WO2021233155A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2021233155A1
WO2021233155A1 PCT/CN2021/092880 CN2021092880W WO2021233155A1 WO 2021233155 A1 WO2021233155 A1 WO 2021233155A1 CN 2021092880 W CN2021092880 W CN 2021092880W WO 2021233155 A1 WO2021233155 A1 WO 2021233155A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
max
time
symbol
frequency domain
Prior art date
Application number
PCT/CN2021/092880
Other languages
English (en)
French (fr)
Inventor
骆喆
高瑜
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21807772.5A priority Critical patent/EP4145783A4/en
Publication of WO2021233155A1 publication Critical patent/WO2021233155A1/zh
Priority to US17/988,018 priority patent/US20230121294A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03821Inter-carrier interference cancellation [ICI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2639Modulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • This application relates to the field of communication technology, and in particular to a related method, device and system for reference signal design.
  • Orthogonal frequency division multiplexing As a multi-carrier modulation technology, is mainly used in communication scenarios when objects are moving at low speeds. However, when objects are moving at high speeds, due to the rapid time-varying display time of the wireless channel Selective fading, relatively high-speed movement of communication equipment, or high-speed movement of scatterers causes Doppler spread to destroy the orthogonality between OFDM sub-carriers, resulting in inter-carrier interference (ICI) affecting the communication system Performance.
  • ICI inter-carrier interference
  • channel state information obtained by channel estimation to equalize the symbols received by the receiving end device is an effective method to suppress ICI.
  • the spreading function of the channel it is very difficult to obtain an important parameter of channel state information: the spreading function of the channel.
  • the embodiments of the present application provide a communication method and device, which make it easier to obtain a channel spread function, thereby helping to quickly and accurately suppress the ICI generated by the high-speed movement of the communication device.
  • a communication method of an embodiment of the present application includes: generating a first reference signal, the first reference signal and the second reference signal are two-dimensionally orthogonal, and the second reference signal is the first reference signal during the communication process.
  • ⁇ v max , and ⁇ 0 or v ⁇ 0, ⁇ max is the first threshold, v max Is the second threshold, where
  • another communication method of an embodiment of the present application includes: receiving a fifth reference signal, where the fifth reference signal includes a second reference signal, and the second reference signal and the first reference signal are two-dimensionally positive.
  • the second reference signal is the reference signal after the first reference signal is transformed by the time delay ⁇ and the Doppler shift v in the communication process, 0 ⁇ max , 0 ⁇
  • the spread function of the channel can be obtained through a two-dimensional correlation operation, and then the channel state information can be obtained to estimate the channel.
  • This method of obtaining the channel extension function is simple, fast and accurate. Greatly improve the performance of the communication system.
  • the method of the first aspect may be executed by the sending end device, the sending end device may be a network device, and the first reference signal may be understood as being sent at the sending end Reference signal.
  • the first reference signal may be a downlink reference signal.
  • the sending end device may be a terminal device, and in this case, the first reference signal may be an uplink reference signal.
  • the method of the second aspect may be executed by a receiving end device, and the receiving end device may be a terminal device or a network device.
  • the second reference signal may be understood as a reference signal obtained at the receiving end device.
  • the first reference signal and the third reference signal are two-dimensional quasi-orthogonal, and the third reference signal is the fourth reference signal after ⁇ and v are transformed
  • the first reference signal and the fourth reference signal are code-division multiplexed.
  • the fifth reference signal also includes a third reference signal.
  • the cross-correlation between the first reference signal and the fourth reference signal code-division multiplexed with the first reference signal is good, which can support the scenario of multi-antenna transmission and expand the capacity of the communication system.
  • the frequency domain interval between resource units occupied by the first reference signal is proportional to the length of the frequency domain range of the first reference signal, It is inversely proportional to the ⁇ max ; the time domain interval between resource units occupied by the first reference signal is proportional to the length of the time domain range of the first reference signal, and inversely proportional to the v max.
  • Such a design is conducive to obtaining good signal auto-correlation and cross-correlation characteristics.
  • the expression of the first reference signal is:
  • n and l each represents the first reference signal sub-carrier index and symbol index number of occupied resource unit
  • n ⁇ 0, l ⁇ 0, u n l and U represents the root of the first reference signal
  • ⁇ n and ⁇ l respectively represent the frequency domain offset and time-frequency offset of the first reference signal
  • k n and k l represent the frequency domain interval and time domain interval between resource units occupied by the first reference signal, respectively.
  • N is the length of the frequency domain of the first reference signal
  • M is the length of the time domain of the first reference signal
  • u n , u l , ⁇ n , ⁇ l , k n , and k l are all positive integers
  • ⁇ and ⁇ are integers ⁇
  • N/k n and M/k l are prime numbers.
  • the expression of the first reference signal is:
  • n and l each represents the first reference signal sub-carrier index and symbol index number of occupied resource unit
  • n ⁇ 0, l ⁇ 0, u n l and U represents the root of the first reference signal
  • ⁇ n and ⁇ l respectively represent the frequency domain offset and time-frequency offset of the first reference signal
  • k n and k l respectively represent the frequency domain interval and time interval between resource units occupied by the first reference signal.
