WO2017157181A1 - 一种资源调度和分配的方法和装置 - Google Patents

一种资源调度和分配的方法和装置 Download PDF

Info

Publication number
WO2017157181A1
WO2017157181A1 PCT/CN2017/075485 CN2017075485W WO2017157181A1 WO 2017157181 A1 WO2017157181 A1 WO 2017157181A1 CN 2017075485 W CN2017075485 W CN 2017075485W WO 2017157181 A1 WO2017157181 A1 WO 2017157181A1
Authority
WO
WIPO (PCT)
Prior art keywords
air interface
downlink control
control information
interface resource
data transmission
Prior art date
Application number
PCT/CN2017/075485
Other languages
English (en)
French (fr)
Inventor
张屹
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018548438A priority Critical patent/JP6666462B2/ja
Priority to EP17765723.6A priority patent/EP3419370B1/en
Publication of WO2017157181A1 publication Critical patent/WO2017157181A1/zh
Priority to US16/129,907 priority patent/US10819474B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the present application relates to the field of mobile communications, and in particular to air interface resource scheduling and allocation techniques in the field of wireless communications.
  • the International Telecommunications Union defines three main application scenarios for the 5th Generation mobile communication (5G): Enhanced Mobile Broadband, Highly Reliable and Low Latency Communication ( Ultra-reliable and low latency communication) and Massive machine type communication.
  • 5G 5th Generation mobile communication
  • the high-reliability and low-latency communication scenarios include services such as industrial production wireless control and remote medical surgery, which have strict requirements on throughput, delay, reliability, and resource availability. Services in such scenarios require short delays (lowest latency is as low as 1 ms), requiring fast scheduling and configuration of available resources, while ensuring reliable data transmission.
  • the LTE (Long Term Evolution) system is taken as an example.
  • the data transmitting end and the receiving end usually trigger data retransmission through a Hybrid Automatic Repeat reQuest (HARQ) process until the data is retransmitted.
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ Hybrid Automatic Repeat reQuest
  • This paper describes an air interface resource scheduling and allocation method, device and system to meet the extremely short delay requirements of the service while ensuring the reliability of data transmission.
  • an embodiment of the present application provides a resource scheduling and allocation method.
  • the method includes the network device transmitting a downlink message, wherein the one downlink message has the capability of allocating air interface resources for N data transmissions for the same user equipment, and the N is an integer greater than 1.
  • the network device allocates the same user equipment with air interface resources for N data transmissions by a downlink message, and the N is an integer greater than 1.
  • the air interface resource of the data transmission is allocated by using one downlink message, so that the uplink or downlink data transmitting end can retransmit the data without waiting for the next scheduling or resource allocation, thereby reducing the delay of the retransmission process and saving the use.
  • the number of downlink information allocated to the resource is also improved by the retransmission, and the reliability of the data transmission is ensured.
  • the network device may allocate the air interface resource for the N times data transmission to the same user equipment by using one downlink control information, where the downlink control information includes air interface resource information used for N times of data transmission, where N is an integer greater than one.
  • the allocation of air interface resources for multiple data transmissions by using one downlink control information is equivalent to direct scheduling data retransmission, which saves the delay of retransmission scheduling and improves the probability of correct data reception.
  • the network device performs transmission or reception of the N data transmissions on the air interface resources configured in the downlink control information.
  • the downlink control information further includes value information of the N.
  • the downlink control information includes the value information of the N (that is, the number of times of transmission of the data to be transmitted), and can explicitly indicate the number of times the network device or the user equipment performs data transmission, and can support flexible air interfaces when performing multiple data transmissions.
  • the resource configuration for example, the downlink control information may include N air interface resource information for N times of data transmission; or may include only air interface resource information used for primary data transmission, and the remaining multiple transmissions may determine air interface resources according to rules.
  • the value information of the N may be the true value of the N, and may also indicate the true value of the N by using other indication manners.
  • the value of the N can also be configured to be one time, and the air interface resource required for data transmission is allocated by using one downlink control information.
  • the downlink control information may further include continuous transmission indication information.
  • the continuous transmission indication information is used to indicate whether the downlink control information includes air interface resource information of N times of data transmission, or is used to indicate whether the downlink control information indicates N consecutive transmissions.
  • the continuous transmission means that the N times of data transmission are retransmissions, such as blind retransmission, etc., which are performed without waiting for a Negative ACKnowledgement (NACK) message or an ACKnowledgment (ACK) message fed back by the data receiving end. Automatic retransmission.
  • NACK Negative ACKnowledgement
  • ACK ACKnowledgment
  • Automatic retransmission It should be noted that the continuous transmission referred to in this application may be performed on time-continuous time domain resources, for example, at the nth transmission time interval (TTI) to the n+N-1TTI.
  • Continuous transmission may be performed on time-domain resources that are not consecutive in time, for example, on N time-domain resources determined according to a certain time-domain resource determination rule, or configured in downlink control information.
  • the method for determining the frequency domain resources may be determined according to a certain rule or determined according to the configuration of the downlink control information, etc., and the application does not limit this;
  • the continuous transmission referred to in the present application may further include data transmission simultaneously on N different frequency domain resources, that is, the N times data transmission uses the same time domain resource and different frequency domain resources;
  • the continuous transmission may further include a mixture of the foregoing two modes, that is, performing the N times using a total of N different frequency domain resources distributed on at least two different time domain resources.
  • the continuous transmission indication information may utilize an independent cell, for example, using a 1-bit (bit) cell to indicate continuous transmission information in the downlink control information.
  • the continuous transmission indication information may also use a cell for indicating other information, for example, may be combined with a predetermined or agreed threshold and information indicated by a certain cell to indicate the current downlink control information.
  • the continuous transmission indication information may explicitly indicate whether the network device or the user equipment needs to perform continuous transmission, for example, blind retransmission, and may support flexible air interface resource configuration in the case of performing multiple data transmissions, for example, the downlink control information may be configured for N air interface resource information of N times of data transmission; or only air interface resource information used for primary data transmission may be configured. When the continuous transmission indication information indicates that data transmission needs to be performed N times, the remaining N-1 transmissions may be according to rules. Determine the air interface resources.
  • the air interface resource information includes a frequency domain resource indication of the air interface resource.
  • the air interface resource information further includes a time domain resource indication of the air interface resource and/or a redundancy version (RV) information used to transmit the data.
  • RV redundancy version
  • the downlink control information includes air interface resource information used for the first data transmission corresponding to the downlink control information, and the air interface resource used by the remaining data transmission corresponding to the downlink control information is based on The air interface resource information for the first data transmission is determined.
  • the air interface resource information that is transmitted only once in the downlink control information can reduce the number of bits of the downlink control information and save control channel overhead.
  • the downlink control information includes air interface resource information for each data transmission corresponding to the downlink control information. Carrying the air interface resource information of each data transmission in the downlink control information, which can be more flexible Live allocation of air interface resources for each data transmission.
  • the downlink control information includes air interface resource information used for the first data transmission corresponding to the downlink control information, where the remaining data transmission corresponding to the downlink control information is used.
  • the air interface resource is determined according to the air interface resource information used for the first data transmission, and includes: determining, according to the frequency domain resource indication of the first data transmission, the remaining data transmission use corresponding to the downlink control information Frequency domain resources.
  • the determining, by using the frequency domain resource indication of the first data transmission, the frequency domain resource used for each remaining data transmission corresponding to the downlink control information includes: using The first data transmission is the same frequency domain resource.
  • the determining, according to the frequency domain resource indication of the first data transmission, the frequency domain resource used for each remaining data transmission corresponding to the downlink control information includes: following frequency hopping
  • the rule calculates a frequency domain resource used by the current transmission according to the frequency domain resource indication of the first data transmission.
  • the downlink control information includes air interface resource information used for the first data transmission corresponding to the downlink control information, where the remaining data transmission corresponding to the downlink control information is used.
  • the air interface resource is determined according to the air interface resource information used for the first data transmission, and includes: determining, according to the time domain resource indication used by the first data transmission, each remaining data corresponding to the downlink control information The time domain resource used for the transfer.
  • the determining, by using the time domain resource indication used by the first data transmission, the time domain resource used for each remaining data transmission corresponding to the downlink control information includes: The M symbols that can be used for the same type of service data transmission after the first data transmission or the last data transmission, wherein M and the first data transmission use the same number of symbols.
  • the determining, according to the time domain resource indication used by the first data transmission, the time domain resources used for each remaining data transmission corresponding to the downlink control information includes: using The same time domain resource as the first data transmission or the last data transmission. It should be noted that when X (X is an integer greater than 1) data transmission uses the same time domain resource, it needs to occupy X different frequency domain resources. In this case, the data transmitting end is equivalent to one transmission. The action completes the transmission of X times of data transmission, and the data receiving end is equivalent to completing the reception of X times of data transmission by one receiving action.
  • the downlink control information includes air interface resource information used for the first data transmission corresponding to the downlink control information, where the remaining data transmission corresponding to the downlink control information is used.
  • the air interface resource is determined according to the air interface resource information used for the first data transmission, and further includes: determining, according to the rule, a redundancy version used for each remaining data transmission corresponding to the downlink control information.
  • the determining, according to the rule, the redundancy version used for each remaining data transmission corresponding to the downlink control information includes: using the same redundancy as the first data transmission version.
  • the determining, according to the rule, determining a redundancy version used by each of the remaining data transmissions corresponding to the downlink control information includes: sequentially, in each data transmission, in a use order of the redundancy version. Use the appropriate redundancy version.
  • first data transmission refers to the first transmission in the N times of data transmission corresponding to one downlink control information, and is not necessarily the first time that the data is in the communication process. transmission.
  • the network device may determine the maximum number of transmissions that can be completed within the transmission delay range according to the service transmission delay requirement of the data to be transmitted when the data to be transmitted is scheduled for initial transmission, where the maximum number of transmissions is (the number of hybrid automatic repeat reQuest (HARQ) retransmissions + the number of blind retransmissions +1), wherein the blind retransmission refers to the fact that the transmitting end does not need to wait for feedback from the receiving end.
  • the maximum number of transmissions is (the number of hybrid automatic repeat reQuest (HARQ) retransmissions + the number of blind retransmissions +1), wherein the blind retransmission refers to the fact that the transmitting end does not need to wait for feedback from the receiving end.
  • HARQ hybrid automatic repeat reQuest
  • the air interface resource for data transmission includes: allocating air interface resources for N data transmissions to the same user equipment according to the air interface resource and/or modulation and coding scheme used by the selected initial transmission.
  • the number of transmissions selects the air interface resource and/or modulation and coding scheme used for the initial transmission, and can adaptively adjust the number of air interface resources and/or modulation and coding modes occupied by the data transmission to further ensure correct data transmission. Probability, for example, in a specific possible design, if the maximum number of transmissions is less than three times, the number of air interface resources and/or the code rate of the modulation and coding mode may be appropriately increased to improve the reliability of data transmission.
  • the network device can determine whether the HARQ retransmission can be completed after the current transmission according to the remaining transmission delay in each transmission scheduling of the data to be transmitted, if the transmission delay remaining after the current transmission If the HARQ retransmission cannot be completed, the blind retransmission is scheduled after the current transmission; the air interface resources of the N data transmissions include the current transmission and the air interface resources of the blind retransmission; wherein the HARQ retransmission is completed.
  • the data transmitting end waits for the ACK (ACKnowledgement) or NACK (Negative ACKnowledgement) feedback of the previous data transmission by the receiving end, and retransmits the data after receiving the NACK feedback, and the receiving end completes the translation of the retransmitted data.
  • the process of the code In the range allowed by the delay, the HARQ retransmission can be arranged as much as possible to maximize the reliability of data transmission. If the delay cannot support multiple or one HARQ retransmission, it can be retransmitted or first transmitted in HARQ. The blind retransmission is then arranged to further improve the reliability of data transmission within the allowable range of delay. In each transmission scheduling, the subsequent delay and the retransmission scheme are determined, and the subsequent retransmission type can be more flexibly adjusted according to the remaining transmission delay to ensure the correct transmission of data within the delay range.
  • the network device may also transmit the data to be transmitted (the maximum number of transmissions -1) times.
  • the HARQ retransmission it is determined whether the HARQ retransmission can be completed after the current transmission according to the remaining transmission delay. If the remaining transmission delay after the current transmission cannot complete the HARQ retransmission, the blind retransmission is scheduled after the current transmission;
  • the air interface resource of the multiple data transmission includes the current transmission and the air interface resource of the blind retransmission; wherein the completion of the HARQ retransmission refers to the ACK (ACKnowledgement) of the data transmitting end waiting for the receiving end to transmit the previous data.
  • NACK Negative ACKnowledgement
  • NACK Negative ACKnowledgement
  • the subsequent delay and the retransmission scheme are judged only during the (the maximum number of transmissions - 1) transmission scheduling, and the load of the network device is considered, and the retransmission type can be adjusted within the delay range to ensure the data is correct as much as possible. Transmission can reduce the load on network devices. It can be understood that the network device can also perform the foregoing delay and retransmission scheme determination in any one transmission scheduling. For example, the following may be performed during the last HARQ retransmission scheduling in the transmission delay range. Delay and judgment of the retransmission scheme.
  • the embodiment of the present application provides a resource scheduling and allocation method.
  • the method includes the user equipment receiving a downlink message, wherein the one downlink message has the capability of allocating air interface resources for N data transmissions for the same user equipment, and the N is an integer greater than 1.
  • the user equipment receives a downlink message, and the user equipment parses the air interface resource allocated for the user equipment for N data transmissions included in the one downlink message, where the N is an integer greater than 1.
  • the user equipment acquires an air interface resource for the N times data transmission that is allocated by the network device by using one downlink control information, where the downlink control information includes air interface resource information used for multiple data transmissions, where the N Is an integer greater than 1.
  • the user equipment performs transmission or reception of the N data transmissions on the air interface resource configured in the downlink control information.
  • the downlink control information further includes value information of the N.
  • the value information of the N may be the true value of the N, and may also indicate the true value of the N by using other indication manners.
  • the value of the N may be configured to be one time, and the air interface resource required for data transmission is allocated by using one downlink control information.
  • the downlink control information may further include continuous transmission indication information.
  • the continuous transmission indication information is used to indicate whether the downlink control information includes air interface resource information of N times of data transmission, or is used to indicate whether the downlink control information indicates N consecutive transmissions.
  • the continuous transmission refers to that the N times data transmission is a retransmission without waiting for a NACK message or an ACK message fed back by the data receiving end, such as automatic retransmission such as blind retransmission.
  • the continuous transmission referred to in this application may be performed on time-continuous time domain resources, for example, continuous transmission on the nth TTI to the n+N-1TTI, or may be Performing on time-domain resources that are not consecutive in time, for example, on N time-domain resources determined according to a certain time-domain resource determination rule, or in a time domain configured for downlink data control for N times of data transmission
  • the method of determining the frequency domain resource may be determined according to a certain rule or determined according to the configuration of the downlink control information, and the like.
  • the air interface resource information includes a frequency domain resource indication of the air interface resource.
  • the air interface resource information further includes a time domain resource indication of the air interface resource and/or a redundancy version (RV) information used to transmit the data.
  • RV redundancy version
  • the downlink control information includes air interface resource information used for the first data transmission corresponding to the downlink control information, and the air interface resource used by the remaining data transmission corresponding to the downlink control information is based on The air interface resource information for the first data transmission is determined.
  • the air interface resource information that is transmitted only once in the downlink control information can reduce the number of bits of the downlink control information and save control channel overhead.
  • the downlink control information includes air interface resource information for each data transmission corresponding to the downlink control information.
  • the air interface resource information of each data transmission is carried in the downlink control information, so that the allocation of air interface resources can be performed more flexibly for each data transmission.
  • the downlink control information includes air interface resource information used for the first data transmission corresponding to the downlink control information, where the remaining data transmission corresponding to the downlink control information is used.
  • the air interface resource is determined according to the air interface resource information used for the first data transmission, and includes: determining, according to the frequency domain resource indication of the first data transmission, the remaining data transmission use corresponding to the downlink control information Frequency domain resources.
  • the determining, by using the frequency domain resource indication of the first data transmission, the frequency domain resource used for each remaining data transmission corresponding to the downlink control information includes: using The first data transmission is the same frequency domain resource.
  • the determining, according to the frequency domain resource indication of the first data transmission, the frequency domain resource used for each remaining data transmission corresponding to the downlink control information includes: following frequency hopping
  • the rule calculates a frequency domain resource used by the current transmission according to the frequency domain resource indication of the first data transmission.
  • the downlink control information includes air interface resource information used for the first data transmission corresponding to the downlink control information, where the remaining data transmission corresponding to the downlink control information is used.
  • the air interface resource is determined according to the air interface resource information used for the first data transmission, and includes: determining, according to the time domain resource indication used by the first data transmission, each remaining data corresponding to the downlink control information The time domain resource used for the transfer.
