 4 and Table 5 means "take remainder".
  • the transmission timing with index p may also be referred to as the p-th transmission timing.
  • the RV used for a PUSCH repeated transmission is the index p (0 ⁇ p ⁇ K, K is the number of repeated transmissions) and the high-level pass parameters.
  • the RV sequence of the repK-RV configuration (for example, it can be ⁇ 0,0,0,0 ⁇ or ⁇ 0,3,0,3 ⁇ or ⁇ 0,2,3,1 ⁇ ) is jointly determined.
  • the RV used for PUSCH transmission on the transmission occasion with index p is the (mod(p-1,4)+1)th value in the configured RV sequence.
  • the RV sequence configured by the upper layer of the network device through the parameter repK-RV is ⁇ 0,2,3,1 ⁇ , based on the example shown in FIG.
  • RV0 refers to RV with index
  • RV2 refers to RV with index 2
  • RV3 refers to RV with index 3
  • RV1 refers to RV with index 1.
  • the embodiment of this application provides a method for determining transmission resources.
  • time slot aggregation transmission and repeated transmission are collectively referred to as repeated transmission in the embodiment of this application.
  • the method for determining transmission resources provided by the embodiment of the present application includes:
  • the terminal determines the time domain resource allocation table used.
  • the multiple time-domain resource allocation tables may include: a default time-domain resource allocation table, and/or a time-domain resource allocation table configured by a network device. At least one of the multiple time domain resource allocation tables satisfies the following conditions: at least one entry in the time domain resource allocation table includes information for indicating multiple time domain resources and for indicating one or more RVs Information.
  • the time-domain resource allocation table involved in the following embodiments of the application is a time-domain resource allocation table that meets this condition.
  • the method further includes: the network device sends configuration information to the terminal.
  • the terminal receives configuration information from the network device.
  • the configuration information is used to configure the time domain resource allocation table.
  • at least one entry in the time domain resource allocation table includes information used to indicate multiple time domain resources and information used to indicate one or more RVs.
  • the configuration information may be carried in RRC signaling or medium access control (medium access control, MAC for short) control element (MAC control element, MAC CE for short) signaling or DCI.
  • medium access control medium access control
  • MAC control element MAC control element
  • the time domain resource allocation table determined to be used by the terminal may be the default or configured by the network device for the terminal.
  • Step 400 may be implemented in one or more of the following manners 1 to 4 in specific implementation.
  • Manner 1 The terminal determines according to the indication information (denoted as the first indication information) issued by the network equipment through RRC signaling, MAC CE signaling, or DCI.
  • the first indication information may directly indicate the time domain resource allocation table used by the terminal.
  • the network device may use time domain resource allocation parameters (for example, the Time domain resource assignment field in DCI or the time Domain Allocation IE parameter in RRC) to carry the first indication information.
  • time domain resource allocation table may also indicate the use of a specific time domain resource allocation table when the time domain resource allocation parameter takes a specific value or values.
  • Method 2 The terminal determines the time domain resource allocation table to be used according to the type of radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • the RNTI is used to scramble the cycle of the physical downlink control channel (PDCCH) Redundancy check (cyclic redundancy check, CRC for short).
  • PDCCH physical downlink control channel
  • CRC cyclic redundancy check
  • the terminal may determine the type of RNTI that scrambles the CRC of the PDCCH through blind detection, and then determine the time domain resource allocation table corresponding to the RNTI that scrambles the CRC of the PDCCH as the used time domain resource allocation table.
  • Manner 3 The terminal determines the used time domain resource allocation table according to the DCI format (format), and the DCI is used to schedule PUSCH or PDSCH transmission.
  • the DCI format includes: DCI format 0-0, DCI format 0-1, DCI format 1-1, etc.
  • different DCI formats can correspond to different time domain resource allocation tables.
  • the terminal may determine the DCI format through blind detection, and then determine the time domain resource allocation table corresponding to the determined DCI format as the used time domain resource allocation table.
  • Manner 4 Determine the used time-domain resource allocation table according to the search space type of the PDCCH, and the PDCCH schedules PUSCH or PDSCH transmission.
  • the search space types of PDCCH include: public search space, terminal-specific search space, etc.
  • different PDCCH search spaces may correspond to different time domain resource allocation tables.
  • the terminal may determine the search space type of the PDCCH through blind detection in different search spaces, and then determine the time domain resource allocation table corresponding to the determined PDCCH search space type as the used time domain resource allocation table.
  • Step 400 is an optional step.
  • the network device sends instruction information (denoted as second instruction information) to the terminal, and correspondingly, the terminal receives the second instruction information from the network device.
  • instruction information denoted as second instruction information
  • the second indication information is used to indicate an entry in the time domain resource allocation table.
  • the second indication information may also be referred to as time domain resource allocation information.
  • the second indication information may be carried in RRC signaling or MAC CE signaling or DCI.
  • the network device determines, based on the second indication information and the time domain resource allocation table, time domain resources and RVs for transmitting one or more transmission occasions of the PUSCH or PDSCH.
  • the network device may determine one or more transmissions according to the information used to indicate the time domain resources and the information used to indicate the RV in the time domain resource allocation table, the entry indicated by the second indication information Time domain resources and RV of timing.
  • time domain resources and their corresponding RVs determined using the time domain resource allocation table shown in Table 6 below are described.
  • the terminal device can use the second indication information and Table 6 , Three time domain resources can be determined, namely: symbol #2 to symbol #11 in slot #(j+1), symbol #0 to symbol #13 in slot #((j+2)+1) , Symbol #0 to symbol #13 of slot ## ((j+3)+1).
  • the RVs associated (or corresponding) to the three time domain resources (3 transmission opportunities) are: RV1, RV0, and RV2.
  • the terminal determines, according to the second indication information and the time domain resource allocation table, time domain resources and RVs for transmitting one or more transmission occasions of the PUSCH or PDSCH.
  • the method for the terminal to determine the time domain resources and RV of one or more transmission occasions is similar to that of the network device, and will not be repeated.
  • Step 402 and step 403 are executed in no particular order.
  • the method further includes: the network device uses the corresponding RV to send downlink data at one or more transmission occasions, and the terminal uses the corresponding RV to receive the downlink data at one or more transmission occasions; or , The terminal uses the corresponding RV to send uplink data at one or more transmission occasions, and the network device uses the corresponding RV to receive the uplink data at one or more transmission occasions.
  • the entries in the time domain resource allocation table are only used to determine the time domain resources of the transmission timing, and not used to determine the RV used for the transmission timing.
  • the RV corresponding to each transmission timing needs to be additionally indicated by the DCI.
  • the entries in the time domain resource allocation table may include information for indicating RV.
  • the network device does not need to indicate the RV corresponding to the transmission timing through the DCI.
  • the original existing in the DCI The RV indication field can be used for other indication functions, thereby reducing the DCI signaling overhead.
  • multiple time domain resources indicated by one entry in the time domain resource allocation table may be used to repeatedly transmit data.
  • the existing method of determining the RV corresponding to the time domain resource cannot guarantee reliable transmission of data packets.
  • the time domain resources included in the transmission timing of RV0 are the least (only 2 symbols), far less than the time-frequency resources included in the transmission timing of other RVs (for example, the transmission timing of RV2 has 5 symbols).
  • the data using RV0 contains the most information bits (information bits refer to the useful bits that are actually sent), but uses the least time domain resources, resulting in fewer check bits in the data using RV0. Therefore, the decoding performance of the network device will deteriorate, and the transmission reliability of the data packet cannot be guaranteed, especially the reliability requirement of the URLLC scenario cannot be met.
  • At least one first time domain resource among the multiple time domain resources corresponds to an RV with an index of 0, where:
  • the first time domain resource is a time domain resource containing the largest number of symbols among the plurality of time domain resources.
  • the value of the RV index corresponding to each first time domain resource in the at least one first time domain resource is determined according to the RV sequence ⁇ 0, 2, 3, 1 ⁇ or ⁇ 0, 3, 0, 3 ⁇ In the permutation cycle of the RV index.
  • at least two of the multiple time-domain resources with the largest number of symbols correspond to different RVs. In this case, compared with the time domain resources with the largest number of symbols all using the same RV, the decoding capability of the receiving end can be improved.
  • the time slot in which the multiple time domain resources are located can be implemented in the following manner (1) or manner (2).
  • K 2 , K 0 , and timeDomainOffset that is, for different time domain resources, different K 2 or K 0 or timeDomainOffset are configured.
  • K 2 or K 0 or timeDomainOffset are configured.
  • Table 6 different K 2 is configured to determine the time slots where different time domain resources are located.
  • the method for determining time domain resources according to method (1) is as follows:
  • One entry in the time domain resource allocation table configured by the network device or the default time domain resource allocation table includes the parameter K2.
  • the entry may also include a combination of values of S and L (for example, the combination of S and L in the form entry shown in Table 7), and the combination of values may be used to determine (or indicate) A time domain resource.
  • the entry may also include multiple combinations of values of S and L (for example, multiple combinations of S and L in the form entry shown in Table 7), and each combination of values can be used To determine (or indicate) a time domain resource.
  • the terminal determines the entry in the time domain resource allocation table according to the timeDomainAllocation parameter in the RRC signaling used to configure Type1 unauthorised transmission; according to the K2 value associated with the determined entry and the RRC signaling
  • the time domain resource offset (timeDomainOffset) parameter value determines the time domain resource (transmission timing) used for Type1 unauthorized transmission.
  • SFN System Frame Number
  • numberOfSlotsPerFrame is the number of time slots contained in each frame
  • numberOfSymbolsPerSlot is the number of symbols contained in each time slot
  • slot number in the frame is the time slot in the frame
  • Symbol number in the slot is the index of the symbol in the slot
  • periodicity is the time domain period, the size of which can be obtained according to the Period parameter in the RRC signaling used to configure Type1 unlicensed transmission
  • S is The start symbol index of the first transmission opportunity in the time domain period, that is, the index of the start symbol of the first time domain resource indicated by the information in the determined table entry, or the associated minimum K 2 value in the table entry The starting symbol index of the time domain resource.
  • the symbol is the start symbol of the first transmission opportunity in a certain time domain period.
  • the time domain position of the symbol may be characterized by the index of the symbol in the slot, the index of the slot in the frame, and the system frame number of the frame.
  • the terminal determines the time slot index of other transmission opportunities in the time domain period according to the following method: y+(K 2 -K 2_min ).
  • K 2 for the associated transmission opportunity K 2 K can be determined in accordance with the entry associated with the two transmission opportunity is obtained, K 2_min for the first time domain resources (transmission opportunity) period of time domain K 2 K associated, i.e. the first time domain resources associated with the determined entry 2, K the determined minimum or entry 2 associated value.
  • At least one entry in the time domain resource allocation table further includes a plurality of first offset values (denoted as m).
  • the multiple first offset values are used to determine the time slot where the time domain resources of multiple transmission opportunities are located. For example, it is used to determine the time slot where the start symbol of the time domain resource is located, or it is used to determine the time slot where the end symbol of the time domain resource is located, or it is used to determine the time slot where all symbols of the time domain resource are located.
  • the first offset value may also be referred to as slot mapping (mappingToSlot) information.
  • Table 7 shows a possible entry in the time domain resource allocation table for uplink transmission.
  • Table 8 shows a possible entry in the time domain resource allocation table for downlink transmission.
  • K 2 is the second offset value
  • m is the first offset value.
  • K 0 is the second offset value
  • m is the first offset value.
  • Tables 6 to 8 may specifically be the default tables in the standard protocol, and may also be tables configured for the terminal by the network device through signaling (for example, RRC signaling).
  • signaling for example, RRC signaling
  • the following gives an example in which a network device configures a PUSCH time domain resource allocation table (for example, Table 7) for the terminal through high-level signaling (for example, RRC signaling):
  • the PUSCH-TimeDomainResourceAllocation information element is an information element used in the RRC signaling to configure the PUSCH time domain resource allocation table at a higher level.
  • the information unit may include the following information:
  • PUSCH-TimeDomainResourceAllocationList:: SEQUENCE(SIZE(1..maxNrofUL-Allocations))OF PUSCH-TimeDomainResourceAllocation"
  • PUSCH-TimeDomainResourceAllocationList refers to an uplink time domain resource allocation table configured by a higher layer.
  • maxNrofUL-Allocations is the maximum number of entries included in the uplink time domain resource allocation table.
  • PUSCH-TimeDomainResourceAllocation refers to an entry in the uplink time domain resource allocation table.
  • Information 2 refers to a k2 included in an entry in the uplink time domain resource allocation table, and the value of k2 is 0 to 32. k2 is the information of the second offset value.
  • TimeDomainResourceAllocationPerRepetitionList:: SEQUENCE(SIZE(1..maxNrofRepetition))OF TimeDomainResourceAllocationPerRepetition"
  • Information 3 refers to the information of multiple time domain resources used for repeated transmission included in an entry in the uplink time domain resource allocation table configured by the higher layer.
  • maxNrofRepetition refers to the maximum number of time domain resources configured in an entry.
  • TimeDomainResourceAllocationPerRepetition refers to a time domain resource used for repeated transmission in an entry.
  • the time domain resources include: mappingType (that is, PUSCH mapping type information), startSymbolAndLength (information about the start symbol and length of the real-time resource), rv (information of the RV corresponding to the real-time resource), mappingToSlot (that is, the first offset)
  • mappingType that is, PUSCH mapping type information
  • startSymbolAndLength information about the start symbol and length of the real-time resource
  • rv information of the RV corresponding to the real-time resource
  • mappingToSlot that is, the first offset
  • the offset value (m) information is used to determine the time slot where the time domain resource is located).
  • the method for the terminal or network device to determine the time domain resources of one or more transmission occasions includes: according to the subcarrier interval of PUSCH, the subcarrier interval of PDCCH, n, and the entries indicated by the second indication information include The first offset value corresponding to the k-th time domain resource and the second offset value contained in the table entry indicated by the second indication information determine the time domain resource of the k-th transmission opportunity among the one or more transmission opportunities In the time slot, k is an integer greater than 0.
  • the above method may further include: the network device sends the PDCCH to the terminal.
  • the terminal receives the PDCCH from the network device.
  • the PDCCH carries the DCI used to schedule the PUSCH
  • the DCI carries the second indication information
  • the index of the time slot in which the DCI is located is n. It should be noted that, for type 2 uplink unlicensed transmission, the DCI used to activate type 2 uplink unlicensed transmission can also be understood as the DCI used to schedule PUSCH.
  • the index of the time slot where the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is:
  • u PUSCH is a parameter that characterizes the sub-carrier spacing of PUSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of PDCCH
  • C1 is the first corresponding to the k-th time domain resource contained in the entry indicated by the second indication information.
  • the offset value, C2 is the second offset value included in the entry indicated by the second indication information.
  • the terminal can determine three transmission opportunities, the first transmission opportunity is located on time slot #(n+0+0), that is, on symbol #12 to symbol #13 of time slot #n, and the RV used is RV2.
  • the second transmission opportunity is located on time slot #(n+0+1), that is, on symbol #2 to symbol #6 of time slot #(n+1), and the RV used is RV0.
  • the third transmission opportunity is located on time slot #(n+0+1), that is, on symbol #9 to symbol #11 of time slot #(n+1), and the RV used is RV3.
  • Case 2 PDSCH transmission or downlink SPS transmission based on dynamic scheduling
  • the method for the terminal or the network device to determine the time domain resources of one or more transmission opportunities includes: according to the subcarrier interval of the PDSCH, the subcarrier interval of the PDCCH, n, and the table entry indicated by the second indication information contains The first offset value corresponding to the k-th time domain resource and the second offset value contained in the table entry indicated by the second indication information determine the time domain resource of the k-th transmission opportunity among the one or more transmission opportunities In the time slot, k is an integer greater than 0.
  • the above method may further include: the network device sends the PDCCH to the terminal.
  • the terminal receives the PDCCH from the network device, the PDCCH carries the DCI used to schedule the PDSCH, the DCI carries the second indication information, and the index of the time slot in which the DCI is located is n.
  • the DCI used to activate the downlink SPS transmission may also be understood as the DCI used to schedule PDSCH.
  • the index of the time slot where the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is:
  • u PDSCH is a parameter that characterizes the sub-carrier spacing of PDSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of PDCCH
  • C1 is the first corresponding to the k-th time domain resource contained in the entry indicated by the second indication information.
  • the offset value, C2 is the second offset value included in the entry indicated by the second indication information.
  • the terminal can determine three transmission opportunities, the first transmission opportunity is located on time slot #(n+0+0), that is, on symbol #12 to symbol #13 of time slot #n, and the RV used is RV2.
  • the second transmission opportunity is located on time slot #(n+0+1), that is, on symbol #2 to symbol #6 of time slot #(n+1), and the RV used is RV0.
  • the third transmission opportunity is located on time slot #(n+0+1), that is, on symbol #9 to symbol #11 of time slot #(n+1), and the RV used is RV3.
  • the time slot in which the kth transmission opportunity of the one or more transmission opportunities is located corresponds to the kth time domain resource contained in the table entry indicated by the third offset value and the second indication information.
  • An offset value is determined, and k is an integer greater than zero.
  • the third offset value is the value of timeDomainOffset.
  • the above method further includes: the network device sends configuration information of type 1 uplink unauthorized transmission to the terminal.
  • the terminal receives the type 1 uplink unlicensed transmission configuration information from the network device.
  • the configuration information includes configuration information of the second indication information and the third offset value.
  • the time slot in which the kth transmission opportunity of the one or more transmission opportunities is located is: the third offset value + the kth time domain resource corresponding to the kth time domain resource contained in the entry indicated by the second indication information
  • An offset value, k is an integer greater than 0.
  • the terminal can determine 3 transmission opportunities, the first transmission opportunity is located on time slot #(n+0), that is, on symbols #12 to symbol #13 of time slot #n, and the RV used is RV2.
  • the second transmission opportunity is located on symbol #2 to symbol #6 of slot #(n+1), and the RV used is RV0.
  • the third transmission opportunity is located on symbol #9 to symbol #11 of slot #(n+1), and the RV used is RV3.
  • DCI For PUSCH transmission based on dynamic scheduling or type 2 uplink unlicensed transmission (i.e. case 1 above), and PDSCH transmission based on dynamic scheduling or downlink transmission based on SPS (i.e. case 2 above), optionally, DCI also includes a redundancy version Indication field, the redundancy version indication field is used to determine the maximum number of time domain resources for repeated transmission or the maximum number of repeated transmissions or the maximum number of time slots for repeated transmission.
  • the DCI refers to the DCI used to dynamically schedule PUSCH transmission or PDSCH transmission, or the DCI used to activate Type 2 uplink unlicensed transmission or downlink SPS transmission.
  • the DCI used to schedule PUSCH transmission may be the DCI used to dynamically schedule PUSCH, or it may be the DCI used to activate Type 2 uplink unlicensed transmission; the DCI used to schedule PDSCH transmission may be used for dynamic scheduling
  • the DCI for PDSCH transmission can also be used to activate the DCI based on downlink SPS transmission; the dynamically scheduled PUSCH transmission and Type 2 uplink unlicensed transmission are both called PUSCH transmission, and the dynamically scheduled PDSCH transmission and SPS-based downlink transmission are both This is called PDSCH transmission.
  • the redundancy version indication field included in the DCI was originally used to indicate the RV corresponding to the time domain resource.
  • the information of the RV corresponding to the time domain resource can be obtained through the time domain resource allocation table. Therefore, the redundant version indication field can be used for other purposes.