  • N is the length of the frequency domain of the first reference signal
  • M is the length of the time domain of the first reference signal
  • u n , u l , ⁇ n , ⁇ l , k n , and k l are all positive Integer
  • ⁇ and ⁇ are integers ⁇
  • N/k n , M/k l are prime numbers
  • N 1 is the number of sampling points of the symbol corresponding to l
  • N 2 is the sampling point of the cyclic prefix of the first symbol The difference between the number and the number of sampling points of the cyclic prefix of the second symbol, where the first symbol is the first symbol of a slot, and the second symbol is the first symbol in the slot divided by the first time
  • M 1 is the sequence number of the symbol corresponding to 1 in the time slot of the symbol corresponding to 1.
  • This design takes into account that the cyclic prefix length of the start symbol in a time slot is different from other symbols, which may affect the auto-correlation characteristics of the first reference signal and the cross-correlation characteristics of other signals, and the expression of the first reference signal Further corrections were made to suppress this effect.
  • the period of the pattern pattern of the resource unit occupied by the first reference signal is an integer multiple of the time slot corresponding to the first reference signal.
  • the present application provides a device, which may be a sending-end device, a device in a sending-end device, or a device that can be matched with the sending-end device.
  • the device may include a processing module and a transceiver module , And the processing module and the transceiver module can perform the corresponding functions of the first aspect and any one of the methods designed in the first aspect.
  • the sending end device is a network device, or a terminal device.
  • the present application provides a device.
  • the device may be a receiving device, a device in a receiving device, or a device that can be matched with the receiving device.
  • the device may include a processing module and a transceiver module. , And the processing module and the transceiver module can perform the corresponding functions of the second aspect and any of the methods designed in the second aspect.
  • the sending end device is a terminal device, or a network device.
  • an embodiment of the present application provides an apparatus, the apparatus including a processor, configured to implement any one of the foregoing first aspect and the possible design method of the first aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the program instructions stored in the memory, it can implement any one of the above-mentioned first aspect and any one of the possible design methods of the first aspect.
  • the device may further include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • an embodiment of the present application provides a device including a processor, configured to implement any possible design method of the second aspect and the second aspect described above.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the program instructions stored in the memory, it can implement any of the foregoing description of the second aspect and any possible design method of the second aspect.
  • the device may further include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the first aspect and any one of the possible design methods of the first aspect, and the second Aspect and any possible design method of the second aspect.
  • the embodiments of the present application also provide a chip system, which includes a processor and may also include a memory, which is used to implement the first aspect and any possible design method of the first aspect, the second aspect, and The second aspect is any possible design method.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute any possible design method of the first aspect and the first aspect, and the second aspect And any possible design method in the second aspect.
  • an embodiment of the present application also provides a communication system, including the device of the third aspect and the device of the fourth aspect. Or include the device of the fifth aspect and the device of the sixth aspect.
  • FIG. 1 is a schematic diagram of a communication scenario according to an embodiment of the application
  • Fig. 2 is a schematic diagram of a resource grid according to an embodiment of the application.
  • FIG. 3 is a flowchart of a communication method according to an embodiment of the application.
  • Fig. 4(a) is an autocorrelation characteristic diagram of a first reference signal according to an embodiment of the application
  • Fig. 4(b) is a cross-correlation characteristic diagram of a first reference signal according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of a pattern of a first reference signal according to an embodiment of the application.
  • Fig. 6 is a schematic structural diagram of a device according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a device according to another embodiment of the application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated object, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one (item) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Each of them can be an element or a collection containing one or more elements.
  • transmission can include sending and/or receiving, and can be a noun or a verb.
  • terminal devices 1-6 can access a wireless network through a network device, and implement uplink communication and/or downlink communication with the network device.
  • the wireless network includes but is not limited to: long term evolution (LTE) system, new radio (NR) system in the fifth generation (5G) mobile communication system, and future mobile communication system Wait.
  • LTE long term evolution
  • NR new radio
  • 5G fifth generation
  • future mobile communication system Wait future mobile communication system Wait.
  • the two-way arrow in FIG. 1 may represent that the terminal device and the network device use a communication channel for communication.
  • the time-frequency dual-selection channel will be described below.
  • the terminal device in the embodiment of the application is a device with wireless transceiver function, which can be called terminal (terminal), user equipment (UE), mobile station (MS), mobile terminal (MT). ), access terminal equipment, vehicle-mounted terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can be fixed or mobile. It should be noted that the terminal device can support at least one wireless communication technology, such as LTE, NR, and wideband code division multiple access (WCDMA).
  • WCDMA wideband code division multiple access
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a notebook computer, an all-in-one machine, a vehicle-mounted terminal, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid (smart grid), transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless Local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, wearable devices, future mobile communications Terminal equipment in the network or terminal equipment in the future evolution of the public mobile land network (Public Land Mobile Network, PLMN), etc.
  • the terminal may also be a device
  • the network device in the embodiments of the present application is a device that provides wireless communication functions for terminal devices, and may also be referred to as an access network device, a radio access network (radio access network, RAN) device, and so on.
  • the network device can support at least one wireless communication technology, such as LTE, NR, WCDMA, and so on.
  • the network equipment includes, but is not limited to: the next generation base station (gNB), evolved node B (evolved node B, eNB), and wireless network control in the fifth-generation mobile communication system (5th-generation, 5G) Radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved node B, Or home node B, HNB, baseband unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • RNC Radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved node B, Or home node B, HNB, baseband unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • TRP transmitting and receiving point
  • TP transmitting point
  • mobile switching center etc.
