WO2019028917A1 - 一种上行数据反馈的方法和装置 - Google Patents

一种上行数据反馈的方法和装置 Download PDF

Info

Publication number
WO2019028917A1
WO2019028917A1 PCT/CN2017/097273 CN2017097273W WO2019028917A1 WO 2019028917 A1 WO2019028917 A1 WO 2019028917A1 CN 2017097273 W CN2017097273 W CN 2017097273W WO 2019028917 A1 WO2019028917 A1 WO 2019028917A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
dci
uplink data
domain resource
bit
Prior art date
Application number
PCT/CN2017/097273
Other languages
English (en)
French (fr)
Inventor
费永强
余政
南方
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/097273 priority Critical patent/WO2019028917A1/zh
Publication of WO2019028917A1 publication Critical patent/WO2019028917A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present application relates to the field of communications, and more specifically to a method and apparatus for uplink data feedback in the field of communications.
  • the existing LTE system can support the Machine Type Communication (MTC).
  • MTC Machine Type Communication
  • the receiving bandwidth of the terminal device applied to the MTC is smaller than the system bandwidth.
  • the bandwidth occupied by the Physical Downlink Control Channel (PDCCH) can be The entire system bandwidth makes the terminal device applied to the MTC unable to receive the Downlink Control Information (DCI) carried in the PDCCH. Therefore, in order to enable the terminal device applied to the MTC to correctly receive the DCI, the machine type communication is used.
  • the physical downlink control channel (MPDCCH) carries the DCI.
  • the network device may send feedback information to the terminal device, where the feedback information is carried in the DCI, and the feedback information is used to indicate whether the network device correctly receives the uplink data.
  • the feedback information included in the DCI carried by each MPDCCH is only feedback information for one terminal device, that is, the feedback information in one DCI can only be fed back for the reception of uplink data sent by one terminal device.
  • the network device needs to feed back the uplink data sent by multiple terminal devices, multiple DCIs need to be sent, which occupies more MPDCCH resources, which makes the resource overhead larger.
  • the terminal device that can be served in the same time period and the same bandwidth The number will increase. If the uplink transmission of each terminal device needs to be fed back, the overhead for the MPDCCH resource is more obvious.
  • a small frequency domain unit for example, a bandwidth corresponding to three resource elements (RE)
  • the present application provides a method and apparatus for uplink data feedback, which can reduce resource overhead and improve resource utilization.
  • a method for uplink data feedback comprising:
  • the network device receives the uplink data that is carried on the first frequency domain resource, where the first frequency domain resource includes M frequency domain units, and the M is an integer greater than or equal to 1;
  • first downlink control information DCI Determining, by the network device, first downlink control information DCI, where the first DCI includes feedback information of Q bit groups, each bit group includes at least one bit, the Q bit groups and the M frequency domain units
  • the value of each of the bit groups is used to indicate whether the network device correctly receives uplink data that is carried on the corresponding at least one frequency domain unit, where the Q is an integer greater than or equal to 1;
  • the network device sends the first DCI.
  • the first frequency domain resource carries uplink data of at least one terminal device, and the corresponding relationship between the first frequency domain resource and multiple bit groups in the first DCI is designed. That is, the Corresponding relationship between the M frequency domain units in the first frequency domain resource and the Q bit groups in the first DCI, the Q bit groups may be corresponding to the at least one terminal device, and the value of each bit group is used. And indicating whether the uplink data on the corresponding at least one frequency domain unit is correctly received, that is, the value of each bit group indicates whether the uplink data of the corresponding terminal device is correctly received, so that the DCI can be carried in a DCI.
  • the feedback information of the uplink data of the at least one terminal device effectively saves signaling overhead and improves resource utilization compared to the feedback information of only one terminal device in one DCI in the prior art.
  • the Q is determined according to the first frequency domain resource and the frequency domain unit.
  • the sending, by the network device, the first DCI includes:
  • the network device uses the scrambling code of the CRC to scramble the CRC;
  • the network device sends the scrambled first DCI.
  • the method for uplink data feedback determines the scrambling code of the CRC of the scrambled DCI based on the frequency domain resource, and cancels the relationship between the scrambling code of the CRC and the ID of the terminal device, so that the scrambling code of the CRC becomes a kind of The public resource, in turn, enables the network device and the terminal device to directly determine the scrambling code of the corresponding CRC based on the system or protocol specification, further reducing the signaling overhead.
  • the network device determines, according to the first frequency domain resource, a scrambling code of a cyclic redundancy check CRC of the first DCI, including:
  • the network device determines a scrambling code of the CRC according to an index of the first frequency domain resource.
  • the Q is equal to the M
  • the each bit group includes one bit
  • the value of each bit group is used to indicate the network. Whether the device correctly receives uplink data carried on a corresponding frequency domain unit.
  • each bit group include one bit and Q equal to M, that is, M bits are in one-to-one correspondence with the M frequency domain units, one bit corresponding to one frequency domain unit, the first bit number can be used to represent the first
  • the reception of uplink data on each frequency domain unit carried in the frequency domain resource saves the number of bits compared to the case where multiple bits in one bit group correspond to one frequency domain unit, compared to one bit group
  • the multiple bits correspond to multiple frequency domain units, which improves transmission efficiency and, in general, improves flexibility in data transmission.
  • the first DCI further includes power control information, where the power control information is used to indicate a transmit power of the first retransmitted data, the first retransmission The data is retransmission data of data in the uplink data that is not correctly received by the network device.
  • the first DCI further includes retransmission times information, where the retransmission times information is used to indicate retransmission times of the first retransmission data, where A retransmission data is retransmission data of data in the uplink data that is not correctly received by the network device.
  • the first frequency domain resource is one narrowband NB, and the frequency domain unit is three consecutive subcarriers;
  • the first frequency domain resource is 0.5 narrowband NB, and the frequency domain unit is 3 consecutive subcarriers; or
  • the first frequency domain resource is 1 broadband WB, and the frequency domain unit is 1 physical resource block PRB; or
  • the first frequency domain resource is three broadband WBs, and the frequency domain unit is three consecutive physical resource blocks PRB; or
  • the first frequency domain resource is two narrowband NBs, and the frequency domain unit is one physical resource block PRB.
  • the first frequency domain resource is 0.5 narrowband NB
  • the first DCI further includes first indication information, where the first indication information is used to indicate The first frequency domain resource is in the upper or lower half of the NB.
  • the payload size of the first DCI is a payload size of the DCI format 6-0A, or the payload size of the first DCI is a DCI format 6-0B.
  • the size of the load is a payload size of the DCI format 6-0A, or the payload size of the first DCI is a DCI format 6-0B. The size of the load.
  • a method for uplink data feedback comprising:
  • the terminal device sends the first uplink data on at least part of the resources on the first frequency domain resource, where the first frequency domain resource includes M frequency domain units, and the M is an integer greater than or equal to 1;
  • first downlink control information DCI where the first DCI includes feedback information of Q bit groups, each bit group includes at least one bit, the Q bit groups and the M frequency domain units
  • the value of each of the bit groups is used to indicate whether the network device correctly receives uplink data that is carried on the corresponding at least one frequency domain unit, where the uplink data includes the first uplink data, Q is an integer greater than or equal to 1;
  • the terminal device determines, according to the first DCI, whether the first uplink data is correctly received.
  • the first frequency domain resource carries the uplink data of the at least one terminal device, and the correspondence between the first frequency domain resource and the multiple bit groups in the first DCI is designed. That is, the correspondence between the M frequency domain units in the first frequency domain resource and the Q bit groups in the first DCI may be such that the Q bit groups correspond to the at least one terminal device, and each bit group The value is used to indicate whether the uplink data on the corresponding at least one frequency domain unit is correctly received, that is, the value of each bit group indicates whether the uplink data of the corresponding terminal device is correctly received, and thus, in a DCI.
  • the feedback information of the uplink data of the at least one terminal device can be carried. Compared with the feedback information of only one terminal device in one DCI in the prior art, the signaling overhead is effectively saved and the resource utilization is improved.
  • the Q is determined according to the first frequency domain resource and the frequency domain unit.
  • the receiving, by the terminal device, the first downlink control information DCI includes:
  • the terminal device uses the scrambling code of the CRC to descramble the CRC to obtain the first DCI.
  • the method for uplink data feedback determines the scrambling code of the CRC of the scrambled DCI based on the frequency domain resource, and cancels the relationship between the scrambling code of the CRC and the ID of the terminal device, so that the scrambling code of the CRC becomes a kind of The public resource, in turn, enables the network device and the terminal device to directly determine the scrambling code of the corresponding CRC based on the system or protocol specification, further reducing the signaling overhead.
  • the terminal device determines, according to the first frequency domain resource, a scrambling code of a cyclic redundancy check CRC of the first DCI, including:
  • the network device determines a scrambling code of the CRC according to an index of the first frequency domain resource.
  • the Q is equal to the M
  • the each bit group includes one bit
  • the value of each bit group is used to indicate the network.
  • the device is targeted to the corresponding one Whether the uplink data on the frequency domain unit is correctly received.
  • each bit group include one bit and Q equal to M, that is, M bits are in one-to-one correspondence with the M frequency domain units, one bit corresponding to one frequency domain unit, the first bit number can be used to represent the first
  • the reception of uplink data on each frequency domain unit carried in the frequency domain resource saves the number of bits compared to the case where multiple bits in one bit group correspond to one frequency domain unit, compared to one bit group
  • the multiple bits correspond to multiple frequency domain units, which improves transmission efficiency and, in general, improves flexibility in data transmission.
  • the first DCI further includes power control information, where the power control information is used to indicate a transmit power of the first retransmitted data, the first retransmission The data is retransmission data of data in the uplink data that is not correctly received by the network device.
  • the first DCI further includes retransmission times information, where the retransmission times information is used to indicate a retransmission number of the first retransmission data, where A retransmission data is retransmission data of data in the uplink data that is not correctly received by the network device.
  • the first frequency domain resource is 1 narrowband NB, and the frequency domain unit is 3 consecutive subcarriers; or
  • the first frequency domain resource is 0.5 narrowband NB, and the frequency domain unit is 3 consecutive subcarriers; or
  • the first frequency domain resource is 1 broadband WB, and the frequency domain unit is 1 physical resource block PRB; or
  • the first frequency domain unit is three broadband WBs, and the frequency domain resource is three consecutive physical resource blocks PRB; or
  • the first frequency domain resource is two narrowband NBs, and the frequency domain unit is one physical resource block PRB.
  • the first frequency domain resource is 0.5 narrowband NB
  • the first DCI further includes first indication information, where the first indication information is used to indicate The first frequency domain resource is in the upper or lower half of the NB.
  • the load size of the first DCI is a load size of the DCI format 6-0A, or the load size of the first DCI is a DCI format 6-0B.
  • the size of the load is a load size of the DCI format 6-0A, or the load size of the first DCI is a DCI format 6-0B. The size of the load.
  • an apparatus for uplink data feedback is provided, the apparatus being operative to perform operations of the network device in the first aspect and any possible implementation of the first aspect.
  • the apparatus may comprise a modular unit for performing the operations of the network device in any of the above-described first aspects or any of the possible implementations of the first aspect.
  • an apparatus for uplink data feedback is provided, the apparatus being operative to perform operations of the terminal device in any of the possible implementations of the second aspect and the second aspect.
  • the apparatus may comprise a modular unit for performing the operations of the terminal device in any of the possible aspects of the second aspect and the second aspect.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the execution causes the terminal device to implement the apparatus provided by the fourth aspect .
  • a chip system comprising a memory and a processor for storing a computer program, the processor for calling and running the computer program from the memory, such that the communication device on which the chip system is installed performs the above The method of any of the first aspect to the second aspect and the embodiment thereof.
  • a computer program product comprising: computer program code, when the computer program code is processed by a communication unit, a processing unit or a transceiver of a communication device (eg, a network device or a terminal device) When the device is in operation, the communication device is caused to perform the method of any of the first to second aspects described above and embodiments thereof.
  • a computer readable storage medium storing a program causing a communication device (eg, a network device or a terminal device) to perform any of the above first to second aspects On the one hand and the method in its embodiment.
  • a communication device eg, a network device or a terminal device
  • FIG. 1 is a schematic diagram of a communication system applied to uplink data feedback in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the relationship between NB, WB, RE, and PRB in the embodiment of the present application.
  • FIG. 3 is a schematic interaction diagram of a method for uplink data feedback according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a relationship between a value of a bit of feedback information in a first DCI and a reception condition of uplink data carried on a first frequency domain resource in the embodiment of the present application.
  • FIG. 5 is a schematic diagram showing the relationship between the value of the feedback information in the first DCI and the reception status of the uplink data carried on the first frequency domain resource in another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a relationship between bits of feedback information in a first DCI and three WBs carrying uplink data in the embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an apparatus 300 for uplink data feedback according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus 400 for uplink data feedback according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, and the network device may be a Global System of Mobile communication (GSM) system or Code Division Multiple Access (CDMA).
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • the eNB or the eNodeB) may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future 5G.
  • the network device in the network or the network device in the PLMN network in the future is not limited in this embodiment.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116 or terminal device 122 may be a wireless communication transmitting device And/or wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (PLMN) network or a D2D network or an M2M network or other network.
  • PLMN public land mobile network
  • FIG. 1 is only a simplified schematic diagram of the example, and the network may also include other network devices, FIG. 1 Not drawn in the middle.
  • NB narrowband
  • WB wideband
  • RE physical resource block
  • FIG. 2 is a schematic diagram showing the relationship between NB, WB, RE, and PRB in the embodiment of the present application.
  • NB 6 PRB frequency domain range
  • the frequency domain range of the PRB and the RE described herein can also be understood as the bandwidth corresponding to the PRB and the RE. It should be noted that the frequency domain range described herein and below only represents a frequency domain range. The concept of the length of the indication; in addition, when describing the frequency domain relationship or the frequency domain range, the PRB can also be understood as the frequency domain range corresponding to the PRB or the bandwidth corresponding to the PRB.
  • the frequency domain range of one RE can also be understood as 1 subcarrier. Therefore, the “frequency domain range of RE” described below is the same as the “1 subcarrier” described.
  • the present application can be applied to an MTC scenario in an LTE system.
  • MTC refers to acquiring physical world information by deploying various devices having certain sensing, computing, executing, and communication capabilities, and implementing information transmission and coordination through the network. Processing, thus achieving the interconnection between people and things, things and things, in the field of smart home, electronic health and smart grid and other applications.
  • the terminal device used in the MTC scenario has the characteristics of low power consumption, insensitive to delay requirements, and small data transmission, and is specifically classified into two types: a bandwidth-reduced UE (Bandwidth-reduced Low-complexity UE, BL UE). Or Covered Enhanced UE (Coverage Enhancement UE, CE UE).
  • the BL/CE UE can work in Coverage Enhancement Mode A (CE Mode A) or Coverage Enhancement Mode B (CE Mode B). In any mode, its maximum supportable
  • the transmit and receive bandwidth is 1.4MHz and includes a narrow band (NB).
  • the downlink data transmission of the BL/CE UE in CE Mode A, can support a transmission bandwidth of up to 20 MHz, including four broadband (Wide Band, WB), and each WB is in frequency. It includes four NBs, that is, a frequency domain range of 96 PRBs in total; the uplink data transmission of the BL/CE UE can support a transmission bandwidth of 5 MHz, including one WB, that is, a frequency domain range of 24 PRBs.
  • WB Wideband
  • the uplink and downlink data transmission of the BL/CE UE supports only the transmission and reception of data within one NB.
  • the uplink transmission for the BL/CE UE can be performed by using smaller resource particles.
  • Downlink transmission for example, in the frequency domain, the basic unit capable of uplink and downlink transmission may be a frequency domain range corresponding to 3 consecutive subcarriers.
  • embodiments of the present application may also be applied to other communications, such as Grant Free Communication (GFC).
  • GFC Grant Free Communication
  • FIG. 3 is a schematic interaction diagram of a method of uplink data feedback according to an embodiment of the present application.
  • the network device can be a base station.
  • the embodiment of the present application can be applied to a communication system including a network device and at least one terminal device.
  • the network device and the terminal device #A in the at least one terminal device that is, an example of the terminal device
  • the interaction is taken as an example to describe the method of uplink data feedback according to an embodiment of the present application. As shown in Figure 3,
  • the terminal device #A transmits the uplink data #A (that is, an example of the first uplink data) on at least part of the resources on the frequency domain resource #A (that is, an example of the first frequency domain resource), the frequency.
  • the domain resource #A includes M frequency domain units, which are integers greater than or equal to one.
  • the frequency domain resource #A includes at least one frequency domain unit, which is a basic unit for transmitting data.
  • the uplink data #A is sent by at least one frequency domain unit in the frequency domain resource #A (that is, at least part of the resources in the frequency domain resource #A).
  • step 210 the network device receives the uplink data #A.
  • the frequency domain resource #A not only carries the uplink data #A, but also carries data sent by other terminal devices, where the uplink data #A sent by the terminal device #A and others
  • the data of the terminal device is the uplink data that is carried on the frequency domain resource #A. That is to say, the network device receives the uplink data carried on the frequency domain resource #A.
  • step S220 the network device determines DCI #A (ie, an example of the first DCI), the DCI #A includes Q bit groups, each bit group includes at least one bit, the Q bit groups and the M Corresponding to the frequency domain unit, the value of each bit group is used to indicate whether the network device correctly receives uplink data carried on the corresponding at least one frequency domain unit, and the Q is an integer greater than or equal to 1.
  • DCI #A ie, an example of the first DCI
  • the DCI #A includes Q bit groups, each bit group includes at least one bit, the Q bit groups and the M Corresponding to the frequency domain unit, the value of each bit group is used to indicate whether the network device correctly receives uplink data carried on the corresponding at least one frequency domain unit, and the Q is an integer greater than or equal to 1.
  • the network device receives the uplink data carried in the frequency domain resource #A, and the received data of the uplink data sent by each terminal device is fed back to the terminal device through the feedback information.
  • the terminal device #A Taking the terminal device #A as an example, if the uplink data #A sent by the terminal device #A is not correctly received, the feedback data indicates that the uplink data #A is not correctly received, and if the terminal device #A sends the uplink correctly.
  • the data #A indicates that the uplink data #A is correctly received by the feedback information.
  • the feedback information for all the uplink data on the frequency domain resource #A is carried in DCI#A, where the DCI#A includes Q bit groups, the Q bit groups and the frequency domain.
  • the DCI#A includes Q bit groups, the Q bit groups and the frequency domain.
  • the M frequency domain units in the resource #A that is, each bit group corresponds to at least one frequency domain unit.
  • each bit group corresponds to one frequency domain unit, and the value of each bit group is used to indicate whether the network device correctly receives uplink data carried on one frequency domain unit.
  • the values of the bits of the corresponding one bit group are the same. For example, if the network device correctly receives the uplink data #A sent by the terminal device #A, the value of each bit in the corresponding one bit group is “1”, if the network device is for uplink data. If #A is not received correctly, the value of each bit in the corresponding bit group is "0".
