WO2021056419A1 - 边链路资源的预留方法以及装置 - Google Patents

边链路资源的预留方法以及装置 Download PDF

Info

Publication number
WO2021056419A1
WO2021056419A1 PCT/CN2019/108561 CN2019108561W WO2021056419A1 WO 2021056419 A1 WO2021056419 A1 WO 2021056419A1 CN 2019108561 W CN2019108561 W CN 2019108561W WO 2021056419 A1 WO2021056419 A1 WO 2021056419A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
retransmission
size
side link
transmission
Prior art date
Application number
PCT/CN2019/108561
Other languages
English (en)
French (fr)
Inventor
纪鹏宇
张健
李国荣
张磊
王昕�
Original Assignee
富士通株式会社
纪鹏宇
张健
李国荣
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 纪鹏宇, 张健, 李国荣, 张磊, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2019/108561 priority Critical patent/WO2021056419A1/zh
Publication of WO2021056419A1 publication Critical patent/WO2021056419A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technology.
  • the terminal device as the receiver does not need to send feedback information (including ACK/NACK, which can be referred to as ACK/NACK) after receiving the data packet sent by the terminal device as the sender (hereinafter referred to as the transmitting terminal device) Is HARQ-ACK).
  • feedback information including ACK/NACK, which can be referred to as ACK/NACK
  • the transmitting terminal device Is HARQ-ACK
  • New Radio In New Radio (NR, New Radio) V2X, in addition to broadcast services, it is also necessary to support unicast and multicast services.
  • a sidelink (SL, sidelink) feedback mechanism is introduced in NR V2X, that is, the receiving terminal device needs to feedback to the sending terminal device after receiving the data packet, and the content of the feedback depends on the content of the feedback. ⁇ decoding result. Therefore, a physical side link feedback channel (PSFCH, Physical Sidelink Feedback Channel) is introduced on the side link to carry the feedback information of the side link.
  • PSFCH Physical Sidelink Feedback Channel
  • Rel-15 supports feedback based on code block group (CBG, Code Block Group), that is, a transmission block (CB) in TB (Transmission Block) are grouped to form a CBG.
  • CBG code block group
  • CB Code Block Group
  • TB Transmission Block
  • NR Rel-15 in some channel environments, decoding errors caused by channel interference may only occur on the resources corresponding to part of the CBG of a TB, and NR Rel-15 supports pre-emption of data.
  • eMBB services are preempted by URLLC services
  • URLLC services may only occur on some resources mapped by CBG. Therefore, the introduction of this mechanism can make it unnecessary to retransmit the entire TB during retransmission, but only for the interfered CBG or the affected CBG.
  • Part of the CBGs that failed to be decoded preempted by the URLLC service are retransmitted, and the corresponding bits received by these CBGs are indicated as "NACK", which can save the time-frequency resources required for retransmission, especially when the data packet is large.
  • the reservation of retransmission resources is supported, that is, the physical sidelink shared channel (PSSCH, physical sidelink shared channel) corresponding to the SCI, in addition to indicating the resources used for this transmission, can also be used for retransmissions.
  • Resource reservation is indicated, so that the receiving terminal device can merge processing, and other terminal devices recognize the retransmission resources currently occupied by the terminal device through sensing, so that resource collisions can be avoided during resource selection.
  • the size of the retransmission resources reserved in LTE V2X is equal to the size of the initial transmission resources.
  • embodiments of the present application provide a method and device for reserving side link resources.
  • a device for reserving side link resources including:
  • An obtaining unit which obtains initial transmission resources and retransmission resources for transmitting side link data
  • An indication unit which sends indication information indicating the initial transmission resource and/or the retransmission resource
  • the retransmission resource is used to retransmit one or more code block groups of the side link data; when the number of time slots or symbols in the time domain of the retransmission resource is less than that of the initial transmission resource The number of time slots or the number of symbols in the domain, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the number of subchannels in the frequency domain of the initial transmission resource.
  • a method for reserving side link resources including:
  • the terminal equipment obtains the initial transmission resources and retransmission resources for transmitting side link data
  • the retransmission resource is used to retransmit one or more code block groups of the side link data; when the number of time slots or symbols in the time domain of the retransmission resource is less than that of the initial transmission resource The number of time slots or the number of symbols in the domain, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the number of subchannels in the frequency domain of the initial transmission resource.
  • a communication system including:
  • a terminal device which obtains initial transmission resources and retransmission resources for transmitting side link data; and sends indication information indicating the initial transmission resources and/or the retransmission resources;
  • the retransmission resource is used to retransmit one or more code block groups of the side link data; when the number of time slots or symbols in the time domain of the retransmission resource is less than that of the initial transmission resource The number of time slots or the number of symbols in the domain, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the number of subchannels in the frequency domain of the initial transmission resource.
  • the number of time slots or symbols in the time domain of the retransmission resource is less than the number of time slots or symbols in the time domain of the initial transmission resource, and/or the number of retransmission resources in the frequency domain
  • the number of sub-channels is smaller than the number of sub-channels in the frequency domain of the initial transmission resource. Therefore, when the CBG-based feedback and retransmission mechanism is enabled for side link retransmission, resources smaller than the initial transmission resources can be reserved, which can alleviate the situation that retransmission resources are reserved but not used. Waste of resources and improve resource utilization.
  • Fig. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • Figure 2 is an example diagram of the retransmission reservation mechanism in NR V2X using LTE
  • Figure 3 is another example diagram of the retransmission reservation mechanism in NR V2X using LTE
  • FIG. 4 is a schematic diagram of a method for reserving side link resources according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of indicating a ratio coefficient between initial transmission resources and retransmission resources according to an embodiment of the present application
  • FIG. 6 is an example diagram of retransmission through multiple reserved resources according to an embodiment of the present application.
  • FIG. 7 is an example diagram of retransmission resource reservation based on CBG feedback according to an embodiment of the present application.
  • FIG. 8 is another example diagram of retransmission resource reservation based on CBG feedback according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an apparatus for reserving side link resources according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a network device according to an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the terms, but they do not indicate the spatial arrangement or chronological order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” can refer to a network that meets any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and 5G , New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G 3G
  • 5G New Radio
  • NR, New Radio New Radio
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay), or low-power node (such as femeto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femeto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” (UE, User Equipment) or “Terminal Equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, In-vehicle communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side or “network device side” refers to a side of the network, which may be a certain base station, and may also include one or more network devices as described above.
  • user side or “terminal side” or “terminal device side” refers to a side of a user or terminal, which may be a certain UE, or may include one or more terminal devices as described above.
  • equipment can refer to network equipment or terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a case where terminal devices and network devices are taken as examples.
  • a communication system 100 may include a network device 101 and terminal devices 102 and 103.
  • FIG. 1 only uses two terminal devices and one network device as an example for description, but the embodiment of the present application is not limited to this.
  • the network device 101 and the terminal devices 102 and 103 may perform existing service or service transmission that can be implemented in the future.
  • these services may include, but are not limited to: enhanced Mobile Broadband (eMBB), large-scale machine type communication (mMTC, massive Machine Type Communication), and high-reliability and low-latency communication (URLLC, Ultra-Reliable and Low). -Latency Communication), etc.
  • FIG. 1 shows that two terminal devices 102 and 103 are both within the coverage of the network device 101, but the application is not limited to this.
  • the two terminal devices 102 and 103 may not be within the coverage area of the network device 101, or one terminal device 102 is within the coverage area of the network device 101 and the other terminal device 103 is outside the coverage area of the network device 101.
  • side link transmission may be performed between the two terminal devices 102 and 103.
  • the two terminal devices 102 and 103 may both perform side link transmission within the coverage area of the network device 101 to implement V2X communication, or both may perform side link transmission outside the coverage area of the network device 101 to implement V2X communication.
  • one terminal device 102 is within the coverage area of the network device 101 and the other terminal device 103 is outside the coverage area of the network device 101 to perform side link transmission to implement V2X communication.
  • the terminal device 102 and/or 103 can independently select the side link resource (ie Mode 2).
  • the side link transmission can be independent of the network device 101, that is, the network device 101 is optional. of.
  • the embodiment of the application does not limit this.
  • the size of the data packet may be much larger than the size of the data packet in LTE V2X. If the resource reservation method uses a mechanism similar to LTE V2X, the reserved resources for initial transmission and retransmission are the same size. Reduce retransmission resources to save resources.
  • Figure 2 is an example diagram of the retransmission reservation mechanism in NR V2X that uses LTE. As shown in Figure 2, for the retransmission resources reserved in NR V2X, if the feedback received after the initial transmission is "ACK", then The reserved retransmission resources may not be used. If the reserved retransmission resources are as large as the initial transmission resources, the waste of resources will be relatively large in the case of large data packets.
  • Figure 3 is another example diagram of the retransmission reservation mechanism in NR V2X that uses LTE. As shown in Figure 3, when the data packet is large, two resources that can carry the data packet may not be found in one selection window, respectively Used for initial transmission and retransmission.
  • V2X is taken as an example to describe the side link PSFCH, but the present application is not limited to this, and may also be applied to side link transmission scenarios other than V2X.
  • side link and V2X can be interchanged
  • PSFCH and “side link feedback channel”
  • PSSCH and “Side link data channel” or “Side link data” can also be interchanged.
  • the side link control information (SCI, Sidelink Control Information) is carried by the physical side link control channel (PSCCH, Physical Sidelink Control Channel), the side link data is carried by the PSSCH, and the side link feedback information is carried by PSFCH bearer.
  • sending or receiving PSSCH can be understood as sending or receiving side link data carried by PSSCH; sending or receiving PSFCH can be understood as sending or receiving side link feedback information carried by PSFCH.
  • At least one transmission may be understood as at least one PSSCH transmission or at least one side link data transmission, and current transmission may be understood as the current PSSCH transmission or current side link data transmission.
  • the embodiment of the present application provides a method for reserving side link resources, which is described from the side of the first terminal device.
  • the first terminal device serves as the sender and sends side link data to the second terminal device; and the first terminal device serves as the receiver and receives the side link feedback information sent by the second terminal device.
  • FIG. 4 is a schematic diagram of a method for reserving side link resources according to an embodiment of the present application. As shown in FIG. 4, the method includes:
  • the terminal device obtains initial transmission resources and retransmission resources for transmitting side link data
  • the terminal device sends indication information indicating the initial transmission resource and/or the retransmission resource.
  • the retransmission resource is used to retransmit one or more code block groups of the side link data; when the number of time slots or symbols in the time domain of the retransmission resource is less than that of the initial transmission resource The number of time slots or the number of symbols in the domain, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the number of subchannels in the frequency domain of the initial transmission resource.
  • Figure 4 above only schematically illustrates an embodiment of the present application, but the present application is not limited thereto.
  • the order of execution between operations can be appropriately adjusted, and some other operations can be added or some operations can be reduced.
  • Those skilled in the art can make appropriate modifications based on the foregoing content, and are not limited to the description of the foregoing FIG. 4.
  • the side link can support CBG-based feedback and retransmission, so that the same benefits as the Uu interface can be obtained.
  • resources can be reserved for HARQ-ACK-based retransmission.
  • a flexible retransmission resource reservation mechanism can be introduced to reduce retransmission resources. save resources.
  • the size of the retransmission resource that is supported to be reserved is smaller than the size of the initial transmission resource.
  • the size of the data packet that needs to be retransmitted is smaller than the size of the initially transmitted data packet. Since in NR V2X, terminal equipment may be moving at high speed, the channel state between the sender and receiver of the side link may change quickly, and the side link may also support the preemption of high-priority services over low-priority services. .
  • a CBG-based feedback and retransmission mechanism can be supported, so that the number of retransmitted CBGs is less than the number of all CBGs in the initial transmission TB, and a part of the CBG is carried and sent on the reserved retransmission resources.
  • the size of the retransmission resource based on HARQ-ACK feedback reserved by the transmitting terminal device may be smaller than the size of the initial transmission resource, that is, the total resource element (RE, resource element) of the resource carrying the retransmission data The number is less than the total number of REs carrying the resources of the initial transmission data.
  • the number of sub-channels of the retransmission resource in the frequency domain is less than the number of sub-channels of the initial transmission resource in the frequency domain, and/or the number of retransmission resources in the time domain
  • the number of slots/symbols is less than the number of slots/symbols of the initial transmission resource in the time domain.
  • the first proportionality factor between the size of the retransmission resource and the size of the initial transmission resource (hereinafter denoted by H1) or the second proportionality factor between the size of the initial transmission resource and the size of the retransmission resource ( Hereinafter, represented by H2) is predefined and/or semi-statically configured and/or dynamically indicated.
  • the scale factor may be predefined, or may be semi-statically configured by Radio Resource Control (RRC) and/or dynamically indicated by side link control information (SCI).
  • RRC Radio Resource Control
  • SCI side link control information
