WO2021134600A1 - 信号传输的方法及装置 - Google Patents

信号传输的方法及装置 Download PDF

Info

Publication number
WO2021134600A1
WO2021134600A1 PCT/CN2019/130785 CN2019130785W WO2021134600A1 WO 2021134600 A1 WO2021134600 A1 WO 2021134600A1 CN 2019130785 W CN2019130785 W CN 2019130785W WO 2021134600 A1 WO2021134600 A1 WO 2021134600A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot signal
resource
grid
transmission
occupied
Prior art date
Application number
PCT/CN2019/130785
Other languages
English (en)
French (fr)
Inventor
马千里
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/130785 priority Critical patent/WO2021134600A1/zh
Publication of WO2021134600A1 publication Critical patent/WO2021134600A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of wireless communication, and more specifically, to a method and device for signal transmission.
  • Orthogonal time frequency space (OTFS) technology is a two-dimensional modulation technology.
  • a feature of OTFS technology is that signals, such as constellation symbols, can be placed in a resource grid, and the two-dimensional dual Fourier transform is equivalent to the traditional time-frequency domain to form a waveform and transmit it.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • OFDM orthogonal frequency division multiplexing
  • the resource grid is a matrix area, and pilots are placed on the resource grid for channel estimation. Then, when the pilot is placed on the resource grid, how to reduce the impact of Doppler deviation on performance and thereby improve the channel estimation performance is the research focus of this application.
  • the present application provides a method and device for signal transmission, which determine the position of a pilot signal in a resource grid used to embody the time delay-Doppler domain through the related information of the Doppler frequency shift, thereby reducing the Doppler deviation
  • the impact on performance improve the channel estimation performance.
  • a signal transmission method is provided.
  • the method can be executed by the sending end device, or can also be executed by a chip or chip system or circuit configured in the sending end device, which is not limited in this application.
  • the sending end device may be, for example, a terminal device or a network device.
  • the method includes: generating a pilot signal, the starting position of the transmission resource allocated by the pilot signal in the resource grid is (a, b), and the transmission resource occupied by the pilot signal in the resource grid is along the time delay axis direction Continuous; where a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis; b represents the transmission resource occupied by the pilot signal in the resource grid on the Doppler axis The starting grid position of; and a is 0; the pilot signal is sent.
  • the method may include: generating a pilot signal, the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis is a, and the pilot signal occupies the resource grid
  • the starting grid position of the transmission resource on the Doppler axis is b, where a is 0; the pilot signal is sent.
  • the time delay axis and the Doppler axis constitute a two-dimensional coordinate system.
  • the starting position of the transmission resource allocated for the pilot signal in the resource grid is (0, b). It can be understood that the starting position of the transmission resource allocated for the pilot signal in the resource grid is not randomly placed, but how to make the phase error as small as possible is considered to determine the pilot signal is allocated in the resource grid.
  • the starting position of the transmission resource That is to say, when the starting position of the transmission resource allocated for the pilot signal in the resource grid is (0, b), taking into account the minimum phase error, it can not only improve the channel estimation performance, but also improve the signal transmission performance.
  • the value of b can also be flexibly determined according to the actual situation.
  • the transmission resources occupied by the pilot signal in the resource grid are continuous along the delay axis, so that the pilot energy can be evenly dispersed in the delay domain of the entire pilot area, thereby avoiding high-energy pilots.
  • Signal distortion problems caused by frequency improve system performance.
  • the resource grid is a two-dimensional matrix with a length of N*M.
  • the resource grid can be used to characterize the delay-Doppler, for example, the first dimension (ie N) represents the delay Domain, the second dimension (ie M) represents the Doppler domain.
  • a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis, that is to say, a represents the transmission resource occupied by the pilot signal in the resource grid is used to represent the delay The starting position of the grid.
  • b represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the Doppler axis, that is, b represents the transmission resource occupied by the pilot signal in the resource grid is used to represent multiple The starting position of Puller's grid.
  • N and M are integers greater than or equal to 1.
  • b is 0 or Z, where Z is a number greater than zero.
  • the starting position of the transmission resource allocated by the pilot signal in the resource grid is (0, 0)
  • the smallest phase error and the lowest implementation complexity are considered, which can not only improve the channel estimation Performance can also simplify the complexity of channel estimation and improve signal transmission performance.
  • a signal transmission method is provided.
  • the method can be executed by the sending end device, or can also be executed by a chip or chip system or circuit configured in the sending end device, which is not limited in this application.
  • the sending end device may be, for example, a terminal device or a network device.
  • the method may include: generating a pilot signal, the starting position of the transmission resource allocated by the pilot signal in the resource grid is (a, b), and the transmission resource occupied by the pilot signal in the resource grid is along the delay axis The direction is continuous; where a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis; b represents the transmission resource occupied by the pilot signal in the resource grid on the Doppler axis The starting grid position on the above; and a and/or b are determined according to the Doppler frequency shift information; and the pilot signal is sent.
  • the method may include: generating a pilot signal, the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis is a, and the pilot signal occupies the resource grid
  • the starting grid position of the transmission resource on the Doppler axis is b, where a and/or b are determined according to the Doppler frequency shift information; the pilot signal is sent.
  • the starting position of the transmission resource allocated for the pilot signal in the resource grid is determined according to the Doppler shift information. That is to say, the starting position a of the pilot signal on the delay axis and/or the starting position b on the Doppler axis in the resource grid is determined according to the information of the Doppler frequency shift. It can be understood that, in this application, the starting position of the allocated transmission resource of the pilot signal in the resource grid is not randomly placed, but is determined in consideration of the information related to the Doppler shift. By considering the information of Doppler frequency shift to determine the placement position of the pilot signal in the resource grid, it can not only improve the peak-to-average power ratio (PAPR) performance, and reduce the impact of Doppler deviation on the channel.
  • PAPR peak-to-average power ratio
  • the transmission resources occupied by the pilot signal in the resource grid are continuous along the delay axis, so that the pilot energy can be evenly dispersed in the delay domain of the entire pilot area, thereby avoiding high-energy pilots. Signal distortion problems caused by frequency, improve system performance.
  • a is 0 and b is Z, where Z is a number greater than 0; or, both a and b are zero.
  • a 0, that is, the starting position of the transmission resource allocated for the pilot signal in the resource grid is (0, b).
  • the starting position of the transmission resource allocated for the pilot signal in the resource grid is (0, b)
  • the value of b can be flexibly determined according to the actual situation.
  • the starting position of the transmission resource allocated by the pilot signal in the resource grid is (0, 0)
  • the smallest phase error and the lowest implementation complexity are considered, which can not only improve the channel estimation Performance can also simplify the complexity of channel estimation and improve signal transmission performance.
  • the length of the pilot signal is a first preset length, where the first preset length is greater than or equal to the maximum multipath delay.
  • the maximum multipath delay refers to the difference (increment) between the time required for the signal to reach the receiving end through the farthest transmission distance and the time required to reach the receiving end through the minimum transmission distance when the transmitting end and the receiving end are transmitting signals. .
  • the maximum multipath delay is a preset fixed value.
  • the starting position of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is (c, b), and the cyclic prefix of the pilot signal is in the resource grid.
  • the transmission resources occupied in the grid are continuous along the delay axis; where c represents the starting grid position on the delay axis of the transmission resources occupied by the cyclic prefix of the pilot signal in the resource grid.
  • the starting grid position of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid on the delay axis is c
  • the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is The starting grid position on the Doppler axis is b.
  • the guard interval can be used to place the cyclic prefix to construct the cyclic convolution of the pilot area, so as to obtain the equivalent two-dimensional channel impulse response.
  • the cyclic prefix of the pilot signal and the pilot signal are at the same Doppler grid position. In this way, not only can the channel estimation performance be improved, but also the PAPR problem caused by excessive pilot signal energy can be solved.
  • the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is at the last time delay grid position.
  • the length of the cyclic prefix of the pilot signal is a second preset length, where the second preset length is greater than or equal to the maximum multipath delay.
  • the receiving window of each pilot signal does not include inter-symbol interference (ISI) of other symbols.
  • ISI inter-symbol interference
  • the received symbol is the cyclic convolution of the transmitted symbol and the channel, which enables the receiving end to use the frequency domain equalization method to eliminate the channel multipath effect.
  • the end position of the transmission resource occupied by the data in the resource grid is (d, e); where d represents the transmission resource occupied by the data in the resource grid At the end grid position on the delay axis, e represents the end grid position on the Doppler axis of the transmission resource occupied by the data in the resource grid, and c is greater than d.
  • the end grid position of the transmission resource occupied by the data in the resource grid on the delay axis is d
  • the end grid position of the transmission resource occupied by the data in the resource grid on the Doppler axis is e.
  • the transmission resources occupied by the pilot signal in the resource grid and the transmission resources occupied by the data in the resource grid are along the Doppler axis in the resource grid.
  • the interval between is Y, and Y is a number greater than or equal to zero.
  • data can occupy more transmission resources. Compared with randomly placing pilot signals, it can not only reduce phase error and complexity, but also reduce pilot overhead and improve resource utilization.
  • the method further includes: receiving or sending any one or more of the following information: information about the transmission resources occupied by the pilot signal in the resource grid; or, data Information on the transmission resources occupied in the resource grid; or, information on the interval between the transmission resources occupied by the pilot signal in the resource grid and the transmission resources occupied by the data in the resource grid; or, the circulation of the pilot signal The information of the transmission resource occupied by the prefix in the resource grid.
  • the information of the transmission resource may include: the corresponding resource location (such as the start location and/or the end location) or the resource length.
  • the information of the transmission resource may include: a pattern of the resource grid where the transmission resource is located or configuration information corresponding to the pattern.
  • the information about the transmission resources occupied by the pilot signal in the resource grid includes any one or more of the following information: Information about the transmission resources occupied on the delay axis, and information about the transmission resources occupied by the pilot signal on the Doppler axis in the resource grid, a, b.
  • the information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid includes: pilot signal Information about the distance between the data in the resource grid along the Doppler axis, and/or the information about the distance between the pilot signal and data in the resource grid along the time delay axis.
  • a signal transmission method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or chip system or circuit configured in the network device, which is not limited in this application.
  • the method may include: allocating transmission resources in the resource grid for the pilot signal, the starting position of the transmission resource allocated for the pilot signal in the resource grid is (a, b), and the pilot signal is in the resource grid
  • the occupied transmission resources are continuous along the delay axis; where a represents the starting grid position of the transmission resources occupied by the pilot signal in the resource grid on the delay axis; b represents the pilot signal occupying the resource grid The starting grid position of the transmission resource on the Doppler axis; and a is 0; the transmission resource is used to send the pilot signal.
  • the method may include: allocating transmission resources in the resource grid for the pilot signal, the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis is a, and the pilot signal
  • the starting grid position of the transmission resource occupied by the frequency signal in the resource grid on the Doppler axis is b, where a is 0; the transmission resource is used to send the pilot signal.
  • the starting position of the transmission resource allocated for the pilot signal in the resource grid is (0, b). It can be understood that the starting position of the transmission resource allocated for the pilot signal in the resource grid is not randomly placed, but how to make the phase error as small as possible is considered to determine the pilot signal is allocated in the resource grid.
  • the starting position of the transmission resource that is to say, when the starting position of the transmission resource allocated for the pilot signal in the resource grid is (0, b), taking into account the minimum phase error, it can not only improve the channel estimation performance, but also improve the signal transmission performance.
  • the value of b can also be flexibly determined according to the actual situation.
  • the transmission resources occupied by the pilot signal in the resource grid are continuous along the delay axis, so that the pilot energy can be evenly dispersed in the delay domain of the entire pilot area, thereby avoiding high-energy pilots.
  • Signal distortion problems caused by frequency improve system performance.
  • b is 0 or Z, where Z is a number greater than zero.
  • a signal transmission method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or chip system or circuit configured in the network device, which is not limited in this application.
  • the method may include: allocating transmission resources in the resource grid for the pilot signal, the starting position of the transmission resource allocated for the pilot signal in the resource grid is (a, b), and the pilot signal is in the resource grid
  • the occupied transmission resources are continuous along the delay axis; where a represents the starting grid position of the transmission resources occupied by the pilot signal in the resource grid on the delay axis; b represents the pilot signal occupying the resource grid
  • the starting grid position of the transmission resource on the Doppler axis; and a and/or b are determined according to the Doppler frequency shift information; the transmission resource is used to send the pilot signal.
  • the method may include: allocating transmission resources in the resource grid for the pilot signal, the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis is a, and the pilot signal
  • the starting grid position of the transmission resource occupied by the frequency signal in the resource grid on the Doppler axis is b, where a and/or b are determined according to the Doppler shift information; the transmission resource is used to send the pilot signal .
  • the Doppler frequency shift information when allocating transmission resources in the resource grid used to characterize the time delay-Doppler for the pilot signal, the Doppler frequency shift information can be considered.
  • the starting position of the transmission resource allocated for the pilot signal in the resource grid is determined according to the Doppler shift information. That is to say, the starting position a of the pilot signal on the delay axis and/or the starting position b on the Doppler axis in the resource grid is determined according to the information of the Doppler frequency shift. It can be understood that, in this application, the starting position of the allocated transmission resource of the pilot signal in the resource grid is not randomly placed, but is determined in consideration of the information related to the Doppler shift.
  • the information of Doppler frequency shift to determine the placement position of the pilot signal in the resource grid, it can not only improve the peak-to-average power ratio (PAPR) performance, and reduce the impact of Doppler deviation on the channel.
  • PAPR peak-to-average power ratio
  • the transmission resources occupied by the pilot signal in the resource grid are continuous along the delay axis, so that the pilot energy can be evenly dispersed in the delay domain of the entire pilot area, thereby avoiding high-energy pilots. Signal distortion caused by frequency, improve system performance
  • a is 0 and b is Z, where Z is a number greater than 0; or, both a and b are 0.
  • the length of the pilot signal is a first preset length, where the first preset length is greater than or equal to the maximum multipath delay.
  • the cyclic prefix of the pilot signal is allocated transmission resources in the resource grid, and the cyclic prefix of the pilot signal is the start of the transmission resources occupied in the resource grid
  • the position is (c, b), and the transmission resources occupied by the cyclic prefix of the pilot signal in the resource grid are continuous along the delay axis; where c represents the transmission resources occupied by the cyclic prefix of the pilot signal in the resource grid.
  • the transmission resources in the resource grid are allocated for the cyclic prefix of the pilot signal, and the starting grid position on the delay axis of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is c, The starting grid position on the Doppler axis of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is b.
  • the length of the cyclic prefix of the pilot signal is a second preset length, where the second preset length is greater than or equal to the maximum multipath delay.
  • the transmission resource in the resource grid is allocated to the data, and the end position of the transmission resource occupied by the data in the resource grid is (d, e); where, d Represents the end grid position of the transmission resource occupied by the data in the resource grid on the delay axis, e represents the end grid position of the transmission resource occupied by the data in the resource grid on the Doppler axis, and c is greater than d.
  • the transmission resources in the resource grid are allocated for data
  • the end grid position on the delay axis of the transmission resources occupied by the data in the resource grid is d
  • the transmission resources occupied by the data in the resource grid are The end grid position on the Doppler axis is e.
  • the transmission resources occupied by the pilot signal in the resource grid and the transmission resources occupied by the data in the resource grid are along the Doppler axis in the resource grid.
  • the interval between is Y, and Y is a number greater than or equal to zero.
  • the method further includes: sending any one or more of the following information: information about the transmission resources occupied by the pilot signal in the resource grid; or, the data is in the resource Information about the transmission resource occupied in the grid; or, information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid; or, the cyclic prefix of the pilot signal is Information about the transmission resources occupied in the resource grid.
  • the information of the transmission resources occupied by the pilot signal in the resource grid includes any one or more of the following information: Information about the transmission resources occupied on the delay axis, and information about the transmission resources occupied by the pilot signal on the Doppler axis in the resource grid, a, b.
  • the information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid includes: pilot signal Information about the distance between the data in the resource grid along the Doppler axis, and/or the information about the distance between the pilot signal and data in the resource grid along the time delay axis.
  • a signal transmission method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving information about transmission resources in a resource grid allocated for a pilot signal, the starting position of the transmission resource allocated for the pilot signal in the resource grid is (a, b), and the pilot signal is at The transmission resources occupied in the resource grid are continuous along the delay axis; where a represents the starting grid position of the transmission resources occupied by the pilot signal in the resource grid on the delay axis; b represents the pilot signal in the resource grid.
  • the starting grid position of the transmission resource occupied in the grid on the Doppler axis; and a is 0; the transmission resource is used to send the pilot signal.
  • the method may include: receiving information about transmission resources in the resource grid allocated for the pilot signal, and the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis Is a, the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the Doppler axis is b, where a is 0; the transmission resource is used to send the pilot signal.
  • b is 0 or Z, where Z is a number greater than zero.
  • a signal transmission method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving information about transmission resources in a resource grid allocated for a pilot signal, the starting position of the transmission resource allocated for the pilot signal in the resource grid is (a, b), and the pilot signal is at
  • the transmission resources occupied in the resource grid are continuous along the delay axis; where a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis; b represents the pilot signal in the resource grid.
  • the starting grid position of the transmission resource occupied in the grid on the Doppler axis; and a and/or b are determined according to the Doppler frequency shift information; the transmission resource is used to send the pilot signal.
  • the method may include: receiving information about transmission resources in the resource grid allocated for the pilot signal, and the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis Is a, the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the Doppler axis is b, where a and/or b are determined according to the Doppler shift information; use the transmission resource Send pilot signals.
  • a is 0 and b is Z, where Z is a number greater than 0; or, both a and b are 0.
  • the length of the pilot signal is a first preset length, where the first preset length is greater than or equal to the maximum multipath delay.
  • information about transmission resources in the resource grid allocated for the cyclic prefix of the pilot signal is received, and the transmission occupied by the cyclic prefix of the pilot signal in the resource grid is received
  • the starting position of the resource is (c, b), and the transmission resources occupied by the cyclic prefix of the pilot signal in the resource grid are continuous along the delay axis; where c indicates that the cyclic prefix of the pilot signal occupies in the resource grid
  • the information of the transmission resource in the resource grid allocated for the cyclic prefix of the pilot signal is received, and the starting grid position of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid on the delay axis Is c, the starting grid position of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid on the Doppler axis is b.
  • the length of the cyclic prefix of the pilot signal is a second preset length, where the second preset length is greater than or equal to the maximum multipath delay.
  • the information of the transmission resource in the resource grid allocated for data is received, and the end position of the transmission resource occupied by the data in the resource grid is (d, e) ; Where d represents the end grid position of the transmission resource occupied by the data in the resource grid on the delay axis, e represents the end grid position of the transmission resource occupied by the data in the resource grid on the Doppler axis, c is greater than d.
  • the transmission resources occupied by the pilot signal in the resource grid and the transmission resources occupied by the data in the resource grid are along the Doppler axis in the resource grid
  • the interval between is Y, and Y is a number greater than or equal to zero.
  • the method further includes: receiving any one or more of the following information: information about the transmission resources occupied by the pilot signal in the resource grid; or, the data is in the resource Information about the transmission resource occupied in the grid; or, information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid; or, the cyclic prefix of the pilot signal is Information about the transmission resources occupied in the resource grid.
  • the information about the transmission resources occupied by the pilot signal in the resource grid includes any one or more of the following information: Information about the transmission resources occupied on the delay axis, and information about the transmission resources occupied by the pilot signal on the Doppler axis in the resource grid, a, b.
  • the information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid includes: pilot signal Information about the distance between the data in the resource grid along the Doppler axis, and/or the information about the distance between the pilot signal and data in the resource grid along the time delay axis.
  • a signal transmission device which is used to execute the method in any possible implementation manner of the foregoing aspects.
  • the device includes a unit for executing the method in any one of the possible implementation manners of the foregoing aspects.
  • another signal transmission device including a processor, which is coupled to a memory and can be used to execute instructions in the memory to implement any possible implementation of the first aspect to the fourth aspect.
  • the method in the way.
  • the signal transmission device further includes a memory.
  • the signal transmission device further includes a communication interface, and the processor is coupled with the communication interface.
  • the signal transmission device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the signal transmission device is a chip configured in the terminal device.
  • the communication interface may be an input/output interface.
  • the signal transmission device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the signal transmission device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • another signal transmission device including a processor, which is coupled to a memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the fifth aspect.
  • the signal transmission device further includes a memory.
  • the signal transmission device further includes a communication interface, and the processor is coupled with the communication interface.
  • the signal transmission device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the signal transmission device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • another signal transmission device including a processor, which is coupled to a memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the sixth aspect.
  • the signal transmission device further includes a memory.
  • the signal transmission device further includes a communication interface, and the processor is coupled with the communication interface.
  • the signal transmission device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the signal transmission device is a chip configured in the terminal device.
  • the communication interface may be an input/output interface.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the possible implementation manners of the foregoing aspects.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times. This application does not limit the specific implementation of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter, so as to execute the method in any one of the possible implementation manners of the foregoing aspects.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, this application does not limit the type of memory and the way of setting the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the above-mentioned processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processing
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is run by a device, causes the device to execute any of the above aspects One of the possible implementation methods.
  • a computer program also called code, or instruction
  • a computer-readable storage medium stores a computer program (also called code, or instruction) when it runs on a device, so that the device executes the above aspects. Any one of the possible implementation methods.
  • a communication system including the aforementioned terminal device and network device.
  • a communication system which includes the aforementioned sender device and receiver device.
  • Figure 1 shows a schematic diagram of a communication system suitable for the present application
  • FIG. 2 shows a schematic diagram of an equivalent channel model in the delay-Doppler domain applicable to the present application
  • FIG. 3 shows another schematic diagram of an equivalent channel model in the time delay-Doppler domain applicable to the present application
  • FIG. 4 shows a schematic block diagram of a signal transmission method according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of using a cyclic prefix as a guard interval between symbols applicable to an embodiment of the present application
  • FIG. 12 to FIG. 17 show schematic diagrams of the positions of the cyclic prefix of the pilot signal applicable to the embodiments of the present application;
  • FIG. 18 shows a schematic diagram of the mapping relationship between the delay-Doppler domain and the time domain-frequency domain
  • FIG. 19 shows a schematic diagram of the conversion process between OTFS and traditional waveforms applicable to an embodiment of the present application
  • FIG. 20 shows another schematic diagram of the conversion process between OTFS and traditional waveforms applicable to the embodiments of the present application
  • FIG. 21 shows a schematic block diagram of a signal transmission apparatus according to an embodiment of the present application.
  • FIG. 22 shows a schematic structural diagram of a signal transmission apparatus according to an embodiment of the present application.
  • FIG. 23 shows a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 24 shows a schematic structural diagram of a network device according to an embodiment of the present application.
  • the technical solution of this application can be applied to various communication systems, for example: the fifth generation (5G) mobile communication system or the new radio (NR) system, other evolved communication systems, and the next generation of the 5G communication system Mobile communication system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system , UMTS), high-speed communication scenarios, high-frequency and large-bandwidth communication scenarios, etc.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • D2D device-to-device
  • M2M machine-to-machine