  • the network device can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario, or the network device can These are relay stations, access points, in-vehicle devices, terminal devices, wearable devices, and network devices in future mobile communications or network devices in the PLMN that will evolve in the future.
  • the network device may also be a device having a wireless communication function for the terminal device, such as a chip system.
  • the chip system may include a chip, and may also include other discrete devices.
  • the terminal device and the network device communicate through a communication interface using a communication channel.
  • the communication interface between the terminal device and the network device may be a universal UE to network interface (universal UE to network interface, Uu air interface).
  • Uu air interface universal UE to network interface
  • the communication between the terminal device and the network device can also be referred to as Uu air interface communication.
  • a time slot can be understood as a time unit, referring to the length of a period of time in the time domain.
  • the data communication in the embodiments of the present application may be in units of time.
  • the duration of a time slot is related to the size of the subcarrier interval, and the duration of the time slot corresponding to the subcarrier interval of different sizes is different. For example, when the subcarrier interval is 15kHz, the duration of one time slot can be 1ms; when the subcarrier interval is 30kHz, the duration of one time slot can be 0.5ms.
  • a time slot may include one or more symbols.
  • a slot may include 14 symbols; in an extended (extended) CP, a slot may include 12 symbols.
  • the symbols in the embodiments of the present application may also be referred to as time-domain symbols.
  • the symbols may be orthogonal frequency division multiplexing (OFDM) symbols, or orthogonal frequency division multiplexing (OFDM) symbols based on discrete Fourier transform extension. Frequency division multiplexing (discrete fourier transform spread orthogonal frequency division multiplexing, DFT-s-OFDM) symbols, etc.
  • mini-slot in the embodiment of the present application may be a time unit smaller than the time slot, and a mini-slot may include one or more symbols.
  • a mini-slot (or mini-slot) may include 2 symbols, 4 symbols, or 7 symbols.
  • One slot may include one or more mini-slots (or mini-slots).
  • resources and resource elements may also be referred to as time-frequency resources, which are used to transmit various signals or data, and may be represented by a resource grid.
  • Figure 2 shows an example of the resource grid.
  • RE is a resource unit used for data transmission, or a resource unit used for resource mapping of data to be sent.
  • One RE corresponds to one symbol in the time domain, such as an OFDM symbol or a DFT-s-OFDM symbol, and the frequency domain corresponds to one subcarrier.
  • One RE can be used to map a complex symbol, for example, a complex symbol obtained through modulation, or a complex symbol obtained through precoding, which is not limited in this application.
  • RBs may be defined in a resource grid, and one RB in the frequency domain may include a positive integer number of subcarriers, for example, 12 subcarriers. Further, the definition of RB can also be extended to the time domain. For example, one RB includes positive integer subcarriers and the time domain includes positive integer symbols. For example, one RB is a time frequency with 12 subcarriers in the frequency domain and 7 symbols in the time domain. Resource block. A positive integer number of RBs may be included in the resource grid.
  • a slot can be defined in the resource grid or the time domain of the time-frequency resource. As described above, a slot can include a positive integer number of symbols, for example, 14 symbols.
  • the length of the frequency domain range and the time domain range of the reference signal that is, the length of the frequency domain range and the length of the time domain range of the time-frequency resources that need to be channel estimated.
  • the reference signal uses at least part of the time-frequency resources that require channel estimation to perform channel estimation.
  • the length of the frequency domain occupied by the time-frequency resources that require channel estimation in the frequency domain is defined as the frequency domain range of the reference signal.
  • the frequency domain range of the reference signal can also be referred to as the frequency domain span of the time-frequency resource that needs to be channel estimated, or the frequency domain span of the reference signal, etc.
  • the unit is the bandwidth f scs of one subcarrier.
  • the length of the time domain range occupied by the time-frequency resources required for channel estimation in the time domain is defined as the length of the time domain range of the reference signal.
  • the time domain range of the reference signal can also be referred to as the required channel.
  • the unit is the duration of an OFDM symbol in the time domain 1/f scs .
  • the time-frequency resource that needs to be channel estimated is a piece of time-frequency resource that carries the data sent by the sending end device to the receiving end device.
  • the spread function h( ⁇ ,v) of the time-frequency dual-selection channel and the time-frequency dual-selection channel refers to a channel with selectivity in both the time domain and the frequency domain. In other words, the channel quality of the time-frequency dual-selection channel changes with time and changes with frequency.
  • the value of the channel coefficient H(n,l) of the time-frequency dual-selection channel is different at different n and l, n and l respectively Is the sub-carrier index number (frequency domain position) and symbol index number (time domain position) of the RE, 0 ⁇ n ⁇ N-1, 0 ⁇ l ⁇ M-1, N represents the frequency domain of the time-frequency resource that needs to be channel estimated Range length, M represents the length of the time-domain range of time-frequency resources that need to be channel estimated.
  • the "two-dimensional" referred to in the embodiments of the present application may refer to the time domain dimension and the frequency domain dimension.
  • the time-varying impulse response g( ⁇ ,l) of the time-frequency dual-selection channel has the following relationship with the channel coefficient H(n,l) of the time-frequency dual-selection channel:
  • represents the time delay of the input signal passing through the time-frequency dual-selection channel, 0 ⁇ N-1, and the accuracy (or unit) corresponding to ⁇ is 1/(N*f scs ).