  • the RRC semi-static configuration in this application may be a configuration performed by a network device (applicable only when the terminal device is in the coverage of the network device), or it may also be a pre-configuration performed by the RRC layer of the terminal device.
  • the second proportional coefficient between the size of the initial transmission resource and the size of the retransmission resource is H2, and H2 is greater than 1.
  • the first proportional coefficient between the size of the retransmission resource and the size of the initial transmission resource is H1, and H1 is less than 1.
  • the resource size is in units of time slots.
  • the initial transmission resource uses 2 time slots, and the retransmission resource uses 1 time slot, then the ratio of the size of the retransmission resource to the size of the initial transmission resource is 1/2; if the symbols used for the side link in each time slot If the number is the same (for example, 6), the ratio of the number of REs of the retransmission resource to the number of the REs of the initial transmission resource is 1/2; if the number of symbols used for the side link in each time slot is different (For example, 5 and 6 respectively), the number of REs of the retransmission resource and the number of REs of the initial transmission resource are approximately 1/2 ratio.
  • the resource size is in the unit of subchannel.
  • the initial transmission resource uses 2 subchannels, and the retransmission resource uses 1 subchannel.
  • the ratio of the size of the retransmission resource to the size of the initial transmission resource is 1/2; if the number of subcarriers used for the side link in each subchannel is The same (for example, 6), the ratio of the number of REs of the retransmission resource to the number of the REs of the initial transmission resource is 1/2.
  • the ratio of the number of subchannels in the frequency domain of the initial transmission resource to the number of subchannels in the frequency domain of the retransmission resource is N1/N2, and/or the number of time slots or symbols in the time domain of the initial transmission resource
  • the ratio of the number of retransmission resources to the number of time slots or symbols in the time domain is N3/N4; among them, N1 or N3 corresponds to the number of CBGs that can be carried by the initial transmission resource, and N2 or N4 corresponds to the number of retransmission resources.
  • the initial transmission resource can transmit 4 CBGs (one TB), and the retransmission resource can retransmit 2 CBGs (part of the TB)
  • the number of subchannels in the frequency domain of the retransmission resource and the initial transmission resource are The ratio of the number of sub-channels in the frequency domain is 1/2, and/or the number of time slots (or symbols) of the retransmission resource in the time domain and the number of time slots (or symbols) of the initial transmission resource in the time domain The ratio of the number is 1/2.
  • the initial transmission resource can transmit 5 CBGs (one TB), and the retransmission resource can retransmit 3 CBGs (part of the TB), the number of subchannels in the frequency domain of the retransmission resource and the initial transmission resource
  • the ratio of the number of sub-channels in the frequency domain is 3/5, and/or the number of time slots (or symbols) of the retransmission resource in the time domain and the number of time slots (or symbols) of the initial transmission resource in the time domain )
  • the ratio of the number is 3/5.
  • the terminal device uses the initial transmission resource to initially transmit the side link data, and uses the retransmission resource to retransmit the side link data N times, where N is an integer greater than or equal to zero.
  • the CBG-based feedback and retransmission mechanism is enabled. If all CBG feedback results of the initial transmission are ACKs, indicating that the initial transmission is successful, no retransmission is performed (the number of retransmissions is zero). For another example, if there is a NACK in the CBG feedback result of the initial transmission, it indicates that the initial transmission is unsuccessful, and the first retransmission is performed. If all the CBG feedback results of the first retransmission are ACKs, it indicates that the first retransmission is ACK. The transmission is successful (the number of retransmissions is 1).
  • the first retransmission is performed. If there is still a NACK in the CBG feedback result of the first retransmission, it indicates the first retransmission. If it is unsuccessful, the second retransmission is performed. If the CBG feedback result of the second retransmission is ACK, it indicates that the second retransmission is successful (the number of retransmissions is 2); and so on.
  • the terminal device determines whether to feed back and retransmit side link data based on code block groups according to at least one of the following parameters: quality of service (QoS) requirements, short-range communication data packet priority (PPPP), current side Link channel conditions, channel congestion, distance between receiving and transmitting terminal equipment.
  • QoS quality of service
  • PPPP short-range communication data packet priority
  • current side Link channel conditions channel congestion
  • distance between receiving and transmitting terminal equipment distance between receiving and transmitting terminal equipment.
  • this application is not limited to this, and may also include other parameters.
  • the CBG-based feedback and retransmission mechanism (which can be called the first mechanism) on the side link can be activated by one or several of the following conditions: if the Qos requirement of the service is higher than the first threshold, it will not be activated.
  • the first mechanism the value of PPPP (the smaller the value of PPPP, the higher the priority) is lower than the second threshold, the first mechanism is not opened; the current side link channel condition is good (CSI is higher than the third threshold), then Turn on the first mechanism; if the channel congestion is low (CBR is lower than the fourth threshold), turn on the first mechanism; when the distance between the transceiver terminal device is less than the fifth threshold, turn on the first mechanism.
  • the activation of the CBG-based feedback and retransmission mechanism may also not be affected by the above parameters, but may be directly configured semi-statically. For example, it may be semi-statically configured to be enabled, or it may be semi-statically configured to be disabled, or whether to be enabled is dynamically indicated by the SCI.
  • the terminal device when the terminal device feedbacks and retransmits the side link data based on the code block group, it determines that the reserved retransmission resources are in the time domain and/or frequency domain according to at least one of the following parameters
  • the size of the resource and/or whether to enable a mechanism where the size of the retransmission resource is smaller than the size of the initial transmission resource can be called the second mechanism, that is, the number of time slots or symbols in the time domain of the retransmission resource is less than the number of symbols in the time domain of the initial transmission resource
  • the number of time slots or symbols and/or the number of sub-channels in the frequency domain of the retransmission resource is less than the number of sub-channels in the frequency domain of the initial transmission resource): quality of service (QoS) requirements, short-distance communication data packet priority (PPPP) , Current side link channel conditions, channel congestion, distance between receiving and transmitting terminal equipment.
  • QoS quality of service
  • PPPP short-distance communication data packet priority
  • the reservation of CBG-based retransmission resources is configured to enable the second mechanism when one or more of the above parameters meet the corresponding conditions, namely CBG-based retransmission can reserve resources smaller than the initial transmission resources.
  • the proportional coefficient H (also referred to as the scale coefficient, such as the aforementioned P) between the size of the initial transmission resource and the size of the retransmission resource may be a semi-static configuration when the session is established. Or semi-statically configured by the network equipment, and/or, it can also be dynamically indicated by the initial transmission SCI.
  • the candidate value indicated by the SCI can be pre-defined, or semi-statically configured by RRC, or determined by the sending terminal device according to the size of the reserved resources by other terminal devices. of.
  • the initial transmission resource is indicated by the first field of the side link control information corresponding to the side link data
  • the retransmission resource is indicated by the second field of the side link control information corresponding to the side link data.
  • two independent indication fields in the time domain and/or frequency domain may be included, respectively indicating the time-frequency resource of the initial transmission and the reserved time-frequency resource of the retransmission.
  • the initial transmission resources and/or retransmission resources are indicated by a field of the side link control information corresponding to the side link data.
  • the effect of saving payload overhead in the SCI can be achieved.
  • the same field indicates the initial transmission resources and the reserved retransmission resources.
  • the field in the side link control information at least indicates the size of the initial transmission resource, and the size of the retransmission resource is determined by the first proportional coefficient H1 between the size of the retransmission resource and the size of the initial transmission resource and the initial transmission resource. The size of the transmission resource is determined.
  • the field indicated in the SCI corresponds to the initial transmission resource.
  • This SCI corresponds to the initial transmission and can be directly interpreted, and the reserved retransmission resource needs to be obtained by the joint interpretation of the proportional coefficient H1 and this field.
  • the frequency domain can be indicated by RIV (for example, the starting subchannel plus the number of subchannels)
  • the time domain can be indicated by SLIV (the starting time slot/symbol plus the number of time slots/symbols); Or it only indicates the starting time slot and/or the number of time slots of the time domain resource (the number of time slots can also be configured by higher layers or pre-configured).
  • the time domain and frequency domain start position can be implicitly obtained from the PSCCH resource.
  • the start position indicated in the field can be ignored and the frequency domain and/or time domain can be directly read.
  • the length of the time-frequency resource obtained from the frequency domain resource indication and/or the time domain resource indication needs to be multiplied by the coefficient H1 to obtain the scaled retransmission resource size.
  • the starting position of the retransmission resource can be obtained by direct interpretation of the frequency domain resource indicator and/or time domain resource indicator, or it can be obtained from the time domain resource indicator and/or time domain resource indicator. The starting position of the frequency resource is multiplied by the coefficient H1 to obtain.
  • H1 can be a value less than 1, can be semi-statically configured by RRC when the session is established, or can be indicated by an additional field in the SCI, and the indicated candidate value can be predefined.
  • SCI can indicate a value in ⁇ 1,3/4,1/2,1/4 ⁇ , or it can indicate a value in ⁇ value1, value2, value3, value4 ⁇ configured by high-level semi-static configuration.
  • SCI Need to include a 2bits field to indicate the specific value of H1, here is only an example, including but not limited to this configuration.
  • the same field indicates the initial transmission resources and the reserved retransmission resources.
  • the field in the side link control information at least indicates the size of the retransmission resource, and the size of the initial transmission resource is determined by the second proportional coefficient H2 between the size of the initial transmission resource and the size of the retransmission resource. And the size of the retransmission resource is determined.
  • the field indicated in the SCI corresponds to the retransmission resource.
  • This SCI can be the SCI corresponding to the initial transmission or the SCI corresponding to the retransmission.
  • the retransmission resource can be directly interpreted.
  • the initial transmission resource requires the proportional coefficient H2 and this field to be interpreted together.
  • the frequency domain can be indicated by RIV (for example, the starting subchannel plus the number of subchannels)
  • the time domain can be indicated by SLIV (the starting time slot/symbol plus the number of time slots/symbols); Or it only indicates the starting time slot and/or the number of time slots of the time domain resource (the number of time slots can also be configured by higher layers or pre-configured).
  • the time domain and frequency domain start positions can be implicitly obtained from the PSCCH resource.
  • the start position indicated in the field can be ignored .
  • the length of the time-frequency resource obtained from the frequency domain resource indication and/or the time domain resource indication is multiplied by the coefficient H2 to obtain the scaled initial transmission resource size.
  • the start position of the time domain and the frequency domain can be implicitly obtained from the PSCCH resource.
  • the start position indicated in the field can be ignored and read directly Take the frequency domain and/or time domain field to obtain the resource size.
  • the length of the time-frequency resource obtained from the frequency domain resource indication and/or the time domain resource indication needs to be multiplied by the coefficient H2 to obtain the scaled initial transmission resource size.
  • the starting position of the initial transmission resource can be obtained by direct interpretation of the frequency domain resource indicator and/or time domain resource indicator, or it can be obtained from the time domain resource indicator and/or time domain resource indicator. The starting position of the frequency resource is multiplied by the coefficient H to obtain.
  • H2 can be a value greater than 1, can be semi-statically configured by RRC when the session is established, or can be indicated by an additional field in the SCI, and the indicated candidate value can be predefined.
  • SCI can indicate a value in ⁇ 1,4/3,2,4 ⁇ , or it can indicate a value in ⁇ value1, value2, value3, value4 ⁇ configured by high-level semi-static configuration.
  • SCI needs to include a value
  • the 2bits field indicates the specific value of H2. This is only an example for illustration, including but not limited to this configuration.
  • FIG. 5 is a schematic diagram of indicating the ratio coefficient between the initial transmission resource and the retransmission resource according to an embodiment of the present application.
  • the initial transmission resource can be directly interpreted from the SCI, and the number of subchannels of the retransmission resource is obtained from the RIV1 indicated by the SCI and the scale factor H1, and the starting position of the frequency domain Obtained from the RIV1 or RIV1 indicated by the SCI and the scale factor H1; for example, in another embodiment (option 2), the retransmission resource can be directly interpreted from the SCI, and the number of sub-channels of the initial transmission resource is indicated by the RIV1 and the scale factor indicated by the SCI H2 is obtained. Therefore, the initial transmission resource and/or the retransmission resource may be indicated by a field of the side link control information corresponding to the side link data.
  • the number of time slots or symbols in the time domain of the retransmission resource is less than the number of time slots or symbols in the time domain of the initial transmission resource, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the initial transmission resource time domain.
  • the number of sub-channels in the frequency domain of the transmission resource is smaller than the initial transmission resources can be reserved, which can alleviate the situation that retransmission resources are reserved but not used. Waste of resources and improve resource utilization.
  • the size of the reserved retransmission resource is smaller than the size of the initial transmission resource (for example, the total number of REs of the retransmission resource is less than the total number of REs of the initial transmission resource), there is a possibility of pre-transmission.
  • the reserved retransmission resources are not enough.
  • the reserved retransmission resources can be used for retransmission by 2 CBGs; but the received feedback is "0000", that is, 4 CBG decoding errors have occurred, and 4 CBGs need to be retransmitted. Therefore, the reserved retransmission resources are not enough.
  • the reserved retransmission resources are not enough.
  • the terminal device uses the retransmission resource for one or more subsequent retransmissions. To transmit the remaining code block group of this retransmission.