  • the determining, by using the time domain resource indication used by the first data transmission, the time domain resource used for each remaining data transmission corresponding to the downlink control information includes: The M symbols that can be used for the same type of service data transmission after the first data transmission or the last data transmission, wherein M and the first data transmission use the same number of symbols.
  • the time domain resource used for determining the remaining data transmission corresponding to the downlink control information according to the time domain resource used by the first data transmission includes: using and The first data transmission or the last data transmission is the same time domain resource. It should be noted that when X (X is an integer greater than 1) data transmission uses the same time domain resource, it needs to occupy X different frequency domain resources. In this case, the data transmitting end is equivalent to one transmission. The action completes the transmission of X times of data transmission, and the data receiving end is equivalent to completing the reception of X times of data transmission by one receiving action.
  • the downlink control information includes air interface resource information used for the first data transmission corresponding to the downlink control information, where the remaining data transmission corresponding to the downlink control information is used.
  • the air interface resource is determined according to the air interface resource information used for the first data transmission, and further includes: determining, according to the rule, a redundancy version used for each remaining data transmission corresponding to the downlink control information.
  • the determining, according to the rule, the redundancy version used for each remaining data transmission corresponding to the downlink control information includes: using the same redundancy as the first data transmission version.
  • the determining, according to the rule, determining, according to the rule, the redundancy version used for each remaining data transmission corresponding to the downlink control information including: sequentially transmitting data in each order according to a redundancy version. Use the corresponding redundancy version.
  • first data transmission refers to the first transmission in the multiple data transmission corresponding to one downlink control information, and is not necessarily the first time that the data is in the communication process. transmission.
  • the embodiment of the present application provides a network device, where the network device has a function of implementing the behavior of the network device in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the network device includes a processor and a transmitter.
  • the receiver may also be included in the structure of the network device.
  • the processor is configured to support a network device to perform a corresponding function of the above methods.
  • the transmitter and receiver are configured to support communication between a network device and a user equipment, the transmitter is configured to transmit information or data involved in the foregoing method to a user equipment, and the receiver is configured to support the network device to receive the foregoing method. Information or data transmitted by the user equipment involved.
  • the network device can also include a memory for coupling with the processor to store program instructions and data necessary for the network device.
  • the embodiment of the present application provides a user equipment, where the user equipment has a function of realizing user equipment behavior in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the user equipment includes a processor and a receiver.
  • the transmitter may also be included in the structure of the user equipment.
  • the processor is configured to support a user equipment to perform a corresponding function in the foregoing method
  • the transmitter is configured to support a user equipment to transmit information or data involved in the foregoing method to a network device
  • the receiver is configured to support the user equipment to receive the foregoing Information or data transmitted by network devices involved in the method.
  • the user equipment may also include a memory for coupling with the processor to store program instructions and data necessary for the user equipment.
  • the embodiment of the present application provides a communication system, where the system includes the network device and the user equipment in the foregoing aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network device, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the user equipment, which includes a program designed to perform the above aspects.
  • an embodiment of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to execute the method involved in the network device.
  • an embodiment of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to execute the method involved in the user equipment.
  • the solution provided by the present application comprehensively considers the transmission delay requirement of the service and the reliability of the data transmission, and flexibly schedules and allocates the retransmission type and the corresponding air interface resource within the allowable range of the delay to perform data weighting. Transmission, the reliability of data transmission is guaranteed under the premise of satisfying the service transmission delay requirement.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application
  • FIG. 2 is a schematic diagram of a possible air interface resource division involved in the present application.
  • FIG. 3 is a schematic flow chart of HARQ retransmission and blind retransmission in the prior art
  • FIG. 4 is a schematic flowchart of a method for scheduling and allocating air interface resources according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of scheduling and allocating downlink resources according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of scheduling and allocating uplink resources according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another downlink resource scheduling and allocation according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • a wireless communication system such as a system employing code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, single carrier frequency division multiple access, etc., is particularly suitable for delay and data reliability. High service scenarios are required, such as the Ultra-reliable and low latency communication scenario in 5G.
  • FIG. 1 it is a simplified network architecture diagram of a communication system provided by an embodiment of the present application.
  • a User Equipment accesses a network device through a wireless interface for communication, and can also communicate with another user equipment, such as D2D (device to device) or M2M (machine to machine). Communication under the scene.
  • the network device can communicate with the user device or with another network device, such as a communication between the macro base station and the access point.
  • the user equipment referred to in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, control devices, or other processing devices connected to the wireless modem, and various forms of user devices ( User Equipment, UE), Mobile Station (MS), Terminal (Terminal) or Terminal Equipment (Terminal Equipment).
  • UE User Equipment
  • MS Mobile Station
  • Terminal Terminal
  • Terminal Equipment Terminal Equipment
  • the network device involved in the present application includes a base station (BS), a network controller, or a mobile switching center, etc., wherein the device that directly communicates with the user equipment through the wireless channel is usually a base station, and the base station may include various forms.
  • the macro base station, the micro base station, the relay station, the access point, or the remote radio unit (RRU), etc. of course, the wireless communication with the user equipment may also be other network equipment having the wireless communication function. This is not a sole limitation.
  • the names of devices with base station functions may be different, for example, in an LTE network, called an evolved Node B (eNB or eNodeB), in the third generation. In a 3G network, it is called a Node B (Node B).
  • the “resource scheduling and allocation method” mentioned in the present application may be defined as “resource scheduling method” or “resource allocation method”, because the network device allocates resources to the user equipment or the resource allocation of the user equipment receiving the network device is essentially The scheduling of resources or user equipment, and the scheduling of resources or user equipment must also correspond to the allocation of resources.
  • the “traffic transmission delay”, “service delay”, “transmission delay” and “delay” mentioned in the present application mean that the original data is sent through a series of processes such as encoding, and then transmitted through the channel. The time it takes to reach the receiving end and decode successfully, and restore to the original data, that is, the delay that the data packet is generated from the transmitting end and received correctly by the receiving end.
  • the air interface resource includes the time domain and the frequency domain resource of the air interface, and is usually a Resource Element (RE), a Resource Block (RB), a Subcarrier, a Symbol, and a Transmission Time Interval. , TTI) and other terms are indicated.
  • the air interface resources are usually divided into frequency domain and time domain, the frequency domain is divided into subcarriers, and the time domain is divided into symbols.
  • the entire air interface resource is composed of the frequency domain and the time domain partitioning grid shown in FIG. 2, and each grid is a resource unit, which represents a subcarrier resource in a symbol time, and each resource unit can carry certain information.
  • N symb symbols form a TTI in time, in a TTI
  • the subcarriers are combined to form a resource block.
  • concepts such as slot and subframe are usually defined in the time domain. It can be seen that each TTI in FIG. 2 includes 7 symbols, each resource block contains 12 subcarriers, and each 7 symbols is one time slot, and two time slots constitute one subframe, which is a typical one.
  • the allocation of air interface resources is only used as a specific example to describe the principle of partitioning the air interface resources. There may be other time-frequency domain resource division methods in different systems. For example, in a single-carrier system, there may be only one sub-carrier in the frequency domain, or Perhaps one symbol in a system with high latency requirements is a TTI.
  • the embodiment of the present application does not specifically limit the specific air interface resource division manner.
  • a "Transmission Time Interval (TTI)" described in this application may be any one of a symbol, a subframe, a slot, or a mini slot.
  • the at least one subframe, the at least one symbol, the at least one time slot, or the at least one minislot may also be included.
  • the solution of the embodiment of the present invention may also be applied to a time unit such as a symbol, a subframe, a time slot, or a minislot, or to at least one symbol, at least one subframe, at least one time slot, or at least one micro time.
  • the specific implementation manner is the same as when the TTI or the subframe is a time unit, and will not be described again.
  • the information indicating the time domain resource and/or the frequency domain resource is usually sent by using the downlink control message.
  • the time domain resource may be allocated by the number of symbols or the slot number that can be used for transmitting the data transmission, or all symbols of the entire subframe may be used by default; the frequency domain resource may be delivered by the initial resource block index and the length of the available resource block.
  • the time domain resource indication and/or the frequency domain resource indication mentioned in the present application includes all information that can identify the air interface resource, and the specific indication manner is not limited.
  • the basic process of retransmission and blind retransmission triggered by hybrid automatic repeat reQuest (HARQ) in the prior art is introduced in conjunction with FIG. 3 .
  • the eNB first allocates uplink air interface resources for data transmission to the UE on the subframe n, and the UE performs data in the n+4th subframe.
  • the initial transmission assumes that the eNB fails to decode the data after receiving the initial transmission data, and then sends a Negative ACKnowledgement (NACK) message to the UE in the n+8th subframe to trigger the UE to perform the same frequency domain resource in the subsequent subframe.
  • NACK Negative ACKnowledgement
  • the eNB will allocate new uplink air interface resources to the UE for retransmission after the NACK is fed back.
  • the UE After receiving the NACK and/or uplink resource allocation message fed back by the eNB, the UE is in the nth. +12 subframes perform data retransmission. If the eNB can correctly decode the transmission data after retransmission, the UE will send a response message to the UE in the n+16th subframe. (ACKnowledgment, ACK), the transmission process for the data ends. If the eNB still fails to decode after the first retransmission, the UE will again feed back the NACK and/or the uplink resource allocation message to trigger retransmission according to the foregoing procedure.
  • the HARQ technology ensures the reliability of data transmission through multiple response feedback and retransmission, but the service data transmission with high delay requirement cannot be completed within the range of delay limitation. Multiple response feedback and retransmissions will affect the reliability of data transmission.
  • FIG. 3(b) shows the application mode of the blind retransmission technology in the LTE system (referred to as TTI bundling technology in the LTE system), and the eNB allocates the UE to the subframe n.
  • the UE continuously performs initial transmission and three retransmissions in the n+4 to n+7 subframes, and the eNB combines all the received data after receiving the last retransmission data.
  • Decoding if the decoding is successful, the ACK is fed back, and if the decoding fails, the NACK and/or the uplink resource allocation message are fed back, triggering the next consecutive retransmission.
  • the blind retransmission technology adopts the automatic retransmission method to ensure the reliability of data transmission after the first resource allocation, in the scenario where the channel quality is good, there is a waste of resources.
  • the air interface resource and the retransmission type can be dynamically scheduled and allocated according to the delay required by the service, and the reliability of the data transmission is ensured while satisfying the service delay requirement.
  • One embodiment of the present application provides a resource scheduling and allocation method, as shown in FIG.
  • the network device allocates air interface resources for N data transmissions to the same user equipment through one downlink control information.
  • the downlink control information includes air interface resource information used for N times of data transmission, and the N is an integer greater than 1.
  • the downlink control information may implement the foregoing air interface resource scheduling and allocation by using the cells listed in the bearer table 1.
  • the optional cell representation in the table may be omitted according to specific conditions.
  • the cell carrying the value information of the N may determine a specific number of bits according to a specific value range of the N, for example, by using the method shown in Table 2 or Table 3, where the design of Table 2 is The method uses a 1-bit maximum resource allocation that can support 2 data transmissions.
  • the design method of Table 3 uses a 2-bit maximum resource allocation that can support 4 data transmissions; in a specific example, the value information of N can be omitted.
  • the current downlink control information is transmitted only once.
  • the frequency domain resource may be allocated by issuing the initial resource block index and the length of the available resource block, or the resource block may be divided into resources.
  • the block group also indicates the available resource block group by issuing a bitmap.
  • the resource block selection rule may be defined in advance and the corresponding frequency domain resource may be indicated by issuing a corresponding rule index; the time domain resource used for data transmission may be passed through
  • the number of symbols or the slot number that can be used for data transmission can be allocated.
  • the number of available symbols can be as shown in Table 4. To design, you can also omit this cell. By default, all symbols of the entire sub-frame are used for transmission.
  • the redundancy version (RV) used for data transmission can directly indicate the specific redundancy by using 2 bits in the prior art.
  • RV redundancy version
  • For the remaining version number it is also possible to predefine a redundancy version using a sequence of sequences such as ⁇ 0, 2, 1, 3 ⁇ , and use the redundancy version in the sequence in order of the number of transmissions.
  • the value information of the N may be omitted.
  • the number of air interface resource information included in the downlink control information may be used. Determine the number of times the data is transmitted (ie, determine the value of N).
  • the reference can be made to the related technical specifications in the existing wireless system.
  • the third generation partnership program technical indicator 3GPP 3rd Generation Partnership
  • Project 3rd Generation Partnership
  • TS Technical Specification
  • Table 1 Cells used to allocate air interface resources in downlink control information
  • Table 2 A specific design method for the value information cell of N
  • Table 4 A specific design method for time domain resource indication cells used for data transmission
  • the downlink control information may be configured with only the air interface resource information used for the data transmission, and the air interface resource configured in the message is used in the first data transmission corresponding to the current downlink control information, according to the first transmission.
  • the air interface resources used determine the air interface resources used for the remaining transmissions.
  • the remaining frequency domain resources of the transmission may use the same frequency domain resource as the first transmission, or may calculate the frequency domain resource used by the transmission according to the frequency domain resource information used by the first transmission by using a frequency hopping rule.
  • the index of the RB resource used in the first transmission is K (K is an integer greater than or equal to 0) in a downlink resource allocation process
  • the index of the RB resource used for the first blind retransmission may be ( (K+j) mod cell downlink RB resource number)
  • the index of the RB resource used for the second blind retransmission may be ((K+j/2) mod cell downlink RB resource number)
  • j (The number of downlink RB resources in the cell/2)
  • mod represents the operation of taking the remainder in the mathematical calculation.
  • the remaining time domain resources of the transmission may use M symbols that can be used for the same service data transmission after the first data transmission, wherein M and the number of symbols used in the first transmission are the same, and may also be used.
  • the first time data resource of the first data transmission or the last data transmission it should be noted that when X (X is an integer greater than 1) data transmission uses the same time domain resource, it needs to occupy X different frequencies. Domain resource.
  • the data transmitting end is equivalent to the transmission of X data transmissions by one transmission action
  • the data receiving end is equivalent to completing the reception of X data transmissions by one receiving action.
  • the redundant version of the remaining transmissions may use the same redundancy version as the first transmission described above, or may use the redundancy version in order of transmission times, for example, a possible redundancy version order is ⁇ 0, 2, 1 , 3 ⁇ , the redundancy version can be used in order according to the number of transmissions, that is, the first data transmission uses redundancy version 0, the second data transmission uses redundancy version 2, and the third data transmission uses redundancy version 1, The fourth data transfer uses redundancy version 3.
  • X is an integer greater than 1
  • data transmission uses the same time domain resource, it needs to occupy X different frequency domain resources.
  • the data transmitting end is equivalent to one transmitting action.
  • the transmission of X data transmissions is completed, and the data receiving end is equivalent to completing the reception of X data transmissions by one receiving action.
  • the X may be equal to N, that is, the N data transmissions are all performed on the same time domain resource.
  • X may also be smaller than N, that is, X data transmissions in the N data transmissions are performed on the same time domain resource.
  • the downlink control information may further include continuous transmission indication information.
  • the continuous transmission indication information is used to indicate whether the downlink control information includes air interface resource information of N times of data transmission, or is used to indicate whether the downlink control information indicates N consecutive transmissions.
  • the continuous transmission refers to a retransmission that is not based on the HARQ mechanism, that is, the data transmitting end can perform retransmission without waiting for the data receiving end to feed back NACK or ACK, for example, automatic retransmission such as blind retransmission.
  • the continuous transmission indication information may use a separate cell.
  • a 1-bit cell is used to indicate continuous transmission information in the downlink control information.
  • the data transmitting end starts to transmit N times of data at the xth TTI after the downlink control information, and the data receiving end
  • the Nth data is received at the xth TTI after the downlink control information, and the data transmitting end and the data receiving end use the air interface resources of the N times data transmission configured in the downlink control information, where x is an integer greater than or equal to 0. It can be determined according to predetermined rules.
  • a 1-bit (bit) cell has a value of "0" it indicates that continuous data transmission is not performed, and the data transmitting end and the data receiving end may use the air interface resource information configured in the downlink control information to perform data transmission or retransmission.
  • the continuous transmission indication information may also utilize cells for indicating other information.
  • the current downlink control signal may be indicated by a predetermined or agreed threshold and information indicated by a certain cell.
  • the threshold may be statically configured or semi-static or dynamically configured.
  • the threshold may be configured or updated more flexibly by semi-statically or dynamically configuring the threshold, thereby flexibly changing the trigger.
  • the conditions for continuous transmission may be sent.
  • the network device may send the threshold to the user equipment by using any one of physical layer control signaling, radio resource control layer signaling, and medium access control layer signaling, or at least one signaling. Other types of signaling may be used, which is not limited in this application.
  • the continuous transmission indication information may be indicated by a predetermined threshold by using a cell for indicating the coded modulation scheme information
  • the downlink control information may include coded modulation scheme information, such as a Modulation and Coding Scheme (MCS).
  • MCS Modulation and Coding Scheme
  • the indication information, the data transmitting end and the data receiving end may pre-agreed an MCS threshold.
  • the coded modulation scheme indicated in the downlink control information is smaller than the MCS threshold, the continuous transmission is indicated, and vice versa, the discontinuous transmission is indicated.
  • the downlink control information may include at least one of the continuous transmission indication information and the value information of the N.