  • the redundancy version indicator field can be used to determine the maximum number of time domain resources for repeated transmissions or the maximum number of repeated transmissions or the maximum time slot for repeated transmissions. number.
  • the DCI used to schedule PUSCH transmission or PDSCH transmission does not include a redundancy version indication field, but includes a repeated transmission count indication field, which is used to determine the maximum number or repetition of time domain resources for repeated transmission The maximum number of transmissions or the maximum number of time slots for repeated transmissions.
  • the value indicated by the redundancy version indicator field or the number of repeated transmissions indicator field in the DCI is X (an integer greater than 1).
  • the above one or more transmission opportunities are K transmission opportunities located on Y time slots, then the terminal determines that the maximum number of time domain resources for repeated transmission is X*K or the maximum number of repeated transmissions is X*K, and it is determined
  • the maximum number of time slots used for repeated transmission is X*Y.
  • the K transmission occasions on the Y time slots may be determined according to an entry in the time domain resource allocation table, and the number of K depends on the number of combinations of S and L in the entry.
  • the position of the K transmission opportunities determined by the terminal from the X1*Y+1th time slot to the (X1+1)*Yth time slot (total Y time slots) in the Y time slots And the K transmission opportunities determined by the terminal from the first time slot to the Y time slot (a total of Y time slots) in the first time slot to the Y time slot (a total of Y time slots)
  • the location is exactly the same. Among them, 1 ⁇ X1 ⁇ X-1.
  • the terminal may determine time slot #(n+2) and time slot #(n+2) according to the value of X and the transmission timing determined by the terminal in time slot #n and time slot #(n+1). n+3) transmission timing.
  • the positions of the three transmission opportunities determined by the terminal in time slot #n and time slot #(n+1) in time slot #n and time slot #(n+1) are the same as those of the terminal in time slot #(n+1). +2) and the three transmission opportunities determined in time slot #(n+3) have the same positions in time slot #(n+2) and time slot #(n+3).
  • the present application can realize the dynamic indication of the number of repeated transmissions.
  • the number of repeated transmissions can be adjusted more quickly according to channel conditions, thereby improving transmission reliability or resource utilization.
  • using the existing redundancy version indication field to determine the number of repeated transmissions may not increase the DCI signaling overhead.
  • the network device can also use RRC signaling (for example, the parameter repK or pusch-AggregationFactor or pdsch-AggregationFactor in RRC signaling) Or MAC CE signaling or DCI indicates the value of X.
  • RRC signaling for example, the parameter repK or pusch-AggregationFactor or pdsch-AggregationFactor in RRC signaling
  • MAC CE signaling or DCI indicates the value of X.
  • the DCI used for scheduling PUSCH transmission or PDSCH transmission may not include the repeated transmission count indication field, or the existing repeated transmission count indication field in the DCI may be used for other indication purposes.
  • the number of repeated transmissions is specifically the number of time domain resources indicated by one entry in the time domain resource allocation table, that is, the number of combinations of values of S and L in the entry.
  • the terminal device uses the entry with index "1" in Table 6 when determining the time domain resource, and the number of repeated transmissions is specifically the entry with index "1".
  • the number of combinations of values of S and L namely "3". It should be noted that the number of combinations of values of S and L in different entries in the time domain resource allocation table may be the same or different, which is not limited in the embodiment of the present application.
  • the terminal uses the original redundancy version indication field in the received DCI to determine the maximum number of time domain resources for repeated transmission or the maximum number of repeated transmissions or repeated transmissions.
  • the maximum number of timeslots or it is considered that the received DCI does not include the redundancy version indicator field but includes the repeated transmission count indicator field.
  • the preset condition can be one or more of the following conditions:
  • the terminal determines that at least one entry in the used time domain resource allocation table includes information for indicating multiple time domain resources and information for indicating one or more RVs.
  • the entry indicated by the second indication information includes information for indicating one or more RVs; or, the entry indicated by the second indication information includes multiple time domain resource correspondences for repeated data transmission RV information.
  • the terminal receives the indication information issued by the network device through RRC signaling, MAC CE signaling, or DCI.
  • the indication information is used to indicate that the redundancy version indication field is used to determine the maximum number of time domain resources for repeated transmission or The maximum number of repeated transmissions or the maximum number of timeslots for repeated transmissions; or, the indication information is used to indicate that the original redundancy version indication field does not exist but the above repeated transmission times indication field exists, or it is used to indicate the redundancy version The field is replaced with a field indicating the number of repeated transmissions.
  • the terminal determines that the RNTI that scrambles the CRC of the PDCCH is a specific RNTI.
  • the PDCCH carries DCI for scheduling PUSCH or PDSCH transmission.
  • the terminal determines that the DCI format used to schedule the PUSCH or PDSCH is a specific format.
  • the terminal receives a PDCCH in a search space of a specific type, where the PDCCH carries DCI for scheduling PUSCH or PDSCH transmission.
  • the embodiment of the present application also provides a method for determining transmission resources, as shown in FIG. 7, including:
  • the terminal determines the time domain resource allocation table used.
  • step 700 For the specific implementation of step 700, refer to step 400 above.
  • the difference between the time-domain resource allocation table in this embodiment and the time-domain resource allocation table in the foregoing embodiment is that at least one entry in the time-domain resource allocation table includes information indicating multiple time-domain resources and multiple The first offset value.
  • the multiple first offset values are used to determine the time slot where the time domain resources of the multiple transmission opportunities are located, but do not include the information used to indicate the RV.
  • the method further includes: (11)
  • the network device sends configuration information to the terminal.
  • the terminal receives configuration information from the network device.
  • the configuration information is used to configure the time domain resource allocation table.
  • the network device sends third instruction information to the terminal.
  • the terminal receives the third indication information from the network device.
  • the third indication information is used to indicate an entry in the time domain resource allocation table.
  • the third indication information may be carried in RRC signaling or MAC CE signaling or DCI.
  • the network device determines, based on the third indication information and the time domain resource allocation table, time domain resources used to transmit one or more transmission occasions of the PUSCH or PDSCH.
  • the terminal determines, according to the third indication information and the time domain resource allocation table, time domain resources used to transmit one or more transmission occasions of the PUSCH or PDSCH.
  • the network device can determine the timing of one or more transmission opportunities according to the information used to indicate the time domain resources in the table entry indicated by the third indication information in the time domain resource allocation table.
  • Domain resources The information used to indicate the time domain resource may include: one or more of the value of timeDomainOffset, K 2 , K 0 , S, L, and the first offset value.
  • timeDomainOffset In type1 uplink unlicensed transmission, the value of timeDomainOffset is currently sent through RRC signaling to enable the terminal to determine the time slot in which a time domain resource is located.
  • one entry in the time domain resource allocation table may include information used to indicate multiple time domain resources.
  • the terminal needs to determine the time slots where multiple time domain resources are located.
  • the network device needs to send multiple timeDomainOffset values through RRC signaling, so that the terminal can determine the time slot where multiple time domain resources used for repeated transmission are located.
  • the terminal learns the values of multiple timeDomainOffsets it still needs to learn the correspondence between the values of multiple timeDomainOffsets and multiple time domain resources, so the implementation process is more complicated.
  • multiple first offset values are configured in the entries in the time domain resource allocation table to determine the time slot where the time domain resources of multiple transmission opportunities are located, so that the terminal can quickly determine The time slot where multiple time domain resources are located reduces the implementation complexity of the terminal.
  • the time slot in which the multiple time domain resources are located can be through the method (1) or the method (2).
  • K 2 , K 0 , and timeDomainOffset that is, configuring different K 2 or K 0 or timeDomainOffset for different time domain resources.
  • K 2 is configured to determine the time slots where different time domain resources are located.
  • At least one entry in the time domain resource allocation table further includes a plurality of first offset values (denoted as m).
  • the multiple first offset values are used to determine the time slot where the time domain resources of multiple transmission opportunities are located. For example, it is used to determine the time slot where the start symbol of the time domain resource is located, or it is used to determine the time slot where the end symbol of the time domain resource is located, or it is used to determine the time slot where all symbols of the time domain resource are located.
  • the first offset value may also be referred to as slot mapping (mappingToSlot) information.
  • a network device configures a PUSCH time domain resource allocation table for the terminal through high-level signaling (for example, RRC signaling):
  • the PUSCH-TimeDomainResourceAllocation information element is an information element used in the RRC signaling to configure the PUSCH time domain resource allocation table at a higher level.
  • the information unit may include the following information:
  • PUSCH-TimeDomainResourceAllocationList:: SEQUENCE(SIZE(1..maxNrofUL-Allocations))OF PUSCH-TimeDomainResourceAllocation"
  • PUSCH-TimeDomainResourceAllocationList refers to an uplink time domain resource allocation table configured by a higher layer.
  • maxNrofUL-Allocations is the maximum number of entries included in the uplink time domain resource allocation table.
  • PUSCH-TimeDomainResourceAllocation refers to an entry in the uplink time domain resource allocation table.
  • Information 2 refers to a k2 included in an entry in the uplink time domain resource allocation table, and the value of k2 is 0 to 32. k2 is the information of the second offset value.
  • TimeDomainResourceAllocationPerRepetitionList:: SEQUENCE(SIZE(1..maxNrofRepetition))OF TimeDomainResourceAllocationPerRepetition"
  • Information 3 refers to the information of multiple time domain resources used for repeated transmission included in an entry in the uplink time domain resource allocation table configured by the higher layer.
  • maxNrofRepetition refers to the maximum number of time domain resources configured in an entry.
  • TimeDomainResourceAllocationPerRepetition refers to a time domain resource used for repeated transmission in an entry.
  • the time domain resources include: mappingType (that is, PUSCH mapping type information), startSymbolAndLength (information about the start symbol and length of the real-time domain resource), mappingToSlot (that is, information about the first offset value (m), the first offset The value is used to determine the time slot where the time domain resource is located).
  • the method for the terminal or network device to determine the time domain resources of one or more transmission opportunities includes: according to the subcarrier interval of PUSCH, the subcarrier interval of PDCCH, n, and the table entry indicated by the third indication information contains The first offset value corresponding to the k-th time domain resource and the second offset value included in the table entry indicated by the third indication information determine the time domain resource of the k-th transmission opportunity among the one or more transmission opportunities In the time slot, k is an integer greater than 0.
  • the above method may further include: the network device sends the PDCCH to the terminal.
  • the terminal receives the PDCCH from the network device.
  • the PDCCH carries the DCI used to schedule the PUSCH, the DCI carries third indication information, and the index of the time slot in which the DCI is located is n.
  • the index of the time slot where the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is:
  • u PUSCH is a parameter that characterizes the sub-carrier spacing of PUSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of PDCCH
  • C1 is the first corresponding to the k-th time domain resource contained in the entry indicated by the third indication information.
  • the offset value, C2 is the second offset value included in the entry indicated by the third indication information.
  • Case 2 PDSCH transmission or downlink SPS transmission based on dynamic scheduling
  • the method for the terminal or network device to determine the time domain resources of one or more transmission opportunities includes: according to the subcarrier interval of the PDSCH, the subcarrier interval of the PDCCH, n, and the table entry indicated by the third indication information contains The first offset value corresponding to the k-th time domain resource and the second offset value contained in the table entry indicated by the third indication information determine the time domain resource of the k-th transmission opportunity among the one or more transmission opportunities In the time slot, k is an integer greater than 0.
  • the above method may further include: the network device sends the PDCCH to the terminal.
  • the terminal receives the PDCCH from the network device, the PDCCH carries the DCI for scheduling the PDSCH, the DCI carries the third indication information, and the index of the time slot in which the DCI is located is n.
  • the index of the time slot where the time domain resource of the k-th transmission opportunity in the one or more transmission opportunities is:
  • u PDSCH is a parameter that characterizes the sub-carrier spacing of PDSCH
  • u PDCCH is a parameter that characterizes the sub-carrier spacing of PDCCH
  • C1 is the first corresponding to the k-th time domain resource contained in the entry indicated by the third indication information.
  • the offset value, C2 is the second offset value included in the entry indicated by the third indication information.
  • the time slot in which the kth transmission opportunity of the one or more transmission opportunities is located corresponds to the kth time domain resource contained in the table entry indicated by the third offset value and the third indication information.
  • An offset value is determined, and k is an integer greater than zero.
  • the third offset value is the value of timeDomainOffset.
  • the above method further includes: the network device sends configuration information of type 1 uplink unauthorized transmission to the terminal.
  • the terminal receives the type 1 uplink unlicensed transmission configuration information from the network device.
  • the configuration information includes the third indication information and the configuration information of the third offset value.
  • the time slot in which the kth transmission opportunity of the one or more transmission opportunities is located is: the third offset value + the kth time domain resource corresponding to the kth time domain resource contained in the entry indicated by the third indication information
  • An offset value, k is an integer greater than 0.
  • the DCI further includes a redundancy version indication field, which is used to determine the maximum number of time domain resources for repeated transmission or the maximum number of repeated transmissions or the maximum number of timeslots for repeated transmission.
  • a redundancy version indication field which is used to determine the maximum number of time domain resources for repeated transmission or the maximum number of repeated transmissions or the maximum number of timeslots for repeated transmission.
  • DCI does not include a redundancy version indication field, but includes a repeated transmission count indication field, which is used to determine the maximum number of time domain resources for repeated transmission or the maximum number of repeated transmissions or the maximum number of repeated transmissions. The number of time slots.
  • data can be sent or received on the determined time domain resource.
  • the network device can use its corresponding RV to send downlink data on the determined time domain resource, and the terminal receives the downlink data sent by the network device according to its corresponding RV on the determined time domain resource;
  • the terminal can use its corresponding RV to send uplink data on the determined time domain resource, and the network device receives the uplink data sent by the terminal according to its corresponding RV on the determined time domain resource.
  • the embodiment of the present application also provides a method for determining transmission resources, including:
  • the terminal receives the DCI from the network device, where the DCI is used to dynamically schedule PUSCH transmission or PDSCH transmission, or is used to activate Type2 uplink unlicensed transmission or activate SPS-based downlink transmission; determine a time domain resource allocation table according to the DCI, An entry in the time domain resource allocation table; the time domain resource used for PUSCH transmission or PDSCH transmission is determined according to the information contained in the determined table entry.
  • the DCI is used to dynamically schedule PUSCH transmission or PDSCH transmission, or is used to activate Type2 uplink unlicensed transmission or activate SPS-based downlink transmission
  • determine a time domain resource allocation table according to the DCI An entry in the time domain resource allocation table
  • the time domain resource used for PUSCH transmission or PDSCH transmission is determined according to the information contained in the determined table entry.
  • both dynamically scheduled PUSCH transmission and Type 2 uplink unlicensed transmission are called PUSCH transmission
  • PDSCH transmission and SPS-based downlink transmission are both called PDSCH transmission.
  • the multiple time-domain resource allocation tables may include: a default time-domain resource allocation table (for example, a time-domain resource allocation table specified by a standard protocol), and/or network device configuration Time domain resource allocation form.
  • a default time-domain resource allocation table for example, a time-domain resource allocation table specified by a standard protocol
  • network device configuration Time domain resource allocation form When the multiple time domain resource allocation tables are configured by a network device, the configuration method thereof may adopt the configuration method mentioned in the foregoing embodiment, which will not be repeated here.
  • each time domain resource allocation table is associated with a number of repeated transmissions, and the number of repeated transmissions associated with different time domain resource allocation tables may be the same or different.
  • each entry of the time domain resource allocation table contains information about the number of repeated transmissions, but different entries contain the same information about the number of repeated transmissions.
  • the time-domain resource allocation table does not include the information of the number of repeated transmissions, but specifies that the table is associated with a number of repeated transmissions outside the table.
  • a time domain resource allocation table is only associated with one number of repeated transmissions, for the same time domain resource allocation table, different entries are associated with the same number of repeated transmissions, and the terminal needs to use the number of repeated transmissions.
  • the time can be determined according to the number of repetitions associated with the time-domain resource allocation table used to determine the time-domain resources, for example, the number of repetitive transmissions associated with the time-domain resource allocation table is directly used.
  • the time-domain resource allocation table may not be associated with the number of repeated transmissions.
  • the number of repeated transmissions is determined by an entry in the time-domain resource allocation table, for example, implicitly based on the number of time-domain resources indicated by the entry Indicates, or, the number of repeated transmissions is included in this entry.
  • the number of time domain resources indicated by the entry is specifically the number of combinations of values of S and L. It should be noted that the number of combinations of values of S and L in different entries in the time domain resource allocation table may be the same or different, which is not limited in the embodiment of the present application. If the entry in the time domain resource allocation table includes the number of repeated transmissions, the value of the number of repeated transmissions included in different entries may be the same or different, which is not limited in this embodiment of the application.
  • At least one entry in the time domain resource allocation table includes information used to determine (or indicate) one or more time domain resources, and information about the RV associated with the one or more time domain resources. It can be understood that the entries of the time domain resource allocation table may also include other types of information, for example, PUSCH mapping type, which is not limited in this application.
  • the form of the time domain resource allocation table can be the form shown in Table 6-8, or it can be added to the form shown in Table 2 to indicate the RV information associated with each entry. .
  • the terminal receives the DCI from the network device, where the DCI includes a time domain resource allocation (time domain allocation) field, and the time domain resource allocation field can be used to determine the time domain resource for PUSCH transmission or the time domain resource for PDSCH transmission, specifically Specifically, the time domain resource allocation field contains a bit used to indicate an entry in the time domain resource allocation table.
  • the time domain resource allocation field contains a bit used to indicate an entry in the time domain resource allocation table.
  • the time domain resource allocation field contains a bit used to indicate an entry in the time domain resource allocation table.
  • the time domain resource allocation field contains a bit used to indicate an entry in the time domain resource allocation table.
  • For Type 2 unlicensed uplink transmission what the terminal receives is the DCI used to activate Type 2 unlicensed uplink transmission, and the time domain resources used for Type 2 unlicensed uplink transmission are determined according to the time domain resource allocation field in the DCI.
  • SPS-based downlink transmission what the terminal receives is the DCI used to activate the SPS-based downlink
  • the terminal determines a time domain resource allocation table for PUSCH transmission or PDSCH transmission among the above-mentioned multiple time domain resource allocation tables according to the redundancy version indication field in the DCI.
  • the DCI format used to schedule PUSCH transmission and the DCI format used to schedule PDSCH transmission in this embodiment can be the same as the existing DCI format used to schedule PUSCH transmission (for example, DCI format 0_0 and DCI format 0_1) and DCI format used to schedule PDSCH transmission.
  • the formats (for example, DCI format 1_0 and DCI format 1_1) are respectively the same, but the redundancy version indication field in these formats no longer indicates the redundancy version, but is used to indicate the time domain resource allocation table.
  • some bits in the redundancy version indication field are used to indicate the time domain resource allocation table.
  • the terminal will indicate the field according to the RV (for example, In the existing DCI format, one bit in the RV indication field occupies two bits) determines the table used. For example, when the value of this bit is 0, it means that the table used is table A; when the value of this bit When it is B, it means that the form used is Form 2.
  • the bit can be any bit in the RV indicator field, for example, it can be the first bit or the second bit.
  • all the bits in the redundancy version indication field are used to indicate the time domain resource allocation table.
  • all bits in the RV indicator field indicate the time-domain resource allocation table used, for example, when all bits in the RV indicator field
  • the values are 00, 01, 10, and 11, it means that the time domain resource allocation tables used are Form A, Form B, Form C, and Form D.