  • MTC machine type communication
  • vehicle networking systems for example: the fifth generation (5G) mobile communication system or the new radio (NR) system, other evolved communication systems, and the next generation of the 5G communication system Mobile communication system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex
  • V2X vehicle to vehicle
  • V2I vehicle to roadside infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network
  • Fig. 1 is a schematic diagram of a communication system 100 applicable to the present application.
  • the communication system 100 may include at least one network device, such as the network device 111 shown in FIG. 1, and the communication system 100 may also include at least one terminal device, such as the terminal device 121 to the terminal shown in FIG. Equipment 123. Both network equipment and terminal equipment can be equipped with multiple antennas, and the network equipment and terminal equipment can communicate using multiple antenna technology.
  • FIG. 1 is only an exemplary illustration, and the present application is not limited thereto.
  • the present application can also be applied to any communication scenario of uplink (terminal device to network device) and downlink (network device to terminal device) communication in a communication system.
  • the communication system may also include other devices.
  • the terminal equipment in the embodiments of this application may also be referred to as: user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal, user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminal devices include: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid) Wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), cellular phones, cordless phones, session initiation protocols (session initiation) protocol, SIP) telephone, wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to wireless modem, In-vehicle devices, wearable devices, terminal devices in a 5G network, or
  • the terminal device may be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • the Internet of Things is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the terminal device in the embodiment of the present application may be a wearable device. Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that can be worn directly on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a hardware device, but also powerful functions can be achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include the advantages of full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application function, and need to interact with other devices such as smart Use with mobile phones, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in machine type communication (MTC).
  • MTC machine type communication
  • the terminal device may also be an in-vehicle module, an in-vehicle module, an in-vehicle component, an in-vehicle chip, or an in-vehicle unit built into the vehicle as one or more components or units.
  • On-board components, on-board chips, or on-board units, etc. can implement the methods provided in this application. Therefore, the embodiments of the present application can also be applied to the Internet of Vehicles, such as vehicle to everything (V2X), long term evolution-vehicle (LTE-V), and vehicle-to-vehicle (V2X). vehicle, V2V) technology, etc.
  • V2X vehicle to everything
  • LTE-V long term evolution-vehicle
  • V2X vehicle-to-vehicle
  • the network device involved in this application can be a device that communicates with a terminal device.
  • the network device can also be called an access network device or a wireless access network device. It can be a transmission reception point (TRP) or
  • the evolved base station (evolved NodeB, eNB or eNodeB) in the LTE system can also be a home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), or cloud
  • the wireless controller in the wireless access network (cloud radio access network, CRAN) scenario, or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and an access network device in a 5G network, or a future evolution
  • the access network equipment in the PLMN network can also be the access point (AP) in the WLAN, or the gNB in the NR system.
  • the aforementioned network equipment can also be urban base stations, micro base stations, pico base stations, Femto base stations
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a radio access network (radio access network, including CU nodes and DU nodes, RAN) equipment, or including control plane (CP) CU nodes (such as CU-CP nodes) and user plane (UP) CU nodes (such as CU-UP nodes) and DU nodes RAN equipment.
  • CU centralized unit
  • DU distributed unit
  • radio access network radio access network
  • CP control plane
  • UP user plane
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) ), it can also belong to the base station corresponding to the small cell.
  • the small cell here can include: metro cell, micro cell, pico cell, femto cell Etc., these small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • this application does not particularly limit the specific structure of the execution subject of the method provided in this application, as long as the program that records the code of the method provided in this application can communicate in accordance with the method provided in the embodiment of this application,
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or an access network device, or a functional module in the terminal device or the access network device that can call and execute the program.
  • computer-readable storage media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs, DVDs ), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Reference signal reference signal
  • RS reference signal
  • the reference signal or pilot involved in this application may be a reference signal used for channel measurement.
  • the reference signal may include, but is not limited to, any one or more of the following: demodulation reference signal (DMRS), channel state information reference signal (CSI-RS), sounding reference Signal (sounding reference signal, SRS).
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • SRS sounding reference Signal
  • Doppler shift It can refer to the frequency offset between the transmitting frequency and the receiving frequency caused by the relative movement between the terminal equipment and the network equipment. The difference between the receiving frequency and the transmitting frequency is called Doppler shift.
  • v is the moving speed of the terminal device
  • fc is the carrier frequency
  • is the incident angle of the multipath signal
  • c the speed of light.
  • the angle of incidence of different transmission paths can be considered for ⁇ . Since the ⁇ of the multipath is different, different transmission paths will correspond to different Doppler frequency shifts, which will cause Doppler spread.
  • the size of the Doppler shift indicates the influence of the moving speed on the speed of the channel time domain change.
  • Orthogonal time frequency space It is a two-dimensional modulation technology. Its main technical features include: placing signals (such as constellation symbols) on a resource grid, such as The first resource grid is transformed with the traditional resource grid through a two-dimensional dual Fourier transform, such as the second resource grid, to form a common time division multiple access (TDMA). ) Waveform, code division multiple access (CDMA) waveform, orthogonal frequency division multiplexing (OFDM) waveform, etc. for transmission.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • OFDM orthogonal frequency division multiplexing
  • the first resource grid may be a two-dimensional matrix with a length of N*M, the first dimension (ie N) represents the delay domain, and the second dimension (ie M) represents Doppler (Doppler). )area.
  • N and M are integers greater than or equal to 1.
  • the first resource grid for example, may also be referred to as the delay-Doppler domain.
  • first resource grid or the time delay-Doppler domain is only a possible naming and should not constitute any limitation in this application. This application does not exclude the definition of other possible names in existing or future agreements to replace the names of the first resource grid or the time delay-Doppler domain, but they have the same or similar characteristics.
  • the second resource grid can be understood as a traditional resource grid.
  • the second resource grid may be a two-dimensional matrix representing the time domain-frequency domain.
  • the second resource grid may also be a three-dimensional matrix representing the time domain-frequency domain-spatial domain, which is not limited. It should be understood that the second resource grid is only a possible naming and should not constitute any limitation to this application. This application does not exclude the definition of other possible names in existing or future agreements to replace the name of the second resource grid, but they have the same or similar characteristics.
  • the first resource grid is recorded as the time delay-Doppler domain
  • the second resource grid is recorded as the time domain-frequency domain as an example for illustrative description.
  • OTFS principle the processing of digital signals is moved to the time delay-Doppler domain.
  • the time delay-Doppler domain and the time-frequency domain can be bridged by a two-dimensional orthogonal transformation. Therefore, the time delay-Doppler domain can be regarded as a two-dimensional orthogonal mapping of the time domain to the frequency domain. Through the two-dimensional orthogonal mapping, the time domain-frequency domain changing channel is energy-averaged in the time-delay-Doppler domain. Therefore, the equivalent channel in the delay-Doppler domain has at least the following three characteristics compared with the channel in the time-frequency domain: stability, delay-Doppler information resolvability, and orthogonality.
  • the time delay-Doppler information distinguishability that is, in the time delay-Doppler domain, the channel reflects a two-dimensional expansion. In the time delay domain, you can see the multipath information of the channel; in the Doppler domain, you can see the Doppler spread of the channel.
  • orthogonality the time delay-Doppler channel is orthogonal, that is, the information of each path of the channel is not related to the information of other paths.
  • Figures 2 and 3 show the equivalent channel model in the delay-Doppler domain.
  • the data field is a two-dimensional matrix with a length of 600*12, that is, data information can be placed in a two-dimensional matrix with a length of 600*12.
  • the sending signal is placed at the position (296,6), as shown in (1) in Figure 2.
  • (2) in FIG. 2 shows a schematic diagram of an OTFS equivalent response. It can be seen from (2) in Fig. 2 that the equivalent channel in the delay-Doppler domain is a two-dimensional channel, which exhibits multipath characteristics in the delay dimension and in the Doppler dimension. The characteristic of Doppler expansion. The channels experienced by signals in different locations are similar, or almost the same.
  • the sending signal is placed at the position (301, 6), as shown in (1) in Figure 3.
  • (2) in Figure 3 shows a schematic diagram of an OTFS equivalent response. It can be seen from (2) in Figure 3 that the equivalent channel in the delay-Doppler domain is a two-dimensional channel, which exhibits multipath characteristics in the delay dimension and in the Doppler dimension. The characteristic of Doppler expansion. The channels experienced by signals in different locations are the same.
  • the equivalent channel in the delay-Doppler domain includes at least the following benefits:
  • Each data signal can go through all channels, and each data signal can obtain complete multipath channel information and Doppler spread information, so it can obtain the maximum multipath and Doppler spread gain.
  • OTFS is in the delay-Doppler domain, and a matrix area can be used, and pilots are placed on this area for channel estimation.
  • the placement of the pilot frequency has a great impact on the channel estimation performance.
  • This application proposes a signal transmission method, which determines the starting position (a, b) of the transmission resource allocated for the pilot signal in the resource grid according to the Doppler shift information, where the resource grid can be used
  • a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis
  • b represents the transmission resource occupied by the pilot signal in the resource grid.
  • the starting grid position on the Doppler axis Or, in other words, determine the starting position of the pilot signal in the time delay-Doppler domain according to the related information of the Doppler shift.
  • the sending end device may be a terminal device.
  • the sending end device may be referred to as a terminal device.
  • the terminal device may be replaced with a device or chip capable of implementing functions similar to the terminal device, and the embodiment of the present application does not limit its name.
  • the receiving end device may be a network device, or the receiving end device may be a device or chip that can implement functions similar to the network device, or the receiving end device may be a pilot signal sent by the sending end device device of.
  • the sending end device may also be a network device.
  • the sending end device may be referred to as a network device.
  • the network device may also be replaced with a device or chip capable of implementing functions similar to the network device, and the embodiment of the present application does not limit its name.
  • the receiving end device may be a terminal device, or the receiving end device may be a device or chip that can implement functions similar to the terminal device, or the receiving end device may be a pilot signal sent by the sending end device device of.
  • FIG. 4 is a schematic block diagram of a method 400 for signal transmission according to an embodiment of the present application.
  • the method 400 may be executed by the sending end device.
  • the method 400 may include the following steps:
  • the starting position of the transmission resource allocated by the pilot signal in the resource grid is (a, b), and the transmission resources occupied by the pilot signal in the resource grid are continuous along the delay axis. ;
  • a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis;
  • b represents the transmission resource occupied by the pilot signal in the resource grid on the Doppler axis
  • the starting grid position; and a and/or b are determined according to the Doppler shift information;
  • the resource grid is the first resource grid described above.
  • pilot signals such as constellation symbols
  • traditional resource grid such as time domain-frequency domain
  • the resource grid can be a two-dimensional matrix with a length of N*M, and the resource grid can be used to characterize the delay-Doppler.
  • the first dimension that is, N
  • the second dimension That is, M
  • a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis, that is to say, a represents the transmission resource occupied by the pilot signal in the resource grid is used to represent the delay The starting position of the grid.
  • the resource grid may include multiple grids (or lattices) (as shown in FIGS. 5 to 10 and 12 to 17).
  • the resource grid for example, may also be referred to as the delay-Doppler domain.
  • time delay-Doppler domain N*M two-dimensional matrix
  • this application uses a to indicate the starting position of the pilot signal on the delay axis in the delay-Doppler domain, that is, a indicates that the transmission resource occupied by the pilot signal in the resource grid is delayed in time.
  • the starting grid position on the axis in other words, a represents the starting time delay position of the pilot signal in the time delay-Doppler domain; in other words, a represents the starting time delay position of the pilot signal as the time delay
  • b represents the starting position of the pilot signal on the Doppler axis in the delay-Doppler domain, that is, b represents the starting position of the transmission resource occupied by the pilot signal in the resource grid on the Doppler axis.
  • the starting grid position in other words, b represents the starting Doppler position of the pilot signal in the time delay-Doppler domain; or, b represents the starting Doppler position of the pilot signal as the Doppler axis
  • the b-th grid on the top
  • the starting position of the allocated transmission resource of the pilot signal in the time delay-Doppler domain is determined according to the Doppler frequency shift information. That is, the starting position a and/or the starting position b on the Doppler axis of the pilot signal in the time delay-Doppler domain are determined according to the Doppler frequency shift information. It can be understood that, in this application, the starting position of the allocated transmission resource of the pilot signal in the time delay-Doppler domain is not randomly placed, but is determined by taking into account the information related to the Doppler frequency shift.
  • this application proposes to consider the starting position of the transmission resource allocated by the pilot signal in the delay-Doppler domain.
  • the information of Doppler frequency shift to determine the position of the pilot signal in the time delay-Doppler domain, it can not only improve the peak-to-average power ratio (PAPR) performance, and reduce the Doppler frequency.
  • PAPR peak-to-average power ratio
  • the impact of Leak deviation on the channel estimation performance can improve the channel estimation performance.
  • the placement of the pilot signal in the delay-Doppler domain can be flexibly determined. position.
  • the transmission resources occupied by the pilot signal in the resource grid are continuous along the delay axis, so that the pilot energy can be evenly dispersed in the delay domain of the entire pilot area, thereby avoiding high-energy pilots.
  • Signal distortion problems caused by frequency improve system performance.
  • Doppler frequency shift information means information related to Doppler frequency shift.
  • it may include but not limited to: Doppler sampling interval, actual speed measurement, maximum Doppler frequency deviation, Doppler frequency shift and more The relationship between the pull sampling interval, the possible phase error caused by the Doppler shift, the time length of the OTFS frame, or the length/number of the OFDM symbols after two-dimensional transformation, etc.
  • the Doppler sampling interval can be expressed as: subcarrier spacing (SCS)/M.
  • a and/or b are determined according to the Doppler frequency shift information, including at least two cases:
  • Case A The sender device determines the value of a and/or b according to the Doppler shift information
  • Case B The protocol or network device predefines a suitable group (a, b) or multiple optional groups (a, b), and the one or more groups (a, b) take into account the Doppler frequency shift The information is ok.
  • the sender device can choose one group (a, b). For example, the sender device selects one group (a, b) according to resource conditions or channel status, etc. , B). At this time, the sending end device can also indicate the selected (a, b) to the receiving end device.
  • a 0, that is, the starting position of the allocated transmission resource of the pilot signal in the time delay-Doppler domain is (0, b).
  • the phase error is considered to be the smallest, which can not only improve the channel estimation performance, but also
  • the value of b can also be flexibly determined according to actual conditions.
  • the embodiment of the present application does not limit it.
  • the existing compensation error may be expressed as Equation 1 below.
  • -1/2 ⁇ b' ⁇ 1/2 is the Doppler deviation of fractional multiples
  • the starting position of the transmission resource allocated for the pilot signal in the delay-Doppler domain is (0, 0)
  • both the smallest phase error and the lowest implementation complexity are taken into consideration, not only The channel estimation performance can be improved, the complexity of the channel estimation can also be simplified, and the signal transmission performance can be improved.
  • the transmitted pilot sequence is cyclically shifted and multiplied by the received signal to obtain the corresponding channel h.
  • different phase compensations may be required. Therefore, only one channel h is required at a time, and then the phase compensation is performed on the transmitted signal again, and then the next h is calculated, and so on.
  • phase compensation factor can be expressed as Equation 2 below.
  • the length of the pilot signal is a first preset length, where the first preset length is greater than or equal to the maximum multipath delay.
  • the maximum multipath delay can refer to the difference (increase) between the time required for the signal to reach the receiving end through the farthest transmission distance and the time required to reach the receiving end through the minimum transmission distance when the transmitting end and the receiving end are transmitting signals. the amount).
  • the maximum multipath delay may be a preset fixed value.
  • the maximum multipath delay can also be a preset value range.
  • the embodiment of the present application does not limit it.
  • the specific value and acquisition method of the length of the pilot signal are not limited in the embodiment of the present application.
  • a possible implementation is that the length of the pilot signal is pre-defined by the protocol or network equipment.
  • the sender device may pre-specify the length of the pilot signal according to the protocol or the network device to determine the length of the pilot signal.
  • the protocol or the network device prescribes: the lengths of multiple pilot signals or the numerical range in which the lengths of the pilot signals are located.
  • the sender device may determine the length of a pilot signal according to the length of multiple pilot signals pre-defined by the protocol or the network device.
  • the sending end device may determine a value falling within the value range as the length of the pilot signal according to the value range of the length of the pilot signal pre-defined by the protocol or the network device.
  • the sending end device can indicate the length of the pilot signal to the receiving end device.
  • the network device configures the length of the pilot signal.
  • the network device can indicate the length of the pilot signal to the terminal device.
  • related information related to the configuration of the network device or the specified pilot signal for example, the length of the pilot signal configured by the network device or the transmission resource occupied in the delay-Doppler domain of the pilot signal.
  • the starting position is not limited to the network device.
  • the network device may be any network device described above, such as a base station.
  • the sending end device is a terminal device
  • the network device may be a network device that communicates with the terminal device, or the network device may also be a network device that communicates with the terminal device before, or the network device It can also be other network devices.
  • the sending end device is a network device
  • the network device may be the sending end device, or the network device may also be other network devices, which is not limited.
  • the transmitting end device can determine the length of the pilot signal by itself, and the length of the pilot signal is greater than or equal to the maximum multipath delay.
  • the sending end device can indicate the length of the pilot signal to the receiving end device.
  • Aspect 1 a, b.
  • the initial position b of the pilot signal on the Doppler axis in the delay-Doppler domain Value including at least the following two scenarios.
  • the starting position of the allocated transmission resource of the pilot signal in the time delay-Doppler domain is (0, 0).
  • the starting position of the allocated transmission resource of the pilot signal in the delay-Doppler domain is (0, 0), which may be pre-specified by the protocol or pre-configured by the network device.
  • the protocol pre-prescribes or the network equipment pre-configures the starting position of the transmission resource allocated for the pilot signal in the delay-Doppler domain to (0, 0).
  • the starting position of the allocated transmission resource of the pilot signal in the delay-Doppler domain is (0, 0), which may be configured by the network device according to actual requirements.
  • solution 1 includes at least the following three possible situations, which are exemplified below in conjunction with FIG. 5 to FIG. 7.
  • Figure 5 shows a possible schematic diagram of Scheme 1.
  • the time delay-Doppler domain (ie, resource grid) is a two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • each element or each grid in the delay-Doppler domain may be referred to as a resource element (RE). Pilot signals and data each occupy part of the transmission resources in the delay-Doppler domain, and the remaining unfilled grids indicate that RE is 0, that is, no information is placed.
  • RE resource element
  • the starting position of the transmission resource occupied by the pilot signal in the delay-Doppler domain is the origin (0, 0).
  • the transmission resources occupied by the pilot signal in the delay-Doppler domain are continuous along the delay axis (that is, the y-axis).
  • scheme 1 adopts the scheme shown in case 1, it can take into account the smallest phase error and the lowest implementation complexity at the same time, and the implementation of the scheme is simpler.
  • FIG. 6 shows another possible schematic diagram of Scheme 1.
  • the time delay-Doppler domain (ie, resource grid) is a two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • the starting position of the transmission resource occupied by the pilot signal in the delay-Doppler domain is the origin (0, 0).
  • the transmission resources occupied by the pilot signal in the delay-Doppler domain are continuous along the delay axis (that is, the y-axis).
  • Y the number of grids between the data and the pilot signal along the Doppler axis (that is, the x-axis) is denoted as Y, and Y can be any value greater than or equal to 0. It can be seen from Figure 6 that, assuming that starting from the origin, the Doppler axis coordinate values are 0, 1, 2, 3..., M, then Y can be 2.
  • Y may be a value pre-defined by a network device (such as a base station) or a protocol.
  • Y may also be a set of values pre-defined by a network device or protocol, and the sending end device may select a suitable Y value from this set of values according to actual needs.
  • Y can also be configured by a network device.
  • the network device may determine the position of the transmission resource occupied by the pilot and data in the delay-Doppler domain according to the configured Y value. In addition, the network device can also notify the terminal device of the Y value.
  • the network device can notify the terminal device of the configured Y value, so that the terminal device can determine the transmission resources occupied by the pilot signal and data in the delay-Doppler domain. position.
  • the embodiment of the present application does not limit it.
  • the network device is configured or a prescribed value, such as Y or Z mentioned below, and there is no limitation on the network device.
  • the network device may be any network device described above, such as a base station.
  • the network device may be a network device that communicates with the terminal device, or the network device may also be a network device that communicates with the terminal device before.
  • the sending end device is a network device
  • the network device may be the sending end device, or the network device may also be other network devices, which is not limited.
  • scheme 1 uses the scheme shown in case 2, it can be seen that data can occupy more transmission resources. Compared with the scheme of randomly placing pilot signals, it can not only reduce the phase error and reduce the complexity, but also Reduce pilot overhead and improve resource utilization.
  • FIG. 7 shows another possible schematic diagram of Scheme 1.
  • the time delay-Doppler domain (ie, resource grid) is a two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • the starting position of the transmission resource occupied by the pilot signal in the delay-Doppler domain is the origin (0, 0).
  • the transmission resources occupied by the pilot signal in the delay-Doppler domain are continuous along the delay axis (that is, the y-axis).
  • scheme 1 uses the scheme shown in case 3, it can be seen that through the protection suffix between the data area and the pilot area, or in other words, by configuring the protection suffix between the data area and the pilot area, the reception can be improved.
  • protection suffix area can be specifically configured according to actual conditions, which is not limited in this application.
  • FIGS. 5 to 7 are only exemplary illustrations, and the embodiments of the present application are not limited thereto.
  • the length of the transmission resources occupied by the pilot signal in the delay-Doppler domain along the delay axis is 5 grids, which is only an exemplary illustration.
  • the length of the transmission resources occupied in the Doppler domain along the delay axis can also be longer or shorter.
  • the starting position of the allocated transmission resource of the pilot signal in the time delay-Doppler domain is (0, Z).
  • Z can be a value pre-defined by a network device or protocol.
  • Z can also be a set of values pre-defined by the network device or protocol, and the sender device can select an appropriate Z value from this set of values according to actual needs.
  • Z can also be configured by a network device.
  • the network device may determine the starting position of the transmission resource occupied by the pilot signal in the delay-Doppler domain according to the configured Z value.
  • the network device can notify the terminal device of the configured Z value, so that the terminal device can determine the starting position of the transmission resource occupied by the pilot signal in the delay-Doppler domain.
  • the starting position of the transmission resource allocated for the pilot signal in the delay-Doppler domain is (0, Z), which may be pre-defined or configured by the network device.
  • the starting position of the allocated transmission resource of the pilot signal in the delay-Doppler domain is (0, Z), which may be pre-defined by the protocol or pre-configured by the network device.
  • the protocol pre-prescribes or the network equipment pre-configures the starting position of the transmission resource allocated for the pilot signal in the delay-Doppler domain to (0, Z).
  • the Z value can be pre-defined.
  • the starting position of the allocated transmission resource of the pilot signal in the delay-Doppler domain is (0, Z), which may be configured by the network device according to actual requirements.
  • solution 2 includes at least the following three possible situations, which will be exemplified below with reference to FIG. 8 to FIG. 10.
  • FIG. 8 shows a possible schematic diagram of Scheme 2.
  • the time delay-Doppler domain (ie, resource grid) is a two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • Z being 5 is only an exemplary description, and the embodiment of the present application is not limited thereto.
  • Doppler axis coordinate values are: 0, 1, 2, 3..., M, which is only an example, and the embodiment of the present application is not limited to this, for example, starting from the origin , Doppler axis coordinate values can also be 0, 2, 4, 6..., M, etc. in sequence.
  • FIG. 9 shows another possible schematic diagram of Scheme 2.
  • the time delay-Doppler domain (ie, resource grid) is a two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • Z being 5 is only an exemplary description, and the embodiment of the present application is not limited thereto.
  • Doppler axis coordinate values are: 0, 1, 2, 3..., M, which is only an example, and the embodiment of the present application is not limited to this, for example, starting from the origin , Doppler axis coordinate values can also be 0, 2, 4, 6..., M, etc. in sequence.
  • the number of grids between the data and the pilot signal along the Doppler axis is 3.
  • the data can occupy more transmission resources, thereby also Can improve resource utilization.
  • Y the number of grids between the data and the pilot signal along the Doppler axis
  • Y can be any value greater than 0 or equal to 0. It can be seen from Figure 9 that, assuming that starting from the origin, the Doppler axis coordinate values are 0, 1, 2, 3..., M, then Y can be 2.
  • scheme 2 adopts the scheme shown in case 5, it can be seen that data can occupy more transmission resources. Compared with the scheme of randomly placing pilot signals, it can not only reduce the phase error, but also reduce the pilot frequency. Expenses and improve resource utilization.
  • FIG. 10 shows another possible schematic diagram of Scheme 2.
  • the time delay-Doppler domain (ie, resource grid) is a two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • the Doppler axis coordinate values are: 0, 1, 2, 3..., M, then Z can be 5, that is to say, the pilot signal is in time delay ⁇
  • the start position of the transmission resource occupied in the Doppler domain is (0, 5).