  • the air interface resources of the data transmission may be directly configured in the downlink control information, or only The air interface resource information of the data transmission is configured, and the air interface resource information of the remaining N-1 data transmissions is determined according to the configured air interface resource information.
  • the downlink control information may also directly configure the air interface resource of the N times of data transmission, and the data transmitting end and the data receiving end directly transmit and receive data on the configured air interface resource of the N times data transmission.
  • the configuration of the air interface resource refer to the description above, and details are not described here.
  • the network device or the UE performs transmission or reception of the N data transmissions on the air interface resource configured in the downlink control information.
  • the UE receives the downlink control information, and parses the air interface resource of the N times data transmission included in the downlink control information, and configures the air interface resource in the downlink control information.
  • the N times data transmission is performed on the air interface resource (the transmission is performed only once when the data transmission is not configured), and the network device performs the N data transmission reception on the corresponding air interface resource (without configuration At the time of N, only one reception of data transmission is performed, and then the related operations such as demodulation and decoding are performed on the received N times (or once) data.
  • the network device performs the transmission of the N data transmissions on the air interface resource configured in the downlink control message (only one data transmission is performed when N is not configured).
  • the UE receives the downlink control information, parses the air interface resource of the N times data transmission included in the downlink control information, and performs the N data transmission on the corresponding air interface resource (without configuring N)
  • the reception of the data transmission is performed once, and then the related operations such as demodulation and decoding are performed on the received N times (or once) data.
  • FIG. 5 is a schematic diagram of scheduling and allocating downlink resources according to an embodiment of the present disclosure.
  • one or more symbols form a TTI, and the system performs TTI in the time domain resource scheduling, and the total length of 16 TTIs is 1 ms.
  • the example is omitted.
  • the specific symbols are represented by TTI as the smallest unit in the time domain; several subcarriers in the frequency domain form one RB.
  • specific subcarriers are omitted in the example, and RB is the smallest unit in the frequency domain.
  • the process of decoding the retransmitted data requires 7 TTI times, including 4 TTIs for waiting and receiving ACK or NACK feedback, 1 TTI for retransmission, and 2 TTIs for decoding of retransmitted data. It should be noted that, in different systems, the interval time and the decoding time may be different, but the embodiment of the present application is not affected. The principles and implementations of the solutions provided are not limited in this application.
  • the data to be transmitted arrives at the network device at time TTI n, and the data transmission delay required by the service to which the data belongs is 1 ms, the network device can recognize that the data needs to be at the latest TTI n+ At the 15th time, the decoding is completed at the receiving end. Considering that the receiving end also needs 2 TTI decoding time, the latest transmission of this data needs to be completed before or after TTI n+13.
  • the network device determines, according to the transmission delay of the data service to be transmitted, the maximum number of transmissions that the data to be transmitted can be completed within the transmission delay range, where The maximum number of transmissions is (the number of times of hybrid automatic repeat request retransmission + the number of blind retransmissions +1), wherein the blind retransmission refers to that the transmitting end does not need to wait for the feedback message of the receiving end or the scheduling of the network device to receive The end performs one or more data retransmissions.
  • the maximum number of transmissions is (the number of times of hybrid automatic repeat request retransmission + the number of blind retransmissions +1), wherein the blind retransmission refers to that the transmitting end does not need to wait for the feedback message of the receiving end or the scheduling of the network device to receive The end performs one or more data retransmissions.
  • the network device performs initial transmission on the TTI n+2 data to be transmitted, according to a delay of 1 ms, four TTI intervals required for HARQ retransmission, and two TTIs at the receiving end.
  • the decoding time the network device can determine that after the initial transmission of TTI n+2, two HARQ retransmissions can be scheduled in TTI n+7 and TTI n+12.
  • the receiving end can The decoding of the retransmission data is completed (that is, the HARQ retransmission is completed), but there is no more time to support the transmitter to receive the ACK/NACK feedback and decode the next retransmission data, so the remaining three TTI times.
  • the HARQ retransmission can not be completed again, but a blind retransmission can be performed on the TTI n+13, and the receiving end can complete the decoding of the blind retransmission data at the timing of TTI n+15 (that is, within 1 ms). Based on the above judgment, the network device can know that the maximum number of transmissions of the data is 4 times.
  • the network device selects the air interface resource and/or code modulation scheme used for the initial transmission in conjunction with the maximum number of transmissions. Specifically, in combination with the example provided in FIG. 5, the network device considers that the maximum number of transmissions is 4 times to ensure the reliability of data transmission, and the number of air interface resources used in the initial transmission and/or modulation may be directly determined according to the CQI reported by the UE. Coding scheme. More specifically, the network device can set a threshold for the maximum number of transmissions, for example, 2 times. When the maximum number of transmissions exceeds the threshold, it is considered that the reliability of data transmission can be guaranteed. When the number of transmissions is less than or equal to the threshold, the number of transmissions cannot be guaranteed. For the reliability of data transmission, the number of air interface resources and/or the code rate of the modulation and coding method can be appropriately increased, aiming at improving the reliability of a single transmission.
  • the network device when the network device schedules each transmission of data to be transmitted, it determines whether a HARQ retransmission can be completed after the current transmission according to the remaining transmission delay, and if the remaining transmission delay after the current transmission cannot complete the HARQ once.
  • the blind retransmission is scheduled after the current transmission, and the air interface resources of the N data transmissions include the current transmission and the air interface resources of the blind retransmission.
  • the network device sends the initial transmission air interface resource and the transmission times through the downlink control information, where N is taken.
  • the value is 1 in this example, and the first transmission of data is performed on TTI n+2.
  • the UE receives data and decodes on TTI n+2 according to the indication of downlink control information, and feeds back ACK if the decoding succeeds.
  • the device ends the current data transmission after receiving the ACK message. If the UE fails to decode, the NACK is fed back.
  • the network device After receiving the NACK, the network device sends the air interface resource for retransmission and the value of N again through the downlink control information. information.
  • the network device sends the air interface resource for retransmission and the value of N again through the downlink control information. information.
  • the network device determines that the remaining time can also complete a HARQ retransmission, that is, the network device receives the UE to TTI n+7. After the ACK/NACK of the data feedback, if the received NACK information, the retransmission can be scheduled again, and the UE can complete the decoding of the rescheduled retransmission within 1 ms.
  • the network device allocates only the air interface resource for the retransmission on the TTI n+7 in the downlink control information, and the value of the N is configured as one time, and the data is retransmitted on the TTI n+7 at the same time, and the UE performs the downlink control according to the downlink control.
  • the indication of the information receives and decodes the data on the TTI n+7, and if the decoding succeeds, the ACK is fed back, and the network device ends the current data transmission after receiving the ACK message, and if the UE fails to decode, the NACK is fed back, and the network device After receiving the NACK, the air interface resource for retransmission and the value information of N are sent by the downlink control information again.
  • the network device is performing TTI n+12.
  • the receiving end can complete the decoding of the retransmitted data, but there is no more time to support the transmitting end to receive the ACK/NACK feedback, that is, the remaining three.
  • the HARQ retransmission can not be completed once in the TTI time, but a blind retransmission can be performed on the TTI n+13.
  • the receiving end can complete the decoding of the blind retransmission data at the timing of TTI n+15 (that is, within 1 ms).
  • the air interface resources for the retransmission and the subsequent one-time blind retransmission are allocated in the downlink control information, and the value of N is configured to be 2 times, and the data is heavy on TTI n+12 and TTI n+13 at the same time.
  • the UE receives data and decodes on TTI n+12 and TTI n+13 according to the indication of the downlink control information.
  • FIG. 6 is a schematic diagram of scheduling and allocating uplink resources according to an embodiment of the present disclosure.
  • the assumption of the allocation of the air interface resources, the HARQ process, and the time required for the decoding, and the data arrival time and the service delay are the same as those in the embodiment shown in FIG. 5, and details are not described herein again.
  • the difference is that the uplink data transmission in the embodiment shown in FIG. 6 is taken as an example.
  • the timing of initial data transmission is different from the embodiment shown in FIG. 5, and the network device only performs the (maximum transmission times -1) scheduling. Determine whether a subsequent HARQ retransmission can be completed.
  • the network device determines, according to the transmission delay of the data service to be transmitted, the maximum number of transmissions that the data to be transmitted can be completed within the transmission delay range when the data to be transmitted is scheduled for initial transmission. Specifically, in conjunction with the example provided in FIG. 6, the network device schedules the UE to perform initial transmission on the TTI n+4 data to be transmitted, according to a delay of 1 ms, four TTI intervals required for HARQ retransmission, and two receiving ends. The decoding time of the TTI, the network device may determine that after the initial transmission in TTI n+4, the UE may also schedule a HARQ retransmission at TTI n+9.
  • the receiving end may complete this.
  • the decoding of the secondary retransmission data that is, the HARQ retransmission is completed, and then the transmitting end can also receive the ACK/NACK feedback of the HARQ retransmission, but if the retransmission is rescheduled in TTI n+14, the receiving is performed.
  • the terminal cannot complete the decoding of the data transmitted on the TTI n+14 within 1 ms, so the HARQ retransmission cannot be completed again, but one or several blind retransmissions can be performed on the TTI n+10 to TTI n+13.
  • the receiving end can complete the decoding of the blind retransmission data at the timing of TTI n+15 (ie, within 1 ms). Specifically, in conjunction with the example provided in FIG. 6, the network device determines that the maximum number of transmissions is three times according to only one blind retransmission.
  • the network device selects the air interface resource and/or code modulation scheme used for the initial transmission in conjunction with the maximum number of transmissions. Specifically, in combination with the example provided in FIG. 6, the network device considers that the maximum number of transmissions is three times to ensure the reliability of data transmission, and the number of air interface resources used in the initial transmission and/or modulation may be directly determined according to the CQI reported by the UE. Coding scheme. For a more specific embodiment, reference may be made to the description of the embodiment of FIG. 5.
  • the network device determines, according to the remaining transmission delay, whether the HARQ retransmission can be completed after the current transmission, in the case of the (the maximum number of transmissions - 1) transmission scheduling, if the remaining transmission after the current transmission If the delay cannot complete the HARQ retransmission, the blind retransmission is scheduled after the current transmission, and the air interface resources of the N data transmissions include the current transmission and the air interface of the blind retransmission.
  • the scheduling is the (maximum number of transmissions-1) scheduling, and the remaining time cannot be determined.
  • One HARQ retransmission may be performed on TTI n+10 and subsequent TTIs.
  • the network device is scheduled once on TTI n+10.
  • Blind retransmission so the air interface resources for the retransmission and the subsequent one-time blind retransmission are allocated in the downlink control information, and the value of N is configured to be 2 times, and the UE is configured according to the downlink control information at TTI n+9 and Data retransmission is performed on TTI n+10, and the network device receives data and decodes on TTI n+9 and TTI n+10.
  • FIG. 7 is a schematic diagram of another downlink resource scheduling and allocation according to an embodiment of the present disclosure.
  • the assumption of the allocation of the air interface resources, the HARQ process, and the time required for the decoding, and the data arrival time and the service delay are the same as those in the embodiment shown in FIG. 5, and details are not described herein again.
  • the difference is that the timing at which the data is initially transmitted in the embodiment shown in FIG. 7 is different from the embodiment shown in FIG.
  • the network device determines, according to the transmission delay of the data service to be transmitted, the maximum number of transmissions that the data to be transmitted can be completed within the transmission delay range when the data to be transmitted is scheduled for initial transmission. Specifically, in conjunction with the example provided in FIG. 7, the network device performs initial transmission of data to be transmitted at TTI n+10, according to a delay of 1 ms, four TTI intervals required for HARQ retransmission, and two TTIs of the receiving end.
  • the network device can determine that after the initial transmission of TTI n+10, the next HARQ retransmission can only be performed at TTI n+15, but the UE can no longer complete the decoding of the transmission data on TTI n+15 within 1 ms. Therefore, the HARQ retransmission cannot be completed after the initial transmission, but one or more blind retransmissions can be scheduled. In the example provided in FIG. 7, the network device determines that the maximum number of transmissions is 2 times according to only one blind retransmission. .
  • the network device selects the air interface resource and/or code modulation scheme used for the initial transmission in conjunction with the maximum number of transmissions. Specifically, in combination with the example provided in FIG. 7, the network device considers that the maximum number of transmissions is 2 times and cannot guarantee the reliability of data transmission, and may determine the number of air interface resources and/or modulation codes used in the initial transmission according to the CQI reported by the UE. On the basis of the scheme, the number of initial air interface resources is increased and/or the code rate of the modulation and coding scheme is reduced. For a more specific embodiment, reference may be made to the description of the embodiment of FIG. 5.
  • the network device determines, according to the remaining transmission delay, whether the HARQ retransmission can be completed after the current transmission according to the remaining transmission delay, if the remaining transmission delay cannot be completed after the current transmission.
  • a blind retransmission is scheduled after the current transmission, and the air interface resources of the N data transmissions include the current transmission and the air interface resources of the blind retransmission.
  • the blind retransmission needs to be scheduled after the initial transmission, and the network device sends the initial transmission and the subsequent blind retransmission air interface resources and the number of transmissions by using the downlink control information, where the value of N is in this example.
  • the UE performs the first transmission and the blind retransmission of the data on the TTI n+10 and the TTI n+11 according to the configuration of the downlink control information, and the network device receives the data and translates on the TTI n+10 and the TTI n+11. code.
  • the user equipment may notify the network device of the service key performance indicator, and the network device sends the key performance indicator threshold to the user equipment, and the network device and the user equipment according to the key performance indicator threshold.
  • business key performance indicators determine whether to use blind retransmission or continuous transmission. For example, if the blind retransmission or the continuous transmission is used, the specific manner of allocating the number of transmissions of the downlink control information and the air interface resources, refer to the description of the related embodiment in FIG. 4, and details are not described herein.
  • the key performance indicator threshold may be statically configured or semi-static or dynamically configured. The key performance indicator threshold may be configured more flexibly by semi-statically or dynamically configuring the key performance indicator threshold.
  • the network device may send the key performance indicator threshold to the user equipment by using any one of physical layer control signaling, radio resource control layer signaling, and medium access control layer signaling, or at least one signaling.
  • the user equipment may notify the network equipment service key performance indicator by using any one of physical layer control signaling, radio resource control layer signaling, and medium access control layer signaling, or at least one signaling. The use of other types of signaling is not limited in this application.
  • the key performance indicators may include reliability requirements (eg, reliability requirements of 99.999%), latency requirements (eg, transmission latency requirements of 1 ms), and the like. For example, if the reliability of the current requirement is 99.99% and the reliability of the current service requirement is 99.999%, the reliability of the service requirement is higher than the current threshold.
  • Use blind retransmission or continuous transmission to ensure the reliability of the service Claim.
  • the time delay requirement is used to determine whether to use the blind retransmission or the continuous transmission indicator. If the currently configured threshold is 2 ms, and the current service requires a delay of 1 ms, the time for using blind retransmission or continuous transmission to guarantee the service is used. Delay request.
  • the key performance indicator may further include an indicator of other service requirements, or may use one or more than one key performance indicator to jointly determine whether to use blind retransmission or continuous transmission, which is not limited in this application. .
  • the solution provided by the embodiment of the present application is introduced based on the assumptions of the specific air interface resource division mode, the service delay, the HARQ processing delay, and the decoding delay. It can be understood that different air interfaces are provided. The manner in which the resources are divided, the different service delay requirements in the actual network, and the different processing delays do not limit the solution provided by the present application. The present application does not limit the content.
  • the solution provided in this application may be applied to the uplink or downlink transmission, and the uplink or downlink mentioned in the embodiment is only for the sake of brevity and is not limited by the solution provided by the embodiment of the present application.
  • the network device or the user equipment includes corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • FIG. 8 is a schematic diagram showing a possible structure of a network device involved in the above embodiment.
  • the structure of the network device involved in the present application includes a processor and a transmitter.
  • the structure of the network device involved in the present application may further include a receiver.
  • the network device includes a transceiver 801, a processor 802, and a memory 803.
  • the transceiver 801 is configured to support sending and receiving information between the network device and the UE in the foregoing embodiment, and support radio communication between the UE and other UEs.
  • the processor 802 performs various functions for communicating with the UE.
  • On the uplink the uplink signal from the UE is received via the antenna, coordinated by the transceiver 801, and further processed by the processor 802 to recover the traffic data and signaling information transmitted by the UE.
  • traffic data and signaling messages are processed by processor 802 and mediated by transceiver 801 to generate downlink signals for transmission to the UE via the antenna.
  • Processor 802 also performs the processes involved in the network devices of Figures 4-7 and/or other processes for the techniques described herein.
  • the memory 803 is used to store program codes and data of the network device.
  • Figure 8 only shows a simplified design of the network device.
  • the network device may include any number of transmitters, receivers, processors, controllers, memories, etc., and all network devices that can implement the present application are within the scope of the present application.
  • Fig. 9 shows a simplified schematic diagram of one possible design structure of the UE involved in the above embodiment.
  • the structure of the user equipment involved in the present application includes a processor and a receiver.
  • the structure of the network device involved in the present application may further include a transmitter.
  • the UE includes a transmitter 901, a receiver 902, a processor 903, and a memory 904.
  • the transmitter 901 conditions (eg, analog conversion, filtering, amplifying, upconverting, etc.) output samples and generates an uplink signal that is transmitted via an antenna to the network described in the above embodiments. device.
  • the antenna receives the downlink signal transmitted by the network device in the above embodiment.
  • Receiver 902 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • the traffic data and signaling messages are processed (e.g., formatted, encoded, and interleaved). These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the processor 903 is further configured to perform control and management on the action of the UE, and is used to perform processing performed by the UE in the foregoing embodiment, for example, to control the UE to receive downlink control information, and/or to perform the present according to the received downlink control information. Other processes for applying the described techniques. As an example, the processor 903 is configured to support the UE in performing the processes related to the UE in FIGS. 4-7 and/or other processes for the techniques described herein.
  • Memory 904 is used to store program code and data for the UE.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请涉及移动通信领域,尤其涉及无线通信领域中的空口资源调度和分配技术。在一种资源调度和分配方法中,网络设备通过一条下行控制信息为同一用户设备分配用于N次数据传输的空口资源,其中,所述下行控制信息包含N次数据传输使用的空口资源信息,所述N为大于1的整数。通过本申请提供的方案,可以在业务时延允许范围内灵活的调度和分配重传类型以及相应的空口资源进行数据重传,在满足业务时延要求的前提下保证数据传输的可靠性。