  • the terminal determines the time domain resource allocation table for PUSCH transmission or PDSCH transmission according to the redundancy version indication field in the DCI.
  • the preset condition includes any one of the following four conditions:
  • the terminal receives the indication information issued by the base station through RRC signaling or MAC CE or DCI, and the indication information is used to indicate that the interpretation mode of the DCI is the interpretation mode provided by the embodiment of the present invention.
  • the RNTI that scrambles the CRC of the PDCCH carrying the DCI is a preset RNTI.
  • Condition C The PDCCH carrying the DCI is received in a specific search space.
  • Condition D The format of the DCI is a specific format.
  • the preset condition may be other conditions, as long as the condition is met, the terminal will interpret the function or meaning of the corresponding field in the DCI according to the method provided by the implementation of the present invention.
  • the DCI does not carry the redundancy version indication field but carries the time domain resource allocation table indication field, and the time domain resource allocation table indication field indicates the time domain resource allocation table to be used.
  • the terminal determines the time domain resource allocation table to be used according to the time domain resource allocation table indication field in the DCI.
  • the terminal will consider that the received DCI contains the time domain resource allocation table indication field and does not contain redundancy Version indication domain.
  • the DCI does not include a redundancy version indication field
  • the terminal determines the time domain resource allocation table to be used according to predetermined partial bits in the time domain resource allocation field. For example, when there are two time-domain resource allocation tables (Table A and Table B), the terminal determines the table to be used according to the highest bit in the time-domain resource allocation field. For example, when the value of this bit is 0, the table A is indicated , When the value is 1, it indicates table 2. For another example, when there are four time domain resource allocation tables (Form A, Form B, Form C, and Form D), the terminal determines the table to be used according to the highest 2 bits in the time domain resource allocation field. When the values of the two bits are 00, 01, 10, and 11, they indicate Table A, Table B, Table C, and Table D respectively.
  • the terminal will consider that the received DCI does not include a redundancy version indication field, and according to the time in the DCI
  • the predetermined partial bits of the domain resource allocation domain determine the time domain resource allocation table to be used.
  • the terminal determines an entry in the time domain resource allocation table determined above according to the predetermined part of the bits in the time domain resource allocation domain. For example, when the required time is determined according to the method provided in the third embodiment, In the domain resource allocation table, the remaining bits in the time domain resource allocation domain (that is, the bits not used to indicate the time domain resource allocation table) are used to indicate an entry in the determined time domain resource allocation table.
  • the time domain resource allocation field in DCI occupies 6 bits, a value of the two upper bits is used to indicate a time domain resource allocation table among multiple time domain resource allocation tables, and the lower four bits A value of is used to indicate an entry in the time domain resource allocation table.
  • the terminal determines the number of repeated transmissions associated with it according to the time domain resource allocation table determined above. Further, the terminal may send the PUSCH according to the determined time domain resource used for PUSCH transmission and the number of repeated transmissions, or receive the PDSCH according to the determined time domain resource used for PDSCH transmission and the number of repeated transmissions. Optionally, the terminal may also determine the time domain resource used for PUSCH transmission or PDSCH transmission according to the determined number of repeated transmissions and the determined table entry. For the method of determining the time domain resource according to the repeated transmission book and the determined entry, reference may be made to the method described in other embodiments of the present application, which will not be repeated here.
  • the RV used for PUSCH or PDSCH transmission is determined by the entry in the time domain resource allocation table. Therefore, the RV indicator field in DCI is no longer needed to indicate RV, and the bits of the RV indicator field can be used In order to indicate other information, or, the RV indication field is no longer set in the DCI.
  • the RV indicator field or the time domain resource allocation table indicator field replaced by the RV indicator field indicates the time domain resource allocation table used, which is equivalent to indicating the PUSCH through the RV indicator field Or the number of repeated transmissions of the PDSCH, that is, the dynamic indication of the number of repeated transmissions is realized without increasing the overhead of DCI signaling.
  • the RV indication field is no longer set in the DCI, the saved bits can be used to indicate other information, which can achieve dynamic indication of other information and save signaling overhead.
  • the embodiment of the present application also provides a method for determining transmission resources, including:
  • the terminal receives the DCI from the network device, where the DCI is used to schedule PUSCH transmission or PDSCH transmission; the terminal determines an entry in the time domain resource allocation table according to the time domain allocation field in the DCI; The information determines the time domain resource used for the PUSCH transmission or the PDSCH transmission.
  • the time-domain resource allocation table may include: a default time-domain resource allocation table (for example, a time-domain resource allocation table specified by a standard protocol), and/or time domain resource allocation tables Domain resource allocation table.
  • a default time-domain resource allocation table for example, a time-domain resource allocation table specified by a standard protocol
  • time domain resource allocation tables Domain resource allocation table When the time domain resource allocation table is configured by a network device, the network device can directly configure the content of the time domain source allocation table, and the configuration method can adopt the configuration method mentioned in the previous embodiment, which will not be repeated here. .
  • the network device may configure multiple time domain resource allocation tables for the terminal device, but it is carried in RRC signaling or MAC CE) signaling or DCI to indicate a valid time domain resource allocation table.
  • At least one entry in the time domain resource allocation table includes information for determining (or indicating) one or more time domain resources and information for determining the RV associated with the one or more time domain resources.
  • each entry contains RV information (the RV index or RV sequence or RV number).
  • part of the entries of the time domain resource allocation table contain RV information, and the remaining entries do not contain RV information.
  • the entries of the time domain resource allocation table may also include other types of information, for example, PUSCH mapping type, which is not limited in this application.
  • the form of the time domain resource allocation table can be a table in the form shown in Table 6-8, or a column can be added to the table in the form shown in Table 2 to indicate the RV associated with each entry.
  • the information may also be that some entries in the form shown in Table 2 add information indicating RV, while other entries do not include information indicating RV.
  • the terminal uses a total of one bit in the RV indication field and N bits in the time domain resource allocation field. The N+1 bits determine the entries in the used time domain resource allocation table.
  • the terminal determines the entry in the time domain resource allocation table to be used according to all the bits in the RV indication field and the time domain resource allocation field. For example, the terminal determines the entries in the table to be used according to all the bits in the RV indication field and the N bits in the time domain resource allocation field, totaling N+2 bits, where N is the time domain resource allocation field. Number of bits, N is an integer whose value is greater than or equal to 1. A value of the N+2 bits indicates a specific entry in the table.
  • all the bits in the RV indicator field and the 4 bits of the time domain resource allocation field form 6 bits, where the 2 bits in the RV indicator field are located in the first two of the 6 bits, the most effective Bit (Most Significant Bit, MSB), when the value of 6 bits is 000000, it indicates the first entry in the table, and when the value of 6 bits is 100,000, it indicates the 33rd entry in the table.
  • MSB Most Effective Bit
  • the terminal according to all the bits in the RV indication field and the N bits in the time domain resource allocation field N+2 bits determine the entry in the time domain resource allocation table used.
  • the DCI does not include any RV indication field, and the terminal only determines one entry in the time domain resource allocation table according to the time domain resource allocation domain.
  • each network element for example, a network device and a terminal, includes at least one of a hardware structure and a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the network device and the terminal into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 8 shows a possible structural diagram of the communication device (denoted as the communication device 80) involved in the above-mentioned embodiment.
  • the communication device 80 includes a processing unit 801 and a communication unit 802. , May also include a storage unit 803.
  • the schematic structural diagram shown in FIG. 8 may be used to illustrate the structures of the network equipment and the terminal involved in the foregoing embodiment.
  • the processing unit 801 is used to control and manage the actions of the terminal.
  • the processing unit 801 is used to support the terminal to execute the terminal shown in FIG. 4 400, 401, and 403, 800, 801, and 803 in FIG. 8, and/or actions performed by the terminal in other processes described in the embodiments of the present application.
  • the processing unit 801 may communicate with other network entities through the communication unit 802, for example, communicate with the network device shown in FIG. 4.
  • the storage unit 803 is used to store the program code and data of the terminal.
  • the processing unit 801 is configured to determine a time-domain resource allocation table and an entry in the time-domain resource allocation table according to the received DCI; determine the use of information according to the information contained in the determined table entry. Time domain resources for PUSCH transmission or PDSCH transmission.
  • the communication unit is used to receive the aforementioned DCI.
  • the communication device 80 may be a terminal or a chip in the terminal.
  • the processing unit 801 is used to control and manage the actions of the network device.
  • the processing unit 801 is used to support the network device to execute the diagram. 401 and 402 in 4, 801 and 802 in FIG. 8, and/or actions performed by the network device in other processes described in the embodiments of the present application.
  • the processing unit 801 may communicate with other network entities through the communication unit 802, for example, communicate with the terminal shown in FIG. 4.
  • the storage unit 803 is used to store the program code and data of the network device.
  • the processing unit 801 is configured to generate a DCI, and the DCI includes an indication field for indicating a time domain resource allocation table and an entry in the time domain resource allocation table.
  • the communication unit is used to transmit the aforementioned DCI.
  • the communication device 80 may be a network device or a chip in the network device.
  • the processing unit 801 may be a processor or a controller, and the communication unit 802 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, and so on.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 803 may be a memory.
  • the processing unit 801 may be a processor or a controller, and the communication unit 802 may be an input/output interface, a pin, or a circuit.
  • the storage unit 803 may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in a terminal or a network device.
  • a storage unit for example, a register, a cache, etc.
  • a storage unit for example, a read-only memory, a random access memory, etc. located outside the chip in a terminal or a network device.
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 80 can be regarded as the communication unit 802 of the communication device 80, and the processor with processing function can be regarded as the processing unit 801 of the communication device 80.
  • the device for implementing the receiving function in the communication unit 802 may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device for implementing the sending function in the communication unit 802 can be regarded as a sending unit, the sending unit is used to perform the sending steps in the embodiment of the present application, and the sending unit can be a sender, a sender, a sending circuit, etc.
  • the integrated unit in FIG. 8 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory (read-only memory, referred to as ROM), random access memory (random access memory, referred to as RAM), magnetic disks or optical disks, etc.
  • the medium of the program code include: U disk, mobile hard disk, read-only memory (read-only memory, referred to as ROM), random access memory (random access memory, referred to as RAM), magnetic disks or optical disks, etc.
  • the unit in FIG. 8 may also be called a module, for example, the processing unit may be called a processing module.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device (denoted as a communication device 90).
  • the communication device 90 includes a processor 901, and optionally, a communication device connected to the processor 901 ⁇ Memory 902.
  • the processor 901 may be a general-purpose central processing unit (central processing unit, CPU for short), microprocessor, application-specific integrated circuit (ASIC for short), or one or more programs used to control the program of this application Implementation of integrated circuits.
  • the processor 901 may also include multiple CPUs, and the processor 901 may be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 902 may be ROM or other types of static storage devices that can store static information and instructions, RAM, or other types of dynamic storage devices that can store information and instructions, or may be an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM for short
  • compact disc read-only memory CD-ROM for short
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer.
  • the embodiments of this application do not impose any limitation on this.
  • the memory 902 may exist independently, or may be integrated with the processor 901. Wherein, the memory 902 may contain computer program code.
  • the processor 901 is configured to execute the computer program code stored in the memory 902, so as to implement the method provided in the embodiment of the present application.
  • the communication device 90 further includes a transceiver 903.
  • the processor 901, the memory 902, and the transceiver 903 are connected by a bus.
  • the transceiver 903 is used to communicate with other devices or communication networks.
  • the transceiver 903 may include a transmitter and a receiver.
  • the device used to implement the receiving function in the transceiver 903 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
  • the device used for implementing the transmitting function in the transceiver 903 may be regarded as a transmitter, and the transmitter is used for performing the transmitting steps in the embodiment of the present application.
  • FIG. 9 may be used to illustrate the structure of the network device or terminal involved in the foregoing embodiment.
  • the processor 901 is used to control and manage the actions of the terminal.
  • the processor 901 is used to support the terminal to execute the terminal in FIG. 4 400, 401, and 403, 800, 801, and 803 in FIG. 8, and/or actions performed by the terminal in other processes described in the embodiments of the present application.
  • the processor 901 may communicate with other network entities through the transceiver 903, for example, communicate with the network device shown in FIG. 4.
  • the memory 902 is used to store program codes and data of the terminal.
  • the processor 901 is used to control and manage the actions of the network device.
  • the processor 901 is used to support the network device to execute the diagram. 401 and 402 in 4, 801 and 802 in FIG. 8, and/or actions performed by the network device in other processes described in the embodiments of the present application.
  • the processor 901 may communicate with other network entities through the transceiver 903, for example, communication with the terminal shown in FIG. 4.
  • the memory 902 is used to store program codes and data of the network device.
  • the processor 901 includes a logic circuit and at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • FIG. 10 the schematic structural diagram shown in FIG. 10 may be used to illustrate the structure of the network device or terminal involved in the foregoing embodiment.
  • the processor 901 is used to control and manage the actions of the terminal.
  • the processor 901 is used to support the terminal to execute the operation shown in FIG. 4 400, 401, and 403, 800, 801, and 803 in FIG. 8, and/or actions performed by the terminal in other processes described in the embodiments of the present application.
  • the processor 901 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the network device shown in FIG. 4.
  • the memory 902 is used to store program codes and data of the terminal.
  • the processor 901 is used to control and manage the actions of the network device.
  • the processor 901 is used to support the network device to execute the diagram. 401 and 402 in 4, 801 and 802 in FIG. 8, and/or actions performed by the network device in other processes described in the embodiments of the present application.
  • the processor 901 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the terminal shown in FIG. 4.
  • the memory 902 is used to store program codes and data of the network device.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a terminal (denoted as terminal 110) and a network device (denoted as network device 120). For details, refer to FIG. 11 and FIG. 12 respectively.
  • FIG. 11 is a schematic diagram of the hardware structure of the terminal 110. For ease of description, FIG. 11 only shows the main components of the terminal. As shown in FIG. 11, the terminal 110 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program. For example, it is used to control the terminal to execute 400, 401 and 403 in Figure 4, Figure 8 800, 801, and 803 in, and/or actions performed by the terminal in other processes described in the embodiments of this application.
  • the memory is mainly used to store software programs and data.
  • the control circuit also called a radio frequency circuit
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the control circuit in the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. send.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 only shows a memory and a processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal and execute software. Programs, which process the data of software programs.
  • the processor in FIG. 11 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • FIG. 12 is a schematic diagram of the hardware structure of the network device 120.
  • the network device 120 may include one or more radio frequency units, such as a remote radio unit (RRU) 1201 and one or more baseband units (BBU) (also known as digital units (digital unit) , Referred to as DU)) 1202.
  • RRU remote radio unit
  • BBU baseband units
  • DU digital units
  • the RRU 1201 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1211 and a radio frequency unit 1212.
  • the RRU1201 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the RRU 1201 and the BBU 1202 may be physically set together, or may be physically separated, for example, a distributed base station.
  • the BBU 1202 is the control center of the network equipment, and can also be called the processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU 1202 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network with a single access indication (such as an LTE network), or may respectively support wireless access networks of different access standards. Access network (such as LTE network, 5G network or other networks).
  • the BBU 1202 also includes a memory 1221 and a processor 1222, and the memory 1221 is used to store necessary instructions and data.
  • the processor 1222 is used to control the network device to perform necessary actions.
  • the memory 1221 and the processor 1222 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the network device 120 shown in FIG. 12 can perform actions 401 and 402 in FIG. 4, 801 and 802 in FIG. 8, and/or actions performed by the network device in other processes described in the embodiments of the present application.
  • the operation, function, or operation and function of each module in the network device 120 are respectively set to implement the corresponding process in the foregoing method embodiment.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • FIG. 11 and FIG. 12 refer to the description about the processor in FIG. 9 and FIG. 10, and details are not repeated here.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any of the above methods.