  • the unfinished CBG of this transmission can be sent on the next reserved retransmission resource.
  • the next reserved retransmission resource was originally used to perform the transmission.
  • the next retransmission that is, the second retransmission, is used here to continue sending the remaining CBG that has not been sent in the first retransmission.
  • the retransmission resource indicating the next retransmission in the side link control information corresponding to the previous retransmission is used to transmit the code block group of the current retransmission.
  • the next reserved retransmission resource may be reserved by the SCI corresponding to the initial transmission, or may be reserved by the SCI corresponding to the previous retransmission or a previous retransmission.
  • There may be no PSFCH feedback resources between two retransmissions for example, the i+1th transmission and the i+2th transmission), or, when there are PSFCH resources, the terminal device does not give feedback at this time, but waits for all retransmissions to be received.
  • the transmitted CBG data will be fed back on the next available PSFCH resource.
  • Fig. 6 is an example diagram of retransmission through multiple reserved resources according to an embodiment of the present application. As shown in Figure 6, assuming that the number of CBGs supported by this transmission is 4, the retransmission resources reserved by the transmitting terminal device can only carry 2 CBGs, but the received feedback is "0000", which indicates that all 4 CBGs A decoding error has occurred.
  • the sending terminal device can retransmit CBG 0, 1 on the reserved resources for the first retransmission, and retransmit CBG 2, 3 on the resources reserved for the second retransmission, and the specific CBG sent It can be indicated by the CBGTI field in the SCI.
  • the receiving terminal device can judge whether the retransmission is completed according to this instruction, and in the process of this transmission, after receiving all the retransmitted CBGs (if the instruction is 0 in the SCI), then the combined decoding will be performed and generated Corresponding feedback; feedback information will not be generated before all the CBGs for this retransmission have been received.
  • the terminal device determines that the retransmission resource of one or more subsequent retransmissions can be used to transmit the code block group of this retransmission according to at least one of the following parameters: quality of service (QoS) requirements, short distance Communication data packet priority (PPPP), current side link channel conditions, channel congestion, and the distance between receiving and sending terminal equipment.
  • QoS quality of service
  • PPPP short distance Communication data packet priority
  • the third mechanism For example, using the retransmission resources of one or more subsequent retransmissions to transmit the code block group mechanism (which can be called the third mechanism) for this retransmission can be determined by one or more of the following conditions: If the Qos requirement is higher than the sixth threshold, the third mechanism will not be activated; if the value of PPPP (the smaller the value of PPPP, the higher the priority) is below the seventh threshold, the third mechanism will not be activated; the current side link channel If the conditions are good (CSI is higher than the eighth threshold), then the third mechanism is turned on; if the channel congestion is low (CBR is lower than the ninth threshold), then the third mechanism is turned on; when the distance between the transmitting and receiving terminal equipment is less than the tenth threshold, then Turn on the third mechanism.
  • the retransmission resources of one or more subsequent retransmissions are used to transmit the code block group of this retransmission.
  • retransmission resources can be reserved more effectively, the resource utilization rate of the entire system is increased, and resource waste is reduced.
  • the embodiments of the present application are described on the basis of the embodiments of the first and second aspects.
  • the embodiments of the present application can be executed individually or combined with the embodiments of the first and second aspects; the same content as the embodiments of the first and second aspects will not be repeated.
  • the terminal device receives the feedback result of the i-th transmission based on the code block group; and indicates in the side link control information corresponding to the i+1-th transmission that it is used for the i+2th transmission
  • the size of the resource where i is an integer greater than or equal to 1.
  • the first transmission is the initial transmission of side link data; the jth transmission is the retransmission of the side link data, where j is an integer greater than 1.
  • the sending terminal device can receive the feedback result of this transmission based on CBG (which indicates " NACK, that is, the number of 0"), in the SCI corresponding to the next transmission (first retransmission), dynamically adjust the size of the retransmission resource indicating the next transmission (second retransmission).
  • CBG which indicates " NACK, that is, the number of 0”
  • the sending terminal device can receive the feedback result of this transmission based on CBG (wherein is indicated "NACK, that is, the number of 0s"), in the SCI corresponding to the next transmission (second retransmission), the size of the retransmission resource for the next transmission (third retransmission) is dynamically adjusted.
  • CBG Wherein is indicated "NACK, that is, the number of 0s”
  • the terminal device determines the third proportional coefficient (indicated by M1) of the total number of code block groups of the side link data and the number of code block groups that need to be retransmitted based on the feedback result of the i-th transmission The size of the resource for the i+2th transmission.
  • the The size of the resource for the i+2th transmission is the number of code block groups that need to be retransmitted based on the feedback result of the i-th transmission and the fourth proportional coefficient (represented by M2) of the total number of code block groups of the side link data.
  • M1 is a value greater than 1
  • M2 is a value less than 1
  • more candidate values and more SCI bits are required for indication, for example, 3bits or 4bits indication is required.
  • the side link control information corresponding to the transmission indicates the size of the resource used for the i+2th transmission.
  • the size of the resource of the i+1th transmission is greater than the size of the resource of the i+2th transmission, and the number of time slots or symbols in the time domain and the frequency domain of the i+2th transmission
  • the number of sub-channels or the number of total resource particles is K times the resource required by the total code block group of the side link data (that is, the number of CBGs initially transmitted), and K is a number less than 1.
  • the ratio K is 2/4, which is 1/2.
  • Fig. 7 is an example diagram of retransmission resource reservation based on CBG feedback according to an embodiment of the present application. As shown in Figure 7, it is assumed that the reserved retransmission resources can carry 2 CBG retransmissions. However, according to the actual feedback, only 1 CBG needs to be retransmitted (for example, if "0111" is received, only CBG 0 needs to be retransmitted), then in the first retransmission, CBG 0 performs rate matching (rate matching) And it is mapped to the retransmission resources that can carry 2 CBGs.
  • the resources reserved for the next retransmission that is, the second retransmission, are indicated (or adjusted) to be able to carry only 1 CBG.
  • the side link control information corresponding to the transmission indicates the size of the resource used for the i+2th transmission.
  • the size of the resource of the i+1th transmission is smaller than the size of the resource of the i+2th transmission, and the number of time slots or symbols in the time domain and the frequency domain of the i+2th transmission
  • the number of sub-channels or the number of total resource particles is K times the resource required by the total code block group of the side link data (that is, the number of CBGs initially transmitted), and K is a number less than 1.
  • the ratio K is 3/4 at this time.
  • the ratio K is 3/5 at this time.
  • FIG. 8 is another example diagram of retransmission resource reservation based on CBG feedback according to an embodiment of the present application.
  • the reserved retransmission resources can carry 2 CBG retransmissions.
  • 4 CBGs need to be retransmitted (for example, if "0000" is received, CBG 0,1,2,3 needs to be retransmitted), then in the first retransmission, two pre-transmissions are required. This retransmission is completed on the reserved retransmission resources (refer to the embodiment of the second aspect).
  • the resources reserved for the next retransmission that is, the second retransmission, are indicated (or adjusted) to be capable of carrying 4 CBG transmissions.
  • the size of the resource for the next transmission is dynamically indicated in the side link control information corresponding to the previous transmission.
  • retransmission resources can be reserved more flexibly and effectively, the resource utilization rate of the entire system is increased, and resource waste is reduced.
  • the embodiment of the present application provides an apparatus for reserving side link resources.
  • the apparatus may be, for example, a terminal device, or may be some or some components or components configured in the terminal device, and the same content as the embodiments of the first to third aspects will not be repeated.
  • FIG. 9 is a schematic diagram of an apparatus for reserving side link resources according to an embodiment of the present application. As shown in FIG. 9, the apparatus 900 for reserving side link resources includes:
  • An obtaining unit 901 which obtains initial transmission resources and retransmission resources for transmitting side link data
  • An indication unit 902 which sends indication information indicating the initial transmission resource and/or the retransmission resource
  • the retransmission resource is used to retransmit one or more code block groups of the side link data; when the number of time slots or symbols in the time domain of the retransmission resource is less than that of the initial transmission resource The number of time slots or the number of symbols in the domain, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the number of subchannels in the frequency domain of the initial transmission resource.
  • the first proportionality factor between the size of the retransmission resource and the size of the initial transmission resource or the second proportionality factor between the size of the initial transmission resource and the size of the retransmission resource is predefined And/or be semi-statically configured and/or dynamically indicated.
  • the ratio of the number of subchannels in the frequency domain of the initial transmission resource to the number of subchannels in the frequency domain of the retransmission resource is N1/N2, and/or the number of time slots or symbols in the time domain of the initial transmission resource
  • the ratio of the number of times to the number of time slots or symbols in the time domain of the retransmission resource is N3/N4; where N1 or N3 corresponds to the number of code block groups that the initial transmission resource can use to carry, and N2 or N4 corresponds to the retransmission
  • the resource can be used to carry the maximum number of code block groups.
  • the device 900 for reserving side link resources further includes:
  • a sending unit 903 which uses the initial transmission resource to perform initial transmission of the side link data, and uses the retransmission resource to perform N retransmissions of the side link data, where N is an integer greater than or equal to zero .
  • the reserved retransmission resources are in the time domain and/or frequency domain according to at least one of the following parameters
  • the size of resources service quality requirements, short-distance communication data packet priority, current side link channel conditions, channel congestion, and the distance between receiving and sending terminal equipment.
  • the initial transmission resource is indicated by the first field of the side link control information corresponding to the side link data
  • the retransmission resource is indicated by the second field of the side link control information corresponding to the side link data.
  • the initial transmission resources and/or retransmission resources are indicated by a field of the side link control information corresponding to the side link data.
  • the field in the side link control information at least indicates the size of the initial transmission resource
  • the size of the retransmission resource is determined by the size of the retransmission resource and the initial transmission resource.
  • the ratio coefficient between the size of the and the size of the initial transmission resource is determined.
  • the field in the side link control information at least indicates the size of the retransmission resource
  • the size of the initial transmission resource is determined by the size of the initial transmission resource and the retransmission resource.
  • the ratio coefficient between the size of and the size of the retransmission resource is determined.
  • the device 900 for reserving side link resources further includes:
  • the determining unit 904 is configured to use the retransmission resources of one or more subsequent retransmissions to transmit the retransmission resource when the size of the retransmission resource for this retransmission is less than the size of the resource required by the code block group to be retransmitted The remaining code block groups for this retransmission.
  • the indicating unit 902 indicates in the side link control information corresponding to the previous retransmission that the retransmission resource of the next retransmission is used to transmit the code block group of the current retransmission.
  • the retransmission resources of one or more subsequent retransmissions can be used to transmit the code block group of this retransmission: service quality requirement, short-range communication data packet priority , Current side link channel conditions, channel congestion, distance between receiving and transmitting terminal equipment.
  • the device 900 for reserving side link resources further includes:
  • a receiving unit 905 which receives the feedback result of the i-th transmission based on the code block group
  • the indicating unit 902 is further configured to indicate the size of the resource used for the i+2th transmission in the side link control information corresponding to the i+1th transmission; where i is an integer greater than or equal to 1.
  • the third proportional coefficient of the total number of code block groups of the side link data and the number of code block groups that need to be retransmitted based on the feedback result of the i-th transmission is determined.
  • the i+2th time is determined The size of the transferred resource.
  • the indicating unit In the side link control information corresponding to the i+1th transmission, the size of the resource used for the i+2th transmission is indicated; wherein the size of the resource for the i+1th transmission is greater than the size of the resource for the i+1th transmission.
  • the resource size of the i+2th transmission is indicated.
  • the indicating unit The size of the resource used for the i+2th transmission is indicated in the side link control information corresponding to the i+1th transmission; wherein the size of the resource for the i+1th transmission is less than the size of the resource for the i+1th transmission.
  • the resource size of the i+2th transmission is indicated in the side link control information corresponding to the i+1th transmission; wherein the size of the resource for the i+1th transmission is less than the size of the resource for the i+1th transmission.
  • the number of time slots or symbols in the time domain, the number of subchannels in the frequency domain, or the total number of resource particles of the i+2th transmission is the total code of the side link data K times the resources required by the block group, and K is a number less than or equal to 1.
  • the device 900 for reserving side link resources may also include other components or modules.
  • the specific content of these components or modules reference may be made to related technologies.
  • FIG. 9 only exemplarily shows the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the implementation of this application does not limit this.
  • the number of time slots or symbols in the time domain of the retransmission resource is less than the number of time slots or symbols in the time domain of the initial transmission resource, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the initial transmission resource time domain.
  • the number of sub-channels in the frequency domain of the transmission resource is smaller than the initial transmission resources can be reserved, which can alleviate the situation that retransmission resources are reserved but not used. Waste of resources and improve resource utilization.