  • the network device does not correctly receive the uplink data #A carried on the multiple frequency domain units, It can be understood that the network device does not correctly receive uplink data that is carried on each frequency domain unit of the multiple frequency domain units, and then the values of multiple bit groups corresponding to multiple frequency domain units are identical.
  • the uplink data #A of the terminal device #A is carried on multiple frequency domain units
  • the network device schedules the terminal device #A only one hybrid of the terminal device #A is scheduled in one uplink transmission scheduling.
  • the automatic repeat request (HARQ) process so in the same time unit, such as a subframe, when the terminal device #A transmits on multiple frequency domain units, only the same HARQ process is transmitted.
  • a transport block when the network device is demodulated, it is demodulated for the entire transport block.
  • the terminal device #A transmits data on multiple frequency domain units, the data carried on the plurality of frequency domain units is corresponding.
  • the network device feeds back whether the uplink data is correctly received or not, it is fed back according to whether the transport block is correctly received. Therefore, in the same time unit, the network device takes the bit from the feedback of the terminal device #A in each frequency domain unit.
  • the values are the same and correspond to the same transport block.
  • each bit group corresponds to multiple frequency domain units, and the value of each bit group is used to indicate whether the network device is used for uplink data carried on the corresponding multiple frequency domain units. Receive correctly.
  • the terminal device #A needs to transmit data on at least part of the frequency domain units of the plurality of frequency domain units corresponding to one bit group, or in a frequency domain unit bound to one bit group. Data is transmitted on at least part of the frequency domain unit.
  • the uplink data #A of the terminal device #A is carried on multiple frequency domain units (the multiple frequency domain units correspond to one bit group)
  • the network device is for the multiple frequency domain units
  • the value of each bit in the corresponding one of the bit groups is the same, indicating that the data on the corresponding frequency domain unit is correctly received, if the network device is for the bearer
  • the uplink data #A on the frequency domain unit is not correctly received, it can be understood that the network device does not correctly receive the uplink data carried on each frequency domain unit in the multiple frequency domain units, and the corresponding one.
  • the value of each bit in the bit group is also the same, indicating that the data on the corresponding frequency domain unit is correctly received.
  • the uplink data #A of the terminal device #A is carried on multiple frequency domain units. If the network device correctly receives the uplink data #A, the value of each bit in the corresponding one bit group is "1", if the network device does not receive correctly for the uplink data #A, the value of each bit in the corresponding one of the bit groups is "0".
  • the value of at least one bit included in each bit group is the same.
  • the number of the bits included in any two bit groups may be the same or different, and the embodiment of the present application is not limited thereto.
  • the bit in the feedback information that is fed back for the reception of the uplink data corresponds to the frequency domain unit that carries the uplink data, and the bit field is taken.
  • the value indicates the reception of the uplink data on the corresponding frequency domain unit.
  • one bit group corresponds to one frequency domain unit, and one bit group includes two bits as an example.
  • the value of the bit of the feedback information in the embodiment of the present application is described in detail with reference to FIG. 4 .
  • FIG. 4 is a schematic diagram showing the relationship between the value of the feedback information in the first DCI and the reception of the uplink data on the first frequency domain resource in the first DCI in the embodiment of the present application.
  • the frequency domain resource #A includes eight frequency domain units, which are frequency domain unit #0 to frequency domain unit #7, respectively.
  • the feedback information in the DCI #A includes 8 bit groups, which are bit group #0 to bit group #7, respectively, denoted as b#0 to b#7, and each bit group includes 3 bits.
  • the uplink data #A of the terminal device #A is carried on the frequency domain unit #1 and the frequency domain unit #2, and the uplink data #B of the terminal device #B is carried in the frequency domain unit #0: the network device is for the uplink data #A If not correctly received, the values of the bits in the corresponding bit group #1 and bit group #2 are both "000", indicating that the bit is not correctly received; the network device correctly receives the uplink data #B of the terminal device #B, The value of the corresponding bit group #0 is "111", indicating correct reception.
  • each bit group is used to indicate whether the network device correctly receives the uplink data carried on the corresponding frequency domain unit, and there are two indication manners:
  • the first indication is the first indication
  • the value of the bit may be directly used to indicate whether the uplink data is correctly received. For example, if the uplink data #A of the terminal device #A is not correctly received, the value of the bit is “0”, which directly indicates that the uplink data is not correctly received; if the uplink data #A is correctly received, the value of the bit is A value of "1" indicates that the uplink data is correctly received.
  • Such an indication manner may be similar to the indication manner of the Acknowledgment (ACK) information or the Negative Acknowledgment (NACK) information in the prior art, and the specific implementation manner is not described herein again.
  • the value of the bit may be indirectly indicated by the value of the bit to be correctly received.
  • the frequency of the uplink data will be carried twice.
  • the values of the bits corresponding to the domain unit are compared. If they are the same, it indicates that the currently transmitted uplink data is not correctly received. If it is different, it indicates that the currently transmitted uplink data is correctly received.
  • the value of the bit corresponding to the uplink data of the first uplink transmission is “0”: if the value of the bit corresponding to the uplink data of the second uplink transmission is “1”, the corresponding bit of the two uplink transmissions is taken. If the value is different, it indicates that the uplink data of the second uplink transmission is correctly received, and the next uplink transmission can transmit new data; if the value of the corresponding uplink data of the second uplink transmission is “0”, two uplinks If the value of the corresponding bit of the transmission is the same, it indicates that the uplink data of the second uplink transmission is not correctly received, and the next uplink transmission needs to perform data retransmission.
  • the network device transmits the determined DCI #A to at least one terminal device including the terminal device #A.
  • the DCI#A carries feedback information for at least one terminal device, and for the at least one terminal device, the network device generates a common DCI#A to each terminal of the at least one terminal device.
  • the device sends the DCI#A, and each terminal device receives the DCI#A.
  • step S240 the terminal device #A determines whether the uplink data #A is correctly received based on the DCI #A.
  • the terminal device #A After receiving the DCI #A, the terminal device #A performs related processing on the DCI #A, obtains the DCI #A, and determines from the Q bit groups in the feedback information in the DCI #A. The value of the bit corresponding to the frequency domain unit carrying the uplink data #A is determined to determine whether the uplink data #A is correctly received.
  • the correspondence between the M frequency domain units in the frequency domain resource #A and the Q bit groups in the DCI #A may be pre-defined by the system or the protocol, or may be the signaling of the network device.
  • the embodiment of the present application is not limited to the notification of the terminal device #A.
  • a DCI can only provide feedback for whether the uplink data of one terminal device is correctly received. If it is required to feed back the uplink data of multiple terminal devices, the network device needs to send multiple DCI, especially in communication capable of supporting 3 REs (for example, MTC), can serve a larger number of terminal devices in the same time period and the same bandwidth, and if uplink transmission is required for each terminal device Feedback, the overhead for downlink resources increased significantly.
  • 3 REs for example, MTC
  • the first frequency domain resource carries the uplink data of the at least one terminal device, and the correspondence between the first frequency domain resource and the multiple bit groups in the first DCI is designed. That is, the correspondence between the M frequency domain units in the first frequency domain resource and the Q bit groups in the first DCI may be such that the Q bit groups correspond to the at least one terminal device, and each bit group The value is used to indicate whether the uplink data on the corresponding at least one frequency domain unit is correctly received, that is, the value of each bit group indicates whether the uplink data of the corresponding terminal device is correctly received, and thus, in a DCI.
  • the feedback information of the uplink data of the at least one terminal device can be carried. Compared with the feedback information of only one terminal device in one DCI in the prior art, the signaling overhead is effectively saved and the resource utilization is improved.
  • the verification information included in one DCI needs to occupy 16 bits.
  • the verification information in multiple DCIs also occupies more resources.
  • the feedback information of multiple terminal devices is carried in one DCI, which reduces the bits occupied by the verification information and also saves signaling overhead.
  • the Q is equal to the M, and each bit group includes a bit, where the value of each bit group is used to indicate whether the network device is correct for uplink data carried on a corresponding one of the frequency domain units. receive.
  • the Q bit groups are M bit groups, and each bit group includes one bit, that is, the feedback information includes M bits, and the M bits are in one-to-one correspondence with the M frequency domain units.
  • the value of the bit is used to indicate whether the uplink data on the corresponding one of the frequency domain units is correctly received.
  • FIG. 5 is a schematic diagram showing the relationship between the value of the feedback information in the first DCI and the reception of the uplink data carried on the first frequency domain resource in another embodiment of the present application.
  • the frequency domain resource #A includes 24 frequency domain units
  • the feedback information in the DCI#A includes 24 bits, which are recorded as b#0 to b#23, and each bit corresponds to one frequency domain unit.
  • the uplink data #A of the terminal device #A is carried in the frequency domain unit #1 and the frequency domain unit #2
  • the uplink data #B of the terminal device #B is carried in the frequency domain unit #0
  • the network device is directed to the uplink data #
  • the corresponding second bit (ie, b#1) and the third bit (ie, b#2) have values of “0”, indicating that the network device is not receiving correctly;
  • the uplink data #B of the terminal device #B is correctly received, the corresponding first bit has a value of "1", indicating correct reception.
  • each bit group include one bit and Q equal to M, that is, M bits are in one-to-one correspondence with the M frequency domain units, one bit corresponding to one frequency domain unit, the first bit number can be used to represent the first
  • the reception of uplink data on each frequency domain unit carried in the frequency domain resource saves the number of bits compared to the case where multiple bits in one bit group correspond to one frequency domain unit, compared to one bit group
  • the multiple bits correspond to multiple frequency domain units, which improves transmission efficiency and, in general, improves flexibility in data transmission.
  • the Q is determined according to the first frequency domain resource and the frequency domain unit.
  • the value of Q is related to the frequency domain resource #A and the frequency domain unit, or the value of Q is related to the frequency domain range of the frequency domain resource #A and the frequency domain range of the frequency domain unit.
  • the value of Q may be the ratio of the frequency domain range of the frequency domain resource #A to the frequency domain range of each frequency domain unit.
  • the first frequency domain resource is 1 narrowband NB, and the frequency domain unit is 3 subcarriers; or
  • the frequency domain resource is 0.5 narrowband NB, and the frequency domain unit is 3 consecutive subcarriers; or
  • the first frequency domain resource is one broadband WB, and the frequency domain unit is one physical resource block PRB; or
  • the first frequency domain resource is three broadband WBs, and the frequency domain unit is three physical resource blocks PRB; or
  • the first frequency domain resource is two narrowband NBs, and the frequency domain unit is one physical resource block PRB.
  • the relationship between the frequency domain unit and the PRB described herein indicates the relationship between the frequency domain unit and the frequency domain range of the PRB.
  • the frequency domain unit is a physical resource block PRB
  • the frequency domain unit is a frequency domain range of one physical resource block PRB”.
  • the frequency domain resource #A and the frequency domain unit may have various combinations, and may be determined based on actual conditions of transmission.
  • the frequency domain resource #A may be 0.5 NB, and the frequency domain unit in the frequency domain resource #A is 3 consecutive subcarriers, which is recorded as frequency domain resource #A2.
  • Q 12
  • 0.5 NB is the upper half NB or the lower half NB of one NB;
  • the frequency domain resource #A may be two NBs.
  • each DCI corresponds to a group of WBs.
  • the first DCI indicates WB#0, WB#1, WB#2
  • the second DCI indicates WB#1, WB#2, WB#3.
  • Another optional indication manner is that the system does not pre-define the WB corresponding to the DCI, and distinguishes the WB corresponding to the DCI by the mapping relationship between the CRC scrambling code and the WB.
  • the lower 4 bits of the CRC scrambling code form a bit map. For example, a "1" indicates that the WB corresponding to the DCI#A contains a WB, and the lower 4 bits are 1011, indicating that the DCI#A corresponds to WB#0, WB2, WB#3.
  • FIG. 6 is a schematic diagram showing the relationship between the bits of the feedback information in the first DCI and the three WBs carrying the uplink data in the embodiment of the present application.
  • the DCI#A corresponds to three WBs
  • the frequency domain unit is three subcarriers
  • each of the eight bit groups corresponds to one WB, wherein b#0 to b#7 correspond to WB#0, b#8 ⁇ b#15 corresponds to WB#2, and b#16 ⁇ b#23 corresponds to WB#3.
  • the DCI #A indicates that the indication manner of the WB may be any one of the above two indication manners.
  • the first frequency domain resource is 0.5 narrowband NB
  • the first DCI further includes first indication information, where the first indication information is used to indicate that the first frequency domain resource is in one NB.
  • the first indication information is used to indicate that the first frequency domain resource is in one NB.
  • the first indication information is used to indicate the location of the first frequency domain resource in one NB: when the frequency domain resource #A is 0.5 NB, the terminal device #A needs to know that 0.5 NB is Which part of the frequency range of one NB (ie, the position of 0.5 NB in one NB), and thus, the position of 0.5 NB in one NB is indicated by the first indication information in the DCI #A.
  • 0.5 NB is the NB of the upper half of the NB or the NB of the lower half of the NB.
  • the frequency domain resource #A is P NBs
  • the P is a number greater than 0 and less than 1
  • the first indication information also indicates that the frequency domain resource #A is in an NB. position.
  • the first DCI further includes power control information, where the power control information is used to indicate a transmit power of the first retransmitted data, where the first retransmitted data is data that is not correctly received by the network device in the uplink data. Retransmit data.
  • the DCI #A includes not only the feedback information but also the power control information, and the power control information may include 1 to 2 bits.
  • the power control information is for all terminal devices, that is, when the uplink data of the terminal device is not correctly received, the power control information can be used to determine the power used when the data is retransmitted next time.
  • the power control information includes 2 bits, the value of the bit is 00, indicating that the cumulative power adjustment is -1 dB, and the value of the bit is 01, indicating that the cumulative power adjustment is -0 dB, and the bit is taken.
  • a value of 10 indicates that the cumulative power is adjusted by 1 dB, and the value of the bit is 11, indicating that the cumulative power is adjusted by 3 dB.
  • the power control information includes 2 bits, the value of the bit is 00, indicating an absolute power of -4 dB, and the value of the bit is 01, indicating an absolute power of -1 dB, and the value of the bit is 10, indicating absolute power 1dB, the bit value is 11, indicating absolute power 4dB.
  • the first DCI further includes retransmission times information, where the retransmission times information is used to indicate the number of retransmissions of the first retransmission data, where the first retransmission data is not correct in the uplink data.
  • Retransmitted data of received data is used to indicate the number of retransmissions of the first retransmission data, where the first retransmission data is not correct in the uplink data.
  • the DCI #A includes not only the feedback information but also the retransmission times information, and the retransmission times information may include 2 to 3 bits.
  • the method for indicating the number of repetitions can be multiplexed with the method in the existing standard. For example, when the maximum number of repetitions is 32, the number of repetitions includes 2 bits, and the value of the bit is 00, indicating that the number of repetitions is 1, bit The value is 01, indicating that the number of repetitions is 4, the value of the bit is 10, indicating that the number of repetitions is 16, and the value of the bit is 11, indicating that the number of repetitions is 32.
  • the information of the number of retransmissions and the information of the power control information may be included in the DCI #A, and both types of information may be included.
  • the embodiment of the present application is not limited thereto.
  • all the remaining bits can be set to 0 (or all set). This can be used as a check digit, that is, if the terminal device demodulates and finds that the remaining bits are not all 0s (or all 1s), it is known that the network device decodes the uplink data incorrectly.
  • the load size of the first DCI is a load size of the DCI format 6-0A, or the load size of the first DCI is a load size of the DCI format 6-0B.
  • the load size of the DCI indicates the number of bits of the DCI, that is, the number of bits in the DCI #A is the number of bits of the DCI format 6-0A or the DCI format 6-0B.
  • the DCI #A includes not only the feedback information but also other information, and therefore, the feedback information payload size is less than or equal to the load size in the DCI #A.
  • the Q determined by the combination of the frequency domain resource #A and the plurality of frequency domain units belongs to the DCI format 6-0A.
  • DCI with different load sizes reduces the overhead of blind detection.
  • the terminal device can work in CE Mode A or CE Mode B, where the DCI format corresponding to CE Mode A is DCI format 6-0A (DCI format 6-0A), DCI format 6 -0A has a large number of bits, which is 27 to 35 bits. Therefore, when 1 bit group includes 1 bit, frequency domain resource #A2 and frequency domain resource #A5 can be applied to DCI format 6-0A;
  • the DCI format corresponding to CE Mode B is DCI format 6-0B (DCI format 6-0B).
  • the number of bits in DCI format 6-0B is less, ranging from 15 to 19 bits. Therefore, when 1 bit group includes 1 For the bit bits, the frequency domain resource #A2 and the frequency domain resource #A5 can be applied to the DCI format 6-0B.
  • the network device sends the first DCI, including:
  • the network device uses the scrambling code of the CRC to scramble the CRC;
  • the network device sends the scrambled first DCI.
  • mapping relationship between the frequency domain resource of the system and the scrambling code of the CRC, and the multiple frequency domain resources correspond to the scrambling code of multiple CRCs
  • the mapping relationship may be specified by a system or a protocol, or may be a network device.
  • the terminal device learns the mapping relationship through related signaling (for example, high layer signaling or physical layer signaling), so that the terminal device can use the scrambling code of the corresponding CRC to descramble the CRC in the DCI, thereby acquiring the DCI.
  • the CRC is a check bit in the DCI, and scrambling the CRC can be understood as scrambling the DCI. Therefore, the scrambling code pair using the CRC is scrambled with respect to "scrambling the DCI using the CRC" described below. The meaning of "CRC scrambling” can be understood to be the same.
  • the network device After the network device receives the uplink data carried in the frequency domain resource #A, before transmitting the DCI#A, determining, according to the frequency domain resource #A, the mapping corresponding to the frequency domain resource #A.
  • the scrambling code of the CRC (referred to as scrambling code #A for convenience of distinction and understanding), thereby scrambling the CRC in the DCI #A using the scrambling code #A, and transmitting the scrambled DCI #A.
  • the terminal device #A determines the scrambling code #A from the mapping relationship according to the frequency domain resource #A, thereby using the scrambling code #A for the DCI#
  • the CRC in A is descrambled to obtain the DCI #A.
  • the valid information bits including the feedback information in the DCI#A are a 0 , a 1 , a 2 , a 3 , . . . , a A-1
  • the check bits are scrambled to obtain bits c 0 , c 1 , c 2 , c 3 , ..., c B-1 .
  • the relationship between the bits c K and b K is:
  • x NB, 0 , x NB, 1 , ..., x NB, 15 is the scrambling code bit of the CRC scrambling code.
  • the scrambled code bit of the scrambling code #A is correlated with the check bit in the DCI#A to generate the scrambled DCI#A.
  • a DCI carries information about a terminal device, and the CRC scrambling code is The ID of the terminal device is related, and the terminal device can obtain the DCI corresponding to itself based on its own ID.
  • one DCI carries feedback information for at least one terminal device, that is, one DCI corresponds to at least one terminal device, and if the CRC of the DCI is scrambled based on the ID of the terminal device, for any terminal device It is said that it is necessary to know the IDs of other terminal devices of at least one terminal device corresponding to the DCI, and then the DCI can be descrambled, which greatly reduces the flexibility in the implementation process.
  • the signaling is learned.
  • the ID of other terminal devices also increases the overhead of signaling.
  • the method for uplink data feedback of the present application determines the scrambling code of the CRC of the scrambled DCI based on the frequency domain resource, and cancels the relationship between the scrambling code of the CRC and the ID of the terminal device, so that the scrambling code of the CRC becomes a public
  • the resource in turn, enables the network device and the terminal device to directly determine the scrambling code of the corresponding CRC based on system or protocol specifications, further reducing signaling overhead.
  • the network device determines, according to the first frequency domain resource, a scrambling code of the cyclic redundancy check CRC of the first DCI, including:
  • the network device determines the scrambling code of the CRC according to the index of the first frequency domain resource.
  • the network device can determine the scrambling code of the CRC based on the index of the frequency domain resource.