  • An embodiment of the present application also provides a communication system, including: the above-mentioned network device and terminal.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of them are generated in accordance with the procedures or functions described in the embodiments of this application.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices. Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, referred to as DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Abstract

本申请提供了一种确定传输资源的方法及装置,该方法中,终端和网络设备可以基于指示时域资源分配表格中的一个表项的指示信息和该时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源和RV。该方法中,时域资源分配表格中的表项中可以包括用于指示RV的信息,该情况下,网络设备不需要再通过DCI指示传输时机对应的RV,从而可以降低DCI的信令开销。本申请涉及通信技术领域。

Description

确定传输资源的方法及装置
本申请要求于2019年4月30日递交,申请号为201910364667.2的中国专利申请的优先权,以及要求2019年03月30日提交中国专利局、申请号为201910254156.5、申请名称为“确定传输资源的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种确定传输资源的方法及装置。
背景技术
随着虚拟现实(virtual reality,简称VR)、增强现实(augmented reality,简称AR)以及物联网等技术的发展,未来网络中将会有越来越多的终端,网络数据的使用量也会不断攀升。因此,在第五代(5th generation,简称5G)通信系统及未来演进通信系统中,网络资源变得尤其宝贵,这就需要在满足通信需求的情况下,尽可能的降低信令的开销。
发明内容
本申请提供了一种确定传输资源的方法及装置,能够降低通信系统的信令开销。
为达到上述目的,本申请提供了以下技术方案:
第一方面,提供了一种确定传输资源的方法,包括:终端从网络设备接收指示信息,所述指示信息用于指示时域资源分配表格中的一个表项,所述时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和用于指示一个或多个RV的信息;所述终端根据所述指示信息和所述时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源和RV。
现有技术中,时域资源分配表格中的表项只用于确定传输时机的时域资源,不用于确定传输时机所采用的RV,每个传输时机对应的RV还需要通过DCI另外进行指示。第一方面提供的方法,时域资源分配表格中的表项中可以包括用于指示RV的信息,该情况下,网络设备不需要再通过DCI指示传输时机对应的RV,从而可以降低DCI的信令开销。
在一种可能的实现方式中,所述方法还包括:所述终端从所述网络设备接收配置信息,所述配置信息用于配置所述时域资源分配表格。该种可能的实现方式,可以使得终端有可能得到不同的时域资源分配表格,从而适应不同的需求,提高传输效率。
在一种可能的实现方式中,所述时域资源分配表格中的所述至少一个表项还包括多个第一偏移值,所述多个第一偏移值用于确定所述多个传输时机的时域资源所在的时隙。在type1上行免授权传输中,网络设备通过RRC信令发送timeDomainOffset的值使得终端确定一个时域资源所在的时隙。为了便于实现数据的重复传输,时域资源分配表格中的一个表项中可以包括用于指示多个时域资源的信息。该情况下,终端需要确定多个时域资源所在的时隙。此时,网络设备需要通过RRC信令发送多个timeDomainOffset的值,从而使得终端确定用于重复传输的多个时域资源所在的时隙。但是,即使终端获知多个timeDomainOffset的值,还需要获知多个timeDomainOffset的值与多个时域资源之间的对应关系,因此,实现过程较复杂。该方法,通过在时域资源分配表格中的表项中配置多个第一偏移值,用以确定多个传输时机的时域资源所在的时隙,可以使得终端快速的确定多个时域资源所在的时隙,降低终端的实现复杂度。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:所述终端从所述网络设备接收PDCCH,所述PDCCH承载有用于调度所述PUSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;相应的,所述终端根据所述指示信息和所述时域资源分配表格确定用于传输PUSCH的一个或多个传输时机的时域资源,包括:所述终端根据所述PUSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000001
其中,u PUSCH为表征所述PUSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:所述终端从所述网络设备接收PDCCH,所述PDCCH承载有用于调度所述PDSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;相应的,所述终端根据所述指示信息和所述时域资源分配表格确定用于传输PDSCH的一个或多个传输时机的时域资源,包括:所述终端根据所述PDSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000002
其中,u PDSCH为表征所述PDSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述DCI还包括冗余版本指示域,在所述指示信息指示的表项中包含用于进行数据的重复传输的多个时域资源对应的RV的信息时,所述冗余版本指示域用于确定所述重复传输的时域资源的最大数量或所述重复传输的最大次数或所述重复传输的最大的时隙数。
在一种可能的实现方式中,该方法还包括:所述终端从所述网络设备接收类型1的上行免授权传输的配置信息,所述配置信息包含所述指示信息和第三偏移值的配置信息;所述一个或多个传输时机中的第k个传输时机所在的时隙根据所述第三偏移值和所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。在type1上行免授权传输中,通过RRC信令发送timeDomainOffset的值使得终端确定一个时域资源所在的时隙。为了便于实现数据的重复传输,时域资源分配表格中的一个表项中可以包括用于指示多个时域资源的信息。该情况下,终端需要确定多个时域资源所在的时隙。此时,网络设备需要通过RRC信令发送多个timeDomainOffset的值,从而使得终端确定用于重复传输的多个时域资源所在的时隙。但是,即使终端获知多个timeDomainOffset的值,还需要获知多个timeDomainOffset的值与多个时域资源之间的对应关系,因此,实现过程较复杂。该可方法,通过在时域资源分配表格中的表项中配置多个第一偏移值,用以确定多个传输时机的时域资 源所在的时隙,可以使得终端快速的确定多个时域资源所在的时隙,降低终端的实现复杂度。
在一种可能的实现方式中,所述多个时域资源中的至少一个第一时域资源对应索引为0的RV,其中,所述第一时域资源为所述多个时域资源中包含符号数量最多的时域资源。该种可能的实现方式,通过使得多个时域资源中的符号数量最多的时域资源对应RV0,可以使得采用RV0的数据中的校验位较多,提高接收端的译码性能。
在一种可能的实现方式中,所述至少一个第一时域资源中的各个第一时域资源所对应的RV的索引的取值按照RV序列{0、2、3、1}或{0,3,0,3}中的RV索引的排列循环。该种可能的实现方式,在多个时域资源中有多个符号数量最多的时域资源的情况下,多个符号数量最多的时域资源中至少两个时域资源对应不同的RV。该情况下,与多个符号数量最多的时域资源全部采用相同的RV相比,可以提升接收端的译码能力。
第二方面,提供了一种确定传输资源的方法,包括:网络设备向终端发送指示信息,所述指示信息用于指示时域资源分配表格中的一个表项,所述时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和用于指示一个或多个RV的信息;所述网络设备基于所述指示信息和所述时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源和RV。
现有技术中,时域资源分配表格中的表项只用于确定传输时机的时域资源,不用于确定传输时机所采用的RV,每个传输时机对应的RV还需要通过DCI另外进行指示。第二方面提供的方法,时域资源分配表格中的表项中可以包括用于指示RV的信息,该情况下,网络设备不需要再通过DCI指示传输时机对应的RV,从而可以降低DCI的信令开销。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端发送配置信息,所述配置信息用于配置所述时域资源分配表格。该种可能的实现方式,使得基站可以灵活地为终端配置时域资源分配表格,从而适应不同的需求,提高传输效率。
在一种可能的实现方式中,所述时域资源分配表格中的所述至少一个表项还包括多个第一偏移值,所述多个第一偏移值用于确定所述多个传输时机的时域资源所在的时隙。在type1上行免授权传输中,通过RRC信令发送timeDomainOffset的值使得终端确定一个时域资源所在的时隙。为了便于实现数据的重复传输,时域资源分配表格中的一个表项中可以包括用于指示多个时域资源的信息。该情况下,终端需要确定多个时域资源所在的时隙。此时,网络设备需要通过RRC信令发送多个timeDomainOffset的值,从而使得终端确定用于重复传输的多个时域资源所在的时隙。但是,即使终端获知多个timeDomainOffset的值,还需要获知多个timeDomainOffset的值与多个时域资源之间的对应关系,因此,实现过程较复杂。该方法,通过在时域资源分配表格中的表项中配置多个第一偏移值,用以确定多个传输时机的时域资源所在的时隙,可以使得终端快速的确定多个时域资源所在的时隙,降低终端的实现复杂度。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:所述网络设备向所述终端发送PDCCH,所述PDCCH承载有用于调度所述PUSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;相应的,所述网络设备基于所述指示信息和所述时域资源分配表格确定用于传输PUSCH的一个或多个传输时机的时域资源,包括:所述网络设备根据所述PUSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所 在的时隙的索引为:
Figure PCTCN2020082165-appb-000003
其中,u PUSCH为表征所述PUSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:所述网络设备向所述终端发送PDCCH,所述PDCCH承载有用于调度所述PDSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;相应的,所述网络设备基于所述指示信息和所述时域资源分配表格确定用于传输PDSCH的一个或多个传输时机的时域资源,包括:所述网络设备根据所述PDSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000004
其中,u PDSCH为表征所述PDSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述DCI还包括冗余版本指示域,在所述指示信息指示的表项中包含用于进行数据的重复传输的多个时域资源对应的RV的信息时,所述冗余版本指示域用于确定所述重复传输的时域资源的最大数量或所述重复传输的最大次数或所述重复传输的最大的时隙数。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端发送类型1的上行免授权传输的配置信息,所述配置信息包含所述指示信息和第三偏移值的配置信息;所述一个或多个传输时机中的第k个传输时机所在的时隙根据所述第三偏移值和所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。在type1上行免授权传输中,通过RRC信令发送timeDomainOffset的值使得终端确定一个时域资源所在的时隙。为了便于实现数据的重复传输,时域资源分配表格中的一个表项中可以包括用于指示多个时域资源的信息。该情况下,终端需要确定多个时域资源所在的时隙。此时,网络设备需要通过RRC信令发送多个timeDomainOffset的值,从而使得终端确定用于重复传输的多个时域资源所在的时隙。但是,即使终端获知多个timeDomainOffset的值,还需要获知多个timeDomainOffset的值与多个时域资源之间的对应关系,因此,实现过程较复杂。该方法,通过在时域资源分配表格中的表项中配置多个第一偏移值,用以确定多个传输时机的时域资源所在的时隙,可以使得终端快速的确定多个时域资源所在的时隙,降低终端的实现复杂度。
在一种可能的实现方式中,所述多个时域资源中的至少一个第一时域资源对应索引为0的RV,其中,所述第一时域资源为所述多个时域资源中包含符号数量最多的时域资源。该种可能的实现方式,通过使得多个时域资源中的符号数量最多的时域资源对应RV0,可以使得采用RV0的数据中的校验位较多,提高接收端的译码性能。
在一种可能的实现方式中,所述至少一个第一时域资源中的各个第一时域资源所对应的RV的索引的取值按照RV序列{0、2、3、1}或{0,3,0,3}中的RV索引的排列循环。该种可能的实现方式,在多个时域资源中有多个符号数量最多的时域资源的情况下,多个符号数量最多的时域资源中至少两个时域资源对应不同的RV。该情况下,与多个符号数量最多的时 域资源全部采用相同的RV相比,可以提升接收端的译码能力。
第三方面,提供了一种确定传输资源的方法,包括:终端从网络设备接收指示信息,所述指示信息用于指示时域资源分配表格中的一个表项,所述时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和多个第一偏移值,所述多个第一偏移值用于确定所述多个传输时机的时域资源所在的时隙;所述终端根据所述指示信息和所述时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源。
在type1上行免授权传输中,目前通过RRC信令发送timeDomainOffset的值使得终端确定一个时域资源所在的时隙。为了便于实现数据的重复传输,时域资源分配表格中的一个表项中可以包括用于指示多个时域资源的信息。该情况下,终端需要确定多个时域资源所在的时隙。此时,网络设备需要通过RRC信令发送多个timeDomainOffset的值,从而使得终端确定用于重复传输的多个时域资源所在的时隙。但是,即使终端获知多个timeDomainOffset的值,还需要获知多个timeDomainOffset的值与多个时域资源之间的对应关系,因此,实现过程较复杂。第三方面提供的方法,在时域资源分配表格中的表项中配置多个第一偏移值,用以确定多个传输时机的时域资源所在的时隙,可以使得终端快速的确定多个时域资源所在的时隙,降低终端的实现复杂度。
在一种可能的实现方式中,所述方法还包括:所述终端从所述网络设备接收配置信息,所述配置信息用于配置所述时域资源分配表格。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:所述终端从所述网络设备接收PDCCH,所述PDCCH承载有用于调度所述PUSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;相应的,所述终端根据所述指示信息和所述时域资源分配表格确定用于传输PUSCH的一个或多个传输时机的时域资源,包括:所述终端根据所述PUSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000005
其中,u PUSCH为表征所述PUSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:所述终端从所述网络设备接收PDCCH,所述PDCCH承载有用于调度所述PDSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;相应的,所述终端根据所述指示信息和所述时域资源分配表格确定用于传输PDSCH的一个或多个传输时机的时域资源,包括:所述终端根据所述PDSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000006
其中,u PDSCH为表征所述PDSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中 包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述方法还包括:所述终端从所述网络设备接收类型1的上行免授权传输的配置信息,所述配置信息包含所述指示信息和第三偏移值的配置信息;所述一个或多个传输时机中的第k个传输时机所在的时隙根据所述第三偏移值和所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。
第四方面,提供了一种确定传输资源的方法,包括:网络设备向终端发送指示信息,所述指示信息用于指示时域资源分配表格中的一个表项,所述时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和多个第一偏移值,所述多个第一偏移值用于确定所述多个传输时机的时域资源所在的时隙;所述网络设备基于所述指示信息和所述时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源。
在type1上行免授权传输中,通过RRC信令发送timeDomainOffset的值使得终端确定一个时域资源所在的时隙。为了便于实现数据的重复传输,时域资源分配表格中的一个表项中可以包括用于指示多个时域资源的信息。该情况下,终端需要确定多个时域资源所在的时隙。此时,网络设备需要通过RRC信令发送多个timeDomainOffset的值,从而使得终端确定用于重复传输的多个时域资源所在的时隙。但是,即使终端获知多个timeDomainOffset的值,还需要获知多个timeDomainOffset的值与多个时域资源之间的对应关系,因此,实现过程较复杂。第四方面提供的方法,通过在时域资源分配表格中的表项中配置多个第一偏移值,用以确定多个传输时机的时域资源所在的时隙,可以使得终端快速的确定多个时域资源所在的时隙,降低终端的实现复杂度。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端发送配置信息,所述配置信息用于配置所述时域资源分配表格。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:所述网络设备向所述终端发送PDCCH,所述PDCCH承载有用于调度所述PUSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;相应的,所述网络设备基于所述指示信息和所述时域资源分配表格确定用于传输PUSCH的一个或多个传输时机的时域资源,包括:所述网络设备根据所述PUSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000007
其中,u PUSCH为表征所述PUSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:所述网络设备向所述终端发送PDCCH,所述PDCCH承载有用于调度所述PDSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;相应的,所述网络设备基于所述指示信息和所述时域资源分配表格确定用于传输PDSCH的一个或多个传输时机的时域资源,包括:所述网络设备根据所述PDSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏 移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000008
其中,u PDSCH为表征所述PDSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端发送类型1的上行免授权传输的配置信息,所述配置信息包含所述指示信息和第三偏移值的配置信息;所述一个或多个传输时机中的第k个传输时机所在的时隙根据所述第三偏移值和所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。在type1上行免授权传输中,通过RRC信令发送timeDomainOffset的值使得终端确定一个时域资源所在的时隙。为了便于实现数据的重复传输,时域资源分配表格中的一个表项中可以包括用于指示多个时域资源的信息。该情况下,终端需要确定多个时域资源所在的时隙。此时,网络设备需要通过RRC信令发送多个timeDomainOffset的值,从而使得终端确定用于重复传输的多个时域资源所在的时隙。但是,即使终端获知多个timeDomainOffset的值,还需要获知多个timeDomainOffset的值与多个时域资源之间的对应关系,因此,实现过程较复杂。该方法,通过在时域资源分配表格中的表项中配置多个第一偏移值,用以确定多个传输时机的时域资源所在的时隙,可以使得终端快速的确定多个时域资源所在的时隙,降低终端的实现复杂度。
第五方面,提供了一种确定传输资源的装置,包括:通信单元和处理单元;所述通信单元,用于从网络设备接收指示信息,所述指示信息用于指示时域资源分配表格中的一个表项,所述时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和用于指示一个或多个RV的信息;所述处理单元,用于根据所述指示信息和所述时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源和RV。
在一种可能的实现方式中,所述通信单元,还用于从所述网络设备接收配置信息,所述配置信息用于配置所述时域资源分配表格。
在一种可能的实现方式中,所述时域资源分配表格中的所述至少一个表项还包括多个第一偏移值,所述多个第一偏移值用于确定所述多个传输时机的时域资源所在的时隙。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值;所述通信单元,还用于从所述网络设备接收PDCCH,所述PDCCH承载有用于调度所述PUSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;所述处理单元,具体用于:根据所述PUSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000009
其中,u PUSCH为表征所述PUSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值; 所述通信单元,还用于从所述网络设备接收PDCCH,所述PDCCH承载有用于调度所述PDSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;所述处理单元,具体用于:根据所述PDSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000010
其中,u PDSCH为表征所述PDSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述DCI还包括冗余版本指示域,在所述指示信息指示的表项中包含用于进行数据的重复传输的多个时域资源对应的RV的信息时,所述冗余版本指示域用于确定所述重复传输的时域资源的最大数量或所述重复传输的最大次数或所述重复传输的最大的时隙数。
在一种可能的实现方式中,所述通信单元,还用于从所述网络设备接收类型1的上行免授权传输的配置信息,所述配置信息包含所述指示信息和第三偏移值的配置信息;所述一个或多个传输时机中的第k个传输时机所在的时隙根据所述第三偏移值和所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。
在一种可能的实现方式中,所述多个时域资源中的至少一个第一时域资源对应索引为0的RV,其中,所述第一时域资源为所述多个时域资源中包含符号数量最多的时域资源。
在一种可能的实现方式中,所述至少一个第一时域资源中的各个第一时域资源所对应的RV的索引的取值按照RV序列{0、2、3、1}或{0,3,0,3}中的RV索引的排列循环。
第六方面,提供了一种确定传输资源的装置,包括:通信单元和处理单元;所述通信单元,用于向终端发送指示信息,所述指示信息用于指示时域资源分配表格中的一个表项,所述时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和用于指示一个或多个RV的信息;所述处理单元,用于基于所述指示信息和所述时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源和RV。