  • the transmission resources occupied by the pilot signal in the delay-Doppler domain are continuous along the delay axis (that is, the y-axis).
  • scheme 2 adopts the scheme shown in case 6, it can be seen that through the protection suffix between the data area and the pilot area, or in other words, by configuring the protection suffix between the data area and the pilot area, the reception can be improved.
  • the area of the protection suffix can be specifically configured according to actual conditions, and this is not limited.
  • FIGS. 8 to 10 are only exemplary illustrations, and the embodiments of the present application are not limited thereto.
  • the length of the transmission resource occupied by the pilot signal in the delay-Doppler domain along the delay axis is 5 grids, which is only an exemplary illustration.
  • the length of the transmission resources occupied in the Doppler domain along the delay axis can also be longer or shorter.
  • Aspect 2 The cyclic prefix (CP) of the pilot signal.
  • the cyclic prefix can be used as a guard interval between symbols (such as pilot signals).
  • Figure 11 shows a schematic diagram of a cyclic prefix (hereinafter referred to as CP) as a guard interval between symbols.
  • the CP of the pilot signal refers to a cyclic structure formed by copying a segment of the signal from the position where the CP is intercepted to the end position in the pilot signal to the front of the pilot signal.
  • the CP may be used as a guard interval between pilot signals.
  • the starting position of the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain is (c, b), and the transmission occupied by the CP of the pilot signal in the delay-Doppler domain
  • the resources are continuous along the delay axis; where c represents the starting grid position on the delay axis of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid.
  • the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain is at the last delay grid position.
  • the guard interval can be used to place the CP to construct the cyclic convolution of the pilot area, so that the equivalent two-dimensional channel impulse response can be obtained.
  • the CP of the pilot signal and the pilot signal are at the same Doppler grid position. In this way, not only can the channel estimation performance be improved, but also the PAPR problem caused by excessive pilot signal energy can be solved.
  • the end position of the transmission resource occupied by the data in the delay-Doppler domain is (d, e); where d represents the end grid of the transmission resource occupied by the data in the resource grid on the delay axis Grid position, e represents the end grid position on the Doppler axis of the transmission resource occupied by the data in the resource grid, c is greater than d.
  • c is greater than d, which can be understood as the starting coordinate value on the delay axis of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid, which is greater than the transmission resource occupied by the data in the resource grid on the delay axis The end coordinate value. Or it can be understood that, in the direction of the delay axis, the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is located behind the transmission resource occupied by the data in the resource grid.
  • the length of the CP of the pilot signal is a second preset length, where the second preset length is greater than or equal to the maximum multipath delay.
  • the receiving window of each pilot signal does not include the inter-symbol interference (ISI) of other symbols.
  • ISI inter-symbol interference
  • the received symbol is the cyclic convolution of the transmitted symbol and the channel, which allows the receiving end to use the frequency domain equalization method to eliminate the channel multipath effect.
  • the specific value and acquisition method of the CP length (ie, the second preset length) of the pilot signal are not limited in the embodiment of the present application.
  • the protocol or network equipment predefines the CP length of the pilot signal.
  • the sender device may pre-define the CP length of the pilot signal according to the protocol or the network device to determine the CP length of the pilot signal.
  • the protocol or the network device predefines: the length of the CP of multiple pilot signals or the value range of the CP of the pilot signal.
  • the sender device may determine the CP length of one pilot signal according to the CP length of multiple pilot signals pre-defined by the protocol or the network device.
  • the sending end device may determine a value falling within the value range as the CP length of the pilot signal according to the value range of the CP length of the pilot signal pre-defined by the protocol or the network device.
  • the transmitting end device can indicate the CP length of the pilot signal to the receiving end device.
  • the network device configures the length of the CP of the pilot signal.
  • the network device can indicate the CP length of the pilot signal to the terminal device.
  • the transmitting end device can determine the length of the CP of the pilot signal by itself, and the length of the CP of the pilot signal is greater than or equal to the maximum multipath delay. In this implementation manner, the transmitting end device can indicate the CP length of the pilot signal to the receiving end device.
  • Fig. 12 shows a possible schematic diagram of the CP of the pilot signal.
  • the time delay-Doppler domain (ie, resource grid) is an N*M two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • the pilot signal, the CP and the data of the pilot signal each occupy part of the transmission resources in the delay-Doppler domain, and the remaining unfilled grids indicate that the RE is 0, that is, no information is placed.
  • the transmission resources occupied by the pilot signal and the CP of the pilot signal in the delay-Doppler domain are continuous along the delay axis.
  • the CP of the pilot signal and the pilot signal are at the same Doppler grid position, and the CP of the pilot signal occupies the transmission resource in the delay-Doppler domain at the end. Extension grid position.
  • the CP of the pilot signal can be placed at the position where the starting position is (N-CP+1, 0).
  • the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain is (N-CP+1) at the start position of the delay axis, and the CP of the pilot signal is in the delay-Doppler domain
  • the occupied transmission resource is 0 at the start position b of the Doppler axis.
  • c (d+1).
  • the CP of the pilot signal refers to the cyclic structure formed by copying a segment of the signal from the position where the CP is intercepted to the end position in the pilot signal is copied to the front of the pilot signal.
  • the CP of the pilot signal can be the repetition of the last L signals of the pilot signal.
  • L is a number greater than one or equal to one.
  • L is not limited. For example, it can be configured by a network device, or it can be pre-defined.
  • Fig. 13 shows another possible schematic diagram of the CP of the pilot signal.
  • the time delay-Doppler domain (ie, resource grid) is a N*M two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • the pilot signal, the CP and the data of the pilot signal each occupy part of the transmission resources in the delay-Doppler domain, and the remaining unfilled grids (or lattices) indicate that the RE is 0, that is, no information is placed.
  • the transmission resources occupied by the pilot signal and the CP of the pilot signal in the delay-Doppler domain are continuous along the delay axis.
  • the number of grids between the data and the pilot signal along the Doppler axis is 3, and the number of grids between the CP of the data and the pilot signal along the Doppler axis is 3. That is to say, compared with the example shown in FIG. 12, data can occupy more transmission resources, which can also improve resource utilization.
  • the number of grids between the data and the pilot signal along the Doppler axis is denoted as Y, and Y can be any value greater than or equal to zero.
  • Y can be any value greater than or equal to zero.
  • the CP of the pilot signal and the pilot signal are at the same Doppler grid position, and the CP of the pilot signal occupies the transmission resource in the delay-Doppler domain at the end. Extension grid position.
  • the CP of the pilot signal can be placed at the position where the starting position is (N-CP+1, 0).
  • the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain is (N-CP+1) at the start position of the delay axis, and the CP of the pilot signal is in the delay-Doppler domain
  • the occupied transmission resource is 0 at the start position b of the Doppler axis.
  • c (d+1).
  • the CP of the pilot signal may be the repetition of the last L signals of the pilot signal.
  • L is a number greater than one or equal to one.
  • the value of L is not limited. For example, it can be configured by a network device, or it can be pre-defined.
  • data can occupy more transmission resources. Compared with randomly placing pilot signals, it can not only reduce phase error and complexity, but also reduce pilot overhead and improve resource utilization. rate. In addition, the PAPR problem caused by excessive pilot signal energy can be solved by placing the CP.
  • FIG. 14 shows another possible schematic diagram of the CP of the pilot signal.
  • the time delay-Doppler domain (ie, resource grid) is a N*M two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • the pilot signal, the CP and the data of the pilot signal each occupy part of the transmission resources in the delay-Doppler domain, and the remaining unfilled grids (or lattices) indicate that the RE is 0, that is, no information is placed.
  • the transmission resources occupied by the pilot signal and the CP of the pilot signal in the delay-Doppler domain are continuous along the delay axis.
  • the CP of the pilot signal and the pilot signal are at the same Doppler grid position, and the CP of the pilot signal occupies the transmission resource in the delay-Doppler domain at the end. Extension grid position.
  • the CP of the pilot signal can be placed at the position where the starting position is (N-CP+1, 0).
  • the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain is (N-CP+1) at the start position of the delay axis, and the CP of the pilot signal is in the delay-Doppler domain
  • the occupied transmission resource is 0 at the start position b of the Doppler axis.
  • c (d+1).
  • the CP of the pilot signal may be the repetition of the last L signals of the pilot signal.
  • L is a number greater than one or equal to one.
  • the value of L is not limited. For example, it can be configured by a network device, or it can be pre-defined.
  • data can occupy more transmission resources. Compared with randomly placing pilot signals, it can not only reduce the phase error and reduce the complexity, but also reduce the pilot overhead and improve resource utilization. rate. In addition, the PAPR problem caused by excessive pilot signal energy can be solved by placing the CP.
  • Fig. 15 shows another possible schematic diagram of the CP of the pilot signal.
  • the time delay-Doppler domain (ie, resource grid) is a N*M two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • the pilot signal, the CP and the data of the pilot signal each occupy part of the transmission resources in the delay-Doppler domain, and the remaining unfilled grids (or lattices) indicate that the RE is 0, that is, no information is placed.
  • the transmission resources occupied by the pilot signal and the CP of the pilot signal in the delay-Doppler domain are continuous along the delay axis.
  • the starting position of the transmission resource allocated for the pilot signal in the delay-Doppler domain is (0, Z). Assuming that starting from the origin, the Doppler axis coordinate values are: 0, 1, 2, 3..., M, then Z can be 5, that is to say, the pilot signal occupies the time delay-Doppler domain The starting position of the transmission resource is (0, 5).
  • Doppler axis coordinate values are: 0, 1, 2, 3..., M, which is only an example, and the embodiment of the present application is not limited to this, for example, starting from the origin , Doppler axis coordinate values can also be 0, 2, 4, 6..., M, etc. in sequence.
  • the CP of the pilot signal and the pilot signal are at the same Doppler grid position, and the CP of the pilot signal occupies the transmission resource in the delay-Doppler domain at the end. Extension grid position.
  • the CP of the pilot signal can be placed at the position where the starting position is (N-CP+1, Z).
  • the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain is (N-CP+1) at the start position of the delay axis, and the CP of the pilot signal is in the delay-Doppler domain
  • the occupied transmission resource is Z at the start position b of the Doppler axis.
  • c (d+1).
  • the CP of the pilot signal may be the repetition of the last L signals of the pilot signal.
  • L is a number greater than one or equal to one.
  • the value of L is not limited. For example, it can be configured by a network device, or it can be pre-defined.
  • the phase error can be minimized, and the implementation of the solution is simpler.
  • the PAPR problem caused by excessive pilot signal energy can be solved by placing the CP.
  • Fig. 16 shows another possible schematic diagram of the CP of the pilot signal.
  • the time delay-Doppler domain (ie, resource grid) is an N*M two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • the pilot signal, the CP and the data of the pilot signal each occupy part of the transmission resources in the delay-Doppler domain, and the remaining unfilled grids (or lattices) indicate that the RE is 0, that is, no information is placed.
  • the transmission resources occupied by the pilot signal and the CP of the pilot signal in the delay-Doppler domain are continuous along the delay axis.
  • the starting position of the transmission resource allocated for the pilot signal in the delay-Doppler domain is (0, Z). Assuming that starting from the origin, the Doppler axis coordinate values are: 0, 1, 2, 3..., M, then Z can be 5, that is to say, the pilot signal occupies the time delay-Doppler domain The starting position of the transmission resource is (0, 5).
  • the Doppler axis coordinate values are: 0, 1, 2, 3..., M, which is only an example, and the embodiment of the present application is not limited to this, for example, starting from the origin,
  • the Doppler axis coordinate values can also be sequentially: 0, 2, 4, 6,..., M, etc.
  • the number of grids between the data and the pilot signal along the Doppler axis is two, and the number of grids between the CP of the data and the pilot signal along the Doppler axis is two.
  • data can occupy more transmission resources, which can also improve resource utilization.
  • the number of grids between the data and the pilot signal along the Doppler axis is denoted as Y, and Y can be any value greater than or equal to zero.
  • Y can be any value greater than or equal to zero.
  • the CP of the pilot signal and the pilot signal are at the same Doppler grid position, and the CP of the pilot signal occupies the transmission resource in the delay-Doppler domain at the end. Extension grid position.
  • the CP of the pilot signal can be placed at the position where the starting position is (N-CP+1, Z).
  • the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain is (N-CP+1) at the start position of the delay axis, and the CP of the pilot signal is in the delay-Doppler domain
  • the occupied transmission resource is Z at the start position b of the Doppler axis.
  • c (d+1).
  • the CP of the pilot signal may be the repetition of the last L signals of the pilot signal.
  • L is a number greater than one or equal to one.
  • the value of L is not limited. For example, it can be configured by a network device, or it can be pre-defined.
  • data can occupy more transmission resources.
  • pilot signals not only the phase error can be reduced, but also the pilot overhead can be reduced and the resource utilization rate can be improved.
  • the PAPR problem caused by excessive pilot signal energy can be solved by placing the CP.
  • FIG. 17 shows another possible schematic diagram of the CP of the pilot signal.
  • the time delay-Doppler domain (ie, resource grid) is an N*M two-dimensional area, where the x-axis represents Doppler and the y-axis represents time delay. Assume that the origin of the time delay-Doppler domain is (0, 0).
  • the pilot signal, the CP and the data of the pilot signal each occupy part of the transmission resources in the delay-Doppler domain, and the remaining unfilled grids (or lattices) indicate that the RE is 0, that is, no information is placed.
  • the transmission resources occupied by the pilot signal and the CP of the pilot signal in the delay-Doppler domain are continuous along the delay axis.
  • the starting position of the transmission resource allocated for the pilot signal in the delay-Doppler domain is (0, Z).
  • the Doppler axis coordinate values are: 0, 1, 2, 3..., M, then Z can be 5, that is to say, the pilot signal occupies the time delay-Doppler domain
  • the starting position of the transmission resource is (0, 5).
  • the Doppler axis coordinate values are: 0, 1, 2, 3..., M, which is only an example, and the embodiment of the present application is not limited to this, for example, starting from the origin,
  • the Doppler axis coordinate values can also be sequentially: 0, 2, 4, 6,..., M, etc.
  • the CP of the pilot signal and the pilot signal are at the same Doppler grid position, and the CP of the pilot signal occupies the transmission resource in the delay-Doppler domain at the end. Extension grid position.
  • the CP of the pilot signal can be placed at the position where the starting position is (N-CP+1, Z).
  • the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain is (N-CP+1) at the start position of the delay axis, and the CP of the pilot signal is in the delay-Doppler domain
  • the occupied transmission resource is Z at the start position b of the Doppler axis.
  • c (d+1).
  • the CP of the pilot signal may be the repetition of the last L signals of the pilot signal.
  • L is a number greater than one or equal to one.
  • the value of L is not limited. For example, it can be configured by a network device, or it can be pre-defined.
  • the receiving end can improve the channel according to the pilot signal. Estimated performance.
  • the PAPR problem caused by excessive pilot signal energy can be solved by placing the CP.
  • the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain is 4 grids along the delay axis, which is only an exemplary illustration.
  • the length of the transmission resource occupied by the CP in the delay-Doppler domain along the delay axis can also be longer or shorter.
  • Aspect 3 How to obtain transmission resource information.
  • the method 400 may further include step 401.
  • the network device is allocated transmission resources in the delay-Doppler domain for the pilot signal, so that the sending end device can use the allocated transmission resources to transmit the pilot signal.
  • the network device sends instruction information to the terminal device, and correspondingly, the terminal device receives the instruction information, where the instruction information may be used to indicate one or more of the following information:
  • Information on the transmission resources occupied by the pilot signal in the delay-Doppler domain Information on the transmission resources occupied by the data in the delay-Doppler domain, and information on the transmission resource occupied by the pilot signal in the delay-Doppler domain Information about the interval between the transmission resource and the transmission resource occupied by the data in the delay-Doppler domain, and information about the transmission resource occupied by the CP of the pilot signal in the delay-Doppler domain.
  • the information of the transmission resources occupied by the pilot signal in the delay-Doppler domain may include any one or more of the following information: the pilot signal is on the delay axis in the delay-Doppler domain Information about the resources occupied, information about the resources occupied by the pilot signal on the Doppler axis in the delay-Doppler domain, and the starting position of the transmission resource occupied by the pilot signal in the delay-Doppler domain ( For example, a and/or b), the end position of the transmission resource occupied by the pilot signal in the delay-Doppler domain.
  • the information about the transmission resources occupied by the data in the delay-Doppler domain may include any one or more of the following information: the information about the resources occupied by the data on the delay axis in the delay-Doppler domain Information, information about the resource occupied by the Doppler axis in the delay-Doppler domain, the end position of the transmission resource occupied by the data in the delay-Doppler domain, and the data in the delay-Doppler domain The starting position of the transmission resource occupied in.
  • the information on the interval between the transmission resource occupied by the pilot signal in the delay-Doppler domain and the transmission resource occupied by the data in the delay-Doppler domain includes: the pilot signal and the data Information on the interval along the Doppler axis in the time delay-Doppler domain, and/or information on the interval between the pilot signal and data in the time delay-Doppler domain along the time delay axis.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid. Wherein, both a and b are 0.
  • the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain
  • the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain
  • it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the instruction information may also indicate the pattern shown in FIG. 5 or the configuration information corresponding to the pattern. This application does not limit the content and the form of the instruction information, and it is only an example.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid.
  • both a and b are 0.
  • the interval between the pilot signal and data along the Doppler axis in the time delay-Doppler domain can be 3 grids, and the pilot signal and data are adjacent to each other along the time delay axis in the time delay-Doppler domain. , That is, the interval can be 0 grids.
  • the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain
  • the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain
  • it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the indication information may also indicate that the interval between the pilot signal and the data along the Doppler axis direction in the time delay-Doppler domain may be 3 grids.
  • the instruction information may also indicate the pattern shown in FIG. 6 or the configuration information corresponding to the pattern. This application does not limit the content and the form of the instruction information, and it is only an example.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid. Wherein, both a and b are 0.
  • the interval between the pilot signal and the data in the time delay-Doppler domain along the time delay axis can be 4 grids.
  • the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain
  • the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain.
  • Position such as start position and/or end position
  • resource length such as start position and/or end position
  • the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain
  • it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the indication information indicates the transmission resources occupied by the protection suffix between the data area and the pilot area in the delay-Doppler domain
  • the protection suffix may be based on the protection suffix in the delay-Doppler domain.
  • the occupied transmission resource indicates the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information may also indicate that the interval between the pilot signal and the data in the delay-Doppler domain along the delay axis direction may be 4 grids.
  • the instruction information may also indicate the pattern shown in FIG. 7 or the configuration information corresponding to the pattern. There is no restriction on this.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid. Among them, a is 0 and b is 5.
  • the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain
  • the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain
  • it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the instruction information may also indicate the pattern shown in FIG. 8 or the configuration information corresponding to the pattern. This application does not limit the content and the form of the instruction information, and it is only an example.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid.
  • a is 0 and b is 5.
  • the interval between the pilot signal and data along the Doppler axis in the time delay-Doppler domain can be 2 grids, and the pilot signal and data are adjacent to each other along the time delay axis in the time delay-Doppler domain. , That is, the interval can be 0 grids.
  • the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain
  • the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain
  • it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the indication information may also indicate that the interval between the pilot signal and the data in the time delay-Doppler domain along the Doppler axis direction may be 2 grids.
  • the instruction information may also indicate the pattern shown in FIG. 9 or the configuration information corresponding to the pattern. This application does not limit the content and the form of the instruction information, and it is only an example.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid.
  • a is 0 and b is 5.
  • the interval between the pilot signal and the data in the time delay-Doppler domain along the time delay axis can be 4 grids.
  • the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain
  • the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain.
  • Position such as start position and/or end position
  • resource length such as start position and/or end position
  • the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain
  • it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the indication information indicates the transmission resources occupied by the protection suffix between the data area and the pilot area in the delay-Doppler domain
  • the protection suffix may be based on the protection suffix in the delay-Doppler domain.
  • the occupied transmission resource indicates the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information may also indicate that the interval between the pilot signal and the data in the delay-Doppler domain along the delay axis direction may be 4 grids.
  • the instruction information may also indicate the pattern shown in FIG. 10 or the configuration information corresponding to the pattern. There is no restriction on this.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the CP of the pilot signal on the delay axis in the delay-Doppler domain can be 4 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid. Both a and b are 0.
  • the corresponding resource when the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain, the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain, it may be based on the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain. , Indicating the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information when the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain, it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the instruction information may also indicate the pattern shown in FIG. 12 or the configuration information corresponding to the pattern. There is no restriction on this.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the CP of the pilot signal on the delay axis in the delay-Doppler domain can be 4 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid. Both a and b are 0.
  • the interval between the pilot signal and data along the Doppler axis in the time delay-Doppler domain can be 3 grids, and the pilot signal and data are adjacent to each other along the time delay axis in the time delay-Doppler domain. .
  • the corresponding resource when the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain, the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain, it may be based on the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain. , Indicating the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information when the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain, it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the indication information may also indicate that the interval between the pilot signal and the data along the Doppler axis direction in the time delay-Doppler domain may be 3 grids.
  • the instruction information may also indicate the pattern shown in FIG. 13 or the configuration information corresponding to the pattern. There is no restriction on this.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the CP of the pilot signal on the delay axis in the delay-Doppler domain can be 4 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid. Both a and b are 0.
  • the interval between the pilot signal and the data in the time delay-Doppler domain along the time delay axis can be 4 grids.
  • the corresponding resource when the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain, the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain, it may be based on the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain. , Indicating the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information when the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain, it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the indication information when the indication information indicates the transmission resources occupied by the protection suffix between the data area and the pilot area in the delay-Doppler domain, the protection suffix may be based on the protection suffix in the delay-Doppler domain.
  • the occupied transmission resource indicates the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information may also indicate that the interval between the pilot signal and the data in the delay-Doppler domain along the delay axis direction may be 4 grids.
  • the instruction information may also indicate the pattern shown in FIG. 14 or the configuration information corresponding to the pattern. There is no restriction on this.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the CP of the pilot signal on the delay axis in the delay-Doppler domain can be 4 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid. That is, a is 0 and b is 5.
  • the corresponding resource when the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain, the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain, it may be based on the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain. , Indicating the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information when the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain, it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the indication information may also indicate the pattern shown in FIG. 15 or the configuration information corresponding to the pattern.
  • the indication form of the indication information is not limited, and the foregoing indication form is only for example.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the CP of the pilot signal on the delay axis in the delay-Doppler domain can be 4 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid.
  • a is 0 and b is 5.
  • the interval between the pilot signal and data along the Doppler axis in the time delay-Doppler domain can be 2 grids, and the pilot signal and data are adjacent to each other along the time delay axis in the time delay-Doppler domain. .
  • the corresponding resource when the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain, the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain, it may be based on the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain. , Indicating the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information when the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain, it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the indication information may also indicate that the interval between the pilot signal and the data in the time delay-Doppler domain along the Doppler axis direction may be 2 grids.
  • the instruction information may also indicate the pattern shown in FIG. 16 or the configuration information corresponding to the pattern. There is no restriction on this.
  • the resources occupied by the pilot signal on the delay axis in the delay-Doppler domain can be 6 grids.
  • the resource occupied by the CP of the pilot signal on the delay axis in the delay-Doppler domain can be 4 grids.
  • the resource occupied by the pilot signal on the Doppler axis in the time delay-Doppler domain can be 1 grid.
  • a is 0 and b is 5.
  • the interval between the pilot signal and the data in the time delay-Doppler domain along the time delay axis can be 4 grids.
  • the corresponding resource when the indication information indicates the information of the transmission resource occupied by the pilot signal in the delay-Doppler domain, the corresponding resource may be indicated according to the transmission resource occupied by the pilot signal in the delay-Doppler domain. Position (such as start position and/or end position) or resource length.