  • the time-varying impulse response g( ⁇ ,l) is represented on the symbol (time-domain position) l.
  • the spread function h( ⁇ ,v) of the time-frequency dual-selection channel is defined as the Fourier transform of the time-varying impulse response g( ⁇ ,l) of the time-frequency dual-selection channel to l, namely
  • v represents the Doppler frequency shift of the input signal through the time-frequency dual-selection channel, -M/2 ⁇ v ⁇ M/2-1, and the accuracy (or unit) of v is f scs /M.
  • the spread function h( ⁇ ,v) of the time-frequency dual-selection channel has the following relationship with the channel coefficient H(n,l) of the time-frequency dual-selection channel:
  • a reference signal in the time-frequency domain is represented as S(n,l), where n and l are the subcarrier index number (frequency domain position) and symbol index number (time domain position) of the RE, 0 ⁇ n ⁇ N- 1, 0 ⁇ l ⁇ M-1.
  • the reference signal is represented in the time domain as s(t, l), where l is the symbol index number, and t is the sampling point index number in the symbol.
  • the time domain representation s(t,l) has the following relationship with the time-frequency domain representation S(n,l):
  • Reference signal s 1 (t, l) the delay ⁇ elapsed after the reference signal and the Doppler translational transform v s 2 (t, l) is:
  • the two-dimensional correlation between the reference signal s 1 (t,l) and the reference signal s 2 (t,l) can also be understood as the two-dimensional dot product as in Represents the conjugate of s 2 (t,l).
  • the channel state information on the RE can be obtained.
  • a reference signal that is, a pilot signal
  • the channel state information on the RE can be obtained.
  • Most of the existing reference signals are based on pseudo-random sequences, such as Golden sequences. The following describes how to use the existing reference signal to obtain h( ⁇ ,v).
  • the time-frequency dual-selection channel can be divided into a line of sight (LOS) channel and a non-line of sight (LOS) channel.
  • LOS line of sight
  • LOS non-line of sight
  • ⁇ 0 and v 0 are the time delay and Doppler shift corresponding to the main path, respectively.
  • the wireless signal is transmitted from the transmitting end device to the receiving end device through reflection and/or diffraction.
  • the energy of h( ⁇ ,v) is scattered on multiple paths, that is, h( ⁇ ,v) has a larger amplitude for multiple ⁇ and v.
  • the K factor is usually used to describe the degree of LOS (or NLOS) of the communication channel.
  • the K factor is defined as the ratio of the main path energy to the sum of other path energies, namely
  • h( ⁇ , v) is determined by ⁇ 0 and v 0 corresponding to the main path, and the corresponding channel is a LOS channel at this time.
  • H(n,l) is the function of the delay ⁇ 0 corresponding to the main path and the Doppler shift v 0 , that is, the formula (3) can be transformed into:
  • ⁇ 0 and v 0 can be obtained by calculating the phase difference, namely Among them, n 1 and l 1 represent the sub-carrier index and symbol index of RE1, n 2 and l 1 represent the sub-carrier index and symbol index of RE2, respectively, and n 1 and l 2 represent the sub-carrier index of RE3, respectively Number and symbol index number, RE1, RE2, and RE3 are REs that carry reference signals.
  • h( ⁇ ,v) is no longer determined only by the time delay ⁇ 0 and the Doppler shift v 0 corresponding to the main path, and the corresponding channel at this time is the NLOS channel. Since there is no obvious main path, H(n,l) is composed of the superposition of functions of ⁇ and v corresponding to multiple paths, so h( ⁇ ,v) cannot be obtained by the calculation method of phase difference. As shown in formula (3), H(n,l) on each RE carrying the reference signal corresponds to an equation about h( ⁇ ,v). Therefore, the method to obtain h( ⁇ ,v) of the NLOS channel can be to solve h( ⁇ ,v).
  • h( ⁇ ,v) contains M*N unknowns, which require simultaneous M*N equations to solve, so the reference signal needs to occupy M*N REs, That is to say, the time-frequency resources required for channel estimation can be fully occupied to obtain sufficient equations for solving h( ⁇ ,v).
  • This kind of reference signal design that occupies all the time-frequency resources required for channel estimation obviously cannot support data transmission.
  • the multipath delay range is much smaller than 1/f scs
  • the Doppler frequency shift range is much smaller than f scs /2, that is, for ⁇ > ⁇ max or
  • >v max , h( ⁇ ,v) 0, where ⁇ max represents the maximum time delay of the multipath, and v max represents the maximum Doppler shift of the multipath.
  • h( ⁇ ,v) contains 2 ⁇ max v max unknowns, even if there is no need to place reference signals on all REs that require channel estimation time-frequency resources, it is still necessary to place references on at least 2 ⁇ max v max REs.
  • the signal is used to estimate H(n,l), so that enough equations are obtained to solve h( ⁇ ,v).
  • H(n,l) will not only be affected by noise, but also by ICI, which puts forward higher requirements on the accuracy of H(n,l), and because of the accuracy of h( ⁇ ,v)
  • the performance is greatly affected by the accuracy of H(n,l), and H(n,l) is obtained by estimating the channel based on the reference signal, so more reference signals need to be placed on the RE to improve H(n,l) Accuracy.