  • the corresponding index is determined by the frequency domain resource #A, and the scrambling code of the corresponding CRC is directly determined from the mapping relationship between the index and the scrambling code of the CRC.
  • the mapping relationship between multiple frequency domain resources and scrambling codes of multiple CRCs can be implemented by using an index.
  • Each frequency domain resource may correspond to one index, and each index corresponds to one CRC scrambling code, that is, multiple frequency domain resources correspond to multiple indexes, and multiple indexes correspond to multiple CRC scrambling codes.
  • Each index is used to indicate the location of the corresponding frequency domain resource and the frequency domain range occupied.
  • the index corresponding to the frequency domain resource #A is 15, and the index bit (referred to as index bit #A for convenience of distinction and understanding) is 1111, and the mapping relationship between the index and the CRC scrambling code is directly determined to correspond to the index 15.
  • Scrambling code #A in the mapping relationship between the index and the scrambling code of the CRC, the scrambling code bit of the scrambling code #A corresponding to the index 15 (or the index bit #A) (for the sake of distinction and understanding, it is recorded as the scrambling code) Bit #A) is 0000 0000 1111 1111, ie x NB, 0 , x NB, 1 , ..., x NB, 15 is 0000 0000 1111 1111. Further, the parity bit is scrambled by the scrambling code bit #A to generate the scrambled DCI#A.
  • the corresponding index is determined by the frequency domain resource #A, and the corresponding scrambling code #A is generated by using a certain rule based on the index.
  • multiple frequency domain resources correspond to multiple indexes, and each index is used to indicate the location of the corresponding frequency domain resource and the occupied frequency domain range.
  • Such a rule may be that the index bits are sequentially generated to generate scrambling bits.
  • the index corresponding to the frequency domain resource #A is 15, the index bit #A is 1111, and the values on the four bits of the index bit #A are sequentially repeated, and the scrambling code bit #A is generated as 1111 1111 1111 1111;
  • the index corresponding to the frequency domain resource #A is 1, and the index bit #A is 0001, and the values on the four bits of the index bit #A are sequentially repeated, and the scrambling code bit #A is 0001 0001 0001 0001.
  • the rule may be that the index bit is used as the value of the lower bit of the scrambling code bit, and the remaining bits are all "0" or all "1".
  • the index corresponding to the frequency domain resource #A is 15, the index bit #A is 1111, the value of the low order bit of the scrambling code bit #A is 1111, and the values of the remaining bits are all "0", and the last generated
  • the scrambling code bit #A is 0000 0000 00001111.
  • the scrambling code #A may be generated based on the index of the frequency domain resource #A, but also based on The scrambling code #A is generated in other manners, and the embodiment of the present application is not limited thereto.
  • the scrambling code #A is determined based on the index of the frequency domain resource #A and the frequency domain unit in the frequency domain resource #A.
  • the scrambling code bit #A is divided into two fields, and the value of the bit in the first field is determined based on the frequency domain unit (or the frequency domain range of the frequency domain unit), and the value of the bit in the second field is determined.
  • the index is determined based on the frequency domain resource #A.
  • the number of scrambling code bits #A is 16 bits, the first field has 12 bits, and the second field has 4 bits: for example, the frequency domain unit is 3 subcarriers, and the frequency domain resource #
  • the index corresponding to A is 15, then the value of 12 bits in the first field is 1, and the value in the second field is the index bit indicated by index 15, and the scrambling code bit #A is 1111 1111 1111; for example, the frequency domain unit is 3 consecutive subcarriers, and the index corresponding to the frequency domain resource #A is 1, then the value of 12 bits in the first field is 1, the first The value of the two fields is the index bit indicated by the index 1, and the scrambling code bit #A is 1111 1111 1111 0001; for example, the bandwidth of the frequency domain unit is the frequency domain range of one PRB, and the frequency domain resource If the index corresponding to #A is 1, then the value of the 12 bits in the first field is 0.
  • the value in the second field is the index bit indicated by index 1.
  • the scrambling code bit #A
  • the first frequency domain resource carries uplink data of at least one terminal device
  • the first frequency domain resource is designed to be between multiple bit groups in the first DCI.
  • Corresponding relationship that is, the correspondence between the M frequency domain units in the first frequency domain resource and the Q bit groups in the first DCI, so that the Q bit groups correspond to the at least one terminal device
  • each The value of the bit group is used to indicate whether the uplink data on the corresponding at least one frequency domain unit is correctly received, that is, the value of each bit group indicates whether the uplink data of the corresponding terminal device is correctly received, such that
  • the feedback information of the uplink data of the at least one terminal device can be carried in one DCI, which effectively saves signaling overhead and improves resources compared to the feedback information of only one terminal device in one DCI in the prior art. Utilization rate
  • the scrambling code of the CRC of the scrambled DCI is determined based on the frequency domain resource, and the relationship between the scrambling code of the CRC and the ID of the terminal device is released, so that the scrambling code of the CRC becomes a common resource, and thus, the network device is caused.
  • the terminal device can directly determine the scrambling code of the corresponding CRC based on the system or protocol specification, further reducing the signaling overhead;
  • each bit group include one bit and Q equal to M, that is, M bits are in one-to-one correspondence with the M frequency domain units, one bit corresponding to one frequency domain unit, and the minimum number of bits can be used to represent
  • the reception of uplink data on each frequency domain unit carried in the first frequency domain resource saves the number of bits compared to the case where multiple bits in one bit group correspond to one frequency domain unit, compared to one bit
  • the case where a plurality of bits in a group correspond to a plurality of frequency domain units improves transmission efficiency, and generally improves flexibility in data transmission.
  • the method for the uplink data feedback according to the embodiment of the present application is described in detail with reference to FIG. 1 to FIG. 6 .
  • the following describes the device for the uplink data feedback according to the embodiment of the present application.
  • the technical features are equally applicable to the following device embodiments.
  • FIG. 7 shows a schematic block diagram of an apparatus 300 for uplink data feedback in accordance with an embodiment of the present application.
  • the apparatus 300 includes:
  • the receiving unit 310 is configured to receive uplink data that is carried on the first frequency domain resource, where the first frequency domain resource includes M frequency domain units, where the M is an integer greater than or equal to 1;
  • the processing unit 320 is configured to determine first downlink control information DCI, where the first DCI includes feedback information of Q bit groups, each bit group includes at least one bit, and the Q bit groups correspond to the M frequency domain units The value of each bit group is used to indicate whether the network device is for uplink data carried on the corresponding at least one frequency domain unit. Correctly received, the Q is an integer greater than or equal to 1;
  • the sending unit 330 is configured to send the first DCI.
  • the first frequency domain resource carries uplink data of at least one terminal device, and the correspondence between the first frequency domain resource and multiple bit groups in the first DCI is designed. That is, the correspondence between the M frequency domain units in the first frequency domain resource and the Q bit groups in the first DCI may be such that the Q bit groups correspond to the at least one terminal device, each bit group The value is used to indicate whether the uplink data on the corresponding at least one frequency domain unit is correctly received, that is, the value of each bit group indicates whether the uplink data of the corresponding terminal device is correctly received, thus, in a DCI
  • the feedback information of the uplink data of the at least one terminal device may be carried. Compared with the feedback information of only one terminal device in one DCI in the prior art, the signaling overhead is effectively saved and the resource utilization is improved.
  • the Q is determined according to the first frequency domain resource and the frequency domain unit.
  • processing unit 320 is specifically configured to:
  • the first DCI after scrambling is sent.
  • the apparatus for uplink data feedback determines the scrambling code of the CRC of the scrambled DCI based on the frequency domain resource, and cancels the relationship between the scrambling code of the CRC and the ID of the terminal device, so that the scrambling code of the CRC becomes a kind of The public resource, in turn, enables the network device and the terminal device to directly determine the scrambling code of the corresponding CRC based on the system or protocol specification, further reducing the signaling overhead.
  • processing unit 320 is specifically configured to:
  • the Q is equal to the M, where each bit group includes a bit, and the value of each bit group is used to indicate whether the network device correctly receives uplink data carried on a corresponding one of the frequency domain units. .
  • each bit group include one bit and Q equal to M, that is, M bits are in one-to-one correspondence with the M frequency domain units, one bit corresponding to one frequency domain unit, the first bit number can be used to represent the first
  • the reception of uplink data on each frequency domain unit carried in the frequency domain resource saves the number of bits compared to the case where multiple bits in one bit group correspond to one frequency domain unit, compared to one bit group
  • the multiple bits correspond to multiple frequency domain units, which improves transmission efficiency and, in general, improves flexibility in data transmission.
  • the first DCI further includes power control information, where the power control information is used to indicate a transmit power of the first retransmitted data, where the first retransmitted data is data that is not correctly received by the network device in the uplink data. Retransmit data.
  • the first DCI further includes retransmission times information, where the retransmission times information is used to indicate the number of retransmissions of the first retransmission data, where the first retransmission data is not correct in the uplink data.
  • Retransmitted data of received data is used to indicate the number of retransmissions of the first retransmission data, where the first retransmission data is not correct in the uplink data.
  • the first frequency domain resource is 1 narrowband NB, and the frequency domain unit is 3 consecutive subcarriers; or
  • the first frequency domain resource is 0.5 narrowband NB, and the frequency domain unit is 3 consecutive subcarriers; or
  • the first frequency domain resource is one broadband WB, and the frequency domain unit is one physical resource block PRB; or
  • the first frequency domain resource is three broadband WBs, and the frequency domain unit is three consecutive physical resource blocks PRB; or
  • the first frequency domain resource is two narrowband NBs, and the frequency domain unit is one physical resource block PRB.
  • the first frequency domain resource is 0.5 narrowband NB
  • the first DCI further includes first indication information, where the first indication information is used to indicate that the first frequency domain resource is in an upper half of an NB or The lower half of the belt.
  • the load size of the first DCI is a load size of the DCI format 6-0A, or the load size of the first DCI is a load size of the DCI format 6-0B.
  • the device 300 of the uplink data feedback information may correspond to (for example, may be configured or be itself) the network device described in the foregoing method 200, and each module or unit in the device 300 for the uplink data feedback is used to perform the foregoing
  • the various operations or processes performed by the network device in the method 200 are omitted here for avoiding redundancy.
  • the device 300 may be a network device.
  • the device 300 may include: a processor, a transmitter and a receiver, a processor, a transmitter, and a receiver, and optionally,
  • the apparatus also includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the receiving unit 310 in the apparatus 300 shown in FIG. 7 can correspond to the receiver, and the processing unit 320 in the apparatus 300 shown in FIG. 7 can correspond to the processor, in the apparatus 300 shown in FIG.
  • the transmitting unit 330 can correspond to the sender.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the apparatus for uplink data feedback provided by the present application, on the one hand, the first frequency domain resource carries uplink data of at least one terminal device, by designing the first frequency domain resource and multiple bit groups in the first DCI Corresponding relationship, that is, the correspondence between the M frequency domain units in the first frequency domain resource and the Q bit groups in the first DCI, so that the Q bit groups correspond to the at least one terminal device, and each The value of the bit group is used to indicate whether the uplink data on the corresponding at least one frequency domain unit is correctly received, that is, the value of each bit group indicates whether the uplink data of the corresponding terminal device is correctly received, such that
  • the feedback information of the uplink data of the at least one terminal device can be carried in one DCI, which effectively saves signaling overhead and improves resources compared to the feedback information of only one terminal device in one DCI in the prior art. Utilization rate
  • the scrambling code of the CRC of the scrambled DCI is determined based on the frequency domain resource, and the relationship between the scrambling code of the CRC and the ID of the terminal device is released, so that the scrambling code of the CRC becomes a common resource, and thus, the network device is caused.
  • the terminal device can directly determine the scrambling code of the corresponding CRC based on the system or protocol specification, further reducing the signaling overhead;
  • each bit group include one bit and Q equal to M, that is, M bits are in one-to-one correspondence with the M frequency domain units, one bit corresponding to one frequency domain unit, and the minimum number of bits can be used to represent
  • the reception of uplink data on each frequency domain unit carried in the first frequency domain resource saves the number of bits compared to the case where multiple bits in one bit group correspond to one frequency domain unit, compared to one bit
  • the case where a plurality of bits in a group correspond to a plurality of frequency domain units improves transmission efficiency, and generally improves flexibility in data transmission.
  • FIG. 8 shows a schematic block diagram of an apparatus 500 for uplink data feedback in accordance with an embodiment of the present application.
  • the apparatus 400 includes:
  • the sending unit 410 is configured to send, by using at least part of the resources on the first frequency domain resource, the first uplink data, where the first frequency domain resource includes M frequency domain units, where the M is an integer greater than or equal to 1;
  • the receiving unit 420 is configured to receive first downlink control information DCI, where the first DCI includes feedback information of Q bit groups, each bit group includes at least one bit, and the Q bit groups correspond to the M frequency domain units.
  • the value of each bit group is used to indicate whether the network device correctly receives uplink data that is carried on the corresponding at least one frequency domain unit, where the uplink data includes the first uplink data, where the Q is greater than or equal to 1.
  • the processing unit 430 is configured to determine, according to the first DCI, whether the first uplink data is correctly received.
  • the first frequency domain resource carries uplink data of at least one terminal device, and the correspondence between the first frequency domain resource and multiple bit groups in the first DCI is designed. That is, the correspondence between the M frequency domain units in the first frequency domain resource and the Q bit groups in the first DCI may be such that the Q bit groups correspond to the at least one terminal device, each bit group The value is used to indicate whether the uplink data on the corresponding at least one frequency domain unit is correctly received, that is, the value of each bit group indicates whether the uplink data of the corresponding terminal device is correctly received, thus, in a DCI
  • the feedback information of the uplink data of the at least one terminal device may be carried. Compared with the feedback information of only one terminal device in one DCI in the prior art, the signaling overhead is effectively saved and the resource utilization is improved.
  • the Q is determined according to the first frequency domain resource and the frequency domain unit.
  • processing unit 430 is specifically configured to:
  • the receiving unit 420 is specifically configured to:
  • the apparatus for uplink data feedback determines the scrambling code of the CRC of the scrambled DCI based on the frequency domain resource, and cancels the relationship between the scrambling code of the CRC and the ID of the terminal device, so that the scrambling code of the CRC becomes a kind of The public resource, in turn, enables the network device and the terminal device to directly determine the scrambling code of the corresponding CRC based on the system or protocol specification, further reducing the signaling overhead.
  • processing unit 430 is specifically configured to:
  • the Q is equal to the M, where each bit group includes a bit, and the value of each bit group is used to indicate whether the network device correctly receives uplink data carried on a corresponding one of the frequency domain units. .
  • each bit group include one bit and Q equal to M, that is, M bits are in one-to-one correspondence with the M frequency domain units, one bit corresponding to one frequency domain unit, the first bit number can be used to represent the first
  • the reception of uplink data on each frequency domain unit carried in the frequency domain resource saves the number of bits compared to the case where multiple bits in one bit group correspond to one frequency domain unit, compared to one bit group
  • the multiple bits correspond to multiple frequency domain units, which improves transmission efficiency and, in general, improves flexibility in data transmission.
  • the first DCI further includes power control information, where the power control information is used to indicate a transmit power of the first retransmitted data, where the first retransmitted data is data that is not correctly received by the network device in the uplink data. Retransmit data.
  • the first DCI further includes retransmission times information, where the retransmission times information is used to indicate the number of retransmissions of the first retransmission data, where the first retransmission data is not correct in the uplink data.
  • Retransmitted data of received data is used to indicate the number of retransmissions of the first retransmission data, where the first retransmission data is not correct in the uplink data.
  • the first frequency domain resource is 1 narrowband NB, and the frequency domain unit is 3 consecutive subcarriers; or
  • the first frequency domain resource is 0.5 narrowband NB, and the frequency domain unit is 3 consecutive subcarriers; or
  • the first frequency domain resource is one broadband WB, and the frequency domain unit is one physical resource block PRB; or
  • the first frequency domain unit is three broadband WBs, and the frequency domain resource is three consecutive physical resource blocks PRB; or
  • the first frequency domain resource is two narrowband NBs, and the frequency domain unit is one physical resource block PRB.
  • the first frequency domain resource is 0.5 narrowband NB
  • the first DCI further includes first indication information, where the first indication information is used to indicate that the first frequency domain resource is in an upper half of an NB or The lower half of the belt.
  • the load size of the first DCI is a load size of the DCI format 6-0A, or the load size of the first DCI is a load size of the DCI format 6-0B.
  • the device 400 of the uplink data feedback information may correspond to (for example, may be configured or itself) the terminal device described in the foregoing method 200, and each module or unit in the device 400 for the uplink data feedback is used to perform the foregoing In the method 200, each action or process performed by the terminal device is omitted here, in order to avoid redundancy.
  • the device 400 may be a network device.
  • the device 400 may include: a processor, a transmitter and a receiver, a processor, a transmitter, and a receiver, and optionally,
  • the apparatus also includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the transmitting unit 410 in the apparatus 400 shown in FIG. 8 can correspond to the transmitter, and the receiving unit 420 in the apparatus 400 shown in FIG. 8 can correspond to the receiver, in the apparatus 400 shown in FIG.
  • Processing unit 430 can correspond to a processor.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the apparatus for uplink data feedback provided by the present application, on the one hand, the first frequency domain resource carries uplink data of at least one terminal device, by designing the first frequency domain resource and multiple bit groups in the first DCI Corresponding relationship, that is, the correspondence between the M frequency domain units in the first frequency domain resource and the Q bit groups in the first DCI, so that the Q bit groups correspond to the at least one terminal device, and each The value of the bit group is used to indicate whether the uplink data on the corresponding at least one frequency domain unit is correctly received, that is, the value of each bit group indicates whether the uplink data of the corresponding terminal device is correctly received, such that
  • the feedback information of the uplink data of the at least one terminal device can be carried in one DCI, which effectively saves signaling overhead and improves resources compared to the feedback information of only one terminal device in one DCI in the prior art. Utilization rate
  • the scrambling code of the CRC of the scrambled DCI is determined based on the frequency domain resource, and the relationship between the scrambling code of the CRC and the ID of the terminal device is released, so that the scrambling code of the CRC becomes a common resource, and thus, the network device is caused.
  • the terminal device can directly determine the scrambling code of the corresponding CRC based on the system or protocol specification, further reducing the signaling overhead;
  • each bit group include one bit and Q equal to M, that is, M bits are in one-to-one correspondence with the M frequency domain units, one bit corresponding to one frequency domain unit, and the minimum number of bits can be used to represent
  • the reception of uplink data on each frequency domain unit carried in the first frequency domain resource saves the number of bits compared to the case where multiple bits in one bit group correspond to one frequency domain unit, compared to one bit
  • the case where a plurality of bits in a group correspond to a plurality of frequency domain units improves transmission efficiency, and generally improves flexibility in data transmission.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory.
  • the processor reads the information in the memory and combines its hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种上行数据反馈的方法和装置,该方法包括:网络设备接收承载在第一频域资源上的上行数据,该第一频域资源包括M个频域单元,该M为大于或等于1的整数;该网络设备确定第一下行控制信息DCI,该第一DCI包括Q个比特组的反馈信息,每个比特组包括至少一个比特,该Q个比特组与该M个频域单元对应,该每个比特组的取值用于指示该网络设备针对承载于对应的至少一个频域单元上的上行数据是否正确接收,该Q为大于或等于1的整数;该网络设备发送该第一DCI。因此,有效地节省了信令开销,提高了资源利用率。

