WO2020177680A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2020177680A1
WO2020177680A1 PCT/CN2020/077559 CN2020077559W WO2020177680A1 WO 2020177680 A1 WO2020177680 A1 WO 2020177680A1 CN 2020077559 W CN2020077559 W CN 2020077559W WO 2020177680 A1 WO2020177680 A1 WO 2020177680A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data
control information
transmission priority
downlink control
Prior art date
Application number
PCT/CN2020/077559
Other languages
English (en)
French (fr)
Inventor
焦淑蓉
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20766017.6A priority Critical patent/EP3923653A4/en
Publication of WO2020177680A1 publication Critical patent/WO2020177680A1/zh
Priority to US17/466,635 priority patent/US11968707B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication, and in particular to a communication method and communication device.
  • 5G mobile communication systems need to support enhanced mobile broadband (eMBB) services, ultra-reliable and low-latency communications (URLLC) services, and massive machine type communications (mMTC) services .
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • eMBB services include: ultra-high-definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main characteristics of these services are large transmission data volume and high transmission rate.
  • Typical URLLC services include wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and unmanned aircraft, and tactile interaction applications such as remote repairs and remote surgery.
  • the main feature of these services is ultra-high reliability. , Low latency, less data transmission and bursty. In some emergency situations, URLLC services may preempt eMBB service transmission resources.
  • a method to meet the data transmission requirements of the URLLC service and eMBB service at the same time is to indicate the preempted resources through pre-emption indication (PI) or terminal transmission indication (interrupted transmission indication, INT) in order to support the eMBB service.
  • the communication device adopts corresponding measures (for example, retransmission) to deal with this situation.
  • the equipment supporting the URLLC service will also receive PI or INT.
  • the equipment supporting the URLLC service cannot determine the resources used by the URLLC service. Whether it is preempted by other devices, which may cause communication failure.
  • the present application provides a communication method and communication device.
  • the network device clearly indicates the transmission priority of data that can be carried on the scheduled transmission resource through indication information, so that the terminal device can determine whether it can use the scheduled transmission resource. This reduces the probability of communication failure due to resource preemption in a scenario where data of at least three transmission priorities coexist.
  • a communication method including: receiving high-level messages, configuring transmission resources for the high-level messages, and the transmission resources can transmit data of at least three transmission priorities; receiving first downlink control information, first downlink control information Indicate the first transmission resource in the transmission resource; receive the second downlink control information, and the second downlink control information indicates the transmission priority corresponding to the second transmission resource in the transmission resource from at least three transmission priorities; the data to be transmitted is In the case of uplink data, determine whether to send uplink data on the overlapping resources of the first transmission resource and the second transmission resource according to the transmission priority of the uplink data and the transmission priority indicated by the second downlink control information; and/or When the transmission data is downlink data, it is determined whether there is downlink data on the overlapping resources of the first transmission resource and the second transmission resource according to the transmission priority of the downlink data and the transmission priority indicated by the second downlink control information.
  • the second downlink control information clearly indicates the transmission priority of the data that the second transmission resource can carry.
  • the terminal device can determine without any doubt Whether the uplink data is sent on the above-mentioned overlapping resources, and/or the terminal device can unambiguously determine whether there is downlink data on the overlapping resources, thereby reducing the coexistence of data with at least three transmission priorities due to resource preemption The probability of communication failure.
  • the determining whether to send uplink data on the overlapping resources of the first transmission resource and the second transmission resource according to the transmission priority of the uplink data and the transmission priority indicated by the second downlink control information includes: When the transmission priority belongs to the transmission priority indicated by the second downlink control information, the uplink data is determined to be sent on the overlapping resource; or, when the transmission priority of the uplink data does not belong to the transmission priority indicated by the second downlink control information, it is determined not to Send uplink data on overlapping resources.
  • the terminal device When the terminal device determines that the overlapping resource can be used, it can choose to send uplink data on the overlapping resource. When the terminal device determines that the overlapping resource cannot be used, it can give up sending the uplink data, or it can use other transmission resources (for example, the above-mentioned uplink data can be transmitted). Transmission resources). Therefore, the foregoing implementation manner can avoid mutual interference between data of different transmission priorities when there are at least three transmission priority data in the communication system.
  • the determining whether there is downlink data on the overlapping resources of the first transmission resource and the second transmission resource according to the transmission priority of the downlink data and the transmission priority indicated by the second downlink control information includes: when the downlink data is transmitted When the priority belongs to the transmission priority indicated by the second downlink control information, it is determined that there is downlink data on the overlapping resource; or, when the transmission priority of the downlink data does not belong to the transmission priority indicated by the second downlink control information, it is determined that the overlapping resource is There is no downstream data.
  • the terminal device When the terminal device determines that the overlapping resource can carry downlink data, it can choose to detect the downlink data on the overlapping resource; when the terminal device determines that the overlapping resource cannot carry the downlink data, it can abandon the detection of downlink data on the overlapping resource. Therefore, the above-mentioned embodiments can reduce the power consumption of the terminal device.
  • the method further includes: when downlink data exists on the overlapping resource, receiving downlink data on the overlapping resource; or, when there is no downlink data on the overlapping resource, not receiving downlink data on the overlapping resource.
  • the terminal device may give up receiving downlink data, or may receive downlink data on other transmission resources (for example, transmission resources capable of transmitting the aforementioned downlink data) based on the scheduling information of the network device. Therefore, the terminal device can flexibly select a communication mode based on the above solution.
  • the transmission priority indicated by the second downlink control information is only one of the at least three transmission priorities.
  • a second downlink control information only needs to indicate whether data of one transmission priority can be transmitted on the second transmission resource, the information indicating the transmission priority in the second downlink control information only needs to occupy one bit, thereby reducing Information overhead.
  • the receiving the second downlink control information includes: receiving the second downlink control information according to the transmission priority of the uplink data, and the transmission priority indicated by the second downlink control information is the transmission priority of the uplink data; and/or , Receiving the second downlink control information according to the transmission priority of the downlink data, and the transmission priority indicated by the second downlink control information is the transmission priority of the downlink data.
  • the terminal device may also monitor the corresponding second indication information according to the transmission priority of the data to be transmitted, which reduces the number of monitoring of the second indication information.
  • the transmission priority indicated by the second downlink control information is not the highest priority.
  • the network device may not send the second downlink control information indicating the highest priority, namely The transmission priority indicated by the second downlink control information is not the highest priority, and the terminal device that sends and/or receives the highest priority data does not need to monitor the second downlink control information, thereby reducing the power consumption of the terminal device.
  • the method further includes: receiving third indication information, where the third indication information is used to indicate the transmission priority of the data to be transmitted.
  • the transmission priority of uplink data and/or the transmission priority of downlink data may be dynamically determined based on the third indication information, which can make the transmission priority of uplink data and/or the transmission priority of downlink data more match the actual situation. For example, when the transmission of uplink data fails due to multiple preemption of resources, the network device may increase the transmission priority of the uplink data through the third indication information.
  • the foregoing third indication information may be carried in downlink control information, for example.
  • the third indication information may also be carried in a high-level message.
  • the transmission priority can be directly configured through a high-level message, or the service transmission quality requirements and transmission channel priority can be indicated implicitly through a high-level message. The transmission priority supported by this terminal device.
  • the first downlink control information indicates the transmission priority of the data to be transmitted through the code block group transmission information (CBGTI) field, or A downlink control information indicates the transmission priority of the data to be transmitted through the combination of the CBGTI field and the code block group flushing out information (CBGFI) field.
  • CBGTI code block group transmission information
  • CBGFI code block group flushing out information
  • CBGTI and CBGFI have no meaning in the initial transmission process. Therefore, the CBGTI field and CBGFI field in the initial transmission process can be used to indicate the transmission priority of uplink data and/or the transmission priority of downlink data.
  • the foregoing solution reuses existing fields without adding new fields, thereby reducing the information overhead indicating the transmission priority of the data to be transmitted.
  • this application provides another communication method, which includes: sending a high-level message, configuring a transmission resource for the high-level message, and the transmission resource can transmit data of at least three transmission priorities; sending the first downlink control information, the first download Row control information is used to indicate the first transmission resource in the transmission resource; to send second downlink control information, the second downlink control information is used to indicate the transmission priority corresponding to the second transmission resource in the transmission resource from at least three transmission priorities level.
  • the second downlink control information clearly indicates the transmission priority of the data that the second transmission resource can carry.
  • the terminal device can determine the uplink data without any doubt. Can it be sent on the overlapping resources of the first transmission resource and the second transmission resource, and/or the terminal device can unambiguously determine whether there is downlink data on the overlapping resources of the first transmission resource and the second transmission resource, thereby reducing In a scenario where data of at least three transmission priorities coexist, the probability of communication failure due to resource preemption is reduced.
  • the transmission priority indicated by the second downlink control information is only one of the at least three transmission priorities.
  • the network device may configure one second downlink control information for each type of transmission priority data. In this way, the network device may flexibly configure the sending period of the second downlink control information according to the different transmission priority.
  • the transmission priority indicated by the second downlink control information is not the highest priority.
  • the network device may not send the second downlink control information indicating the highest priority. Thereby reducing the information overhead of network equipment.
  • the method further includes: sending third indication information, where the third indication information is used to indicate the transmission priority of the data to be transmitted.
  • the transmission priority of uplink data and/or the transmission priority of downlink data may be dynamically determined based on the third indication information, which can make the transmission priority of uplink data and/or the transmission priority of downlink data more match the actual situation. For example, when the transmission of uplink data fails due to multiple preemption of resources, the network device can increase the transmission priority of the uplink data through the indication information.
  • the foregoing indication information may be carried in downlink control information, for example.
  • the transmission priority can be directly configured through high-level messages, or implicitly through other high-level messages (such as service transmission quality requirements, transmission channel priority, etc.)
  • the ground corresponds to the transmission priority supported by the terminal device, that is, the third indication information may also be carried in a high-level message.
  • the first downlink control information indicates the transmission priority of the data to be transmitted through the CBGTI field, or the first downlink control information indicates the transmission priority of the data to be transmitted through the combination of the CBGTI field and the CBGFI field. level.
  • CBGTI and CBGFI have no meaning in the initial transmission process. Therefore, the CBGTI field and CBGFI field in the initial transmission process can be used to indicate the transmission priority of uplink data and/or the transmission priority of downlink data.
  • the foregoing solution reuses existing fields without adding new fields, thereby reducing the information overhead indicating the transmission priority of the data to be transmitted.
  • the present application provides a communication device that can implement the functions corresponding to the method involved in the above-mentioned first aspect.
  • the functions can be implemented by hardware or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the device includes a processor, and the processor is configured to support the device to execute the method involved in the first aspect.
  • the device may also include a memory for coupling with the processor and storing programs and data.
  • the device further includes a transceiver, which is used to support communication between the device and the network device.
  • the transceiver may include an independent receiver and an independent transmitter, or the transceiver may include a circuit with integrated transceiver functions.
  • the present application provides another communication device, which can implement the functions corresponding to the method involved in the second aspect above.
  • the functions can be implemented by hardware or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the device includes a processor, and the processor is configured to support the device to execute the method involved in the second aspect.
  • the device may also include a memory for coupling with the processor and storing programs and data.
  • the device further includes a transceiver, which is used to support communication between the device and the terminal device.
  • the transceiver may include an independent receiver and an independent transmitter, or the transceiver may include a circuit with integrated transceiver functions.
  • the present application provides a computer-readable storage medium in which a computer program is stored.
  • the processor executes the method described in the first aspect.
  • the present application provides a computer-readable storage medium in which a computer program is stored.
  • the processor executes the method described in the second aspect.
  • the present application provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed by a processor, the processor executes the method described in the first aspect.
  • this application provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed by a processor, the processor executes the method described in the second aspect.
  • Figure 1 is a schematic diagram of a communication system suitable for the present application
  • Figure 2 is a schematic diagram of a resource preemption scenario
  • Fig. 3 is a schematic diagram of a communication method provided by the present application.
  • Figure 4 is a schematic diagram of a way of dividing downlink reference resources
  • Fig. 5 is a schematic diagram of another way of dividing downlink reference resources
  • Fig. 6 is a schematic diagram of a communication device provided by the present application.
  • FIG. 7 is a schematic diagram of a terminal device provided by this application.
  • Fig. 8 is a schematic diagram of a network device provided by the present application.
  • FIG. 1 is a schematic diagram of a communication system suitable for this application.
  • the communication system 100 includes a network device 110, a terminal device 120, and a terminal device 130.
  • the terminal device 120 communicates with the network device 110 through electromagnetic waves
  • the terminal device 130 communicates with the network device 110 through electromagnetic waves
  • the terminal device 120 and the terminal device 130 can also communicate through electromagnetic waves.
  • the terminal device 120 and the terminal device 130 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, for example, third-generation partners Project (3 rd generation partnership project, 3GPP) defined user equipment (user equipment, UE), mobile station (mobile station, MS), soft terminal, home gateway, set-top box, etc.
  • 3GPP third-generation partners Project
  • UE user equipment
  • MS mobile station
  • soft terminal home gateway
  • set-top box set-top box
  • the network device 110 may be a base station defined by 3GPP, for example, a base station (gNB) in a 5G communication system.
  • the network device 110 may also be a non-3GPP (non-3GPP) access network device, such as an access gateway (AGF).