在一种可能的实现方式中,所述通信单元,还用于向所述终端发送配置信息,所述配置信息用于配置所述时域资源分配表格。
在一种可能的实现方式中,所述时域资源分配表格中的所述至少一个表项还包括多个第一偏移值,所述多个第一偏移值用于确定所述多个传输时机的时域资源所在的时隙。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值;所述通信单元,还用于向所述终端发送PDCCH,所述PDCCH承载有用于调度所述PUSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;所述处理单元,具体用于:根据所述PUSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000011
其中,u PUSCH为表征所述PUSCH的子载波间隔的 参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述时域资源分配表格中的每个表项还包括一个第二偏移值;所述通信单元,还用于向所述终端发送PDCCH,所述PDCCH承载有用于调度所述PDSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;所述处理单元,具体用于:根据所述PDSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
在一种可能的实现方式中,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000012
其中,u PDSCH为表征所述PDSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
在一种可能的实现方式中,所述DCI还包括冗余版本指示域,在所述指示信息指示的表项中包含用于进行数据的重复传输的多个时域资源对应的RV的信息时,所述冗余版本指示域用于确定所述重复传输的时域资源的最大数量或所述重复传输的最大次数或所述重复传输的最大的时隙数。
在一种可能的实现方式中,所述通信单元,还用于向所述终端发送类型1的上行免授权传输的配置信息,所述配置信息包含所述指示信息和第三偏移值的配置信息;所述一个或多个传输时机中的第k个传输时机所在的时隙根据所述第三偏移值和所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。
在一种可能的实现方式中,所述多个时域资源中的至少一个第一时域资源对应索引为0的RV,其中,所述第一时域资源为所述多个时域资源中包含符号数量最多的时域资源。
在一种可能的实现方式中,所述至少一个第一时域资源中的各个第一时域资源所对应的RV的索引的取值按照RV序列{0、2、3、1}或{0,3,0,3}中的RV索引的排列循环。
第七方面,提供了一种确定传输资源的装置,该装置具有实现第三方面提供的任意一种方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。例如,该装置可以包括通信单元和处理单元,处理单元用于执行第三方面中的处理的动作(例如,发送和/或接收之外的动作),通信单元用于执行第三方面中的发送和/或接收的动作。可选的,通信单元执行的动作是在处理单元的控制下执行的。可选的,通信单元包括发送单元和接收单元,该情况下,发送单元用于执行第三方面中的发送的动作,接收单元用于执行第三方面中的接收的动作。该装置可以以芯片的产品形态存在。
第八方面,提供了一种确定传输资源的装置,该装置具有实现第四方面提供的任意一种方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。例如,该装置可以包括通信单元和处理单元,处理单元用于执行第四方面中的处理的动作(例如,发送和/或接收之外的动作),通信单元用于执行第四方面中的发送和/或接收的动作。可选的,通信单元执行的动作是在处理单元的控制下执行的。可选的,通信单元包括发送单元和接收单元,该情况下,发送单元用于执行 第四方面中的发送的动作,接收单元用于执行第四方面中的接收的动作。该装置可以以芯片的产品形态存在。
第九方面,提供了一种确定传输资源的装置,包括:处理器。处理器与存储器连接,存储器用于存储计算机执行指令,处理器执行存储器存储的计算机执行指令,从而实现第一方面、第二方面、第三方面或第四方面提供的任意一种方法。其中,存储器和处理器可以集成在一起,也可以为独立的器件。若为后者,存储器可以位于确定传输资源的装置内,也可以位于确定传输资源的装置外。
在一种可能的实现方式中,处理器包括逻辑电路,还包括输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
在一种可能的实现方式中,确定传输资源的装置还包括通信接口和通信总线,处理器、存储器和通信接口通过通信总线连接。通信接口用于执行相应方法中的收发的动作。通信接口也可以称为收发器。可选的,通信接口包括发送器和接收器中的至少一种,该情况下,发送器用于执行相应方法中的发送的动作,接收器用于执行相应方法中的接收的动作。
在一种可能的实现方式中,确定传输资源的装置以芯片的产品形态存在。
第十方面,提供了一种通信系统,包括:第五方面提供的确定传输资源的装置和第六方面提供的确定传输资源的装置;或者,第七方面提供的确定传输资源的装置和第八方面提供的确定传输资源的装置。
第十一方面,提供了一种计算机可读存储介质,包括指令,当该指令在计算机上运行时,使得计算机执行第一方面、第二方面、第三方面或第四方面提供的任意一种方法。
第十二方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面、第二方面、第三方面或第四方面提供的任意一种方法。
第五方面至第十二方面中的任一种实现方式所带来的技术效果可参见第一方面至第四方面中对应实现方式所带来的技术效果,此处不再赘述。
其中,需要说明的是,上述各个方面中的任意一个方面的各种可能的实现方式,在方案不矛盾的前提下,均可以进行组合。
附图说明
图1为本申请实施例提供的一种网络架构组成示意图;
图2和图3分别为本申请实施例提供的一种数据占用的时域资源的示意图;
图4为本申请实施例提供的一种确定传输资源的方法流程图;
图5和图6分别为本申请实施例提供的多种数据占用的时域资源的示意图;
图7为本申请实施例提供的一种确定传输资源的方法流程图;
图8为本申请实施例提供的一种通信装置的组成示意图;
图9和图10分别为本申请实施例提供的一种通信装置的硬件结构示意图;
图11为本申请实施例提供的一种终端的硬件结构示意图;
图12为本申请实施例提供的一种网络设备的硬件结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次 序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供的技术方案可以应用于各种通信系统。例如,长期演进(long term evolution,简称LTE)通信系统,采用5G通信技术的新空口(new radio,简称NR)通信系统,未来演进系统或者多种通信融合系统等等。
本申请实施例提供的技术方案可以应用于多种通信场景。例如,机器对机器(machine to machine,简称M2M)、宏微通信、增强型移动宽带(enhanced mobile broadband,简称eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,简称URLLC)、海量物联网通信(massive machine type communication,简称mMTC)、物联网(internet of things,简称IoT)、工业物联网(industry IoT,简称IIoT)等场景。
图1给出了本申请提供的技术方案所适用的一种通信系统示意图。该通信系统可以包括至少一个网络设备(图1中仅示出了1个)和至少一个终端(图1中示出了6个,分别为终端1至终端6)。终端1至终端6中的一个或多个终端可以与网络设备通信,从而传输数据(上行数据和/或下行数据)和信令中的一种或多种。此外,终端4至终端6也可以组成一个本申请提供的技术方案所适用的另一个通信系统,该情况下,发送实体和接收实体都是终端。例如,终端4至终端6可以组成一个车联网系统,则终端4可以向终端5发送数据或信令,而终端5接收终端4发送的数据或信令。
为了方便描述,下文中均是以本申请实施例提供的技术方案应用于网络设备和终端之间为例进行说明的。可以理解的是,当本申请实施例提供的技术方案应用于两个终端(记为终端A和终端B)之间时,下文中各个实施例中的网络设备替换为终端A,终端替换为终端B即可。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
网络设备为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。网络设备可以为部署在无线接入网(radio access network,简称RAN)中为终端提供无线通信功能的装置,例如可以为基站。网络设备可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,简称AP)等,也可以包括各种形式的控制节点,如网络控制器。所述控制节点可以连接多个基站,并为所述多个基站覆盖下的多个终端配置资源。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,全球移动通信系统(global system for mobile communication,简称GSM)或码分多址(code division multiple access,简称CDMA)网络中可以称为基站收发信台(base transceiver station,简称BTS),宽带码分多址(wideband code division multiple access,简称WCDMA)中可以称为基站(NodeB),LTE系统中可以称为演进型基站(evolved NodeB,简称eNB或eNodeB),5G通信系统或NR通信系统中可以称为下一代基站节点(next generation node base station,简称gNB),本申请对基站的具体名称不作限定。网络设备还可以是云无线接入网络(cloud radio access network,简称CRAN)场景下的无线控制器、未来演进的公共陆地移 动网络(public land mobile network,简称PLMN)中的网络设备、传输接收节点(transmission and reception point,简称TRP)等。
终端是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端用于向用户提供语音服务和数据连通性服务中的一种或多种。终端也可以称为用户设备(user equipment,简称UE)、终端设备、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端可以是移动站(mobile station,简称MS)、用户单元(subscriber unit)、无人机、IoT设备、无线局域网(wireless local area networks,简称WLAN)中的站点(station,简称ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,简称SIP)电话、无线本地环路(wireless local loop,简称WLL)站、个人数字处理(personal digital assistant,简称PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,简称MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端还可以为下一代通信系统中的终端,例如,5G通信系统中的终端或者未来演进的PLMN中的终端,NR通信系统中的终端等。
为了便于理解本申请,此处对本申请实施例涉及到的部分概念作简单介绍。
1、时隙
在NR中,对于常规(normal)循环前缀(cyclic prefix,简称CP),1个时隙包含14个正交频分复用(orthogonal frequency division multiplexing,简称OFDM)符号(以下简称符号)。对于扩展(extended)CP,1个时隙包含12个符号。
为了便于描述,在本申请实施例中,若未作出特别说明,1个时隙包含14个符号。在时隙中,14个符号按照从小到大的顺序依次编号,最小的编号为0,最大的编号为13。本申请实施例中将索引(即编号)为i的符号记为符号#i,则一个时隙包含符号#0至符号#13。另外,本申请下文中将索引(即编号)为j的时隙记为时隙#j。j为大于等于0的整数,i为大于等于0小于等于13的整数。
2、本申请适用的传输场景
本申请适用的传输场景包括:基于动态调度的上行传输、基于动态调度的下行传输、基于半静态调度(Semi-Persistent Scheduling,简称SPS)的下行传输、上行免授权传输。
上行免授权传输是指:终端的上行传输不需要通过网络设备的动态调度完成。具体地,当上行数据到达(本申请实施例中的数据到达是指数据已经处理好,可以进行发送)时,终端不需要向网络设备发送调度请求(scheduling request,简称SR)并等待网络设备的动态授权(dynamic grant),而是可以直接使用网络设备预先分配的传输资源和指定的传输参数向网络设备发送上行数据。
上行免授权传输也可以称为:上行免调度传输、上行免动态授权传输(UL data transmission without dynamic grant)、上行免动态调度传输、配置的授权(configured grant,简称CG)传输、高层配置的传输等。
上行免授权传输分为两类:基于第一类配置授权的物理上行共享信道(physical uplink shared channel,简称PUSCH)传输(type 1 PUSCH transmission with a configured grant,或,PUSCH transmission with type 1configured grant,或type 1configured grant PUSCH transmission)和基于第二类配置授权的PUSCH传输(type 2 PUSCH transmission with a configured grant,或,PUSCH transmission with type 2 configured grant,或,type 2 configured grant PUSCH  transmission)。
现有的基于第一类配置授权的PUSCH传输的配置方式为:网络设备通过高层参数(例如ConfiguredGrantConfig)为终端配置全部的传输资源和传输参数。例如:时域资源的周期、开环功控相关参数、波形、冗余版本(redundancy version,简称RV)序列、重复次数、跳频模式、资源分配类型、混合自动重传请求(hybrid automatic repeat request,简称HARQ)进程数、解调参考信号(de-modulation reference signal,简称DMRS)相关参数、调制编码方案(modulation and coding scheme,简称MCS)表格、资源块组(resource block group,简称RBG)大小、以及时域资源、频域资源、MCS等在内的全部传输资源和传输参数。终端接收到该高层参数后,可立即使用所配置传输参数在配置的时频资源上进行PUSCH传输。
现有的基于第二类配置授权的PUSCH传输的配置方式分为以下两步:首先,网络设备通过高层参数(例如ConfiguredGrantConfig)向终端配置部分传输资源和传输参数。例如:时域资源的周期、开环功控相关参数、波形、RV序列、重复次数、跳频模式、资源分配类型、HARQ进程数、DMRS相关参数、MCS表格、RBG大小。之后,网络设备向终端发送下行控制信息(downlink control information,简称DCI)(例如configuration-specific DCI),以使得终端激活基于第二类配置授权的PUSCH传输,并同时配置包括时域资源、频域资源、DMRS相关参数、MCS等在内的传输资源和传输参数。需要说明的是,该第二类配置授权的PUSCH传输在被激活后才能使用。
下文中将基于第一类配置授权的PUSCH传输简称为type1上行免授权传输,基于第二类配置授权的PUSCH传输简称为type2上行免授权传输。
3、传输时机(transmission occasion,简称TO)
传输时机包括传输一次数据的时域资源。一个传输时机包括一个或多个符号。当有多个传输时机、且多个传输时机用于重复传输时,多个传输时机上重复发送多份相同的数据。此时,一个传输时机上的一次数据传输可以称为一次重复传输。该多份相同数据是指同一份信息比特经过信道编码之后所得到的多份相同或不同的RV。
4、重复传输(Repetition)和时隙聚合(Slot aggregation)传输
为提高数据的传输可靠性,NR通信系统中支持数据的时隙聚合传输和重复传输,时隙聚合传输和重复传输都是指传输多份相同的数据,只是因为应用的传输场景不同,被定义了不同的名称。其中,基于动态调度的传输多份相同的数据的传输方式被称为时隙聚合传输。基于SPS或上行免授权的传输多份相同的数据的传输方式被称为重复传输。基于SPS的重复传输也可以称为捆绑(bundling)传输。
由于用于传输一次PUSCH或物理下行共享信道(physical downlink shared channel,简称PDSCH)的传输时机不能包含时隙边界(slot boundary)和上下行符号切换点(DL/UL switching point)。因此,在时隙聚合传输或重复传输时,支持不同次的重复传输使用包含不同符号数量的传输时机,以便充分利用时隙中的可用符号,从而达到降低数据的传输时延、提高传输可靠性的目的。其中,时隙边界是指两个时隙的界线。上下行符号切换点是指上行符号和下行符号的界线。可用符号是指可以用于PUSCH或PDSCH传输的符号,一个符号是否可用,与应用的场景有关。例如,针对下行数据传输,上行的符号为不可用符号。针对上行数据传输,下行的符号为不可用符号。
示例性的,在时频复用(time-division duplexing,简称TDD)系统中,参见图2,假设网络设备通过DCI配置时隙中第1个符号(即符号#0)和第8个符号(即符号#7)为下行符号(用D表示),配置第2个符号(即符号#1)和第9个符号(即符号#8)为灵活符号(用F 表示),配置其他符号为上行符号(用U表示)。当上行数据在时隙#1的第12个符号(即符号#11)准备好之后,为降低等待时延,应当允许从时隙#1的第13个符号(即符号#12)开始传输该上行数据。否则,该上行数据的传输要等到时隙#2的第3个符号(即符号#2)才能开始,会引入4个符号的时延,对于时延极为敏感的URLLC业务来说,这个时延是不可接受的。为同时保证数据传输的可靠性,假设该上行数据的多次重复传输总共需要10个符号,则如图2所示,该上行数据可以从时隙#1的第13个符号(即符号#12)开始,到时隙#2的第12个符号(即符号#11)截止,共重复3次。其中,第1次重复位于时隙#1的第13个符号(即符号#12)和第14个符号(即符号#13)上,第2次重复位于时隙#2的第3个符号(即符号#2)到第7个符号(即符号#6)上,第3次重复位于时隙#2的第10个符号(即符号#9)到第12个符号(即符号#11)上。
5、现有的时域资源分配表格
时域资源分配表格用于分配时域资源。
在NR中,网络设备通过高层信令为终端配置时域资源分配表格,表格至多包含16行(entry)(即16个表项)。在配置了时域资源分配表格之后,参见表1,针对基于动态调度的上行传输、基于动态调度的下行传输、基于SPS的下行传输和type2上行免授权传输,网络设备可以采用DCI(例如,DCI中的Time domain resource assignment域)指示为终端分配时域资源分配表格中的哪一行的资源。针对type1上行免授权传输,网络设备可以采用无线资源控制(radio resource control,简称RRC)信令(例如,RRC信令中的timeDomainAllocation IE参数)指示为终端分配时域资源分配表格中的哪一行的资源。
表1
Figure PCTCN2020082165-appb-000013
用于上行传输的时域资源分配表格中的每一行包含3个参数:K 2、映射类型(mappingType)、起始符号和长度(startSymbolAndLength)。其中,K 2为PUSCH传输的时域偏置。PUSCH传输的时隙可以为时隙#(n1+K 2),其中,n1为调度PUSCH的DCI所在的时隙。映射类型用于指示PUSCH传输的映射类型,映射类型可以为映射类型A或映射类型B。起始符号和长度又称为起始符号和长度指示值(Start and Length Indicator Value,简称SLIV),用于确定所分配的时域资源在时隙中的起始符号S(即该时域资源中的第一个符号)和长度L(即该时域资源包含的符号的数量)。
用于下行传输的时域资源分配表格中的每一行包含3个参数:K 0、映射类型、起始符号和长度。其中,K 0为PDSCH传输的时域偏置。PDSCH传输的时隙可以为时隙#(n2+K 0),其中,n2为调度PDSCH的DCI所在的时隙。映射类型用于指示PDSCH传输的映射类型,映射类型可以为映射类型A或映射类型B。起始符号和长度又称为SLIV,用于确定所分配的时域资源在时隙中的起始符号S(即该时域资源中的第一个符号)和长度L(即该时域资源包含的符号的数量)。
如果网络设备没有通过高层信令为终端配置时域资源分配表格,则终端使用默认(default)的表格。例如,默认的上行时域资源分配表格可以为3GPP TS38.214中的表6.1.2.1.1-2、 6.1.2.1.1-3、6.1.2.1.1-4。默认的下行时域资源分配表格可以为3GPP TS38.214中的表5.1.2.1.1-2、5.1.2.1.1-3、5.1.2.1.1-4、5.1.2.1.1-5。
示例性的,默认的上行时域资源分配表格中的表6.1.2.1.1-2包含的具体内容可参见表2。其中,表2中的j的值与上行子载波间隔有关,具体可参见表3。
表2
Figure PCTCN2020082165-appb-000014
表3
u PUSCH j
0 1
1 1
2 2
注:u PUSCH为用于表征上行子载波间隔的参数。表3中的左边一列的0、1、2各代表一种上行子载波间隔。
在终端获知通过RRC信令配置的或默认的16种组合的基础上,对于type1上行免授权传输,网络设备通过RRC信令(例如,RRC信令中的timeDomainAllocation参数)向终端指示16种组合中的一种组合,由于type1上行免授权传输有专门的RRC参数(例如,timeDomainOffset)指示时隙偏置,这种情况下,终端根据timeDomainOffset确定免授权传输资源的起始时隙,例如,当timeDomainOffset所指示的值为100时,终端确定免授权传输资源起始于时隙#100。因此,对于type1上行免授权传输,终端不使用组合中的K 2
6、现有的确定重复传输的数据采用的RV的方法
为使接收端能够借助增量冗余(incremental redundancy,简称IR)的合并接收方法来提 升译码能力,网络设备会配置不同次的重复传输采用不同的RV。现有技术中,使用如下方法确定不同次的重复传输采用的RV:
对于基于动态调度的时隙聚合传输,每次PDSCH传输或PUSCH传输所采用的RV通过本次传输对应的传输时机的索引p(0≦p<K,K为时隙聚合因子,即重复传输的时隙个数)以及用于调度PDSCH或PUSCH的DCI中的RV指示域所指示的rv id共同确定,rv id是指RV的索引。例如,如3GPP TS38.214中规定,用于传输PDSCH的索引为p的传输时机对应的RV由表4确定,用于传输PUSCH的索引为p的传输时机对应的RV由表5确定。表4和表5中的“mod”是指“取余”。索引为p的传输时机也可以称为第p次传输时机。
表4
Figure PCTCN2020082165-appb-000015
表5
Figure PCTCN2020082165-appb-000016
对于基于SPS或上行免授权的重复传输,一次PUSCH的重复传输所采用的RV通过本次传输所对应的传输时机的索引p(0<p≦K,K为重复传输的次数)以及高层通过参数repK-RV配置的RV序列(例如,可以是{0,0,0,0}或{0,3,0,3}或{0,2,3,1})共同确定。例如,索引为p的传输时机上的PUSCH传输所采用的RV为所配置的RV序列中的第(mod(p-1,4)+1)个值。示例性的,若网络设备高层通过参数repK-RV配置的RV序列为{0,2,3,1},基于图2所示的示例,则根据现有技术中重复传输采用的RV确定方法,参见图3,图3中3次重复传输分别采用RV0、RV2、RV3。在本申请实施例中,RV0是指索引为0的RV、RV2是指索引为2的RV、RV3是指索引为3的RV、RV1是指索引为1的RV。
本申请实施例提供了一种确定传输资源的方法,为了方便描述,时隙聚合传输和重复传输在本申请实施例中统一称为重复传输。如图4所示,本申请实施例提供的确定传输资源的方法,包括:
400、终端确定使用的时域资源分配表格。