  • the retransmission resources of one or more subsequent retransmissions are used to transmit the code block group for this retransmission.
  • retransmission resources can be reserved more effectively, the resource utilization rate of the entire system is increased, and resource waste is reduced.
  • the size of the resource for the next transmission is dynamically indicated in the side link control information corresponding to the previous transmission.
  • An embodiment of the present application also provides a communication system, which may refer to FIG. 1, and the same content as the embodiments of the first aspect to the fourth aspect will not be repeated.
  • the communication system 100 may at least include:
  • the terminal device 102 obtains initial transmission resources and retransmission resources for transmitting side link data; and sends indication information indicating the initial transmission resources and/or the retransmission resources;
  • the retransmission resource is used to retransmit one or more code block groups of the side link data; when the number of time slots or symbols in the time domain of the retransmission resource is less than that of the initial transmission resource The number of time slots or the number of symbols in the domain, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the number of subchannels in the frequency domain of the initial transmission resource.
  • the embodiment of the present application also provides a network device, which may be a base station, for example, but the present application is not limited to this, and may also be other network devices.
  • a network device which may be a base station, for example, but the present application is not limited to this, and may also be other network devices.
  • FIG. 10 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • the network device 1000 may include: a processor 1010 (for example, a central processing unit CPU) and a memory 1020; the memory 1020 is coupled to the processor 1010.
  • the memory 1020 can store various data; in addition, it also stores an information processing program 1030, and the program 1030 is executed under the control of the processor 1010.
  • the network device 1000 may further include: a transceiver 1040, an antenna 1050, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the network device 1000 does not necessarily include all the components shown in FIG. 10; in addition, the network device 1000 may also include components not shown in FIG. 10, and reference may be made to the prior art.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this, and may also be other devices.
  • Fig. 11 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1100 may include a processor 1110 and a memory 1120; the memory 1120 stores data and programs, and is coupled to the processor 1110. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to achieve telecommunication functions or other functions.
  • the processor 1110 may be configured to execute a program to implement the method for reserving side link resources as described in the embodiment of the first aspect.
  • the processor 1110 may be configured to perform the following control: obtain initial transmission resources and retransmission resources for transmitting side link data; and send indication information indicating the initial transmission resources and/or the retransmission resources;
  • the retransmission resource is used to retransmit one or more code block groups of the side link data; when the number of time slots or symbols in the time domain of the retransmission resource is less than that of the initial transmission resource The number of time slots or the number of symbols in the domain, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the number of subchannels in the frequency domain of the initial transmission resource.
  • the terminal device 1100 may further include: a communication module 1130, an input unit 1140, a display 1150, and a power supply 1160. Among them, the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the terminal device 1100 does not necessarily include all the components shown in FIG. 11, and the above-mentioned components are not necessary; in addition, the terminal device 1100 may also include components not shown in FIG. There is technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to perform the side link resource pre-processing described in the embodiments of the first to third aspects. Stay method.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the side link resource reservation method described in the embodiments of the first to third aspects.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • This application relates to such a computer-readable program.
  • the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods. Or steps.
  • This application also relates to storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, etc.
  • the method/device described in combination with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a method for reserving side link resources including:
  • the terminal equipment obtains the initial transmission resources and retransmission resources for transmitting side link data
  • the retransmission resource is used to retransmit one or more code block groups of the side link data; when the number of time slots or symbols in the time domain of the retransmission resource is less than that of the initial transmission resource The number of time slots or the number of symbols in the domain, and/or the number of subchannels in the frequency domain of the retransmission resource is less than the number of subchannels in the frequency domain of the initial transmission resource.
  • Appendix 2 The method according to Appendix 1, wherein the first proportional coefficient between the size of the retransmission resource and the size of the initial transmission resource or the size of the initial transmission resource and the retransmission
  • the second scale factor between the sizes of the resources is predefined and/or semi-statically configured and/or dynamically indicated.
  • Supplement 3 The method according to Supplement 2, wherein the first proportional coefficient is H1, and H1 is a number less than 1; or the second proportional coefficient is H2, and H2 is a number greater than 1.
  • Supplement 4 The method according to any one of Supplements 1 to 3, wherein the ratio of the number of subchannels in the frequency domain of the initial transmission resource to the number of subchannels in the frequency domain of the retransmission resource is N1/N2, and/ Or, the ratio of the number of time slots or symbols in the time domain of the initial transmission resource to the number of time slots or symbols in the time domain of the retransmission resource is N3/N4; where N1 or N3 corresponds to the initial transmission resource that can be used to carry The number of code block groups, N2 or N4 corresponds to the maximum number of code block groups that the retransmission resource can be used to carry.
  • Supplement 5 The method according to any one of Supplements 1 to 4, wherein the method further comprises:
  • the terminal device uses the initial transmission resource to initially transmit the side link data, and uses the retransmission resource to retransmit the side link data N times, where N is an integer greater than or equal to zero.
  • Supplement 6 The method according to any one of Supplements 1 to 5, wherein the method further includes:
  • the terminal device determines whether to feed back and retransmit the side link data based on the code block group according to at least one of the following parameters: quality of service (QoS) requirements, short-range communication data packet priority (PPPP), current side link Channel conditions, channel congestion, distance between receiving and transmitting terminal equipment.
  • QoS quality of service
  • PPPP short-range communication data packet priority
  • current side link Channel conditions channel congestion, distance between receiving and transmitting terminal equipment.
  • Supplement 7 The method according to any one of Supplements 1 to 6, wherein the method further includes:
  • the reserved retransmission resource is determined in the time domain and/or the frequency domain according to at least one of the following parameters Size: quality of service (QoS) requirements, short-distance communication data packet priority (PPPP), current side link channel conditions, channel congestion, and the distance between receiving and transmitting terminal equipment.
  • QoS quality of service
  • PPPP short-distance communication data packet priority
  • Supplement 8 The method according to any one of Supplements 1 to 7, wherein the initial transmission resource is indicated by the first field of the side link control information corresponding to the side link data, and the retransmission resource It is indicated by the second field of the side link control information corresponding to the side link data.
  • Supplement 9 The method according to any one of Supplements 1 to 7, wherein the initial transmission resource and/or the retransmission resource is represented by a field of side link control information corresponding to the side link data Instructions.
  • Appendix 10 The method according to appendix 9, wherein the field in the side link control information at least indicates the size of the initial transmission resource, and the size of the retransmission resource is determined by the retransmission The ratio coefficient between the size of the resource and the size of the initial transmission resource and the size of the initial transmission resource are determined.
  • Appendix 11 The method according to Appendix 9, wherein the field in the side link control information at least indicates the size of the retransmission resource, and the size of the initial transmission resource is determined by the initial transmission resource. The ratio coefficient between the size of the resource and the size of the retransmission resource and the size of the retransmission resource are determined.
  • Supplement 12 The method according to any one of Supplements 1 to 11, wherein the method further includes:
  • the terminal device uses the retransmission resource for one or more subsequent retransmissions to transmit the original The remaining code block group for the second retransmission.
  • Supplement 13 The method according to Supplement 12, wherein the retransmission resource indicating the next retransmission in the side link control information corresponding to the previous retransmission is used to transmit the code block of the current retransmission group.
  • Supplement 14 The method according to Supplement 12 or 13, wherein the method further includes:
  • the terminal device determines, according to at least one of the following parameters, that the retransmission resource for one or more subsequent retransmissions can be used to transmit the code block group of the current retransmission: quality of service (QoS) requirements, short-range communication data packet priority Level (PPPP), current side link channel conditions, channel congestion, distance between receiving and transmitting terminal equipment.
  • QoS quality of service
  • PPPP short-range communication data packet priority Level
  • Supplement 15 The method according to any one of Supplements 1 to 14, wherein the method further includes:
  • the terminal device receives the feedback result of the i-th transmission based on the code block group.
  • the terminal device indicates the size of the resource used for the i+2th transmission in the side link control information corresponding to the i+1th transmission; where i is an integer greater than or equal to 1.
  • Appendix 16 The method according to Appendix 15, wherein the first transmission is the initial transmission of the side link data; the jth transmission is the retransmission of the side link data, where j is greater than 1. Integer.
  • Supplement 17 The method according to Supplement 15, wherein the method further includes:
  • the terminal device determines the i+th code block group number according to the total number of code block groups of the side link data and the third proportional coefficient of the number of code block groups that need to be retransmitted based on the feedback result of the i-th transmission.
  • the i+2th time is determined The size of the transferred resource.
  • Supplement 18 The method according to Supplement 17, wherein the third scale factor is M1, and M1 is a number greater than 1, or the fourth scale factor is M2, and M2 is a number less than 1.
  • Supplement 19 The method according to any one of Supplements 15 to 18, wherein the required resource size of the code block group that needs to be retransmitted in the feedback result of the i-th transmission of the terminal device is smaller than the In the case of the size of the resource for the i+1th transmission, the size of the resource for the i+2th transmission is indicated in the side link control information corresponding to the i+1th transmission.
  • Supplement 20 The method according to Supplement 19, wherein the size of the resource of the i+1th transmission is greater than the size of the resource of the i+2th transmission.
  • Supplement 21 The method according to any one of Supplements 15 to 18, wherein the required resource size of the code block group that needs to be retransmitted in the feedback result of the i-th transmission is greater than the required resource size of the code block group
  • the size of the resource for the i+2th transmission is indicated in the side link control information corresponding to the i+1th transmission.
  • Supplement 22 The method according to Supplement 21, wherein the size of the resource of the i+1th transmission is smaller than the size of the resource of the i+2th transmission.
  • Supplement 23 The method according to any one of Supplements 19 to 22, wherein the number of time slots or symbols in the time domain, the number of subchannels in the frequency domain, or the total number of sub-channels in the i+2th transmission
  • the number of REs is K times the resources required to send all code block groups, and K is a number less than 1.
  • a method for reserving side link resources including:
  • the terminal device receives the feedback result of the i-th transmission based on the code block group.
  • the terminal device indicates the size of the resource used for the i+2th transmission in the side link control information corresponding to the i+1th transmission; where i is an integer greater than or equal to 1.
  • Supplement 25 The method according to Supplement 24, wherein the first transmission is the initial transmission of the side link data; the jth transmission is the retransmission of the side link data, where j is greater than 1. Integer.
  • Supplement 26 The method according to Supplement 24, wherein the method further includes:
  • the terminal device determines the i-th code block group number according to the total number of code block groups of the side link data and the third proportional coefficient of the number of code block groups that need to be retransmitted based on the feedback result of the i-th transmission. +The size of the resource for 2 transmissions;
  • the i+2th time is determined The size of the transferred resource.
  • Supplement 27 The method according to Supplement 26, wherein the third scale factor is M1, and M1 is a number greater than 1, or the fourth scale factor is M2, and M2 is a number less than 1.
  • Supplement 28 The method according to any one of Supplements 24 to 27, wherein the required resource size of the code block group to be retransmitted in the feedback result of the i-th transmission of the terminal device is smaller than the In the case of the size of the resource for the i+1th transmission, the size of the resource for the i+2th transmission is indicated in the side link control information corresponding to the i+1th transmission.
  • Supplement 29 The method according to Supplement 28, wherein the size of the resource of the i+1th transmission is greater than the size of the resource of the i+2th transmission.
  • Supplement 30 The method according to any one of Supplements 24 to 27, wherein the required resource size of the code block group that needs to be retransmitted in the feedback result of the i-th transmission is greater than that of the In the case of the size of the resource for the i+1th transmission, the size of the resource for the i+2th transmission is indicated in the side link control information corresponding to the i+1th transmission.
  • Supplement 31 The method according to Supplement 30, wherein the size of the resource of the i+1th transmission is smaller than the size of the resource of the i+2th transmission.
  • Supplement 32 The method according to any one of Supplements 28 to 31, wherein the number of time slots or symbols in the time domain, the number of subchannels in the frequency domain, or the total number of sub-channels in the i+2th transmission
  • the number of REs is K times the resources required by the total code block group of the side link data, and K is a number less than or equal to 1.
  • Appendix 33 A terminal device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement the side described in any one of appendix 1 to 32 The method of link resource reservation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种边链路资源的预留方法以及装置;所述方法包括:终端设备获得对边链路数据进行传输的初传资源和重传资源;以及发送指示初传资源和/或重传资源的指示信息;其中,重传资源用于对边链路数据的一个或多个码块组进行重传;重传资源时域上的时隙数或符号数小于初传资源时域上的时隙数或符号数,和/或,重传资源频域上的子信道数小于初传资源频域上的子信道数。