  • the indication information indicates the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain, it may be based on the transmission resources occupied by the CP of the pilot signal in the delay-Doppler domain. , Indicating the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information when the indication information indicates the transmission resource information occupied by the data in the delay-Doppler domain, it can indicate the corresponding resource location according to the transmission resource occupied by the data in the delay-Doppler domain (such as Start position and/or end position) or resource length.
  • the indication information when the indication information indicates the transmission resources occupied by the protection suffix between the data area and the pilot area in the delay-Doppler domain, the protection suffix may be based on the protection suffix in the delay-Doppler domain.
  • the occupied transmission resource indicates the corresponding resource position (such as the start position and/or the end position) or the resource length.
  • the indication information may also indicate that the interval between the pilot signal and the data in the delay-Doppler domain along the delay axis direction may be 4 grids.
  • the instruction information may also indicate the pattern shown in FIG. 17 or the configuration information corresponding to the pattern. There is no restriction on this.
  • the protocol pre-defines the pilot signal or the CP placement position (such as the start position and/or the end position) of the pilot signal, and the sending end device can use corresponding transmission resources to transmit the pilot signal according to the protocol.
  • the above mainly introduces the time delay-Doppler domain, and the following describes the relationship between the time delay-Doppler domain and the time-frequency domain.
  • Aspect 4 The relationship between time delay-Doppler domain and time-frequency domain.
  • FIG. 18 shows a schematic diagram of the mapping relationship between the time delay-Doppler domain and the time domain-frequency domain.
  • v represents the relative speed along a certain channel path between the transmitted and received signals, and the unit may be, for example, kilometer/hour (km/h).
  • f 0 represents the carrier frequency.
  • f c represents the speed of light.
  • SCS stands for subcarrier spacing (SCS).
  • M represents the number of time-domain symbols/the number of Doppler grids of the OTFS signal.
  • X[m,n] represents the signal on the time-frequency grid.
  • m and n can be mapped in the time domain-frequency domain in ascending order.
  • the index of m is from small to large, which means that the mapping starts from the lowest subcarrier index of the transmission bandwidth in the frequency domain.
  • the index of n is from small to large, which means that the mapping starts from the symbol index of the first transmitted symbol in the time domain.
  • mapping rules the foregoing is only an exemplary description, and does not limit the protection scope of the embodiments of the present application.
  • this application does not limit the relationship from the time delay-Doppler domain to the time domain-frequency domain.
  • some processing may be performed on the frequency domain signal, such as frequency shift processing (such as moving the signal to the baseband 0 frequency position). Therefore, the delay-Doppler domain to the time domain-frequency
  • the relationship between domains may have complex extensions.
  • the pilot sequence uses the ZC sequence
  • the position of an OFDM time-domain signal from the 0 sampling point That is, it starts at the start position of each OFDM time domain signal.
  • changes to the final time domain signal will also reflect changes in the time delay domain.
  • the periodic rotation of the time domain signal can also be equivalent to the periodic rotation in the time delay domain.
  • Figure 19 shows a schematic diagram of the conversion process between OTFS and traditional waveforms from the perspective of the transmitter.
  • the data information is placed in the D matrix.
  • the D matrix may be a two-dimensional matrix with a length of N*M, the first dimension (ie, N) represents the time delay domain, and the second dimension (ie, M) represents the Doppler domain.
  • N and M are integers greater than or equal to 1.
  • a data signal subjected to quadrature amplitude modulation quadrature amplitude modulation, QAM is placed in the D matrix.
  • OTFS encoding may include a dimension permutation matrix P, an orthogonal basis matrix U1 with a dimension of N*N, and an orthogonal basis matrix U2 with a dimension of M*M.
  • the orthogonal basis matrix can be arbitrarily selected, and there is no limitation on this.
  • the orthogonal basis matrix may be a discrete fourier transformation (DFT) matrix, or the orthogonal basis matrix may be an inverse discrete fourier transformation (IDFT) matrix.
  • DFT discrete fourier transformation
  • IDFT inverse discrete fourier transformation
  • OTFS encoding can make the signal in the OTFS time-delay-Doppler domain be mapped to the time-frequency domain, so that it can be mapped to the traditional time-domain waveform for final signal transmission.
  • OFDM waveform modulation can be used, and corresponding OFDM modulation can be performed on frequency domain signals over M time intervals.
  • SC-FDM waveform modulation can be used, and then corresponding SC-FDM modulation can be performed on frequency domain signals in M time intervals.
  • the specific modulation method may be an existing modulation method, which is not limited in the embodiment of the present application.
  • the waveform here can be any known waveform, and different waveforms can be selected for different modulation.
  • OTFS coding does not limit the use of specific transmission waveforms.
  • Fig. 20 shows a schematic diagram of signal processing at the OTFS receiving end from the perspective of the receiving end.
  • the receiving end first processes the waveforms used by the transmitting end, such as OFDM/SC-FDM waveforms, and then performs OTFS decoding. Among them, the processing done at the receiving end and the processing done at the sending end are an inverse transformation. Finally, perform operations such as channel estimation, signal equalization, and demodulation on the data signal obtained in the time delay-Doppler domain, and restore the data at the transmitting end.
  • the waveforms used by the transmitting end such as OFDM/SC-FDM waveforms
  • FIG. 19 and FIG. 20 are only exemplary descriptions for understanding, and more processing may be included in the actual communication process, which is not limited.
  • the x-axis represents Doppler and the y-axis represents time delay as an example, but this does not limit the application.
  • the time delay-Doppler domain can also be represented by a three-dimensional matrix, and another dimension can represent other meanings, which is not limited.
  • the origin is (0, 0), and starting from the origin, the Doppler axis coordinate values are 0, 1, 2, 3..., M, as an example, but This does not limit this application.
  • a, b, c, d, and e are taken as examples to indicate the xy axis or the coordinate values on the Doppler-delay axis, but this does not limit the application.
  • This application is concerned with the location of the transmission resources occupied by the pilot signal or the cyclic prefix or data of the pilot signal in the Doppler-delay domain, whether there is an xy axis, or the representation of the transmission resource, this application does not limited.
  • FIGS. 5 to 10 and 12 to 17 are only schematic diagrams, but this does not limit the application.
  • the pilot signal or the CP or data of the pilot signal may also occupy more or less transmission resources.
  • pilots can be replaced with DMRS, CSI-RS, SRS, etc., and any reference signal that can be used for channel estimation or channel measurement is applicable to this application.
  • the starting position (a, b) of the transmission resource allocated by the pilot signal in the resource grid is determined according to the Doppler shift information, where the resource grid can be used to characterize time delay and Doppler, a represents the time delay grid position in the resource grid, and b represents the Doppler grid position in the resource grid. That is to say, the starting position of the allocated transmission resources of the pilot signal in the resource grid is not randomly placed, but is determined by considering the information related to the Doppler frequency shift. By considering the information of the Doppler frequency shift to determine the placement position in the pilot signal resource grid, it can not only improve the peak-to-average ratio PAPR performance, reduce the impact of Doppler deviation on the channel estimation performance, and improve the channel estimation performance. It is also possible to flexibly determine the placement position of the pilot signal in the resource grid according to actual requirements, such as the minimum phase error or the minimum implementation complexity.
  • the guard interval to place the CP to construct the cyclic convolution of the pilot area, the equivalent two-dimensional channel impulse response can be obtained, and the effect of suppressing the PAPR can be achieved.
  • the methods and operations implemented by the terminal device can also be implemented by the components (such as chips or circuits) that can be used for the terminal device, and the network device (sending device)
  • the methods and operations implemented by the end device can also be implemented by components (such as chips or circuits) that can be used in network devices.
  • the signal transmission method provided by the embodiment of the present application has been described in detail with reference to FIG. 4 to FIG. 20.
  • the communication device related to the signal transmission method provided by the embodiment of the present application will be described in detail with reference to FIGS. 21 to 24. It should be understood that the description of the device embodiment and the description of the method embodiment correspond to each other. Therefore, for the content that is not described in detail, please refer to the above method embodiment. For the sake of brevity, it will not be repeated here.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the sending end device or the receiving end device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 21 is a schematic block diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • the device 2100 may include a transceiver unit 2110 and a processing unit 2120.
  • the transceiver unit 2110 can communicate with the outside, and the processing unit 2120 is used for data processing.
  • the transceiver unit 2110 may also be referred to as a communication interface or transceiver.
  • the communication interface is used to input and/or output information, and the information includes at least one of instructions and data.
  • the device 2100 may be a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the apparatus 2100 can implement the steps or processes performed by the sending end device in the above method embodiment.
  • it can be the sending end device, or a chip or chip configured in the sending end device.
  • the sending end device may be a terminal device or a network device.
  • the transceiving unit 2110 is configured to perform the transceiving related operations on the transmitting end device side in the foregoing method embodiment, and the processing unit 2120 is configured to perform processing related operations on the transmitting end device in the foregoing method embodiment.
  • the processing unit 2120 is configured to: generate a pilot signal, the starting position of the transmission resource allocated for the pilot signal in the resource grid is (a, b), and the pilot signal is in the resource grid
  • the occupied transmission resources are continuous along the delay axis; where a represents the starting grid position of the transmission resources occupied by the pilot signal in the resource grid on the delay axis; b represents the pilot signal occupying the resource grid The starting grid position of the transmission resource on the Doppler axis; and a is 0; the transceiver unit 2110 is used to: send pilot signals.
  • b is 0 or Z, where Z is a number greater than zero.
  • the processing unit 2120 is configured to generate a pilot signal, the starting position of the transmission resource allocated for the pilot signal in the resource grid is (a, b), and the pilot signal is in the resource grid.
  • the transmission resources occupied by, are continuous along the delay axis; where a represents the starting grid position of the transmission resources occupied by the pilot signal in the resource grid on the delay axis; b represents the pilot signal in the resource grid.
  • the starting grid position of the occupied transmission resource on the Doppler axis; and a and/or b are determined according to the information of the Doppler frequency shift; the transceiver unit 2110 is used to send a pilot signal.
  • a is 0 and b is Z, where Z is a number greater than 0; or, both a and b are 0.
  • the length of the pilot signal is a first preset length, where the first preset length is greater than or equal to the maximum multipath delay.
  • the starting position of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is (c, b), and the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is along the delay axis direction Continuous; where c represents the starting grid position on the delay axis of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid.
  • the length of the cyclic prefix of the pilot signal is a second preset length, where the second preset length is greater than or equal to the maximum multipath delay.
  • the end position of the transmission resource occupied by the data in the resource grid is (d, e); where d represents the end grid position of the transmission resource occupied by the data in the resource grid on the delay axis, e Indicates the end grid position on the Doppler axis of the transmission resource occupied by the data in the resource grid, and c is greater than d.
  • the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid along the Doppler axis in the resource grid is Y, where Y is greater than 0 or A number equal to 0.
  • the transceiver unit 2110 is further configured to: receive or send any one or more of the following information: information about the transmission resources occupied by the pilot signal in the resource grid; or, the transmission resources occupied by the data in the resource grid Information; or, information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid; or, the transmission occupied by the cyclic prefix of the pilot signal in the resource grid Resource information.
  • the information about the transmission resources occupied by the pilot signal in the resource grid includes any one or more of the following information: information on the transmission resources occupied by the pilot signal on the delay axis in the resource grid, and the pilot signal Information, a, b of the transmission resource occupied by the frequency signal on the Doppler axis in the resource grid.
  • the information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid includes: the pilot signal and the data along the Doppler axis in the resource grid Directional interval information, and/or, information about the interval between the pilot signal and the data in the resource grid along the time delay axis.
  • the apparatus 2100 can implement the steps or processes executed by the network device in the above method embodiment.
  • it can be a network device, or a chip or chip system or chip system configured in the network device. Circuit.
  • the transceiving unit 2110 is used to perform the transceiving related operations on the network device side in the above method embodiment, and the processing unit 2120 is used to perform processing related operations on the network device in the above method embodiment.
  • the processing unit 2120 is configured to: allocate transmission resources in the resource grid for the pilot signal, and the starting position of the transmission resource allocated for the pilot signal in the resource grid is (a, b), The transmission resource occupied by the pilot signal in the resource grid is continuous along the delay axis; where a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis; b represents the pilot signal The starting grid position of the transmission resource occupied by the frequency signal in the resource grid on the Doppler axis; and a is 0; the transceiver unit 2110 is configured to: use the transmission resource to send the pilot signal.
  • b is 0 or Z, where Z is a number greater than zero.
  • the processing unit 2120 is configured to: allocate transmission resources in the resource grid for the pilot signal, and the starting position of the transmission resource allocated for the pilot signal in the resource grid is (a, b) ,
  • the transmission resource occupied by the pilot signal in the resource grid is continuous along the delay axis, where a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis; b represents The starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the Doppler axis; and a and/or b are determined according to the Doppler shift information;
  • the transceiver unit 2110 is used to: use the transmission resource Send pilot signals.
  • a is 0 and b is Z, where Z is a number greater than 0; or, both a and b are 0.
  • the length of the pilot signal is a first preset length, where the first preset length is greater than or equal to the maximum multipath delay.
  • the processing unit 2120 is further configured to: allocate transmission resources in the resource grid for the cyclic prefix of the pilot signal, and the starting position of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is (c, b), the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid is continuous along the delay axis; where c represents the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid on the delay axis The starting grid position.
  • the length of the cyclic prefix of the pilot signal is a second preset length, where the second preset length is greater than or equal to the maximum multipath delay.
  • the processing unit 2120 is further configured to: allocate transmission resources in the resource grid for the data, and the end position of the transmission resource occupied by the data in the resource grid is (d, e); where d indicates that the data is in the resource grid.
  • the end grid position of the transmission resource occupied in the grid on the delay axis, e represents the end grid position of the transmission resource occupied by the data in the resource grid on the Doppler axis, and c is greater than d.
  • the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid along the Doppler axis in the resource grid is Y, where Y is greater than 0 or A number equal to 0.
  • the transceiver unit 2110 is further configured to: send any one or more of the following information: information about the transmission resources occupied by the pilot signal in the resource grid; or, information about the transmission resources occupied by the data in the resource grid ; Or, the information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid; or, the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid information.
  • the information about the transmission resources occupied by the pilot signal in the resource grid includes any one or more of the following information: information on the transmission resources occupied by the pilot signal on the delay axis in the resource grid, and the pilot signal Information, a, b of the transmission resource occupied by the frequency signal on the Doppler axis in the resource grid.
  • the information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid includes: the pilot signal and the data along the Doppler axis in the resource grid Directional interval information, and/or, information about the interval between the pilot signal and the data in the resource grid along the time delay axis.
  • the apparatus 2100 can implement the steps or processes executed by the terminal device corresponding to the above method embodiment.
  • the terminal device can be a terminal device, or a chip or a chip system or a chip system configured in the terminal device. Circuit.
  • the transceiving unit 2110 is used to perform the transceiving-related operations on the terminal device side in the above method embodiment, and the processing unit 2120 is used to perform the processing related operations on the terminal device in the above method embodiment.
  • the transceiver unit 2110 is configured to receive information about transmission resources in the resource grid allocated for the pilot signal, and the starting position of the transmission resource allocated for the pilot signal in the resource grid is (a , B), the transmission resource occupied by the pilot signal in the resource grid is continuous along the delay axis; where a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis ; B represents the starting grid position on the Doppler axis of the transmission resource occupied by the pilot signal in the resource grid; and a is 0; the transceiver unit 2110 is also used to: use the transmission resource to send the pilot signal.
  • b is 0 or Z, where Z is a number greater than zero.
  • the transceiver unit 2110 is configured to receive transmission resources in a resource grid allocated for pilot signals, and the starting position of the transmission resources allocated for the pilot signal in the resource grid is (a, b)
  • the transmission resource occupied by the pilot signal in the resource grid is continuous along the delay axis; where a represents the starting grid position of the transmission resource occupied by the pilot signal in the resource grid on the delay axis; b represents the starting grid position on the Doppler axis of the transmission resource occupied by the pilot signal in the resource grid; and a and/or b are determined according to the Doppler shift information; the transceiver unit 2110 is also used for: Use transmission resources to send pilot signals.
  • a is 0 and b is Z, where Z is a number greater than 0; or, both a and b are 0.
  • the length of the pilot signal is a first preset length, where the first preset length is greater than or equal to the maximum multipath delay.
  • the transceiver unit 2110 is further configured to: receive information about transmission resources in the resource grid allocated for the cyclic prefix of the pilot signal, and the starting position of the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid Is (c, b), the transmission resources occupied by the cyclic prefix of the pilot signal in the resource grid are continuous along the time delay axis; where c represents the transmission resources occupied by the cyclic prefix of the pilot signal in the resource grid at the time The starting grid position on the axis.
  • the length of the cyclic prefix of the pilot signal is a second preset length, where the second preset length is greater than or equal to the maximum multipath delay.
  • the transceiver unit 2110 is further configured to: receive information about transmission resources in the resource grid allocated for data, and the end position of the transmission resource occupied by the data in the resource grid is (d, e); where d represents The end grid position of the transmission resource occupied by the data in the resource grid on the delay axis, e represents the end grid position of the transmission resource occupied by the data in the resource grid on the Doppler axis, and c is greater than d.
  • the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid along the Doppler axis in the resource grid is Y, where Y is greater than 0 or A number equal to 0.
  • the receiving unit 2110 is further configured to: receive any one or more of the following information: information about the transmission resources occupied by the pilot signal in the resource grid; or, information about the transmission resources occupied by the data in the resource grid ; Or, the information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid; or, the transmission resource occupied by the cyclic prefix of the pilot signal in the resource grid information.
  • the information of the transmission resource occupied by the pilot signal in the resource grid includes any one or more of the following information: information on the resource occupied by the pilot signal on the delay axis in the resource grid, and pilot Information, a, b of the resource occupied by the signal on the Doppler axis in the resource grid.
  • the information about the interval between the transmission resource occupied by the pilot signal in the resource grid and the transmission resource occupied by the data in the resource grid includes: the pilot signal and the data along the Doppler axis in the resource grid Directional interval information, and/or, information about the interval between the pilot signal and the data in the resource grid along the time delay axis.
  • the apparatus 2100 may implement the steps or processes executed by the sending end device in the method 400 according to the embodiment of the present application.
  • the apparatus 2100 may include a unit for executing the method executed by the sending end device in the method 400 in FIG. 4.
  • each unit in the device 2100 and other operations and/or functions described above are used to implement the corresponding process of the method 400 in FIG. 4.
  • the transceiver unit 2110 can be used to execute step 420 in the method 400
  • the processing unit 2120 can be used to execute step 410 and step 401 in the method 400.
  • the transceiver unit 2110 in the device 2100 can be implemented by the transceiver 2310 in the terminal device 2300 shown in FIG.
  • the processor 2320 in the terminal device 2300 shown in 23 is implemented.
  • the communication unit in the device 2100 can be implemented by the transceiver 2410 in the network device 2400 shown in FIG.
  • the processor 2420 in the network device 2400 shown in 24 is implemented.
  • the transceiver unit 2110 in the device 2100 may also be an input/output interface.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • FIG. 22 is another schematic block diagram of a signal transmission apparatus 2200 provided by an embodiment of the present application.
  • the device 2200 includes a transceiver 2210, a processor 2220, and a memory 2230.
  • the memory 2230 stores a program.
  • the processor 2220 is used to execute the program stored in the memory 2230 and execute the program stored in the memory 2230.
  • the processor 2220 is configured to execute the relevant processing steps in the above method embodiment, and to execute the program stored in the memory 2230, so that the processor 2220 controls the transceiver 2210 to perform the transceiving-related steps in the above method embodiment.
  • the apparatus 2200 is used to execute the actions performed by the terminal device (an example of the sending end device) in the above method embodiment.
  • the execution of the program stored in the memory 2230 enables the processor 2220 to be used for The processing steps on the terminal device side in the above method embodiments are executed, and the program stored in the memory 2230 is executed so that the processor 2220 controls the transceiver 2210 to perform the receiving and sending steps on the terminal device side in the above method embodiments.
  • the apparatus 2200 is used to execute the actions performed by the network device (another example of the sending end device) in the above method embodiment.
  • the execution of the program stored in the memory 2230 causes the processor 2220 to It is used to execute the processing steps on the network device side in the above method embodiment, and execute the program stored in the memory 2230 so that the processor 2220 controls the transceiver 2210 to perform the receiving and sending steps on the network device side in the above method embodiment.
  • the embodiment of the present application also provides an apparatus 2300, and the apparatus 2300 may be a terminal device or a chip.
  • the apparatus 2300 can be used to perform the actions performed by the terminal device (an example of the sender device) in the foregoing method embodiment.
  • FIG. 23 shows a simplified schematic diagram of the structure of the terminal device.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 23 only one memory and processor are shown in FIG. 23. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 2310 and a processing unit 2320.
  • the transceiving unit 2310 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 2320 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 2310 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiving unit 2310 can be regarded as the sending unit, that is, the transceiving unit 2310 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 2320 is configured to perform step 410 and step 401 in FIG. 4, and/or the processing unit 2320 is further configured to perform other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiving unit 2310 is further used to perform step 420 in FIG. 4, and/or the transceiving unit 2310 is further used to perform other transceiving steps on the terminal device side.
  • FIG. 23 is only an example and not a limitation, and the foregoing terminal device including a transceiving unit and a processing unit may not rely on the structure shown in FIG. 23.
  • the chip When the communication device 2300 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • An embodiment of the present application also provides an apparatus 2400, which may be a network device or may have an AND chip.
  • the apparatus 2400 can be used to perform actions performed by a network device (another example of a sending end device) in the foregoing method embodiment.
  • FIG. 24 shows a simplified schematic diagram of the base station structure.
  • the base station includes 2410 parts and 2420 parts.
  • the 2410 part is mainly used for receiving and sending radio frequency signals and the conversion between radio frequency signals and baseband signals; the 2420 part is mainly used for baseband processing and controlling the base station.
  • the 2410 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 2420 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 2410 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 2410 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the 2410 part includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 2420 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiver unit of part 2410 is used to perform step 420 shown in FIG. 4, and/or the transceiver unit of part 2410 is also used to perform other transceivers on the network device side in the embodiment of the present application.
  • step. The processing unit of part 2420 is used to perform the processing operations of step 301 in FIG. 6 and step 410 and step 401 in FIG. 12, and/or the processing unit of part 2420 is also used to perform the processing steps on the network device side in the embodiment of the present application. .
  • FIG. 24 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 24.
  • the chip When the device 2400 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the network equipment is not limited to the above forms, and may also be in other forms: for example, including AAU, CU node and/or DU node, or BBU and adaptive radio unit (ARU), or BBU; It may also be a customer premises equipment (CPE), or it may be in other forms, which is not limited in this application.
  • AAU CU node and/or DU node
  • BBU and adaptive radio unit
  • ARU adaptive radio unit
  • BBU BBU
  • CPE customer premises equipment
  • the above-mentioned CU and/or DU can be used to perform the actions described in the previous method embodiment implemented by the network device, and the AAU can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • the AAU can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • An embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the foregoing method embodiment.
  • the aforementioned processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • Combining the steps of the signal transmission method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code runs on a computer, the computer executes FIGS. 4 to 4 The method of any one of the embodiments shown in FIG. 20.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a program code, and when the program code runs on a computer, the computer executes the graph 4 to the method of any one of the embodiments shown in FIG. 20.
  • the present application also provides a communication system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the present application also provides a communication system, which includes the aforementioned one or more sending end devices and one or more receiving end devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment or terminal equipment in each of the above device embodiments corresponds to the network equipment or terminal equipment in the method embodiment, and the corresponding module or unit executes the corresponding steps.
  • the communication unit (transceiver) executes the receiving or terminal equipment in the method embodiment.
  • the processing unit (processor).
  • the functions of specific units refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected according to actual needs to implement the solution provided in this application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信号传输的方法及装置,不仅可以降低多普勒偏差对信道估计性能造成的影响,提高信道估计性能,还可以根据实际需求,例如需要相位误差最小或实现复杂度最低等,灵活地确定导频信号在资源栅格的放置位置。该方法可以包括:生成导频信号,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;发送导频信号。其中,资源栅格可以用于表征时延-多普勒。a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a和/或b是根据多普勒频移的信息确定的,例如,a可以为0。