终端中可以存在多个时域资源分配表格,多个时域资源分配表格可以包括:默认的时域资源分配表格,和/或,网络设备配置的时域资源分配表格。多个时域资源分配表格至少有一个时域资源分配表格满足以下条件:时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和用于指示一个或多个RV的信息。本申请实施例下文中涉及到的时域资源分配表格为满足该条件的时域资源分配表格。在多个时域资源分配表格包括网络设备配置的时域资源分配表格的情况下,可选的,该方法还包括:网络设备向终端发送配置信息。相应 的,终端从网络设备接收配置信息。配置信息用于配置时域资源分配表格。其中,时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和用于指示一个或多个RV的信息。
其中,配置信息可以携带在RRC信令或媒体接入控制(medium access control,简称MAC)控制元素(MAC control element,简称MAC CE)信令或DCI中。
在步骤400中,终端确定使用的时域资源分配表格可以为默认的也可以为网络设备为终端配置的。
步骤400在具体实现时可以通过以下方式一至方式四中的一种或多种方式实现。
方式一、终端根据网络设备通过RRC信令或MAC CE信令或DCI下发的指示信息(记为第一指示信息)确定。
其中,第一指示信息可以直接指示终端使用的时域资源分配表格。示例性的,网络设备可以通过时域资源分配参数(例如,DCI中的Time domain resource assignment域或RRC中的timeDomainAllocation IE参数)携带第一指示信息,具体可以增加一个比特(bit)指示终端所使用的时域资源分配表格,也可以在时域资源分配参数取特定的一个或多个值时表示使用某个特定的时域资源分配表格。
方式二、终端根据无线网络临时标识(radio network temporary identifier,简称RNTI)的类型确定使用的时域资源分配表格,该RNTI用于加扰物理下行控制信道(physical downlink control channel,简称PDCCH)的循环冗余校验(cyclic redundancy check,简称CRC)。
在方式二中,不同的RNTI可以对应不同的时域资源分配表格。该情况下,终端可以通过盲检测确定加扰PDCCH的CRC的RNTI的类型,再将加扰PDCCH的CRC的RNTI对应的时域资源分配表格确定为所使用的时域资源分配表格。
方式三、终端根据DCI格式(format)确定所使用的时域资源分配表格,该DCI用于调度PUSCH或PDSCH传输。
其中,DCI格式包括:DCI format 0-0,DCI format 0-1,DCI format 1-1等。
在方式三中,不同的DCI格式可以对应不同的时域资源分配表格。该情况下,终端可以通过盲检测确定DCI格式,再将确定的DCI格式对应的时域资源分配表格确定为所使用的时域资源分配表格。
方式四、根据PDCCH的搜索空间类型确定所使用的时域资源分配表格,该PDCCH调度PUSCH或PDSCH传输。
其中,PDCCH的搜索空间类型包括:公共的搜索空间、终端专用的搜索空间等。
在方式四中,不同的PDCCH搜索空间可以对应不同的时域资源分配表格。该情况下,终端可以在不同的搜索空间中通过盲检测确定PDCCH的搜索空间类型,再将确定的PDCCH的搜索空间类型对应的时域资源分配表格确定为所使用的时域资源分配表格。
步骤400为可选步骤。
401、网络设备向终端发送指示信息(记为第二指示信息),相应的,终端从网络设备接收第二指示信息。
其中,第二指示信息用于指示时域资源分配表格中的一个表项。第二指示信息也可以称为时域资源分配信息。
其中,第二指示信息可以携带在RRC信令或MAC CE信令或DCI中。
402、网络设备基于第二指示信息和时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源和RV。
步骤402在具体实现时,网络设备可以根据时域资源分配表格中、第二指示信息所指示的表项中用于指示时域资源的信息和用于指示RV的信息,确定一个或多个传输时机的时域资源和RV。
示例性的,以type2免授权传输为例,描述使用如下文的表6所示时域资源分配表格所确定的时域资源及其对应的RV。
若用于调度PUSCH的DCI所在的时隙为时隙#1,且该DCI中携带的第二指示信息指示的表项的行索引为2,则终端设备可以根据该第二指示信息及表6,可以确定三个时域资源,分别为:时隙#(j+1)中的符号#2至符号#11、时隙#((j+2)+1)的符号#0至符号#13、时隙##((j+3)+1)的符号#0至符号#13。该三个时域资源(3个传输时机)所关联(或对应)的RV分别为:RV1、RV0、RV2。
表6
Figure PCTCN2020082165-appb-000017
403、终端根据第二指示信息和时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源和RV。
终端确定一个或多个传输时机的时域资源和RV的方法与网络设备类似,不再赘述。
步骤402和步骤403的执行顺序不分先后。
可选的,在步骤402之后,该方法还包括:网络设备在一个或多个传输时机上采用对应的RV发送下行数据,终端在一个或多个传输时机上采用对应的RV接收下行数据;或者,终端在一个或多个传输时机上采用对应的RV发送上行数据,网络设备在一个或多个传输时机上采用对应的RV接收上行数据。
现有技术中,时域资源分配表格中的表项只用于确定传输时机的时域资源,不用于确定 传输时机所采用的RV,每个传输时机对应的RV还需要通过DCI另外进行指示。本申请实施例提供的方法,时域资源分配表格中的表项中可以包括用于指示RV的信息,该情况下,网络设备不需要再通过DCI指示传输时机对应的RV,DCI中原来存在的RV指示域可以用来做其它的指示功能,从而可以降低DCI的信令开销。
在上述实施例中,时域资源分配表格中的一个表项指示的多个时域资源可以用于对数据进行重复传输。
现有的确定时域资源对应的RV的方法,无法保证数据包可靠传输。例如,参见图3,网络设备配置的RV序列为{0,2,3,1}时,在上行数据的3次重复传输中,采用RV0的传输时机所包含的时域资源是最少的(仅2个符号),远少于采用其他RV的传输时机所包含的时频资源(例如,采用RV2的传输时机有5个符号)。通常情况下,采用RV0的数据包含最多的信息位(信息位指的是实际要发送的有用比特),却使用了最少的时域资源,导致采用RV0的数据中的校验位较少。因此,网络设备的解码性能会变差,不能保证数据包的传输可靠性,尤其不能满足URLLC场景对可靠性的需求。
该情况下,可选的,针对时域资源分配表格中的一个表项指示的多个时域资源,多个时域资源中的至少一个第一时域资源对应索引为0的RV,其中,第一时域资源为多个时域资源中包含符号数量最多的时域资源。该可选的方法,通过使得多个时域资源中的符号数量最多的时域资源对应RV0,可以使得采用RV0的数据中的校验位较多,提高接收端的译码性能。
进一步可选的,至少一个第一时域资源中的各个第一时域资源所对应的RV的索引的取值按照RV序列{0、2、3、1}或{0,3,0,3}中的RV索引的排列循环。该可选的方法,在多个时域资源中有多个符号数量最多的时域资源的情况下,多个符号数量最多的时域资源中至少两个时域资源对应不同的RV。该情况下,与多个符号数量最多的时域资源全部采用相同的RV相比,可以提升接收端的译码能力。
现有技术中在确定传输时机对应的RV时,需要根据上述表4或表5确定,无法灵活的配置传输时机对应的RV,而本申请可以实现RV的灵活配置,从而可以让RV0关联到包含较多符号的传输时机上,提高接收端的译码性能。
针对时域资源分配表格中的一个表项指示的多个时域资源,该多个时域资源所在的时隙可以通过以下方式(1)或方式(2)实现。
方式(1)、
通过配置K 2、K 0、timeDomainOffset的值实现,即针对不同的时域资源,配置不同的K 2或K 0或timeDomainOffset。示例性的,以type2免授权传输为例。表6中即通过配置不同的K 2来确定不同的时域资源所在的时隙。
在Type1免授权传输为例,根据方式(1)确定时域资源的方法如下:
网络设备配置的时域资源分配表格或默认的时域资源分配表格的一个表项包含参数K2。在一实施方式中,该表项还可以包含S和L的一个取值组合(例如,表7所示形式表项中的S和L组合),该取值组合可以用于确定(或指示)一个时域资源。在另一实施方式中,该表项还可以包含S和L的多个取值组合(例如,表7所示形式表项中的S和L的多个组合),每个取值组合可以用于确定(或指示)一个时域资源。
终端根据用于配置Type1免授权传输的RRC信令中时域资源分配(timeDomainAllocation)参数确定时域资源分配表格中的表项;根据确定的表项所关联的K2的值和该RRC信令中时域资源偏置(timeDomainOffset)参数的值,确定用于Type1免授权传输的时域资源(传输时机)。在一种具体的实现方式中,终端根据如下公式一或者公式二确定传输时机的时域资源 起始符号,其中,所确定的传输时机为第N(N>=0)个时域周期内的首个传输时机:
公式一:
[(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot)+(slot number in the frame×numberOfSymbolsPerSlot)+symbol number in the slot]=((timeDomainOffset+K 2)×numberOfSymbolsPerSlot+S+N×periodicity)modulo(1024×numberOfSlotsPerFrame×numberOfSymbolsPerSlot);
公式二:
[(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot)+(slot number in the frame×numberOfSymbolsPerSlot)+symbol number in the slot]=(timeDomainOffset×numberOfSymbolsPerSlot+S+N×periodicity)modulo(1024×numberOfSlotsPerFrame×numberOfSymbolsPerSlot)。
在上述公式中,SFN(System Frame Number)为帧的系统帧号;numberOfSlotsPerFrame为每帧包含的时隙数;numberOfSymbolsPerSlot为每时隙包含的符号数;slot number in the frame为时隙在所述帧中的索引;symbol number in the slot为符号在所述时隙中的索引;periodicity为时域周期,其大小可以根据上述用于配置Type1免授权传输的RRC信令中的Periodicity参数获得;S为该时域周期内首个传输时机的起始符号索引,也即所确定的表项中的信息所指示的第一个时域资源的起始符号的索引,或表项中关联最小K 2值的时域资源的起始符号索引。在本申请实施例中,一个符号在时域资源中的位置使得上述任意一个公式成立,则该符号就为某个时域周期中的首个传输时机的起始符号。该符号的时域位置可以由该符号在时隙中的索引,该时隙在帧中的索引,以及该帧的系统帧号共同表征。
可选的,终端确定时域周期内首个传输时机所在的时隙索引y后,根据如下方法确定该时域周期内其它传输时机所在的时隙索引:y+(K 2-K 2_min)。其中,K 2为该传输时机所关联的K 2,可以根据在确定的表项中该传输时机所关联的K 2所获得,K 2_min为该时域周期内首个时域资源(传输时机)关联的K 2,也即所确定的表项中第一个时域资源所关联的K 2,或是所确定的表项中所关联的最小K 2值。
方式(2)、
通过一个新的参数辅助指示。该情况下,可选的,时域资源分配表格中的至少一个表项还包括多个第一偏移值(记为m)。多个第一偏移值用于确定多个传输时机的时域资源所在的时隙。例如,用于确定时域资源的起始符号所在的时隙,或,用于确定时域资源的结束符号所在的时隙,或,用于确定时域资源的全部符号所在的时隙。第一偏移值也可以称为时隙映射(mappingToSlot)信息。
示例性的,参见表7和表8,表7示出了上行传输的时域资源分配表格中可能出现的一个表项。表8示出了下行传输的时域资源分配表格中可能出现的一个表项。在表7中,K 2为第二偏移值,m为第一偏移值。在表8中,K 0为第二偏移值,m为第一偏移值。
表7
Figure PCTCN2020082165-appb-000018
表8
Figure PCTCN2020082165-appb-000019
Figure PCTCN2020082165-appb-000020
上述表6~表8具体可以是标准协议中的默认表格,还可以由网络设备通过信令(例如,RRC信令)为终端配置的表格。下文给出了网络设备通过高层信令(例如,RRC信令)为终端配置PUSCH时域资源分配表格(例如,表7)的一种示例:
Figure PCTCN2020082165-appb-000021
PUSCH-TimeDomainResourceAllocation information element为RRC信令中用于高层配置PUSCH时域资源分配表格的信息单元。该信息单元中可以包括以下信息:
信息1、
“PUSCH-TimeDomainResourceAllocationList::=SEQUENCE(SIZE(1..maxNrofUL-Allocations))OF PUSCH-TimeDomainResourceAllocation”
信息1是指高层配置的上行时域资源分配表格中包括一个或多个表项。具体的,PUSCH-TimeDomainResourceAllocationList是指高层配置的上行时域资源分配表格。maxNrofUL-Allocations为上行时域资源分配表格包含的表项的最大数量。PUSCH-TimeDomainResourceAllocation是指上行时域资源分配表格中的一个表项。
信息2、
k2   INTEGER(0..32)   OPTIONAL,--Need S”
信息2是指上行时域资源分配表格中的一个表项中包含的一个k2,且k2的取值为0至32。k2为第二偏移值的信息。
信息3、
“TimeDomainResourceAllocationPerRepetitionList::=SEQUENCE(SIZE(1..maxNrofRepetition))OF TimeDomainResourceAllocationPerRepetition”
信息3是指高层配置的上行时域资源分配表格中的一个表项中包含的用于重复传输的多个时域资源的信息。maxNrofRepetition是指一个表项中配置的时域资源的最大数量。
信息4、
Figure PCTCN2020082165-appb-000022
信息4用于配置一个表项中的用于重复传输的一个时域资源包含的信息。具体的,TimeDomainResourceAllocationPerRepetition是指一个表项中的用于重复传输的一个时域资源。该时域资源包括:mappingType(即PUSCH的映射类型的信息),startSymbolAndLength(即时域资源的起始符号和长度的信息),rv(即时域资源对应的RV的信息),mappingToSlot(即第一偏移值(m)的信息,第一偏移值用于确定时域资源所在的时隙)。
其它表格也可以采用类似的方式进行配置,本申请不再赘述。
在不同的传输场景下,方式(2)的实现有所不同,以下通过情况1至情况3分别进行描述。
情况1、动态调度的PUSCH传输或type2上行免授权传输
在情况1下,终端或网络设备确定一个或多个传输时机的时域资源的方法包括:根据PUSCH的子载波间隔、PDCCH的子载波间隔、n、第二指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和第二指示信息所指示的表项中包含的第二偏移值确定一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
该情况下,上述方法还可以包括:网络设备向终端发送PDCCH。相应的,终端从网络设备接收PDCCH。PDCCH承载有用于调度PUSCH的DCI,DCI中携带第二指示信息,DCI所在的时隙的索引为n。需要说明的是,对于type2上行免授权传输,用于激活type2上行免授权传输的DCI也可以被理解为用于调度PUSCH的DCI。
示例性的,一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000023
其中,u PUSCH为表征PUSCH的子载波间隔的参数,u PDCCH为表征PDCCH的子载波间隔的参数,C1为第二指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为第二指示信息所指示的表项中包含的第二偏移值。
示例性的,假设DCI所在的时隙为时隙#n,u PUSCH=u PDCCH,第二指示信息指示的表项为表7所示的表项(此时,K 2=0)。则参见图5,终端可以确定3个传输时机,第一个传输时机位于时隙#(n+0+0)即时隙#n的符号#12至符号#13上,采用的RV为RV2。第二个传输时机位于时隙#(n+0+1)即时隙#(n+1)的符号#2至符号#6上,采用的RV为RV0。第三个传输时机位于时隙#(n+0+1)即时隙#(n+1)的符号#9至符号#11上,采用的RV为RV3。
情况2、基于动态调度的PDSCH传输或下行SPS传输
在情况2下,终端或网络设备确定一个或多个传输时机的时域资源的方法包括:根据PDSCH的子载波间隔、PDCCH的子载波间隔、n、第二指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和第二指示信息所指示的表项中包含的第二偏移值确定一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
该情况下,上述方法还可以包括:网络设备向终端发送PDCCH。相应的,终端从网络设备接收PDCCH,PDCCH承载有用于调度PDSCH的DCI,DCI中携带第二指示信息,DCI所在的时隙的索引为n。需要说明的是,对于下行SPS传输,用于激活下行SPS传输的DCI也可以被理解为用于调度PDSCH的DCI。
示例性的,一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000024
其中,u PDSCH为表征PDSCH的子载波间隔的参数,u PDCCH为表征PDCCH的子载波间隔的参数,C1为第二指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为第二指示信息所指示的表项中包含的第二偏移值。
示例性的,假设DCI所在的时隙为时隙#n,u PDSCH=u PDCCH,第二指示信息指示的表项为表8所示的表项(此时,K 0=0)。则参见图5,终端可以确定3个传输时机,第一个传输时机位于时隙#(n+0+0)即时隙#n的符号#12至符号#13上,采用的RV为RV2。第二个传输时机位于时隙#(n+0+1)即时隙#(n+1)的符号#2至符号#6上,采用的RV为RV0。第三个传输时机位于时隙#(n+0+1)即时隙#(n+1)的符号#9至符号#11上,采用的RV为RV3。
情况3、type1上行免授权传输
在情况3下,一个或多个传输时机中的第k个传输时机所在的时隙根据第三偏移值和第二指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。第三偏移值即timeDomainOffset的值。
该情况下,上述方法还包括:网络设备向终端发送类型1的上行免授权传输的配置信息。相应的,终端从网络设备接收类型1的上行免授权传输的配置信息。配置信息包含第二指示信息和第三偏移值的配置信息。
示例性的,一个或多个传输时机中的第k个传输时机所在的时隙为:第三偏移值+第二指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,k为大于0的整数。
示例性的,假设第三偏移值为n,第二指示信息指示的表项为表7所示的表项。则参见图5,终端可以确定3个传输时机,第一个传输时机位于时隙#(n+0)即时隙#n的符号#12至符号#13上,采用的RV为RV2。第二个传输时机位于时隙#(n+1)的符号#2至符号#6上,采用的RV为RV0。第三个传输时机位于时隙#(n+1)的符号#9至符号#11上,采用的RV为RV3。
针对基于动态调度的PUSCH传输或type2上行免授权传输(即上述情况1)、和基于动态调度的PDSCH传输或基于SPS的下行传输(即上述情况2),可选的,DCI还包括冗余版本指示域,冗余版本指示域用于确定重复传输的时域资源的最大数量或重复传输的最大次数或重复传输的最大的时隙数。该DCI是指用于动态调度PUSCH传输或PDSCH传输的DCI,或用于激活Type2上行免授权传输或下行SPS传输的DCI。在本申请的实施例中,用于调度PUSCH传输的DCI可以是动态调度PUSCH的DCI,也可以是用于激活Type2上行免授权传输的DCI;用于调度PDSCH传输的DCI可以是用于动态调度PDSCH传输的DCI,也可以是用于激活基于下行SPS传输的DCI;动态调度的PUSCH传输和Type2上行免授权传输均被称之为PUSCH传输,动态调度的PDSCH传输和基于SPS的下行传输均被称之为PDSCH传输。
需要说明的是,DCI中包含的冗余版本指示域原本是用于指示时域资源对应的RV的。由于在本申请实施例中时域资源对应的RV的信息通过时域资源分配表格可以获取。因此,冗余版本指示域可以用作其他用途。例如,在上述一个或多个传输时机仅用于进行部分重复传输时,冗余版本指示域可以用于确定重复传输的时域资源的最大数量或重复传输的最大次数或重复传输的最大时隙数。
可选的,用于调度PUSCH传输或者PDSCH传输的DCI不包括冗余版本指示域,但是包括重复传输次数指示域,该重复传输次数指示域用于确定重复传输的时域资源的最大数量或重复传输的最大次数或重复传输的最大的时隙数。
一种可能的实现方式,DCI中的冗余版本指示域或重复传输次数指示域所指示的值为X (大于1的整数)。上述一个或多个传输时机为位于Y个时隙上的K个传输时机,则终端确定重复传输的时域资源的最大数量为X*K个或重复传输的最大次数为X*K次,确定重复传输所使用的最大的时隙数为X*Y个。上述Y个时隙上的K个传输时机可以是根据时域资源分配表格中一个表项确定的,K的数量取决于该表项中S和L的组合的数量。
可选的,终端在第X1*Y+1个时隙到第(X1+1)*Y个时隙(共Y个时隙)上确定的K个传输时机在该Y个时隙中的位置,与终端在第1个时隙到第Y个时隙(共Y个时隙)中确定的K个传输时机在第1个时隙到第Y个时隙(共Y个时隙)中的位置完全相同。其中,1≤X1≤X-1。
示例性的,参见图6,终端可以根据X的值,以及终端在时隙#n和时隙#(n+1)中确定的传输时机确定时隙#(n+2)和时隙#(n+3)中的传输时机。其中,终端在时隙#n和时隙#(n+1)中确定的3个传输时机在时隙#n和时隙#(n+1)中的位置,与终端在时隙#(n+2)和时隙#(n+3)中确定的3个传输时机在时隙#(n+2)和时隙#(n+3)中的位置相同。
相比现有技术通过高层信令配置重复传输次数的方式,本申请可以实现重复传输次数的动态指示。一方面可以更快速的根据信道条件调整重复传输次数,从而提升传输可靠性或资源利用率等。另一方面,利用已有的冗余版本指示域确定重复传输次数,可以不增加DCI信令开销。
除了通过DCI中的冗余版本指示域或重复传输次数指示域确定X的值之外,网络设备也可以通过RRC信令(例如,RRC信令中的参数repK或pusch-AggregationFactor或pdsch-AggregationFactor)或MAC CE信令或DCI指示X的值。
在另一种可能的实现方式中,用于调度PUSCH传输或者PDSCH传输的DCI可以不包含重复传输次数指示域,或者DCI中已有的重复传输次数指示域用作其它指示用途,在该实施方式中,重复传输次数具体为时域资源分配表格中一个表项所指示的时域资源的数量,即该表项中S和L的取值组合的数量。例如,以表6作为时域资源分配表格为例,终端设备确定时域资源时使用的是表6中索引为“1”的表项,则重复传输次数具体为索引为“1”的表项中S和L的取值组合的数量,即“3”。需要说明的是,时域资源分配表格中不同表项中S和L的取值组合的数量可以相同,也可以不同,本申请实施例不做限定。
需要说明的是,当预设的条件得到满足时,终端将接收到的DCI中的原本的冗余版本指示域用作确定重复传输的时域资源的最大数量或重复传输的最大次数或重复传输的最大时隙数,或者认为接收到的DCI中不包括冗余版本指示域但包括重复传输次数指示域。。预设的条件可以为以下条件中的一个或多个条件:
条件1、终端确定所使用的时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和用于指示一个或多个RV的信息。
条件2、第二指示信息指示的表项中包含用于指示一个或多个RV的信息;或,第二指示信息指示的表项中包含用于进行数据的重复传输的多个时域资源对应的RV的信息。
条件3、终端接收到网络设备通过RRC信令或MAC CE信令或DCI下发的指示信息,该指示信息用于指示将冗余版本指示域用作确定重复传输的时域资源的最大数量或重复传输的最大次数或重复传输的最大时隙数;或者,该指示信息用于指示将原本的冗余版本指示域不存在但是存在上述重复传输次数指示域,或用于指示将冗余版本指示域替换成重复传输次数指示域。
条件4、终端确定加扰PDCCH的CRC的RNTI为特定的RNTI。该PDCCH携带用于调度PUSCH或PDSCH传输的DCI。
条件5、终端确定用于调度PUSCH或PDSCH的DCI格式为特定的格式。
条件6、终端是在特定类型的搜索空间上接收到PDCCH,其中,该PDCCH携带用于调度PUSCH或PDSCH传输的DCI。本申请实施例还提供了一种确定传输资源的方法,如图7所示,包括:
700、终端确定使用的时域资源分配表格。
步骤700的具体实现参见上述步骤400。
该实施例中的时域资源分配表格与上述实施例中的时域资源分配表格的区别在于,时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和多个第一偏移值,多个第一偏移值用于确定多个传输时机的时域资源所在的时隙,但不包括用于指示RV的信息。