Description

一种资源调度和分配的方法和装置
本发明要求2016年03月14日递交的发明名称为“一种资源调度和分配的方法和装置”的申请号201610143758.X的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及移动通信领域,尤其涉及无线通信领域中的空口资源调度和分配技术。
背景技术
国际电信同盟(International Telecommunications Union,ITU)定义了第五代移动通信(the 5th Generation mobile communication,5G)的三个主要应用场景:增强型移动宽带(Enhanced Mobile Broadband)、高可靠低时延通信(Ultra-reliable and low latency communication)以及大规模机器通信(Massive machine type communication)。其中高可靠低时延通信场景包含了如工业生产无线控制、远程医学手术等对吞吐量、时延、可靠性以及资源可用性等都有严格要求的业务。此类场景下的业务由于期望时延很短(最低时延低达1ms),需要快速调度并配置可用资源,同时又需要保证数据的可靠传输。
现有无线通信系统中,以LTE(Long Term Evolution)系统为例,数据发射端和接收端通常通过多次混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)过程触发数据的重传,直至数据正确接收或者达到最大重传次数限制为止,以此保证数据传输的可靠性。可以理解的是,多次HARQ重传必然带来较大的传输时延,无法满足对时延要求较高的业务诉求。因此,需要有一种资源调度和分配方法,可以满足业务的极短时延要求同时保证数据传输的可靠性。
发明内容
本文描述了一种空口资源调度和分配方法,装置以及系统,以满足业务的极短时延要求同时保证数据传输的可靠性。
一方面,本申请的实施例提供一种资源调度和分配方法。方法包括网络设备发送一条下行消息,其中,所述一条下行消息具有为同一用户设备分配用于N次数据传输的空口资源的能力,所述N为大于1的整数。
在一个可能的设计中,网络设备通过一条下行消息为同一用户设备分配用于N次数据传输的空口资源,所述N为大于1的整数。通过一条下行消息分配多次数据传输的空口资源,使得上行或者下行的数据发射端不用等待下一次调度或者资源分配就可以进行数据的重传,既减少了重传过程的时延也节省了用于资源分配的下行信息的数量,同时也通过重传提高了数据正确接收的概率,保证了数据传输的可靠性。
在一个可能的设计中,网络设备可以通过一条下行控制信息为同一用户设备分配用于N次数据传输的空口资源,其中,所述下行控制信息包含N次数据传输使用的空口资源信息,所述N为大于1的整数。利用一条下行控制信息分配多次数据传输的空口资源相当于直接调度数据重传,节省了重传调度的时延同时提高数据正确接收的概率。
在一个可能的设计中,网络设备在所述下行控制信息中配置的空口资源上进行所述N次数据传输的发射或者接收。
在一个可能的设计中,所述下行控制信息还包括所述N的取值信息。在下行控制信息中包含N的取值信息(即待传输数据的传输次数信息),可以明确指示网络设备或者用户设备进行数据传输的次数,在进行多次数据传输的情况下可以支持灵活的空口资源配置,例如下行控制信息中可以包含用于N次数据传输的N个空口资源信息;也可以仅包含用于一次数据传输的空口资源信息,剩余的多次传输可以根据规则进行空口资源的确定。可以理解的是,所述N的取值信息,可以是N的真实取值,也可以采用其他的指示方式指示N的真实取值。可以理解的,所述N的取值也可以配置成一次,实现通过一条下行控制信息分配一次数据传输所需要的空口资源。
在一个可能的设计中,所述下行控制信息还可以包括连续传输指示信息。所述连续传输指示信息用于指示所述下行控制信息是否包含N次数据传输的空口资源信息,或者说是用于指示所述下行控制信息是否指示N次连续传输。其中,所述连续传输是指,N次数据传输均为不等待数据接收端反馈的否定应答(Negative ACKnowledgement,NACK)消息或者应答(ACKnowledgment,ACK)消息就进行的重传,例如盲重传等自动重传。需要说明的是,本申请中所指的连续传输,可以是在时间上连续的时域资源上进行的,例如,在第n发射时间间隔(Transmission Time Interval,TTI)至第n+N-1TTI上进行连续传输,也可以是在时间上不连续的时域资源上进行的,例如,在根据一定的时域资源确定规则确定的N个时域资源上进行传输,或者在下行控制信息配置的用于N次数据传输的时域资源上进行传输等等,频域资源的确定方式也可以是根据一定的规则进行确定或者根据下行控制信息的配置确定等等,本申请对此不做限制;本申请中所指的连续传输,还可以包括在N个不同的频域资源上同时进行的数据传输,即所述N次数据传输使用相同的时域资源,不同的频域资源;此外,所述连续传输,还可以包括上述两种方式的混合,即使用分布在至少两个不同的时域资源上的共N个不同的频域资源进行所述N次数据传输。可选的,所述连续传输指示信息,可以利用一个独立的信元,例如,使用1比特(bit)的信元来指示下行控制信息中的连续传输信息。可选的,所述连续传输指示信息,也可以利用用于指示其他信息的信元,例如,可以结合预先确定或者约定的阈值和某一个信元所指示的信息来指示当前下行控制信息中的连续传输信息。连续传输指示信息可以明确指示网络设备或者用户设备是否需要进行连续传输,例如,盲重传,在进行多次数据传输的情况下可以支持灵活的空口资源配置,例如下行控制信息中可以配置用于N次数据传输的N个空口资源信息;也可以仅配置用于一次数据传输的空口资源信息,当连续传输指示信息指示当前需要进行N次数据传输时,剩余的N-1次传输可以根据规则进行空口资源的确定。
在一个可能的设计中,所述空口资源信息包括所述空口资源的频域资源指示。
在一个可能的设计中,所述空口资源信息还包括所述空口资源的时域资源指示和/或传输所述数据使用的冗余版本(Redundancy Version,RV)信息。
在一个可能的设计中,下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定。在下行控制信息中仅下发一次传输的空口资源信息,可以减少下行控制信息的比特数,节省控制信道开销。
在一个可能的设计中,下行控制信息中包含用于所述下行控制信息所对应的每一次数据传输的空口资源信息。在下行控制信息中携带每一次数据传输的空口资源信息,可以更加灵 活的对每一次数据传输进行空口资源的分配。
在一个可能的设计中,所述所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,包括:根据所述第一次数据传输的频域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的频域资源。在一个具体的可能的设计中,所述根据所述第一次数据传输的频域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的频域资源包括:使用与所述第一次数据传输相同的频域资源。在另一个具体的可能的设计中,所述根据所述第一次数据传输的频域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的频域资源包括:按照跳频规则根据所述第一次数据传输的频域资源指示计算本次传输使用的频域资源。
在一个可能的设计中,所述所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,包括:根据所述第一次数据传输所使用的时域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的时域资源。在一个具体的可能的设计中,所述根据所述第一次数据传输所使用的时域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的时域资源包括:使用所述第一次数据传输或者上一次数据传输后可以用于同种业务数据传输的M个符号,其中M和所述第一次数据传输使用的符号个数相同。在另一个具体的可能的设计中,所述根据所述第一次数据传输所使用的时域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的时域资源包括:使用与所述第一次数据传输或者上一次数据传输相同的时域资源。需要说明的是,当X(X为大于1的整数)次数据传输使用相同的时域资源时,就需要占用X个不同的频域资源,在此情况下,数据发射端相当于通过一次发射动作完成了X次数据传输的发射,数据接收端相当于通过一次接收动作完成了X次数据传输的接收。
在一个可能的设计中,所述所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,还包括:根据规则确定所述下行控制信息所对应的余下的每次数据传输使用的冗余版本。在一个具体的可能的设计中,所述根据规则确定所述下行控制信息所对应的余下的每次数据传输使用的冗余版本根据,包括:使用与所述第一次数据传输相同的冗余版本。在另一个具体的可能的设计中,所述根据规则确定所述下行控制信息所对应的余下的每次数据传输使用的冗余版本,包括:按冗余版本使用顺序依次在每次数据传输中使用相应的冗余版本。
需要说明的是,上述所提及的“第一次数据传输”是指一条下行控制信息所对应的N次数据传输中的第一次传输,并不一定是所述数据在通信过程中的初次传输。
在一个可能的设计中,网络设备还可以在待传输数据进行初次传输调度时,根据待传输数据所属的业务传输时延要求确定在所述传输时延范围内可以完成的最大传输次数,其中,所述最大传输次数为(混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)重传的次数+盲重传的次数+1),其中,所述盲重传是指发射端无需等待接收端的反馈消息或网络设备的调度向接收端进行一次或多次数据的重传;结合所述最大传输次数选择初次传输使用的空口资源和/或调制编码方案;所述为同一用户设备分配用于N次数据传输的空口资源包括:根据所选择的初次传输使用的空口资源和/或调制编码方案为同一用户设备分配用于N次数据传输的空口资源。在待传输数据进行初次调度时,就根据其业务时延确定可以完成的最大 传输次数,结合上述确定的最大传输次数选择初次传输使用的空口资源和/或调制编码方案,可以自适应的调节数据传输所占用的空口资源数目和/或调制编码方式,进一步保证数据正确传输的概率,例如在一个具体的可能的设计中,如果最大传输次数小于三次,可以适当增加空口资源数目和/或降低调制编码方式的码率,以提升数据传输的可靠性。
在一个可能的设计中,网络设备可以在待传输数据的每次传输调度时,都根据剩余的传输时延确定当前传输之后是否还能完成一次HARQ重传,如果当前传输之后剩余的传输时延不能完成一次HARQ重传,则在本次传输之后安排盲重传;所述N次数据传输的空口资源包括本次传输以及所述盲重传的空口资源;其中,所述完成一次HARQ重传,是指数据发射端等待接收端对前一次数据传输的ACK(ACKnowledgement)或NACK(Negative ACKnowledgement)反馈,且接收到NACK反馈后对数据进行重传,且接收端完成所述重传数据的译码的过程。在时延允许的范围内,尽可能多的安排HARQ重传,可以最大程度的提高数据传输的可靠性,如果时延不能支持多次或者一次HARQ重传,则可以在HARQ重传或者初传之后安排盲重传,从而在时延允许范围内进一步提升数据传输的可靠性。在每一次传输调度时都进行上述后续时延以及重传方案的判断,可以更加灵活的根据剩余的传输时延调整后续的重传类型,最大限度的保证数据在时延范围内的正确传输。
在一个可能的设计中,如果待传输数据的第(所述最大传输次数-1)次传输不是盲重传,网络设备还可以在待传输数据的第(所述最大传输次数-1)次传输调度时,根据剩余的传输时延确定当前传输之后是否还能完成一次HARQ重传,如果当前传输之后剩余的传输时延不能完成一次HARQ重传,则在本次传输之后安排盲重传;所述多次数据传输的空口资源包括本次传输以及所述盲重传的空口资源;其中,所述完成一次HARQ重传,是指数据发射端等待接收端对前一次数据传输的ACK(ACKnowledgement)或NACK(Negative ACKnowledgement)反馈,且接收到NACK反馈后对数据进行重传,且接收端完成所述重传数据的译码的过程。仅在第(所述最大传输次数-1)次传输调度时进行后续时延以及重传方案的判断,考虑了网络设备的负荷,既可以在时延范围内调整重传类型尽可能保证数据正确传输,又可以减轻网络设备的负荷。可以理解的是,网络设备也可以在任意一次传输调度时进行上述后续时延以及重传方案的判断,例如,可以选择在所述传输时延范围内的最后一次HARQ重传调度时进行上述后续时延以及重传方案的判断。
另一方面,本申请实施例提供了一种资源调度和分配方法。方法包括用户设备接收一条下行消息,其中,所述一条下行消息具有为同一用户设备分配用于N次数据传输的空口资源的能力,所述N为大于1的整数。
在一个可能的设计中,用户设备接收一条下行消息,用户设备解析所述一条下行消息中包含的为所述用户设备分配的用于N次数据传输的空口资源,所述N为大于1的整数。
在一个可能的设计中,用户设备获取网络设备通过一条下行控制信息分配的用于N次数据传输的空口资源,其中,所述下行控制信息包含多次数据传输使用的空口资源信息,所述N为大于1的整数。
在一个可能的设计中,用户设备在所述下行控制信息中配置的空口资源上进行所述N次数据传输的发射或者接收。
在一个可能的设计中,所述下行控制信息还包括所述N的取值信息。可以理解的是,所述N的取值信息,可以是N的真实取值,也可以采用其他的指示方式指示N的真实取值。显而易见的,所述N的取值也可以配置成一次,实现通过一条下行控制信息分配一次数据传输所需要的空口资源。
在一个可能的设计中,所述下行控制信息还可以包括连续传输指示信息。所述连续传输指示信息用于指示所述下行控制信息是否包含N次数据传输的空口资源信息,或者说是用于指示所述下行控制信息是否指示N次连续传输。其中,所述连续传输是指,N次数据传输均为不等待数据接收端反馈的NACK消息或者ACK消息就进行的重传,例如盲重传等自动重传。需要说明的是,本申请中所指的连续传输,可以是在时间上连续的时域资源上进行的,例如,在第n TTI至第n+N-1TTI上进行连续传输,也可以是在时间上不连续的时域资源上进行的,例如,在根据一定的时域资源确定规则确定的N个时域资源上进行传输,或者在下行控制信息配置的用于N次数据传输的时域资源上进行传输等等;频域资源的确定方式也可以是根据一定的规则进行确定或者根据下行控制信息的配置确定等等,本申请对此不做限制。
在一个可能的设计中,所述空口资源信息包括所述空口资源的频域资源指示。
在一个可能的设计中,所述空口资源信息还包括所述空口资源的时域资源指示和/或传输所述数据使用的冗余版本(Redundancy Version,RV)信息。
在一个可能的设计中,下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定。在下行控制信息中仅下发一次传输的空口资源信息,可以减少下行控制信息的比特数,节省控制信道开销。
在一个可能的设计中,下行控制信息中包含用于所述下行控制信息所对应的每一次数据传输的空口资源信息。在下行控制信息中携带每一次数据传输的空口资源信息,可以更加灵活的对每一次数据传输进行空口资源的分配。
在一个可能的设计中,所述所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,包括:根据所述第一次数据传输的频域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的频域资源。在一个具体的可能的设计中,所述根据所述第一次数据传输的频域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的频域资源包括:使用与所述第一次数据传输相同的频域资源。在另一个具体的可能的设计中,所述根据所述第一次数据传输的频域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的频域资源包括:按照跳频规则根据所述第一次数据传输的频域资源指示计算本次传输使用的频域资源。
在一个可能的设计中,所述所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,包括:根据所述第一次数据传输所使用的时域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的时域资源。在一个具体的可能的设计中,所述根据所述第一次数据传输所使用的时域资源指示确定所述下行控制信息所对应的余下的每次数据传输使用的时域资源包括:使用所述第一次数据传输或者上一次数据传输后可以用于同种业务数据传输的M个符号,其中M和所述第一次数据传输使用的符号个数相同。在另一个具体的可能的设计中,所述根据所述第一次数据传输所使用的时域资源确定所述下行控制信息所对应的余下的每次数据传输使用的时域资源包括:使用与所述第一次数据传输或者上一次数据传输相同的时域资源。需要说明的是,当X(X为大于1的整数)次数据传输使用相同的时域资源时,就需要占用X个不同的频域资源,在此情况下,数据发射端相当于通过一次发射动作完成了X次数据传输的发射,数据接收端相当于通过一次接收动作完成了X次数据传输的接收。
在一个可能的设计中,所述所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,还包括:根据规则确定所述下行控制信息所对应的余下的每次数据传输使用的冗余版本。在一个具体的可能的设计中,所述根据规则确定所述下行控制信息所对应的余下的每次数据传输使用的冗余版本根据,包括:使用与所述第一次数据传输相同的冗余版本。在另一个具体的可能的设计中,所述根据规则确定所述下行控制信息所对应的余下的每次数据传输使用的冗余版本根据,包括:按冗余版本使用顺序依次在每次数据传输中使用相应的冗余版本。