Description

边链路资源的预留方法以及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
在长期演进(LTE,Long Term Evolution)系统及之前版本的车联网(V2X,Vehicle to Everything)通信中,只支持广播业务。作为接收方的终端设备(以下简称为接收终端设备)在收到作为发送方的终端设备(以下简称为发送终端设备)发送的数据包后,不需要发送反馈信息(包括ACK/NACK,可以称为HARQ-ACK)。
在新无线(NR,New Radio)V2X中,除了广播业务,还需要支持单播以及组播业务。为了增强这两种业务的可靠性,在NR V2X中引入了边链路(SL,sidelink)的反馈机制,即接收终端设备在收到数据包后需要向发送终端设备进行反馈,反馈的内容取决于译码结果。因此,在边链路上引入了物理边链路反馈信道(PSFCH,Physical Sidelink Feedback Channel),用于承载边链路的反馈信息。
另一方面,对于Uu接口即网络设备(例如基站)与终端设备(例如UE)之间的通信,Rel-15支持了基于码块组(CBG,Code Block Group)的反馈,即将一个传输块(TB,Transmission Block)内的码块(CB)进行分组,形成CBG。在终端设备向网络设备进行反馈时,会对每个CBG产生1比特(bit)反馈信息,对应于这个CBG的译码结果。
在NR Rel-15中,在某些信道环境下,信道干扰导致的译码错误可能仅发生在一个TB的部分CBG对应的资源上,并且NR Rel-15中支持对数据的抢占(pre-emption,例如eMBB业务被URLLC业务抢占资源)也可能只发生在部分CBG映射的资源上,因此引入这个机制可以使得重传时不需要对整个TB进行重传,而是仅仅对受到干扰的CBG或者被URLLC业务抢占的部分解码失败的CBG进行重传,这些CBG收到的对应比特指示为“NACK”,这样能够节省重传所需要的时频资源,特别是在数据包较大的情况下。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申 请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在LTE V2X中,支持对重传资源的预留,即物理边链路共享信道(PSSCH,physical sidelink shared channel)对应的SCI中,除了指示本次传输所使用的资源外,还能够对重传资源进行指示预留,以便于接收终端设备进行合并处理,以及其它终端设备通过感知(sensing)识别当前终端设备占用的重传资源,从而在资源选择时能够避免资源碰撞的发生。其中,LTE V2X中预留的重传资源大小与初传资源大小是相等的。
但是,发明人发现:在边链路中资源的频谱效率比较重要,因为多个终端设备需要通过网络设备的配置或者资源选择在频带上进行数据传输。由于支持资源预留,如果预留的资源未能被使用则会造成资源浪费,特别是数据包比较大的情况下;此外,当频带上资源占用情况紧张时,预留过大的资源会导致其它终端设备能够预留的资源较小,此外还可能不存在所需大小的资源。所以,NR V2X需要更加有效灵活的资源预留方案。
针对上述问题的至少之一,本申请实施例提供一种边链路资源的预留方法及装置。
根据本申请实施例的一个方面,提供一种边链路资源的预留装置,包括:
获得单元,其获得对边链路数据进行传输的初传资源和重传资源;以及
指示单元,其发送指示所述初传资源和/或所述重传资源的指示信息;
其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
根据本申请实施例的另一个方面,提供一种边链路资源的预留方法,包括:
终端设备获得对边链路数据进行传输的初传资源和重传资源;以及
所述终端设备发送指示所述初传资源和/或所述重传资源的指示信息;
其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
根据本申请实施例的另一个方面,提供一种通信系统,包括:
终端设备,其获得对边链路数据进行传输的初传资源和重传资源;以及发送指示 所述初传资源和/或所述重传资源的指示信息;
其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
本申请实施例的有益效果之一在于:重传资源时域上的时隙数或符号数小于初传资源时域上的时隙数或符号数,和/或,重传资源频域上的子信道数小于初传资源频域上的子信道数。由此,边链路重传在基于CBG的反馈和重传机制开启的情况下,能够预留比初传资源更小的资源,能够减轻重传资源被预留但未使用的情况下带来的资源浪费,提升资源利用率。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的示意图;
图2是NR V2X中重传预留机制沿用LTE的一示例图;
图3是NR V2X中重传预留机制沿用LTE的另一示例图;
图4是本申请实施例的边链路资源的预留方法的一示意图;
图5是本申请实施例的对初传资源和重传资源之间比例系数进行指示的示意图;
图6是本申请实施例的通过多个预留资源进行重传的一示例图;
图7是本申请实施例的根据CBG反馈进行重传资源预留的一示例图;
图8是本申请实施例的根据CBG反馈进行重传资源预留的另一示例图;
图9是本申请实施例的边链路资源的预留装置的一示意图;
图10是本申请实施例的网络设备的示意图;
图11是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS, Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备 为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
值得注意的是,图1示出了两个终端设备102、103均处于网络设备101的覆盖范围内,但本申请不限于此。两个终端设备102、103可以均不在网络设备101的覆盖范围内,或者一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外。
在本申请实施例中,两个终端设备102、103之间可以进行边链路传输。例如,两个终端设备102、103可以都在网络设备101的覆盖范围之内进行边链路传输以实现V2X通信,也可以都在网络设备101的覆盖范围之外进行边链路传输以实现V2X通信,还可以一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外进行边链路传输以实现V2X通信。
在本申请实施例中,终端设备102和/或103可以自主选择边链路资源(即采用Mode 2),在这种情况下边链路传输可以与网络设备101无关,即网络设备101是可选的。本申请实施例不对此进行限制。
在NR V2X中,数据包的大小可能远远大于LTE V2X中数据包的大小,如果资源预留方式沿用类似LTE V2X的机制,由于初传预留资源和重传预留资源的大小相等,不能使重传资源减小从而节省资源。
图2是NR V2X中重传预留机制沿用LTE的一示例图,如图2所示,对于NR V2X中预留的重传资源,如果在初传之后收到的反馈为“ACK”,则预留的重传资源可能不会被使用,如果预留的重传资源与初传资源一样大,对于数据包较大的情况,资源浪费也会比较大。
图3是NR V2X中重传预留机制沿用LTE的另一示例图,如图3所示,当数据包较大时,可能在一个选择窗中无法找到两块能够承载数据包的资源,分别用于初传 和重传。
在本申请实施例中,以V2X为例对边链路PSFCH进行说明,但本申请不限于此,还可以适用于V2X以外的边链路传输场景。在以下的说明中,在不引起混淆的情况下,术语“边链路”和“V2X”可以互换,术语“PSFCH”和“边链路反馈信道”可以互换,术语“PSSCH”和“边链路数据信道”或“边链路数据”也可以互换。
在本申请实施例中,边链路控制信息(SCI,Sidelink Control Information)由物理边链路控制信道(PSCCH,Physical Sidelink Control Channel)承载,边链路数据由PSSCH承载,边链路反馈信息由PSFCH承载。
另外,发送或接收PSSCH可以理解为发送或接收由PSSCH承载的边链路数据;发送或接收PSFCH可以理解为发送或接收由PSFCH承载的边链路反馈信息。至少一次发送可以理解为至少一次PSSCH发送或者至少一次边链路数据发送,当前发送可以理解为当前PSSCH发送或者当前边链路数据的发送。
第一方面的实施例
本申请实施例提供一种边链路资源的预留方法,从第一终端设备侧进行说明。其中该第一终端设备作为发送方,向第二终端设备发送边链路数据;并且该第一终端设备作为接收方,接收第二终端设备发送的边链路反馈信息。
图4是本申请实施例的边链路资源的预留方法的一示意图,如图4所示,该方法包括:
401,终端设备获得对边链路数据进行传输的初传资源和重传资源;以及
402,所述终端设备发送指示所述初传资源和/或所述重传资源的指示信息;
其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
值得注意的是,以上附图4仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图4的记载。
在本申请实施例中,边链路可以支持基于CBG的反馈和重传,从而能够获得与 Uu接口相同的好处。此外对于Mode 2,可以为基于HARQ-ACK的重传进行资源预留,在支持基于CBG的反馈和重传的情况下,可以引入灵活的重传资源预留机制,使重传资源减小从而节省资源。
在本申请实施例中,支持预留的重传资源的大小小于初传资源的大小。这种情况下,需要重传的数据包大小小于初传的数据包大小。由于在NR V2X中,终端设备可能是高速运动的,边链路收发双方之间的信道状态变化可能较快,并且在边链路上可能也要支持高优先级业务对低优先级业务的抢占。基于以上原因,可以支持基于CBG的反馈和重传机制,让重传的CBG个数小于初传TB中所有CBG个数,在预留的重传资源上承载一部分CBG并进行发送。
在本申请实施例中,发送终端设备预留的基于HARQ-ACK反馈的重传资源的大小可以小于初传资源的大小,即,承载重传数据的资源的总资源粒子(RE,resource element)个数少于承载初传数据的资源的总RE个数。
例如,重传资源在频域上的子信道(sub-channel)个数小于初传资源在频域上的子信道(sub-channel)个数,和/或,重传资源在时域上的时隙(slot)/符号(symbol)个数小于初传资源在时域上的时隙(slot)/符号(symbol)个数。
在一些实施例中,重传资源的大小与初传资源的大小之间的第一比例系数(以下以H1表示)或者初传资源的大小与重传资源的大小之间的第二比例系数(以下以H2表示)被预定义和/或被半静态配置和/或被动态指示。
例如,该比例系数可以被预定义,也可以由无线资源控制(RRC,Radio Resource Control)半静态地配置和/或由边链路控制信息(SCI)动态地指示。本申请中的RRC半静态配置可以是网络设备进行的配置(仅适用于终端设备在网络设备覆盖内的情况),或者也可以是终端设备的RRC层进行的预配置。
在一些实施例中,初传资源的大小与重传资源的大小之间的第二比例系数为H2,H2大于1。或者,重传资源的大小与初传资源的大小之间的第一比例系数为H1,H1小于1。
例如,假定频域上使用的子信道数目相同,资源大小以时隙为单位。初传资源使用2个时隙,重传资源使用1个时隙,则重传资源的大小与初传资源的大小的比值为1/2;如果每个时隙中用于边链路的符号个数相同(例如均为6个),则重传资源的RE个数与初传资源的RE个数的比值为1/2;如果每个时隙中用于边链路的符号个数 不同(例如分别为5个和6个),则重传资源的RE个数与初传资源的RE个数近似为1/2的比例。
再例如,假定时域上使用的时隙数或符号数相同,资源大小以子信道为单位。初传资源使用2个子信道,重传资源使用1个子信道,则重传资源的大小与初传资源的大小的比值为1/2;如果每个子信道中用于边链路的子载波个数相同(例如均为6个),则重传资源的RE个数与初传资源的RE个数的比值为1/2。
在一些实施例中,初传资源频域上的子信道数与重传资源频域上的子信道数的比值为N1/N2,和/或,初传资源时域上的时隙数或符号数与重传资源时域上的时隙数或符号数的比值为N3/N4;其中,N1或N3对应于初传资源能够用来承载CBG的个数,N2或N4对应于重传资源能够用来承载CBG的最大个数。
例如,初传资源能够传输4个CBG(一个TB),重传资源能够重传2个CBG(该TB中的一部分),则重传资源在频域上的子信道个数与初传资源在频域上的子信道个数的比值为1/2,和/或,重传资源在时域上的时隙(或符号)个数与初传资源在时域上的时隙(或符号)个数的比值为1/2。
再例如,初传资源能够传输5个CBG(一个TB),重传资源能够重传3个CBG(该TB中的一部分),则重传资源在频域上的子信道个数与初传资源在频域上的子信道个数的比值为3/5,和/或,重传资源在时域上的时隙(或符号)个数与初传资源在时域上的时隙(或符号)个数的比值为3/5。
在一些实施例中,终端设备使用初传资源对边链路数据进行初传,并使用重传资源对边链路数据进行N次重传,其中N为大于或等于零的整数。
例如,基于CBG的反馈和重传机制被开启。如果初传的所有CBG反馈结果均为ACK,表明初传成功,则不再进行重传(重传次数为零)。再例如,如果初传的CBG反馈结果中存在NACK,表明初传不成功,则进行第一次重传,如果该第一次重传的所有CBG反馈结果均为ACK,则表明第一次重传成功(重传次数为1)。
再例如,如果初传的CBG反馈结果中存在NACK,表明初传不成功,则进行第一次重传,如果该第一次重传的CBG反馈结果中仍存在NACK,表明第一次重传不成功,则进行第二次重传,如果该第二次重传的CBG反馈结果均为ACK,则表明第二次重传成功(重传次数为2);以此类推。
在一些实施例中,终端设备根据如下至少一个参数确定是否基于码块组对边链路 数据进行反馈和重传:业务质量(QoS)需求、近距离通信数据分组优先级(PPPP)、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。但本申请不限于此,还可以包括其他参数。
例如,边链路上基于CBG的反馈和重传机制(可称为第一机制)可以是由以下一个或几个条件来决定是否开启的:业务的Qos需求高于第一门限,则不开启该第一机制;PPPP(PPPP的值越小优先级越高)的值低于第二门限,则不开启该第一机制;当前边链路信道条件好(CSI高于第三门限),则开启该第一机制;信道拥挤程度低(CBR低于第四门限),则开启该第一机制;当收发终端设备的距离小于第五门限,则开启该第一机制。
在一些实施例中,基于CBG的反馈和重传机制的开启也可以不受以上参数的影响,而是直接地被半静态配置。例如可以被半静态地配置为开启(enable),或者也可以被半静态地配置为不开启(disable)或者,由SCI动态指示是否开启。
在一些实施例中,终端设备在基于码块组对所述边链路数据进行反馈和重传的情况下,根据如下至少一个参数确定预留的重传资源在时域和/或频域上的资源大小和/或是否开启重传资源的大小小于初传资源的大小的机制(可称为第二机制,即重传资源时域上的时隙数或符号数小于初传资源时域上的时隙数或符号数和/或重传资源频域上的子信道数小于初传资源频域上的子信道数):业务质量(QoS)需求、近距离通信数据分组优先级(PPPP)、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