在多个时域资源分配表格包括网络设备配置的时域资源分配表格的情况下,可选的,该方法还包括:(11)网络设备向终端发送配置信息。相应的,终端从网络设备接收配置信息。配置信息用于配置时域资源分配表格。关于该配置信息的其他描述可参见上文,在此不再赘述。
701、网络设备向终端发送第三指示信息。终端从网络设备接收第三指示信息。
其中,第三指示信息用于指示时域资源分配表格中的一个表项。第三指示信息可以携带在RRC信令或MAC CE信令或DCI中。
702、网络设备基于第三指示信息和时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源。
703、终端根据第三指示信息和时域资源分配表格确定用于传输PUSCH或PDSCH的一个或多个传输时机的时域资源。
步骤702和步骤703在具体实现时,网络设备可以根据时域资源分配表格中的、第三指示信息所指示的表项中的用于指示时域资源的信息确定一个或多个传输时机的时域资源。用于指示时域资源的信息可以包括:timeDomainOffset的值、K 2、K 0、S、L和第一偏移值中的一个或多个。
在type1上行免授权传输中,目前通过RRC信令发送timeDomainOffset的值使得终端确定一个时域资源所在的时隙。为了便于实现数据的重复传输,时域资源分配表格中的一个表项中可以包括用于指示多个时域资源的信息。该情况下,终端需要确定多个时域资源所在的时隙。此时,网络设备需要通过RRC信令发送多个timeDomainOffset的值,从而使得终端确定用于重复传输的多个时域资源所在的时隙。但是,即使终端获知多个timeDomainOffset的值,还需要获知多个timeDomainOffset的值与多个时域资源之间的对应关系,因此,实现过程较复杂。本申请实施例提供的方法,在时域资源分配表格中的表项中配置多个第一偏移值,用以确定多个传输时机的时域资源所在的时隙,可以使得终端快速的确定多个时域资源所在的时隙,降低终端的实现复杂度。
针对时域资源分配表格中的一个表项指示的多个时域资源,该多个时域资源所在的时隙可以通过方式(1)或方式(2)。
方式(1)、
通过配置现有的K 2、K 0、timeDomainOffset的值实现,即针对不同的时域资源,配置不同的K 2或K 0或timeDomainOffset。示例性的,以type2免授权传输为例。上述表6中即通过配置不同的K 2来确定不同的时域资源所在的时隙。
方式(2)、
通过一个新的参数辅助指示。该情况下,可选的,时域资源分配表格中的至少一个表项 还包括多个第一偏移值(记为m)。多个第一偏移值用于确定多个传输时机的时域资源所在的时隙。例如,用于确定时域资源的起始符号所在的时隙,或,用于确定时域资源的结束符号所在的时隙,或,用于确定时域资源的全部符号所在的时隙。第一偏移值也可以称为时隙映射(mappingToSlot)信息。
下文给出了网络设备通过高层信令(例如,RRC信令)为终端配置PUSCH时域资源分配表格的一种示例:
Figure PCTCN2020082165-appb-000025
PUSCH-TimeDomainResourceAllocation information element为RRC信令中用于高层配置PUSCH时域资源分配表格的信息单元。该信息单元中可以包括以下信息:
信息1、
“PUSCH-TimeDomainResourceAllocationList::=SEQUENCE(SIZE(1..maxNrofUL-Allocations))OF PUSCH-TimeDomainResourceAllocation”
信息1是指高层配置的上行时域资源分配表格中包括一个或多个表项。具体的,PUSCH-TimeDomainResourceAllocationList是指高层配置的上行时域资源分配表格。maxNrofUL-Allocations为上行时域资源分配表格包含的表项的最大数量。PUSCH-TimeDomainResourceAllocation是指上行时域资源分配表格中的一个表项。
信息2、
k2   INTEGER(0..32)   OPTIONAL,--Need S”
信息2是指上行时域资源分配表格中的一个表项中包含的一个k2,且k2的取值为0至32。k2为第二偏移值的信息。
信息3、
“TimeDomainResourceAllocationPerRepetitionList::=SEQUENCE(SIZE(1..maxNrofRepetition))OF TimeDomainResourceAllocationPerRepetition”
信息3是指高层配置的上行时域资源分配表格中的一个表项中包含的用于重复传输的多个时域资源的信息。maxNrofRepetition是指一个表项中配置的时域资源的最大数量。
信息4、
Figure PCTCN2020082165-appb-000026
Figure PCTCN2020082165-appb-000027
信息4用于配置一个表项中的用于重复传输的一个时域资源包含的信息。具体的,TimeDomainResourceAllocationPerRepetition是指一个表项中的用于重复传输的一个时域资源。该时域资源包括:mappingType(即PUSCH的映射类型的信息),startSymbolAndLength(即时域资源的起始符号和长度的信息),mappingToSlot(即第一偏移值(m)的信息,第一偏移值用于确定时域资源所在的时隙)。
其它表格也可以采用类似的方式进行配置,本申请不再赘述。
在不同的传输场景下,方式(2)的实现有所不同,以下通过情况1至情况3分别进行描述。
情况1、动态调度的PUSCH传输或type2上行免授权传输
在情况1下,终端或网络设备确定一个或多个传输时机的时域资源的方法包括:根据PUSCH的子载波间隔、PDCCH的子载波间隔、n、第三指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和第三指示信息所指示的表项中包含的第二偏移值确定一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
该情况下,上述方法还可以包括:网络设备向终端发送PDCCH。相应的,终端从网络设备接收PDCCH。PDCCH承载有用于调度PUSCH的DCI,DCI中携带第三指示信息,DCI所在的时隙的索引为n。
示例性的,一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000028
其中,u PUSCH为表征PUSCH的子载波间隔的参数,u PDCCH为表征PDCCH的子载波间隔的参数,C1为第三指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为第三指示信息所指示的表项中包含的第二偏移值。
情况2、基于动态调度的PDSCH传输或下行SPS传输
在情况2下,终端或网络设备确定一个或多个传输时机的时域资源的方法包括:根据PDSCH的子载波间隔、PDCCH的子载波间隔、n、第三指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和第三指示信息所指示的表项中包含的第二偏移值确定一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
该情况下,上述方法还可以包括:网络设备向终端发送PDCCH。相应的,终端从网络设备接收PDCCH,PDCCH承载有用于调度PDSCH的DCI,DCI中携带第三指示信息,DCI所在的时隙的索引为n。
示例性的,一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
Figure PCTCN2020082165-appb-000029
其中,u PDSCH为表征PDSCH的子载波间隔的参数,u PDCCH为表征PDCCH的子载波间隔的参数,C1为第三指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为第三指示信息所指示的表项中包含的第二偏移值。
情况3、type1上行免授权传输
在情况3下,一个或多个传输时机中的第k个传输时机所在的时隙根据第三偏移值和第三指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。第三偏移值即timeDomainOffset的值。
该情况下,上述方法还包括:网络设备向终端发送类型1的上行免授权传输的配置信息。相应的,终端从网络设备接收类型1的上行免授权传输的配置信息。配置信息包含第三指示信息和第三偏移值的配置信息。
示例性的,一个或多个传输时机中的第k个传输时机所在的时隙为:第三偏移值+第三指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,k为大于0的整数。关于方式(1)和方式(2)的其他描述可参见上文,在此不再赘述。
可选的,DCI还包括冗余版本指示域,该冗余版本指示用于确定重复传输的时域资源的最大数量或重复传输的最大次数或重复传输的最大的时隙数。
可选的,DCI不包括冗余版本指示域,但是包括重复传输次数指示域,该重复传输次数指示域用于确定重复传输的时域资源的最大数量或重复传输的最大次数或重复传输的最大的时隙数。
在根据前述实施例所示的方法确定出的时域资源和RV后,可以在确定出的时域资源上发送或者接收数据。例如,对于下行传输,网络设备可以在确定出的时域资源上使用其对应的RV发送下行数据,终端在确定出的时域资源上根据其对应的RV接收网络设备发送的下行数据;对于上行传输,终端可以在确定出的时域资源上使用其对应的RV发送上行数据,网络设备在确定出的时域资源上根据其对应的RV接收终端发送的上行数据。
本申请实施例还提供了一种确定传输资源的方法,包括:
终端接收来自网络设备的DCI,其中,该DCI用于动态调度PUSCH传输或PDSCH传输,或用于激活Type2上行免授权传输或激活基于SPS的下行传输;根据该DCI确定一个时域资源分配表格、该时域资源分配表格中的一个表项;根据该确定出的表项所包含的信息确定用于PUSCH传输或者PDSCH传输的时域资源。在本申请中,动态调度的PUSCH传输和Type2上行免授权传输均被称之为PUSCH传输,PDSCH传输和基于SPS的下行传输均被称之为PDSCH传输。
终端中可以存在多个时域资源分配表格,多个时域资源分配表格可以包括:默认的时域资源分配表格(例如,标准协议规定的时域资源分配表格),和/或,网络设备配置的时域资源分配表格。当该多个时域资源分配表格由网络设备配置时,其配置方法可以采用前文实施例中所提到的配置方法,此处不再赘述。
可选的,每个时域资源分配表格关联一个重复传输次数,不同时域资源分配表格所关联的重复传输次数可以相同,也可以不同。
在一实施方式中,时域资源分配表格每个表项均包含重复传输次数的信息,但不同表项包含的重复传输次数的信息相同。
在另一实施方式中,时域资源分配表格中不包含重复传输次数的信息,而是在表格之外规定该表格关联一个重复传输次数。在该实施方式中,因一个时域资源分配表格只关联一个重复传输次数,那么对于同一个时域资源分配表格,不同的表项就关联相同的重复传输次数,终端在需要用到重复传输次数时可以根据其在确定时域资源所用到的时域资源分配表格所关联的重复次数确定,例如,直接使用时域资源分配表格所关联的重复传输次数。
可选的,时域资源分配表格也可以不关联重复传输次数,重复传输次数由该时域资源分配表格中表项所确定,例如,根据该表项所指示的时域资源的数量来隐式指示,或者,该表项中包含重复传输次数。在一种实现方式中,表项所指示的时域资源的数量具体为S和L的取值组合的数量。需要说明的是,时域资源分配表格中不同表项中S和L的取值组合的数量可以相同,也可以不同,本申请实施例不做限定。若时域资源分配表格中的表项包含重复传输次数,不同表项包含的重复传输次数的值可以相同,也可以不同,本申请实施例不做限定。
时域资源分配表格中的至少一个表项包括用于确定(或指示)一个或多个时域资源的信息,以及该一个或多个时域资源所关联的RV的信息。可以理解的是,该时域资源分配表格 的表项还可以包括其他类型的信息,例如,PUSCH映射类型,本申请不限制。在一实例中,时域资源分配表格的形式可以是表6-8所示形式的表格,也可以是在表2所示形式的表格中增加一列用来指示每个表项所关联的RV信息。
终端接收来自网络设备的DCI,其中,该DCI中包括时域资源分配(time domain allocation)域,该时域资源分配域可以用于确定PUSCH传输的时域资源或者PDSCH传输的时域资源,具体地,该时域资源分配域包含用于指示时域资源分配表格中的一个表项的比特。对于Type2免授权上行传输,终端接收到的是用于激活Type2免授权上行传输的DCI,根据该DCI中的时域资源分配域确定用于Type2免授权上行传输的时域资源。对于基于SPS的下行传输,终端接收到的是用于激活基于SPS下行传输的DCI,根据该DCI中的时域资源分配域确定用确定用于基于SPS的下行传输的时域资源
可以使用任意一下任一实施例所提供的方法确定需要使用的时域资源分配表格。
实施例一
在本实施例中,终端根据该DCI中的冗余版本指示域在上述多个时域资源分配表格中确定用于PUSCH传输或PDSCH传输的时域资源分配表格。本实施例中用于调度PUSCH传输的DCI格式和用于调度PDSCH的DCI格式可以与现有用于调度PUSCH传输的DCI格式(例如,DCI format 0_0和DCI format 0_1)和用于调度PDSCH传输的DCI格式(例如,DCI format 1_0和DCI format 1_1)分别相同,但是,这些格式中的冗余版本指示域不再指示冗余版本,而是用来指示时域资源分配表格。
在一实施例方式中,冗余版本指示域中的部分比特用于指示时域资源分配表格,例如,当存在2张时域资源分配表格(表格A、表格B),终端根据RV指示域(例如,现有DCI格式中,RV指示域占用两个比特)中的一个比特确定所使用的表格,例如,当该比特取值为0时,表示所使用的表格为表格A;当该比特的取值为B时,表示所使用的表格为表格2。该一个比特可以是RV指示域中的任何一个比特,例如可以是第一个比特,也可以是第二个比特。
另一种实现方式是,冗余版本指示域中的全部比特用于指示时域资源分配表格。例如,当存在4张时域资源分配表格(表格A、表格B、表格C、表格D),RV指示域中的全部比特用指示所使用的时域资源分配表格,例如当该RV指示域的全部比特取值分别为00、01、10、11时,表示所使用的时域资源分配表格分别为表格A、表格B、表格C、表格D。
可选地,在预设条件得到满足时,终端才根据DCI中的冗余版本指示域才确定用于PUSCH传输或PDSCH传输的时域资源分配表格。在一实施方式中,预设条件包括如下四种条件中的任意一种:
条件A:终端接收到基站通过RRC信令或MAC CE或DCI下发的指示信息,该指示信息用于指示DCI的解读方式为本发明实施例所提供的解读方式。
条件B:加扰携带该DCI的PDCCH的CRC的RNTI为预设的RNTI。
条件C:是在特定的搜索空间接收到携带该DCI的PDCCH。
条件D:该DCI的格式为特定格式。
可以理解的是,预设条件可以是其它条件,只要该条件满足时,终端就根据本发明实施所提供的方法来解读DCI中相应域的功能或者含义。
实施例二
在本实施例中,该DCI中不携带冗余版本指示域而携带时域资源分配表格指示域,该时域资源分配表格指示域指示需要使用的时域资源分配表格。终端根据该DCI中的时域资源分 配表格指示域确定需要使用的时域资源分配表格。
可选的,只有上述预设条件(例如,上述条件A到条件D中的任意一种)得到满足时,终端才会认为接收到的DCI中包含时域资源分配表格指示域而不包含冗余版本指示域。
实施例三
在本实施例中,该DCI中不包含冗余版本指示域,终端根据该时域资源分配域中预定的部分比特确定需要使用的时域资源分配表格。例如,存在2张时域资源分配表格(表格A、表格B)时,终端根据时域资源分配域中位于最高位的一个比特确定所使用的表格,例如该一个比特取值为0时,指示表格A,取值为1时,指示表格2。又例如,当存在4张时域资源分配表格(表格A、表格B、表格C、表格D)时,终端根据时域资源分配域中的高位位于最高位的2个比特确定所使用的表格,例如该2个比特取值分别为00、01、10、11时,分别指示表格A、表格B、表格C、表格D。
可选地,只有上述预设条件(例如,上述条件A到条件D中的任意一种)得到满足时,终端才会认为接收到的DCI中不包含冗余版本指示域,根据该DCI中时域资源分配域的预定的部分比特确定需要使用的时域资源分配表格。
根据时域资源分配域在上述确定出的时域资源分配表格中确定一个表项,根据该表项中的信息确定用于PUSCH传输或者PDSCH传输的时域资源。在一实施方式中,终端根据时域资源分配域中预定的部分比特在上述确定出的时域资源分配表格中确定一个表项,例如,在根据实施例三所提供的方法确定出需要的时域资源分配表格时,时域资源分配域中剩余的比特(即未被用于指示时域资源分配表格的比特)用于指示上述确定出的时域资源分配表格中的一个表项。例如,DCI中的时域资源分配域占用6个比特,位于高位的两个比特的一个取值用于指示多个时域资源分配表格中的一个时域资源分配表格,位于低位的四个比特的一个取值用于指示时域资源分配表格中的一个表项。
可选地,终端根据上述确定出的时域资源分配表确定其所关联的重复传输次数。进一步地,终端可以根据确定出的用于PUSCH传输的时域资源和重复传输次数发送PUSCH,或者,根据确定出的用于PDSCH传输的时域资源和重复传输次数接收PDSCH。可选地,终端还可以根据确定出的重复传输次数和确定出的表项确定用于PUSCH传输或者PDSCH传输的时域资源。根据重复传输书和确定出的表项确定时域资源的方法可以参考本申请中其它实施例中描述的方法,此处不再赘述。
在本实施例中,PUSCH或PDSCH传输所使用的RV由时域资源分配表格中的表项所确定,因此,DCI中的RV指示域不再需要用来指示RV,RV指示域的比特可以用于指示其他信息,或者,在DCI中不再设置RV指示域。当存在不同的表格对应不同的重复传输次数,,通过RV指示域或将RV指示域替换成的时域资源分配表格指示域指示所使用的时域资源分配表格,等同于通过RV指示域指示PUSCH或PDSCH的重复传输次数,即在不增加DCI信令开销的前提下,实现重复传输次数的动态指示。当DCI中不再设置RV指示域时,节省下来的比特可以用来指示其它信息,既可以实现其它信息的动态指示,还可以节省信令开销。
本申请实施例还提供了一种确定传输资源的方法,包括:
终端接收来自网络设备的DCI,其中,该DCI用于调度PUSCH传输或PDSCH传输;终端根据该DCI中的时域分配域确定时域资源分配表格中的一个表项;根据该表项所包含的信息确定用于所述PUSCH传输或者所述PDSCH传输的时域资源。
终端中存在一个时域资源分配表格,该一个时域资源分配表格可以包括:默认的时域资源分配表格(例如,标准协议规定的时域资源分配表格),和/或,网络设备配置的时域资源 分配表格。当该一个时域资源分配表格由网络设备配置时,网络设备可以直接配置该一个时域源分配表格的内容,其配置方法可以采用前文实施例中所提到的配置方法,此处不再赘述。在另一实施方式中,网络设备可以为终端设备配置多个时域资源分配表格,但是通过携带在RRC信令或MAC CE)信令或DCI指示一个有效的时域资源分配表格。
该时域资源分配表格中的至少一个表项包括用于确定(或指示)一个或多个时域资源的信息,以及用于确定该一个或多个时域资源所关联的RV的信息。在一实施方式中,每个表项均包含RV的信息(RV的索引或者RV序列或者RV号)。在另一实施方式中,该时域资源分配表格的部分表项包含RV的信息,剩下的表项均不包含RV的信息。
可以理解的是,该时域资源分配表格的表项还可以包括其他类型的信息,例如,PUSCH映射类型,本申请不限制。在一实例中,该时域资源分配表格的形式可以是表6-8所示形式的表格,也可以是在表2所示形式的表格中增加一列用来指示每个表项所关联的RV信息,还可以是表2所示形式的表格中某些表项增加指示RV的信息而另外的表项中则不包含指示RV的信息。
在一实施方式中,终端根据RV指示域中的部分比特和时域资源分配域确定所使用的时域资源分配表格中的表项。例如,终端根据RV指示域中的一个比特以及时域资源分配域中的N个比特共N+1个比特确定所使用的时域资源分配表格中的表项,其中,N为时域资源分配域所包含的比特数,N为取值大于或者等于1的整数。该N+1个比特的取值,指示时域资源分配表格中的一个表项。例如N=4时,该RV指示域中的一个比特与时域资源分配域的4个比特组成5个比特,其中,RV指示域中的比特位于该5个比特中的最高有效位(Most Significant Bit,MSB),5个比特的值为00000时,指示时域资源分配表格中的第一个表项,5个比特的值为10000时,指示是时域资源分配表格中的第17个表项。可选地,在预设的条件(如前文所述的条件A到条件D中的任意一个)得到满足时,终端根据RV指示域中的一个比特以及时域资源分配域中的N个比特共N+1个比特确定所使用的使用时域资源分配表格中的表项。
在另一实现方式中,终端根据RV指示域中的全部比特和时域资源分配域确定所使用的时域资源分配表格中的表项。例如,终端根据RV指示域中的全部比特以及时域资源分配域中的N个比特共N+2个比特确定所使用的表格中的表项,其中,N为时域资源分配域所包含的比特数,N为取值大于或者等于1的整数。该N+2个比特的一个取值,指示表格中的特定表项。例如N=4时,该RV指示域中的全部比特与时域资源分配域的4个比特组成6个比特,其中,RV指示域中的2比特位于该6个比特中的前两个最高有效位(Most Significant Bit,MSB),6个比特的值为000000时,指示表格中的第一个表项,6个比特的值为100000时,表示表格中的第33个表项。可选地,在预设的条件(如前文所述的条件A到条件D中的任意一个)得到满足时,终端根据RV指示域中的全部比特以及时域资源分配域中的N个比特共N+2个比特确定所使用的使用时域资源分配表格中的表项。
在又一实现方式中,上述DCI中不包含任RV指示域,终端仅根据时域资源分配域确定时域资源分配表格中的一个表项。
在本实施例中,PUSCH或PDSCH传输所使用的RV由表格中的表项所确定,因此,DCI中的RV指示域不需要再用来指示RV,而可以用来指示所使用的时域资源分配表格中的表项,从而在不增加DCI开销的前提下,支持更多的时域资源分配可能性,使得时域资源分配更加灵活。上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,网络设备和终端为了实现上述功能,其包含了执行各个功能相应的硬 件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的通信装置(记为通信装置80)的一种可能的结构示意图,该通信装置80包括处理单元801和通信单元802,还可以包括存储单元803。图8所示的结构示意图可以用于示意上述实施例中所涉及的网络设备和终端的结构。
当图8所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理单元801用于对终端的动作进行控制管理,例如,处理单元801用于支持终端执行图4中的400、401和403,图8中的800、801和803,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理单元801可以通过通信单元802与其他网络实体通信,例如,与图4中示出的网络设备通信。存储单元803用于存储终端的程序代码和数据。在另一实施例中,处理单元801用于根据接收到的DCI确定一个时域资源分配表格、该时域资源分配表格中的一个表项;根据该确定出的表项所包含的信息确定用于PUSCH传输或者PDSCH传输的时域资源。通信单元用于接收上述DCI。
当图8所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,通信装置80可以是终端,也可以是终端内的芯片。
当图8所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理单元801用于对网络设备的动作进行控制管理,例如,处理单元801用于支持网络设备执行图4中的401和402,图8中的801和802,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理单元801可以通过通信单元802与其他网络实体通信,例如,与图4中示出的终端通信。存储单元803用于存储网络设备的程序代码和数据。在另一实施例中,处理单元801用于生成DCI,该DCI中包括用于指示时域资源分配表格、该时域资源分配表格中表项的指示域。通信单元用于发送上述DCI。
当图8所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,通信装置80可以是网络设备,也可以是网络设备内的芯片。
其中,当通信装置80为终端或网络设备时,处理单元801可以是处理器或控制器,通信单元802可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元803可以是存储器。当通信装置80为终端或网络设备内的芯片时,处理单元801可以是处理器或控制器,通信单元802可以是输入/输出接口、管脚或电路等。存储单元803可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是终端或网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
其中,通信单元也可以称为收发单元。通信装置80中的具有收发功能的天线和控制电路 可以视为通信装置80的通信单元802,具有处理功能的处理器可以视为通信装置80的处理单元801。可选的,通信单元802中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元802中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