  • Network devices can also be relay stations, access points, vehicle-mounted devices, wearable devices, and other types of devices.
  • the terminal device 120 and the terminal device 130 may transmit the same type of data, or may transmit different types of data.
  • the terminal device 120 and the terminal device 130 transmit different types of data, as an optional example, the terminal device 120 transmits eMBB service data packets (referred to as "eMBB data"), and the terminal device 130 transmits URLLC service data packets ( Referred to as "URLLC Data").
  • a longer time scheduling unit is usually used for data transmission to improve transmission efficiency.
  • a time slot with a subcarrier interval of 15 kHz is used for transmission.
  • the time length of this time slot is 1 ms, corresponding to 14 time domain symbols.
  • URLLC data is usually transmitted using a shorter time scheduling unit to meet the ultra-short delay requirements of URLLC services.
  • a time slot with a subcarrier interval of 60 kHz is used for transmission, and the time length of the time slot is 0.25 ms. Corresponds to 14 time domain symbols.
  • the generation of data packets of the URLLC service is bursty and random, and may not generate data packets for a long period of time, or may generate multiple data packets in a short period of time.
  • the data packet of the URLLC service is a small packet in most cases, for example, 50 bytes.
  • the characteristics of the data packet of the URLLC service will affect the transmission resource allocation method of the communication system.
  • the transmission resources here include, but are not limited to: frequency domain resources, time-frequency resources, code domain resources, and space domain resources (for example, signal reception angle of arrival, signal departure angle, etc., signal phase).
  • the allocation of transmission resources is completed by the network device 110.
  • the network device 110 allocates resources for the URLLC service by reserving resources, the transmission resources are in an idle state when there is no URLLC service, which causes a waste of transmission resources.
  • the short delay characteristic of the URLLC service requires that the data packet be transmitted in a short time (for example, the delay is less than 0.5ms), so the network device 110 needs to reserve enough bandwidth for the URLLC service, which leads to the transmission of the communication system 100 The resource utilization rate has severely declined.
  • the network device 110 In order to improve the utilization of transmission resources, the network device 110 generally does not reserve resources for the downlink transmission of the URLLC service. In order to meet the ultra-short latency requirements of URLLC services, when URLLC data arrives at the network device 110, if there are no free transmission resources at this time, the network device 110 cannot wait for the eMBB data currently occupying the transmission resources to complete before scheduling the URLLC data.
  • the network device 110 can allocate resources for the URLLC data in a pre-emption manner. As shown in Figure 2, the preemption here means that the network device 110 selects part or all of the time-frequency resources allocated for the transmission of eMBB data to transmit URLLC data, and the network device 110 is not used for transmission. Send eMBB data on the time-frequency resource of URLLC data.
  • the URLLC data grabbing the eMBB data transmission resource will seriously deteriorate the service quality of the eMBB user (for example, the terminal device 120). Therefore, it is necessary to consider how to reduce the impact of preemption on eMBB users.
  • One solution is to send an additional instruction message to inform the eMBB user that the resources that are preempted are those, so that the eMBB user can decode from the cache when the resources received from the preempted resources do not belong to Clear your own data to reduce the interference caused by URLLC data on decoding.
  • the present application provides a communication method 300.
  • the communication method 300 can be applied to the communication system shown in FIG. 1, for example, it can be executed by the terminal device 120 or the terminal device 130, or by the chip or chip in the terminal device 120.
  • the chip in the terminal device 130 executes.
  • the method 300 includes:
  • the high-level message is received, and the high-level message configures transmission resources, and the transmission resources can transmit data of at least three transmission priorities.
  • the high-level message may be, for example, a radio resource control (radio resource control, RRC) message or a media access control (media access control, MAC) layer message.
  • RRC radio resource control
  • MAC media access control
  • the network equipment can send the above-mentioned high-level messages through the downlink channel.
  • the downlink channel can be a physical downlink shared channel (PDSCH) or other types of downlink channels. This application does not limit how the network equipment sends high-level messages.
  • PDSCH physical downlink shared channel
  • the transmission resource configured by the high-level message can be divided into multiple sub-resources.
  • the transmission resource includes a first transmission resource and a second transmission resource.
  • the first transmission resource and the second transmission resource may partially overlap, or all overlap, or Does not overlap.
  • the transmission priority of the data that can be transmitted by the first transmission resource and the second transmission resource may be the same or different.
  • the first transmission resource can transmit data of one type of transmission priority, or can transmit data of two or more transmission priorities
  • the second transmission resource can transmit data of one type of transmission priority, or can transmit two types of data. Data of one or more transmission priorities.
  • the network device may indicate the transmission priority of the data that can be transmitted by each resource through the indication information. For example, the network device may send first indication information to the terminal device, the first indication information indicating the transmission priority corresponding to the first transmission resource.
  • the first indication information may be a certain field in the high-level message, or may be an independent message.
  • the "transmission priority" in this application can also be replaced with "type".
  • the types of data mainly include eMBB data and URLLC data.
  • the transmission priority of URLLC data is higher than that of eMBB data.
  • the above-mentioned "transmission priority" can also be divided according to the urgency of the data. For example, for URLLC data, the transmission priority of URLLC data with higher urgency is higher than URLLC data with lower urgency.
  • the above transmission priority can be interpreted as the order of using transmission resources.
  • High-priority data can use transmission resources first; high-priority data can preempt transmission resources that have been allocated to low-priority data, while low-priority data cannot preempt transmission resources that have been allocated to high-priority data.
  • the foregoing transmission priority may specifically be a physical channel priority in the physical layer, indicating the priority of occupying physical resources, and at least one bit of the DCI may be used to indicate the priority of the physical channel.
  • the foregoing transmission priority may specifically be a logical channel priority (logical channel priority, LCP) in the MAC layer, where the logical channel priority may have a corresponding relationship with the physical channel priority.
  • the transmission priority may be identified by a radio network temporary identifier (RNTI) used to scramble the DCI and specific to this transmission priority.
  • RNTI radio network temporary identifier
  • the DCI received by the terminal equipment using URLLC-RNTI indicates that this DCI is used for scheduling such higher priority URLLC data
  • the terminal equipment using the DCI received by eMBB-RNTI indicates that this DCI is used for scheduling such Lower priority eMBB data.
  • the transmission priority may also be identified through a DCI transmission format specific to this transmission priority.
  • the transmission priority can also be identified by a data transmission mode, a data transmission length, or a modulation and coding mode used for data transmission.
  • the data transmission method can be Type A or Type B defined in the existing NR system. Among them, type A indicates that the PUSCH or PDSCH carrying data is transmitted from the first three time domain symbols of a time slot, and type B indicates that the PUSCH or PDSCH can be transmitted from any symbol of a time slot. If the transmission mode is type A, it indicates that the data transmission priority is higher (applicable to URLLC data); if the transmission mode is type B, it indicates that the data transmission priority is lower (applicable to eMBB data).
  • the transmission priority can also be identified by the length of the data transmission time. If the duration of the PDSCH or PUSCH carrying data (the number of time-domain symbols occupied by the PDSCH/PUSCH) is shorter, the transmission priority is higher (applicable to URLLC data).
  • the transmission priority can also be identified by the modulation and coding method used during data transmission. If the modulation and coding method used for the transmission of the PDSCH or PUSCH carrying data is a lower code rate, the transmission priority is higher (applicable to URLLC data); if the adjustment coding method is a higher code rate, then The transmission priority is lower (applicable to eMBB data).
  • the terminal equipment can clarify the current data transmission according to the physical channel priority, logical channel priority of the data, RNTI of scrambled DCI, DCI transmission format, data transmission mode, data transmission length or modulation and coding mode used for data transmission. priority.
  • the data of the three transmission priorities may be eMBB data, first URLLC data, and second URLLC data.
  • eMBB data has the lowest transmission priority
  • the second The transmission priority of URLLC data is the highest
  • the transmission priority of the first URLLC data is between the transmission priority of eMBB data and the transmission priority of the second URLLC data.
  • the first transmission resource used to send the data and/or receive the data can be determined according to the following steps.
  • S320 Receive first downlink control information (downlink control information, DCI), where the first DCI indicates a first transmission resource among the transmission resources.
  • DCI downlink control information
  • the first transmission resource is used to transmit the data to be transmitted.
  • the data to be transmitted can be uplink data or downlink data.
  • the transmission priority of the data to be transmitted can be indicated by the network device through a high-level message, or it can be passed by the network device.
  • the first DCI indicates.
  • the network device may send the first DCI through a physical downlink control channel (PDCCH), and may also send the first DCI through other downlink channels.
  • PDCCH physical downlink control channel
  • the terminal device may start to detect the second DCI after receiving the first DCI to determine whether the first transmission resource can carry the data to be transmitted. That is, S330 is executed.
  • S330 Receive a second DCI, where the second DCI indicates the transmission priority corresponding to the second transmission resource among the transmission resources from at least three transmission priorities.
  • the second DCI is used to indicate the transmission priority corresponding to the second transmission resource. If the terminal device does not receive the second DCI, it may continue to send data to be sent and/or receive data to be received. This application does not limit whether the terminal device performs data transmission during the process of detecting the second DCI, and this application does not limit whether the terminal device performs data reception (or "detection") during the process of detecting the second DCI.
  • the terminal device can also detect the second DCI based on the transmission period of the second DCI configured by the network device, without having to consider whether the first DCI is received or whether the first DCI is successfully decoded. Compared with receiving the first DCI, Starting to detect the second DCI solution, this solution slightly increases the power consumption of the terminal device, but can ensure that the second DCI is received in time, thereby avoiding the situation that the high priority data transmission fails due to the preemption of high priority data transmission resources.
  • the second DCI may indicate the transmission priority corresponding to the second transmission resource through independent indication information, for example, indicate different transmission priorities through different values of two bits; the second DCI may also be a specific state of other information, For example, different radio network temporary identities (RNTI) or different search spaces (search spaces, SS) are used to distinguish the status of 1 bit, and the status of 1 bit is used to indicate that the second transmission resource can carry The priority of the data transmission.
  • RNTI radio network temporary identities
  • SS search spaces
  • the transmission priority indicated by the second DCI may be the same as the transmission priority of the data to be transmitted, or may be different from the transmission priority of the data to be transmitted.
  • the transmission priority indicated by the second DCI can be the transmission priority corresponding to eMBB, the transmission priority corresponding to the first URLLC, or the transmission priority corresponding to the first URLLC and the second URLLC.
  • the transmission priority may also be the transmission priority corresponding to the eMBB, the first URLLC, and the second URLLC.
  • the data to be transmitted are the first URLLC and the second URLLC
  • the transmission priority indicated by the second DCI may be the first URLLC, or the first URLLC and the second URLLC.
  • the information indicating the transmission priority in the second DCI may have different forms.
  • possible forms of the second indication information will be illustrated with examples, but the following examples should not be construed as limiting the second indication information.
  • the network device may use 2 bits as the second indication information to indicate the transmission priority of data that cannot be carried on the second transmission resource.
  • the corresponding relationship between the value of the 2 bits and the indicated transmission priority is shown in Table 1.
  • the second indication information indicates that the second transmission resource cannot carry data of transmission priority 2, data of transmission priority 3, and data of transmission priority 4, that is, the first 2.
  • the transmission priority of the data carried by the transmission resource cannot be equal to or lower than the transmission priority 2.
  • the second indication information indicates that the second transmission resource cannot carry the data of transmission priority 3 and the data of transmission priority 4, that is, the value of the data carried by the second transmission resource
  • the transmission priority cannot be equal to or lower than the transmission priority 3.
  • the second indication information indicates that the second transmission resource cannot carry data of transmission priority 4, that is, the transmission priority of the data carried by the second transmission resource cannot be equal to or lower than At transmission priority 4.
  • the second indication information indicates that the transmission priority of the data that cannot be carried on the second transmission resource does not exist, that is, the second transmission resource can carry the data with the lowest transmission priority.
  • the data of transmission priority 1 When the data of transmission priority 1 exists, the data of transmission priority 1 will definitely preempt the transmission resources of other transmission priority data. Therefore, the data with the highest transmission priority does not require the second indication information to indicate whether it can be sent.
  • Another possible form of the second indication information is
  • the network device may use 2 bits as the second indication information to indicate the transmission priority of the data that can be carried on the second transmission resource.
  • the corresponding relationship between the value of the 2 bits and the indicated transmission priority is shown in Table 2.
  • the second indication information indicates that the data with the lowest transmission priority that can be carried on the second transmission resource is the data of transmission priority 1, that is, the data carried by the second transmission resource
  • the transmission priority of must be greater than or equal to transmission priority 1.
  • the second indication information indicates that the data with the lowest transmission priority that can be carried on the second transmission resource is the data of transmission priority 2, that is, the data carried by the second transmission resource
  • the transmission priority needs to be greater than or equal to transmission priority 2.
  • the second indication information indicates that the data with the lowest transmission priority that can be carried on the second transmission resource is the data of transmission priority 3, that is, the data carried by the second transmission resource
  • the transmission priority needs to be greater than or equal to transmission priority 3.
  • the second indication information indicates that the data with the lowest transmission priority that can be carried on the second transmission resource is the data of transmission priority 4, that is, the data carried by the second transmission resource
  • the transmission priority of must be greater than or equal to transmission priority 4, or the transmission resource can carry the data with the lowest transmission priority.