Description

一种上行数据反馈的方法和装置 技术领域
本申请涉及通信领域,更具体地,涉及通信领域中的一种上行数据反馈的方法和装置。
背景技术
现有的LTE系统可以支持机器类型通信(Machine Type Communication,MTC),应用于MTC的终端设备的接收带宽小于系统带宽,由于物理下行控制信道(Physical Downlink Control Channel,PDCCH)占用的频带宽度可以是整个系统带宽,使得应用于MTC的终端设备可能无法接收承载在PDCCH中的下行控制信息(Downlink Control Information,DCI),因此,为了使得应用于MTC的终端设备能够正确接收DCI,通过机器类型通信的物理下行控制信道(MTC Physical Downlink Control Channel,MPDCCH)承载DCI。
现有的传输机制中,网络设备可向终端设备发送反馈信息,该反馈信息承载于DCI中,该反馈信息用于指示网络设备针对上行数据是否正确接收。但是,每一个MPDCCH承载的DCI中包括的反馈信息仅仅是针对一个终端设备的反馈信息,也就是说,一个DCI中的反馈信息只能针对一个终端设备发送的上行数据的接收情况进行反馈。当网络设备需要针对多个终端设备发送的上行数据进行反馈时,需要发送多个DCI,占用较多的MPDCCH资源,使得资源开销较大。尤其是在系统能够支持较小的频域单元(例如,以3个资源粒子(Resource Element,RE)对应的带宽)传输上行数据的情况下,在相同时段、相同的带宽内可以服务的终端设备数量将会增加,若需要对每一个终端设备的上行传输都进行反馈,则对于MPDCCH资源的开销更为明显。
因此,需要提供一种技术,能够减少资源的开销,提高资源利用率。
发明内容
本申请提供一种上行数据反馈的方法和装置,能够减少资源的开销,提高资源利用率。
第一方面,提供了一种上行数据反馈的方法,该方法包括:
网络设备接收承载在第一频域资源上的上行数据,所述第一频域资源包括M个频域单元,所述M为大于或等于1的整数;
所述网络设备确定第一下行控制信息DCI,所述第一DCI包括Q个比特组的反馈信息,每个比特组包括至少一个比特,所述Q个比特组与所述M个频域单元对应,所述每个比特组的取值用于指示所述网络设备针对承载于对应的至少一个频域单元上的上行数据是否正确接收,所述Q为大于或等于1的整数;
所述网络设备发送所述第一DCI。
因而,本申请提供的上行数据反馈的方法,第一频域资源承载的是至少一个终端设备的上行数据,通过设计该第一频域资源与第一DCI中多个比特组之间的对应关系,即,该 第一频域资源中的M个频域单元与该第一DCI中的Q个比特组的对应关系,可以使得该Q个比特组与该至少一个终端设备对应,每个比特组的取值用于指示对应的至少一个频域单元上的上行数据是否被正确接收,也就是使得每个比特组的取值指示对应的终端设备的上行数据是否被正确接收,这样,在一个DCI中可以承载针对至少一个终端设备的上行数据的反馈信息,相比于现有技术的一个DCI中仅承载一个终端设备的反馈信息而言,有效地节省了信令开销,提高了资源利用率。
结合第一方面,在第一方面的某些实现方式中,所述Q是根据所述第一频域资源和所述频域单元确定的。
结合第一方面,在第一方面的某些实现方式中,所述网络设备发送所述第一DCI,包括:
所述网络设备根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码;
所述网络设备采用所述CRC的扰码,对所述CRC加扰;
所述网络设备发送加扰后的所述第一DCI。
因而,本申请提供的上行数据反馈的方法,基于频域资源确定加扰DCI的CRC的扰码,解除了CRC的扰码与终端设备的ID之间的关系,使得CRC的扰码成为一种公共资源,进而,使得网络设备与终端设备可以基于系统或协议规定直接确定对应的CRC的扰码,进一步减少了信令开销。
结合第一方面,在第一方面的某些实现方式中,所述网络设备根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码,包括:
所述网络设备根据所述第一频域资源的索引,确定所述CRC的扰码。
结合第一方面,在第一方面的某些实现方式中,所述Q与所述M相等,所述每个比特组包括一个比特,所述每个比特组的取值用于指示所述网络设备针对承载于对应的一个频域单元上的上行数据是否正确接收。
因此,通过使得每个比特组包括一个比特以及Q等于M,即,M个比特与该M个频域单元一一对应,一个比特对应一个频域单元,可以使用最小的比特数来表示第一频域资源中承载的每个频域单元上的上行数据的接收情况,相比于一个比特组中的多个比特对应一个频域单元的情况,节省了比特数,相比于一个比特组中的多个比特对应多个频域单元的情况,提高了传输效率,总体上来说,提高了数据传输过程中的灵活性。
结合第一方面,在第一方面的某些实现方式中,所述第一DCI还包括功率控制信息,所述功率控制信息用于指示第一重传数据的发射功率,所述第一重传数据为所述上行数据中未被所述网络设备正确接收的数据的重传数据。
结合第一方面,在第一方面的某些实现方式中,所述第一DCI还包括重传次数信息,所述重传次数信息用于指示第一重传数据的重传次数,所述第一重传数据为所述上行数据中未被所述网络设备正确接收的数据的重传数据。
结合第一方面,在第一方面的某些实现方式中,所述第一频域资源为1个窄带NB,所述频域单元为3个连续的子载波;或,
所述第一频域资源为0.5个窄带NB,所述频域单元为3个连续的子载波;或,
所述第一频域资源为1个宽带WB,所述频域单元为1个物理资源块PRB;或,
所述第一频域资源为3个宽带WB,所述频域单元为3个连续的物理资源块PRB;或,
所述第一频域资源为2个窄带NB,所述频域单元为1个物理资源块PRB。
结合第一方面,在第一方面的某些实现方式中,所述第一频域资源为0.5个窄带NB,所述第一DCI还包括第一指示信息,所述第一指示信息用于指示所述第一频域资源在一个NB中的上半边带或下半边带。
结合第一方面,在第一方面的某些实现方式中,所述第一DCI的载荷大小为DCI格式6-0A的载荷大小,或,所述第一DCI的载荷大小为DCI格式6-0B的载荷大小。
第二方面,提供了一种上行数据反馈的方法,该方法包括:
终端设备在第一频域资源上的至少部分资源上发送第一上行数据,所述第一频域资源包括M个频域单元,所述M为大于或等于1的整数;
所述终端设备接收第一下行控制信息DCI,所述第一DCI包括Q个比特组的反馈信息,每个比特组包括至少一个比特,所述Q个比特组与所述M个频域单元对应,所述每个比特组的取值用于指示所述网络设备针对承载于对应的至少一个频域单元上的上行数据是否正确接收,所述上行数据包括所述第一上行数据,所述Q为大于或等于1的整数;
所述终端设备根据所述第一DCI,确定所述第一上行数据是否被正确接收。
因而,本申请的上行数据反馈的方法,第一频域资源承载的是至少一个终端设备的上行数据,通过设计该第一频域资源与第一DCI中多个比特组之间的对应关系,即,该第一频域资源中的M个频域单元与该第一DCI中的Q个比特组的对应关系,可以使得该Q个比特组与该至少一个终端设备对应,每个比特组的取值用于指示对应的至少一个频域单元上的上行数据是否被正确接收,也就是使得每个比特组的取值指示对应的终端设备的上行数据是否被正确接收,这样,在一个DCI中可以承载针对至少一个终端设备的上行数据的反馈信息,相比于现有技术的一个DCI中仅承载一个终端设备的反馈信息而言,有效地节省了信令开销,提高了资源利用率。
结合第二方面,在第二方面的某些实现方式中,所述Q是根据所述第一频域资源和所述频域单元确定的。
结合第二方面,在第二方面的某些实现方式中,所述终端设备接收第一下行控制信息DCI,包括:
所述终端设备根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码;
所述终端设备采用所述CRC的扰码对所述CRC进行解扰,以获取所述第一DCI。
因而,本申请提供的上行数据反馈的方法,基于频域资源确定加扰DCI的CRC的扰码,解除了CRC的扰码与终端设备的ID之间的关系,使得CRC的扰码成为一种公共资源,进而,使得网络设备与终端设备可以基于系统或协议规定直接确定对应的CRC的扰码,进一步减少了信令开销。
结合第二方面,在第二方面的某些实现方式中,所述终端设备根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码,包括:
所述网络设备根据所述第一频域资源的索引,确定所述CRC的扰码。
结合第二方面,在第二方面的某些实现方式中,所述Q与所述M相等,所述每个比特组包括一个比特,所述每个比特组的取值用于指示所述网络设备针对承载于对应的一个 频域单元上的上行数据是否正确接收。
因此,通过使得每个比特组包括一个比特以及Q等于M,即,M个比特与该M个频域单元一一对应,一个比特对应一个频域单元,可以使用最小的比特数来表示第一频域资源中承载的每个频域单元上的上行数据的接收情况,相比于一个比特组中的多个比特对应一个频域单元的情况,节省了比特数,相比于一个比特组中的多个比特对应多个频域单元的情况,提高了传输效率,总体上来说,提高了数据传输过程中的灵活性。
结合第二方面,在第二方面的某些实现方式中,所述第一DCI还包括功率控制信息,所述功率控制信息用于指示第一重传数据的发射功率,所述第一重传数据为所述上行数据中未被所述网络设备正确接收的数据的重传数据。
结合第二方面,在第二方面的某些实现方式中,所述第一DCI还包括重传次数信息,所述重传次数信息用于指示第一重传数据的重传次数,所述第一重传数据为所述上行数据中未被所述网络设备正确接收的数据的重传数据。
结合第二方面,在第二方面的某些实现方式中,其特征在于,
所述第一频域资源为1个窄带NB,所述频域单元为3个连续的子载波;或,
所述第一频域资源为0.5个窄带NB,所述频域单元为3个连续的子载波;或,
所述第一频域资源为1个宽带WB,所述频域单元为1个物理资源块PRB;或,
所述第一频域单元为3个宽带WB,所述频域资源为3个连续的物理资源块PRB;或,
所述第一频域资源为2个窄带NB,所述频域单元为1个物理资源块PRB。
结合第二方面,在第二方面的某些实现方式中,所述第一频域资源为0.5个窄带NB,所述第一DCI还包括第一指示信息,所述第一指示信息用于指示所述第一频域资源在一个NB中的上半边带或下半边带。
结合第二方面,在第二方面的某些实现方式中,所述第一DCI的载荷大小为DCI格式6-0A的载荷大小,或,所述第一DCI的载荷大小为DCI格式6-0B的载荷大小。
第三方面,提供了一种上行数据反馈的装置,该装置可以用来执行第一方面及第一方面的任意可能的实现方式中的网络设备的操作。具体地,该装置可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的网络设备的操作的模块单元。
第四方面,提供了一种上行数据反馈的装置,该装置可以用来用于执行第二方面及第二方面的任意可能的实现方式中的终端设备的操作。具体地,该装置可以包括用于执行第二方面及第二方面的任意可能的实现方式中的终端设备的操作的模块单元。
第五方面,提供了一种网络设备,该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该网络设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该网络设备实现第三方面提供的装置。
第六方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第四方面提供的装置。
第七方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面至第二方面中的任一方面及其实施方式中的方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备(例如,网络设备或终端设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面至第二方面中的任一方面及其实施方式中的方法。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得通信设备(例如,网络设备或终端设备)执行上述第一方面至第二方面中的任一方面及其实施方式中的方法。
附图说明
图1是应用于本申请实施例的上行数据反馈的通信系统的示意图。
图2是本申请实施例中的NB、WB、RE和PRB之间的关系的示意图
图3是本申请实施例的上行数据反馈的方法的示意性交互图。
图4是本申请实施例中的第一DCI中的反馈信息的比特的取值与承载在第一频域资源上的上行数据的接收情况之间的关系的示意图。
图5是本申请另一实施例中的第一DCI中的反馈信息的比特的取值与承载在第一频域资源上的上行数据的接收情况之间的关系的示意图。
图6是本申请实施例中的第一DCI中的反馈信息的比特与承载上行数据的3个WB之间的关系的示意图。
图7是本申请实施例的上行数据反馈的装置300的示意性框图。
图8是本申请实施例的上行数据反馈的装置400的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的 其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Station,BS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是应用于本申请实施例的上行数据反馈的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置 和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。
具体而言,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(Public Land Mobile Network,PLMN)网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
下面,结合图2,对本申请实施例中涉及的窄带(Narrow Band,NB)、宽带(Wide Band,WB)、RE和物理资源块(Physical resource block,PRB)之间的关系进行说明。
图2所示为本申请实施例中的NB、WB、RE和PRB之间的关系的示意图。
如图2所示,NB和WB为频域资源,1个WB等于4个NB,记为,WB=4NB,1个NB为6个PRB的频域范围,(为了便于区分与理解,记为NB=6PRB的频域范围),1PRB=12RE,当以3个RE的频域范围为频域上的基本单位(记为,频域单元)时,1个PRB的频域范围对应4个频域上的基本单位(为了便于区分与理解,记为PRB频域范围=4个频域单元),1个NB对应24个频域单元(为了便于区分与理解,记为NB=24个频域单元)。
需要说明的是,此处描述的PRB、RE的频域范围也可以理解为PRB、RE对应的带宽,需要注意的是,此处以及下文描述的频域范围表示的仅仅是一个频域范围所指示的长度概念;此外,在描述频域关系或频域范围时,PRB也可以理解为PRB对应的频域范围或PRB对应的带宽。
还需要说明的是,1个RE的频域范围也可以理解为1个子载波,因此,下文中描述的“RE的频域范围”与描述的“1个子载波”表示的是相同的含义。
本申请可以应用于LTE系统中的MTC场景中,所谓的MTC,就是指通过部署具有一定感知、计算、执行和通信能力的各种设备,获取物理世界的信息,通过网络实现信息传输、协同和处理,从而实现人与物、物与物之间的互联,在智能家居、电子健康以及智能电网等领域得到的广泛应用。
其中,应用于MTC场景中的终端设备具有低功耗、对时延要求不敏感、小数据传输等特性,具体分为两种:降低复杂度的UE(Bandwidth-reduced Low-complexity UE,BL UE)或覆盖增强的UE(Coverage Enhancement UE,CE UE)。BL/CE UE可工作在覆盖增强模式A(Coverage Enhancement Mode A,CE Mode A)或者覆盖增强模式B(Coverage Enhancement Mode B,CE Mode B)下,在任何一种模式下,其最大可支持的发送及接收带宽是1.4MHz,包含一个窄带(Narrow Band,NB)。
在LTE Rel-14版本的LTE中,在CE Mode A中,BL/CE UE的下行数据传输最高可以支持的传输带宽为20MHz,包含4个宽带(Wide Band,WB),每个WB在频率上包含4个NB,也即共含96个PRB的频域范围;BL/CE UE的上行数据传输最高可以支持的传输带宽为5MHz,包含1个WB,也即24个PRB的频域范围。