图8中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,简称ROM)、随机存取存储器(random access memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图8中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种通信装置(记为通信装置90)的硬件结构示意图,参见图9或图10,该通信装置90包括处理器901,可选的,还包括与处理器901连接的存储器902。
处理器901可以是一个通用中央处理器(central processing unit,简称CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,简称ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器901也可以包括多个CPU,并且处理器901可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器902可以是ROM或可存储静态信息和指令的其他类型的静态存储设备、RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,简称EEPROM)、只读光盘(compact disc read-only memory,简称CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器902可以是独立存在,也可以和处理器901集成在一起。其中,存储器902中可以包含计算机程序代码。处理器901用于执行存储器902中存储的计算机程序代码,从而实现本申请实施例提供的方法。
在第一种可能的实现方式中,参见图9,通信装置90还包括收发器903。处理器901、存储器902和收发器903通过总线相连接。收发器903用于与其他设备或通信网络通信。可选的,收发器903可以包括发射机和接收机。收发器903中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器903中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
基于第一种可能的实现方式,图9所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端的结构。
当图9所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器901用于对终端的动作进行控制管理,例如,处理器901用于支持终端执行图4中的400、401和403,图8中的800、801和803,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理器901可以通过收发器903与其他网络实体通信,例如,与图4中示出的网络设备 通信。存储器902用于存储终端的程序代码和数据。
当图9所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器901用于对网络设备的动作进行控制管理,例如,处理器901用于支持网络设备执行图4中的401和402,图8中的801和802,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器901可以通过收发器903与其他网络实体通信,例如,与图4中示出的终端的通信。存储器902用于存储网络设备的程序代码和数据。
在第二种可能的实现方式中,处理器901包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图10,图10所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端的结构。
当图10所示的结构示意图用于示意上述实施例中所涉及的终端的结构时,处理器901用于对终端的动作进行控制管理,例如,处理器901用于支持终端执行图4中的400、401和403,图8中的800、801和803,和/或本申请实施例中所描述的其他过程中的终端执行的动作。处理器901可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图4中示出的网络设备通信。存储器902用于存储终端的程序代码和数据。
当图10所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器901用于对网络设备的动作进行控制管理,例如,处理器901用于支持网络设备执行图4中的401和402,图8中的801和802,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器901可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图4中示出的终端通信。存储器902用于存储网络设备的程序代码和数据。
另外,本申请实施例还提供了一种终端(记为终端110)和网络设备(记为网络设备120)的硬件结构示意图,具体可分别参见图11和图12。
图11为终端110的硬件结构示意图。为了便于说明,图11仅示出了终端的主要部件。如图11所示,终端110包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如,用于控制终端执行图4中的400、401和403,图8中的800、801和803,和/或本申请实施例中所描述的其他过程中的终端执行的动作。存储器主要用于存储软件程序和数据。控制电路(也可以称为射频电路)主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过天线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路中的控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图11中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
图12为网络设备120的硬件结构示意图。网络设备120可包括一个或多个射频单元,如远端射频单元(remote radio unit,简称RRU)1201和一个或多个基带单元(baseband unit,简称BBU)(也可称为数字单元(digital unit,简称DU))1202。
该RRU1201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1211和射频单元1212。该RRU1201部分主要用于射频信号的收发以及射频信号与基带信号的转换。该RRU1201与BBU1202可以是物理上设置在一起,也可以物理上分离设置的,例如,分布式基站。
该BBU1202为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一个实施例中,该BBU1202可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。该BBU1202还包括存储器1221和处理器1222,该存储器1221用于存储必要的指令和数据。该处理器1222用于控制网络设备进行必要的动作。该存储器1221和处理器1222可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图12所示的网络设备120能够执行图4中的401和402,图8中的801和802,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。网络设备120中的各个模块的操作,功能,或者,操作和功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。图11和图12中的关于处理器的其他描述可参见图9和图10中的与处理器相关的描述,不再赘述。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:上述网络设备和终端。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产 生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种确定传输资源的方法,其特征在于,包括:
    终端从网络设备接收指示信息,所述指示信息用于指示时域资源分配表格中的一个表项,所述时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和用于指示一个或多个冗余版本RV的信息;
    所述终端根据所述指示信息和所述时域资源分配表格确定用于传输物理上行共享信道PUSCH或物理下行共享信道PDSCH的一个或多个传输时机的时域资源和RV。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端从所述网络设备接收配置信息,所述配置信息用于配置所述时域资源分配表格。
  3. 根据权利要求1或2所述的方法,其特征在于,所述时域资源分配表格中的所述至少一个表项还包括多个第一偏移值,所述多个第一偏移值用于确定所述多个传输时机的时域资源所在的时隙。
  4. 根据权利要求3所述的方法,其特征在于,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:
    所述终端从所述网络设备接收物理下行控制信道PDCCH,所述PDCCH承载有用于调度所述PUSCH的下行控制信息DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;
    相应的,所述终端根据所述指示信息和所述时域资源分配表格确定用于传输PUSCH的一个或多个传输时机的时域资源,包括:
    所述终端根据所述PUSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
  5. 根据权利要求4所述的方法,其特征在于,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
    Figure PCTCN2020082165-appb-100001
    其中,u PUSCH为表征所述PUSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
  6. 根据权利要求3所述的方法,其特征在于,所述时域资源分配表格中的每个表项还包括一个第二偏移值,所述方法还包括:
    所述终端从所述网络设备接收PDCCH,所述PDCCH承载有用于调度所述PDSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;
    相应的,所述终端根据所述指示信息和所述时域资源分配表格确定用于传输PDSCH的一个或多个传输时机的时域资源,包括:
    所述终端根据所述PDSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
  7. 根据权利要求6所述的方法,其特征在于,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
    Figure PCTCN2020082165-appb-100002
    其中,u PDSCH为表征所述PDSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息 所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,所述DCI还包括冗余版本指示域,在所述指示信息指示的表项中包含用于进行数据的重复传输的多个时域资源对应的RV的信息时,所述冗余版本指示域用于确定所述重复传输的时域资源的最大数量或所述重复传输的最大次数或所述重复传输的最大的时隙数。
  9. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端从所述网络设备接收类型1的上行免授权传输的配置信息,所述配置信息包含所述指示信息和第三偏移值的配置信息;所述一个或多个传输时机中的第k个传输时机所在的时隙根据所述第三偏移值和所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述多个时域资源中的至少一个第一时域资源对应索引为0的RV,其中,所述第一时域资源为所述多个时域资源中包含符号数量最多的时域资源。
  11. 根据权利要求10所述的方法,其特征在于,所述至少一个第一时域资源中的各个第一时域资源所对应的RV的索引的取值按照RV序列{0、2、3、1}或{0,3,0,3}中的RV索引的排列循环。
  12. 一种确定传输资源的装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元,用于从网络设备接收指示信息,所述指示信息用于指示时域资源分配表格中的一个表项,所述时域资源分配表格中的至少一个表项包括用于指示多个时域资源的信息和用于指示一个或多个冗余版本RV的信息;
    所述处理单元,用于根据所述指示信息和所述时域资源分配表格确定用于传输物理上行共享信道PUSCH或物理下行共享信道PDSCH的一个或多个传输时机的时域资源和RV。
  13. 根据权利要求12所述的装置,其特征在于,
    所述通信单元,还用于从所述网络设备接收配置信息,所述配置信息用于配置所述时域资源分配表格。
  14. 根据权利要求12或13所述的装置,其特征在于,所述时域资源分配表格中的所述至少一个表项还包括多个第一偏移值,所述多个第一偏移值用于确定所述多个传输时机的时域资源所在的时隙。
  15. 根据权利要求14所述的装置,其特征在于,所述时域资源分配表格中的每个表项还包括一个第二偏移值;
    所述通信单元,还用于从所述网络设备接收物理下行控制信道PDCCH,所述PDCCH承载有用于调度所述PUSCH的下行控制信息DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;
    所述处理单元,具体用于:根据所述PUSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
  16. 根据权利要求15所述的装置,其特征在于,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
    Figure PCTCN2020082165-appb-100003
    其中,u PUSCH为表征所述PUSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述 指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
  17. 根据权利要求14所述的装置,其特征在于,所述时域资源分配表格中的每个表项还包括一个第二偏移值;
    所述通信单元,还用于从所述网络设备接收PDCCH,所述PDCCH承载有用于调度所述PDSCH的DCI,所述DCI中携带所述指示信息,所述DCI所在的时隙的索引为n;
    所述处理单元,具体用于:根据所述PDSCH的子载波间隔、所述PDCCH的子载波间隔、所述n、所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值和所述指示信息所指示的表项中包含的第二偏移值确定所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙,k为大于0的整数。
  18. 根据权利要求17所述的装置,其特征在于,所述一个或多个传输时机中的第k个传输时机的时域资源所在的时隙的索引为:
    Figure PCTCN2020082165-appb-100004
    其中,u PDSCH为表征所述PDSCH的子载波间隔的参数,u PDCCH为表征所述PDCCH的子载波间隔的参数,C1为所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值,C2为所述指示信息所指示的表项中包含的第二偏移值。
  19. 根据权利要求15-18任一项所述的装置,其特征在于,所述DCI还包括冗余版本指示域,在所述指示信息指示的表项中包含用于进行数据的重复传输的多个时域资源对应的RV的信息时,所述冗余版本指示域用于确定所述重复传输的时域资源的最大数量或所述重复传输的最大次数或所述重复传输的最大的时隙数。
  20. 根据权利要求14所述的装置,其特征在于,
    所述通信单元,还用于从所述网络设备接收类型1的上行免授权传输的配置信息,所述配置信息包含所述指示信息和第三偏移值的配置信息;所述一个或多个传输时机中的第k个传输时机所在的时隙根据所述第三偏移值和所述指示信息所指示的表项中包含的对应第k个时域资源的第一偏移值确定,k为大于0的整数。
  21. 根据权利要求12-20任一项所述的装置,其特征在于,所述多个时域资源中的至少一个第一时域资源对应索引为0的RV,其中,所述第一时域资源为所述多个时域资源中包含符号数量最多的时域资源。
  22. 根据权利要求21所述的装置,其特征在于,所述至少一个第一时域资源中的各个第一时域资源所对应的RV的索引的取值按照RV序列{0、2、3、1}或{0,3,0,3}中的RV索引的排列循环。
  23. 一种确定传输资源的装置,其特征在于,包括:处理器;
    所述处理器与存储器连接,所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置实现如权利要求1-11任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-11任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,包括指令,当该指令在计算机上运行时,使得计算机执行如权利要求1-11任一项所述的方法。
PCT/CN2020/082165 2019-03-30 2020-03-30 确定传输资源的方法及装置 WO2020200176A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910254156 2019-03-30
CN201910254156.5 2019-03-30
CN201910364667.2A CN111770577B (zh) 2019-03-30 2019-04-30 确定传输资源的方法及装置
CN201910364667.2 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020200176A1 true WO2020200176A1 (zh) 2020-10-08

Family

ID=72664630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082165 WO2020200176A1 (zh) 2019-03-30 2020-03-30 确定传输资源的方法及装置

Country Status (1)

Country Link
WO (1) WO2020200176A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210377979A1 (en) * 2019-02-14 2021-12-02 Panasonic Intellectual Property Corporation Of America User equipment and system performing transmission and reception operations
WO2022078451A1 (zh) * 2020-10-15 2022-04-21 维沃移动通信有限公司 配置授权的重复传输方法、装置、设备及可读存储介质
WO2022188655A1 (zh) * 2021-03-09 2022-09-15 华为技术有限公司 一种数据传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889260A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 传输控制信息的方法和装置
CN108650711A (zh) * 2017-10-20 2018-10-12 华为技术有限公司 信道测量方法和用户设备
WO2018212628A1 (ko) * 2017-05-18 2018-11-22 엘지전자(주) 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889260A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 传输控制信息的方法和装置
WO2018212628A1 (ko) * 2017-05-18 2018-11-22 엘지전자(주) 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치
CN108650711A (zh) * 2017-10-20 2018-10-12 华为技术有限公司 信道测量方法和用户设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210377979A1 (en) * 2019-02-14 2021-12-02 Panasonic Intellectual Property Corporation Of America User equipment and system performing transmission and reception operations
US20220014333A1 (en) * 2019-02-14 2022-01-13 Panasonic Intellectual Property Corporation Of America User equipment and system performing transmission and reception operations
US11943764B2 (en) * 2019-02-14 2024-03-26 Panasonic Intellectual Property Corporation Of America User equipment and system performing transmission and reception operations
WO2022078451A1 (zh) * 2020-10-15 2022-04-21 维沃移动通信有限公司 配置授权的重复传输方法、装置、设备及可读存储介质
WO2022188655A1 (zh) * 2021-03-09 2022-09-15 华为技术有限公司 一种数据传输方法及装置

Similar Documents

Publication Publication Date Title
CN111770577B (zh) 确定传输资源的方法及装置
WO2020199854A1 (zh) 确定传输资源的方法及装置
CN109152029B (zh) 一种通信方法、网络设备及用户设备
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2022028311A1 (zh) 一种物理下行控制信道增强方法、通信装置及系统
WO2020200035A1 (zh) 传输上行控制信息的方法及装置
CN111418248B (zh) 增强移动通信中用于urllc的新无线电pusch
WO2020200177A1 (zh) 通信方法、装置、设备及存储介质
WO2020143808A1 (zh) 免授权传输的方法及装置
WO2020063838A1 (zh) 传输数据的方法及装置
WO2021031906A1 (zh) 配置时域资源的方法和装置
US11252747B2 (en) Communication method and device
WO2019095334A1 (zh) 一种下行控制信息的发送方法、终端设备和网络设备
WO2019137483A1 (zh) 数据包的传输方法及通信装置
WO2021159979A1 (zh) 混合自动重传请求确认码本的反馈方法及装置
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
WO2019191971A1 (zh) 数据传输方法、终端设备及网络设备
WO2020143723A1 (zh) 数据传输方法及装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2021147214A1 (zh) 通信方法和通信装置
CN114223165B (zh) 一种确定重复传输资源的方法及装置
WO2021155604A1 (zh) 信息处理方法及设备
WO2020177680A1 (zh) 通信方法和通信装置
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
WO2019153369A1 (zh) 一种数据传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783303

Country of ref document: EP

Kind code of ref document: A1