Description

信号传输的方法及装置 技术领域
本申请涉及无线通信领域,更具体地,涉及一种信号传输的方法及装置。
背景技术
正交时频空间(orthogonal time frequency space,OTFS)技术是一种二维调制技术。OTFS技术的一个特征在于,可以将信号,如星座符号,放置在资源栅格中,并通过二维对偶傅里叶变换与传统的时域-频域进行等效变换,最终形成波形并进行传输。例如,形成常见的时分多址(time division multiple access,TDMA)波形、码分多址(code division multiple access,CDMA)波形、正交频分复用(orthogonal frequency division multiplexing,OFDM)波形等进行传输。
一般地,资源栅格为一个矩阵区域,在该资源栅格上放置导频以用于信道估计。那么在该资源栅格上放置导频时,如何可以降低多普勒偏差对性能造成的影响,进而提高信道估计性能是本申请的研究重点。
发明内容
本申请提供一种信号传输的方法及装置,通过多普勒频移的相关信息确定导频信号在用于体现时延-多普勒域的资源栅格中的位置,从而降低多普勒偏差对性能造成的影响,提高信道估计性能。
第一方面,提供了一种信号传输的方法。该方法可以由发送端设备执行,或者,也可以由配置于发送端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。该发送端设备例如可以是终端设备或者网络设备。
该方法包括:生成导频信号,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a为0;发送导频信号。
或者,可以理解,该方法可以包括:生成导频信号,导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置为a,导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置为b,其中,a为0;发送导频信号。
在一种可能的实现方式中,时延轴与多普勒轴构成二维坐标系。
基于上述技术方案,导频信号在资源栅格中被分配的传输资源的起始位置为(0,b)。可以理解,导频信号在资源栅格中被分配的传输资源的起始位置不是随意放置的,是考虑了如何使得相位误差尽可能地小,来确定导频信号在资源栅格中被分配的传输资源的起始位置。也就是说,在导频信号在资源栅格中被分配的传输资源的起始位置为(0,b)的情况下,考虑了相位误差最小,不仅可以提高信道估计性能,提高信号传输性能,还可以根 据实际情况灵活确定b的值。此外,在本申请中,导频信号在资源栅格中占据的传输资源沿时延轴方向连续,可以使得导频能量平均分散到整个导频区域的时延域上,从而可以避免高能量导频造成的信号失真问题,提高系统性能。
在一种可能的实现方式中,资源栅格,为一个长度为N*M的二维矩阵,资源栅格能够用于表征时延-多普勒,如第一维(即N)代表时延域,第二维(即M)代表多普勒域。a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置,也就是说,a表示导频信号在资源栅格中占据的传输资源在用于代表时延的栅格的起始位置。b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置,也就是说,b表示导频信号在资源栅格中占据的传输资源在用于代表多普勒的栅格的起始位置。其中,N、M为大于1或等于1的整数。通过正交时频空间(orthogonal time frequency space,OTFS)技术,可以将导频信号,如星座符号,放置(或者说映射)在该资源栅格中,并通过二维对偶傅里叶变换与传统的资源栅格(如时域-频域)进行等效变换,最终形成波形进行传输。
结合第一方面,在第一方面的某些实现方式中,b为0或Z,其中,Z为大于0的数。
基于上述技术方案,在导频信号在资源栅格中被分配的传输资源的起始位置为(0,0)的情况下,兼顾考虑了相位误差最小和实现复杂度最低,不仅可以提高信道估计性能,还可以简化信道估计的复杂度,提高信号传输性能。
第二方面,提供了一种信号传输的方法。该方法可以由发送端设备执行,或者,也可以由配置于发送端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。该发送端设备例如可以是终端设备或者网络设备。
该方法可以包括:生成导频信号,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a和/或b根据多普勒频移的信息确定;发送导频信号。
或者,可以理解,该方法可以包括:生成导频信号,导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置为a,导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置为b,其中,a和/或b根据多普勒频移的信息确定;发送导频信号。
基于上述技术方案,导频信号在资源栅格中被分配的传输资源的起始位置是根据多普勒频移的信息确定的。也就是说,根据多普勒频移的信息来确定导频信号在资源栅格中时延轴上的起始位置a和/或多普勒轴上的起始位置b。可以理解,在本申请中,导频信号在资源栅格中被分配的传输资源的起始位置不是随意放置的,是考虑了与多普勒频移相关的信息确定的。通过考虑多普勒频移的信息,来确定导频信号在资源栅格中的放置位置,不仅可以改善峰均比(peak-to-average power ratio,PAPR)性能,降低多普勒偏差对信道估计性能造成的影响,提高信道估计性能,还可以根据实际需求,例如需要相位误差最小或者复杂度最低等,灵活地确定导频信号在资源栅格中的放置位置。此外,在本申请中,导频信号在资源栅格中占据的传输资源沿时延轴方向连续,可以使得导频能量平均分散到整个导频区域的时延域上,从而可以避免高能量导频造成的信号失真问题,提高系统性能。
结合第二方面,在第二方面的某些实现方式中,a为0,b为Z,其中,Z为大于0的 数;或,a和b均为0。
在一种可能的实现方式,a=0,也就是说,导频信号在资源栅格中被分配的传输资源的起始位置为(0,b)。在该情况下,在导频信号在资源栅格中被分配的传输资源的起始位置为(0,b)的情况下,考虑了相位误差最小,不仅可以提高信道估计性能,提高信号传输性能,还可以根据实际情况灵活确定b的值。
在又一种可能的实现方式,a=0、b=0,也就是说,导频信号在资源栅格中被分配的传输资源的起始位置为(0,0)。在该情况下,在导频信号在资源栅格中被分配的传输资源的起始位置为(0,0)的情况下,兼顾考虑了相位误差最小和实现复杂度最低,不仅可以提高信道估计性能,还可以简化信道估计的复杂度,提高信号传输性能。
结合第一方面或第二方面,在某些实现方式中,导频信号的长度为第一预设长度,其中,第一预设长度大于或等于最大多径时延。
最大多径时延,指发送端和接收端在进行信号传输时,信号通过最远的传输路程到达接收端所需要的时间与通过最小传输路程到达接收端所需要的时间的差(增量)。
一种可能的实现方式中,最大多径时延为预设的固定值。
结合第一方面或第二方面,在某些实现方式中,导频信号的循环前缀在资源栅格中占据的传输资源的起始位置为(c,b),导频信号的循环前缀在资源栅格中占据的传输资源沿时延轴方向连续;其中,c表示导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置。
或者,可以理解,导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置为c,导频信号的循环前缀在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置为b。
基于上述技术方案,可以利用保护间隔放置循环前缀,构建导频区域的循环卷积,从而能够获得等效二维信道冲击响应。此外,导频信号的循环前缀和导频信号在相同的多普勒栅格位置。这样,不仅可以提高信道估计性能,还可以解决导频信号能量过高引起的PAPR问题。
一种可能的实现方式,导频信号的循环前缀在资源栅格中占据的传输资源在最末尾的时延栅格位置上。
结合第一方面或第二方面,在某些实现方式中,导频信号的循环前缀的长度为第二预设长度,其中,第二预设长度大于或等于最大多径时延。
基于上述技术方案,因为有循环前缀的保护,每个导频信号的接收窗均不包含其它符号的码间串扰(inter symbol interference,ISI)。在每个导频信号的接收窗内,接收符号为发射符号与信道的循环卷积,这使得接收端可以采用频域均衡方法消除信道多径效应。
结合第一方面或第二方面,在某些实现方式中,数据在资源栅格中占据的传输资源的结束位置为(d,e);其中,d表示数据在资源栅格中占据的传输资源在时延轴上的结束栅格位置,e表示数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置,c大于d。
或者,可以理解,数据在资源栅格中占据的传输资源在时延轴上的结束栅格位置为d,数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置为e。
一种可能的实现方式,c=(d+1)。
结合第一方面或第二方面,在某些实现方式中,导频信号在资源栅格中占据的传输资源与数据在资源栅格中占据的传输资源,沿资源栅格中的多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
基于上述技术方案,数据可以占据更多的传输资源,从而相比于随意放置导频信号,不仅可以减小相位误差、降低复杂度,还可以降低导频开销、提高资源利用率。
结合第一方面或第二方面,在某些实现方式中,方法还包括:接收或发送以下任意一项或多项信息:导频信号在资源栅格中占据的传输资源的信息;或,数据在资源栅格中占据的传输资源的信息;或,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息;或,导频信号的循环前缀在资源栅格中占据的传输资源的信息。
一种可能的实现方式,传输资源的信息可以包括:相应的资源位置(如起始位置和/或结束位置)或者资源长度。
又一种可能的实现方式,传输资源的信息可以包括:该传输资源所在的资源栅格的图案或者图案对应的配置信息。
结合第一方面或第二方面,在某些实现方式中,导频信号在资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:导频信号在资源栅格中在时延轴上占据的传输资源的信息、导频信号在资源栅格中在多普勒轴上占据的传输资源的信息、a、b。
结合第一方面或第二方面,在某些实现方式中,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息,包括:导频信号与数据在资源栅格中沿多普勒轴方向的间隔的信息、和/或、导频信号与数据在资源栅格中沿时延轴方向的间隔的信息。
第三方面,提供了一种信号传输的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:为导频信号分配资源栅格中的传输资源,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a为0;使用传输资源发送导频信号。
或者,可以理解,该方法可以包括:为导频信号分配资源栅格中的传输资源,导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置为a,导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置为b,其中,a为0;使用传输资源发送导频信号。
基于上述技术方案,为导频信号分配用于表征时延-多普勒的资源栅格中的传输资源时,导频信号在资源栅格中被分配的传输资源的起始位置为(0,b)。可以理解,导频信号在资源栅格中被分配的传输资源的起始位置不是随意放置的,是考虑了如何使得相位误差尽可能地小,来确定导频信号在资源栅格中被分配的传输资源的起始位置。也就是说,在导频信号在资源栅格中被分配的传输资源的起始位置为(0,b)的情况下,考虑了相位误差最小,不仅可以提高信道估计性能,提高信号传输性能,还可以根据实际情况灵活确定b的值。此外,在本申请中,导频信号在资源栅格中占据的传输资源沿时延轴方向连续, 可以使得导频能量平均分散到整个导频区域的时延域上,从而可以避免高能量导频造成的信号失真问题,提高系统性能。
结合第三方面,在第三方面的某些实现方式中,b为0或Z,其中,Z为大于0的数。
第四方面,提供了一种信号传输的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:为导频信号分配资源栅格中的传输资源,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a和/或b根据多普勒频移的信息确定;使用传输资源发送导频信号。
或者,可以理解,该方法可以包括:为导频信号分配资源栅格中的传输资源,导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置为a,导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置为b,其中,a和/或b根据多普勒频移的信息确定;使用传输资源发送导频信号。
基于上述技术方案,为导频信号分配用于表征时延-多普勒的资源栅格中的传输资源时,可以考虑多普勒频移的信息。也就是说,导频信号在资源栅格中被分配的传输资源的起始位置是根据多普勒频移的信息确定的。也就是说,根据多普勒频移的信息来确定导频信号在资源栅格中时延轴上的起始位置a和/或多普勒轴上的起始位置b。可以理解,在本申请中,导频信号在资源栅格中被分配的传输资源的起始位置不是随意放置的,是考虑了与多普勒频移相关的信息确定的。通过考虑多普勒频移的信息,来确定导频信号在资源栅格中的放置位置,不仅可以改善峰均比(peak-to-average power ratio,PAPR)性能,降低多普勒偏差对信道估计性能造成的影响,提高信道估计性能,还可以根据实际需求,例如需要相位误差最小或者实现复杂度最低等,灵活地确定导频信号在资源栅格中的放置位置。此外,在本申请中,导频信号在资源栅格中占据的传输资源沿时延轴方向连续,可以使得导频能量平均分散到整个导频区域的时延域上,从而可以避免高能量导频造成的信号失真问题,提高系统性能
结合第四方面,在第四方面的某些实现方式中,a为0,b为Z,其中,Z为大于0的数;或,a和b均为0。
结合第三方面或第四方面,在某些实现方式中,导频信号的长度为第一预设长度,其中,第一预设长度大于或等于最大多径时延。
结合第三方面或第四方面,在某些实现方式中,为导频信号的循环前缀分配资源栅格中的传输资源,导频信号的循环前缀在资源栅格中占据的传输资源的起始位置为(c,b),导频信号的循环前缀在资源栅格中占据的传输资源沿时延轴方向连续;其中,c表示导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置。
或者,可以理解,为导频信号的循环前缀分配资源栅格中的传输资源,导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置为c,导频信号的循环前缀在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置为b。
结合第三方面或第四方面,在某些实现方式中,导频信号的循环前缀的长度为第二预设长度,其中,第二预设长度大于或等于最大多径时延。
结合第三方面或第四方面,在某些实现方式中,为数据分配资源栅格中的传输资源,数据在资源栅格中占据的传输资源的结束位置为(d,e);其中,d表示数据在资源栅格中占据的传输资源在时延轴上的结束栅格位置,e表示数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置,c大于d。
或者,可以理解,为数据分配资源栅格中的传输资源,数据在资源栅格中占据的传输资源在时延轴上的结束栅格位置为d,数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置为e。
结合第三方面或第四方面,在某些实现方式中,导频信号在资源栅格中占据的传输资源与数据在资源栅格中占据的传输资源,沿资源栅格中的多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
结合第三方面或第四方面,在某些实现方式中,方法还包括:发送以下任意一项或多项信息:导频信号在资源栅格中占据的传输资源的信息;或,数据在资源栅格中占据的传输资源的信息;或,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息;或,导频信号的循环前缀在资源栅格中占据的传输资源的信息。
结合第三方面或第四方面,在某些实现方式中,导频信号在资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:导频信号在资源栅格中在时延轴上占据的传输资源的信息、导频信号在资源栅格中在多普勒轴上占据的传输资源的信息、a、b。
结合第三方面或第四方面,在某些实现方式中,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息,包括:导频信号与数据在资源栅格中沿多普勒轴方向的间隔的信息、和/或、导频信号与数据在资源栅格中沿时延轴方向的间隔的信息。
第五方面,提供了一种信号传输的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:接收为导频信号分配的资源栅格中的传输资源的信息,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a为0;使用传输资源发送导频信号。
或者,可以理解,该方法可以包括:接收为导频信号分配的资源栅格中的传输资源的信息,导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置为a,导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置为b,其中,a为0;使用传输资源发送导频信号。
结合第五方面,在第五方面的某些实现方式中,b为0或Z,其中,Z为大于0的数。
第六方面,提供了一种信号传输的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:接收为导频信号分配的资源栅格中的传输资源的信息,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格 位置;且a和/或b根据多普勒频移的信息确定;使用传输资源发送导频信号。
或者,可以理解,该方法可以包括:接收为导频信号分配的资源栅格中的传输资源的信息,导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置为a,导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置为b,其中,a和/或b根据多普勒频移的信息确定;使用传输资源发送导频信号。
结合第六方面,在第六方面的某些实现方式中,a为0,b为Z,其中,Z为大于0的数;或,a和b均为0。
结合第六方面,在第六方面的某些实现方式中,导频信号的长度为第一预设长度,其中,第一预设长度大于或等于最大多径时延。
结合第六方面,在第六方面的某些实现方式中,接收为导频信号的循环前缀分配的资源栅格中的传输资源的信息,导频信号的循环前缀在资源栅格中占据的传输资源的起始位置为(c,b),导频信号的循环前缀在资源栅格中占据的传输资源沿时延轴方向连续;其中,c表示导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置。
或者,可以理解,接收为导频信号的循环前缀分配资源栅格中的传输资源的信息,导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置为c,导频信号的循环前缀在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置为b。
结合第六方面,在第六方面的某些实现方式中,导频信号的循环前缀的长度为第二预设长度,其中,第二预设长度大于或等于最大多径时延。
结合第六方面,在第六方面的某些实现方式中,接收为数据分配的资源栅格中的传输资源的信息,数据在资源栅格中占据的传输资源的结束位置为(d,e);其中,d表示数据在资源栅格中占据的传输资源在时延轴上的结束栅格位置,e表示数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置,c大于d。
或者,可以理解,接收为数据分配资源栅格中的传输资源的信息,数据在资源栅格中占据的传输资源在时延轴上的结束栅格位置为d,数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置为e。
结合第六方面,在第六方面的某些实现方式中,导频信号在资源栅格中占据的传输资源与数据在资源栅格中占据的传输资源,沿资源栅格中的多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
结合第六方面,在第六方面的某些实现方式中,方法还包括:接收以下任意一项或多项信息:导频信号在资源栅格中占据的传输资源的信息;或,数据在资源栅格中占据的传输资源的信息;或,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息;或,导频信号的循环前缀在资源栅格中占据的传输资源的信息。
结合第六方面,在第六方面的某些实现方式中,导频信号在资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:导频信号在资源栅格中在时延轴上占据的传输资源的信息、导频信号在资源栅格中在多普勒轴上占据的传输资源的信息、a、b。
结合第六方面,在第六方面的某些实现方式中,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息,包括:导频信号与数据在资源栅格中沿多普勒轴方向的间隔的信息、和/或、导频信号与数据在资源栅格中沿时延轴方向的间隔的信息。
第七方面,提供了一种信号传输的装置,用于执行上述各方面中任一种可能的实现方式中的方法。具体地,该装置包括用于执行上述各方面中任一种可能的实现方式中的方法的单元。
第八方面,提供了另一种信号传输的装置,包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第四方面中任一种可能的实现方式中的方法。在一种可能的实现方式中,该信号传输的装置还包括存储器。在一种可能的实现方式中,该信号传输的装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该信号传输的装置为终端设备。当该信号传输的装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该信号传输的装置为配置于终端设备中的芯片。当该信号传输的为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
在又一种实现方式中,该信号传输的装置为网络设备。当该信号传输的装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
在再一种实现方式中,该信号传输的装置为配置于网络设备中的芯片。当该信号传输的为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
第九方面,提供了另一种信号传输的装置,包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第五方面中任一种可能的实现方式中的方法。在一种可能的实现方式中,该信号传输的装置还包括存储器。在一种可能的实现方式中,该信号传输的装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该信号传输的装置为网络设备。当该信号传输的装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该信号传输的装置为配置于网络设备中的芯片。当该信号传输的为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
第十方面,提供了另一种信号传输的装置,包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第六方面中任一种可能的实现方式中的方法。在一种可能的实现方式中,该信号传输的装置还包括存储器。在一种可能的实现方式中,该信号传输的装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该信号传输的装置为终端设备。当该信号传输的装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该信号传输的装置为配置于终端设备中的芯片。当该信号传输的为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
第十一方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行上述各方面中任一种可能的实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请对处理器及各种电路的具 体实现方式不做限定。
第十二方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行上述各方面中任一种可能的实现方式中的方法。
在一种可能的实现方式中,处理器为一个或多个,存储器为一个或多个。
在一种可能的实现方式中,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十三方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被装置运行时,使得装置执行上述各方面中任一种可能实现方式中的方法。
第十四方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在装置上运行时,使得装置执行上述各方面中任一种可能的实现方式中的方法。
第十五方面,提供了一种通信系统,包括前述的终端设备和网络设备。
第十六方面,提供了一种通信系统,包括前述的发送端设备和接收端设备。
附图说明
图1示出了适用于本申请的通信系统的示意图;
图2示出了适用于本申请的时延-多普勒域上的等效信道模型的一示意图;
图3示出了适用于本申请的时延-多普勒域上的等效信道模型的又一示意图;
图4示出了本申请实施例的信号传输的方法的示意性框图;
图5示出了适用于本申请实施例的a=0、b=0的一示意图;
图6示出了适用于本申请实施例的a=0、b=0的又一示意图;
图7示出了适用于本申请实施例的a=0、b=0的另一示意图;
图8示出了适用于本申请实施例的a=0、b=Z的一示意图;
图9示出了适用于本申请实施例的a=0、b=Z的又一示意图;
图10示出了适用于本申请实施例的a=0、b=Z的另一示意图;
图11示出了适用于本申请实施例的循环前缀作为符号间的保护间隔的示意图;
图12至图17示出了适用于本申请实施例的导频信号的循环前缀的位置的示意图;
图18示出了时延-多普勒域与时域-频域映射关系的一示意图;
图19示出了适用于本申请实施例的OTFS与传统波形的转换流程的一示意图;
图20示出了适用于本申请实施例的OTFS与传统波形的转换流程的又一示意图;
图21示出了本申请实施例的信号传输的装置的示意性框图;
图22示出了本申请实施例的信号传输的装置的示意性结构图;
图23示出了本申请实施例的终端设备的示意性结构图;
图24示出了本申请实施例的网络设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)系统、其他演进的通信系统、5G通信系统的下一代移动通信系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、高速通信场景、高频大带宽通信场景等。本申请的技术方案还可以应用于设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车联网系统中的通信。其中,车联网系统中的通信方式统称为V2X(X代表任何事物),例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
为便于理解本申请,首先结合图1详细说明适用于本申请的通信系统。
图1是适用于本申请的通信系统100的一种示意图。如1图所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121至终端设备123。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
应理解,上述图1仅是示例性说明,本申请并不限定于此。例如,本申请还可以应用于通信系统中的上行(终端设备到网络设备)和下行(网络设备到终端设备)通信的任何通信场景。又如,该通信系统中还可以包括其他设备。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例包括:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、 远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请对此并不限定。
作为示例而非限定,在本申请中,终端设备可以是物联网(internet of things,IoT)系统中的终端设备。物联网是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。示例性地,本申请实施例中的终端设备可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备是可以直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更可以通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能等优点,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
作为示例而非限定,在本申请实施例中,终端设备还可以是机器类型通信(machine type communication,MTC)中的终端设备。此外,终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元等,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元等可以实施本申请提供的方法。因此,本申请实施例也可以应用于车联网,例如车辆外联(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车到车(vehicle-to-vehicle,V2V)技术等。
本申请涉及的网络设备可以是与终端设备通信的设备,该网络设备也可以称为接入网设备或者无线接入网设备,它可以是传输接收点(transmission reception point,TRP),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等,还可以是WLAN中的接入点(access point,AP),还可以是NR系统中的gNB,上述网络设备还可以是城市基站、微基站、微微基站、毫微微基站等等,本申请对此不做限定。
在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或是包括CU节点和DU节点的无线接入网络(radio access network,RAN)设备、或者是包括控控制面(control plane,CP)CU节点(如记为CU-CP节点)和用户面(user plane,UP)CU节点(如记为CU-UP节点)以及DU节点 的RAN设备。
网络设备为小区提供服务,终端设备通过网络设备被分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请并不对本申请提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、参考信号(reference signal,RS):也可以称为导频(pilot)、参考序列等。本申请中涉及的参考信号或者说导频可以是用于信道测量的参考信号。例如,该参考信号例如可以包括但不限于以下任意一项或多项:解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、探测参考信号(sounding reference signal,SRS)。但应理解,上文列举仅为示例,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
2、多普勒频移(Doppler shift):可以是指由于终端设备和网络设备之间的相对移动而引发的发射频率和接收频率之间的频率偏移,接收频率与发射频率之差称为多普勒频移。通常来说,多普勒频移可f d可以定义f d=v×f c×cosθ/c。其中,v为终端设备的移动速度,fc为载波频率,θ为多径信号的入射角,c为光速。具体实现时,θ可以考虑不同传输路径的入射角,由于多径的θ不同,则不同传输路径会对应不同的多普勒频移,从而引起多普勒扩展(Doppler spread)。一般来说,多普勒频移的大小表示了移动速度对于信道时域变化快慢的影响。
3、正交时频空间(orthogonal time frequency space,OTFS):是一种二维调制技术,其主要的技术特征包括:将信号(例如:星座符号)放置在一资源栅格上,如记为第一资源栅格,并通过二维对偶傅里叶变换与传统的资源栅格,如记为第二资源栅格,进行等效变换,最终形成常见的时分多址(time division multiple access,TDMA)波形、码分多址(code division multiple access,CDMA)波形、正交频分复用(orthogonal frequency division multiplexing,OFDM)波形等进行传输。
示例地,第一资源栅格,可以为一个长度为N*M的二维矩阵,第一维(即N)代表时延(Delay)域,第二维(即M)代表多普勒(Doppler)域。其中,N、M为大于1或等于1的整数。第一资源栅格,例如也可以称为时延-多普勒域。
应理解,第一资源栅格或时延-多普勒域仅是一种可能的命名,不应对本申请构成任何限定。本申请也并不排除在现有或未来的协议中定义其他可能的命名来替代上述第一资源栅格或时延-多普勒域的名称,但具有相同或相似的特性。
示例地,第二资源栅格,即可以理解为传统的资源栅格。例如,第二资源栅格可以为一个表征时域-频域的二维矩阵。又如,第二资源栅格还可以为一个表征时域-频域-空域的三维矩阵,对此不作限定。应理解,第二资源栅格仅是一种可能的命名,不应对本申请构成任何限定。本申请也并不排除在现有或未来的协议中定义其他可能的命名来替代上述第二资源栅格的名称,但具有相同或相似的特性。
在本申请实施例中,不失一般性,以第一资源栅格记为时延-多普勒域、第二资源栅格记为时域-频域为例进行示例性说明。
4、OTFS原理:数字信号的处理均搬移到时延-多普勒域上进行。
时延-多普勒域与时频域可以通过一个二维正交变换构建桥梁,因此,时延-多普勒域可以被认为是时域-频域的一个二维正交映射。通过二维正交映射,时域-频域变化的信道在时延-多普勒域进行了能量平均化。因此,时延-多普勒域的等效信道和时域-频域的信道相比,至少包括以下三个特性:稳定性、时延-多普勒信息可分辨性、以及正交性。
其中,稳定性:即时延-多普勒域上的每个信号经历的信道几乎完全相同。
其中,时延-多普勒信息可分辨性:即在时延-多普勒域上,信道体现出二维的扩展。在时延域上,可以看到信道的多径信息;在多普勒域上,可以看到信道的多普勒扩展。
其中,正交性:时延-多普勒信道是正交的,即信道每条径的信息与其他径的信息不相关。
图2和图3示出了时延-多普勒域上的等效信道模型。
假设,数据域为一个长度为600*12的二维矩阵,也就是说,数据信息可以被放置在一个长度为600*12的二维矩阵。
例如,发送信号放置于(296,6)位置,如图2中的(1)所示。图2中的(2)示出了OTFS等效响应(equivalent response)的示意图。由图2中的(2)可以看到,时延-多普勒域上的等效信道是二维的信道,在时延维度上展现出多径的特性,在多普勒维度上展现出多普勒扩展的特性。处于不同位置的信号经历的信道是相似的,或者说几乎是相同的。
又如,发送信号放置于(301,6)位置,如图3中的(1)所示。图3中的(2)示出了OTFS等效响应的示意图。由图3中的(2)可以看到,时延-多普勒域上的等效信道是二维的信道,在时延维度上展现出多径的特性,在多普勒维度上展现出多普勒扩展的特性。 处于不同位置的信号经历的信道是相同的。
由上可知,时延-多普勒域的等效信道至少包括以下几点好处:
1)每个数据信号可以经历所有信道,每个数据信号可以获得完整的多径信道信息和多普勒扩展信息,因此其可以获得最大的多径和多普勒扩展增益。
2)由于多普勒扩展的可分辨性,在高速移动场景,可分辨的多普勒扩展可以通过均衡方法尽量消除或减小,信号间干扰得到抑制,从而提升系统性能。
应理解,关于时延-多普勒域的等效信道,本申请不作限定。
一般地,OTFS在时延-多普勒域,可以使用一个矩阵区域,在该区域上放置导频以用于信道估计。导频的放置,对于信道估计性能有很大的影响。
本申请提出一种信号传输的方法,根据多普勒偏移的信息,确定导频信号在资源栅格中被分配的传输资源的起始位置(a,b),其中,资源栅格可以用于表征时延和多普勒,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置,b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置。或者,换句话说,根据多普勒偏移的相关信息,确定在时延-多普勒域中,放置导频信号的起始位置。
下面将结合附图详细说明本申请提供的各个实施例。
本申请实施例以发送端设备为例进行描述。
一种可能的实现方式,发送端设备可以为终端设备,在这种情况下,发送端设备可以称为终端设备。应理解,终端设备可以替换为能够实现与终端设备具有类似功能的装置或芯片,本申请实施例对其名称不作限定。
在该实现方式下,接收端设备可以为网络设备,或者,接收端设备可以为能够实现与网络设备具有类似功能的装置或芯片,或者,接收端设备可以为接收发送端设备发送的导频信号的设备。