  • the existing reference signals have poor cross-correlation, resulting in that reference signals sent by different ports cannot be code-division multiplexed, which greatly increases pilot overhead and cannot provide good support for scenarios with multiple antenna ports.
  • an embodiment of the present application proposes a communication method involving reference signal generation, transmission and reception.
  • This method can be applied to the communication scenario shown in FIG. 1 so that h( ⁇ ,v ) Can be obtained using a low-complexity calculation method, avoiding the use of a highly complex MMSE calculation method.
  • using the newly generated reference signal can effectively support the scenario of multiple antenna port multiplexing.
  • Step 301 Generate a first reference signal.
  • the first reference signal and the second reference signal are two-dimensionally orthogonal. Re-shift the reference signal after v transformation, where 0 ⁇ max , 0 ⁇
  • ⁇ max and v max can be understood as two thresholds here, and these two thresholds can be a priori information, that is, the network device or the terminal device can be in advance or their values.
  • Step 302 Send the first reference signal.
  • Step 303 Receive a fifth reference signal, where the fifth reference signal includes a second reference signal.
  • the channel estimation between the transmitting end device and the receiving end device can be performed based on the reference signal.
  • the names of the sender device and the receiver device can be relative. For example, at a certain moment, when acting as the signal sender, one of them can be called the sender device, and at another moment, when As the signal receiver, the device is called the receiver device.
  • the sending end device sends the first reference signal generated by it to the receiving end device.
  • the transmitting end device may be a network device
  • the receiving end device may be a terminal device.
  • the first reference signal may be a downlink reference signal, such as a demodulation reference signal (DMRS) or a channel state information reference signal.
  • DMRS demodulation reference signal
  • the transmitting end device may be a terminal device, and the receiving end device may be a network device.
  • the first reference signal may be an uplink reference signal, such as an uplink DMRS, or a pilot Frequency reference signal (sounding reference signal, SRS).
  • the first reference signal sent by the transmitting end device produces a transformation of the time delay ⁇ and the Doppler shift v during the transmission process, and when it reaches the receiving end device, such as a terminal device, the received reference signal becomes the second reference signal.
  • Step 304 Obtain channel state information according to the fifth reference signal.
  • the receiving end device can use the received fifth reference signal to measure the channel to obtain channel state information.
  • the fifth reference signal received at the receiving end may include one or more paths (channels).
  • the fifth reference signal may also include the first reference signal.
  • the fifth reference signal may specifically be a weighted sum of the signals contained above. Among them, the weight corresponding to each included reference signal is reflected in the channel coefficient of each channel.
  • the receiving end device may use the obtained channel state information to perform equalization processing on the data reception, so as to suppress the ICI appearing in the data transmission, thereby improving the efficiency and reliability of the data transmission.
  • the receiving end device may also feed back channel state information to the sending end device.
  • the embodiment of this application proposes to use a two-dimensional correlation operation to estimate h( ⁇ ,v).
  • the specific implementation is as follows:
  • the fifth reference signal includes a second reference signal, and optionally, may also include a first reference signal.
  • the fifth reference signal is the first reference signal, and/or, one or more of the first reference signals 2. Weighted sum of reference signals. The weight is reflected in the channel coefficient H(n,l). Use a two-dimensional correlation operation including a two-dimensional inverse Fourier transform to estimate the spread function of the channel:
  • S * (n,l) is the conjugate of S(n,l).
  • the autocorrelation function of a signal is used to represent the correlation function between the signal and the signal obtained after the time delay ⁇ and the Doppler shift v.
  • ⁇ and v are integers, 0 ⁇ N-1 and -M/2 ⁇ v are ⁇ M/2.
  • the autocorrelation function corr( ⁇ ,v) of S(n,l) is a perfect self Related characteristics can be considered The foregoing is an expression of the concept of perfect autocorrelation from the mathematical definition. Perfect autocorrelation can also be expressed as a two-dimensional orthogonality between the signal and the signal after the time delay ⁇ 0 or the Doppler shift v ⁇ 0. That is, the two-dimensional correlation between the signal and the signal after the time delay ⁇ 0 or the Doppler shift v ⁇ 0 is 0.
  • the multipath delay range is much smaller than 1/f scs
  • the Doppler frequency shift range is much smaller than f scs /2, that is, for ⁇ > ⁇ max or
  • >v max , h( ⁇ ,v) 0.
  • ⁇ v max and ⁇ 0 or v When ⁇ 0, corr( ⁇ ,v) 0.
  • the second reference signal obtained is two-dimensional positive. Intersection, where 0 ⁇ max or 0 ⁇
  • the corresponding port of the first reference signal in the scenario of multi-antenna transmission is a
  • the corresponding port of the fourth reference signal in the multi-antenna transmission scenario is b
  • the first reference signal and the fourth reference signal can be code-division multiplexed, which can be further compared with the cross-correlation of the two signals.
  • S a (n, l) is the first reference signal sent by the sending end device at port a
  • S b (n, l) is the fourth reference signal sent by the sending end device at port b
  • corr a,b ( ⁇ ,v) is the cross-correlation function of S a (n,l) and S b (n,l).
  • the cross-correlation function of two signals is used to represent the correlation function between one signal and the other signal obtained after time delay ⁇ and Doppler shift v transformation.