  • the above second indication information can indicate data of at least one transmission priority that can be carried by the second transmission resource (that is, at least one transmission priority corresponding to the second transmission resource).
  • This application also provides another type of second indication information.
  • the second indication information can only indicate one transmission priority.
  • the network may send multiple second indication information corresponding to different transmission priorities. The transmission priority determines the second indication information that needs to be monitored.
  • the transmission priority of the data to be sent on the first transmission resource is transmission priority 3.
  • the terminal device may only listen to the second indication information corresponding to transmission priority 3, if the second indication information corresponding to transmission priority 3 is received , It is determined that there is data of higher transmission priority on the second transmission resource; if the second indication information corresponding to transmission priority 3 is not received, it is determined that there is no data of higher transmission priority on the second transmission resource.
  • the terminal device may also determine the second indication information that needs to be monitored according to the transmission priority of the data to be received.
  • the network device may configure different sending periods for different second indication information according to service characteristics, so that the second indication information may be sent more flexibly.
  • eMBB service usually occupies a large amount of resources, and the network device can configure a longer sending period for the second indication information corresponding to the eMBB service;
  • URLLC service usually occupies relatively small resources, and the network device can be the second indication corresponding to the URLLC service The information is configured with a shorter sending cycle.
  • the second indication information can be represented by 1 bit, and the value of this 1 bit indicates whether the second transmission resource can carry a transmission priority
  • the network equipment and terminal equipment can distinguish different second indication information through RNTI or SS. Therefore, this solution reduces the data amount of the second indication information.
  • the network device may not send the second indication information indicating the highest priority. That is, the transmission priority indicated by the second indication information is not the highest priority, and the terminal device sending and/or receiving the highest transmission priority data does not need to monitor the second indication information, thereby reducing the power consumption of the terminal device.
  • the above-mentioned scenarios are all scenarios of one transmission resource.
  • the network device may also divide one transmission resource into multiple sub-resources, and indicate the transmission priority of the data that each sub-resource can carry through the second indication information.
  • eMBB data and URLLC data can be transmitted through a reference downlink resource (RDR), and the network device can configure the time domain and frequency domain of the RDR, and configure the RDR division method at the same time, as shown in Figure 4 and Figure 5. Two divisions of RDR are shown separately.
  • RDR reference downlink resource
  • the time domain of the RDR is divided into 14 parts, and the frequency domain is not divided. In this way, the RDR is divided into 14 sub-resources.
  • the network device can send the second indication information containing 28 bits. Two bits indicate the transmission priority of data that can be carried by one sub-resource.
  • the first transmission resource may be part or all of the 14 sub-resources, and the second transmission resource may also be part or all of the 14 sub-resources.
  • the time domain of the RDR is divided into 7 parts, and the frequency domain is divided into 2 parts. In this way, the RDR is divided into 14 sub-resources.
  • the network device can send 28 bits of second indication information. Every two bits in the middle indicate the transmission priority of data that can be carried by one sub-resource.
  • the first transmission resource may be part or all of the 28 sub-resources
  • the second transmission resource may also be part or all of the 28 sub-resources.
  • S340 After the terminal device receives the second indication information, if there are overlapping resources between the first transmission resource and the second transmission resource, S340 may be performed.
  • S340 When the data to be transmitted is uplink data, determine whether to send uplink data on the overlapping resources of the first transmission resource and the second transmission resource according to the transmission priority of the uplink data and the second DCI; and/or When the transmission data is downlink data, it is determined whether there is downlink data on the overlapping resources of the first transmission resource and the second transmission resource according to the transmission priority of the downlink data and the second DCI.
  • the terminal device may only be in the sending state, that is, the terminal device is ready to send uplink data of the first transmission priority or is sending uplink data of the first transmission priority; the terminal device may also be only in the receiving state, that is, the terminal device is ready to detect the first transmission priority.
  • the downlink data of a transmission priority or the downlink data of the first transmission priority is being detected; the terminal device can also be in the sending state and the receiving state at the same time, that is, the terminal device is ready to send the uplink data of the first transmission priority or is sending the first transmission priority.
  • the uplink data of the transmission priority is transmitted, and the terminal device is ready to detect the downlink data of the first transmission priority or is detecting the downlink data of the first transmission priority.
  • the aforementioned "determining whether there is downlink data on the overlapping resource” may be interpreted as: the terminal device determines whether the wireless communication device sending the "downlink data” will send the "downlink data" on the overlapping resource.
  • the method 300 provided in this application can clearly indicate which transmission priority data can use the scheduled or configured transmission resources, so that the application method 300 can
  • the terminal device can clearly know whether the data to be sent is sent on the above-mentioned transmission resource, and/or, so that the terminal device applying the method 300 can clearly know whether the data to be received exists, thereby solving the coexistence of three or more services. How to communicate in the communication scene.
  • S340 may include the following steps:
  • the uplink data is sent on the overlapping resource; or,
  • the uplink data is not sent on the overlapping resources.
  • the terminal device stops sending the uplink data. If the first transmission resource partially overlaps with the second transmission resource, and the transmission priority of the uplink data on the first transmission resource is lower than the transmission priority corresponding to the second transmission resource, the terminal device can stop on the overlapped partial resources Send uplink data, and can continue to send uplink data or stop sending uplink data on non-overlapping resources. If the transmission priority of the uplink data on the first transmission resource is higher than or equal to the transmission priority corresponding to the second transmission resource, the terminal device can continue to send the uplink regardless of the overlap between the first transmission resource and the second transmission resource. data.
  • the transmission priority of uplink data is the first transmission priority
  • the second indication information indicates that the transmission priority of the data that can be carried by the second transmission resource is the first transmission priority and the second transmission priority
  • the transmission of uplink data is prioritized
  • the level belongs to the transmission priority indicated by the second indication information. Therefore, the terminal device can send uplink data on the overlapping resource.
  • the transmission priority of uplink data is the first transmission priority
  • the second indication information indicates that the transmission priority of data that can be carried by the second transmission resource is the second transmission priority
  • the transmission priority of uplink data does not belong to the second transmission priority.
  • the transmission priority indicated by the indication information therefore, the terminal device may not send uplink data on overlapping resources.
  • do not send uplink data on overlapping resources can have two interpretations: one is that the terminal device has not sent uplink data, and no longer sends uplink data on the overlapping resource according to the second indication information; the other is, The terminal device is sending uplink data, and stops sending the data to be sent on the overlapping resource according to the second indication information.
  • the terminal device After the terminal device does not send the data to be sent on the overlapping resources, it may give up sending the data to be sent, or may send the uplink data on other transmission resources (for example, the transmission resource capable of transmitting the above-mentioned uplink data).
  • the foregoing embodiments can meet the transmission requirements of data of different transmission priorities when there are at least three transmission priority data in the communication system, and avoid mutual interference between data of different transmission priorities.
  • S340 may further include the following steps:
  • the transmission priority of the downlink data belongs to the transmission priority indicated by the second DCI, it is determined that there is downlink data on the overlapping resource; or,
  • the transmission priority of the downlink data does not belong to the transmission priority indicated by the second DCI, it is determined that there is no downlink data on the overlapping resource.
  • the transmission priority of the downlink data is the first transmission priority
  • the second indication information indicates that the transmission priority of the data that the second transmission resource can carry is the first transmission priority and the second transmission priority
  • the transmission priority of the downlink data is The level belongs to the transmission priority indicated by the second indication information. Therefore, the terminal device determines that there is downlink data on the foregoing overlapping resource.
  • the transmission priority of the downlink data is the first transmission priority
  • the second indication information indicates that the transmission priority of the data that can be carried by the second transmission resource is the second transmission priority
  • the transmission priority of the downlink data does not belong to the second transmission priority.
  • the transmission priority indicated by the indication information therefore, the terminal device determines that there is no downlink data on the foregoing overlapping resources.
  • the terminal device When the terminal device determines that there is downlink data on the overlapping resource, it can choose to detect the downlink data on the overlapping resource; when the terminal device determines that there is no downlink data on the overlapping resource, it can abandon detecting downlink data on the overlapping resource. Therefore, the above-mentioned embodiments can reduce the power consumption of the terminal device.
  • the terminal device can give up receiving downlink data, or can receive downlink data on other transmission resources (for example, transmission resources capable of transmitting the aforementioned downlink data) based on the scheduling information of the network device . Therefore, the terminal device can flexibly select a communication mode based on the above solution.
  • the communication method based on the transmission priority of the data to be transmitted is described above.
  • the terminal device can determine the transmission priority of the data to be transmitted according to the instructions of the network device, that is, the network device can send the third instruction information to the terminal device.
  • the information is used to indicate the transmission priority of the data to be transmitted.
  • the third indication information may be the service level indication field in the high-level message, or may be a field in the first DCI. This application does not limit the specific form and sending mode of the third indication information.
  • the third indication information may be code block group transmission information (CBGTI), or CBGTI and code block group flushing out information (CBGFI), that is
  • CBGTI code block group transmission information
  • CBGFI code block group flushing out information
  • the network equipment needs to divide the TB into multiple code blocks (CB), and then encode each CB and send it to the terminal equipment.
  • the terminal device decodes each received CB, and when there is a CB decoding error, it sends a negative acknowledgement (NACK) to the network device to request the network device to retransmit the data of the TB.
  • NACK negative acknowledgement
  • CB is further divided into several code block groups (CBG).
  • the terminal device can indicate which CBG decoding error of the network device is wrong, so that the network device only Transmit the incorrectly decoded CBG to improve the retransmission efficiency.
  • the network equipment will configure the number P of CBGs for the terminal equipment, and the terminal equipment divides the TB into P CBGs according to the number P of CBGs.
  • the physical layer indication for scheduling data transmission includes a CBGTI field (P bits in total), which is used to indicate which CBG is currently being transmitted.
  • CBGTI field P bits in total
  • the CBGTI field has no substantial effect; and during retransmission, the P bits of the CBGTI field correspond to the P CBGs, and one bit is set to "1". "Indicates that the CBG is transmitted this time, and the bit is set to "0" to indicate that the CBG is not transmitted this time.
  • eMBB data reception errors will be caused due to the influence of channel fading, interference, noise, etc.
  • the network device can send the eMBB data again by retransmitting the TB, eMBB users (ie, "receiving eMBB data The terminal equipment") can combine and decode different TBs of the same eMBB data transmitted twice or more. The more retransmissions, the higher the probability of successful decoding of the terminal equipment.
  • the transmission resources of eMBB data are preempted by URLLC data, transmission errors of some or all CBGs of eMBB data will occur.
  • the eMBB user does not receive the downlink preemption instruction, or an error occurs in the reception of the downlink preemption instruction, the eMBB user cannot determine that the CBG reception error of the eMBB data is caused by the preemption of the URLLC data, and the eMBB user is receiving the retransmission data Later, the retransmitted data and the previously received data will be combined and decoded in the traditional way. In this way, the URLLC data and eMBB data are combined and decoded. Not only can it not improve the probability of successful decoding, but on the contrary Will introduce more interference.
  • the NR system in addition to the CBGTI field, also introduces the CBGFI field.
  • This field has only 1 bit and is used to indicate whether the decoding buffer corresponding to the currently transmitted CBG needs to be cleared first, and then placed in the currently received CBG. If this CBG transmission is the first transmission, the information of the last TB in the decoding buffer will be cleared by default, so the CBGFI field at the first transmission is also useless.
  • the CBGTI domain and CBGFI domain have the following characteristics:
  • the CBGTI domain can be applied to uplink data transmission and downlink data transmission, and the CBGFI domain only exists in downlink data transmission;
  • the CBGTI domain and the CBGFI domain have no practical use during the initial transmission, but in order to ensure the same size of the DCI, in the R15 version of the NR protocol, once these two domains are configured, the initial transmission DCI will also carry these two domains.
  • the size of the CBGTI field is 2 bits or 4 bits or 6 bits or 8 bits. If the communication system is configured with the CBGTI field, at least 2 bits can be used, and the network device can use the 2 bits to indicate 4 transmission priority during initial transmission. level. If the communication system is configured with the CBGTI field and the CBGFI field, a maximum of 9 bits can be used, and the network device can use the 9 bits to indicate 512 transmission priorities during initial transmission.
  • the communication system is configured with a 2-bit CBGTI field, but there are only three types of transmission priority data in the communication system, and the protocol can be preset
  • the relationship between bit value and transmission priority can also be configured by the network.
  • the extra bits can be set to a fixed preset value during initial transmission (that is, the meaning of the preset value is known to both the sender and receiver), so that the terminal device can correctly receive the third indication information.
  • the communication system is configured with a 2-bit CBGTI field, but there are 5 types of transmission priority data in the communication system, and the network device can be configured with an additional Use 3 bits to indicate 5 transmission priorities.
  • This extra bit can be set to a fixed preset value during retransmission (that is, the network equipment and terminal equipment know the meaning of the preset value) to facilitate Avoid affecting retransmissions.
  • the CBGTI field is used to indicate which CBG is currently retransmitted
  • the CBGFI field is used to indicate the corresponding CBG currently retransmitted Whether the decoding buffer needs to be cleared first.
  • RNTI In addition to using the CBGTI and CBGFI fields to indicate the transmission priority of the data to be sent and the transmission priority of the data to be received, RNTI, SS configuration, or control resource set (CORESET) configuration can also be used to indicate the data to be sent The transmission priority and the transmission priority of the data to be received.