另一种可能的实现方式,发送端设备也可以为网络设备,在这种情况下,发送端设备可以称为网络设备。应理解,网络设备也可以替换为能够实现与网络设备具有类似功能的装置或芯片,本申请实施例对其名称不作限定。
在该实现方式下,接收端设备可以为终端设备,或者,接收端设备可以为能够实现与终端设备具有类似功能的装置或芯片,或者,接收端设备可以为接收发送端设备发送的导频信号的设备。
图4是本申请实施例提供的一种信号传输的方法400的示意性框图。方法400可以由发送端设备执行。方法400可以包括如下步骤:
410,生成导频信号,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),该导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a和/或b根据多普勒频移的信息确定;
420,发送导频信号。
其中,资源栅格,即上文所述的第一资源栅格。通过OTFS技术,可以将导频信号,如星座符号,放置(或者说映射)在该资源栅格中,并通过二维对偶傅里叶变换与传统的资源栅格(如时域-频域)进行等效变换,最终形成波形传输。
示例地,资源栅格可以为一个长度为N*M的二维矩阵,资源栅格可以用于表征时延- 多普勒,如第一维(即N)代表时延域,第二维(即M)代表多普勒域。a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置,也就是说,a表示导频信号在资源栅格中占据的传输资源在用于代表时延的栅格的起始位置。b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置,也就是说,b表示导频信号在资源栅格中占据的传输资源在用于代表多普勒的栅格的起始位置。其中,N、M为大于1或等于1的整数。资源栅格中可以包括多个网格(或者称晶格)(如图5至图10、图12至图17中所示)。资源栅格,例如也可以称为时延-多普勒域。
下文作为示例性说明,统一用时延-多普勒域(N*M的二维矩阵)表示。
不失一般性,本申请用a表示导频信号在时延-多普勒域中时延轴上的起始位置,即,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;或者说,a表示在时延-多普勒域中导频信号的起始时延位置;或者说,a表示导频信号的起始时延位置为时延轴上第a个栅格。本申请用b表示导频信号在时延-多普勒域中多普勒轴上的起始位置,即b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;或者说,b表示在时延-多普勒域中导频信号的起始多普勒位置;或者说,b表示导频信号的起始多普勒位置为多普勒轴上第b个栅格。
在本申请中,导频信号在时延-多普勒域中被分配的传输资源的起始位置是根据多普勒频移的信息确定的。也就是说,根据多普勒频移的信息来确定导频信号在时延-多普勒域中时延轴上的起始位置a和/或多普勒轴上的起始位置b。可以理解,在本申请中,导频信号在时延-多普勒域中被分配的传输资源的起始位置不是随意放置的,是考虑了与多普勒频移相关的信息确定的。或者可以理解,考虑到降低多普勒偏差对性能造成的影响,进而提高信道估计性能,本申请提出考虑导频信号在时延-多普勒域中被分配的传输资源的起始位置。通过考虑多普勒频移的信息,来确定导频信号在时延-多普勒域中的放置位置,不仅可以改善峰均比(peak-to-average power ratio,PAPR)性能,降低多普勒偏差对信道估计性能造成的影响,提高信道估计性能,还可以根据实际需求,例如需要相位误差最小或者实现复杂度最低等,灵活地确定导频信号在时延-多普勒域中的放置位置。
此外,在本申请中,导频信号在资源栅格中占据的传输资源沿时延轴方向连续,可以使得导频能量平均分散到整个导频区域的时延域上,从而可以避免高能量导频造成的信号失真问题,提高系统性能。
多普勒频移的信息,即表示与多普勒频移相关的信息,例如可以包括但不限于:多普勒采样间隔、实际测速、最大多普勒频偏、多普勒频移与多普勒采样间隔之间的关系、多普勒频移可能造成的相位误差、OTFS帧的时间长度、或二维变换后的OFDM符号长度/个数等。其中,多普勒采样间隔可以表示为:子载波间隔(subcarrier spacing,SCS)/M。
其中,a和/或b是根据多普勒频移的信息确定的,至少包括两种情况:
情况A:发送端设备根据多普勒频移的信息确定a和/或b的值;
情况B:协议或者网络设备预先定义一组较为合适的(a,b)或者多组可选的(a,b),该一组或多组(a,b)是考虑了多普勒频移的信息确定的。
在情况B下,当定义多组可选的(a,b)时,发送端设备可以任选一组(a,b),如发送端设备根据资源情况或信道状态等,选择一组(a,b)。此时,发送端设备还可以向接收端设备指示所选择的(a,b)。
在情况B下,当定义一组(a,b)时,例如,协议或者网络设备可以预先确定:a=0;又如,协议或者网络设备可以预先确定:a=0,b=0。
其中,a=0,也就是说,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,b)。在该情况下,在导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,b)的情况下,考虑了相位误差最小,不仅可以提高信道估计性能,提高信号传输性能,还可以根据实际情况灵活确定b的值。关于b的具体取值,或者b的获取方式,本申请实施例不作限定。
例如,假设发送信号为(a,b),存在的补偿误差可能表示为下文公式1。
Figure PCTCN2019130785-appb-000001
其中,-1/2<b'<1/2为分数倍的多普勒偏差,(Δa,Δb)表示相对位置点。可以看出,当该公式1中的a=0时,误差最小。因此,可以看出,当导频信号起始于时延为0的行上,误差最小。
其中,a=0,b=0,也就是说,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,0)。在该情况下,在导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,0)的情况下,兼顾考虑了相位误差最小和实现复杂度最低,不仅可以提高信道估计性能,还可以简化信道估计的复杂度,提高信号传输性能。
例如,在使用相位补偿后,忽略补偿误差。由于ZC(Zadoff-Chu)序列良好的自相关特性,因此对发送的导频序列进行循环移位乘以接收信号,即可以得到相应的信道h。对不同起始位置(a,b)和不同的相对位置点(Δa,Δb),可能要做不同的相位补偿。因此,每次只求一个信道h,然后重新对发送信号做相位补偿,再求下一个h,以此类推。
相位补偿因子可以表示为下文的公式2。
Figure PCTCN2019130785-appb-000002
Figure PCTCN2019130785-appb-000003
可以看出,当b=0的情况下,即导频信号起始于多普勒为0的列上,则相位补偿因子变成公式3。
Figure PCTCN2019130785-appb-000004
在求取固定第a行的信道时,只与时延上的相对位置有关,与多普勒无关。且该相位的存在不影响导频循环卷积矩阵的逆矩阵P -1=P H。因此,可以在最后做相位补偿。从而,可以降低信道估计的复杂度。
在本申请实施例中,多处涉及矩阵和向量的变换。为便于理解,这里做统一说明。上角标-1表示逆,如A -1表示矩阵(或向量)A的逆矩阵;上角标H表示共轭转置,如,A H表示矩阵(或向量)A的共轭转置。后文中为了简洁,省略对相同或相似情况的说明。
上述简单的介绍了a=0的情况和a=0以及b=0的情况。上述公式1至公式3仅是为便 于理解进行的示例性说明,本申请实施例对此不作限定。
可选地,导频信号的长度为第一预设长度,其中,该第一预设长度大于或等于最大多径时延。
最大多径时延,例如可以指发送端和接收端在进行信号传输时,信号通过最远的传输路程到达接收端所需要的时间与通过最小传输路程到达接收端所需要的时间的差(增量)。
示例地,最大多径时延可以为预设的固定值。或者,最大多径时延也可以为预设的一个数值范围。关于最大多径时延,本申请实施例不作限定。
关于导频信号的长度(即第一预设长度)的具体取值以及获取方式,本申请实施例不作限定。
一种可能的实现方式,协议或者网络设备预先规定导频信号的长度。在该实现方式下,发送端设备可以根据协议或者网络设备预先规定导频信号的长度,确定导频信号的长度。
又一种可能的实现方式,协议或者网络设备预先规定:多个导频信号的长度或者导频信号的长度所在的数值范围。例如,发送端设备可以根据协议或者网络设备预先规定的多个导频信号的长度,确定一个导频信号的长度。或者,又如,发送端设备可以根据协议或者网络设备预先规定的导频信号的长度所在的数值范围,确定一个落入该数值范围内的数值作为导频信号的长度。在该实现方式下,发送端设备可以向接收端设备指示导频信号的长度。
又一种可能的实现方式,网络设备配置导频信号的长度。在该实现方式下,网络设备可以向终端设备指示导频信号的长度。
应理解,在本申请实施例中,涉及到网络设备配置或规定导频信号的相关信息,例如网络设备配置导频信号的长度或者导频信号时延-多普勒域中占据的传输资源的起始位置,关于该网络设备不作限定。例如,该网络设备可以是上文描述的任一网络设备,如基站。又如,在发送端设备为终端设备的情况下,该网络设备可以是与该终端设备通信的网络设备,或者,该网络设备也可以是与终端设备之前通信的网络设备,或者,该网络设备也可以是其他网络设备。又如,在发送端设备为网络设备的情况下,该网络设备可以是该发送端设备,或者,该网络设备也可以是其他网络设备,对此不作限定。
又一种可能的实现方式,发送端设备可以自行确定导频信号的长度,该导频信号的长度大于或等于最大多径时延。在该实现方式下,发送端设备可以向接收端设备指示导频信号的长度。
下面结合几个方面具体说明。下面各个方面所述的方案,可以单独使用,也可以结合使用,对此不作限定。
方面一:a、b。
可选地,关于导频信号在时延-多普勒域中时延轴上的起始位置a,导频信号在时延-多普勒域中多普勒轴上的起始位置b的值,至少包括以下两种方案。
方案1:a=0,b=0;
方案2:a=0,b=Z(其中,Z为大于0的数)。
下面分别详细介绍这两种方案。
方案1:a=0,b=0。
也就是说,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,0)。
基于方案1,在导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,0)的情况下,兼顾考虑了相位误差最小和实现复杂度最低,不仅可以提高信道估计性能,还可以简化信道估计的复杂度,提高信号传输性能。
一示例,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,0),可以是协议预先规定的或者网络设备预先配置的。例如,协议预先规定或者网络设备预先配置导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,0)。
又一示例,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,0),可以是网络设备根据实际需求配置的。例如,网络设备发送导频信号时,可以根据需要兼顾相位误差最小和实现复杂度最低,选择a=0,b=0。又如,终端设备发送导频信号时,网络设备可以向终端设备指示a=0,b=0,以便可以兼顾相位误差最小和实现复杂度最低。
可选地,方案1至少包括以下三种可能的情况,下面结合图5至图7进行示例性说明。
情况1
图5示出了方案1的一种可能的示意图。
如图5所示,时延-多普勒域(即资源栅格)为一个二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
其中,时延-多普勒域中的每个元素或者说每个网格可以称为资源粒子(resource element,RE)。导频信号和数据各占时延-多普勒域中的部分传输资源,其余未填充的网格表示RE为0,即不放置信息。
由图5可以看出,导频信号在时延-多普勒域中占据的传输资源的起始位置为原点(0,0)。此外,可以看出,导频信号在时延-多普勒域中占据的传输资源沿时延轴(即y轴)方向连续。
当方案1采用如情况1所示的方案时,可以同时兼顾相位误差最小和实现复杂度最低,而且方案实现更简单。
情况2
图6示出了方案1的又一种可能的示意图。
如图6所示,时延-多普勒域(即资源栅格)为一个二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
由图6可以看出,导频信号在时延-多普勒域中占据的传输资源的起始位置为原点(0,0)。此外,可以看出,导频信号在时延-多普勒域中占据的传输资源沿时延轴(即y轴)方向连续。
为便于描述,将数据和导频信号沿多普勒轴(即x轴)之间的网格数量记为Y,Y可以为大于0或等于0的任意一个数值。由图6可知,假设从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,那么Y可以为2。
一示例,Y可以是网络设备(例如基站)或者协议预先规定好的一个数值。
又一示例,Y也可以是网络设备或者协议预先规定好的一组数值,发送端设备可以根据实际需求从这一组数值中选择合适的Y值。
又一示例,Y也可以是网络设备配置的。
例如,在发送端设备为网络设备的情况下,网络设备可以根据配置的Y值确定导频和数据在时延-多普勒域中占据的传输资源的位置。此外,网络设备还可以将Y值通知给终 端设备。
又如,在发送端设备为终端设备的情况下,网络设备可以将配置的Y值通知给终端设备,便于终端设备确定导频信号和数据在时延-多普勒域中占据的传输资源的位置。
关于Y的具体取值,或者Y的获取方式,本申请实施例不作限定。
应理解,在本申请实施例中,网络设备配置或者规定数值,例如Y或者下文提及的Z,关于该网络设备不作限定。例如,该网络设备可以是上文描述的任一网络设备,如基站。又如,在发送端设备为终端设备的情况下,该网络设备可以是与该终端设备通信的网络设备,或者,该网络设备也可以是与终端设备之前通信的网络设备。又如,在发送端设备为网络设备的情况下,该网络设备可以是该发送端设备,或者,该网络设备也可以是其他网络设备,对此不作限定。
当方案1采用如情况2所示的方案时,可以看出,数据可以占据更多的传输资源,相比于随意放置导频信号的方案,不仅可以减小相位误差、降低复杂度,还可以降低导频开销、提高资源利用率。
情况3
图7示出了方案1的另一种可能的示意图。
如图7所示,时延-多普勒域(即资源栅格)为一个二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
由图7可以看出,导频信号在时延-多普勒域中占据的传输资源的起始位置为原点(0,0)。此外,可以看出,导频信号在时延-多普勒域中占据的传输资源沿时延轴(即y轴)方向连续。
当方案1采用如情况3所示的方案时,可以看出,通过数据区域和导频区域之间的保护后缀,或者说,通过在数据区域和导频区域之间配置保护后缀,可以提高接收端根据导频信号进行信道估计的性能。
应理解,保护后缀仅是一种命名,并不对本申请的保护范围造成限定。
还应理解,关于保护后缀的区域,可以根据实际情况具体配置,本申请对此不作限定。
上述结合图5至图7示例性地介绍了方案1的三种可能的情况,应理解,本申请实施例并不限定于此。
还应理解,图5至图7仅是示例性说明,本申请实施例并不限定于此。例如,图5至图7中,导频信号在时延-多普勒域中占据的传输资源沿时延轴的长度为5个网格,其仅是示例性说明,导频信号在时延-多普勒域中占据的传输资源沿时延轴的长度还可以更长或者更短。
下面介绍方案2。
方案2:a=0,b=Z。
也就是说,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,Z)。
基于方案2,在导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,Z)的情况下,考虑了相位误差最小,不仅可以提高信道估计性能,提高信号传输性能,还可以根据实际情况灵活确定Z的值。关于Z的具体取值,或者Z的获取方式,本申请实施例不作限定。
例如,Z可以是网络设备或者协议预先规定好的一个数值。
又如,Z也可以是网络设备或者协议预先规定好的一组数值,发送端设备可以根据实际需求从这一组数值中选择合适的Z值。
又如,Z也可以是网络设备配置的。在发送端设备为网络设备的情况下,网络设备可以根据配置的Z值确定导频信号在时延-多普勒域中占据的传输资源的起始位置。在发送端设备为终端设备的情况下,网络设备可以将配置的Z值通知给终端设备,便于终端设备确定导频信号在时延-多普勒域中占据的传输资源的起始位置。
关于导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,Z),可以是预先规定的,也可以是网络设备配置的。
一示例,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,Z),可以是协议预先规定的或者网络设备预先配置的。例如,协议预先规定或者网络设备预先配置导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,Z)。在该示例下,Z值可以是预先规定好的。
又一示例,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,Z),可以是网络设备根据实际需求配置的。
可选地,方案2至少包括以下三种可能的情况,下面结合图8至图10进行示例性说明。
情况4
图8示出了方案2的一种可能的示意图。
如图8所示,时延-多普勒域(即资源栅格)为一个二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
由图8可以看出,假设从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,那么Z可以为5,也就是说,导频信号在时延-多普勒域中占据的传输资源的起始位置为(0,5)。此外,可以看出,导频信号在时延-多普勒域中占据的传输资源沿时延轴方向连续。
应理解,Z为5仅是一种示例性说明,本申请实施例并不限定于此。
还应理解,从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,仅是一种示例,本申请实施例并不限定于此,例如,从原点开始,多普勒轴坐标值还可以依次为:0、2、4、6……、M等。
当方案2采用如情况4所示的方案时,可以使得相位误差最小,而且方案实现更简单。
情况5
图9示出了方案2的又一种可能的示意图。
如图9所示,时延-多普勒域(即资源栅格)为一个二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
由图9可以看出,假设从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,那么Z可以为5,也就是说,导频信号在时延-多普勒域中占据的传输资源的起始位置为(0,5)。此外,可以看出,导频信号在时延-多普勒域中占据的传输资源沿时延轴(即y轴)方向连续。
应理解,Z为5仅是一种示例性说明,本申请实施例并不限定于此。
还应理解,从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,仅是一种示例,本申请实施例并不限定于此,例如,从原点开始,多普勒轴坐标值还可以依次为:0、 2、4、6……、M等。
在图9所示的示例中,数据和导频信号沿多普勒轴之间的网格数量为3,相比于如图8所示的示例,数据可以占据更多的传输资源,从而也可以提高资源的利用率。
为便于描述,将数据和导频信号沿多普勒轴之间的网格数量记为Y,Y可以为大于0或等于0的任意一个数值。由图9可知,假设从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,那么Y可以为2。
关于Y的具体取值,或者Y的获取方式,可以参考方案1中的描述,此处不再介绍。
当方案2采用如情况5所示的方案时,可以看出,数据可以占据更多的传输资源,从而相比于随意放置导频信号的方案,不仅可以减小相位误差,还可以降低导频开销、提高资源利用率。
情况6
图10示出了方案2的另一种可能的示意图。
如图10所示,时延-多普勒域(即资源栅格)为一个二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
由图10可以看出,假设从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,那么Z可以为5,也就是说,导频信号在时延-多普勒域中占据的传输资源的起始位置为(0,5)。此外,可以看出,导频信号在时延-多普勒域中占据的传输资源沿时延轴(即y轴)方向连续。
当方案2采用如情况6所示的方案时,可以看出,通过数据区域和导频区域之间的保护后缀,或者说,通过在数据区域和导频区域之间配置保护后缀,可以提高接收端根据导频信号进行信道估计的性能。
应理解,保护后缀仅是一种命名,并不对本申请的保护范围造成限定。
还应理解,关于保护后缀的区域,可以根据实际情况具体配置,对此不作限定。
上述结合图8至图10示例性地介绍了方案2的三种可能的情况,应理解,本申请实施例并不限定于此。
还应理解,图8至图10仅是示例性说明,本申请实施例并不限定于此。例如,图8至图10中,导频信号在时延-多普勒域中占据的传输资源沿时延轴的长度为5个网格,其仅是示例性说明,导频信号在时延-多普勒域中占据的传输资源沿时延轴的长度还可以更长或者更短。
上文介绍了方面一的内容,下面介绍方面二的内容。
方面二:导频信号的循环前缀(cyclic prefix,CP)。
一般地,循环前缀可以作为符号(如导频信号)间的保护间隔。图11示出了循环前缀(以下记为CP)作为符号间的保护间隔的示意图。导频信号的CP指的是,导频信号中截取CP的位置到结束位置之间的一段信号被复制到导频信号的前面形成的循环结构。
可选地,在本申请实施例中,CP可以作为导频信号之间的保护间隔。
可选地,导频信号的CP在时延-多普勒域中占据的传输资源的起始位置为(c,b),导频信号的CP在时延-多普勒域中占据的传输资源沿时延轴方向连续;其中,c表示导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置。一种可能的实现方式,导频信号的CP在时延-多普勒域中占据的传输资源在最末尾的时延栅格位置上。
在本申请实施例,可以利用保护间隔放置CP,构建导频区域的循环卷积,从而能够获得等效二维信道冲击响应。此外,导频信号的CP和导频信号在相同的多普勒栅格位置。这样,不仅可以提高信道估计性能,还可以解决导频信号能量过高引起的PAPR问题。
可选地,数据在时延-多普勒域中占据的传输资源的结束位置为(d,e);其中,d表示数据在资源栅格中占据的传输资源在时延轴上的结束栅格位置,e表示数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置,c大于d。
c大于d,可以理解为,导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始坐标值,大于数据在资源栅格中占据的传输资源在时延轴上的结束坐标值。或者也可以理解为,在时延轴方向上,导频信号的循环前缀在资源栅格中占据的传输资源位于数据在资源栅格中占据的传输资源之后。
例如,c=(d+1)。
可选地,导频信号的CP的长度为第二预设长度,其中,该第二预设长度大于或等于最大多径时延。这样,因为有CP的保护,每个导频信号的接收窗均不包含其它符号的码间串扰(inter symbol interference,ISI)。在每个导导频信号的接收窗内,接收符号为发射符号与信道的循环卷积,这使得接收端可以采用频域均衡方法消除信道多径效应。
关于导频信号的CP的长度(即第二预设长度)的具体取值以及获取方式,本申请实施例不作限定。
一种可能的实现方式,协议或者网络设备预先规定导频信号的CP的长度。在该实现方式下,发送端设备可以根据协议或者网络设备预先规定导频信号的CP的长度,确定导频信号的CP的长度。
又一种可能的实现方式,协议或者网络设备预先规定:多个导频信号的CP的长度或者导频信号的CP的长度所在的数值范围。例如,发送端设备可以根据协议或者网络设备预先规定的多个导频信号的CP的长度,确定一个导频信号的CP的长度。或者,又如,发送端设备可以根据协议或者网络设备预先规定的导频信号的CP的长度所在的数值范围,确定一个落入该数值范围内的数值作为导频信号的CP的长度。在该实现方式下,发送端设备可以向接收端设备指示导频信号的CP的长度。
又一种可能的实现方式,网络设备配置导频信号的CP的长度。在该实现方式下,网络设备可以向终端设备指示导频信号的CP的长度。
又一种可能的实现方式,发送端设备可以自行确定导频信号的CP的长度,该导频信号的CP的长度大于或等于最大多径时延。在该实现方式下,发送端设备可以向接收端设备指示导频信号的CP的长度。
下面结合图12至图17详细说明,导频信号的CP几种可能的设计方式。
(1)图12示出了导频信号的CP的一种可能的示意图。
如图12所示,时延-多普勒域(即资源栅格)为一个N*M的二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
导频信号、导频信号的CP和数据各占时延-多普勒域中的部分传输资源,其余未填充的网格表示RE为0,即不放置信息。导频信号和导频信号的CP在时延-多普勒域中占据的传输资源沿时延轴方向连续。
由图12可以看出,a=0、b=0,即导频信号在时延-多普勒域中占据的传输资源的起始 位置为原点(0,0),导频信号的CP在时延-多普勒域中占据的传输资源的起始位置为(N-CP+1,0)。
由图12可以看出,导频信号的CP和导频信号在相同的多普勒栅格位置,且导频信号的CP在时延-多普勒域中占据的传输资源在最末尾的时延栅格位置上。也就是说,可以在起始位置为(N-CP+1,0)的位置放置导频信号的CP。导频信号的CP在时延-多普勒域中占据的传输资源在时延轴的起始位置c为(N-CP+1),导频信号的CP在时延-多普勒域中占据的传输资源在多普勒轴的起始位置b为0。此外,可以看出,在图12所示的示例中,c=(d+1)。
如前所述,导频信号的CP指的是,导频信号中截取CP的位置到结束位置之间的一段信号被复制到导频信号的前面形成的循环结构。也就是说,导频信号的CP,可以为导频信号最末尾L个信号的重复。其中,L为大于1或等于1的数。
关于L的取值,不作限定。例如,可以是网络设备配置的,或者,也可以是预先规定好的。
例如,假设导频信号表示为:A=[a(1),a(2),a(3),a(4),…a(N)];那么长度为L的CP为A的最后L个信号,即[a(N-L+1),a(N-L+2),…a(N)]。
通过如图12所示的放置方式,不仅可以同时兼顾相位误差最小和实现复杂度最低、方案实现更简单,还可以解决导频信号能量过高引起的PAPR问题。
(2)图13示出了导频信号的CP的又一种可能的示意图。
如图13所示,时延-多普勒域(即资源栅格)为一个N*M的二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
导频信号、导频信号的CP和数据各占时延-多普勒域中的部分传输资源,其余未填充的网格(或者称晶格)表示RE为0,即不放置信息。导频信号和导频信号的CP在时延-多普勒域中占据的传输资源沿时延轴方向连续。
在图13所示的示例中,数据和导频信号沿多普勒轴之间的网格数量为3,以及数据和导频信号的CP沿多普勒轴之间的网格数量为3。也就是说,相比于如图12所示的示例,数据可以占据更多的传输资源,从而也可以提高资源的利用率。将数据和导频信号沿多普勒轴之间的网格数量记为Y,Y可以为大于0或等于0的任意一个数值。关于Y的具体取值,或者Y的获取方式,可以参考上述方案1中的情况2的描述,此处不再赘述。
由图13可以看出,导频信号的CP和导频信号在相同的多普勒栅格位置,且导频信号的CP在时延-多普勒域中占据的传输资源在最末尾的时延栅格位置上。也就是说,可以在起始位置为(N-CP+1,0)的位置放置导频信号的CP。导频信号的CP在时延-多普勒域中占据的传输资源在时延轴的起始位置c为(N-CP+1),导频信号的CP在时延-多普勒域中占据的传输资源在多普勒轴的起始位置b为0。此外,可以看出,在图13所示的示例中,c=(d+1)。
导频信号的CP,可以为导频信号最末尾L个信号的重复。其中,L为大于1或等于1的数。关于L的取值,不作限定。例如,可以是网络设备配置的,或者,也可以是预先规定好的。
例如,假设导频信号表示为:A=[a(1),a(2),a(3),a(4),…a(N)];那么长度为L的CP为A的最后L个信号,即[a(N-L+1),a(N-L+2),…a(N)]。
通过如图13所示的放置方式,数据可以占据更多的传输资源,从而相比于随意放置导频信号,不仅可以减小相位误差、降低复杂度,还可以降低导频开销、提高资源利用率。此外,通过放置CP可以解决导频信号能量过高引起的PAPR问题。
(3)图14示出了导频信号的CP的又一种可能的示意图。
如图14所示,时延-多普勒域(即资源栅格)为一个N*M的二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
导频信号、导频信号的CP和数据各占时延-多普勒域中的部分传输资源,其余未填充的网格(或者称晶格)表示RE为0,即不放置信息。导频信号和导频信号的CP在时延-多普勒域中占据的传输资源沿时延轴方向连续。
在图14所示的示例中,数据区域和导频区域之间还可以有保护后缀,从而可以提高接收端根据导频信号进行信道估计的性能。
由图14可以看出,导频信号的CP和导频信号在相同的多普勒栅格位置,且导频信号的CP在时延-多普勒域中占据的传输资源在最末尾的时延栅格位置上。也就是说,可以在起始位置为(N-CP+1,0)的位置放置导频信号的CP。导频信号的CP在时延-多普勒域中占据的传输资源在时延轴的起始位置c为(N-CP+1),导频信号的CP在时延-多普勒域中占据的传输资源在多普勒轴的起始位置b为0。此外,可以看出,在图13所示的示例中,c=(d+1)。
导频信号的CP,可以为导频信号最末尾L个信号的重复。其中,L为大于1或等于1的数。关于L的取值,不作限定。例如,可以是网络设备配置的,或者,也可以是预先规定好的。
例如,假设导频信号表示为:A=[a(1),a(2),a(3),a(4),…a(N)];那么长度为L的CP为A的最后L个信号,即[a(N-L+1),a(N-L+2),…a(N)]。
通过如图14所示的放置方式,数据可以占据更多的传输资源,从而相比于随意放置导频信号,不仅可以减小相位误差、降低复杂度,还可以降低导频开销、提高资源利用率。此外,通过放置CP可以解决导频信号能量过高引起的PAPR问题。
(4)图15示出了导频信号的CP的又一种可能的示意图。
如图15所示,时延-多普勒域(即资源栅格)为一个N*M的二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
导频信号、导频信号的CP和数据各占时延-多普勒域中的部分传输资源,其余未填充的网格(或者称晶格)表示RE为0,即不放置信息。导频信号和导频信号的CP在时延-多普勒域中占据的传输资源沿时延轴方向连续。
在图15所示的示例中,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,Z)。假设从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,那么Z可以为5,也就是说,导频信号在时延-多普勒域中占据的传输资源的起始位置为(0,5)。
应理解,Z为5仅是一种示例性说明,本申请并不限定于此。关于Z,可以参考方案2中的描述,此处不再赘述。
还应理解,从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,仅是一种示例,本申请实施例并不限定于此,例如,从原点开始,多普勒轴坐标值还可以依次为:0、2、4、6……、M等。
由图15可以看出,导频信号的CP和导频信号在相同的多普勒栅格位置,且导频信号的CP在时延-多普勒域中占据的传输资源在最末尾的时延栅格位置上。也就是说,可以在起始位置为(N-CP+1,Z)的位置放置导频信号的CP。导频信号的CP在时延-多普勒域中占据的传输资源在时延轴的起始位置c为(N-CP+1),导频信号的CP在时延-多普勒域中占据的传输资源在多普勒轴的起始位置b为Z。此外,可以看出,在图15所示的示例中,c=(d+1)。
导频信号的CP,可以为导频信号最末尾L个信号的重复。其中,L为大于1或等于1的数。关于L的取值,不作限定。例如,可以是网络设备配置的,或者,也可以是预先规定好的。
例如,假设导频信号表示为:A=[a(1),a(2),a(3),a(4),…a(N)];那么长度为L的CP为A的最后L个信号,即[a(N-L+1),a(N-L+2),…a(N)]。
通过如图15所示的放置方式,可以使得相位误差最小,而且方案实现更简单。此外,通过放置CP可以解决导频信号能量过高引起的PAPR问题。
(5)图16示出了导频信号的CP的又一种可能的示意图。
如图16所示,时延-多普勒域(即资源栅格)为一个N*M的二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
导频信号、导频信号的CP和数据各占时延-多普勒域中的部分传输资源,其余未填充的网格(或者称晶格)表示RE为0,即不放置信息。导频信号和导频信号的CP在时延-多普勒域中占据的传输资源沿时延轴方向连续。
在图16所示的示例中,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,Z)。假设从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,那么Z可以为5,也就是说,导频信号在时延-多普勒域中占据的传输资源的起始位置为(0,5)。
关于Z,可以参考方案2中的描述,此处不再赘述。
应理解,从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,仅是一种示例,本申请实施例并不限定于此,例如,从原点开始,多普勒轴坐标值还可以依次为:0、2、4、6……、M等。
在图16所示的示例中,数据和导频信号沿多普勒轴之间的网格数量为2,以及数据和导频信号的CP沿多普勒轴之间的网格数量为2。也就是说,相比于如图15所示的示例,数据可以占据更多的传输资源,从而也可以提高资源的利用率。将数据和导频信号沿多普勒轴之间的网格数量记为Y,Y可以为大于0或等于0的任意一个数值。关于Y的具体取值,或者Y的获取方式,可以参考上述方案1中的情况2的描述,此处不再赘述。
由图16可以看出,导频信号的CP和导频信号在相同的多普勒栅格位置,且导频信号的CP在时延-多普勒域中占据的传输资源在最末尾的时延栅格位置上。也就是说,可以在起始位置为(N-CP+1,Z)的位置放置导频信号的CP。导频信号的CP在时延-多普勒域中占据的传输资源在时延轴的起始位置c为(N-CP+1),导频信号的CP在时延-多普勒域中占据的传输资源在多普勒轴的起始位置b为Z。此外,可以看出,在图16所示的示例中,c=(d+1)。
导频信号的CP,可以为导频信号最末尾L个信号的重复。其中,L为大于1或等于1的数。关于L的取值,不作限定。例如,可以是网络设备配置的,或者,也可以是预先规 定好的。
例如,假设导频信号表示为:A=[a(1),a(2),a(3),a(4),…a(N)];那么长度为L的CP为A的最后L个信号,即[a(N-L+1),a(N-L+2),…a(N)]。
通过如图16所示的放置方式,数据可以占据更多的传输资源,从而相比于随意放置导频信号,不仅可以减小相位误差,还可以降低导频开销、提高资源利用率。此外,通过放置CP可以解决导频信号能量过高引起的PAPR问题。
(6)图17示出了导频信号的CP的又一种可能的示意图。
如图17所示,时延-多普勒域(即资源栅格)为一个N*M的二维区域,其中,x轴表示多普勒,y轴表示时延。假设时延-多普勒域的原点为(0,0)。
导频信号、导频信号的CP和数据各占时延-多普勒域中的部分传输资源,其余未填充的网格(或者称晶格)表示RE为0,即不放置信息。导频信号和导频信号的CP在时延-多普勒域中占据的传输资源沿时延轴方向连续。
在图17所示的示例中,数据区域和导频区域之间还可以有保护后缀,从而可以提高接收端根据导频信号进行信道估计的性能。
在图17所示的示例中,导频信号在时延-多普勒域中被分配的传输资源的起始位置为(0,Z)。假设从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,那么Z可以为5,也就是说,导频信号在时延-多普勒域中占据的传输资源的起始位置为(0,5)。
关于Z,可以参考方案2中的描述,此处不再赘述。
应理解,从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,仅是一种示例,本申请实施例并不限定于此,例如,从原点开始,多普勒轴坐标值还可以依次为:0、2、4、6……、M等。
由图17可以看出,导频信号的CP和导频信号在相同的多普勒栅格位置,且导频信号的CP在时延-多普勒域中占据的传输资源在最末尾的时延栅格位置上。也就是说,可以在起始位置为(N-CP+1,Z)的位置放置导频信号的CP。导频信号的CP在时延-多普勒域中占据的传输资源在时延轴的起始位置c为(N-CP+1),导频信号的CP在时延-多普勒域中占据的传输资源在多普勒轴的起始位置b为Z。此外,可以看出,在图13所示的示例中,c=(d+1)。
导频信号的CP,可以为导频信号最末尾L个信号的重复。其中,L为大于1或等于1的数。关于L的取值,不作限定。例如,可以是网络设备配置的,或者,也可以是预先规定好的。
例如,假设导频信号表示为:A=[a(1),a(2),a(3),a(4),…a(N)];那么长度为L的CP为A的最后L个信号,即[a(N-L+1),a(N-L+2),…a(N)]。
通过如图17所示的放置方式,通过数据区域和导频区域之间的保护后缀,或者说,过在数据区域和导频区域之间配置保护后缀,可以提高接收端根据导频信号进行信道估计的性能。此外,通过放置CP可以解决导频信号能量过高引起的PAPR问题。
可以理解,上述(1)至(3)是结合上述方案1中的三种情况进行了示例性说明,上述(4)至(6)是结合上述方案2中的三种情况进行了示例性说明应理解,本申请实施例并不限定于此。
应理解,图15至图17中,导频信号的CP在时延-多普勒域中占据的传输资源沿时延 轴的长度为4个网格,其仅是示例性说明,导频信号的CP在时延-多普勒域中占据的传输资源沿时延轴的长度还可以更长或者更短。
方面三:传输资源信息的获取方式。
可选地,方法400还可以包括步骤401。
401,为导频信号被分配资源栅格中的传输资源。