  • is the maximum cross-correlation.
  • the first reference signal and the fourth reference signal sent by the port a and the port b can be code-division multiplexed. That is to say, the first reference signal and the third reference signal need to be two-dimensional quasi-orthogonal.
  • the third reference signal is the fourth reference signal after being transformed by the time delay ⁇ and the Doppler shift v during the transmission process.
  • the reference signal obtained by the end device where 0 ⁇ max and 0 ⁇
  • the meaning of two-dimensional quasi-orthogonal can also be explained from the following perspective: the absolute value of the two-dimensional correlation function value of the two signals is less than ⁇ .
  • the fifth reference signal received by the receiving end device may also include the third reference signal, and in an implementation manner, the third reference signal and The fourth reference signal.
  • the fifth reference signal includes a combination of the reference signals in the above examples, and specifically may be their weighted values.
  • This implementation makes it possible to multiplex the reference signal through multiple ports, improve communication efficiency, and effectively support massive multiple-input multiple output (massive multiple-input multiple output, massive MIMO).
  • the autocorrelation characteristic of the reference signal is limited, and further, the cross-correlation characteristic is also limited.
  • the second embodiment proposes a reference signal design based on the first embodiment, which meets the requirements for a pair of reference signals in the embodiment.
  • n and l are numbers RE subcarrier index and symbol index number occupied by the first reference signal
  • u n, and l represents a root U, ⁇ n, and [alpha] l, respectively, a first reference signal representing the The frequency domain offset and time-frequency offset of the first reference signal, that is, ⁇ n , ⁇ l respectively represent the subcarrier index number of the first RE occupied by the first reference signal and the first RE occupied by the first reference signal
  • k n and k l respectively represent the frequency domain interval and time domain interval between resource units occupied by the first reference signal
  • N is the length of the frequency domain range of the first reference signal (that is, the first reference signal is in the frequency domain).
  • the first reference signal represented by formula (8) can be referred to as a two-dimensional sparse Zadoff-Chu (ZC) sequence.
  • the value of k n is related to N and ⁇ max .
  • k n is proportional to N and inversely proportional to ⁇ max.
  • Optional can be set or
  • the value of k l is related to M and v max .
  • k l is directly proportional to M and inversely proportional to v max.
  • Optional can be set or
  • the first reference signal and the second reference signal are two-dimensional orthogonal, that is, when 0 ⁇ N/k n and 0 ⁇
  • the first reference signal and the third reference signal are two-dimensional quasi-orthogonal, that is, when 0 ⁇ N/k n and 0 ⁇
  • the corresponding mathematical models are shown in Figures 4(a) and 4(b), which reflect the autocorrelation characteristics of the first reference signal and the cross-correlation characteristics of the first reference signal and the fourth reference signal, respectively, as shown in Figure 4(a) Among them, the x-axis represents ⁇ , the y-axis represents v, the z-axis represents corr( ⁇ ,v), and the value of corr( ⁇ ,v) is 1 only on a specific (x,y).
  • the x-axis represents ⁇
  • the y-axis represents v
  • the z-axis represents corr a,b ( ⁇ ,v)
  • corr a,b ( ⁇ ,v) in each (x,y) are all smaller than the specified Value
  • the value of ⁇ max may be required to be less than or equal to N/k n
  • the value of v max may be required to be less than or equal to M/(2k l ).
  • the CP length of the start symbol of a slot is different from the CP length of other symbols in the slot, for example, in the NR communication system, the subcarrier spacing is 30KHz, the first symbol in a slot The CP length of is 88 sampling points, and the CP length of the remaining symbols in the slot is 72 sampling points.
  • the autocorrelation characteristics of the first reference signal based on the foregoing embodiment and the cross-correlation characteristics with other signals may be affected, because the first reference signal based on the second embodiment is cross-slot dimensions. The domain will become unequally spaced.
  • Embodiment 3 On the basis of Embodiment 1 and Embodiment 2, a new design is proposed for the first reference signal to solve the problem that the CP length of the start symbol in a slot is different from the CP length of other symbols in the slot. This may cause the problem that the performance of the first reference signal is affected.
  • a phase rotation may be added to the first reference signal in the second embodiment based on different slots to correct the time domain interval.
  • the first reference signal in the second embodiment is multiplied by a phase rotation factor Obtain a new first reference signal.
  • N 1 is the number of sampling points of the symbol 1
  • N 2 is the difference between the number of sampling points of the cyclic prefix of the first symbol and the number of sampling points of the cyclic prefix of the second symbol, and when the first symbol is one
  • the first symbol of the slot, the second symbol is any symbol in the one time slot except the first symbol
  • M 1 is the sequence number of the time slot in which the symbol corresponding to the 1 is located.
  • the formula (8) in the second embodiment is further adjusted, and the first reference signal may have the following expression:
  • n and l each represents the first reference signal resource elements occupied by the subcarrier index number and the symbol index number, u n, and l represents a root U, ⁇ n, and [alpha] l represents the first reference signal, respectively,
  • the frequency domain offset and the time-frequency offset of the first reference signal, k n and k l respectively represent the frequency domain interval and the time domain interval between the resource units occupied by the first reference signal, and N is the first reference signal.