  • CORESET control resource set
  • the processing procedure of the network device corresponds to the processing procedure of the terminal device.
  • the terminal device receives information from the network device, which means that the network device sends the information.
  • the terminal device sends information to the network device, which means that the network device receives the information from the terminal device. Therefore, even if the processing procedure of the network device is not clearly stated in the above individual places, those skilled in the art can clearly understand the processing procedure of the network device based on the processing procedure of the terminal device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the present application may divide the communication device into functional units according to the foregoing method examples.
  • each function may be divided into each functional unit, or two or more functions may be integrated into one functional unit.
  • the communication device may include a processing unit for performing the determined action in the above method example, a receiving unit for implementing the receiving action in the above method example, and a sending unit for implementing the sending action in the above method example.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • Fig. 6 shows a schematic structural diagram of a communication device provided by the present application.
  • the communication device 600 may be used to implement the methods described in the foregoing method embodiments.
  • the communication device 600 may be a chip, a network device or a terminal device.
  • the communication device 600 includes one or more processors 601, and the one or more processors 601 can support the communication device 600 to implement the method in the method embodiment corresponding to FIG. 3.
  • the processor 601 may be a general-purpose processor or a special-purpose processor.
  • the processor 601 may be a central processing unit (CPU) or a baseband processor.
  • the baseband processor can be used to process communication data (for example, the first indication information described above), and the CPU can be used to control communication devices (for example, network equipment, terminal equipment, or chips), execute software programs, and process software Program data.
  • the communication device 600 may also include a transceiving unit 605 to implement signal input (reception) and output (transmission).
  • the communication device 600 may be a chip, and the transceiver unit 605 may be an input and/or output circuit of the chip, or the transceiver unit 605 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication. Components of equipment.
  • the communication device 600 may include one or more memories 602 with a program 604 stored thereon.
  • the program 604 can be run by the processor 601 to generate an instruction 603 so that the processor 601 executes the method described in the foregoing method embodiment according to the instruction 603.
  • data may also be stored in the memory 602.
  • the processor 601 may also read data stored in the memory 602 (for example, the data to be sent in the method 300).
  • the data may be stored at the same storage address as the program 604, and the data may also be stored with the program 604. In a different storage address.
  • the processor 601 and the memory 602 may be provided separately or integrated together, for example, integrated on a single board or a system-on-chip (SOC).
  • SOC system-on-chip
  • the communication device 600 may further include a transceiver unit 605 and an antenna 606.
  • the transceiver unit 605 may be called a transceiver, a transceiver circuit or a transceiver, and is used to implement the transceiver function of the communication device through the antenna 606.
  • the processor 601 is configured to send a high-level message, the first DCI, and the second DCI to the terminal device through the transceiver unit 605 and the antenna 606.
  • the processor 601 is configured to receive the high-level message, the first DCI, and the second DCI from the network device through the transceiver unit 605 and the antenna 606.
  • the processor 601 can be a CPU, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices , For example, discrete gates, transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • This application also provides a computer program product, which, when executed by the processor 601, implements the communication method described in any method embodiment in this application.
  • the computer program product may be stored in the memory 602, for example, a program 604.
  • the program 604 is finally converted into an executable object file that can be executed by the processor 601 through processing processes such as preprocessing, compilation, assembly, and linking.
  • This application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the communication method described in any method embodiment in this application is implemented.
  • the computer program can be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 602.
  • the memory 602 may be a volatile memory or a non-volatile memory, or the memory 602 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • FIG. 7 shows a schematic structural diagram of a terminal device provided in this application.
  • the terminal device 700 can be applied to the system shown in FIG. 1 to implement the functions of the terminal device in the foregoing method embodiment.
  • FIG. 7 only shows the main components of the terminal device.
  • the terminal device 700 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device.
  • the processor receives the first instruction information and the second instruction information through the antenna and the control circuit.
  • the memory is mainly used to store programs and data, such as storing communication protocols and data to be sent.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output device is, for example, a touch screen or a keyboard, and is mainly used to receive data input by the user and output data to the user.
  • the processor can read the program in the memory, interpret and execute the instructions contained in the program, and process the data in the program.
  • the processor performs baseband processing on the information to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal to obtain a radio frequency signal, and transmits the radio frequency signal to the antenna in the form of electromagnetic waves. Send outside.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into information And process the information.
  • FIG. 7 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be called a storage medium or a storage device, etc., which is not limited in this application.
  • the processor in FIG. 7 can integrate the functions of the baseband processor and the CPU.
  • the baseband processor and the CPU can also be independent processors, using technologies such as buses. interconnected.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple CPUs to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be referred to as a baseband processing circuit or a baseband processing chip.
  • the CPU may also be called a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or stored in the memory in the form of a program, and the processor executes the program in the memory to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function can be regarded as the transceiver unit 701 of the terminal device 700, which is used to support the terminal device to implement the receiving function in the method embodiment, or to support the terminal device to implement the method embodiment.
  • the processor with processing function is regarded as the processing unit 702 of the terminal device 700.
  • the terminal device 700 includes a transceiver unit 701 and a processing unit 702.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 701 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 701 can be regarded as the sending unit, that is, the transceiver unit 701 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 702 may be used to execute a program stored in the memory to control the transceiver unit 701 to receive signals and/or send signals, and complete the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 701 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 8 is a schematic structural diagram of a network device provided in this application, and the network device may be, for example, a base station.