示例地,网络设备为导频信号被分配时延-多普勒域中的传输资源,便于发送端设备使用被分配的传输资源传输导频信号。
可选地,网络设备向终端设备发送指示信息,相应地,终端设备接收指示信息,其中,该指示信息可以用于指示以下一项或多项信息:
导频信号在时延-多普勒域中占据的传输资源的信息、数据在时延-多普勒域中占据的传输资源的信息、导频信号在时延-多普勒域中占据的传输资源与数据在时延-多普勒域中占据的传输资源之间的间隔的信息、导频信号的CP在时延-多普勒域中占据的传输资源的信息。
可选地,导频信号在时延-多普勒域中占据的传输资源的信息,可以包括以下任意一项或多项信息:导频信号在时延-多普勒域中时延轴上占据的资源的信息、导频信号在时延-多普勒域中多普勒轴上占据的资源的信息、导频信号在时延-多普勒域中占据的传输资源的起始位置(例如,a和/或b)、导频信号在时延-多普勒域中占据的传输资源的结束位置。
可选地,数据在时延-多普勒域中占据的传输资源的信息,可以包括以下任意一项或多项信息:数据在时延-多普勒域中时延轴上占据的资源的信息、数据在时延-多普勒域中多普勒轴上占据的资源的信息、数据在时延-多普勒域中占据的传输资源的结束位置、数据在时延-多普勒域中占据的传输资源的起始位置。
可选地,导频信号在时延-多普勒域中占据的传输资源与数据在时延-多普勒域中占据的传输资源之间的间隔的信息,包括:导频信号与数据在时延-多普勒域中沿多普勒轴方向的间隔的信息,和/或导频信号与数据在时延-多普勒域中沿时延轴方向的间隔的信息。
下面进行示例性说明,并不对本申请的保护范围造成限定。
一示例,以图5为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。其中,a、b均为0。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示图5所示的图案或者该图案对应的配置信息。本申请对指示信息指示的内容和指示形式不作限定,仅为举例说明。
又一示例,以图6为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。其中,a、b均为0。导频信号与数据 在时延-多普勒域中沿多普勒轴方向的间隔可以为3个网格、导频信号与数据在时延-多普勒域中沿时延轴方向相邻,即间隔可以为0个网格。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示导频信号与数据在时延-多普勒域中沿多普勒轴方向的间隔可以为3个网格。又如,指示信息也可以指示图6所示的图案或者该图案对应的配置信息。本申请对指示信息指示的内容和指示形式不作限定,仅为举例说明。
又一示例,以图7为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。其中,a、b均为0。导频信号与数据在时延-多普勒域中沿时延轴方向的间隔可以为4个网格。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据区域和导频区域之间的保护后缀在时延-多普勒域中占据的传输资源的信息时,可以根据该保护后缀在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示导频信号与数据在时延-多普勒域中沿时延轴方向的间隔可以为4个网格。又如,指示信息也可以指示图7所示的图案或者该图案对应的配置信息。对此不作限定。
又一示例,以图8为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。其中,a为0,b为5。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示图8所示的图案或者该图案对应的配置信息。本申请对指示信息指示的内容和指示形式不作限定,仅为举例说明。
又一示例,以图9为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。其中,a为0,b为5。导频信号与数据在时延-多普勒域中沿多普勒轴方向的间隔可以为2个网格、导频信号与数据在时延-多普勒域中沿时延轴方向相邻,即间隔可以为0个网格。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示导频信号与数据在时延-多普勒域中沿多普勒轴方向的间隔可以为2个网格。又如,指示信息也可以指示图9所示的图案或者该图案对应的配置信息。本申请对指示信息指示的内容和指示形式不作限定,仅为举例说明。
又一示例,以图10为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。其中,a为0,b为5。导频信号与数据在时延-多普勒域中沿时延轴方向的间隔可以为4个网格。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据区域和导频区域之间的保护后缀在时延-多普勒域中占据的传输资源的信息时,可以根据该保护后缀在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示导频信号与数据在时延-多普勒域中沿时延轴方向的间隔可以为4个网格。又如,指示信息也可以指示图10所示的图案或者图案对应的配置信息。对此不作限定。
又一示例,以图12为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号的CP在时延-多普勒域中时延轴上占据的资源可以为4个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。a、b均为0。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示导频信号的CP在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号的CP在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示图12所示的图案或者图案对应的配置信息。对此不作限定。
又一示例,以图13为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号的CP在时延-多普勒域中时延轴上占据的资源可以为4个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。a、b均为0。导频信号与数据在时延-多普勒域中沿多普勒轴方向的间隔可以为3个网格、导频信号与数据在时延-多普勒域中沿时延轴方向 相邻。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示导频信号的CP在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号的CP在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示导频信号与数据在时延-多普勒域中沿多普勒轴方向的间隔可以为3个网格。又如,指示信息也可以指示图13所示的图案或者图案对应的配置信息。对此不作限定。
又一示例,以图14为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号的CP在时延-多普勒域中时延轴上占据的资源可以为4个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。a、b均为0。导频信号与数据在时延-多普勒域中沿时延轴方向的间隔可以为4个网格。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示导频信号的CP在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号的CP在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据区域和导频区域之间的保护后缀在时延-多普勒域中占据的传输资源的信息时,可以根据该保护后缀在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示导频信号与数据在时延-多普勒域中沿时延轴方向的间隔可以为4个网格。又如,指示信息也可以指示图14所示的图案或者图案对应的配置信息。对此不作限定。
又一示例,以图15为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号的CP在时延-多普勒域中时延轴上占据的资源可以为4个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。即,a为0,b为5。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示导频信号的CP在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号的CP在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如, 指示信息也可以指示图15所示的图案或者图案对应的配置信息。对此对指示信息的指示形式不作限定,前述指示形式仅用于示例。
又一示例,以图16为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号的CP在时延-多普勒域中时延轴上占据的资源可以为4个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。a为0、b为5。导频信号与数据在时延-多普勒域中沿多普勒轴方向的间隔可以为2个网格、导频信号与数据在时延-多普勒域中沿时延轴方向相邻。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示导频信号的CP在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号的CP在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示导频信号与数据在时延-多普勒域中沿多普勒轴方向的间隔可以为2个网格。又如,指示信息也可以指示图16所示的图案或者图案对应的配置信息。对此不作限定。
又一示例,以图17为例。
导频信号在时延-多普勒域中时延轴上占据的资源可以为6个网格。导频信号的CP在时延-多普勒域中时延轴上占据的资源可以为4个网格。导频信号在时延-多普勒域中多普勒轴上占据的资源可以为1个网格。a为0、b为5。导频信号与数据在时延-多普勒域中沿时延轴方向的间隔可以为4个网格。
例如,指示信息在指示导频信号在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示导频信号的CP在时延-多普勒域中占据的传输资源的信息时,可以根据导频信号的CP在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据在时延-多普勒域中占据的传输资源的信息时,可以根据数据在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息在指示数据区域和导频区域之间的保护后缀在时延-多普勒域中占据的传输资源的信息时,可以根据该保护后缀在时延-多普勒域中所占的传输资源,指示相应的资源位置(如起始位置和/或结束位置)或者资源长度。又如,指示信息也可以指示导频信号与数据在时延-多普勒域中沿时延轴方向的间隔可以为4个网格。又如,指示信息也可以指示图17所示的图案或者图案对应的配置信息。对此不作限定。
上文示例性地介绍了资源指示的情况,应理解,本申请实施例并不限定于此。例如,协议预先规定好导频信号或者导频信号的CP的放置位置(如起始位置和/或结束位置),发送端设备可以根据协议规定,使用相应的传输资源传输导频信号。
上文主要是介绍时延-多普勒域,下面介绍时延-多普勒域与时频域的关系。
方面四:时延-多普勒域与时频域的关系。
图18示出了时延-多普勒域与时域-频域映射关系的一示意图。
通过OTFS编码(OTFS encoding)处理,时延-多普勒域上的信号可以被映射到时域-频域,从而可以映射为传统的时域波形进行信号的最终发送。可以看出,时域-频域的信号所展示的是每个时间间隔t的频域信号(一共M个时间间隔),t大于0。其中,t=1/v r,f=1/τ r
在OTFS信号生成中,存在一个映射关系,即从时延-多普勒域信号到时-频域信号的转化。这个转化公式可以表示为下面的公式4。
Figure PCTCN2019130785-appb-000005
a=0,可以理解为:时延=0,即表示导频信号起始于时延为0的行上。b=0,可以理解为:多普勒=0,即导频信号起始于多普勒为0的列上。
a=0(即时延=0),或者称之为时延轴上的最小值,指公式4中的l=0的位置。b=0(即多普勒=0),或者称之为多普勒轴上的最小值,指公式4中的k=0的位置。
从物理意义的角度来说,a=0(即时延=0),则意味着在经历多径时变信道后,接收端所看到的信道的多径,是往时延大于0的方向扩展。
从物理意义的角度来说,b=0(即多普勒=0),即表示信道没有时变性时,信道位置一定处于多普勒=0的轴上。或者,当信道有时变性时,信道的多普勒偏移表现为对多普勒=0轴的位移,位移量例如可以为:
Figure PCTCN2019130785-appb-000006
然后基于该位移量所在的多普勒栅格位置,向两边扩展。
其中,v表示发送接收信号间沿着某个信道路径的相对速度,单位例如可以为千米/小时(kilometer/hour,km/h)。f 0表示载频。f c表示光速。SCS表示子载波间隔(subcarrier spacing,SCS)。M表示OTFS信号的时域符号个数/多普勒栅格个数。
在逆辛对偶傅里叶变换(inverse symplectic finite fourier transform,ISFFT)变换之后(即上式4),X[m,n]表示时频格上的信号。
一种可能的实现方式,m,n可以按照从小到大的顺序在时域-频域进行映射。其中,m的索引从小到大,表示从频域的传输带宽的最低子载波索引处开始映射。其中,n的索引从小到大,表示在时域上从传输符号的最先发送的符号索引处开始映射。
应理解,关于映射规则,上述仅是一种示例性说明,并不对本申请实施例的保护范围造成限定。
应理解,本申请对时延-多普勒域到时域-频域的关系不作限定。在标准协议或者实际实现中,可能会对频域信号做一些处理,比如频移处理(如将信号移至基带0频位置)等操作,因此,时延-多普勒域到时域-频域的关系可能存在很复杂的扩展。假设导频序列使用的是ZC序列,本申请中,时延a=0开始放置ZC序列,就意味着无论频域的变换如何展开,最终在时延a=0放置的ZC序列会存在于每个OFDM时域信号的从0采样点开始的位置。即开始于每个OFDM时域信号的起始位置。
此外,对最终时域信号的变化也会体现到时延域上的变化。例如,对时域信号做周期 旋转,也可以等效于,在时延域上做周期旋转等。
上文介绍了四个方面的内容,包括:导频信号在时延-多普勒域中被分配的传输资源的起始位置(a和b)、导频信号的CP的位置、传输资源信息的获取方式、时延-多普勒域与时频域的关系等,这四个方面所述的方案可以单独使用,也可以结合使用。
下文结合图19和图20,介绍适用于本申请实施例的OTFS与传统波形的转换。
图19从发送端角度,示出了OTFS与传统波形的转换流程的一示意图。
首先,数据信息被放置在D矩阵中。
示例地,D矩阵可以是一个长度为N*M的二维矩阵,第一维(即N)代表时延域,第二维(即M)代表多普勒域。其中,N、M为大于1或等于1的整数。例如,经过正交幅度调制(quadrature amplitude modulation,QAM)的数据信号被放置在D矩阵中。
然后,进行OTFS encoding处理。
OTFS encoding可以包含一个维度置换矩阵P,维度为N*N的正交基矩阵U1,维度为M*M的正交基矩阵U2。其中,正交基矩阵可以任意选择,对此不作限定。例如,正交基矩阵可以为离散傅里叶变换(discrete fourier transformation,DFT)矩阵,或,正交基矩阵可以为离散傅里叶反变换(inverse discrete fourier transformation,IDFT)矩阵。
OTFS encoding可以使得OTFS的时延-多普勒域上的信号被映射到时频域,从而可以映射为传统的时域波形进行信号的最终发送。
关于导频信号和导频信号的CP在时延-多普勒域中的位置,可以参考上文方面一和方面二的描述,此处不再详述。
关于导频信号、导频信号的CP、数据等所占的传输资源的获取方式,可以参考上文方面三的描述,此处不再详述。
关于时延-多普勒域与时频域的关系,可以参考上文方面四的描述,此处不再详述。
最后,进行传统波形的调制,并发射出去。
例如,可以使用OFDM波形的调制,那么可以对M个时间间隔上的频域信号进行相应的OFDM调制。又如,可以使用单载波-频分复用(single-carrier-frequency divided multiplexing,SC-FDM)波形的调制,那么可以对M个时间间隔上的频域信号进行相应的SC-FDM调制。具体的调制方式,可以采用现有的调制方式,本申请实施例对此不作限定。
应理解,这里的波形可以为任意的已知波形,选择不同的波形做不同的调制即可,OTFS coding不限定使用具体的传输波形。
图20从接收端角度,示出了OTFS接收端处理信号的一示意图。
如图20所示,在接收端处,接收端先对发送端使用的波形,例如OFDM/SC-FDM波形做相应的处理,然后做OTFS decoding。其中,接收端处所做的处理与发送端处所做的处理为一个逆变换。最后,对得到时延-多普勒域的数据信号进行信道估计、信号均衡、解调,恢复发送端的数据等操作。
应理解,图19和图20仅是为了理解做的示例性说明,在实际通信过程中可能还会包括更多的处理,对此不作限定。
应理解,在上述一些实施例中,以x轴表示多普勒,y轴表示时延为例,但这并不对本申请造成限定。例如,时延-多普勒域还可以通过三维矩阵表示,另一维可以表示其他含义,对此不作限定。
还应理解,在上述一些实施例中,以原点为(0,0),且从原点开始,多普勒轴坐标值依次为:0、1、2、3……、M,为例,但这并不对本申请造成限定。
还应理解,在上述一些实施例中,以a、b、c、d、e表示x-y轴或者说多普勒-时延轴上的坐标值为例进行说明,但这并不对本申请造成限定。本申请关心的是导频信号或者导频信号的循环前缀或者数据等在多普勒-时延域上所占的传输资源的位置,是否有x-y轴,或者传输资源的表示方式,本申请不作限定。
还应理解,在上述一些实施例中,如图5至图10、图12至图17,仅是示意图,但这并不对本申请造成限定。例如,导频信号或者导频信号的CP或者数据还可以占据更多或者更少的传输资源。
还应理解,上述导频均可替换为DMRS或者CSI-RS或者SRS等,任何可以进行信道估计或者信道测量的参考信号均适用于本申请。
基于上述技术方案,根据多普勒偏移的信息,确定导频信号在资源栅格中被分配的传输资源的起始位置(a,b),其中,资源栅格可以用于表征时延和多普勒,a表示资源栅格中的时延栅格位置,b表示资源栅格中的多普勒栅格位置。也就是说,导频信号在资源栅格中被分配的传输资源的起始位置不是随意放置的,是考虑了与多普勒频移相关的信息确定的。通过考虑多普勒频移的信息,来确定导频信号资源栅格中的放置位置,不仅可以改善峰均比PAPR性能,降低多普勒偏差对信道估计性能造成的影响,提高信道估计性能,还可以根据实际需求,例如需要相位误差最小或者实现复杂度最低等,灵活地确定导频信号在资源栅格中的放置位置。
此外,基于上述技术方案,通过利用保护间隔放置CP,构建导频区域的循环卷积,能够获得等效二维信道冲击响应,并达到抑制PAPR的效果。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些独立或组合的方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备(发送端设备的一例)实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备(发送端设备的又一例)实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图4至图20详细说明了本申请实施例提供的信号传输的方法。以下,结合图21至图24详细说明本申请实施例提供的与信号传输的方法相关的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发送端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发送端设备或者接收端设备进行功能模块的 划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图21是本申请实施例提供的一种信号传输的装置的示意性框图。如图21所示,该装置2100可以包括收发单元2110和处理单元2120。收发单元2110可以与外部进行通信,处理单元2120用于数据处理。收发单元2110还可以称为通信接口或收发器。通信接口用于输入和/或输出信息,信息包括指令和数据中的至少一项。可选地,该装置2100可以为芯片或芯片系统。当该装置2100为芯片或芯片系统时,通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。其中,处理器也可以体现为处理电路或逻辑电路。
在一种可能的设计中,该装置2100可实现对应于上文方法实施例中的发送端设备执行的步骤或者流程,例如,可以为发送端设备,或者配置于发送端设备中的芯片或芯片系统或电路。该发送端设备可以为终端设备或者网络设备。收发单元2110用于执行上文方法实施例中发送端设备侧的收发相关操作,处理单元2120用于执行上文方法实施例中发送端设备的处理相关操作。
一种可能的实现方式,处理单元2120用于:生成导频信号,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a为0;收发单元2110用于:发送导频信号。
可选地,b为0或Z,其中,Z为大于0的数。
又一种可能的实现方式,处理单元2120用于:生成导频信号,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a和/或b根据多普勒频移的信息确定;收发单元2110用于:发送导频信号。
可选地,a为0,b为Z,其中,Z为大于0的数;或,a和b均为0。
可选地,导频信号的长度为第一预设长度,其中,第一预设长度大于或等于最大多径时延。
可选地,导频信号的循环前缀在资源栅格中占据的传输资源的起始位置为(c,b),导频信号的循环前缀在资源栅格中占据的传输资源沿时延轴方向连续;其中,c表示导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置。
可选地,导频信号的循环前缀的长度为第二预设长度,其中,第二预设长度大于或等于最大多径时延。
可选地,数据在资源栅格中占据的传输资源的结束位置为(d,e);其中,d表示数据在资源栅格中占据的传输资源在时延轴上的结束栅格位置,e表示数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置,c大于d。
可选地,导频信号在资源栅格中占据的传输资源与数据在资源栅格中占据的传输资源,沿资源栅格中的多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
可选地,收发单元2110还用于:接收或发送以下任意一项或多项信息:导频信号在资源栅格中占据的传输资源的信息;或,数据在资源栅格中占据的传输资源的信息;或,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息;或,导频信号的循环前缀在资源栅格中占据的传输资源的信息。
可选地,导频信号在资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:导频信号在资源栅格中在时延轴上占据的传输资源的信息、导频信号在资源栅格中在多普勒轴上占据的传输资源的信息、a、b。
可选地,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息,包括:导频信号与数据在资源栅格中沿多普勒轴方向的间隔的信息、和/或、导频信号与数据在资源栅格中沿时延轴方向的间隔的信息。
在又一种可能的设计中,该装置2100可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或芯片系统或电路。收发单元2110用于执行上文方法实施例中网络设备侧的收发相关操作,处理单元2120用于执行上文方法实施例中网络设备的处理相关操作。
一种可能的实现方式,处理单元2120用于:为导频信号分配资源栅格中的传输资源,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a为0;收发单元2110用于:使用传输资源发送导频信号。
可选地,b为0或Z,其中,Z为大于0的数。
又一种可能的实现方式,处理单元2120用于:为导频信号分配资源栅格中的传输资源,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续,其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a和/或b根据多普勒频移的信息确定;收发单元2110用于:使用传输资源发送导频信号。
可选地,a为0,b为Z,其中,Z为大于0的数;或,a和b均为0。
可选地,导频信号的长度为第一预设长度,其中,第一预设长度大于或等于最大多径时延。
可选地,处理单元2120还用于:为导频信号的循环前缀分配资源栅格中的传输资源,导频信号的循环前缀在资源栅格中占据的传输资源的起始位置为(c,b),导频信号的循环前缀在资源栅格中占据的传输资源沿时延轴方向连续;其中,c表示导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置。
可选地,导频信号的循环前缀的长度为第二预设长度,其中,第二预设长度大于或等于最大多径时延。
可选地,处理单元2120还用于:为数据分配资源栅格中的传输资源,数据在资源栅格中占据的传输资源的结束位置为(d,e);其中,d表示数据在资源栅格中占据的传输 资源在时延轴上的结束栅格位置,e表示数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置,c大于d。
可选地,导频信号在资源栅格中占据的传输资源与数据在资源栅格中占据的传输资源,沿资源栅格中的多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
可选地,收发单元2110还用于:发送以下任意一项或多项信息:导频信号在资源栅格中占据的传输资源的信息;或,数据在资源栅格中占据的传输资源的信息;或,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息;或,导频信号的循环前缀在资源栅格中占据的传输资源的信息。
可选地,导频信号在资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:导频信号在资源栅格中在时延轴上占据的传输资源的信息、导频信号在资源栅格中在多普勒轴上占据的传输资源的信息、a、b。
可选地,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息,包括:导频信号与数据在资源栅格中沿多普勒轴方向的间隔的信息、和/或、导频信号与数据在资源栅格中沿时延轴方向的间隔的信息。
在另一种可能的设计中,该装置2100可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或芯片系统或电路。收发单元2110用于执行上文方法实施例中终端设备侧的收发相关操作,处理单元2120用于执行上文方法实施例中终端设备的处理相关操作。
一种可能的实现方式,收发单元2110用于:接收为导频信号分配的资源栅格中的传输资源的信息,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a为0;收发单元2110还用于:使用传输资源发送导频信号。
可选地,b为0或Z,其中,Z为大于0的数。
又一种可能的实现方式,收发单元2110用于:接收为导频信号分配的资源栅格中的传输资源,导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),导频信号在资源栅格中占据的传输资源沿时延轴方向连续;其中,a表示导频信号在资源栅格中占据的传输资源在时延轴上的起始栅格位置;b表示导频信号在资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a和/或b根据多普勒频移的信息确定;收发单元2110还用于:使用传输资源发送导频信号。
可选地,a为0,b为Z,其中,Z为大于0的数;或,a和b均为0。
可选地,导频信号的长度为第一预设长度,其中,第一预设长度大于或等于最大多径时延。
可选地,收发单元2110还用于:接收为导频信号的循环前缀分配的资源栅格中的传输资源的信息,导频信号的循环前缀在资源栅格中占据的传输资源的起始位置为(c,b),导频信号的循环前缀在资源栅格中占据的传输资源沿时延轴方向连续;其中,c表示导频信号的循环前缀在资源栅格中占据的传输资源在时延轴上的起始栅格位置。
可选地,导频信号的循环前缀的长度为第二预设长度,其中,第二预设长度大于或等 于最大多径时延。
可选地,收发单元2110还用于:接收为数据分配的资源栅格中的传输资源的信息,数据在资源栅格中占据的传输资源的结束位置为(d,e);其中,d表示数据在资源栅格中占据的传输资源在时延轴上的结束栅格位置,e表示数据在资源栅格中占据的传输资源在多普勒轴上的结束栅格位置,c大于d。
可选地,导频信号在资源栅格中占据的传输资源与数据在资源栅格中占据的传输资源,沿资源栅格中的多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
可选地,接收单元2110还用于:接收以下任意一项或多项信息:导频信号在资源栅格中占据的传输资源的信息;或,数据在资源栅格中占据的传输资源的信息;或,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息;或,导频信号的循环前缀在资源栅格中占据的传输资源的信息。
可选地,导频信号在资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:导频信号在资源栅格中在时延轴上占据的资源的信息、导频信号在资源栅格中在多普勒轴上占据的资源的信息、a、b。
可选地,导频信号在资源栅格占据的传输资源与数据在资源栅格中占据的传输资源之间的间隔的信息,包括:导频信号与数据在资源栅格中沿多普勒轴方向的间隔的信息、和/或、导频信号与数据在资源栅格中沿时延轴方向的间隔的信息。
该装置2100可实现对应于根据本申请实施例的方法400中的发送端设备执行的步骤或者流程,该装置2100可以包括用于执行图4中方法400中的发送端设备执行的方法的单元。并且,该装置2100中的各单元和上述其他操作和/或功能分别为了实现图4中方法400的相应流程。
其中,当该装置2100用于执行图4中的方法400时,收发单元2110可用于执行方法400中的步骤420,处理单元2120可用于执行方法400中的步骤410和步骤401。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,在该装置2100为终端设备时,该装置2100中的收发单元2110可通过图23中示出的终端设备2300中的收发器2310实现,该装置2100中的处理单元2120可通过图23中示出的终端设备2300中的处理器2320实现。
还应理解,在该装置2100为网络设备时,该装置2100中的通信单元为可通过图24中示出的网络设备2400中的收发器2410实现,该装置2100中的处理单元2420可通过图24中示出的网络设备2400中的处理器2420实现。
还应理解,该装置2100中的收发单元2110也可以为输入/输出接口。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
图22是本申请实施例提供的信号传输的的装置2200的又一示意性框图。如图所示,装置2200包括收发器2210、处理器2220、和存储器2230,存储器2230中存储有程序,处理器2220用于执行存储器2230中存储的程序,对存储器2230中存储的程序的执行,使得处理器2220用于执行上文方法实施例中的相关处理步骤,对存储器2230中存储的程序的执行,使得处理器2220控制收发器2210执行上文方法实施例中的收发相关步骤。
作为一种实现,该装置2200用于执行上文方法实施例中终端设备(发送端设备的一 例)所执行的动作,这时,对存储器2230中存储的程序的执行,使得处理器2220用于执行上文方法实施例中终端设备侧的处理步骤,对存储器2230中存储的程序的执行,使得处理器2220控制收发器2210执行上文方法实施例中终端设备侧的接收和发送步骤。
作为另一种实现,该装置2200用于执行上文方法实施例中网络设备(发送端设备的又一例)所执行的动作,这时,对存储器2230中存储的程序的执行,使得处理器2220用于执行上文方法实施例中网络设备侧的处理步骤,对存储器2230中存储的程序的执行,使得处理器2220控制收发器2210执行上文方法实施例中网络设备侧的接收和发送步骤。
本申请实施例还提供一种装置2300,该装置2300可以是终端设备也可以是芯片。该装置2300可以用于执行上述方法实施例中由终端设备(发送端设备的一例)所执行的动作。
当该装置2300为终端设备时,图23示出了一种简化的终端设备的结构示意图。如图23所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图23中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图23所示,终端设备包括收发单元2310和处理单元2320。收发单元2310也可以称为收发器、收发机、收发装置等。处理单元2320也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元2310中用于实现接收功能的器件视为接收单元,将收发单元2310中用于实现发送功能的器件视为发送单元,即收发单元2310包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元2320,用于执行图4中的步骤410和步骤401,和/或,处理单元2320还用于执行本申请实施例中终端设备侧的其他处理步骤。收发单元2310还用于执行图4中的步骤420,和/或收发单元2310还用于执行终端设备侧的其他收发步骤。
应理解,图23仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不 依赖于图23所示的结构。
当该通信设备2300为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种装置2400,该装置2400可以是网络设备也可以是具有与芯片。该装置2400可以用于执行上述方法实施例中由网络设备(发送端设备的又一例)所执行的动作。
当该装置2400为网络设备时,例如为基站。图24示出了一种简化的基站结构示意图。基站包括2410部分以及2420部分。2410部分主要用于射频信号的收发以及射频信号与基带信号的转换;2420部分主要用于基带处理,对基站进行控制等。2410部分通常可以称为收发单元、收发机、收发电路、或者收发器等。2420部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
2410部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将2410部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即2410部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
2420部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,2410部分的收发单元用于执行图4中所示的步骤步骤420,和/或2410部分的收发单元还用于执行本申请实施例中网络设备侧的其他收发步骤。2420部分的处理单元用于执行图6中步骤301和图12中的步骤410和步骤401的处理操作,和/或2420部分的处理单元还用于执行本申请实施例中网络设备侧的处理步骤。
应理解,图24仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图24所示的结构。
当该装置2400为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
另外,网络设备不限于上述形态,也可以是其它形态:例如:包括AAU,还可以包括CU节点和/或DU节点,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
上述CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口。该处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的信号传输的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的信号传输的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4至图20所示实施例中任意一个实施例的方法。
根据本申请实施例提供的信号传输的方法,本申请还提供一种计算机可读存储介质, 该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4至图20所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
根据本申请实施例提供的方法,本申请还提供一种通信系统,其包括前述的一个或多个发送端设备以及一个或多个接收端设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备或终端设备分别与方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求和说明书的保护范围为准。