需要说明的是,上述所提及的“第一次数据传输”是指一条下行控制信息所对应的多次数据传输中的第一次传输,并不一定是所述数据在通信过程中的初次传输。
又一方面,本申请实施例提供了一种网络设备,该网络设备具有实现上述方法实际中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,网络设备的结构中包括处理器和发射器。在一个可能的设计中,网络设备的结构中还可以包括接收器。所述处理器被配置为支持网络设备执行上述方法中相应的功能。所述发射器和接收器用于支持网络设备与用户设备之间的通信,所述发射器用于向用户设备发射上述方法中所涉及的信息或者数据,所述接收器用于支持网络设备接收上述方法中所涉及的用户设备发射的信息或者数据。所述网络设备还可以包括存储器,所述存储器用于与处理器耦合,保存网络设备必要的程序指令和数据。
又一方面,本申请实施例提供了一种用户设备,该用户设备具有实现上述方法实际中用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,用户设备的结构中包括处理器和接收器。在一个可能的设计中,用户设备的结构中还可以包括发射器。所述处理器被配置为支持用户设备执行上述方法中相应的功能,所述发射器用于支持用户设备向网络设备发射上述方法中所涉及的信息或者数据,所述接收器用于支持用户设备接收上述方法中所涉及的网络设备发射的信息或者数据。所述用户设备还可以包括存储器,所述存储器用于与处理器耦合,保存用户设备必要的程序指令和数据。
又一方面,本申请实施例提供了一种通信系统,该系统包括上述方面所述的网络设备和用户设备。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述网络设备所涉及的方法。
再一方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述用户设备所涉及的方法。
相较于现有技术,本申请提供的方案综合考虑了业务的传输时延要求和数据传输的可靠性,在时延允许范围内灵活的调度和分配重传类型以及相应的空口资源进行数据重传,在满足业务传输时延要求的前提下保证了数据传输的可靠性。
附图说明
下面将参照所示附图对本申请实施例进行更详细的描述。
图1为本申请的一种可能的应用场景示意图;
图2为本申请所涉及的一种可能的空口资源划分示意图;
图3为现有技术中HARQ重传及盲重传的流程示意图;
图4为本申请实施例提供的一种空口资源调度和分配方法的流程示意图;
图5为本申请实施例提供的一种下行资源调度和分配的示意图;
图6为本申请实施例提供的一种上行资源调度和分配的示意图;
图7为本申请实施例提供的另一种下行资源调度和分配的示意图;
图8为本申请实施例提供的一种网络设备结构示意图;
图9为本申请实施例提供的一种用户设备结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请描述的技术可以适用于长期演进(Long Term Evolution,LTE)系统以及后续的演进系统如第五代移动通信(the 5th Generation mobile communication,5G)等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于对于时延以及数据可靠性要求较高的业务场景,如5G中的高可靠低时延通信(Ultra-reliable and low latency communication)场景。如图1所示,是本申请实施例提供的一种通信系统的简化的网络架构图。用户设备(User Equipment,UE)通过无线接口接入网络设备进行通信,也可以与另一用户设备进行通信,如D2D(device to device,设备对设备)或M2M(machine to machine,机器对机器)场景下的通信。网络设备可以与用户设备通信,也可以与另一网络设备进行通信,如宏基站和接入点之间的通信。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本申请所涉及到的用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、控制设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile station,MS)、终端(Terminal)或终端设备(Terminal Equipment)等。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。本申请所涉及到的网络设备包括基站(Base Station,BS)、网络控制器或移动交换中心等,其中通过无线信道与用户设备进行直接通信的装置通常是基站,所述基站可以包括各种形式的宏基站、微基站、中继站、接入点或射频拉远单元(Remote Radio unit,RRU)等,当然,与用户设备进行无线通信的也可以是其他具有无线通信功能的网络设备,本申请对此不做唯一限定。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在第三代3G网络中,称为节点B(Node B)等。
本申请中提及的“资源调度和分配方法”又可以定义为“资源调度方法”或者“资源分配方法”,因为网络设备给用户设备进行资源分配或者用户设备接收网络设备的资源分配本质上就是对资源或者用户设备的调度,而对资源或者用户设备进行调度也必然对应着资源的分配。
本申请中提及的“业务传输时延”、“业务时延”、“传输时延”、“时延”均是指原始数据经过编码等一系列处理后经由发射端发送,通过信道传输,到达接收端并解码成功,还原为原始数据所花费的时间,即数据包从发送端产生,到接收端正确接收的时延(latency)。
下面结合图2,对定义空口资源的基本概念以及空口资源的基本划分方式进行描述。空口资源包括空口的时域和频域资源,通常以资源单元(Resource Element,RE)、资源块(Resource Block,RB)、子载波(Subcarrier)、符号(Symbol)、发射时间间隔(Transmission Time Interval,TTI)等术语表示。空口资源通常从频域和时域进行划分,频域划分为子载波,时域划分为符号。整个空口资源由图2所示的频域和时域分割格子组成,每个格子为一个资源单元,代表一个符号时间内一个子载波的资源,每个资源单元上可以承载一定的信息。Nsymb个符号在时间上组成一个TTI,一个TTI中的
Figure PCTCN2017075485-appb-000001
个子载波合起来组成一个资源块。为了方便资源调度和分配,通常时域上还会定义时隙(Slot)和子帧(Subframe)等概念。可以看到,图2中的每个TTI包含7个符号,每个资源块包含12个子载波,每7个符号为一个时隙,两个时隙构成一个子帧,这是一种比较典型的空口资源划分方式,仅作为具体示例说明空口资源的划分原理,在不同的系统中可能有其他的时频域资源划分方式,例如在单载波系统中频域上可能只存在一个子载波,或者在某些对时延要求较高的系统中可能一个符号就是一个TTI。本申请实施例对具体的空口资源划分方式不做唯一限定。
本申请中所述的一个“发射时间间隔(Transmission Time Interval,TTI)”,可以是符号(symbol)、子帧(subframe)、时隙(slot)或者微时隙(mini slot)中的任意一种,也可以包含至少一个子帧、至少一个符号、至少一个时隙或者至少一个微时隙。可选的,本发明实施例的方案也可以应用于符号、子帧、时隙或者微时隙等时间单位,或者应用于至少一个符号、至少一个子帧、至少一个时隙或者至少一个微时隙等时间单位上,具体实施方式与以TTI或者子帧为一个时间单位时相同,不再赘述。
在网络设备为数据传输进行空口资源分配时,通常是通过下行控制消息下发可以指示时域资源和/或频域资源的信息。时域资源可以通过下发数据传输可以使用的符号个数或者时隙号来分配,也可以默认使用整个子帧的所有符号;频域资源可以通过下发起始资源块索引以及可用资源块的长度来分配,也可以将资源块划分成资源块组(Resource Block Group,RBG)并通过下发比特图(bitmap)来指示可用的资源块组,还可以预先定义资源块选取规则并通过下发相应规则索引来指示可用的频域资源等。本申请中所提及的时域资源指示和/或频域资源指示包括所有可以明确空口资源的信息,不对具体的指示方式做唯一限定。
下面结合图3,介绍现有技术中混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)触发的重传以及盲重传的基本流程。以LTE系统中的上行HARQ进程为例,如图3(a)所示,eNB首先在子帧n上给UE分配用于数据传输的上行空口资源,UE在第n+4子帧进行数据的初次传输,假设eNB在接收到初传数据后译码失败,则会在第n+8子帧给UE反馈否定应答(Negative ACKnowledgement,NACK)消息触发UE在后续子帧相同的频域资源上进行重传,在一些可能的情况下,eNB会在反馈NACK的同时再次给UE分配新的上行空口资源用于重传,UE接收到eNB反馈的NACK和/或上行资源分配消息后,在第n+12子帧进行数据的重传,如果经过重传后eNB可以正确译码所述的传输数据,则会在第n+16子帧给UE反馈应答消息 (ACKnowledgment,ACK),则针对此数据的传输进程结束,如果经过第一次重传后eNB仍译码失败,则会再次按照前述流程给UE反馈NACK和/或上行资源分配消息触发重发,直至译码正确或者达到设定的最大重传次数。从上述HARQ重传的基本流程可见,HARQ技术通过多次的应答反馈和重传来保证数据传输的可靠性,但对于时延要求较高的业务数据传输,在时延限制的范围内无法完成多次的应答反馈和重传,此时就会对数据传输的可靠性造成影响。
同样以LTE系统的上行传输为例,图3(b)给出了LTE系统中对盲重传技术的应用方式(LTE系统中称之为TTI bundling技术),eNB在子帧n上给UE分配用于数据传输的上行空口资源,UE在第n+4至n+7子帧中连续进行初传和3次重传,eNB在接收到最后一次重传数据之后对所有接收到的数据进行联合译码,如果译码成功则反馈ACK,如果译码失败则反馈NACK和/或上行资源分配消息,触发下一次连续重传。此类盲重传技术虽然在第一次资源分配之后就采用了自动重传的方式保证数据传输可靠性,但是在信道质量较好的场景下会存在资源浪费的情况。
通过本申请实施例提供的方案,可以根据业务所要求的时延动态调度和分配空口资源以及重传类型,在满足业务时延要求的同时保证数据传输的可靠性。下文将基于上面所述的本申请涉及的共性方面,对本申请实施例做进一步详细说明。
本申请的一个实施例提供了一种资源调度和分配方法,如图4所示。
在401部分,网络设备通过一条下行控制信息为同一用户设备分配用于N次数据传输的空口资源。其中,所述下行控制信息包含N次数据传输使用的空口资源信息,所述N为大于1的整数。
在一个示例中,下行控制信息可以通过承载表1所列的信元实现上述空口资源调度和分配,表格中的可选信元表示可以根据具体情况进行省略。在一个具体的示例中,承载N的取值信息的信元可以根据N的具体取值范围确定具体的比特数,例如,通过表2或者表3所示的方式进行设计,其中表2的设计方式使用1比特最大可以支持2次数据传输的资源分配,表3的设计方式使用2比特最大可以支持4次数据传输的资源分配;在一个具体的示例中,N的取值信息可以省略,此时默认对应当前的下行控制信息只进行一次数据传输;数据传输使用的频域资源,可以通过下发起始资源块索引以及可用资源块的长度来分配频域资源,也可以将资源块划分成资源块组并通过下发bitmap来指示可用的资源块组,还可以预先定义资源块选取规则并通过下发相应规则索引来指示可用的频域资源等;数据传输使用的时域资源,可以通过下发数据传输可以使用的符号个数或者时隙号来分配,其中可用符号个数可以通过表4所示的方式进行设计,也可以省略此信元,默认使用整个子帧的所有符号进行传输;数据传输使用的冗余版本(Redundancy Version,RV),可以使用现有技术的方式直接使用2比特指示具体的冗余版本号,也可以预先定义一个冗余版本使用顺序序列如{0,2,1,3},并按照传输次数顺序依次使用序列中的冗余版本。
在一个具体的示例中,当所述下行控制信息中配置了N次数据传输的空口资源信息时,N的取值信息可以省略,此时可以按照下行控制信息中包含的空口资源信息的个数确定数据传输的次数(即确定N的取值)。
对于表1中标示可以采用现有技术进行指示的信元,可以参考现有无线系统中相关的技术规定进行设计,例如在LTE系统中可以参考第三代合作伙伴计划技术指标3GPP(3rd Generation Partnership Project)TS(Technical Specification)36.212以及36.213中的具体规定,在此处不再赘述。
表1:下行控制信息中用于分配空口资源的信元
Figure PCTCN2017075485-appb-000002
表2:N的取值信息信元的一种具体设计方法
取值 所指示的N的取值
0 1
1 2
表3:N的取值信息信元的另一种具体设计方法
取值 所指示的N的取值
00 1
01 2
10 3
11 4
表4:数据传输使用的时域资源指示信元的一种具体设计方法
取值 所表示的符号个数
00 1
01 2
10 4
11 8
在另一个示例中,下行控制信息可以仅配置一次数据传输所使用的空口资源信息,在当前下行控制信息对应的第一次数据传输时使用消息中配置的空口资源,根据所述第一次传输使用的空口资源确定余下的传输所使用的空口资源。具体的,余下的传输的频域资源可以使用与上述第一次传输相同的频域资源,也可以通过跳频规则根据第一次传输使用的频域资源信息计算本次传输使用的频域资源,例如假设在一次下行资源分配过程中,上述第一次传输使用的RB资源的索引为K(K为大于等于0的整数),则第一次盲重传使用的RB资源的索引可以为((K+j)mod小区下行RB资源的个数),第二次盲重传使用的RB资源的索引可以为((K+j/2)mod小区下行RB资源的个数),其中j=(小区下行RB资源的个数/2),mod表示数学计算中取余数的操作。余下的传输的时域资源,可以使用上述第一次数据传输后可以用于相同业务数据传输的M个符号,其中M和上述第一次传输使用的符号个数相同,也可以使用与所述第一次数据传输或者上一次数据传输相同的时域资源,需要说明的是,当X(X为大于1的整数)次数据传输使用相同的时域资源时,就需要占用X个不同的频域资源,在此情况下,数据发射端相当于通过一次发射动作完成了X次数据传输的发射,数据接收端相当于通过一次接收动作完成了X次数据传输的接收。余下的传输的冗余版本,可以使用和上述第一次传输相同的冗余版本,也可以按传输次数按顺序使用冗余版本,例如一种可能的冗余版本顺序是{0,2,1,3},则可以按传输次数按顺序使用冗余版本,即第一次数据传输使用冗余版本0,第二次数据传输使用冗余版本2,第三次数据传输使用冗余版本1,第四次数据传输使用冗余版本3。
可选的,当X(X为大于1的整数)次数据传输使用相同的时域资源时,就需要占用X个不同的频域资源,在此情况下,数据发射端相当于通过一次发射动作完成了X次数据传输的发射,数据接收端相当于通过一次接收动作完成了X次数据传输的接收。其中所述X可以等于N,即所述N次数据传输均在相同的时域资源上进行。X也可以小于N,即所述N次数据传输中的X次数据传输在相同的时域资源上进行。
在一个示例中,所述下行控制信息还可以包括连续传输指示信息。所述连续传输指示信息用于指示所述下行控制信息是否包含N次数据传输的空口资源信息,或者说是用于指示所述下行控制信息是否指示N次连续传输。所述连续传输是指不基于HARQ机制的重传,即,数据发射端无需等待数据接收端反馈NACK或ACK就可以进行重传,例如盲重传等自动重传。
在一个具体的示例中,所述连续传输指示信息,可以使用一个独立的信元。例如,使用1比特(bit)的信元来指示下行控制信息中的连续传输信息。例如,当1比特(bit)的信元取值为“1”时,指示进行连续数据传输,数据发射端会在下行控制信息之后的第x个TTI开始进行N次数据的发射,数据接收端会在下行控制信息之后的第x个TTI开始进行N次数据的接收,数据发射端和数据接收端使用下行控制信息中配置的N次数据传输的空口资源,其中x为大于等于0的整数,可以根据预定的规则进行确定。当1比特(bit)的信元取值为“0”时,指示不进行连续数据传输,数据发送端和数据接收端可以使用下行控制信息中配置的空口资源信息进行数据的传输或者重传。
在另一个具体的示例中,所述连续传输指示信息,也可以利用用于指示其他信息的信元。例如,可以结合预先确定或者约定的阈值和某一个信元所指示的信息来指示当前下行控制信 息中的连续传输信息。可选的,所述阈值可以是静态配置的,也可以是半静态或者动态配置的,通过半静态或者动态配置所述阈值,可以更加灵活的对阈值进行配置或者更新,从而灵活的改变触发所述连续传输的条件。可选的,网络设备可以通过物理层控制信令、无线资源控制层信令、媒体接入控制层信令中的任一种或者至少一种信令将所述阈值发送给用户设备,当然也可以使用其他类型的信令,本申请对此不做限定。例如,所述连续传输指示信息,可以利用用于指示编码调制方案信息的信元以预定的阈值进行指示,下行控制信息中可以包含编码调制方案信息,如编码调制方案(Modulation and Coding Scheme,MCS)指示信息,数据发射端和数据接收端可以预先约定一个MCS阈值,当下行控制信息中所指示的编码调制方案小于所述MCS阈值时,则指示连续传输,反之,则指示非连续传输。