  • the base station can be applied to the system as shown in FIG. 1 to realize the functions of the network equipment in the foregoing method embodiment.
  • the base station 800 may include one or more radio frequency units, such as a remote radio unit (RRU) 801 and at least one baseband unit (BBU) 802.
  • RRU remote radio unit
  • BBU baseband unit
  • the BBU 802 may include a distributed unit (DU), or may include a DU and a centralized unit (CU).
  • DU distributed unit
  • CU centralized unit
  • the RRU 801 may be called a transceiver unit, a transceiver, a transceiver circuit or a transceiver, and it may include at least one antenna 8011 and a radio frequency unit 8012.
  • the RRU801 is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for supporting the base station to implement the sending and receiving functions in the method embodiments.
  • BBU802 is mainly used for baseband processing and control of base stations.
  • the RRU801 and BBU802 can be physically set together, or physically separated, that is, a distributed base station.
  • the BBU802 can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU 802 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU802 can be composed of one or more single boards, and multiple single boards can jointly support a radio access network with a single access standard (for example, a long term evolution (LTE) network), and can also support different access standards. Wireless access network (such as LTE network and NR network).
  • the BBU 802 also includes a memory 8021 and a processor 8022.
  • the memory 8021 is used to store necessary instructions and data.
  • the memory 8021 stores various finger information in the foregoing method embodiments.
  • the processor 8022 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedures in the foregoing method embodiments.
  • the memory 8021 and the processor 8022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station shown in FIG. 8 is only an example, and the network equipment applicable to this application may also be an active antenna unit (AAU) in an active antenna system (AAS) .
  • AAU active antenna unit
  • AAS active antenna system
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three types of relationships. For example, A and/or B can mean that there is A alone, and both A and B exist. There are three cases of B.
  • the character “/” in this text generally indicates that the associated objects before and after are in an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法,网络设备通过指示信息明确指示已调度的传输资源上能够承载的数据的传输优先级,终端设备接收到该指示信息后,能够确定当前待发送数据能否在已调度的传输资源上发送,从而减小了至少三种传输优先级的数据共存的场景中因资源抢占导致通信失败的概率。终端设备还可以根据该指示信息确定已调度的传输资源上是否存在待接收的数据,若已调度的传输资源上不存在待接收数据,终端设备可以无需在已调度的传输资源上进行检测,从而减小了终端设备的功耗。

Description

通信方法和通信装置
本申请要求于2019年03月04日提交中国专利局、申请号为201910161416.4、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和通信装置。
背景技术
为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。5G移动通信系统需要支持增强型移动宽带(enhanced mobile broadband,eMBB)业务、高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务以及海量机器类通信(massive machine type communications,mMTC)业务。
不同业务对移动通信系统的需求不同。例如,典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是超高可靠性、低延时,传输数据量较少以及具有突发性。在一些紧急情况下,URLLC业务可能会抢占eMBB业务的传输资源。
一种同时满足URLLC业务和eMBB业务的数据传输需求的方法是通过抢占通知(pre-emption indication,PI)或者终端传输指示(interrupted transmission indication,INT)指示被抢占的资源,以便于支持eMBB业务的通信设备采用相应的措施(例如,重传)应对该情况。然而,在上述方案中,支持URLLC业务的设备也会收到PI或者INT,当通信系统中存在三种或三种以上传输优先级的数据时,支持URLLC业务的设备无法确定URLLC业务使用的资源是否被其它设备抢占,从而可能导致通信失败。
发明内容
本申请提供了一种通信方法和通信装置,网络设备通过指示信息明确指示已调度的传输资源上能够承载的数据的传输优先级,使得终端设备能够确定自己能否使用上述已调度的传输资源,从而减小了至少三种传输优先级的数据共存的场景中因资源抢占导致通信失败的概率。
第一方面,提供了一种通信方法,包括:接收高层消息,高层消息配置传输资源,传输资源能够传输至少三种传输优先级的数据;接收第一下行控制信息,第一下行控制信息指示传输资源中的第一传输资源;接收第二下行控制信息,第二下行控制信息从至少三种 传输优先级中指示传输资源中的第二传输资源对应的传输优先级;在待传输数据为上行数据的情况下,根据上行数据的传输优先级以及第二下行控制信息指示的传输优先级确定是否在第一传输资源和第二传输资源的重叠资源上发送上行数据;和/或,在待传输数据为下行数据的情况下,根据下行数据的传输优先级以及第二下行控制信息指示的传输优先级确定第一传输资源和第二传输资源的重叠资源上是否存在下行数据。
第二下行控制信息明确指示了第二传输资源能够承载的数据的传输优先级,相比于现有技术中仅能指示第二传输资源是否被抢占的通信方法,终端设备可以毫无疑义的确定上行数据是否在上述重叠资源上发送,和/或,终端设备可以毫无疑义的确定重叠资源上是否存在下行数据,从而减小了至少三种传输优先级的数据共存的场景中因资源抢占导致通信失败的概率。
可选地,所述根据上行数据的传输优先级以及第二下行控制信息指示的传输优先级确定是否在第一传输资源和第二传输资源的重叠资源上发送上行数据,包括:当上行数据的传输优先级属于第二下行控制信息指示的传输优先级时,确定在重叠资源上发送上行数据;或者,当上行数据的传输优先级不属于第二下行控制信息指示的传输优先级时,确定不在重叠资源上发送上行数据。
终端设备确定可以使用重叠资源时,可以选择在该重叠资源上发送上行数据,终端设备确定不可以使用重叠资源时,可以放弃发送上行数据,也可以在其它传输资源(例如,能够传输上述上行数据的传输资源)上发送上行数据。因此,上述实施方式能够避免通信系统中存在至少三种传输优先级的数据时不同传输优先级的数据之间的互相干扰。
可选地,所述根据下行数据的传输优先级以及第二下行控制信息指示的传输优先级确定第一传输资源和第二传输资源的重叠资源上是否存在下行数据,包括:当下行数据的传输优先级属于第二下行控制信息指示的传输优先级时,确定重叠资源上存在下行数据;或者,当下行数据的传输优先级不属于第二下行控制信息指示的传输优先级时,确定重叠资源上不存在下行数据。
终端设备确定重叠资源能够承载下行数据时,可以选择在该重叠资源上检测下行数据;终端设备确定重叠资源不能承载下行数据时,可以放弃在该重叠资源上检测下行数据。因此,上述实施方式能够减小终端设备的功耗。
可选地,所述方法还包括:当重叠资源上存在下行数据时,在重叠资源上接收下行数据;或者,当重叠资源上不存在下行数据时,不在重叠资源上接收下行数据。
若终端设备确定重叠资源上不存在下行数据,则终端设备可以放弃接收下行数据,也可以基于网络设备的调度信息在其它传输资源(例如,能够传输上述下行数据的传输资源)上接收下行数据。因此,终端设备可以基于上述方案灵活选择通信方式。
可选地,第二下行控制信息指示的传输优先级为至少三种传输优先级中的仅一种。
由于一个第二下行控制信息仅需指示一种传输优先级的数据能否在第二传输资源上传输,因此,第二下行控制信息中指示传输优先级的信息仅需占用一个比特,从而减少了信息开销。
可选地,所述接收第二下行控制信息,包括:根据上行数据的传输优先级接收第二下行控制信息,第二下行控制信息指示的传输优先级为上行数据的传输优先级;和/或,根据下行数据的传输优先级接收第二下行控制信息,第二下行控制信息指示的传输优先级为 下行数据的传输优先级。
终端设备也可以根据待传输数据的传输优先级监听对应的第二指示信息,减少了第二指示信息的监听数量。
可选地,第二下行控制信息指示的传输优先级为非最高优先级。
由于最高优先级的数据具有使用传输资源的最高权限,其它优先级的数据不能抢占最高优先级的数据使用的传输资源,因此,网络设备可以不发送指示最高优先级的第二下行控制信息,即,第二下行控制信息指示的传输优先级为非最高优先级,发送和/或接收最高优先级数据的终端设备无需监听第二下行控制信息,从而减小了终端设备的功耗。
可选地,所述方法还包括:接收第三指示信息,第三指示信息用于指示待传输数据的传输优先级。
上行数据的传输优先级和/或下行数据的传输优先级可以是基于第三指示信息动态确定的,能够使得上行数据的传输优先级和/或下行数据的传输优先级与实际情况更加匹配。例如,当上行数据因资源多次被抢占而传输失败时,网络设备可以通过第三指示信息提高上行数据的传输优先级。上述第三指示信息例如可以承载于下行控制信息中。
第三指示信息也可以承载于高层消息中。当终端设备在多个传输优先级中只支持一种传输优先级时,可以通过高层消息直接配置传输优先级,或者通过高层消息指示业务传输质量要求、传输信道优先级等来隐含地指示出该终端设备支持的传输优先级。
可选地,在待传输数据为初传数据的情况下,第一下行控制信息通过码块组传输信息(code block group transmission information,CBGTI)域指示待传输数据的传输优先级,或者,第一下行控制信息通过CBGTI域和码块组清空信息(code block group flushing out information,CBGFI)域的组合指示待传输数据的传输优先级。
CBGTI和CBGFI在初传过程中没有意义,因此,可以利用初传过程中的CBGTI域和CBGFI域指示上行数据的传输优先级和/或下行数据的传输优先级。上述方案复用了现有的字段,无需增加新的字段,从而减小了指示待传输数据的传输优先级的信息开销。
第二方面,本申请提供了另一种通信方法,包括:发送高层消息,高层消息配置传输资源,传输资源能够传输至少三种传输优先级的数据;发送第一下行控制信息,第一下行控制信息用于指示传输资源中的第一传输资源;发送第二下行控制信息,第二下行控制信息用于从至少三种传输优先级中指示传输资源中的第二传输资源对应的传输优先级。
第二下行控制信息明确指示了第二传输资源能够承载的数据的传输优先级,相比于现有技术中仅能指示传输资源是否被抢占的通信方法,终端设备可以毫无疑义的确定上行数据能否在第一传输资源和第二传输资源的重叠资源上发送,和/或,终端设备可以毫无疑义的确定第一传输资源和第二传输资源的重叠资源上是否存在下行数据,从而减小了至少三种传输优先级的数据共存的场景中因资源抢占导致通信失败的概率。
可选地,第二下行控制信息指示的传输优先级为至少三种传输优先级中的仅一种。
网络设备可以为每种传输优先级的数据配置一个第二下行控制信息,这样,网络设备可以根据传输优先级的不同灵活配置第二下行控制信息的发送周期。
可选地,第二下行控制信息指示的传输优先级为非最高优先级。
由于最高优先级的数据具有使用传输资源的最高权限,非最高优先级的数据不能抢占最高优先级的数据使用的传输资源,因此,网络设备可以不发送指示最高优先级的第二下 行控制信息,从而减小了网络设备的信息开销。
可选地,所述方法还包括:发送第三指示信息,第三指示信息用于指示待传输数据的传输优先级。
上行数据的传输优先级和/或下行数据的传输优先级可以是基于第三指示信息动态确定的,能够使得上行数据的传输优先级和/或下行数据的传输优先级与实际情况更加匹配。例如,当上行数据因资源多次被抢占而传输失败时,网络设备可以通过指示信息提高上行数据的传输优先级。上述指示信息例如可以承载于下行控制信息中。当终端设备在多个传输优先级中只支持一种传输优先级时,可以通过高层消息直接配置传输优先级,或者通过其它高层消息(比如业务传输质量要求、传输信道优先级等)来隐含地对应出该终端设备支持的传输优先级,即,第三指示信息还可以承载于高层消息中。
可选地,在初传时,第一下行控制信息通过CBGTI域指示待传输数据的传输优先级,或者,第一下行控制信息通过CBGTI域和CBGFI域的组合指示待传输数据的传输优先级。
CBGTI和CBGFI在初传过程中没有意义,因此,可以利用初传过程中的CBGTI域和CBGFI域指示上行数据的传输优先级和/或下行数据的传输优先级。上述方案复用了现有的字段,无需增加新的字段,从而减小了指示待传输数据的传输优先级的信息开销。
第三方面,本申请提供了一种通信装置,该装置可以实现上述第一方面所涉及的方法所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第一方面所涉及的方法。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存有程序和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与网络设备之间的通信。其中,所述收发器可以包括独立的接收器和独立的发射器,或者,所述收发器可以包括集成收发功能的电路。
第四方面,本申请提供了另一种通信装置,该装置可以实现上述第二方面所涉及的方法所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第二方面所涉及的方法。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存有程序和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与终端设备之间的通信。其中,所述收发器可以包括独立的接收器和独立的发射器,或者,所述收发器可以包括集成收发功能的电路。
第五方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第一方面所述的方法。
第六方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第二方面所述的方法。
第七方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第一方面所述的方法。
第八方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第二方面所述的方法。
附图说明
图1是一种适用于本申请的通信系统的示意图;
图2是一种资源抢占场景的示意图;
图3是本申请提供的一种通信方法的示意图;
图4是下行参考资源的一种划分方式的示意图;
图5是下行参考资源的另一种划分方式的示意图;