  • N 1 is the number of sampling points of the symbol corresponding to l
  • N 2 is the number of sampling points of the cyclic prefix of the first symbol and the cycle of the second symbol
  • M l Is the sequence number of the time slot in which the symbol corresponding to 1 is located.
  • the first reference signal generated by formula (9) can always be kept at equal intervals in the time domain, thereby ensuring good autocorrelation and cross-correlation.
  • the receiver of the receiving end device may add the time domain offset -M l *N 2 when intercepting the received symbols on the time slot with the sequence number M l , That is, assuming that the sampling points of the symbols are numbered from 0 to N-1, the sampling points from -M l *N 2 to NM l *N 2 -1 are intercepted as the symbols of the received fifth reference signal.
  • the communication method provided in the embodiments of the present application is introduced from the perspective of including the sending end device and the receiving end device as the execution subject.
  • the sending end device and the receiving end device may include a hardware structure and/or a software module, which are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module The above functions. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application further provides an apparatus 600, and the apparatus 600 includes a transceiver module 601 and a processing module 602.
  • the apparatus 600 is used to implement the function of the sending end device in the foregoing method.
  • the device may be a terminal device or a device in a terminal device; the device may be a network device or a device in a network device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the processing module 602 is configured to generate a first reference signal, the first reference signal and the second reference signal are two-dimensionally orthogonal, and the second reference signal is the time when the first reference signal passes during the communication process.
  • the reference signal after ⁇ and Doppler shift v transformation, 0 ⁇ max , 0 ⁇
  • the transceiver module 601 is configured to send the first reference signal. .
  • the apparatus 600 is used to implement the function of the receiving end device in the foregoing method.
  • the device may be a terminal device or a device in a terminal device; the device may be a network device or a device in a network device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the transceiver module 601 is configured to receive a fifth reference signal, the fifth reference signal includes the second reference signal, the second reference signal is two-dimensionally orthogonal to the first reference signal, and the second reference signal
  • the signal is the reference signal after the first reference signal is transformed by the time delay ⁇ and the Doppler shift v in the communication process, 0 ⁇ max , 0 ⁇
  • the processing module 602 is configured to obtain channel state information according to the fifth reference signal.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an embodiment of the present application further provides an apparatus 700.
  • the device 700 is used to implement the function of the sending end device in the above method.
  • the device can be a terminal device or a device in a terminal device; the device can be a network device or a device in a network device.
  • the apparatus 700 includes at least one processor 701, configured to implement the function of the sending end device in the foregoing method. For details, please refer to the detailed description in the method, which will not be explained here.
  • the apparatus 700 may further include at least one memory 702 for storing program instructions and/or data.
  • the memory 702 and the processor 701 are coupled.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory 702 may also be located outside the apparatus 700.
  • the processor 701 may cooperate with the memory 702 to operate.
  • the processor 701 may execute program instructions stored in the memory 702 to implement the method executed by the sending device in the foregoing embodiment of the present application. At least one of the at least one memory may be included in the processor.
  • the apparatus 700 may further include a communication interface 703 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 700 can communicate with other devices.
  • the communication interface 703 may be a transceiver, a circuit, a bus, a module, or another type of communication interface, and the other device may be a receiving end device.
  • the processor 701 uses the communication interface 703 to send and receive data, and is used to implement the method of the sending end device in the foregoing embodiment.
  • the device 700 is used to implement the function of the receiving end device in the above method.
  • the device can be a network device or a device in a network device; the device can be a terminal device or a device in a terminal device.
  • the apparatus 700 has at least one processor 701 configured to implement the function of the receiving end device in the foregoing method. For details, please refer to the detailed description in the method, which will not be explained here.
  • the apparatus 700 may further include at least one memory 702 for storing program instructions and/or data.
  • the memory 702 and the processor 701 are coupled.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory 702 may also be located outside the apparatus 700.
  • the processor 701 may cooperate with the memory 702 to operate.
  • the processor 701 may execute program instructions stored in the memory 702. At least one of the at least one memory may be included in the processor.
  • the apparatus 700 may further include a communication interface 703 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 700 can communicate with other devices.
  • the communication interface 703 may be a transceiver, a circuit, a bus, a module, or another type of communication interface, and the other device may be a sending end device.
  • the processor 701 uses the communication interface 703 to send and receive data, and is used to implement the method in the foregoing embodiment.
  • the embodiment of the present application does not limit the connection medium between the aforementioned communication interface 703, the processor 701, and the memory 702.