在LTE Rel-14版本的LTE中,在CE Mode B下,BL/CE UE的上下行数据传输最高仅支持1个NB内的数据的发送和接收。
而在Rel-15的LTE中,对于BL/CE UE的上行传输,可以通过较小资源粒子进行上 下行传输,例如,在频域上,能够进行上下行传输的基本单位可以是3个连续的子载波对应的频域范围。
作为示例而非限定,本申请实施例也可以应用于其他通信中,例如,授权自由通信(Grant free communication,GFC)。本申请并不限于此。
下面,结合图3至图6详细描述本申请实施例中的上行数据反馈的方法。图3是根据本申请实施例的上行数据反馈的方法的示意性交互图。
可选地,该网络设备可以为基站。
本申请实施例可以应用于包括网络设备和至少一个终端设备的通信系统中,以下,不失一般性,以网络设备和该至少一个终端设备中的终端设备#A(即,终端设备的一例)的交互为例,详细说明根据本申请实施例的上行数据反馈的方法。如图3所示,
在步骤S210中,终端设备#A在频域资源#A(即,第一频域资源的一例)上的至少部分资源上发送上行数据#A(即,第一上行数据的一例),该频域资源#A包括M个频域单元,该M个频域单元为大于或等于1的整数。
具体而言,该频域资源#A包括至少一个频域单元,频域单元即为用于传输数据的基本单元。该终端设备传输上行数据时,通过该频域资源#A中的至少一个频域单元(即,该频域资源#A中的至少部分资源)发送该上行数据#A。
从而,在步骤210中,该网络设备接收该上行数据#A。
此外,若是有多个终端设备需要传输数据,该频域资源#A不仅承载该上行数据#A,也承载其他终端设备发送的数据,其中,该终端设备#A发送的上行数据#A与其他终端设备的数据即为承载在该频域资源#A上有的上行数据。也就是说,该网络设备接收的是承载在该频域资源#A上的上行数据。
在步骤S220中,该网络设备确定DCI#A(即,第一DCI的一例),该DCI#A包括Q个比特组,每个比特组包括至少一个比特,该Q个比特组与该M个频域单元对应,每个比特组的取值用于指示该网络设备针对承载于对应的至少一个频域单元上的上行数据是否正确接收,该Q为大于或等于1的整数。
具体而言,该网络设备接收承载在该频域资源#A上的上行数据过程中,针对每个终端设备发送的上行数据的接收情况,都会通过反馈信息反馈给终端设备。以终端设备#A为例,若是未正确接收该终端设备#A发送的上行数据#A,则通过反馈信息指示该上行数据#A未被正确接收,若是正确接收该终端设备#A发送的上行数据#A,则通过反馈信息指示该上行数据#A被正确接收。
在本申请实施例中,针对该频域资源#A上的所有的上行数据的反馈信息承载在DCI#A中,该DCI#A中包括Q个比特组,该Q个比特组与该频域资源#A中的M个频域单元存在对应关系,即,每个比特组对应至少一个频域单元。
在一种可选的实施例中,每个比特组对应一个频域单元,每个比特组的取值用于指示该网络设备针对承载在一个频域单元上的上行数据是否正确接收。
此外,当该终端设备#A在一个频域单元上承载上行数据时,必然地,对应的一个比特组的比特的取值都是相同的。例如,若该网络设备针对该终端设备#A发送的该上行数据#A正确接收,则对应的1个比特组中的每个比特的取值都为“1”,若该网络设备针对上行数据#A未正确接收,则对应的一个比特组中的每个比特的取值都为“0”。
需要说明的是,当该终端设备#A的上行数据#A承载于多个频域单元上时,若是该网络设备针对承载在该多个频域单元上的该上行数据#A未正确接收,则可以理解为该网络设备针对承载在该多个频域单元中每个频域单元上的上行数据都未正确接收,那么,对应该多个频域单元的多个比特组的取值都是相同的。
实际上,以终端设备#A的上行数据#A承载在多个频域单元上来说,该网络设备调度终端设备#A时,在一次上行传输调度中仅会调度该终端设备#A的一个混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程,因此在相同的时间单元内,如一个子帧内,终端设备#A在多个频域单元上传输时也仅会传输同一个HARQ进程的传输块;该网络设备解调的时候,是针对整个传输块解调的,当终端设备#A在多个频域单元上传输数据时,相当于多个频域单元上承载的数据是对应的一个传输块,解调的时候是对于一个传输块解调的。网络设备反馈上行数据正确接收与否时,是根据传输块是否正确接收进行反馈的,因此,在相同的时间单元内,网络设备对来自终端设备#A在各频域单元中的反馈的比特取值是相同的,对应的是相同的一个传输块。
在另一种可选的实施例中,每个比特组对应多个频域单元,每个比特组的取值用于指示该网络设备针对承载于对应的多个频域单元上的上行数据是否正确接收。该终端设备#A在传输数据时,需要在一个比特组对应的多个频域单元中的至少部分频域单元上发送数据,或者说,需要在与一个比特组绑定的频域单元中的至少部分频域单元上发送数据。
此外,当该终端设备#A的上行数据#A承载于多个频域单元(该多个频域单元对应一个比特组)上时,若是该网络设备针对承载在该多个频域单元上的该上行数据#A正确接收,那么对应的一个比特组中的每个比特的取值都是一样的,表示对应的频域单元上的数据都被正确接收,若是该网络设备针对承载在该多个频域单元上的该上行数据#A未正确接收,则可以理解为该网络设备针对承载在该多个频域单元中每个频域单元上的上行数据都未正确接收,那么对应的一个比特组中的每个比特的取值也都是一样的,表示对应的频域单元上的数据都被正确接收。
例如,该终端设备#A的上行数据#A承载在多个频域单元上,若该网络设备针对该上行数据#A正确接收,则对应的一个比特组中的每个比特的取值都为“1”,若该网络设备针对上行数据#A未正确接收,则对应的一个比特组中的每个比特的取值都为“0”。
所以,在本申请实施例中,每个比特组包括的至少一个比特的取值都是相同的。
作为示例而非限定,任意两个比特组中包括的比特的个数可以相同,也可以不同,本申请实施例并不限于此。
综上所述,换句话说,在本申请实施例中,针对上行数据的接收情况进行反馈的反馈信息中的比特与承载上行数据的频域单元是对应的,并且,每个比特组的取值表示的是对应的频域单元上的上行数据的接收情况。
作为示例而非限定,以1个比特组对应1个频域单元,1个比特组中包括2个比特为例,结合图4详细说明本申请实施例中的反馈信息的比特的取值与第一频域资源上承载的上行数据的接收情况的关系。
图4所示为本申请实施例中的第一DCI中的反馈信息的比特的取值与承载在第一频域资源上的上行数据的接收情况之间的关系的示意图。
如图4所示,该频域资源#A包括8个频域单元,分别为频域单元#0至频域单元#7, 对应地,该DCI#A中的反馈信息包括8个比特组,分别为比特组#0至比特组#7,记为b#0至b#7,每个比特组中包括3个比特。终端设备#A的上行数据#A承载在频域单元#1和频域单元#2上,终端设备#B的上行数据#B承载在频域单元#0:该网络设备针对该上行数据#A未正确接收,则对应的比特组#1和比特组#2中的比特的取值都为“000”,表示未正确接收;该网络设备针对该终端设备#B的上行数据#B正确接收,则对应的比特组#0的取值为“111”,表示正确接收。
作为示例而非限定,在本申请实施例中,每个比特组的取值用于指示该网络设备针对承载在对应的频域单元上的上行数据是否正确接收,可以有两种指示方式:
第一种指示方式,
此种指示方式中,可以是直接通过比特的取值来指示上行数据是否被正确接收。例如,若是该终端设备#A的上行数据#A未被正确接收,比特的取值为“0”,直接表示上行数据未被正确接收;若是该上行数据#A被正确接收,比特的取值为“1”,直接表示上行数据被正确接收。此种指示方式,可以类似于现有技术中的肯定应答(Acknowledgment,ACK)信息或否定应答(Negative Acknowledgment,NACK)信息的指示方式,具体实现方式此处不再赘述。
第二种指示方式
此种指示方式中,可以是间接通过比特的取值来指示上行数据是否被正确接收,具体而言,在针对该终端设备#A连续的两次上行传输中,将承载两次上行数据的频域单元对应的比特的取值进行比较,若是相同,则表示当前传输的上行数据未被正确接收,若是相异,则表示当前传输的上行数据被正确接收。
例如,第一次上行传输的上行数据对应的比特的取值为“0”:若第二次上行传输的上行数据对应的比特的取值为“1”,两次上行传输对应的比特的取值不相同,则表示第二次上行传输的上行数据被正确接收,下次上行传输可以传输新数据;若第二次上行传输的上行数据对应的比特的取值为“0”,两次上行传输对应的比特的取值相同,则表示第二次上行传输的上行数据未被正确接收,下次上行传输需要进行数据的重传。
进而,在步骤S230中,该网络设备将确定好的DCI#A发送给包括该终端设备#A在内的至少一个终端设备。
可以理解,该DCI#A中承载了针对至少一个终端设备的反馈信息,对于该至少一个终端设备来说,该网络设备生成一个公共的DCI#A,向该至少一个终端设备中的每个终端设备发送该DCI#A,每个终端设备都会接收该DCI#A。
在步骤S240中,该终端设备#A根据该DCI#A,确定该上行数据#A是否被正确接收。
具体而言,该终端设备#A在接收到该DCI#A后,对该DCI#A进行相关处理,获得该DCI#A,从该DCI#A中的反馈信息中的Q个比特组中确定与承载该上行数据#A的频域单元对应的比特的取值,从而确定该上行数据#A是否被正确接收。
应理解,该频域资源#A中的M个频域单元与该DCI#A中的Q个比特组之间的对应关系可以是系统或者协议预先规定的,也可以是该网络设备通过信令通知该终端设备#A的,本申请实施例并不做限定。
现有技术中,一个DCI中只能针对一个终端设备的上行数据是否正确接收进行反馈,若是需要对多个终端设备的上行数据的接收情况进行反馈时,该网络设备需要发送多个 DCI,尤其是在能够支持3个RE的通信(例如,MTC)中,在相同时段以及相同带宽的情况下,可以服务较多数量的终端设备,若需要对每一个终端设备的上行传输都进行反馈,对于下行资源的开销明显增加。
因而,本申请的上行数据反馈的方法,第一频域资源承载的是至少一个终端设备的上行数据,通过设计该第一频域资源与第一DCI中多个比特组之间的对应关系,即,该第一频域资源中的M个频域单元与该第一DCI中的Q个比特组的对应关系,可以使得该Q个比特组与该至少一个终端设备对应,每个比特组的取值用于指示对应的至少一个频域单元上的上行数据是否被正确接收,也就是使得每个比特组的取值指示对应的终端设备的上行数据是否被正确接收,这样,在一个DCI中可以承载针对至少一个终端设备的上行数据的反馈信息,相比于现有技术的一个DCI中仅承载一个终端设备的反馈信息而言,有效地节省了信令开销,提高了资源利用率。
从另一个角度来讲,一个DCI中包括的校验信息就需要占用16个比特,现有技术中发送多个DCI的话,多个DCI中的校验信息占用的资源也较多,本申请可以将多个终端设备的反馈信息承载在一个DCI中,减少了校验信息占用的比特,也能节省信令开销。
可选地,该Q与所述M相等,该每个比特组包括一个比特,该每个比特组的取值用于指示该网络设备针对承载于对应的一个频域单元上的上行数据是否正确接收。
换句话说,该Q个比特组即为M个比特组,每个比特组包括一个比特,即,该反馈信息包括M个比特,该M个比特与该M个频域单元一一对应,每个比特的取值用于指示对应的一个频域单元上的上行数据是否被正确接收。
图5所示为本申请另一实施例中的第一DCI中的反馈信息的比特的取值与承载在第一频域资源上的上行数据的接收情况之间的关系的示意图。
如图5所示,该频域资源#A包括24个频域单元,该DCI#A中的反馈信息包括24个比特,记为b#0至b#23,每个比特对应一个频域单元。其中,终端设备#A的上行数据#A承载在频域单元#1和频域单元#2上,终端设备#B的上行数据#B承载在频域单元#0,网络设备针对该上行数据#A未正确接收,则对应的第2个比特(即,b#1)和第3个比特(即,b#2)的取值都为“0”,表示未正确接收;该网络设备针对该终端设备#B的上行数据#B正确接收,则对应的第1个比特的取值为“1”,表示正确接收。
因此,通过使得每个比特组包括一个比特以及Q等于M,即,M个比特与该M个频域单元一一对应,一个比特对应一个频域单元,可以使用最小的比特数来表示第一频域资源中承载的每个频域单元上的上行数据的接收情况,相比于一个比特组中的多个比特对应一个频域单元的情况,节省了比特数,相比于一个比特组中的多个比特对应多个频域单元的情况,提高了传输效率,总体上来说,提高了数据传输过程中的灵活性。
可选地,该Q是根据该第一频域资源和该频域单元确定的。
也就是说,Q的取值与该频域资源#A和频域单元相关,或者说,Q的取值与该频域资源#A的频域范围和频域单元的频域范围相关。
作为示例而非限定,Q的取值可以为该频域资源#A的频域范围与每个频域单元的频域范围的比值。
例如,1个NB的频域范围为72个子载波(或者说,72个RE的频域范围),频域单元的频域范围为3个RE的频域范围,那么,Q的取值为72/4=24,即该DCI#A中有24 个比特组。
可选地,该第一频域资源为1个窄带NB,该频域单元的为3个子载波;或,
该频域资源为0.5个窄带NB,该频域单元为3个连续的子载波;或,
该第一频域资源为1个宽带WB,该频域单元为1个物理资源块PRB;或,
该第一频域资源为3个宽带WB,该频域单元为3个物理资源块PRB;或,
该第一频域资源为2个窄带NB,该频域单元为1个物理资源块PRB。
需要说明的是,此处描述的频域单元与PRB的关系表示的是频域单元与PRB的频域范围的关系。例如,“该频域单元为1个物理资源块PRB”表示的是“该频域单元为1个物理资源块PRB的频域范围”。
在本申请实施例中,该频域资源#A与频域单元可以有各种组合,可以基于传输的实际情况确定。
该频域资源#A可以是1个NB,该频域资源#A中的频域单元为3个子载波,记为频域资源#A1,此种情况下,Q=24;
该频域资源#A可以是0.5个NB,该频域资源#A中的频域单元的为3个连续的子载波,记为频域资源#A2,此种情况下,Q=12,其中,需要说明的是,0.5个NB是1个NB的上半个NB或者下半个NB;
该频域资源#A可以是1个WB,该频域资源#A中的频域单元为1个PRB的频域范围,记为频域资源#A3,此种情况下,Q=24;
该频域资源#A可以是3个WB,该频域资源#A中的频域单元为3个PRB的频域范围,记为频域资源#A4,此种情况下,Q=24;
该频域资源#A可以是2个NB,该频域资源#A中的频域单元为1个PRB的频域范围,记为频域资源#A5,此种情况下,Q=12。
LTE系统中,最大带宽下,可能有4个WB;在这种情况下,一个DCI最大只能支持3个WB,因此需要指示该DCI#A对应的哪3个WB(或者说,1组WB),有两种指示方式:
一种可选的指示方式是系统预定义两种类型的DCI,每种DCI对应一组WB。例如,第一种DCI指示WB#0,WB#1,WB#2,第二种DCI指示WB#1,WB#2,WB#3。
另一种可选的指示方式是系统不预定义DCI对应的WB,通过CRC扰码与WB之间的映射关系来区分DCI对应的WB。在这种情况下,CRC扰码的低4位组成一个比特映射,例如,用“1”表示该DCI#A所对应的WB包含某WB,低4位为1011,则表示该DCI#A对应WB#0,WB2,WB#3。
下面,结合图6描述DCI中的反馈信息的比特与多个WB之间的关系。
图6所示为本申请实施例中的第一DCI中的反馈信息的比特与承载上行数据的3个WB之间的关系的示意图。如图6所示,该DCI#A对应3个WB,频域单元为3个子载波,每8个比特组对应一个WB,其中,b#0~b#7对应WB#0,b#8~b#15对应WB#2,b#16~b#23对应WB#3。此外,该DCI#A指示WB的指示方式可以是上述两种指示方式中的任意一种。
可选地,所述第一频域资源为0.5个窄带NB,所述第一DCI还包括第一指示信息,所述第一指示信息用于指示所述第一频域资源在一个NB中的上半边带或下半边带。
也就是说,该第一指示信息用于指示所述第一频域资源在一个NB中的位置:当该频域资源#A为0.5个NB时,该终端设备#A需要知道0.5个NB是1个NB中的哪部分频带范围(即,0.5个NB在1个NB中的位置),因而,通过该DCI#A中的第一指示信息来指示0.5个NB在1个NB中的位置。
一般情况下,0.5个NB是1个NB中的上半边带的NB或下半边带的NB。
作为示例而非限定,当该频域资源#A为P个NB时,该P为大于0且小于1的数,该第一指示信息同样也会指示该频域资源#A在一个NB中的位置。
可选地,该第一DCI还包括功率控制信息,该功率控制信息用于指示第一重传数据的发射功率,该第一重传数据为该上行数据中未被该网络设备正确接收的数据的重传数据。