图6是本申请提供的一种通信装置的示意图;
图7是本申请提供的一种终端设备的示意图;
图8是本申请提供的一种网络设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先介绍本申请的应用场景,图1是一种适用于本申请的通信系统的示意图。
通信系统100包括网络设备110、终端设备120和终端设备130。终端设备120通过电磁波与网络设备110进行通信,终端设备130通过电磁波与网络设备110进行通信,终端设备120与终端设备130之间也可以通过电磁波进行通信。
在本申请中,终端设备120和终端设备130可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,第三代合作伙伴计划(3 rd generation partnership project,3GPP)所定义的用户设备(user equipment,UE),移动台(mobile station,MS),软终端,家庭网关,机顶盒等等。应用于上述设备中的芯片也可以称为终端设备。
网络设备110可以是3GPP所定义的基站,例如,5G通信系统中的基站(gNB)。网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(access gateway,AGF)。网络设备还可以是中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
终端设备120和终端设备130可以传输相同类型的数据,也可以传输不同类型的数据。当终端设备120和终端设备130传输不同类型的数据时,作为一个可选的示例,终端设备120传输eMBB业务的数据包(简称为“eMBB数据”)、终端设备130传输URLLC业务的数据包(简称为“URLLC数据”)。
由于eMBB业务的数据量比较大,而且对传输速率需求比较高,因此,通常采用较长的时间调度单元进行数据传输以提高传输效率,例如,采用子载波间隔为15kHz的一个时隙进行传输,该时隙的时间长度为1ms,对应14个时域符号。URLLC数据通常采用较短的时间调度单元进行传输,以满足URLLC业务的超短时延的需求,例如,采用子载波间隔为60kHz的一个时隙进行传输,该时隙的时间长度为0.25ms,对应14个时域符号。
URLLC业务的数据包的产生具有突发性和随机性,可能在很长一段时间内都不会产生数据包,也可能在很短时间内产生多个数据包。URLLC业务的数据包在多数情况下为小包,例如50个字节。URLLC业务的数据包的特性会影响通信系统的传输资源分配方式。这里的传输资源包括但不限于:频域资源、时频资源、码域资源以及空域资源(例如信号的接收到达角、信号的离开角等、信号的相位)。通常,传输资源的分配由网络设备110 来完成。如果网络设备110采用预留资源的方式为URLLC业务分配资源,则在无URLLC业务的时候传输资源处于空闲状态,造成传输资源的浪费。而且,URLLC业务的短时延特性要求数据包在短的时间内(例如时延小于0.5ms)传输完成,所以网络设备110需要预留足够大的带宽给URLLC业务,从而导致通信系统100的传输资源利用率严重下降。
为了提高传输资源利用率,网络设备110通常不会为URLLC业务的下行传输预留资源。为了满足URLLC业务的超短时延需求,当URLLC数据到达网络设备110时,如果此时没有空闲的传输资源,网络设备110不能等待当前占用传输资源的eMBB数据传输完成之后再对URLLC数据进行调度,网络设备110可以采用抢占(pre-emption)的方式为URLLC数据分配资源。如图2所示,这里的抢占是指网络设备110在已经分配的、用于传输eMBB数据的时频资源上选择部分或全部的时频资源用于传输URLLC数据,网络设备110不在用于传输URLLC数据的时频资源上发送eMBB数据。
URLLC数据抢占eMBB数据的传输资源会严重恶化eMBB用户(例如,终端设备120)的服务质量。因此,需要考虑如何降低抢占对eMBB用户的影响。一种解决方法是发送一个额外的指示信息来通知eMBB用户,其被抢占的资源是那些,这样,该eMBB用户在译码的时候可以从缓存中将从被抢占的资源上接收到的不属于自己的数据清除出去,以减少URLLC数据对译码造成的干扰。
上文以两种传输优先级的数据的传输为例对资源抢占场景进行了简要介绍,若资源抢占场景中存在三种或三种以上的传输优先级的数据,终端设备可能无法确定分配给自己的资源是否被具有更高优先级的数据抢占,或者,终端设备可能无法确定在已调度的资源上是否存在待接收的数据。为此,本申请提供了一种通信方法300,通信方法300可以应用于图1所示的通信系统,例如,可以由终端设备120或终端设备130执行,也可以由终端设备120中的芯片或终端设备130中的芯片执行。为了简洁,下文所述的“终端设备”和“网络设备”不再附带附图标记。
如图3所示,方法300包括:
S310,接收高层消息,高层消息配置传输资源,传输资源能够传输至少三种传输优先级的数据。
高层消息例如可以是无线资源控制(radio resource control,RRC)消息或者介质接入控制(media access control,MAC)层消息。网络设备可以通过下行信道发送上述高层消息,该下行信道可以是物理下行共享信道(physical downlink shared channel,PDSCH),也可以是其它类型的下行信道,本申请网络设备如何发送高层消息不作限定
高层消息配置的传输资源可以被划分为多个子资源,例如,该传输资源包括第一传输资源和第二传输资源,第一传输资源和第二传输资源可以部分重叠,也可以全部重叠,也可以不重叠。
第一传输资源与第二传输资源能够传输的数据的传输优先级可以相同,也可以不同。其中,第一传输资源可以传输一种传输优先级的数据,也可以传输两种或者两种以上的传输优先级的数据;第二传输资源可以传输一种传输优先级的数据,也可以传输两种或者两种以上的传输优先级的数据。
网络设备可以通过指示信息指示各个资源能够传输的数据的传输优先级,例如,网络设备可以向终端设备发送第一指示信息,该第一指示信息指示第一传输资源对应的传输优 先级。该第一指示信息可以是高层消息中的某个字段,也可以是独立的消息。
可选地,由于不同类型的数据通常具有不同的传输优先级,因此,本申请中的“传输优先级”也可以替换为“类型”。数据的类型主要包括eMBB数据和URLLC数据。URLLC数据的传输优先级高于eMBB数据的传输优先级。上述“传输优先级”还可以按照数据的紧急程度划分,例如对于URLLC数据,紧急程度更高的URLLC数据的传输优先级高于紧急程度稍低的URLLC数据。上述传输优先级可以被解释为使用传输资源的先后顺序。高优先级数据能够优先使用传输资源;高优先级数据可以抢占已经分配给低优先级数据的传输资源,而低优先级数据则不能抢占已经分配给高优先级数据的传输资源。
可选地,前述传输优先级具体可以为物理层中物理信道优先级,表明优先占用物理资源的先后,可以通过DCI的至少一个比特指示物理信道优先级的高低。前述传输优先级具体可以为MAC层中逻辑信道优先级(logical channel priority,LCP),其中,逻辑信道优先级可与物理信道优先级具有对应关系。
可选地,所述传输优先级可通过用于加扰DCI且特定于这种传输优先级的无线网络临时标识(radio network temporary identifier,RNTI)进行识别。例如终端设备使用URLLC-RNTI所接收到的DCI,表明这个DCI用于调度这种较高优先级的URLLC数据;终端侧设备使用eMBB-RNTI所接收到的DCI,表明这个DCI用于调度这种较低优先级的eMBB数据。
可选地,所述传输优先级也可以通过特定于这种传输优先级的DCI传输格式进行识别。
可选地,所述传输优先级还可以通过数据传输方式,数据传输长度或数据传输所使用的调制编码方式来识别。例如,数据的传输方式可以为现有NR系统中所定义的类型A或类型B。其中,类型A表明承载数据的PUSCH或PDSCH固定从一个时隙的前三个时域符号开始的传输,类型B表明PUSCH或PDSCH可从一个时隙的任意一个符号开始传输。如果传输方式为类型A,则表明数据传输优先级较高(适用于URLLC数据);如果传输方式为类型B,则表明数据的传输优先级较低(适用于eMBB数据)。
可选地,所述传输优先级还可通过数据的传输时间长度进行识别。如果承载数据的的PDSCH或PUSCH的持续时间(PDSCH/PUSCH的占据的时域符号个数)越短,则传输优先级越高(适用于URLLC数据)。
可选地,所述传输优先级还可以通过数据传输时采用的调制编码方式识别。如果承载数据的PDSCH或PUSCH传输采用的调制编码方式为较低码率时,则所述传输优先级较高(适用于URLLC数据);如果所述调整编码方式为较高码率时,则所述传输优先级较低(适用于eMBB数据)。
终端设备可根据数据的物理信道优先级、逻辑信道优先级,加扰DCI的RNTI,DCI传输格式,数据传输方式、数据传输长度或数据传输使用的调制编码方式之一或组合明确当前数据的传输优先级。
以传输资源能够承载三种传输优先级的数据为例,该三种传输优先级的数据可以是eMBB数据、第一URLLC数据和第二URLLC数据,其中,eMBB数据的传输优先级最低,第二URLLC数据的传输优先级最高,第一URLLC数据的传输优先级介于eMBB数据的传输优先级和第二URLLC数据的传输优先级之间。
若终端设备存在待发送的数据或者待接收的数据,可以根据下述步骤确定发送数据和/或接收数据使用的第一传输资源。
S320,接收第一下行控制信息(downlink control information,DCI),第一DCI指示传输资源中的第一传输资源。
第一传输资源用于传输待传输数据,该待传输数据可以是上行数据,也可以是下行数据,该待传输数据的传输优先级可以是网络设备通过高层消息指示的,也可以是网络设备通过第一DCI指示的。
网络设备可以通过物理下行控制信道(physical downlink control channel,PDCCH)发送第一DCI,也可以通过其它下行信道发送第一DCI。
终端设备可以在接收到第一DCI后开始检测第二DCI,以确定上述第一传输资源是否能够承载待传输的数据。即,执行S330。
S330,接收第二DCI,第二DCI从至少三种传输优先级中指示传输资源中的第二传输资源对应的传输优先级。
第二DCI用于指示第二传输资源对应的传输优先级,若终端设备未接收到第二DCI,则可以继续发送待发送数据和/或接收待接收数据。本申请对终端设备检测第二DCI的过程中是否进行数据发送不作限定,并且,本申请对终端设备检测第二DCI的过程中是否进行数据的接收(或“检测”)也不作限定。
终端设备也可以基于网络设备配置的第二DCI的发送周期检测第二DCI,无需考虑是否接收到第一DCI,也无需考虑第一DCI是否解码成功,相比于在接收到第一DCI后再开始检测第二DCI的方案,本方案略微增加了终端设备的功耗,但能够保证及时接收到第二DCI,从而避免了抢占高优先级数据的传输资源导致高优先级数据传输失败的情况。
第二DCI可以通过独立的指示信息指示第二传输资源对应的传输优先级,例如,通过两个比特位的不同取值指示不同的传输优先级;第二DCI也可以是其它信息的特定状态,例如,通过不同的无线网络临时标识(radio network temporary identity,RNTI)或不同的搜索空间(search space,SS)区分1个比特的状态,该1个比特的状态用于指示第二传输资源能够承载的数据的传输优先级。
此外,第二DCI所指示的传输优先级可以与待传输数据的传输优先级相同,也可以与待传输数据的传输优先级不同。
例如,待传输数据为eMBB,第二DCI所指示的传输优先级可以是eMBB对应的传输优先级,也可以是第一URLLC对应的传输优先级,还可以是第一URLLC和第二URLLC对应的传输优先级,还可以是eMBB、第一URLLC和第二URLLC对应的传输优先级。
又例如,待传输数据为第一URLLC和第二URLLC,第二DCI所指示的传输优先级可以是第一URLLC,也可以是第一URLLC和第二URLLC。
第二DCI中指示传输优先级的信息(即,第二指示信息)可以有不同的形式。下面,将举例说明第二指示信息的可能的形式,但下述例子不应被理解为对第二指示信息的限定。
第二指示信息的一种可能的形式。
通信系统中存在四种传输优先级的数据(或者,业务),按照传输优先级从高到低排序,该四种传输优先级为传输优先级1、传输优先级2、传输优先级3和传输优先级4。 网络设备可以使用2个比特作为第二指示信息指示第二传输资源上不能承载的数据的传输优先级。该2个比特的取值与指示的传输优先级的对应关系如表1所示。
表1
2个比特取值 传输优先级
00 传输优先级2
01 传输优先级3
10 传输优先级4
11 允许最低传输优先级业务传输
当上述2个比特的取值为“00”时,第二指示信息指示第二传输资源上不能承载传输优先级2的数据、传输优先级3的数据和传输优先级4的数据,即,第二传输资源承载的数据的传输优先级不能等于或低于传输优先级2。
当上述2个比特的取值为“01”时,第二指示信息指示第二传输资源上不能承载传输优先级3的数据和传输优先级4的数据,即,第二传输资源承载的数据的传输优先级不能等于或低于传输优先级3。
当上述2个比特的取值为“10”时,第二指示信息指示第二传输资源上不能承载传输优先级4的数据,即,第二传输资源承载的数据的传输优先级不能等于或低于传输优先级4。
当上述2个比特的取值为“11”时,第二指示信息指示第二传输资源上不能承载的数据的传输优先级不存在,即,第二传输资源能够承载最低传输优先级的数据。
当传输优先级1的数据存在时,传输优先级1的数据一定会抢占其它传输优先级的数据的传输资源,因此,最高传输优先级的数据不需要第二指示信息指示能否发送。
第二指示信息的另一种可能的形式。
通信系统中存在四种传输优先级的数据(或“业务”),按照传输优先级从高到低排序,该四种传输优先级为传输优先级1、传输优先级2、传输优先级3和传输优先级4。网络设备可以使用2个比特作为第二指示信息指示第二传输资源上能够承载的数据的传输优先级。该2个比特的取值与指示的传输优先级的对应关系如表2所示。
表2
2个比特取值 传输优先级
00 传输优先级1
01 传输优先级2
10 传输优先级3
11 传输优先级4
当上述2个比特的取值为“00”时,第二指示信息指示第二传输资源上能够承载的传输优先级最低的数据为传输优先级1的数据,即,第二传输资源承载的数据的传输优先级需要大于或等于传输优先级1。
当上述2个比特的取值为“01”时,第二指示信息指示第二传输资源上能够承载的传输优先级最低的数据为传输优先级2的数据,即,第二传输资源承载的数据的传输优先级需要大于或等于传输优先级2。
当上述2个比特的取值为“10”时,第二指示信息指示第二传输资源上能够承载的传输优先级最低的数据为传输优先级3的数据,即,第二传输资源承载的数据的传输优先级需 要大于或等于传输优先级3。
当上述2个比特的取值为“11”时,第二指示信息指示第二传输资源上能够承载的传输优先级最低的数据为传输优先级4的数据,即,第二传输资源承载的数据的传输优先级需要大于或等于传输优先级4,或者,传输资源能够承载最低传输优先级的数据。
由表1和表2可知,不同形式的第二指示信息的效果是相同的,均能够指示某种传输优先级的数据能否在第二传输资源上传输。
上文中的第二指示信息能够指示第二传输资源能够承载的至少一种传输优先级的数据(即,第二传输资源对应的至少一种传输优先级)。本申请还提供了另外一种第二指示信息,该第二指示信息仅能够指示一种传输优先级,网络可能发送对应不同传输优先级的多个第二指示信息,终端设备根据待发送数据的传输优先级确定需要监听的第二指示信息。
例如,第一传输资源上的待发送数据的传输优先级为传输优先级3,终端设备可以仅监听传输优先级3对应的第二指示信息,若接收到了传输优先级3对应的第二指示信息,则确定第二传输资源上存在更高传输优先级的数据;若未接收到传输优先级3对应的第二指示信息,则确定第二传输资源上有不存在更高传输优先级的数据。
类似地,终端设备还可以根据待接收数据的传输优先级确定需要监听的第二指示信息。
网络设备可以根据业务特征为不同的第二指示信息配置不同的发送周期,从而可以更加灵活地发送第二指示信息。
例如,eMBB业务通常占用的资源较大,网络设备可以为eMBB业务对应的第二指示信息配置较长的发送周期;URLLC业务通常占用的资源较小,网络设备可以为URLLC业务对应的第二指示信息配置较短的发送周期。
由于一个第二指示信息仅需指示一种传输优先级,因此,第二指示信息可以由1个比特来表示,通过该1个比特的取值表示第二传输资源能否承载一种传输优先级的数据,网络设备和终端设备可以通过RNTI或SS区分不同的第二指示信息。因此,该方案减小了第二指示信息的数据量。
此外,由于最高优先级的数据具有使用传输资源的最高等级,其它传输优先级的数据不能抢占最高优先级的数据使用的传输资源,因此,网络设备可以不发送指示最高优先级的第二指示信息,即,第二指示信息指示的传输优先级为非最高优先级,发送和/或接收最高传输优先级数据的终端设备无需监听第二指示信息,从而减小了终端设备的功耗。
上文所述的场景均为一个传输资源的场景,网络设备也可以将一个传输资源划分为多个子资源,通过第二指示信息指示每个子资源能够承载的数据的传输优先级。
例如,eMBB数据和URLLC数据可以通过下行参考资源(reference downlink resource,RDR)传输,网络设备可以对RDR的时域范围和频域范围进行配置,同时配置该RDR的划分方式,图4和图5分别示出了RDR的两种划分方式。
图4中,RDR的时域被划分为14份,频域不进行划分,这样,RDR被划分为14个子资源,网络设备可以发送包含28个比特的第二指示信息,该28个比特中每2个比特指示1个子资源能够承载的数据的传输优先级。其中,第一传输资源可以是该14个子资源中的部分或者全部,第二传输资源也可以是该14个子资源中的部分或者全部。
图5中,RDR的时域被划分为7份,频域被划分为2份,这样,RDR被划分为14个子资源,网络设备可以发送包含28个比特的第二指示信息,该28个比特中每2个比特指示1个子资源能够承载的数据的传输优先级。其中,第一传输资源可以是该28个子资源中的部分或者全部,第二传输资源也可以是该28个子资源中的部分或者全部。
终端设备接收到第二指示信息后,若第一传输资源与第二传输资源存在重叠资源,则可以执行S340。
S340,在待传输数据为上行数据的情况下,根据上行数据的传输优先级以及第二DCI确定是否在第一传输资源和第二传输资源的重叠资源上发送上行数据;和/或,在待传输数据为下行数据的情况下,根据下行数据的传输优先级以及第二DCI确定第一传输资源和第二传输资源的重叠资源上是否存在下行数据。
终端设备可以仅处于发送状态,即,终端设备准备发送第一传输优先级的上行数据或者正在发送第一传输优先级的上行数据;终端设备也可以仅处于接收状态,即,终端设备准备检测第一传输优先级的下行数据或者正在检测第一传输优先级的下行数据;终端设备还可以同时处于发送状态和接收状态,即,终端设备准备发送第一传输优先级的上行数据或者正在发送第一传输优先级的上行数据,以及,终端设备准备检测第一传输优先级的下行数据或者正在检测第一传输优先级的下行数据。