例如,当基于CBG的反馈和重传机制的开启时,对于基于CBG重传资源的预留被配置为:当以上一个或多个参数满足相应的条件的情况下,开启该第二机制,即基于CBG的重传能够预留比初传资源小的资源。
在一些实施例中,初传资源的大小与重传资源的大小之间的比例系数H(也可称为scale系数,例如为前述的P),可以是在会话(session)建立时半静态配置或由网络设备半静态配置的,和/或,也可以是由初传SCI动态指示的。
其中,SCI指示的候选值可以是预定义(pre-define)的,也可以是由RRC半静态配置的,或者由发送终端设备根据其它终端设备对所预留资源的抢占部分资源的大小来决定的。
在一些实施例中,初传资源由边链路数据对应的边链路控制信息的第一域指示, 重传资源由边链路数据对应的边链路控制信息的第二域指示。
例如,在初传对应的SCI中,可以包含两个独立的时域和/或频域上的指示域(field),分别指示初传的时频资源和所预留的重传的时频资源。
在一些实施例中,初传资源和/或重传资源由边链路数据对应的边链路控制信息的一个域指示。通过同一个field同时指示初传资源以及所预留的重传资源,能够达到节省SCI中的payload开销的效果。
在一些实施例中,通过同一个field指示初传资源以及所预留的重传资源。边链路控制信息中的所述域至少指示初传资源的大小,并且重传资源的大小由所述重传资源的大小和所述初传资源的大小之间的第一比例系数H1以及初传资源的大小确定。
例如,SCI中指示的field对应的是初传资源,此SCI为初传对应SCI,可以直接解读,所预留的重传资源则需要比例系数H1和此field共同解读获得。具体地,频域上可以通过RIV(例如起始子信道加上子信道个数)进行指示,时域上可以通过SLIV(起始时隙/符号加上时隙/符号个数)进行指示;或者只指示时域资源的起始时隙和/或时隙个数(时隙个数也可以通过高层配置或预先配置)。
再例如,对于初传,时域和频域起始位置可以由PSCCH资源隐式地获得,在这种情况下,则可以忽略field中指示的起始位置,直接读取频域和/或时域field来获得资源大小。对于重传,需要将从频域资源指示和/或时域资源指示获得的时频资源长度乘以系数H1,才能够获得缩放(scale)之后的重传资源大小。可选地,对于重传资源的起始位置,可以由对频域资源指示和/或时域资源指示的直接解读获得,也可以由从频域资源指示和/或时域资源指示获得的时频资源起始位置乘以系数H1获得。
在这种情况下,H1可以为一个小于1的值,可以由session建立时RRC半静态配置,也可以在SCI中额外的field进行指示,指示的候选值可以是预定义的。例如SCI可以指示{1,3/4,1/2,1/4}中的一个值,也可以指示高层半静态配置的{value1,value2,value3,value4}中的一个值,此时,SCI中需要包含一个2bits的field来指示H1的具体值,此处仅为举例说明,包括但不限于这种配置。
在一些实施例中,通过同一个field指示初传资源以及所预留的重传资源。边链路控制信息中的所述域至少指示重传资源的大小,并且所述初传资源的大小由所述初传资源的大小和所述重传资源的大小之间的第二比例系数H2以及所述重传资源的大小确定。
例如,SCI中指示的field对应的是重传资源,此SCI可以为初传对应SCI或重传对应的SCI,可以直接解读重传资源,初传资源则需要比例系数H2和此field共同解读获得。具体地,频域上可以通过RIV(例如起始子信道加上子信道个数)进行指示,时域上可以通过SLIV(起始时隙/符号加上时隙/符号个数)进行指示;或者只指示时域资源的起始时隙和/或时隙个数(时隙个数也可以通过高层配置或预先配置)。
再例如,如果SCI为对应于初传的SCI,则对于初传,时域和频域起始位置可以由PSCCH资源隐式地获得,在这种情况下,可以忽略field中指示的起始位置,将从频域资源指示和/或时域资源指示获得的时频资源长度乘以系数H2,才能够获得缩放(scale)之后的初传资源大小。对于重传,直接读取频域和/或时域field来获得时频资源的起始位置和长度。
如果SCI为对应于重传的SCI,则对于重传,时域和频域起始位置可以由PSCCH资源隐式地获得,在这种情况下,可以忽略field中指示的起始位置,直接读取频域和/或时域field获得资源大小。对于初传,需要将从频域资源指示和/或时域资源指示获得的时频资源长度乘以系数H2,才能够获得缩放(scale)之后的初传资源大小。可选的,对于初传资源的起始位置,可以由对频域资源指示和/或时域资源指示的直接解读获得,也可以由从频域资源指示和/或时域资源指示获得的时频资源起始位置乘以系数H获得。
在这种情况下,H2可以为一个大于1的值,可以由session建立时RRC半静态配置,也可以在SCI中额外的field进行指示,指示的候选值可以是预定义的。例如SCI可以指示{1,4/3,2,4}中的一个值,也可以指示高层半静态配置的{value1,value2,value3,value4}中的一个值,此时,SCI中需要包含一个2bits的field来指示H2的具体值,此处仅为举例说明,包括但不限于这种配置。
图5是本申请实施例的对初传资源和重传资源之间比例系数进行指示的示意图。如图5所示,例如在一个实施方式(选项1)中,初传资源可以从SCI直接解读,重传资源的子信道个数由SCI指示的RIV1以及比例系数H1获得,频域起始位置由SCI指示的RIV1或者RIV1和比例系数H1获得;例如在另一个实施方式(选项2)中,重传资源可以从SCI直接解读,初传资源的子信道个数由SCI指示的RIV1以及比例系数H2获得。由此,初传资源和/或重传资源可以由边链路数据对应的边链路控制信息的一个域指示。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,重传资源时域上的时隙数或符号数小于初传资源时域上的时隙数或符号数,和/或,重传资源频域上的子信道数小于初传资源频域上的子信道数。由此,边链路重传在基于CBG的反馈和重传机制开启的情况下,能够预留比初传资源更小的资源,能够减轻重传资源被预留但未使用的情况下带来的资源浪费,提升资源利用率。
第二方面的实施例
本申请实施例在第一方面的实施例的基础上进行说明,与第一方面的实施例相同的内容不再赘述。
基于第一方面的实施例,如果预留的重传资源的大小小于初传资源的大小(例如重传资源的总RE个数少于初传资源的总RE个数),则有可能出现预留的重传资源不够用的情况。
例如,预留的重传资源可供2个CBG进行重传;但收到的反馈为“0000”,即发生了4个CBG的译码错误,需要供4个CBG进行重传。因此,预留的重传资源不够用。此外,如图3所示,有可能在选择窗中没有可用资源可以重传。
在本申请实施例中,终端设备在本次重传的重传资源的大小小于需要重传的码块组所需资源的大小的情况下,将后续一次或多次重传的重传资源用于传输所述本次重传的剩余码块组。
例如,如果预留的重传资源不足,则可在再下一个预留的重传资源上继续发送本次传输未完成的CBG,所述再下一个预留的重传资源原本是用来进行再下一次重传的,即第二次重传,这里用于继续发送第一次重传中未发送完成的剩余CBG。
在一些实施例中,在前一次重传对应的边链路控制信息中指示后一次重传的重传资源被用于传输所述本次重传的码块组。
例如,再下一个预留的重传资源可以是由初传对应的SCI指示预留的,也可以是由上一次重传或之前的某次重传对应的SCI进行指示预留的。两次重传(例如第i+1次传输和第i+2次传输)之间可能没有PSFCH反馈资源,或者,当存在PSFCH资源 时终端设备也不在此时反馈,而是等待收到所有重传的CBG数据后才在再下一个可用的PSFCH资源上进行反馈。
图6是本申请实施例的通过多个预留资源进行重传的一示例图。如图6所示,假设本次传输支持的CBG个数为4,发送终端设备预留的重传资源仅能承载2个CBG,但是收到的反馈为“0000”,这指示4个CBG均发生译码错误。
如图6所示,发送终端设备可以在第一次重传预留的资源重传CBG 0,1,在第二次重传预留的资源上则重传CBG 2,3,具体发送的CBG可以通过SCI中的CBGTI域进行指示。
在一些实施例中,在前一次重传对应的SCI中,指示是否在后续的预留资源上还有本次传输的后续部分发送,具体可以用1bit进行指示(例如假设本次重传还有后续传输,则指示为1)。接收终端设备可以根据这个指示判断本次重传是否发送完成,并在本次传输过程中,收到所有重传的CBG后(如收到SCI中指示为0)才进行合并译码,并生成对应的反馈;在未收到所有本次重传的CBG之前不生成反馈信息。
在一些实施例中,终端设备根据如下至少一个参数确定能够将后续一次或多次重传的重传资源用于传输所述本次重传的码块组:业务质量(QoS)需求、近距离通信数据分组优先级(PPPP)、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
例如,将后续一次或多次重传的重传资源用于传输本次重传的码块组机制(可称为第三机制)可以是由以下一个或几个条件来决定是否开启的:业务的Qos需求高于第六门限,则不开启该第三机制;PPPP(PPPP的值越小优先级越高)的值低于第七门限,则不开启该第三机制;当前边链路信道条件好(CSI高于第八门限),则开启该第三机制;信道拥挤程度低(CBR低于第九门限),则开启该第三机制;当收发终端设备的距离小于第十门限,则开启该第三机制。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,将后续一次或多次重传的重传资源用于传输本次重传的码块组。由此,能够更有效地进行重传资源的预留,增大整个系统的资源利用率,减小资源浪费。
第三方面的实施例
本申请实施例在第一、二方面的实施例的基础上进行说明。本申请实施例可以单独执行,也可以与第一、二方面的实施例结合起来;与第一、二方面的实施例相同的内容不再赘述。
在本申请实施例中,终端设备接收基于码块组的第i次传输的反馈结果;以及在第i+1次传输对应的边链路控制信息中指示用于进行第i+2次传输的资源的大小;其中i为大于或等于1的整数。
在本申请实施例中,第1次传输为边链路数据的初传;第j次传输为所述边链路数据的重传,其中j为大于1的整数。
以i=1为例(此时将第1次传输称为本次传输,即边链路数据的初传),发送终端设备可以通过收到的本次传输基于CBG的反馈结果(其中指示“NACK,即0的个数”),在下一次传输(第一次重传)对应的SCI中,动态地调整指示下下次传输(第二次重传)的重传资源的大小。
以i=2为例(此时将第2次传输称为本次传输,即边链路数据的第一次重传),发送终端设备可以通过收到的本次传输基于CBG的反馈结果(其中指示“NACK,即0的个数”),在下一次传输(第二次重传)对应的SCI中,动态地调整指示下下次传输(第三次重传)的重传资源的大小。
在一些实施例中,终端设备根据边链路数据的总码块组个数和基于第i次传输的反馈结果需要重传的码块组个数的第三比例系数(以M1表示),确定第i+2次传输的资源的大小。
或者,根据基于所述第i次传输的反馈结果需要重传的码块组个数和所述边链路数据的总码块组个数的第四比例系数(以M2表示),确定所述第i+2次传输的资源的大小。
例如,M1为大于1的值,M2为小于1的值,并且需要更多候选值以及更多的SCI比特进行指示,例如需要3bits或4bits指示。
在一些实施例中,终端设备在第i次传输的反馈结果中需要重传的码块组的所需资源大小小于第i+1次传输的资源的大小的情况下,在第i+1次传输对应的边链路控制信息中指示用于进行第i+2次传输的资源的大小。
其中,所述第i+1次传输的资源的大小大于所述第i+2次传输的资源大小,并且所述第i+2次传输的时域上的时隙或符号个数、频域上的子信道个数或者总资源粒子个数为所述边链路数据的总码块组所需资源(即初传的CBG个数)的K倍,K为小于1的数。
例如,有可能i次发送4个CBG且预留了4个CBG给i+1次传输,而反馈中指示错误了2个CBG,则这个时候比值K为2/4即为1/2。再例如,有可能i次发送5个CBG且预留了3个CBG给i+1次传输,而反馈中指示错误了2个CBG,则这个时候比值K为2/5。
图7是本申请实施例的根据CBG反馈进行重传资源预留的一示例图。如图7所示,假设预留的重传资源能够承载2个CBG的重传。但是根据实际的反馈,只需要对1个CBG进行重传(例如收到“0111”,则只需要重传CBG 0),那么在第一次重传中,CBG 0进行速率匹配(rate matching)并映射到能够承载2个CBG的重传资源上。
此外,如图7所示,在第一次重传对应的SCI中,为下一次即第二次重传预留的资源被指示(或调整)为只需要能够承载1个CBG。
在一些实施例中,终端设备在第i次传输的反馈结果中需要重传的码块组的所需资源大小大于第i+1次传输的资源的大小的情况下,在第i+1次传输对应的边链路控制信息中指示用于进行第i+2次传输的资源的大小。
其中,所述第i+1次传输的资源的大小小于所述第i+2次传输的资源大小,并且所述第i+2次传输的时域上的时隙或符号个数、频域上的子信道个数或者总资源粒子个数为所述边链路数据的总码块组所需资源(即初传的CBG个数)的K倍,K为小于1的数。
例如,有可能i次发送4个CBG且预留了2个CBG给i+1次传输,而反馈中指示错误了3个CBG,则这个时候比值K为3/4。再例如,有可能i次发送5个CBG且预留了2个CBG给i+1次传输,而反馈中指示错误了3个CBG,则这个时候比值K为3/5。
图8是本申请实施例的根据CBG反馈进行重传资源预留的另一示例图。如图8所示,假设预留的重传资源能够承载2个CBG的重传。但是根据实际的反馈,需要对4个CBG进行重传(例如收到“0000”,则需要重传CBG 0,1,2,3),那么在第一次重传中,需要在两个预留的重传资源上完成本次重传(可以参考第二方面的实施例)。
此外,如图8所示,在第一次重传资源对应的SCI中,为下一次即第二次重传预留的资源被指示(或调整)为能够承载4个CBG的传输。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,根据基于码块组的反馈结果,在前一次传输对应的边链路控制信息中动态指示下一次传输的资源的大小。由此,能够更灵活且有效地进行重传资源的预留,增大整个系统的资源利用率,减小资源浪费。
第四方面的实施例
本申请实施例提供一种边链路资源的预留装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件,与第一至三方面的实施例相同的内容不再赘述。
图9是本申请实施例的边链路资源的预留装置的一示意图,如图9所示,边链路资源的预留装置900包括:
获得单元901,其获得对边链路数据进行传输的初传资源和重传资源;以及
指示单元902,其发送指示所述初传资源和/或所述重传资源的指示信息;
其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
在一些实施例中,重传资源的大小与初传资源的大小之间的第一比例系数或者所述初传资源的大小与所述重传资源的大小之间的第二比例系数被预定义和/或被半静态配置和/或被动态指示。
在一些实施例中,初传资源频域上的子信道数与重传资源频域上的子信道数的比值为N1/N2,和/或,初传资源时域上的时隙数或符号数与重传资源时域上的时隙数或符号数的比值为N3/N4;其中,N1或N3对应于初传资源能够用来承载码块组的个数,N2或N4对应于重传资源能够用来承载码块组的最大个数。
在一些实施例中,如图9所示,边链路资源的预留装置900还包括:
发送单元903,其使用所述初传资源对所述边链路数据进行初传,并使用所述重 传资源对所述边链路数据进行N次重传,其中N为大于或等于零的整数。
在一些实施例中,根据如下至少一个参数确定是否基于码块组对所述边链路数据进行反馈和重传:业务质量需求、近距离通信数据分组优先级、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
在一些实施例中,在基于码块组对所述边链路数据进行反馈和重传的情况下,根据如下至少一个参数确定预留的所述重传资源在时域和/或频域上的资源大小:业务质量需求、近距离通信数据分组优先级、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
在一些实施例中,初传资源由边链路数据对应的边链路控制信息的第一域指示,重传资源由边链路数据对应的边链路控制信息的第二域指示。
在一些实施例中,初传资源和/或重传资源由边链路数据对应的边链路控制信息的一个域指示。
在一些实施例中,所述边链路控制信息中的所述域至少指示所述初传资源的大小,并且所述重传资源的大小由所述重传资源的大小和所述初传资源的大小之间的比例系数以及所述初传资源的大小确定。
在一些实施例中,所述边链路控制信息中的所述域至少指示所述重传资源的大小,并且所述初传资源的大小由所述初传资源的大小和所述重传资源的大小之间的比例系数以及所述重传资源的大小确定。
在一些实施例中,如图9所示,边链路资源的预留装置900还包括:
确定单元904,其在本次重传的重传资源的大小小于需要重传的码块组所需资源的大小的情况下,将后续一次或多次重传的重传资源用于传输所述本次重传的剩余码块组。
在一些实施例中,指示单元902在前一次重传对应的边链路控制信息中指示后一次重传的重传资源被用于传输所述本次重传的码块组。
在一些实施例中,根据如下至少一个参数确定能够将后续一次或多次重传的重传资源用于传输所述本次重传的码块组:业务质量需求、近距离通信数据分组优先级、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
在一些实施例中,如图9所示,边链路资源的预留装置900还包括:
接收单元905,其接收基于码块组的第i次传输的反馈结果;
指示单元902还用于在第i+1次传输对应的边链路控制信息中指示用于进行第i+2次传输的资源的大小;其中i为大于或等于1的整数。
在一些实施例中,根据所述边链路数据的总码块组个数和基于所述第i次传输的反馈结果需要重传的码块组个数的第三比例系数,确定所述第i+2次传输的资源的大小;
或者,根据基于所述第i次传输的反馈结果需要重传的码块组个数和所述边链路数据的总码块组个数的第四比例系数,确定所述第i+2次传输的资源的大小。
在一些实施例中,在所述第i次传输的反馈结果中需要重传的码块组的所需资源大小小于所述第i+1次传输的资源的大小的情况下,所述指示单元在所述第i+1次传输对应的边链路控制信息中指示用于进行所述第i+2次传输的资源的大小;其中,所述第i+1次传输的资源的大小大于所述第i+2次传输的资源大小。
在一些实施例中,在所述第i次传输的反馈结果中需要重传的码块组的所需资源大小大于所述第i+1次传输的资源的大小的情况下,所述指示单元在所述第i+1次传输对应的边链路控制信息中指示用于进行所述第i+2次传输的资源的大小;其中,所述第i+1次传输的资源的大小小于所述第i+2次传输的资源大小。
在一些实施例中,所述第i+2次传输的时域上的时隙或符号个数、频域上的子信道个数或者总资源粒子个数为所述边链路数据的总码块组所需资源的K倍,K为小于或等于1的数。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。边链路资源的预留装置900还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图9中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,重传资源时域上的时隙数或符号数小于初传资源时域上的时 隙数或符号数,和/或,重传资源频域上的子信道数小于初传资源频域上的子信道数。由此,边链路重传在基于CBG的反馈和重传机制开启的情况下,能够预留比初传资源更小的资源,能够减轻重传资源被预留但未使用的情况下带来的资源浪费,提升资源利用率。
此外,将后续一次或多次重传的重传资源用于传输本次重传的码块组。由此,能够更有效地进行重传资源的预留,增大整个系统的资源利用率,减小资源浪费。
此外,根据基于码块组的反馈结果,在前一次传输对应的边链路控制信息中动态指示下一次传输的资源的大小。由此,能够更灵活且有效地进行重传资源的预留,增大整个系统的资源利用率,减小资源浪费。
第五方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第四方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100至少可以包括:
终端设备102,其获得对边链路数据进行传输的初传资源和重传资源;以及发送指示所述初传资源和/或所述重传资源的指示信息;
其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图10是本申请实施例的网络设备的构成示意图。如图10所示,网络设备1000可以包括:处理器1010(例如中央处理器CPU)和存储器1020;存储器1020耦合到处理器1010。其中该存储器1020可存储各种数据;此外还存储信息处理的程序1030,并且在处理器1010的控制下执行该程序1030。
此外,如图10所示,网络设备1000还可以包括:收发机1040和天线1050等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1000也并不是必须要包括图10中所示的所有部件;此外,网络设备1000还可以包括图10中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图11是本申请实施例的终端设备的示意图。如图11所示,该终端设备1100可以包括处理器1110和存储器1120;存储器1120存储有数据和程序,并耦合到处理器1110。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1110可以被配置为执行程序而实现如第一方面的实施例所述的边链路资源的预留方法。例如处理器1110可以被配置为进行如下的控制:获得对边链路数据进行传输的初传资源和重传资源;以及发送指示所述初传资源和/或所述重传资源的指示信息;
其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
如图11所示,该终端设备1100还可以包括:通信模块1130、输入单元1140、显示器1150、电源1160。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1100也并不是必须要包括图11中所示的所有部件,上述部件并不是必需的;此外,终端设备1100还可以包括图11中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一至第三方面的实施例所述的边链路资源的预留方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一至第三方面的实施例所述的边链路资源的预留方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模 块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种边链路资源的预留方法,包括:
终端设备获得对边链路数据进行传输的初传资源和重传资源;以及
所述终端设备发送指示所述初传资源和/或所述重传资源的指示信息;
其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
附记2、根据附记1所述的方法,其中,所述重传资源的大小与所述初传资源的 大小之间的第一比例系数或者所述初传资源的大小与所述重传资源的大小之间的第二比例系数被预定义和/或被半静态配置和/或被动态指示。
附记3、根据附记2所述的方法,其中,所述第一比例系数为H1,H1为小于1的数;或者所述第二比例系数为H2,H2为大于1的数。
附记4、根据附记1至3任一项所述的方法,其中,初传资源频域上的子信道数与重传资源频域上的子信道数的比值为N1/N2,和/或,初传资源时域上的时隙数或符号数与重传资源时域上的时隙数或符号数的比值为N3/N4;其中,N1或N3对应于初传资源能够用来承载码块组的个数,N2或N4对应于重传资源能够用来承载码块组的最大个数。
附记5、根据附记1至4任一项所述的方法,其中,所述方法还包括:
所述终端设备使用所述初传资源对所述边链路数据进行初传,并使用所述重传资源对所述边链路数据进行N次重传,其中N为大于或等于零的整数。
附记6、根据附记1至5任一项所述的方法,其中,所述方法还包括:
所述终端设备根据如下至少一个参数确定是否基于码块组对所述边链路数据进行反馈和重传:业务质量(QoS)需求、近距离通信数据分组优先级(PPPP)、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
附记7、根据附记1至6任一项所述的方法,其中,所述方法还包括:
所述终端设备在基于码块组对所述边链路数据进行反馈和重传的情况下,根据如下至少一个参数确定预留的所述重传资源在时域和/或频域上的资源大小:业务质量(QoS)需求、近距离通信数据分组优先级(PPPP)、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
附记8、根据附记1至7任一项所述的方法,其中,所述初传资源由所述边链路数据对应的边链路控制信息的第一域指示,所述重传资源由所述边链路数据对应的边链路控制信息的第二域指示。
附记9、根据附记1至7任一项所述的方法,其中,所述初传资源和/或所述重传资源由所述边链路数据对应的边链路控制信息的一个域指示。
附记10、根据附记9所述的方法,其中,所述边链路控制信息中的所述域至少指示所述初传资源的大小,并且所述重传资源的大小由所述重传资源的大小和所述初传资源的大小之间的比例系数以及所述初传资源的大小确定。
附记11、根据附记9所述的方法,其中,所述边链路控制信息中的所述域至少指示所述重传资源的大小,并且所述初传资源的大小由所述初传资源的大小和所述重传资源的大小之间的比例系数以及所述重传资源的大小确定。
附记12、根据附记1至11任一项所述的方法,其中,所述方法还包括:
所述终端设备在本次重传的重传资源的大小小于需要重传的码块组所需资源的大小的情况下,将后续一次或多次重传的重传资源用于传输所述本次重传的剩余码块组。
附记13、根据附记12所述的方法,其中,在前一次重传对应的边链路控制信息中指示后一次重传的重传资源被用于传输所述本次重传的码块组。
附记14、根据附记12或13所述的方法,其中,所述方法还包括:
所述终端设备根据如下至少一个参数确定能够将后续一次或多次重传的重传资源用于传输所述本次重传的码块组:业务质量(QoS)需求、近距离通信数据分组优先级(PPPP)、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
附记15、根据附记1至14任一项所述的方法,其中,所述方法还包括:
所述终端设备接收基于码块组的第i次传输的反馈结果;以及
所述终端设备在第i+1次传输对应的边链路控制信息中指示用于进行第i+2次传输的资源的大小;其中i为大于或等于1的整数。
附记16、根据附记15所述的方法,其中,第1次传输为所述边链路数据的初传;第j次传输为所述边链路数据的重传,其中j为大于1的整数。
附记17、根据附记15所述的方法,其中,所述方法还包括:
所述终端设备根据所述边链路数据的总码块组个数和基于所述第i次传输的反馈结果需要重传的码块组个数的第三比例系数,确定所述第i+2次传输的资源的大小;
或者,根据基于所述第i次传输的反馈结果需要重传的码块组个数和所述边链路数据的总码块组个数的第四比例系数,确定所述第i+2次传输的资源的大小。
附记18、根据附记17所述的方法,其中,所述第三比例系数为M1,M1为大于1的数;或者,所述第四比例系数为M2,M2为小于1的数。
附记19、根据附记15至18任一项所述的方法,其中,所述终端设备在所述第i次传输的反馈结果中需要重传的码块组的所需资源大小小于所述第i+1次传输的资源 的大小的情况下,在所述第i+1次传输对应的边链路控制信息中指示用于进行所述第i+2次传输的资源的大小。
附记20、根据附记19所述的方法,其中,所述第i+1次传输的资源的大小大于所述第i+2次传输的资源大小。
附记21、根据附记15至18任一项所述的方法,其中,所述终端设备在所述第i次传输的反馈结果中需要重传的码块组的所需资源大小大于所述第i+1次传输的资源的大小的情况下,在所述第i+1次传输对应的边链路控制信息中指示用于进行所述第i+2次传输的资源的大小。
附记22、根据附记21所述的方法,其中,所述第i+1次传输的资源的大小小于所述第i+2次传输的资源大小。
附记23、根据附记19至22任一项所述的方法,其中,所述第i+2次传输的时域上的时隙或符号个数、频域上的子信道个数或者总RE个数为发送所有码块组所需资源的K倍,K为小于1的数。
附记24、一种边链路资源的预留方法,包括:
终端设备接收基于码块组的第i次传输的反馈结果;以及
所述终端设备在第i+1次传输对应的边链路控制信息中指示用于进行第i+2次传输的资源的大小;其中i为大于或等于1的整数。
附记25、根据附记24所述的方法,其中,第1次传输为所述边链路数据的初传;第j次传输为所述边链路数据的重传,其中j为大于1的整数。
附记26、根据附记24所述的方法,其中,所述方法还包括:
所述终端设备根据所述边链路数据的总码块组个数和基于所述第i次传输的的反馈结果需要重传的码块组个数的第三比例系数,确定所述第i+2次传输的资源的大小;
或者,根据基于所述第i次传输的反馈结果需要重传的码块组个数和所述边链路数据的总码块组个数的第四比例系数,确定所述第i+2次传输的资源的大小。
附记27、根据附记26所述的方法,其中,所述第三比例系数为M1,M1为大于1的数;或者,所述第四比例系数为M2,M2为小于1的数。
附记28、根据附记24至27任一项所述的方法,其中,所述终端设备在所述第i次传输的反馈结果中需要重传的码块组的所需资源大小小于所述第i+1次传输的资源的大小的情况下,在所述第i+1次传输对应的边链路控制信息中指示用于进行所述第 i+2次传输的资源的大小。
附记29、根据附记28所述的方法,其中,所述第i+1次传输的资源的大小大于所述第i+2次传输的资源大小。
附记30、根据附记24至27任一项所述的方法,其中,所述终端设备在所述第i次传输的反馈结果中需要重传的码块组的所需资源大小大于所述第i+1次传输的资源的大小的情况下,在所述第i+1次传输对应的边链路控制信息中指示用于进行所述第i+2次传输的资源的大小。
附记31、根据附记30所述的方法,其中,所述第i+1次传输的资源的大小小于所述第i+2次传输的资源大小。
附记32、根据附记28至31任一项所述的方法,其中,所述第i+2次传输的时域上的时隙或符号个数、频域上的子信道个数或者总RE个数为所述边链路数据的总码块组所需资源的K倍,K为小于或等于1的数。
附记33、一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至32任一项所述的边链路资源的预留方法。