也就是说,该DCI#A中不仅包括该反馈信息,还包括该功率控制信息,该功率控制信息可以包括1~2个比特。该功率控制信息是针对所有终端设备而言的,也就是说,当存在终端设备的上行数据未被正确接收时,都可以通过该功率控制信息确定下次重传数据时所使用的功率。
该功率控制信息的指示方法有两种,一种表示功率的调整值,一种表示功率的绝对值。
在第一种指示方式中,例如,该功率控制信息包括2个比特,比特的取值为00,表示累积功率调整-1dB,比特的取值为01,表示累积功率调整-0dB,比特的取值为10,表示累积功率调整1dB,比特的取值为11,表示累积功率调整3dB。
在第二种指示方式中,例如,该功率控制信息包括2个比特,比特的取值为00,表示绝对功率-4dB,比特的取值为01,表示绝对功率-1dB,比特的取值为10,表示绝对功率1dB,比特的取值为11,表示绝对功率4dB。
可选地,该第一DCI还包括重传次数信息,该重传次数信息用于指示第一重传数据的重传次数,该第一重传数据为该上行数据中未被该网络设备正确接收的数据的重传数据。
同理,该DCI#A中不仅包括该反馈信息,还包括该重传次数信息,该重传次数信息可以包括2~3个比特。重复次数信息的指示方法可复用现有标准中的方法,如配置其最大重复次数为32时,该重复次数信息包括2个比特,比特的取值为00,表示重复次数为1,比特的取值为01,表示重复次数为4,比特的取值为10,表示重复次数为16,比特的取值为11,表示重复次数为32。
该DCI#A中可以包括该重传次数信息与该功率控制信息的任一个信息,可以两种信息都包括,本申请实施例并不限于此。
需要说明的是,若该DCI#A中还存在剩余比特,那么,可以将剩余比特全部置0(或全部置1)。这样可以作为校验位用,也即若终端设备解调发现剩余比特不为全0(或全1),则知道网络设备针对上行数据解码有误。
可选地,该第一DCI的载荷大小为DCI格式6-0A的载荷大小,或,所述第一DCI的载荷大小为DCI格式6-0B的载荷大小。
其中,DCI的载荷大小表示的是DCI的比特的个数,即,该DCI#A中的比特的个数为DCI格式6-0A或DCI格式6-0B的比特的个数。
应理解,该DCI#A不仅包括该反馈信息,也可以包括其他信息,因此,该反馈信息载荷大小小于或等于该DCI#A中的载荷大小。
因而,可以通过根据频域资源#A与多种频域单元的组合确定的Q属于DCI格式6-0A 的比特的个数或DCI格式6-0B的比特的个数,这样,可以使得该DCI#A的载荷大小与现有标准中的DCI格式相同,进而使得终端设备在盲检时不需要盲检不同载荷大小的DCI,降低了盲检的开销。
如前所述,在MTC场景中,终端设备可以工作在CE Mode A或CE Mode B中,其中,CE Mode A对应的DCI格式为DCI格式6-0A(DCI format 6-0A),DCI格式6-0A的比特的个数较多,为27~35个比特,因此,当1个比特组包括1个比特时,频域资源#A2和频域资源#A5可以适用于DCI格式6-0A;CE Mode B对应的DCI格式为DCI格式6-0B(DCI format 6-0B),DCI格式6-0B的比特的个数较少,为15~19个比特,因此,当1个比特组包括1个比特时,频域资源#A2和频域资源#A5可以适用于DCI格式6-0B。
可选地,该网络设备发送该第一DCI,包括:
该网络设备根据该第一频域资源,确定该第一DCI的循环冗余校验CRC的扰码;
该网络设备采用该CRC的扰码,对该CRC加扰;
该网络设备发送加扰后的该第一DCI。
具体而言,系统的频域资源与CRC的扰码之间存在映射关系,多个频域资源对应多个CRC的扰码,该映射关系可以是系统或协议规定好的,也可以是网络设备或终端设备通过相关信令(例如,高层信令或物理层信令)获知该映射关系,从而,可以使得终端设备使用对应的CRC的扰码来解扰DCI中的CRC,从而获取DCI。
应理解,CRC为DCI中的校验比特,对CRC加扰,可以理解为对DCI加扰,因此,下文描述的关于“使用CRC的扰码对DCI加扰”与“使用CRC的扰码对CRC加扰”的含义可以理解为相同的。
当该网络设备接收承载在该频域资源#A上的上行数据后,在发送该DCI#A之前,根据该频域资源#A,从该映射关系中确定与该频域资源#A对应的CRC的扰码(为了便于区分与理解,记为扰码#A),从而,使用该扰码#A对该DCI#A中的CRC进行加扰,发送加扰后的该DCI#A。
相对应地,对于该终端设备#A来说,该终端设备#A根据该频域资源#A,从该映射关系中确定该扰码#A,从而,使用该扰码#A对该DCI#A中CRC进行解扰,从而获得该DCI#A。
下面,对本申请实施例中的通过CRC的扰码加扰CRC的过程做一简单说明。
该DCI#A中包括该反馈信息在内的有效信息比特为a0,a1,a2,a3,...,aA-1,该DCI#A的校验比特(即,扰码#A)为p0,p1,p2,p3,...,pL-1,其中,A是有效信息比特的个数,L是校验比特的个数,通常L=16。将该DCI#A的有效信息比特和校验比特进行连接,得到比特b0,b1,b2,b3,...,bB-1,其中,B=A+L。
对校验比特进行加扰,得到比特c0,c1,c2,c3,...,cB-1。其中,比特cK和bK的关系为:
ck=bk,k=0,1,2,…,A-1
ck=(bk+xNB,k-A)mod 2,k=A,A+1,A+2,...,A+15
其中,xNB,0,xNB,1,...,xNB,15即为CRC扰码的扰码比特。
通过扰码#A的扰码比特与该DCI#A中的校验比特进行相关运算,生成加扰后的DCI#A。
现有技术中,一个DCI中承载的是针对一个终端设备的相关信息,CRC的扰码是与 终端设备的ID相关,终端设备可以基于自己的ID获得与自己对应的DCI。而在本申请中,由于一个DCI中承载的是针对至少一个终端设备的反馈信息,即一个DCI对应至少一个终端设备,若是基于终端设备的ID加扰DCI的CRC的话,对于任一个终端设备来说,都需要获知与DCI对应的至少一个终端设备的其他终端设备的ID后,才能解扰DCI,大大降低了实现过程中的灵活性,此外,一般情况下,都会通过发送信令的方式获知其他终端设备的ID,也增加了信令的开销。
因而,本申请的上行数据反馈的方法,基于频域资源确定加扰DCI的CRC的扰码,解除了CRC的扰码与终端设备的ID之间的关系,使得CRC的扰码成为一种公共资源,进而,使得网络设备与终端设备可以基于系统或协议规定直接确定对应的CRC的扰码,进一步减少了信令开销。
可选地,该网络设备根据该第一频域资源,确定该第一DCI的循环冗余校验CRC的扰码,包括:
该网络设备根据该第一频域资源的索引,确定该CRC的扰码。
换句话说,该网络设备可以基于频域资源的索引,确定CRC的扰码。
在一种可选的实现方式中,通过频域资源#A确定对应的索引,从索引与CRC的扰码的映射关系中直接确定对应的CRC的扰码。此种情况下,多个频域资源与多个CRC的扰码之间的映射关系可以通过索引来实现。每个频域资源可以对应一个索引,每个索引对应一个CRC的扰码,即,多个频域资源对应多个索引,多个索引对应多个CRC的扰码。其中,每个索引用于指示对应的频域资源的位置以及所占用的频域范围。
例如,该频域资源#A对应的索引为15,索引比特(为了便于区分与理解,记为索引比特#A)为1111,直接从索引与CRC的扰码的映射关系中确定与索引15对应的扰码#A,在索引与CRC的扰码的映射关系中,索引15(或者说,索引比特#A)对应的扰码#A的扰码比特(为了便于区分与理解,记为扰码比特#A)为0000 0000 1111 1111,即xNB,0,xNB,1,...,xNB,15为0000 0000 1111 1111。进而,采用扰码比特#A对校验比特加扰,生成加扰后的DCI#A。
在另一种可选的实现方式中,通过频域资源#A确定对应的索引,基于索引通过某种规则生成对应的扰码#A。此种情况下,多个频域资源对应多个索引,每个索引用于指示对应的频域资源的位置以及所占用的频域范围。
此种规则可以是,依次重复索引比特生成扰码比特。
例如,该频域资源#A对应的索引为15,索引比特#A为1111,依次重复索引比特#A的4个比特上的取值,生成扰码比特#A为1111 1111 1111 1111;
再例如,该频域资源#A对应的索引为1,索引比特#A为0001,依次重复索引比特#A的4个比特上的取值,生成扰码比特#A为0001 0001 0001 0001。
或者,此种规则可以是,将索引比特作为扰码比特的低位比特的取值,其余比特的取值全部为“0”或全部为“1”。
例如,该频域资源#A对应的索引为15,索引比特#A为1111,扰码比特#A的低位比特的取值为1111,其余比特的取值都为“0”,则最后生成的扰码比特#A为0000 0000 00001111。
作为示例而非限定,不仅可以基于该频域资源#A的索引生成该扰码#A,也可以基于 其他方式生成该扰码#A,本申请实施例并不限于此。
例如,基于该频域资源#A的索引和该频域资源#A中的频域单元共同确定该扰码#A。将扰码比特#A划分为两个字段,第一个字段中的比特的取值基于频域单元(或者说,频域单元的频域范围)确定,第二个字段中的比特的取值基于该频域资源#A的索引确定。
更具体而言,扰码比特#A的个数为16位,第一个字段有12个比特,第二个字段有4个比特:例如,频域单元为3个子载波,该频域资源#A对应的索引为15,那么,第一个字段中的12个比特的取值都为1,第二个字段中的取值即为索引15所表示的索引比特,扰码比特#A即为1111 1111 1111 1111;再例如,频域单元为3个连续的子载波,该频域资源#A对应的索引为1,那么,第一个字段中的12个比特的取值都为1,第二个字段中的取值即为索引1所表示的索引比特,扰码比特#A即为1111 1111 1111 0001;再例如,频域单元的带宽为1个PRB的频域范围,该频域资源#A对应的索引为1,那么,第一个字段中的12个比特的取值都为0,第二个字段中的取值即为索引1所表示的索引比特,扰码比特#A即为0000 0000 0000 0001。
因此,本申请提供的上行数据反馈的方法,一方面,第一频域资源承载的是至少一个终端设备的上行数据,通过设计该第一频域资源与第一DCI中多个比特组之间的对应关系,即,该第一频域资源中的M个频域单元与该第一DCI中的Q个比特组的对应关系,可以使得该Q个比特组与该至少一个终端设备对应,每个比特组的取值用于指示对应的至少一个频域单元上的上行数据是否被正确接收,也就是使得每个比特组的取值指示对应的终端设备的上行数据是否被正确接收,这样,在一个DCI中可以承载针对至少一个终端设备的上行数据的反馈信息,相比于现有技术的一个DCI中仅承载一个终端设备的反馈信息而言,有效地节省了信令开销,提高了资源利用率;
另一方面,基于频域资源确定加扰DCI的CRC的扰码,解除了CRC的扰码与终端设备的ID之间的关系,使得CRC的扰码成为一种公共资源,进而,使得网络设备与终端设备可以基于系统或协议规定直接确定对应的CRC的扰码,进一步减少了信令开销;
再一方面,通过使得每个比特组包括一个比特以及Q等于M,即,M个比特与该M个频域单元一一对应,一个比特对应一个频域单元,可以使用最小的比特数来表示第一频域资源中承载的每个频域单元上的上行数据的接收情况,相比于一个比特组中的多个比特对应一个频域单元的情况,节省了比特数,相比于一个比特组中的多个比特对应多个频域单元的情况,提高了传输效率,总体上来说,提高了数据传输过程中的灵活性。
以上,结合图1至图6详细描述了根据本申请实施例的上行数据反馈的方法,下面,结合图7至图8描述根据本申请实施例的上行数据反馈的装置,方法实施例所描述的技术特征同样适用于以下装置实施例。
图7示出了根据本申请实施例的上行数据反馈的装置300的示意性框图。如图7所示,该装置300包括:
接收单元310,用于接收承载在第一频域资源上的上行数据,该第一频域资源包括M个频域单元,该M为大于或等于1的整数;
处理单元320,用于确定第一下行控制信息DCI,该第一DCI包括Q个比特组的反馈信息,每个比特组包括至少一个比特,该Q个比特组与该M个频域单元对应,该每个比特组的取值用于指示该网络设备针对承载于对应的至少一个频域单元上的上行数据是否 正确接收,该Q为大于或等于1的整数;
发送单元330,用于发送该第一DCI。
因而,本申请提供的上行数据反馈的装置,第一频域资源承载的是至少一个终端设备的上行数据,通过设计该第一频域资源与第一DCI中多个比特组之间的对应关系,即,该第一频域资源中的M个频域单元与该第一DCI中的Q个比特组的对应关系,可以使得该Q个比特组与该至少一个终端设备对应,每个比特组的取值用于指示对应的至少一个频域单元上的上行数据是否被正确接收,也就是使得每个比特组的取值指示对应的终端设备的上行数据是否被正确接收,这样,在一个DCI中可以承载针对至少一个终端设备的上行数据的反馈信息,相比于现有技术的一个DCI中仅承载一个终端设备的反馈信息而言,有效地节省了信令开销,提高了资源利用率。
可选地,该Q是根据该第一频域资源和该频域单元确定的。
可选地,该处理单元320具体用于:
根据该第一频域资源,确定该第一DCI的循环冗余校验CRC的扰码;
采用该CRC的扰码,对该CRC加扰;
发送加扰后的该第一DCI。
因而,本申请提供的上行数据反馈的装置,基于频域资源确定加扰DCI的CRC的扰码,解除了CRC的扰码与终端设备的ID之间的关系,使得CRC的扰码成为一种公共资源,进而,使得网络设备与终端设备可以基于系统或协议规定直接确定对应的CRC的扰码,进一步减少了信令开销。
可选地,该处理单元320具体用于:
根据该第一频域资源的索引,确定该CRC的扰码。
可选地,该Q与该M相等,该每个比特组包括一个比特,该每个比特组的取值用于指示该网络设备针对承载于对应的一个频域单元上的上行数据是否正确接收。
因此,通过使得每个比特组包括一个比特以及Q等于M,即,M个比特与该M个频域单元一一对应,一个比特对应一个频域单元,可以使用最小的比特数来表示第一频域资源中承载的每个频域单元上的上行数据的接收情况,相比于一个比特组中的多个比特对应一个频域单元的情况,节省了比特数,相比于一个比特组中的多个比特对应多个频域单元的情况,提高了传输效率,总体上来说,提高了数据传输过程中的灵活性。
可选地,该第一DCI还包括功率控制信息,该功率控制信息用于指示第一重传数据的发射功率,该第一重传数据为该上行数据中未被该网络设备正确接收的数据的重传数据。
可选地,该第一DCI还包括重传次数信息,该重传次数信息用于指示第一重传数据的重传次数,该第一重传数据为该上行数据中未被该网络设备正确接收的数据的重传数据。
可选地,该第一频域资源为1个窄带NB,该频域单元为3个连续的子载波;或,
该第一频域资源为0.5个窄带NB,该频域单元为3个连续的子载波;或,
该第一频域资源为1个宽带WB,该频域单元为1个物理资源块PRB;或,
该第一频域资源为3个宽带WB,该频域单元为3个连续的物理资源块PRB;或,
该第一频域资源为2个窄带NB,该频域单元为1个物理资源块PRB。
可选地,该第一频域资源为0.5个窄带NB,该第一DCI还包括第一指示信息,该第一指示信息用于指示该第一频域资源在一个NB中的上半边带或下半边带。
可选地,该第一DCI的载荷大小为DCI格式6-0A的载荷大小,或,该第一DCI的载荷大小为DCI格式6-0B的载荷大小。
该上行数据反馈息的装置300可以对应(例如,可以配置于或本身即为)上述方法200中描述的网络设备,并且,该上行数据反馈息的装置300中各模块或单元分别用于执行上述方法200中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置300可以为网络设备,此种情况下,该装置300可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图7所示的装置300中的接收单元310可以对应该接收器,图7所示的装置300中的处理单元320可以对应该处理器,图7所示的装置300中的发送单元330可以对应该发送器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
因此,本申请提供的上行数据反馈的装置,一方面,第一频域资源承载的是至少一个终端设备的上行数据,通过设计该第一频域资源与第一DCI中多个比特组之间的对应关系,即,该第一频域资源中的M个频域单元与该第一DCI中的Q个比特组的对应关系,可以使得该Q个比特组与该至少一个终端设备对应,每个比特组的取值用于指示对应的至少一个频域单元上的上行数据是否被正确接收,也就是使得每个比特组的取值指示对应的终端设备的上行数据是否被正确接收,这样,在一个DCI中可以承载针对至少一个终端设备的上行数据的反馈信息,相比于现有技术的一个DCI中仅承载一个终端设备的反馈信息而言,有效地节省了信令开销,提高了资源利用率;