可选的,下行控制信息中可以包含所述连续传输指示信息和上述N的取值信息中的至少一种,此时,下行控制信息中可以直接配置N次数据传输的空口资源,也可以仅配置一次数据传输的空口资源,余下N-1次数据传输的空口资源信息根据所配置的空口资源信息确定。可选的,下行控制信息中也可以直接配置N次数据传输的空口资源,数据发射端和数据接收端直接在配置的N次数据传输的空口资源上进行数据的发射和接收。具体空口资源配置的方式可以参考上文的描述,此处不再赘述。
在一个示例中,网络设备或者UE在下行控制信息中配置的空口资源上进行所述N次数据传输的发射或者接收。
在一个具体的示例中,如果需要进行上行数据传输,则UE接收所述下行控制信息,解析所述下行控制信息中包含的N次数据传输的空口资源,并在所述下行控制信息中配置的空口资源上进行所述N次数据传输的发射(在没有配置N时只进行一次数据传输的发射),网络设备则会在相应的空口资源上进行所述N次数据传输的接收(在没有配置N时只进行一次数据传输的接收),之后对接收到的N次(或者一次)数据进行解调译码等相关操作。
在另一个具体的示例中,如果需要进行下行数据传输,网络设备会在所述下行控制消息中配置的空口资源上进行所述N次数据传输的发射(在没有配置N时只进行一次数据传输的发射),UE接收所述下行控制信息,解析所述下行控制信息中包含的N次数据传输的空口资源,并在相应的空口资源上进行所述N次数据传输的接收(在没有配置N时只进行一次数据传输的接收),之后对接收到的N次(或者一次)数据进行解调译码等相关操作。
下面将结合更多的附图,对本申请的实施例做进一步的说明。
图5为本申请实施例提供的一种下行资源调度和分配的示意图。
在图5所示例的空口资源结构中,一个或者多个符号构成一个TTI,系统在进行时域资源调度的时候以TTI为单位进行,16个TTI总时长为1ms,为简便起见,示例中省略了具体的符号,时域上以TTI为最小单位表示;频域上数个子载波构成一个RB,为简便起见,示例中省略了具体的子载波,频域上以RB为最小单位表示。
为了更清楚的说明本申请中资源调度和分配的实施方法,我们在具体的实施例中做如下假设:在一次HARQ传输中,从本次传输到下次传输中间需要间隔4个TTI,用于本次传输数据的接收译码以及ACK/NACK的反馈和接收译码,数据从发射端发射后,接收端还需要2个TTI的时间对数据进行译码。基于上述假设,本说明书中所述的完成一次HARQ重传,即数据发射端等待接收端对前一次数据传输的ACK或NACK反馈,且接收到NACK反馈后对数据进行重传,且接收端完成所述重传数据的译码的过程就需要7个TTI的时间,其中包括4个TTI等待和接收ACK或者NACK反馈,1个TTI进行重传,2个TTI进行重传数据的译码。需要说明的是,在不同的系统中,此间隔时间以及译码时间可能存在不同,但不影响本申请实施例 所提供方案的原理和实施方式,本申请并不对此做唯一限定。
在图5所提供的示例中,待传输的数据在TTI n时刻到达网络设备,且此数据所属业务要求的数据传输时延是1ms,则网络设备可以识别出此数据最晚需要在TTI n+15时刻在接收端译码完成,考虑接收端还需要2个TTI的译码时间,则此数据的最晚一次发射需要在TTI n+13或其之前完成。
在一个示例中,网络设备在待传输数据进行初次传输调度时,根据待传输数据业务要求的传输时延确定所述待传输数据在所述传输时延范围内可以完成的最大传输次数,其中,所述最大传输次数为(混合自动重传请求重传的次数+盲重传的次数+1),其中,所述盲重传是指发射端无需等待接收端的反馈消息或网络设备的调度向接收端进行一次或多次数据的重传。具体的,结合图5所提供的示例,网络设备在TTI n+2对待传输数据进行初次传输,根据1ms的时延限制、HARQ重传所需要的4个TTI间隔时间以及接收端2个TTI的译码时间,网络设备可以确定在TTI n+2进行初传后,还可以在TTI n+7、TTI n+12安排两次HARQ重传,在TTI n+12的重传之后,接收端可以完成此次重传数据的译码(即完成此次HARQ重传),但没有更多的时间支持发射端接收到ACK/NACK反馈以及译码下一次重传数据,所以剩余的三个TTI时间无法再完成一次HARQ重传,但在TTI n+13上还可以进行一次盲重传,接收端可以在TTI n+15的时机(即1ms之内)完成盲重传数据的译码。基于上述判断,网络设备可以获知此次数据的最大传输次数为4次。
在一个示例中,网络设备结合所述最大传输次数选择初次传输使用的空口资源和/或编码调制方案。具体的,结合图5所提供的示例,网络设备认为最大传输次数为4次可以保证数据传输的可靠性,则可以直接根据UE上报的CQI来确定初传所使用的空口资源数量和/或调制编码方案。更具体的,网络设备可以设置一个最大传输次数的阈值,例如2次,当最大传输次数超过此阈值则认为可以保证数据传输的可靠性,当传输次数小于等于此阈值,则认为传输次数无法保证数据传输的可靠性,则可以适当增加空口资源的数量和/或降低调制编码方式的码率,旨在提升单次传输的可靠性。
在一个示例中,网络设备在待传输数据的每次传输调度时,根据剩余的传输时延确定当前传输之后是否还能完成一次HARQ重传,如果当前传输之后剩余的传输时延不能完成一次HARQ重传,则在本次传输之后安排盲重传,所述N次数据传输的空口资源包括本次传输以及所述盲重传的空口资源。具体的,结合图5所提供的示例,初次传输后仍然有时间完成HARQ重传而不需要安排盲重传,网络设备通过下行控制信息下发初次传输的空口资源以及传输次数,其中N的取值在此示例中为1次,同时在TTI n+2上进行数据的首次传输,UE根据下行控制信息的指示在TTI n+2上接收数据并译码,如果译码成功则反馈ACK,网络设备在接收到ACK消息之后结束本次数据传输,如果UE译码失败,则反馈NACK,网络设备在接收到NACK之后会再次通过下行控制信息下发用于重传的空口资源以及N的取值信息。具体的,结合图5所提供的示例,网络设备在进行TTI n+7上的重传调度时,判断剩余的时间还可以完成一次HARQ重传,即网络设备在接收到UE对TTI n+7上的数据反馈的ACK/NACK后,如果接收到的是NACK信息,则可以再安排一次重传,且UE在1ms的时间内可以完成上述再安排的重传的译码。所以,网络设备在下行控制信息中仅分配用于TTI n+7上重传的空口资源,N的取值配置为1次,并同时在TTI n+7上进行数据重传,UE根据下行控制信息的指示在TTI n+7上接收数据并进行译码,如果译码成功则反馈ACK,网络设备在接收到ACK消息之后结束本次数据传输,如果UE译码失败,则反馈NACK,网络设备在接收到NACK之后会再次通过下行控制信息下发用于重传的空口资源及N的取值信息。具体的,网络设备在进行TTI n+12上的 重传调度时,判断出在TTI n+12的重传之后,接收端可以完成此次重传数据的译码,但没有更多的时间支持发射端接收到ACK/NACK反馈,即剩余的三个TTI时间无法再完成一次HARQ重传,但在TTI n+13上还可以进行一次盲重传,接收端可以在TTI n+15的时机(即1ms之内)完成盲重传数据的译码,所以在下行控制信息中分配用于此次重传以及随后的一次盲重传的空口资源,N的取值配置为2次,并同时在TTI n+12以及TTI n+13上进行数据重传,UE根据下行控制信息的指示在TTI n+12以及TTI n+13上接收数据并进行译码。
在图5所提供的实施例中,所涉及的下行控制信息分配传输次数以及空口资源的具体方式参照图4有关实施例的描述,不再赘述。
图6为本申请实施例提供的一种上行资源调度和分配的示意图。
在图6所示的实施例中,空口资源的划分、HARQ进程以及译码所需的时间以及数据到达时刻和业务时延的假设与图5所示的实施例相同,不再赘述。不同的是,图6所示的实施例以上行数据传输为例,数据进行初次传输的时机与图5所示的实施例不同,且网络设备仅在第(最大传输次数-1)次调度时判断后续是否可以完成一次HARQ重传。
在一个示例中,网络设备在待传输数据进行初次传输调度时,根据所述待传输数据业务要求的传输时延确定所述待传输数据在所述传输时延范围内可以完成的最大传输次数。具体的,结合图6所提供的示例,网络设备调度UE在TTI n+4对待传输数据进行初次传输,根据1ms的时延限制、HARQ重传所需要的4个TTI间隔时间以及接收端2个TTI的译码时间,网络设备可以确定在TTI n+4进行初传后,还可以在TTI n+9调度UE进行一次HARQ重传,在TTI n+9的重传之后,接收端可以完成此次重传数据的译码,即完成此次HARQ重传,接下来发射端也可以接收到此次HARQ重传的ACK/NACK反馈,但如果在TTI n+14再调度一次重传,则接收端无法在1ms之内完成TTI n+14上所传数据的译码,所以无法再完成一次HARQ重传,但在TTI n+10至TTI n+13上还可以进行一次或数次盲重传,接收端可以在TTI n+15的时机(即1ms之内)完成盲重传数据的译码。具体的,结合图6所提供的示例,网络设备按照只安排一次盲重传确定最大传输次数为3次。
在一个示例中,网络设备结合所述最大传输次数选择初次传输使用的空口资源和/或编码调制方案。具体的,结合图6所提供的示例,网络设备认为最大传输次数为3次可以保证数据传输的可靠性,则可以直接根据UE上报的CQI来确定初传所使用的空口资源数量和/或调制编码方案。更具体的实施方式可以参见图5有关实施例的描述。
在一个示例中,网络设备会在第(所述最大传输次数-1)次传输调度时,根据剩余的传输时延确定当前传输之后是否还能完成一次HARQ重传,如果当前传输之后剩余的传输时延不能完成一次HARQ重传,则在本次传输之后安排盲重传,所述N次数据传输的空口资源包括本次传输以及所述盲重传的空口资。具体的,结合图6所提供的示例,网络设备在进行TTI n+9上的重传调度时,可知此次调度是第(最大传输次数-1)次调度,且判断剩余的时间无法再进行一次HARQ重传,但在TTI n+10及其以后的TTI上还可以进行一次或者多次盲重传,在图6所示的具体实施例中,网络设备在TTI n+10上安排了一次盲重传,所以在下行控制信息中分配用于此次重传以及随后的一次盲重传的空口资源,N的取值配置为2次,UE根据下行控制信息的配置在TTI n+9以及TTI n+10上进行数据重传,网络设备在TTI n+9以及TTI n+10上接收数据并进行译码。
在图6所提供的实施例中,所涉及的下行控制信息分配传输次数以及空口资源的具体方式参照图4有关实施例的描述,不再赘述。
图7为本申请实施例提供的另一种下行资源调度和分配的示意图。
在图7所示的实施例中,空口资源的划分、HARQ进程以及译码所需的时间以及数据到达时刻和业务时延的假设与图5所示的实施例相同,不再赘述。不同的是,图7所示的实施例中数据进行初次传输的时机与图5所示的实施例不同。
在一个示例中,网络设备在待传输数据进行初次传输调度时,根据所述待传输数据业务要求的传输时延确定所述待传输数据在所述传输时延范围内可以完成的最大传输次数。具体的,结合图7所提供的示例,网络设备在TTI n+10对待传输数据进行初次传输,根据1ms的时延限制、HARQ重传所需要的4个TTI间隔时间以及接收端2个TTI的译码时间,网络设备可以确定在TTI n+10进行初传后,下一次HARQ重传只能在TTI n+15进行,但UE已经无法再1ms内完成TTI n+15上传输数据的译码,所以在初传之后无法再完成一次HARQ重传,但可以安排一次或多次盲重传,在图7所提供的示例中,网络设备按照只安排一次盲重传确定最大传输次数为2次。
在一个示例中,网络设备结合所述最大传输次数选择初次传输使用的空口资源和/或编码调制方案。具体的,结合图7所提供的示例,网络设备认为最大传输次数为2次无法保证数据传输的可靠性,则可以在根据UE上报的CQI确定初传所使用的空口资源数量和/或调制编码方案的基础上增加初传的空口资源的数量和/或降低调制编码方式的码率。更具体的实施方式可以参见图5有关实施例的描述。
在一个示例中,网络设备在所述待传输数据的每次传输调度时,根据剩余的传输时延确定当前传输之后是否还能完成一次HARQ重传,如果当前传输之后剩余的传输时延不能完成一次HARQ重传,则在本次传输之后安排盲重传,所述N次数据传输的空口资源包括本次传输以及所述盲重传的空口资源。具体的,结合图7所提供的示例,初次传输后需要安排盲重传,网络设备通过下行控制信息下发初次传输以及后续盲重传的空口资源以及传输次数,其中N的取值在此示例中为2次,UE根据下行控制信息的配置在TTI n+10以及TTI n+11上进行数据的首次传输和盲重传,网络设备在TTI n+10以及TTI n+11上接收数据并译码。
在图7所提供的实施例中,所涉及的下行控制信息分配传输次数以及空口资源的具体方式参照图4有关实施例的描述,不再赘述。
在本申请实施例提供的再一种资源调度和分配方法中,用户设备可以将业务关键性能指标通知网络设备,网络设备发送关键性能指标阈值给用户设备,网络设备和用户设备根据关键性能指标阈值和业务关键性能指标确定是否使用盲重传或者连续传输。其中,如果使用盲重传或者连续传输,所涉及的下行控制信息分配传输次数以及空口资源的具体方式参照图4有关实施例的描述,不再赘述。可选的,所述关键性能指标阈值可以是静态配置的,也可以是半静态或者动态配置的,通过半静态或者动态配置所述关键性能指标阈值,可以更加灵活的对关键性能指标阈值进行配置或者更新,从而灵活的改变触发所述连续传输的条件。可选的,网络设备可以通过物理层控制信令、无线资源控制层信令、媒体接入控制层信令中的任一种或者至少一种信令将所述关键性能指标阈值发送给用户设备,当然也可以使用其他类型的信令,本申请对此不做限制。可选的,用户设备可以通过物理层控制信令、无线资源控制层信令、媒体接入控制层信令中的任一种或者至少一种信令通知网络设备业务关键性能指标,当然也可以使用其他类型的信令,本申请对此不做限制。
在一个具体的示例中,所述关键性能指标可以包括可靠性要求(例如,可靠性要求为99.999%)、时延要求(例如,传输时延要求为1ms)等。例如,以可靠性要求为判断是否使用盲重传或者连续传输的指标,如果当前配置的阈值为99.99%,而当前业务要求的可靠性为99.999%,则业务要求的可靠性高于当前阈值,则使用盲重传或者连续传输保证业务的可靠性 要求。再例如,以时延要求为判断是否使用盲重传或者连续传输的指标,如果当前配置的阈值为2ms,而当前业务要求的时延为1ms,则使用盲重传或者连续传输保证业务的时延要求。可选的,所述关键性能指标还可以包括其他业务要求的指标,也可以使用一种或者多于一种的关键性能指标联合判断是否使用盲重传或者连续传输,本申请对此不做限定。
需要说明的是,上述实施例基于具体的空口资源划分方式、业务时延、HARQ处理时延以及译码时延等假设介绍了了本申请实施例提供的方案,可以理解的是,不同的空口资源划分方式、实际网络中不同的业务时延要求以及不同的处理时延并不会对本申请所提供的方案造成限制,本申请并不对上述内容做唯一的限定。
此外,本申请所提供的方案可以应用于上行或者下行传输,实施例中所提及的上行或者下行只是为了描述简洁,并不作为本申请实施例所提供的方案的限定。
可以理解的是,网络设备或者用户设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图8示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。
在一个可能的示例中,本申请所涉及的网络设备的结构中包括处理器和发射器。在一个可能的设计中,本申请所涉及的网络设备的结构中还可以包括接收器。
具体的,结合图8所给出的示例,该网络设备包括收发器801,处理器802,存储器803。所述收发器801用于支持网络设备与上述实施例中的所述的UE之间收发信息,以及支持所述UE与其他UE之间进行无线电通信。所述处理器802执行各种用于与UE通信的功能。在上行链路,来自所述UE的上行链路信号经由天线接收,由收发器801进行调解,并进一步由处理器802进行处理来恢复UE所发射到业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器802进行处理,并由收发器801进行调解来产生下行链路信号,并经由天线发射给UE。处理器802还执行图4至图7中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程。存储器803用于存储网络设备的程序代码和数据。
可以理解的是,图8仅仅示出了所述网络设备的简化设计。在实际应用中,所述网络设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
图9示出了上述实施例中所涉及的UE的一种可能的设计结构的简化示意图。
在一个可能的示例中,本申请所涉及的用户设备的结构中包括处理器和接收器。在一个可能的设计中,本申请所涉及的网络设备的结构中还可以包括发射器。
具体的,结合图9所给出的示例,该UE包括发射器901,接收器902,处理器903,存储器904。
在上行链路上,发射器901调节(例如,模拟转换、滤波、放大和上变频等)输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收上述实施例中网络设备发射的下行链路信号。接收器902调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在处理器903中,对业务数据和信令消息进行处理(例如,格式化、编码和交织)。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
所述处理器903还用于对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理,例如用于控制UE接收下行控制信息和/或根据接收到的下行控制信息进行本申请所描述的技术的其他过程。作为示例,处理器903用于支持UE执行图4至图7中涉及UE的处理过程和/或用于本申请所描述的技术的其他过程。存储器904用于存储用于所述UE的程序代码和数据。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (29)