Claims (48)

  1. 一种信号传输的方法,其特征在于,包括:
    生成导频信号,所述导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),所述导频信号在所述资源栅格中占据的传输资源沿时延轴方向连续;
    其中,a表示所述导频信号在所述资源栅格中占据的传输资源在所述时延轴上的起始栅格位置;b表示所述导频信号在所述资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a为0;
    发送所述导频信号。
  2. 根据权利要求1所述的方法,其特征在于,b为0或Z,其中,Z为大于0的数。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述导频信号的长度为第一预设长度,其中,所述第一预设长度大于或等于最大多径时延。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述导频信号的循环前缀在所述资源栅格中占据的传输资源的起始位置为(c,b),所述导频信号的循环前缀在所述资源栅格中占据的传输资源沿所述时延轴方向连续;
    其中,c表示所述导频信号的循环前缀在所述资源栅格中占据的传输资源在所述时延轴上的起始栅格位置。
  5. 根据权利要求4所述的方法,其特征在于,
    所述导频信号的循环前缀的长度为第二预设长度,其中,所述第二预设长度大于或等于最大多径时延。
  6. 根据权利要求4或5所述的方法,其特征在于,
    数据在所述资源栅格中占据的传输资源的结束位置为(d,e);
    其中,d表示所述数据在所述资源栅格中占据的传输资源在所述时延轴上的结束栅格位置,e表示所述数据在所述资源栅格中占据的传输资源在所述多普勒轴上的结束栅格位置,c大于d。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,
    所述导频信号在所述资源栅格中占据的传输资源与数据在所述资源栅格中占据的传输资源,沿所述资源栅格中的所述多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    接收或发送以下任意一项或多项信息:
    所述导频信号在所述资源栅格中占据的传输资源的信息;或,
    数据在所述资源栅格中占据的传输资源的信息;或,
    所述导频信号在所述资源栅格占据的传输资源与数据在所述资源栅格中占据的传输资源之间的间隔的信息;或,
    所述导频信号的循环前缀在所述资源栅格中占据的传输资源的信息。
  9. 根据权利要求8所述的方法,其特征在于,所述导频信号在所述资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:
    所述导频信号在所述资源栅格中在所述时延轴上占据的传输资源的信息、所述导频信 号在所述资源栅格中在所述多普勒轴上占据的传输资源的信息、a、b。
  10. 根据权利要求8或9所述的方法,其特征在于,所述导频信号在所述资源栅格占据的传输资源与数据在所述资源栅格中占据的传输资源之间的间隔的信息,包括:
    所述导频信号与所述数据在所述资源栅格中沿所述多普勒轴方向的间隔的信息,和/或,所述导频信号与所述数据在所述资源栅格中沿所述时延轴方向的间隔的信息。
  11. 一种信号传输的方法,其特征在于,包括:
    生成导频信号,所述导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),所述导频信号在所述资源栅格中占据的传输资源沿时延轴方向连续;
    其中,a表示所述导频信号在所述资源栅格中占据的传输资源在所述时延轴上的起始栅格位置;b表示所述导频信号在所述资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a和/或b根据多普勒频移的信息确定;
    发送所述导频信号。
  12. 根据权利要求11所述的方法,其特征在于:
    a为0,b为Z,其中,Z为大于0的数;或,
    a和b均为0。
  13. 根据权利要求11或12所述的方法,其特征在于,
    所述导频信号的长度为第一预设长度,其中,所述第一预设长度大于或等于最大多径时延。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,
    所述导频信号的循环前缀在所述资源栅格中占据的传输资源的起始位置为(c,b),所述导频信号的循环前缀在所述资源栅格中占据的传输资源沿所述时延轴方向连续;
    其中,c表示所述导频信号的循环前缀在所述资源栅格中占据的传输资源在所述时延轴上的起始栅格位置。
  15. 根据权利要求14所述的方法,其特征在于,
    所述导频信号的循环前缀的长度为第二预设长度,其中,所述第二预设长度大于或等于最大多径时延。
  16. 根据权利要求14或15所述的方法,其特征在于,
    数据在所述资源栅格中占据的传输资源的结束位置为(d,e);
    其中,d表示所述数据在所述资源栅格中占据的传输资源在所述时延轴上的结束栅格位置,e表示所述数据在所述资源栅格中占据的传输资源在所述多普勒轴上的结束栅格位置,c大于d。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,
    所述导频信号在所述资源栅格中占据的传输资源与数据在所述资源栅格中占据的传输资源,沿所述资源栅格中的所述多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述方法还包括:
    接收或发送以下任意一项或多项信息:
    所述导频信号在所述资源栅格中占据的传输资源的信息;或,
    数据在所述资源栅格中占据的传输资源的信息;或,
    所述导频信号在所述资源栅格占据的传输资源与数据在所述资源栅格中占据的传输 资源之间的间隔的信息;或,
    所述导频信号的循环前缀在所述资源栅格中占据的传输资源的信息。
  19. 根据权利要求18所述的方法,其特征在于,所述导频信号在所述资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:
    所述导频信号在所述资源栅格中在所述时延轴上占据的传输资源的信息、所述导频信号在所述资源栅格中在所述多普勒轴上占据的传输资源的信息、a、b。
  20. 根据权利要求18或19所述的方法,其特征在于,所述导频信号在所述资源栅格占据的传输资源与数据在所述资源栅格中占据的传输资源之间的间隔的信息,包括:
    所述导频信号与所述数据在所述资源栅格中沿所述多普勒轴方向的间隔的信息、和/或、所述导频信号与所述数据在所述资源栅格中沿所述时延轴方向的间隔的信息。
  21. 一种信号传输的装置,其特征在于,包括:
    处理单元,用于生成导频信号,所述导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),所述导频信号在所述资源栅格中占据的传输资源沿时延轴方向连续;
    其中,a表示所述导频信号在所述资源栅格中占据的传输资源所述资源栅格中的在所述时延轴上的起始栅格位置;b表示所述导频信号在所述资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a为0;
    收发单元,用于发送所述导频信号。
  22. 根据权利要求21所述的装置,其特征在于,b为0或Z,其中,Z为大于0的数。
  23. 根据权利要求21或22所述的装置,其特征在于,
    所述导频信号的长度为第一预设长度,其中,所述第一预设长度大于或等于最大多径时延。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,
    所述导频信号的循环前缀在所述资源栅格中占据的传输资源的起始位置为(c,b),所述导频信号的循环前缀在所述资源栅格中占据的传输资源沿所述时延轴方向连续;
    其中,c表示所述导频信号的循环前缀在所述资源栅格中占据的传输资源在所述时延轴上的起始栅格位置。
  25. 根据权利要求24所述的装置,其特征在于,
    所述导频信号的循环前缀的长度为第二预设长度,其中,所述第二预设长度大于或等于最大多径时延。
  26. 根据权利要求24或25所述的装置,其特征在于,
    数据在所述资源栅格中占据的传输资源的结束位置为(d,e);
    其中,d表示所述数据在所述资源栅格中占据的传输资源在所述时延轴上的结束栅格位置,e表示所述数据在所述资源栅格中占据的传输资源在所述多普勒轴上的结束栅格位置,c大于d。
  27. 根据权利要求21至26中任一项所述的装置,其特征在于,
    所述导频信号在所述资源栅格中占据的传输资源与数据在所述资源栅格中占据的传输资源,沿所述资源栅格中的所述多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
  28. 根据权利要求21至27中任一项所述的装置,其特征在于,所述收发单元还用于:
    接收或发送以下任意一项或多项信息:
    所述导频信号在所述资源栅格中占据的传输资源的信息;或,
    数据在所述资源栅格中占据的传输资源的信息;或,
    所述导频信号在所述资源栅格占据的传输资源与数据在所述资源栅格中占据的传输资源之间的间隔的信息;或,
    所述导频信号的循环前缀在所述资源栅格中占据的传输资源的信息。
  29. 根据权利要求28所述的装置,其特征在于,所述导频信号在所述资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:
    所述导频信号在所述资源栅格中在所述时延轴上占据的传输资源的信息、所述导频信号在所述资源栅格中在所述多普勒轴上占据的传输资源的信息、a、b。
  30. 根据权利要求28或29所述的装置,其特征在于,所述导频信号在所述资源栅格占据的传输资源与数据在所述资源栅格中占据的传输资源之间的间隔的信息,包括:
    所述导频信号与所述数据在所述资源栅格中沿所述多普勒轴方向的间隔的信息、和/或、所述导频信号与所述数据在所述资源栅格中沿所述时延轴方向的间隔的信息。
  31. 根据权利要求21至30中任一项所述的装置,其特征在于,所述一种信号传输的装置为终端设备或网络设备。
  32. 一种信号传输的装置,其特征在于,包括:
    处理单元,用于生成导频信号,所述导频信号在资源栅格中被分配的传输资源的起始位置为(a,b),所述导频信号在所述资源栅格中占据的传输资源沿时延轴方向连续;
    其中,a表示所述导频信号在所述资源栅格中占据的传输资源在所述时延轴上的起始栅格位置;b表示所述导频信号在所述资源栅格中占据的传输资源在多普勒轴上的起始栅格位置;且a和/或b根据多普勒频移的信息确定;
    收发单元,用于发送所述导频信号。
  33. 根据权利要求31所述的装置,其特征在于:
    a为0,b为Z,其中,Z为大于0的数;或,
    a和b均为0。
  34. 根据权利要求32或33所述的装置,其特征在于,
    所述导频信号的长度为第一预设长度,其中,所述第一预设长度大于或等于最大多径时延。
  35. 根据权利要求32至34中任一项所述的装置,其特征在于,
    所述导频信号的循环前缀在所述资源栅格中占据的传输资源的起始位置为(c,b),所述导频信号的循环前缀在所述资源栅格中占据的传输资源沿所述时延轴方向连续;
    其中,c表示所述导频信号的循环前缀在所述资源栅格中占据的传输资源在所述时延轴上的起始栅格位置。
  36. 根据权利要求35所述的装置,其特征在于,
    所述导频信号的循环前缀的长度为第二预设长度,其中,所述第二预设长度大于或等于最大多径时延。
  37. 根据权利要求35或36所述的装置,其特征在于,
    数据在所述资源栅格中占据的传输资源的结束位置为(d,e);
    其中,d表示所述数据在所述资源栅格中占据的传输资源在所述时延轴上的结束栅格 位置,e表示所述数据在所述资源栅格中占据的传输资源在所述多普勒轴上的结束栅格位置,c大于d。
  38. 根据权利要求32至37中任一项所述的装置,其特征在于,
    所述导频信号在所述资源栅格中占据的传输资源与数据在所述资源栅格中占据的传输资源,沿所述资源栅格中的所述多普勒轴之间的间隔为Y,Y为大于0或等于0的数。
  39. 根据权利要求32至38中任一项所述的装置,其特征在于,所述收发单元还用于:
    接收或发送以下任意一项或多项信息:
    所述导频信号在所述资源栅格中占据的传输资源的信息;或,
    数据在所述资源栅格中占据的传输资源的信息;或,
    所述导频信号在所述资源栅格占据的传输资源与数据在所述资源栅格中占据的传输资源之间的间隔的信息;或,
    所述导频信号的循环前缀在所述资源栅格中占据的传输资源的信息。
  40. 根据权利要求39所述的装置,其特征在于,所述导频信号在所述资源栅格中占据的传输资源的信息,包括以下任意一项或多项信息:
    所述导频信号在所述资源栅格中在所述时延轴上占据的传输资源的信息、所述导频信号在所述资源栅格中在所述多普勒轴上占据的传输资源的信息、a、b。
  41. 根据权利要求39或40所述的装置,其特征在于,所述导频信号在所述资源栅格占据的传输资源与数据在所述资源栅格中占据的传输资源之间的间隔的信息,包括:
    所述导频信号与所述数据在所述资源栅格中沿所述多普勒轴方向的间隔的信息、和/或、所述导频信号与所述数据在所述资源栅格中沿所述时延轴方向的间隔的信息。
  42. 根据权利要求32至41中任一项所述的装置,其特征在于,所述一种信号传输的装置为终端设备或网络设备。
  43. 一种信号传输的装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,
    使得所述装置执行权利要求1至10中任一项所述的方法;或,
    使得所述装置执行权利要求11至20中任一项所述的方法。
  44. 根据权利要求43所述的装置,其特征在于,所述一种信号传输的装置为终端设备或网络设备。
  45. 一种信号传输的系统,其特征在于,包括如权利要求21至31所述的一种信号传输的装置,或,如权利要求32至42所述的一种信号传输的装置。
  46. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至10任一项所述的方法,或,执行如权利要求11至20中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至10任一项所述的方法,或,执行如权利要求11至20中任一项所述的方法。
  48. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器和收发器,所述收发器和所述至少一个处理器通过线路互联,所述处理器通过运行指令,以执行权利要求1到10任一项所述的方法,或,执行权利要求11到20任一项所述的方法。
PCT/CN2019/130785 2019-12-31 2019-12-31 信号传输的方法及装置 WO2021134600A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130785 WO2021134600A1 (zh) 2019-12-31 2019-12-31 信号传输的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130785 WO2021134600A1 (zh) 2019-12-31 2019-12-31 信号传输的方法及装置

Publications (1)

Publication Number Publication Date
WO2021134600A1 true WO2021134600A1 (zh) 2021-07-08

Family

ID=76687229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130785 WO2021134600A1 (zh) 2019-12-31 2019-12-31 信号传输的方法及装置

Country Status (1)

Country Link
WO (1) WO2021134600A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020274A1 (en) * 2022-07-20 2024-01-25 Qualcomm Incorporated Channel state information reference signals in orthogonal time frequency space

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155662A (zh) * 2014-08-05 2014-11-19 中国空间技术研究院 基于gnss相关峰值探测器的自适应互干扰抑制方法
US20180013592A1 (en) * 2015-01-20 2018-01-11 ZTE Canada Inc. Channel estimation using composite subcarriers and combined pilots
WO2018032016A1 (en) * 2016-08-12 2018-02-15 Cohere Technologies Localized equalization for channels with intercarrier interference
EP2084870B1 (en) * 2006-11-24 2019-05-15 Imagination Technologies Limited Channel estimation and equalization in ofdm receivers
CN109804561A (zh) * 2016-08-12 2019-05-24 凝聚技术公司 正交时间频率空间信号的多用户复用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2084870B1 (en) * 2006-11-24 2019-05-15 Imagination Technologies Limited Channel estimation and equalization in ofdm receivers
CN104155662A (zh) * 2014-08-05 2014-11-19 中国空间技术研究院 基于gnss相关峰值探测器的自适应互干扰抑制方法
US20180013592A1 (en) * 2015-01-20 2018-01-11 ZTE Canada Inc. Channel estimation using composite subcarriers and combined pilots
WO2018032016A1 (en) * 2016-08-12 2018-02-15 Cohere Technologies Localized equalization for channels with intercarrier interference
CN109804561A (zh) * 2016-08-12 2019-05-24 凝聚技术公司 正交时间频率空间信号的多用户复用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020274A1 (en) * 2022-07-20 2024-01-25 Qualcomm Incorporated Channel state information reference signals in orthogonal time frequency space

Similar Documents

Publication Publication Date Title
WO2017193867A1 (zh) 传输信号的方法、发送端和接收端
WO2022033555A1 (zh) 信号传输方法和装置
JP7309887B2 (ja) 信号処理方法および装置
WO2022022579A1 (zh) 一种通信方法及装置
WO2020233420A1 (zh) 时隙格式指示的方法和通信装置
EP3896884A1 (en) Data transmission method and device
JP2020509686A (ja) 通信方法、ネットワークデバイス、および端末デバイス
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2021008416A1 (zh) 确定资源分配的方法和装置
WO2020244728A1 (en) Dynamic discrete fourier transform or bandwidth size indication
WO2020211578A1 (zh) 参考信号发送方法和装置
TW201919429A (zh) 用於配置資源的方法、終端設備和網路設備
WO2021081831A1 (zh) 符号处理的方法与装置
CN114124325A (zh) 信号生成方法及装置
WO2021233155A1 (zh) 一种通信方法、装置及系统
WO2021000712A1 (zh) 符号处理的方法与装置
WO2021008392A1 (zh) 符号处理的方法与装置
WO2021134600A1 (zh) 信号传输的方法及装置
WO2021195975A1 (zh) 传输参考信号的方法和装置
WO2018127180A1 (zh) 一种参考信号传输方法及装置
WO2021109108A1 (zh) 通信方法和装置
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
WO2020143780A1 (zh) 信号处理的方法和装置
WO2018228181A1 (zh) 一种pbch专属解调参考信号传输方法及装置
WO2022141601A1 (zh) 发送和接收解调参考信号的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958544

Country of ref document: EP

Kind code of ref document: A1