另一方面,基于频域资源确定加扰DCI的CRC的扰码,解除了CRC的扰码与终端设备的ID之间的关系,使得CRC的扰码成为一种公共资源,进而,使得网络设备与终端设备可以基于系统或协议规定直接确定对应的CRC的扰码,进一步减少了信令开销;
再一方面,通过使得每个比特组包括一个比特以及Q等于M,即,M个比特与该M个频域单元一一对应,一个比特对应一个频域单元,可以使用最小的比特数来表示第一频域资源中承载的每个频域单元上的上行数据的接收情况,相比于一个比特组中的多个比特对应一个频域单元的情况,节省了比特数,相比于一个比特组中的多个比特对应多个频域单元的情况,提高了传输效率,总体上来说,提高了数据传输过程中的灵活性。
图8示出了根据本申请实施例的上行数据反馈的装置500的示意性框图。如图8所示,该装置400包括:
发送单元410,用于在第一频域资源上的至少部分资源上发送第一上行数据,该第一频域资源包括M个频域单元,该M为大于或等于1的整数;
接收单元420,用于接收第一下行控制信息DCI,该第一DCI包括Q个比特组的反馈信息,每个比特组包括至少一个比特,该Q个比特组与该M个频域单元对应,该每个比特组的取值用于指示该网络设备针对承载于对应的至少一个频域单元上的上行数据是否正确接收,该上行数据包括该第一上行数据,该Q为大于或等于1的整数;
处理单元430,用于根据该第一DCI,确定该第一上行数据是否被正确接收。
因而,本申请提供的上行数据反馈的装置,第一频域资源承载的是至少一个终端设备的上行数据,通过设计该第一频域资源与第一DCI中多个比特组之间的对应关系,即,该第一频域资源中的M个频域单元与该第一DCI中的Q个比特组的对应关系,可以使得该Q个比特组与该至少一个终端设备对应,每个比特组的取值用于指示对应的至少一个频域单元上的上行数据是否被正确接收,也就是使得每个比特组的取值指示对应的终端设备的上行数据是否被正确接收,这样,在一个DCI中可以承载针对至少一个终端设备的上行数据的反馈信息,相比于现有技术的一个DCI中仅承载一个终端设备的反馈信息而言,有效地节省了信令开销,提高了资源利用率。
可选地,该Q是根据该第一频域资源和该频域单元确定的。
可选地,该处理单元430具体用于:
根据该第一频域资源,确定该第一DCI的循环冗余校验CRC的扰码;
该接收单元420具体用于:
采用该CRC的扰码对该CRC进行解扰,以获取该第一DCI
因而,本申请提供的上行数据反馈的装置,基于频域资源确定加扰DCI的CRC的扰码,解除了CRC的扰码与终端设备的ID之间的关系,使得CRC的扰码成为一种公共资源,进而,使得网络设备与终端设备可以基于系统或协议规定直接确定对应的CRC的扰码,进一步减少了信令开销。
可选地,该处理单元430具体用于:
根据该第一频域资源的索引,确定该CRC的扰码。
可选地,该Q与该M相等,该每个比特组包括一个比特,该每个比特组的取值用于指示该网络设备针对承载于对应的一个频域单元上的上行数据是否正确接收。
因此,通过使得每个比特组包括一个比特以及Q等于M,即,M个比特与该M个频域单元一一对应,一个比特对应一个频域单元,可以使用最小的比特数来表示第一频域资源中承载的每个频域单元上的上行数据的接收情况,相比于一个比特组中的多个比特对应一个频域单元的情况,节省了比特数,相比于一个比特组中的多个比特对应多个频域单元的情况,提高了传输效率,总体上来说,提高了数据传输过程中的灵活性。
可选地,该第一DCI还包括功率控制信息,该功率控制信息用于指示第一重传数据的发射功率,该第一重传数据为该上行数据中未被该网络设备正确接收的数据的重传数据。
可选地,该第一DCI还包括重传次数信息,该重传次数信息用于指示第一重传数据的重传次数,该第一重传数据为该上行数据中未被该网络设备正确接收的数据的重传数据。
可选地,该第一频域资源为1个窄带NB,该频域单元为3个连续的子载波;或,
该第一频域资源为0.5个窄带NB,该频域单元为3个连续的子载波;或,
该第一频域资源为1个宽带WB,该频域单元为1个物理资源块PRB;或,
该第一频域单元为3个宽带WB,该频域资源为3个连续的物理资源块PRB;或,
该第一频域资源为2个窄带NB,该频域单元为1个物理资源块PRB。
可选地,该第一频域资源为0.5个窄带NB,该第一DCI还包括第一指示信息,该第一指示信息用于指示该第一频域资源在一个NB中的上半边带或下半边带。
可选地,该第一DCI的载荷大小为DCI格式6-0A的载荷大小,或,该第一DCI的载荷大小为DCI格式6-0B的载荷大小。
该上行数据反馈息的装置400可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备,并且,该上行数据反馈息的装置400中各模块或单元分别用于执行上述方法200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置400可以为网络设备,此种情况下,该装置400可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图8所示的装置400中的发送单元410可以对应该发送器,图8所示的装置400中的接收单元420可以对应该接收器,图8所示的装置400中的处理单元430可以对应该处理器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
因此,本申请提供的上行数据反馈的装置,一方面,第一频域资源承载的是至少一个终端设备的上行数据,通过设计该第一频域资源与第一DCI中多个比特组之间的对应关系,即,该第一频域资源中的M个频域单元与该第一DCI中的Q个比特组的对应关系,可以使得该Q个比特组与该至少一个终端设备对应,每个比特组的取值用于指示对应的至少一个频域单元上的上行数据是否被正确接收,也就是使得每个比特组的取值指示对应的终端设备的上行数据是否被正确接收,这样,在一个DCI中可以承载针对至少一个终端设备的上行数据的反馈信息,相比于现有技术的一个DCI中仅承载一个终端设备的反馈信息而言,有效地节省了信令开销,提高了资源利用率;
另一方面,基于频域资源确定加扰DCI的CRC的扰码,解除了CRC的扰码与终端设备的ID之间的关系,使得CRC的扰码成为一种公共资源,进而,使得网络设备与终端设备可以基于系统或协议规定直接确定对应的CRC的扰码,进一步减少了信令开销;
再一方面,通过使得每个比特组包括一个比特以及Q等于M,即,M个比特与该M个频域单元一一对应,一个比特对应一个频域单元,可以使用最小的比特数来表示第一频域资源中承载的每个频域单元上的上行数据的接收情况,相比于一个比特组中的多个比特对应一个频域单元的情况,节省了比特数,相比于一个比特组中的多个比特对应多个频域单元的情况,提高了传输效率,总体上来说,提高了数据传输过程中的灵活性。
应注意,本申请实施例上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器, 处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种上行数据反馈的方法,其特征在于,所述方法包括:
    网络设备接收承载在第一频域资源上的上行数据,所述第一频域资源包括M个频域单元,所述M为大于或等于1的整数;
    所述网络设备确定第一下行控制信息DCI,所述第一DCI包括Q个比特组的反馈信息,每个比特组包括至少一个比特,所述Q个比特组与所述M个频域单元对应,所述每个比特组的取值用于指示所述网络设备针对承载于对应的至少一个频域单元上的上行数据是否正确接收,所述Q为大于或等于1的整数;
    所述网络设备发送所述第一DCI。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备发送所述第一DCI,包括:
    所述网络设备根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码;
    所述网络设备采用所述CRC的扰码,对所述CRC加扰;
    所述网络设备发送加扰后的所述第一DCI。
  3. 根据权利要求2所述的方法,其特征在于,所述网络设备根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码,包括:
    所述网络设备根据所述第一频域资源的索引,确定所述CRC的扰码。
  4. 一种上行数据反馈的方法,其特征在于,所述方法包括:
    终端设备在第一频域资源上的至少部分资源上发送第一上行数据,所述第一频域资源包括M个频域单元,所述M为大于或等于1的整数;
    所述终端设备接收第一下行控制信息DCI,所述第一DCI包括Q个比特组的反馈信息,每个比特组包括至少一个比特,所述Q个比特组与所述M个频域单元对应,所述每个比特组的取值用于指示所述网络设备针对承载于对应的至少一个频域单元上的上行数据是否正确接收,所述上行数据包括所述第一上行数据,所述Q为大于或等于1的整数;
    所述终端设备根据所述第一DCI,确定所述第一上行数据是否被正确接收。
  5. 根据权利4所述的方法,其特征在于,所述终端设备接收第一下行控制信息DCI,包括:
    所述终端设备根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码;
    所述终端设备采用所述CRC的扰码对所述CRC进行解扰,以获取所述第一DCI。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码,包括:
    所述网络设备根据所述第一频域资源的索引,确定所述CRC的扰码。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述Q是根据所述第一频域资源和所述频域单元确定的。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述Q与所述M相等, 所述每个比特组包括一个比特,所述每个比特组的取值用于指示所述网络设备针对承载于对应的一个频域单元上的上行数据是否正确接收。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一DCI还包括功率控制信息,所述功率控制信息用于指示第一重传数据的发射功率,所述第一重传数据为所述上行数据中未被所述网络设备正确接收的数据的重传数据。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一DCI还包括重传次数信息,所述重传次数信息用于指示第一重传数据的重传次数,所述第一重传数据为所述上行数据中未被所述网络设备正确接收的数据的重传数据。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一频域资源为1个窄带NB,所述频域单元为3个连续的子载波;或,
    所述第一频域资源为0.5个窄带NB,所述频域单元为3个连续的子载波;或,
    所述第一频域资源为1个宽带WB,所述频域单元为1个物理资源块PRB;或,
    所述第一频域资源为3个宽带WB,所述频域单元为3个连续的物理资源块PRB;或,
    所述第一频域资源为2个窄带NB,所述频域单元为1个物理资源块PRB。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一频域资源为0.5个窄带NB,所述第一DCI还包括第一指示信息,所述第一指示信息用于指示所述第一频域资源在一个NB中的上半边带或下半边带。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一DCI的载荷大小为DCI格式6-0A的载荷大小,或,所述第一DCI的载荷大小为DCI格式6-0B的载荷大小。
  14. 一种上行数据反馈的装置,其特征在于,所述装置包括:
    接收单元,用于接收承载在第一频域资源上的上行数据,所述第一频域资源包括M个频域单元,所述M为大于或等于1的整数;
    处理单元,用于确定第一下行控制信息DCI,所述第一DCI包括Q个比特组的反馈信息,每个比特组包括至少一个比特,所述Q个比特组与所述M个频域单元对应,所述每个比特组的取值用于指示所述网络设备针对承载于对应的至少一个频域单元上的上行数据是否正确接收,所述Q为大于或等于1的整数;
    发送单元,用于发送所述第一DCI。
  15. 根据权利要求14所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码;
    采用所述CRC的扰码,对所述CRC加扰;
    发送加扰后的所述第一DCI。
  16. 根据权利要求15所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一频域资源的索引,确定所述CRC的扰码。
  17. 一种上行数据反馈的装置,其特征在于,所述装置包括:
    发送单元,用于在第一频域资源上的至少部分资源上发送第一上行数据,所述第一频域资源包括M个频域单元,所述M为大于或等于1的整数;
    接收单元,用于接收第一下行控制信息DCI,所述第一DCI包括Q个比特组的反馈信息,每个比特组包括至少一个比特,所述Q个比特组与所述M个频域单元对应,所述 每个比特组的取值用于指示所述网络设备针对承载于对应的至少一个频域单元上的上行数据是否正确接收,所述上行数据包括所述第一上行数据,所述Q为大于或等于1的整数;
    处理单元,用于根据所述第一DCI,确定所述第一上行数据是否被正确接收。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一频域资源,确定所述第一DCI的循环冗余校验CRC的扰码;
    所述接收单元具体用于:
    采用所述CRC的扰码对所述CRC进行解扰,以获取所述第一DCI。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一频域资源的索引,确定所述CRC的扰码。
  20. 根据权利要求14至19中任一项所述的装置,其特征在于,所述Q是根据所述第一频域资源和所述频域单元确定的。
  21. 根据权利要求14至20中任一项所述的装置,其特征在于,所述Q与所述M相等,所述每个比特组包括一个比特,所述每个比特组的取值用于指示所述网络设备针对承载于对应的一个频域单元上的上行数据是否正确接收。
  22. 根据权利要求14至21中任一项所述的装置,其特征在于,所述第一DCI还包括功率控制信息,所述功率控制信息用于指示第一重传数据的发射功率,所述第一重传数据为所述上行数据中未被所述网络设备正确接收的数据的重传数据。
  23. 根据权利要求14至22中任一项所述的装置,其特征在于,所述第一DCI还包括重传次数信息,所述重传次数信息用于指示第一重传数据的重传次数,所述第一重传数据为所述上行数据中未被所述网络设备正确接收的数据的重传数据。
  24. 根据权利要求14至23中任一项所述的装置,其特征在于,
    所述第一频域资源为1个窄带NB,所述频域单元为3个连续的子载波;或,
    所述第一频域资源为0.5个窄带NB,所述频域单元为3个连续的子载波;或,
    所述第一频域资源为1个宽带WB,所述频域单元为1个物理资源块PRB;或,
    所述第一频域单元为3个宽带WB,所述频域资源为3个连续的物理资源块PRB;或,
    所述第一频域资源为2个窄带NB,所述频域单元为1个物理资源块PRB。
  25. 根据权利要求14至24中任一项所述的装置,其特征在于,所述第一频域资源为0.5个窄带NB,所述第一DCI还包括第一指示信息,所述第一指示信息用于指示所述第一频域资源在一个NB中的上半边带或下半边带。
  26. 根据权利要求14至25中任一项所述的装置,其特征在于,所述第一DCI的载荷大小为DCI格式6-0A的载荷大小,或,所述第一DCI的载荷大小为DCI格式6-0B的载荷大小。
PCT/CN2017/097273 2017-08-11 2017-08-11 一种上行数据反馈的方法和装置 WO2019028917A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097273 WO2019028917A1 (zh) 2017-08-11 2017-08-11 一种上行数据反馈的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097273 WO2019028917A1 (zh) 2017-08-11 2017-08-11 一种上行数据反馈的方法和装置