  1. 一种资源调度和分配方法,所述方法包括:
    网络设备通过一条下行控制信息为同一用户设备分配用于N次数据传输的空口资源,其中,所述下行控制信息包含N次数据传输使用的空口资源信息,所述N为大于1的整数。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    网络设备在所述下行控制信息中配置的空口资源上进行所述N次数据传输的发射或者接收。
  3. 如权利要求1或2所述的方法,其特征在于,所述下行控制信息还包括所述N的取值信息。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述下行控制信息中还包括连续传输指示信息。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述空口资源信息包括所述空口资源的频域资源指示。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述空口资源信息还包括所述空口资源的时域资源指示和/或传输所述数据使用的冗余版本(Redundancy Version,RV)信息。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述下行控制信息包含N次数据传输使用的空口资源信息包括:
    所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,或者
    所述下行控制信息中包含用于所述下行控制信息所对应的每一次数据传输的空口资源信息。
  8. 一种资源调度和分配方法,所述方法包括:
    用户设备获取网络设备通过一条下行控制信息分配的用于N次数据传输的空口资源,其中,所述下行控制信息包含N次数据传输使用的空口资源信息,所述N为大于1的整数。
  9. 如权利要求8所述的方法,其特征在于,还包括:
    用户设备在所述下行控制信息中配置的空口资源上进行所述N次数据传输的发射或者接收。
  10. 如权利要求8或9所述的方法,其特征在于,所述下行控制信息还包括所述N的取值信息。
  11. 如权利要求8至10任一项所述的方法,其特征在于,所述下行控制信息中还包括连续传输指示信息。
  12. 如权利要求8至11任一项所述的方法,其特征在于,所述空口资源信息包括所述空口资源的频域资源指示。
  13. 如权利要求8至12任一项所述的方法,其特征在于,所述空口资源信息还包括所述空口资源的时域资源指示和/或传输所述数据使用的冗余版本(Redundancy Version,RV)信息。
  14. 如权利要求8至13任一项所述的方法,其特征在于,所述下行控制信息包含N次数据传输使用的空口资源信息包括:
    所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,或者
    所述下行控制信息中包含用于所述下行控制信息所对应的每一次数据传输的空口资源信息。
  15. 一种网络设备,包括:
    至少一个处理器,用于通过一条下行控制信息为同一用户设备分配用于N次数据传输的空口资源,其中,所述下行控制信息包含N次数据传输使用的空口资源信息,所述N为大于1的整数;和
    至少一个发射器,用于发射所述下行控制信息。
  16. 如权利要求15所述的网络设备,其特征在于,
    还包括接收器,用于在所述下行控制信息中配置的空口资源上进行所述N次数据传输的接收;或者
    所述至少一个发射器,还用于在所述下行控制信息中配置的空口资源上进行所述N次数据传输的发射。
  17. 如权利要求15或16所述的网络设备,其特征在于,所述下行控制信息还包括所述N的取值信息。
  18. 如权利要求15至17任一项所述的网络设备,其特征在于,所述下行控制信息中还包括连续传输指示信息。
  19. 如权利要求15至18任一项所述的网络设备,其特征在于,所述空口资源信息包括所述空口资源的频域资源指示。
  20. 如权利要求15至19任一项所述的网络设备,其特征在于,所述空口资源信息还包括所述空口资源的时域资源指示和/或传输所述数据使用的冗余版本(Redundancy Version,RV)信息。
  21. 如权利要求15至20任一项所述的网络设备,其特征在于,所述下行控制信息包含N次数据传输使用的空口资源信息包括:
    所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,或者
    所述下行控制信息中包含用于所述下行控制信息所对应的每一次数据传输的空口资源信息。
  22. 一种用户设备,包括:
    至少一个接收器,用于接收网络设备发射的下行控制信息;和
    至少一个处理器,用于获取网络设备通过一条下行控制信息分配的用于N次数据传输的空口资源,其中,所述下行控制信息包含N次数据传输使用的空口资源信息,所述N为大于1的整数。
  23. 如权利要求22所述的用户设备,其特征在于,
    还包括发射器,用于在所述下行控制信息中配置的空口资源上进行所述N次数据传输的发射;或者
    所述至少一个接收器,还用于在所述下行控制信息中配置的空口资源上进行所述N次数据传输的接收。
  24. 如权利要求22或23所述的用户设备,其特征在于,所述下行控制信息还包括所述N的取值信息。
  25. 如权利要求22至24任一项所述的用户设备,其特征在于,所述下行控制信息中还包括连续传输指示信息。
  26. 如权利要求22至25任一项所述的用户设备,其特征在于,所述空口资源信息包括所述空口资源的频域资源指示。
  27. 如权利要求22至26任一项所述的用户设备,其特征在于,所述空口资源信息还包括所述空口资源的时域资源指示和/或传输所述数据使用的冗余版本(Redundancy Version,RV)信息。
  28. 如权利要求22至27任一项所述的用户设备,其特征在于,所述下行控制信息包含N次数据传输使用的空口资源信息包括:
    所述下行控制信息中包含用于所述下行控制信息所对应的第一次数据传输的空口资源信息,所述下行控制信息所对应的余下的数据传输所使用的空口资源根据所述用于第一次数据传输的空口资源信息确定,或者
    所述下行控制信息中包含用于所述下行控制信息所对应的每一次数据传输的空口资源信息。
  29. 一种通信系统,其特征在于,包括如权利要求15-21中任一项所述的网络设备和如权利要求22-28中任一项所述的用户设备。
PCT/CN2017/075485 2016-03-14 2017-03-02 一种资源调度和分配的方法和装置 WO2017157181A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018548438A JP6666462B2 (ja) 2016-03-14 2017-03-02 リソーススケジューリング及び割り当て方法及び機器
EP17765723.6A EP3419370B1 (en) 2016-03-14 2017-03-02 Method and device scheduling and allocating resource
US16/129,907 US10819474B2 (en) 2016-03-14 2018-09-13 Resource scheduling and allocation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610143758.XA CN107197528B (zh) 2016-03-14 2016-03-14 一种资源调度和分配的方法和装置
CN201610143758.X 2016-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/129,907 Continuation US10819474B2 (en) 2016-03-14 2018-09-13 Resource scheduling and allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2017157181A1 true WO2017157181A1 (zh) 2017-09-21