Claims (20)

  1. 一种边链路资源的预留装置,包括:
    获得单元,其获得对边链路数据进行传输的初传资源和重传资源;以及
    指示单元,其发送指示所述初传资源和/或所述重传资源的指示信息;
    其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
  2. 根据权利要求1所述的装置,其中,所述重传资源的大小与所述初传资源的大小之间的第一比例系数或者所述初传资源的大小与所述重传资源的大小之间的第二比例系数被预定义和/或被半静态配置和/或被动态指示。
  3. 根据权利要求1所述的装置,其中,所述初传资源频域上的子信道数与重传资源频域上的子信道数的比值为N1/N2,和/或,所述初传资源时域上的时隙数或符号数与所述重传资源时域上的时隙数或符号数的比值为N3/N4;
    其中,所述N1或N3对应于所述初传资源能够用来承载码块组的个数,所述N2或N4对应于所述重传资源能够用来承载码块组的最大个数。
  4. 根据权利要求1所述的装置,其中,所述装置还包括:
    发送单元,其使用所述初传资源对所述边链路数据进行初传,并使用所述重传资源对所述边链路数据进行N次重传,其中N为大于或等于零的整数。
  5. 根据权利要求1所述的装置,其中,根据如下至少一个参数确定是否基于码块组对所述边链路数据进行反馈和重传:业务质量需求、近距离通信数据分组优先级、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
  6. 根据权利要求1所述的装置,其中,在基于码块组对所述边链路数据进行反馈和重传的情况下,根据如下至少一个参数确定预留的所述重传资源在时域和/或频域上的资源大小:业务质量需求、近距离通信数据分组优先级、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
  7. 根据权利要求1所述的装置,其中,所述初传资源由所述边链路数据对应的边链路控制信息的第一域指示,所述重传资源由所述边链路数据对应的边链路控制信息的第二域指示。
  8. 根据权利要求1所述的装置,其中,所述初传资源和/或所述重传资源由所述边链路数据对应的边链路控制信息的一个域指示。
  9. 根据权利要求8所述的装置,其中,所述边链路控制信息中的所述域至少指示所述初传资源的大小,并且所述重传资源的大小由所述重传资源的大小和所述初传资源的大小之间的比例系数以及所述初传资源的大小确定。
  10. 根据权利要求8所述的装置,其中,所述边链路控制信息中的所述域至少指示所述重传资源的大小,并且所述初传资源的大小由所述初传资源的大小和所述重传资源的大小之间的比例系数以及所述重传资源的大小确定。
  11. 根据权利要求1所述的装置,其中,所述装置还包括:
    确定单元,其在本次重传的重传资源的大小小于需要重传的码块组所需资源的大小的情况下,将后续一次或多次重传的重传资源用于传输所述本次重传的剩余码块组。
  12. 根据权利要求11所述的装置,其中,所述指示单元在前一次重传对应的边链路控制信息中指示后一次重传的重传资源被用于传输所述本次重传的码块组。
  13. 根据权利要求11所述的装置,其中,根据如下至少一个参数确定能够将后续一次或多次重传的重传资源用于传输所述本次重传的码块组:业务质量需求、近距离通信数据分组优先级、当前边链路信道条件、信道拥挤程度、接收和发送终端设备之间的距离。
  14. 根据权利要求1所述的装置,其中,所述装置还包括:
    接收单元,其接收基于码块组的第i次传输的反馈结果;
    所述指示单元还用于在第i+1次传输对应的边链路控制信息中指示用于进行第i+2次传输的资源的大小;其中i为大于或等于1的整数。
  15. 根据权利要求14所述的装置,其中,根据所述边链路数据的总码块组个数和基于所述第i次传输的反馈结果需要重传的码块组个数的第三比例系数,确定所述第i+2次传输的资源的大小;
    或者,根据基于所述第i次传输的反馈结果需要重传的码块组个数和所述边链路数据的总码块组个数的第四比例系数,确定所述第i+2次传输的资源的大小。
  16. 根据权利要求14所述的装置,其中,在所述第i次传输的反馈结果中需要重传的码块组的所需资源大小小于所述第i+1次传输的资源的大小的情况下,所述指 示单元在所述第i+1次传输对应的边链路控制信息中指示用于进行所述第i+2次传输的资源的大小;其中,所述第i+1次传输的资源的大小大于所述第i+2次传输的资源大小。
  17. 根据权利要求14所述的装置,其中,在所述第i次传输的反馈结果中需要重传的码块组的所需资源大小大于所述第i+1次传输的资源的大小的情况下,所述指示单元在所述第i+1次传输对应的边链路控制信息中指示用于进行所述第i+2次传输的资源的大小;其中,所述第i+1次传输的资源的大小小于所述第i+2次传输的资源大小。
  18. 根据权利要求14所述的装置,其中,所述第i+2次传输的时域上的时隙或符号个数、频域上的子信道个数或者总资源粒子个数为所述边链路数据的总码块组所需资源的K倍,K为小于或等于1的数。
  19. 一种边链路资源的预留方法,包括:
    终端设备获得对边链路数据进行传输的初传资源和重传资源;以及
    所述终端设备发送指示所述初传资源和/或所述重传资源的指示信息;
    其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
  20. 一种通信系统,包括:
    终端设备,其获得对边链路数据进行传输的初传资源和重传资源;以及发送指示所述初传资源和/或所述重传资源的指示信息;
    其中,所述重传资源用于对所述边链路数据的一个或多个码块组进行重传;所述重传资源时域上的时隙数或符号数小于所述初传资源时域上的时隙数或符号数,和/或,所述重传资源频域上的子信道数小于所述初传资源频域上的子信道数。
PCT/CN2019/108561 2019-09-27 2019-09-27 边链路资源的预留方法以及装置 WO2021056419A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108561 WO2021056419A1 (zh) 2019-09-27 2019-09-27 边链路资源的预留方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108561 WO2021056419A1 (zh) 2019-09-27 2019-09-27 边链路资源的预留方法以及装置

Publications (1)

Publication Number Publication Date
WO2021056419A1 true WO2021056419A1 (zh) 2021-04-01

Family

ID=75166291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108561 WO2021056419A1 (zh) 2019-09-27 2019-09-27 边链路资源的预留方法以及装置

Country Status (1)

Country Link
WO (1) WO2021056419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230098101A1 (en) * 2021-09-24 2023-03-30 Qualcomm Incorporated Flexible frequency domain resource allocation for sidelink

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632780A (zh) * 2017-03-23 2018-10-09 电信科学技术研究院 一种数据传输方法及终端
US20190166597A1 (en) * 2018-01-12 2019-05-30 Intel Corporation Reserved resource elements for hybrid automatic repeat request bits
CN110100496A (zh) * 2017-03-31 2019-08-06 Lg电子株式会社 在无线通信系统中由终端发送信号以用于v2x通信的方法以及使用该方法的设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632780A (zh) * 2017-03-23 2018-10-09 电信科学技术研究院 一种数据传输方法及终端
CN110100496A (zh) * 2017-03-31 2019-08-06 Lg电子株式会社 在无线通信系统中由终端发送信号以用于v2x通信的方法以及使用该方法的设备
US20190166597A1 (en) * 2018-01-12 2019-05-30 Intel Corporation Reserved resource elements for hybrid automatic repeat request bits

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Discussion on sidelink physical layer procedure on NR V2X", 3GPP DRAFT; R1-1904680 DISCUSSION ON SIDELINK PHYSICAL LAYER PROCEDURE_V2, vol. RAN WG1, 29 March 2019 (2019-03-29), Xi an China, pages 1 - 4, XP051691688 *
ASUSTEK: "Discussion on sidelink physical layer procedure on NR V2X", 3GPP DRAFT; R1-1907230 DISCUSSION ON SIDELINK PHYSICAL LAYER PROCEDURE_V1, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno USA, pages 1 - 4, XP051709256 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230098101A1 (en) * 2021-09-24 2023-03-30 Qualcomm Incorporated Flexible frequency domain resource allocation for sidelink
US11943056B2 (en) * 2021-09-24 2024-03-26 Qualcomm Incorporated Flexible frequency domain resource allocation for sidelink

Similar Documents

Publication Publication Date Title
WO2021159974A1 (zh) 混合自动重传请求信息的反馈方法及设备
WO2020168574A1 (zh) 传输信息的方法、终端设备和网络设备
WO2021007685A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
WO2019028684A1 (zh) 通信方法与设备
WO2019201249A1 (zh) 通信方法、通信装置及可读存储介质
JP2022543671A (ja) 信号送信方法、装置及びシステム
WO2020143731A1 (zh) 用于传输数据的方法、通信设备和网络设备
WO2021087874A1 (zh) 边链路资源的预留方法以及装置
WO2020132869A1 (zh) 资源分配的方法和终端设备
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
CN113412595B (zh) 无线通信方法、终端设备和网络设备
WO2021016748A1 (zh) 边链路资源选择方法以及装置
TW202017402A (zh) 用於側行鏈路的通信方法和設備
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
WO2018059466A1 (zh) 传输控制信息的方法、用户设备和网络设备
WO2022006914A1 (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
TW202017404A (zh) 一種訊息傳輸方法、設備及存儲媒介
WO2021203392A1 (zh) 边链路传输方法以及装置
WO2021056419A1 (zh) 边链路资源的预留方法以及装置
WO2020142987A1 (zh) 边链路信息的发送和接收方法以及装置
WO2020103028A1 (zh) 一种传输数据的方法和终端设备
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
WO2020156394A1 (zh) 一种反馈方法及装置
WO2019028917A1 (zh) 一种上行数据反馈的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947163

Country of ref document: EP

Kind code of ref document: A1