Publications (1)

Publication Number Publication Date
WO2019028917A1 true WO2019028917A1 (zh) 2019-02-14

Family

ID=65273141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097273 WO2019028917A1 (zh) 2017-08-11 2017-08-11 一种上行数据反馈的方法和装置

Country Status (1)

Country Link
WO (1) WO2019028917A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585730A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 传输方法和通信装置
CN114902771A (zh) * 2020-02-17 2022-08-12 Oppo广东移动通信有限公司 通信方法及通信装置、用户设备及网络器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634689A (zh) * 2014-11-06 2016-06-01 电信科学技术研究院 一种harq确认信息的反馈方法及装置
WO2016105173A1 (en) * 2014-12-26 2016-06-30 Samsung Electronics Co., Ltd. Method and apparatus for hybrid automatic repeat request transmission
CN106211329A (zh) * 2014-12-23 2016-12-07 中兴通讯股份有限公司 下行信息的发送方法及装置
CN106535335A (zh) * 2015-09-14 2017-03-22 上海无线通信研究中心 一种优化上行harq的下行控制信息实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634689A (zh) * 2014-11-06 2016-06-01 电信科学技术研究院 一种harq确认信息的反馈方法及装置
CN106211329A (zh) * 2014-12-23 2016-12-07 中兴通讯股份有限公司 下行信息的发送方法及装置
WO2016105173A1 (en) * 2014-12-26 2016-06-30 Samsung Electronics Co., Ltd. Method and apparatus for hybrid automatic repeat request transmission
CN106535335A (zh) * 2015-09-14 2017-03-22 上海无线通信研究中心 一种优化上行harq的下行控制信息实现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE ET AL.: "NR HARQ Timing and Feedback Schemes", 3GPP TSG RAN WG1 MEETING #88 , RI-1701593, 17 February 2017 (2017-02-17), XP051208760 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585730A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 传输方法和通信装置
CN114902771A (zh) * 2020-02-17 2022-08-12 Oppo广东移动通信有限公司 通信方法及通信装置、用户设备及网络器件

Similar Documents

Publication Publication Date Title
CN112929981B (zh) 传输反馈信息的方法和计算机可读存储介质
CN107925990B (zh) 传输反馈信息的方法、终端设备和基站
CN111670599B (zh) 控制信息传输方法、网络设备、终端和计算机存储介质
CN110557231A (zh) 传输信息的方法和通信设备
CN111641483B (zh) 一种反馈信息传输方法及装置、通信设备
US20220225316A1 (en) Sidelink control information sending and receiving method, terminal apparatus, and system
US20200067644A1 (en) Data feedback method and related device
WO2018209803A1 (zh) 一种传输信息的方法和装置
JP6703108B2 (ja) 通信方法、端末デバイス及びネットワークデバイス
CN113412595B (zh) 无线通信方法、终端设备和网络设备
CN112166571A (zh) 用于传输反馈信息的方法、终端设备和网络设备
CN110730513B (zh) 一种通信方法及装置
CN112586031A (zh) 无线通信方法和终端
JP2022500893A (ja) 情報伝送方法、端末デバイス及びネットワークデバイス
WO2019028917A1 (zh) 一种上行数据反馈的方法和装置
CN112119595B (zh) 一种信号加扰方法及装置、通信设备
CN112449761B (zh) 一种传输数据的方法和终端设备
CN116455529A (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
JP7453959B2 (ja) 無線通信方法及び通信デバイス
CN109150380B (zh) 数据传输的方法、网络设备和终端设备
CN113557756A (zh) 无线通信的方法、终端设备和网络设备
WO2022009702A1 (en) Multiplexing of harq-ack with different priorities on pucch
CN116114197B (zh) 无线通信的方法、终端设备和网络设备
WO2020143743A1 (zh) 接收数据的方法和装置
WO2020042036A1 (zh) 无线通信方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920738

Country of ref document: EP

Kind code of ref document: A1