Family

ID=59850595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075485 WO2017157181A1 (zh) 2016-03-14 2017-03-02 一种资源调度和分配的方法和装置

Country Status (5)

Country Link
US (1) US10819474B2 (zh)
EP (1) EP3419370B1 (zh)
JP (1) JP6666462B2 (zh)
CN (1) CN107197528B (zh)
WO (1) WO2017157181A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229326A1 (en) * 2017-06-16 2018-12-20 Nokia Technologies Oy Data channel scheduling reliability for urllc services
WO2020085885A1 (ko) * 2018-10-26 2020-04-30 엘지전자 주식회사 Nr v2x에서 재전송을 수행하는 방법 및 장치
CN114128183A (zh) * 2019-08-02 2022-03-01 松下电器(美国)知识产权公司 收发器设备和调度设备
TWI798427B (zh) * 2018-04-27 2023-04-11 美商高通公司 用於迷你時槽的資源配置模式訊號傳遞
US11825435B2 (en) 2018-09-27 2023-11-21 Zte Corporation Service transmission method and device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696621B (zh) 2014-12-18 2020-06-21 美商健臻公司 原肌球蛋白相關激酶(trk)抑制劑之醫藥調配物
CN107197528B (zh) * 2016-03-14 2020-12-25 华为技术有限公司 一种资源调度和分配的方法和装置
CN108633033B (zh) * 2017-03-24 2023-05-12 中兴通讯股份有限公司 一种传输资源确定方法、装置及用户设备
CN108667570A (zh) * 2017-03-27 2018-10-16 索尼公司 用于无线通信的网络控制端和网络节点的电子设备和方法
JP2018201074A (ja) * 2017-05-25 2018-12-20 富士通株式会社 基地局装置及び送信方法
CN109586843A (zh) * 2017-09-29 2019-04-05 华为技术有限公司 通信系统中冗余版本的设计方案
CN109787708B (zh) * 2017-11-13 2022-03-01 珠海市魅族科技有限公司 指示或接收冗余版本的方法及装置
CN109787731A (zh) * 2017-11-14 2019-05-21 珠海市魅族科技有限公司 一种指示时域资源分配的方法、装置及通信设备
CN109802770B (zh) * 2017-11-17 2023-09-05 中兴通讯股份有限公司 Harq反馈及信号处理方法、通信节点、可读存储介质
CN108401482B (zh) * 2017-12-28 2021-01-01 北京小米移动软件有限公司 数据传输方法和装置
CN110831212B (zh) * 2018-08-10 2022-09-02 北京紫光展锐通信技术有限公司 数据传输方法及装置、存储介质、用户设备
CN111278113B (zh) * 2018-12-05 2022-10-04 成都华为技术有限公司 一种数据传输方法和设备
US11239941B2 (en) * 2019-01-20 2022-02-01 Qualcomm Incorporated Feedback techniques for wireless communications
CN111491376B (zh) * 2019-01-28 2023-06-13 海能达通信股份有限公司 一种空口资源调度方法及设备
CN114223165B (zh) * 2019-08-16 2023-09-01 华为技术有限公司 一种确定重复传输资源的方法及装置
CN112583559B (zh) * 2019-09-30 2022-04-05 北京紫光展锐通信技术有限公司 反馈方法及装置
EP4351256A1 (en) * 2019-11-08 2024-04-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Sidelink information reporting method and apparatus, and terminal and readable storage medium
CN113271607A (zh) * 2020-02-14 2021-08-17 大唐移动通信设备有限公司 一种时域重复传输方法、装置及发射机
CN111294158B (zh) * 2020-02-14 2021-06-15 惠州Tcl移动通信有限公司 数据传输方法、装置、存储介质及移动终端
CN112004268B (zh) * 2020-10-26 2021-01-26 新华三技术有限公司 资源调度方法及装置
CN114598434A (zh) * 2020-12-03 2022-06-07 华为技术有限公司 数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909440A (zh) * 2005-08-01 2007-02-07 上海原动力通信科技有限公司 宽带时分双工系统的通信方法
CN101098188A (zh) * 2006-06-26 2008-01-02 华为技术有限公司 空分多址资源指配的实现方法、装置和系统
CN101159975A (zh) * 2006-09-22 2008-04-09 华为技术有限公司 一种空口资源分配指示方法、装置和用户终端
US20100054198A1 (en) * 2008-09-02 2010-03-04 Korea Advanced Institude Of Science And Technology Resource allocation method in orthogonal frequency division multiple access wireless systems

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3471301B1 (en) * 2006-02-24 2020-01-22 Sun Patent Trust Resource block candidate selection technique employing packet scheduling in wireless communication systems
US8848618B2 (en) * 2006-08-22 2014-09-30 Qualcomm Incorporated Semi-persistent scheduling for traffic spurts in wireless communication
TW200818826A (en) * 2006-08-22 2008-04-16 Qualcomm Inc Semi-persistent scheduling for traffic spurts in wireless communication
EP2073419B1 (en) * 2007-12-20 2011-10-26 Panasonic Corporation Control channel signaling using a common signaling field for transport format and redundancy version
EP2117155B1 (en) * 2008-05-06 2014-03-19 Godo Kaisha IP Bridge 1 Control channel signalling for triggering the independent transmission of a channel quality indicator
CN103179672B (zh) * 2011-12-23 2016-03-02 华为技术有限公司 通信方法、基站和用户设备
EP2635082A1 (en) * 2012-02-29 2013-09-04 Panasonic Corporation Dynamic subframe bundling
CN103384193B (zh) * 2012-05-04 2016-09-07 华为技术有限公司 终端调度方法、装置和基站
CN103795513B (zh) * 2012-10-31 2018-12-21 中兴通讯股份有限公司 一种下行控制信息的配置、获取方法、基站和终端
WO2015047145A1 (en) * 2013-09-27 2015-04-02 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for scheduling
KR101730363B1 (ko) * 2013-09-27 2017-04-26 후아웨이 테크놀러지 컴퍼니 리미티드 업링크 데이터를 송신하는 방법, 사용자 장비, 및 기지국
WO2015149213A1 (en) * 2014-03-31 2015-10-08 Panasonic Intellectual Property Corporation Of America Interference parameter signaling for efficient interference cancellation and suppression
CN105338518B (zh) 2014-07-31 2020-03-31 索尼公司 无线通信系统中的装置和方法
US9655127B1 (en) * 2014-12-18 2017-05-16 Sprint Spectrum L.P. Dynamic management of carrier aggregation based on small cell operating conditions
CN105792363B (zh) * 2014-12-26 2017-12-22 上海朗帛通信技术有限公司 一种增强的载波聚合中的调度方法和装置
US9451554B1 (en) * 2015-01-29 2016-09-20 Sprint Spectrum L.P. Selective control of uplink transmission power based on roaming status
JP6313905B2 (ja) * 2015-05-01 2018-04-18 株式会社Nttドコモ 基地局及びユーザ装置
TWI720052B (zh) * 2015-11-10 2021-03-01 美商Idac控股公司 無線傳輸/接收單元和無線通訊方法
US10492181B2 (en) * 2016-01-20 2019-11-26 Qualcomm Incorporated Communication of uplink control information
CN107197528B (zh) * 2016-03-14 2020-12-25 华为技术有限公司 一种资源调度和分配的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909440A (zh) * 2005-08-01 2007-02-07 上海原动力通信科技有限公司 宽带时分双工系统的通信方法
CN101098188A (zh) * 2006-06-26 2008-01-02 华为技术有限公司 空分多址资源指配的实现方法、装置和系统
CN101159975A (zh) * 2006-09-22 2008-04-09 华为技术有限公司 一种空口资源分配指示方法、装置和用户终端
US20100054198A1 (en) * 2008-09-02 2010-03-04 Korea Advanced Institude Of Science And Technology Resource allocation method in orthogonal frequency division multiple access wireless systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3419370A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229326A1 (en) * 2017-06-16 2018-12-20 Nokia Technologies Oy Data channel scheduling reliability for urllc services
TWI798427B (zh) * 2018-04-27 2023-04-11 美商高通公司 用於迷你時槽的資源配置模式訊號傳遞
US11825435B2 (en) 2018-09-27 2023-11-21 Zte Corporation Service transmission method and device
WO2020085885A1 (ko) * 2018-10-26 2020-04-30 엘지전자 주식회사 Nr v2x에서 재전송을 수행하는 방법 및 장치
US11469861B2 (en) 2018-10-26 2022-10-11 Lg Electronics Inc. Method and apparatus for performing retransmission in NR V2X
CN114128183A (zh) * 2019-08-02 2022-03-01 松下电器(美国)知识产权公司 收发器设备和调度设备

Also Published As

Publication number Publication date
CN107197528A (zh) 2017-09-22
EP3419370B1 (en) 2022-05-11
CN107197528B (zh) 2020-12-25
US10819474B2 (en) 2020-10-27
EP3419370A4 (en) 2019-01-30
EP3419370A1 (en) 2018-12-26
US20190013903A1 (en) 2019-01-10
JP2019513321A (ja) 2019-05-23
JP6666462B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2017157181A1 (zh) 一种资源调度和分配的方法和装置
EP3547777B1 (en) Method and apparatus for wireless communication
CN108029120B (zh) 用于为低复杂度窄带终端指示对随机接入过程中的harq消息分配的资源的方法
KR102616557B1 (ko) 무선 통신 시스템에서 데이터 및 제어 정보 송수신 방법 및 장치
EP3078145B1 (en) Methods for enhanced harq mechanism
EP3869719B1 (en) Method and device for transmitting uplink control information
WO2017045496A1 (zh) 一种下行控制方法及装置
US11456838B2 (en) Method and device for determining uplink data and control signal transmission timing in wireless communication system
EP3648384B1 (en) Method for repeated transmission and terminal device
WO2019158013A1 (zh) 信道传输方法和装置、网络设备及计算机可读存储介质
CN113259053A (zh) 上行控制信号的发送方法及装置
WO2016106905A1 (zh) 一种用户设备、接入网设备和反馈信息发送和接收方法
WO2010133043A1 (zh) 多子帧调度方法、系统及终端、基站
US20220225400A1 (en) Communications device, infrastructure equipment and methods
WO2011120411A1 (zh) 上行控制信道资源的确定方法和设备
CN104662978A (zh) 资源分配方法及设备
KR20230044431A (ko) 무선 통신 시스템에서 상향링크 전송 방법 및 장치
WO2018209803A1 (zh) 一种传输信息的方法和装置
TW202127949A (zh) 在上行鏈路共享通道傳輸上多工上行鏈路控制資訊
WO2018228236A1 (zh) 数据传输方法和装置
WO2018024150A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
CN112970316A (zh) 用于确定无线通信系统中用于双连接的上行链路信道的传输资源的方法和装置
CN110547021B (zh) 用于确定无线通信系统中的上行链路发送定时的方法和设备
CN109983818B (zh) 用于发送/接收调度命令的方法和设备
WO2018024151A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017765723

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017765723

Country of ref document: EP

Effective date: 20180918

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765723

Country of ref document: EP

Kind code of ref document: A1