上述“确定重叠资源上是否存在下行数据”可以被解释为:终端设备确定发送该“下行数据”的无线通信设备是否会在上述重叠资源上发送该“下行数据”。
相比于现有技术中仅能指示传输资源是否被抢占的通信方法,本申请提供的方法300能够明确指示哪些传输优先级的数据能够使用已调度或已配置的传输资源,使得应用方法300的终端设备可以明确知晓待发送数据是否在上述传输资源上发送,和/或,使得应用方法300的终端设备可以明确知晓待接收的数据是否存在,从而解决了三种或三种以上的业务并存的通信场景中如何进行通信的问题。
作为一个可选的实施方式,S340可以包括如下步骤:
当上行数据的传输优先级属于第二DCI指示的传输优先级时,在重叠资源上发送上行数据;或者,
当上行数据的传输优先级不属于第二DCI指示的传输优先级时,不在重叠资源上发送上行数据。
若第一传输资源与第二传输资源完全重叠,并且,第一传输资源上的上行数据的传输优先级低于第二传输资源对应的传输优先级,则终端设备停止发送上行数据。若第一传输资源与第二传输资源部分重叠,并且,第一传输资源上的上行数据的传输优先级低于第二传输资源对应的传输优先级,则终端设备可以在重叠的部分资源上停止发送上行数据,并且,可以在非重叠的部分资源上继续发送上行数据或者停止发送上行数据。若第一传输资源上的上行数据的传输优先级高于或等于第二传输资源对应的传输优先级,则无论第一传输资源与第二传输资源的重叠情况如何,终端设备均可继续发送上行数据。
例如,上行数据的传输优先级为第一传输优先级,第二指示信息指示第二传输资源能够承载的数据的传输优先级为第一传输优先级和第二传输优先级,上行数据的传输优先级属于第二指示信息指示的传输优先级,因此,终端设备可以在重叠资源上发送上行数据。
又例如,上行数据的传输优先级为第一传输优先级,第二指示信息指示第二传输资源 能够承载的数据的传输优先级为第二传输优先级,上行数据的传输优先级不属于第二指示信息指示的传输优先级,因此,终端设备可以不在重叠资源上发送上行数据。
其中,“不在重叠资源上发送上行数据”可以有两种解释:一种是,终端设备还未发送上行数据,根据第二指示信息不再在该重叠资源上发送上行数据;另一种是,终端设备正在发送上行数据,根据第二指示信息停止在该重叠资源上发送待发送数据。
终端设备不在重叠资源上发送待发送数据后,可以放弃发送待发送数据,也可以在其它传输资源(例如,能够传输上述上行数据的传输资源)上发送上行数据。
因此,上述实施方式能够满足通信系统中存在至少三种传输优先级的数据时不同传输优先级的数据的传输需求,避免不同传输优先级的数据之间的互相干扰。
作为另一个可选的实施方式,S340还可以包括如下步骤:
当下行数据的传输优先级属于第二DCI指示的传输优先级时,确定重叠资源上存在下行数据;或者,
当下行数据的传输优先级不属于第二DCI指示的传输优先级时,确定重叠资源上不存在下行数据。
例如,下行数据的传输优先级为第一传输优先级,第二指示信息指示第二传输资源能够承载的数据的传输优先级为第一传输优先级和第二传输优先级,下行数据的传输优先级属于第二指示信息指示的传输优先级,因此,终端设备确定上述重叠资源上存在下行数据。
又例如,下行数据的传输优先级为第一传输优先级,第二指示信息指示第二传输资源能够承载的数据的传输优先级为第二传输优先级,下行数据的传输优先级不属于第二指示信息指示的传输优先级,因此,终端设备确定上述重叠资源上不存在下行数据。
终端设备确定重叠资源上存在下行数据时,可以选择在该重叠资源上检测下行数据;终端设备确定重叠资源上不存在下行数据时,可以放弃在该重叠资源上检测下行数据。因此,上述实施方式能够减小终端设备的功耗。
若终端设备不在所述重叠资源上接收下行数据,则终端设备可以放弃接收下行数据,也可以基于网络设备的调度信息在其它传输资源(例如,能够传输上述下行数据的传输资源)上接收下行数据。因此,终端设备可以基于上述方案灵活选择通信方式。
上文介绍了基于待传输数据的传输优先级的通信方法,终端设备可以根据网络设备的指示确定待传输数据的传输优先级,即,网络设备可以向终端设备发送第三指示信息,第三指示信息用于指示待传输数据的传输优先级。
第三指示信息可以是高层消息中的业务等级指示域,也可以是第一DCI中的字段,本申请对第三指示信息的具体形式以及发送方式不作限定。
作为一个可选的示例,第三指示信息可以是码块组传输信息(code block group transmission information,CBGTI),也可以是CBGTI和码块组清空信息(code block group flushing out information,CBGFI),即,可以用CBGTI域(即,CBGTI对应的比特)指示待传输数据的传输优先级,也可以用CBGTI域和CBGFI域(即,CBGFI对应的比特)共同指示待传输数据的传输优先级。
下面,将详细描述通过CBGTI域和CBGFI域指示传输优先级的原理和有益效果。
在新无线(new radio,NR)系统中,由于传输块(transport block,TB)通常比较大,网络设备需要将TB分成多个编码块(code block,CB),对各个CB编码之后发送给终 端设备。终端设备对接收到的各个CB进行译码,当有CB译码错误时,向网络设备发送否定应答(negative acknowledge,NACK),请求网络设备重传该TB的数据。
为了提高系统效率,增加网络容量,在NR系统中,进一步将CB分成了若干码块组(code block group,CBG),终端设备可以通过指示网络设备哪些CBG译码错误,从而使得网络设备只重传译码错误的CBG,提升重传效率。网络设备会给终端设备配置CBG的个数P,终端设备根据CBG的个数P将TB分成P个CBG。
若终端设备被配置了CBG传输,则调度数据传输的物理层指示中包含CBGTI域(共P个比特),用于指示当前传输的CBG是哪些。在初传的时候,由于此时传输的是组成TB的所有CBG,CBGTI域没有实质作用;而在重传的时候,CBGTI域的P个比特与P个CBG一一对应,一个比特置“1”表示本次传输了该CBG,该比特置“0”表示本次未传输该CBG。
在传统的通信系统中,由于信道衰落、干扰、噪声等的影响会造成eMBB数据接收错误,此时网络设备可以通过重传再发送一遍该eMBB数据的TB,eMBB用户(即,“接收eMBB数据的终端设备”)可以将两次或更多次传输的同一个eMBB数据的不同TB进行合并译码,重传次数越多,终端设备译码成功的概率就越高。但是,当eMBB数据的传输资源被URLLC数据抢占时,会导致eMBB数据的某些CBG或者全部CBG发生传输错误。如果eMBB用户未收到下行抢占指示,或者下行抢占指示的接收过程发生了错误,则eMBB用户不能确定eMBB数据的CBG的接收错误是由于URLLC数据的抢占造成的,eMBB用户在收到重传数据后,会按传统方式将该重传数据与前一次收到的数据进行合并译码,这样做实际上是将URLLC数据与eMBB数据进行了合并译码,不但不能提高译码成功的概率,反而会引入更多的干扰。
因此,针对下行数据传输,NR系统中除了CBGTI域,还引入了CBGFI域,这个域只有1比特,用于指示当前传输的CBG对应的译码缓存是否需要先清空,再放入当前接收到的CBG。如果本次CBG传输是初传,则默认清空译码缓存中上一个TB的信息,所以,初传时的CBGFI域也没有用处。
综上所述,CBGTI域和CBGFI域具有以下特点:
CBGTI域可以适用于上行数据传输和下行数据传输,CBGFI域只存在于下行数据传输;
CBGTI域和CBGFI域在初传时没有实际用途,但是为了保证DCI的大小一致,在NR协议的R15版本中,一旦配置了这两个域,初传的DCI中也会携带这两个域。
CBGTI域的大小为2比特或4比特或6比特或8比特,如果通信系统配置了CBGTI域,则至少有2比特可被使用,网络设备可以在初传时使用该2比特表示4个传输优先级。如果通信系统配置了CBGTI域和CBGFI域,则最多有9个比特可被使用,网络设备可以在初传时使用该9比特表示512个传输优先级。
当可表征的传输优先级的数量大于等于实际传输优先级的数量时,例如,通信系统配置了2比特的CBGTI域,但通信系统中仅存在3种传输优先级的数据,协议可以预先设置好比特取值与传输优先级之间的关系,该对应关系也可以由网络配置。多余的比特在初传时可以设置为固定的预设值(即,收发双方已知该预设值的含义),以便于终端设备正确接收第三指示信息。
当可表征的传输优先级的数量小于实际传输优先级的数量时,例如,通信系统配置了2比特的CBGTI域,但通信系统中存在5种传输优先级的数据,网络设备可以配置1个额外的比特,使用3个比特指示5种传输优先级,该额外的比特在重传时可以设置为固定的预设值(即,网络设备和终端设备已知该预设值的含义),以便于避免影响重传。
重传时,由于终端设备已知晓待发送数据的传输优先级以及待接收数据的传输优先级,CBGTI域用于指示当前重传的CBG是哪些,CBGFI域用于指示当前重传的CBG对应的译码缓存是否需要先清空。
由于第三指示信息复用了现有的域,因此,上述方案减小了信息开销。
除了可以利用CBGTI域和CBGFI域指示待发送数据的传输优先级以及待接收数据的传输优先级之外,还可以利用RNTI、SS配置或控制资源集合(control resource set,CORESET)配置指示待发送数据的传输优先级以及待接收数据的传输优先级。
上文主要从终端设备的角度描述了本申请提供的通信方法,网络设备的处理过程与终端设备的处理过程具有对应关系,例如,终端设备从网络设备接收信息,意味着网络设备发送了该信息;终端设备向网络设备发送信息,意味着网络设备从终端设备接收该信息。因此,即使上文个别地方未明确写明网络设备的处理过程,本领域技术人员也可以基于终端设备的处理过程清楚地了解网络设备的处理过程。
上文详细介绍了本申请提供的通信方法的示例。下面,将详细介绍本申请提供的实现上述通信方法的通信装置。可以理解的是,通信装置为了实现上述通信方法中的功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个功能单元中。例如,所述通信装置可包括用于执行上述方法示例中确定动作的处理单元、用于实现上述方法示例中接收动作的接收单元和用于实现上述方法示例中发送动作的发送单元。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图6示出了本申请提供的一种通信装置的结构示意图。通信装置600可用于实现上述方法实施例中描述的方法。该通信装置600可以是芯片、网络设备或终端设备。
通信装置600包括一个或多个处理器601,该一个或多个处理器601可支持通信装置600实现图3所对应方法实施例中的方法。处理器601可以是通用处理器或者专用处理器。例如,处理器601可以是中央处理器(central processing unit,CPU)或基带处理器。基带处理器可以用于处理通信数据(例如,上文所述的第一指示信息),CPU可以用于对通信装置(例如,网络设备、终端设备或芯片)进行控制,执行软件程序,处理软件程序的数据。通信装置600还可以包括收发单元605,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置600可以是芯片,收发单元605可以是该芯片的输入和/或输出电路, 或者,收发单元605可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
通信装置600中可以包括一个或多个存储器602,其上存有程序604,程序604可被处理器601运行,生成指令603,使得处理器601根据指令603执行上述方法实施例中描述的方法。可选地,存储器602中还可以存储有数据。可选地,处理器601还可以读取存储器602中存储的数据(例如,方法300中的待发送数据),该数据可以与程序604存储在相同的存储地址,该数据也可以与程序604存储在不同的存储地址。
处理器601和存储器602可以单独设置,也可以集成在一起,例如,集成在单板或者系统级芯片(system on chip,SOC)上。
通信装置600还可以包括收发单元605以及天线606。收发单元605可以称为收发机、收发电路或者收发器,用于通过天线606实现通信装置的收发功能。
在一种可能的设计中,处理器601用于通过收发单元605以及天线606向终端设备发送高层消息、第一DCI和第二DCI。
在另一种可能的设计中,处理器601用于通过收发单元605以及天线606从网络设备接收高层消息、第一DCI和第二DCI。
接收或发送“高层消息、第一DCI和第二DCI”的具体方式可以参见上述方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器601中的硬件形式的逻辑电路或者软件形式的指令完成。处理器601可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器601执行时实现本申请中任一方法实施例所述的通信方法。
该计算机程序产品可以存储在存储器602中,例如是程序604,程序604经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器601执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的通信方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器602。存储器602可以是易失性存储器或非易失性存储器,或者,存储器602可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、 同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在通信装置600为终端设备的情况下,图7示出了本申请提供的一种终端设备的结构示意图。该终端设备700可适用于图1所示的系统中,实现上述方法实施例中终端设备的功能。为了便于说明,图7仅示出了终端设备的主要部件。
如图7所示,终端设备700包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及用于对整个终端设备进行控制。例如,处理器通过天线和控制电路接收第一指示信息和第二指示信息。存储器主要用于存储程序和数据,例如存储通信协议和待发送数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置例如是触摸屏或键盘,主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器中的程序,解释并执行该程序所包含的指令,处理程序中的数据。当需要通过天线发送信息时,处理器对待发送的信息进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后得到射频信号,并将射频信号通过天线以电磁波的形式向外发送。当承载信息的电磁波(即,射频信号)到达终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为信息并对该信息进行处理。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,图7中的处理器可以集成基带处理器和CPU的功能,本领域技术人员可以理解,基带处理器和CPU也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个CPU以增强其处理能力,终端设备的各个部件可以通过各种总线连接。基带处理器也可以被称为基带处理电路或者基带处理芯片。CPU也可以被称为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以程序的形式存储在存储器中,由处理器执行存储器中的程序以实现基带处理功能。
在本申请中,可以将具有收发功能的天线和控制电路视为终端设备700的收发单元701,用于支持终端设备实现方法实施例中的接收功能,或者,用于支持终端设备实现方法实施例中的发送功能。将具有处理功能的处理器视为终端设备700的处理单元702。如图7所示,终端设备700包括收发单元701和处理单元702。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元701中用于实现接收功能的器件视为接收单元,将收发单元701中用于实现发送功能的器件视为发送单元,即收发单元701包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器702可用于执行存储器存储的程序,以控制收发单元701接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元701的功能 可以考虑通过收发电路或者收发专用芯片实现。
在通信装置600为网络设备的情况下,图8是本申请提供的一种网络设备的结构示意图,该网络设备例如可以为基站。如图8所示,该基站可应用于如图1所示的系统中,实现上述方法实施例中网络设备的功能。基站800可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)801和至少一个基带单元(baseband unit,BBU)802。其中,BBU802可以包括分布式单元(distributed unit,DU),也可以包括DU和集中单元(central unit,CU)。
RRU801可以称为收发单元、收发机、收发电路或者收发器,其可以包括至少一个天线8011和射频单元8012。RRU801主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于支持基站实现方法实施例中的发送功能和接收功能。BBU802主要用于进行基带处理,对基站进行控制等。RRU801与BBU802可以是物理上设置在一起的,也可以物理上分离设置的,即分布式基站。
BBU802也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如,BBU802可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
BBU802可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(例如,长期演进(long term evolution,LTE)网),也可以分别支持不同接入制式的无线接入网(如LTE网和NR网)。BBU802还包括存储器8021和处理器8022,存储器8021用于存储必要的指令和数据。例如,存储器8021存储上述方法实施例中的各种指信息。处理器8022用于控制基站进行必要的动作,例如,用于控制基站执行上述方法实施例中的操作流程。存储器8021和处理器8022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
需要说明的是,图8所示的基站仅是一个示例,适用于本申请的网络设备还可以是有源天线系统(active antenna system,AAS)中的有源天线单元(active antenna unit,AAU)。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一 般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种通信方法,其特征在于,包括:
    接收高层消息,所述高层消息配置传输资源,所述传输资源能够传输至少三种传输优先级的数据;
    接收第一下行控制信息,所述第一下行控制信息指示所述传输资源中的第一传输资源;
    接收第二下行控制信息,所述第二下行控制信息从所述至少三种传输优先级中指示所述传输资源中的第二传输资源对应的传输优先级;
    在待传输数据为上行数据的情况下,根据所述上行数据的传输优先级以及所述第二下行控制信息指示的所述传输优先级确定是否在所述第一传输资源和所述第二传输资源的重叠资源上发送所述上行数据;和/或,
    在待传输数据为下行数据的情况下,根据所述下行数据的传输优先级以及所述第二下行控制信息指示的所述传输优先级确定所述第一传输资源和所述第二传输资源的重叠资源上是否存在所述下行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述上行数据的传输优先级以及所述第二下行控制信息指示的所述传输优先级确定是否在所述第一传输资源和所述第二传输资源的重叠资源上发送所述上行数据,包括:
    当所述上行数据的传输优先级属于所述第二下行控制信息指示的所述传输优先级时,确定在所述重叠资源上发送所述上行数据;或者,
    当所述上行数据的传输优先级不属于所述第二下行控制信息指示的所述传输优先级时,确定不在所述重叠资源上发送所述上行数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述下行数据的传输优先级以及所述第二下行控制信息指示的所述传输优先级确定所述第一传输资源和所述第二传输资源的重叠资源上是否存在所述下行数据,包括:
    当所述下行数据的传输优先级属于所述第二下行控制信息指示的传输优先级时,确定所述重叠资源上存在所述下行数据;或者,
    当所述下行数据的传输优先级不属于所述第二下行控制信息指示的传输优先级时,确定所述重叠资源上不存在所述下行数据。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    当所述重叠资源上存在所述下行数据时,在所述重叠资源上接收所述下行数据;或者,
    当所述重叠资源上不存在所述下行数据时,不在所述重叠资源上接收所述下行数据。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述第二下行控制信息指示的传输优先级为所述至少三种传输优先级中的仅一种。
  6. 根据权利要求5所述的方法,其特征在于,所述接收第二下行控制信息,包括:
    根据所述上行数据的传输优先级接收所述第二下行控制信息,所述第二下行控制信息指示的所述传输优先级为所述上行数据的传输优先级;和/或,
    根据所述下行数据的传输优先级接收所述第二下行控制信息,所述第二下行控制信息指示的所述传输优先级为所述下行数据的传输优先级。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第二下行控制信息指示的所述传输优先级为非最高优先级。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在所述待传输数据为初传数据时,所述第一下行控制信息通过码块组传输信息CBGTI域指示所述待传输数据的传输优先级,或者,所述第一下行控制信息通过CBGTI域和码块组清空信息CBGFI域的组合指示所述待传输数据的传输优先级。
  9. 一种通信方法,其特征在于,包括:
    发送高层消息,所述高层消息配置传输资源,所述传输资源能够传输至少三种传输优先级的数据;
    发送第一下行控制信息,所述第一下行控制信息指示所述传输资源中的第一传输资源;
    发送第二下行控制信息,所述第二下行控制信息从所述至少三种传输优先级中指示所述传输资源中的第二传输资源对应的传输优先级。
  10. 根据权利要求9所述的方法,其特征在于,所述第二下行控制信息指示的传输优先级为所述至少三种传输优先级中的仅一种。
  11. 根据权利要求10所述的方法,其特征在于,所述第二下行控制信息指示的传输优先级为非最高优先级。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,在初传时,所述第一下行控制信息通过码块组传输信息CBGTI域指示待传输数据的传输优先级,或者,所述第一下行控制信息通过CBGTI域和码块组清空信息CBGFI域的组合指示待传输数据的传输优先级。
  13. 一种通信装置,其特征在于,包括处理单元和接收单元,
    所述接收单元用于:接收高层消息,所述高层消息配置传输资源,所述传输资源能够传输至少三种传输优先级的数据;
    所述接收单元还用于:接收第一下行控制信息,所述第一下行控制信息指示所述传输资源中的第一传输资源;
    所述接收单元还用于:接收第二下行控制信息,所述第二下行控制信息从所述至少三种传输优先级中指示所述传输资源中的第二传输资源对应的传输优先级;
    所述处理单元用于:
    在待传输数据为上行数据的情况下,根据所述上行数据的传输优先级以及所述第二下行控制信息指示的所述传输优先级确定是否在所述第一传输资源和所述第二传输资源的重叠资源上发送所述上行数据;和/或,
    在待传输数据为下行数据的情况下,根据所述下行数据的传输优先级以及所述第二下行控制信息指示的所述传输优先级确定所述第一传输资源和所述第二传输资源的重叠资源上是否存在所述下行数据。
  14. 根据权利要求13所述的通信装置,其特征在于,所述处理单元具体用于:
    当所述上行数据的传输优先级属于所述第二下行控制信息指示的所述传输优先级时,确定在所述重叠资源上发送所述上行数据;或者,
    当所述上行数据的传输优先级不属于所述第二下行控制信息指示的所述传输优先级 时,确定不在所述重叠资源上发送所述上行数据。
  15. 根据权利要求13或14所述的通信装置,其特征在于,所述处理单元具体用于:
    当所述下行数据的传输优先级属于所述第二下行控制信息指示的所述传输优先级时,确定所述重叠资源上存在所述下行数据;或者,
    当所述下行数据的传输优先级不属于所述第二下行控制信息指示的所述传输优先级时,确定所述重叠资源上不存在所述下行数据。
  16. 根据权利要求15所述的通信装置,其特征在于,
    所述接收单元还用于:当所述重叠资源上存在所述下行数据时,在所述重叠资源上接收所述下行数据;或者,
    所述处理单元还用于:当所述重叠资源上不存在所述下行数据时,确定不在所述重叠资源上接收所述下行数据。
  17. 根据权利要求13至16中任一项所述的通信装置,其特征在于,
    所述第二下行控制信息指示的所述传输优先级为所述至少三种传输优先级中的一种。
  18. 根据权利要求17所述的通信装置,其特征在于,所述接收单元具体用于:
    根据所述上行数据的传输优先级接收所述第二下行控制信息,所述第二下行控制信息指示的所述传输优先级为所述上行数据的传输优先级;和/或,
    根据所述下行数据的传输优先级接收所述第二下行控制信息,所述第二下行控制信息指示的所述传输优先级为所述下行数据的传输优先级。
  19. 根据权利要求17或18所述的通信装置,其特征在于,所述第二下行控制信息指示的所述传输优先级为非最高优先级。
  20. 根据权利要求13至19中任一项所述的通信装置,其特征在于,在所述待传输数据为初传数据时,所述第一下行控制信息通过码块组传输信息CBGTI域指示所述待传输数据的传输优先级,或者,所述第一下行控制信息通过CBGTI域和码块组清空信息CBGFI域的组合指示所述待传输数据的传输优先级。
  21. 一种通信装置,其特征在于,包括处理单元和发送单元,所述处理单元用于控制所述发送单元执行:
    发送高层消息,所述高层消息配置传输资源,所述传输资源能够传输至少三种传输优先级的数据;
    发送第一下行控制信息,所述第一下行控制信息指示所述传输资源中的第一传输资源;
    发送第二下行控制信息,所述第二下行控制信息从所述至少三种传输优先级中指示所述传输资源中的第二传输资源对应的传输优先级。
  22. 根据权利要求21所述的通信装置,其特征在于,所述第二下行控制信息指示的传输优先级为所述至少三种传输优先级中的一种。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第二下行控制信息指示的传输优先级为非最高优先级。
  24. 根据权利要求21至23中任一项所述的通信装置,其特征在于,在初传时,所述第一下行控制信息通过码块组传输信息CBGTI域指示待传输数据的传输优先级,或者,所述第一下行控制信息通过CBGTI域和码块组清空信息CBGFI域的组合指示待传输数据 的传输优先级。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储了计算机程序,当所述计算机程序被处理器执行时,使得处理器执行权利要求1至8中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储了计算机程序,当所述计算机程序被处理器执行时,使得处理器执行权利要求9至12中任一项所述的方法。
PCT/CN2020/077559 2019-03-04 2020-03-03 通信方法和通信装置 WO2020177680A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20766017.6A EP3923653A4 (en) 2019-03-04 2020-03-03 COMMUNICATION METHOD AND COMMUNICATION DEVICE
US17/466,635 US11968707B2 (en) 2019-03-04 2021-09-03 Communication method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910161416.4A CN111654913B (zh) 2019-03-04 2019-03-04 通信方法和通信装置
CN201910161416.4 2019-03-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/466,635 Continuation US11968707B2 (en) 2019-03-04 2021-09-03 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020177680A1 true WO2020177680A1 (zh) 2020-09-10

Family

ID=72338385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077559 WO2020177680A1 (zh) 2019-03-04 2020-03-03 通信方法和通信装置

Country Status (4)

Country Link
US (1) US11968707B2 (zh)
EP (1) EP3923653A4 (zh)
CN (1) CN111654913B (zh)
WO (1) WO2020177680A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220248411A1 (en) * 2019-05-14 2022-08-04 Samsung Electronics Co., Ltd. Control information transmission method and device in wireless communication system
CN115499090B (zh) * 2021-06-18 2024-05-03 大唐移动通信设备有限公司 在通道节能下提升下行译码性能的方法及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889225A (zh) * 2016-09-29 2018-04-06 深圳市金立通信设备有限公司 一种资源调度方法、及设备
CN108243501A (zh) * 2016-12-27 2018-07-03 维沃移动通信有限公司 一种传输资源的调度方法、网络设备及终端设备
CN108289065A (zh) * 2017-01-10 2018-07-17 华为技术有限公司 数据处理方法、装置和系统
CN108633088A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 资源调度的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10231259B2 (en) * 2015-03-14 2019-03-12 Qualcomm Incorporated Control signaling supporting multi-priority scheduling
US11671973B2 (en) * 2016-09-28 2023-06-06 Interdigital Patent Holdings, Inc. 5G NR data delivery for flexible radio services
WO2018064360A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Multi-services coexistence in new radio (nr) systems
US10958394B2 (en) * 2017-03-10 2021-03-23 Qualcomm Incorporated Ultra-reliable low-latency communication indication channelization designs
JP7174749B2 (ja) * 2017-07-27 2022-11-17 エルジー エレクトロニクス インコーポレイティド リソース割り当て優先順位による信号送信方法及びそのための端末
CN109392148B (zh) * 2017-08-11 2021-06-04 电信科学技术研究院 一种上行资源分配的方法、终端及网络设备
KR20190116927A (ko) 2018-04-05 2019-10-15 한국전자통신연구원 통신 시스템에서 상향링크 전송을 위한 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889225A (zh) * 2016-09-29 2018-04-06 深圳市金立通信设备有限公司 一种资源调度方法、及设备
CN108243501A (zh) * 2016-12-27 2018-07-03 维沃移动通信有限公司 一种传输资源的调度方法、网络设备及终端设备
CN108289065A (zh) * 2017-01-10 2018-07-17 华为技术有限公司 数据处理方法、装置和系统
CN108633088A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 资源调度的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3923653A4
VIVO: "UL Intra UE Tx Prioritization for URLLC", 3GPP DRAFT; R1-1810399, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 4, XP051517808 *

Also Published As

Publication number Publication date
US11968707B2 (en) 2024-04-23
CN111654913B (zh) 2022-12-30
CN111654913A (zh) 2020-09-11
US20210400685A1 (en) 2021-12-23
EP3923653A4 (en) 2022-04-13
EP3923653A1 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
EP3468277B1 (en) Method and apparatus for determining transport block size
WO2020143839A1 (zh) 上行控制信息复用的方法和装置
WO2021027604A1 (zh) 传输方法、装置、通信节点及介质
WO2020029886A1 (zh) 反馈信息的传输方法和装置
WO2017157181A1 (zh) 一种资源调度和分配的方法和装置
WO2018176226A1 (zh) Harq反馈方法、装置及系统
US9648599B2 (en) System and method for avoiding collisions between open discovery and cellular resources
US20210219300A1 (en) Communication method and communications apparatus
WO2018209803A1 (zh) 一种传输信息的方法和装置
WO2020114237A1 (zh) 数据传输方法与通信装置
US11968707B2 (en) Communication method and communication apparatus
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2019157919A1 (zh) 一种竞争窗管理的方法及发送设备
JP7352647B2 (ja) リソース割り当て方法ならびにデバイス、記憶媒体および端末
WO2021155604A1 (zh) 信息处理方法及设备
WO2021062638A1 (zh) 发送、接收反馈信息的方法和设备
WO2021164603A1 (zh) 辅链路控制信息的资源指示方法与装置、终端设备
WO2022155772A1 (zh) 资源抢占处理方法、通信设备及可读存储介质
WO2022155774A1 (zh) 资源抢占处理方法、通信设备及可读存储介质
WO2018191863A1 (zh) 传输数据的方法和设备
WO2021023084A1 (zh) 通信方法和通信装置
WO2020199769A1 (zh) 控制信息的传输方法和装置
WO2021056419A1 (zh) 边链路资源的预留方法以及装置
WO2018166472A1 (zh) 数据发送方法、装置、终端设备和网络设备
WO2019153369A1 (zh) 一种数据传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020766017

Country of ref document: EP

Effective date: 20210908