  • the memory 702, the processor 701, and the communication interface 703 may be connected by a bus, and the bus may be divided into an address bus, a data bus, and a control bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法,包括:生成第一参考信号,第一参考信号与第二参考信号呈二维正交,第二参考信号为第一参考信号在通信过程中经过时延τ和多普勒平移v变换后的参考信号,0≤τ≤τ max、0≤|v|≤v max、且τ≠0或者v≠0,τ max为第一阈值,v max为第二阈值,其中,|x|表示对x取绝对值;发送第一参考信号。满足如上要求的第一参考信号,在信道估计时,可以通过二维相关运算来获得信道的扩展函数。这种获得信道扩展函数的方式简单快速准确。大大提高了通信系统的性能。

Description

一种通信方法、装置及系统
本申请要求于2020年5月18日提交中国国家知识产权局、申请号为202010420667.2、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种参考信号设计的相关方法、装置及系统。
背景技术
正交频分复用(orthogonal frequency division multiplexing,OFDM)作为一种多载波调制技术,主要应用于物体中低速移动时的通信场景,然而在物体处于高速移动时,由于无线信道快速时变呈现时间选择性衰落、通信设备的相对高速运动或散射物的高速移动导致的多普勒扩展会破坏OFDM各子载波间的正交性,从而产生载波间干扰(inter-carrier interfence,ICI)影响通信系统的性能。
利用信道估计获得的信道状态信息对接收端设备所接收到的符号进行均衡是一种有效抑制ICI的方法。然而,现有技术中,对于时频双选的信道,要获得信道状态信息的重要参数:信道的扩展函数(spreading function),是十分困难的。
发明内容
本申请实施例提供一种通信方法和装置,使得信道扩展函数的获得更加简单,从而有助于快速又准确的对通信设备高速运动而产生的ICI进行抑制。
第一方面,本申请实施例的一种通信方法,包括:生成第一参考信号,第一参考信号与第二参考信号呈二维正交,第二参考信号为第一参考信号在通信过程中经过时延τ和多普勒平移v变换后的参考信号,0≤τ≤τ max、0≤|v|≤v max、且τ≠0或者v≠0,τ max为第一阈值,v max为第二阈值,其中,|x|表示对x取绝对值;发送第一参考信号。
第二方面,本申请实施例的另一种通信方法,包括:接收第五参考信号,所述第五参考信号包括第二参考信号,第二参考信号与所述第一参考信号呈二维正交,第二参考信号为所述第一参考信号在通信过程中经过时延τ和多普勒平移v变换后的参考信号,0≤τ≤τ max、0≤|v|≤v max、且τ≠0或者v≠0,τ max为第一阈值,v max为第二阈值,其中,|x|表示对x取绝对值;
根据第五参考信号获得信道状态信息。
此时,可以通过二维相关运算来获得信道的扩展函数,进而获得信道状态信息对信道进行估计。这种获得信道扩展函数的方式简单快速准确。大大提高了通信系统的性能。
结合第一方面和/或第二方面,在一种可能的设计中,第一方面的方法可以由发送端设备执行,发送端设备可以是网络设备,第一参考信号可以理解为发送端处发送的参考信号。此时第一参考信号可以是下行参考信号。发送端设备可以是终端设备,此时第一参考信号 可以是上行参考信号。第二方面的方法可以有接收端设备执行,接收端设备可以是终端设备,或者网络设备。第二参考信号可以理解为在接收端设备处获得的参考信号。
结合第一方面和/或第二方面,在一种可能的设计中,第一参考信号与第三参考信号呈二维准正交,第三参考信号为第四参考信号经过τ与v变换后的参考信号,且第一参考信号与第四参考信号码分复用。所述第五参考信号还包括第三参考信号。
此时,第一参考信号和与其码分复用的第四参考信号间的互相关性良好,可以支持多天线传输的场景,扩大了通信系统的容量。
结合第一方面和/或第二方面,在一种可能的设计中,所述第一参考信号所占用资源单元之间的频域间隔与所述第一参考信号的频域范围长度成正比、与所述τ max成反比;所述第一参考信号所占用资源单元之间的时域间隔与所述第一参考信号的时域范围长度成正比、与所述v max成反比。
如此的设计有利于获得良好的信号自相关特性和互相关特性。
结合第一方面和/或第二方面,在一种可能的设计中,第一参考信号的表达式为:
Figure PCTCN2021092880-appb-000001
其中,n和l分别为所述第一参考信号所占用资源单元的子载波索引号和符号索引号,n≥0,l≥0,u n和u l表示所述第一参考信号的根,α n和α l分别表示所述第一参考信号的频域偏置和时频偏置,k n和k l分别表示所述第一参考信号所占用资源单元之间的频域间隔与时域间隔,N为所述第一参考信号的频域范围长度,M所述第一参考信号的时域范围长度,u n,u lnl,k n,k l均为正整数,β和γ为≥0的整数,N/k n,M/k l为素数。
结合第一方面和/或第二方面,在一种可能的设计中,第一参考信号的表达式为:
Figure PCTCN2021092880-appb-000002
其中,n和l分别为所述第一参考信号所占用资源单元的子载波索引号和符号索引号,n≥0,l≥0,u n和u l表示所述第一参考信号的根,α n和α l分别表示所述第一参考信号的频域偏置和时频偏置,k n和k l分别表示所述第一参考信号所占用的资源单元之间的频域间隔与时域间隔,N为所述第一参考信号的频域范围长度,M所述第一参考信号的时域范围长度,u n,u lnl,k n,k l均为正整数,β和γ为≥0的整数,N/k n,M/k l为素数,N 1为所述l所对应符号的采样点个数,N 2为第一符号的循环前缀的采样点个数与第二符号的循环前缀的采样点个数之差,所述第一符号为一个时隙的第一个符号,所述第二符号为所述一个时隙中除所述第一时隙外的任一符号,M l为所述l所对应符号在所述l所对应符号的时隙内的序号。
这种设计考虑到了一个时隙中起始符号的循环前缀长度与其它符号不同可能对第一参考信号的自相关特性和对其它信号的互相关特性产生的影响,对第一参考信号的表达式进行了进一步的修正来抑制该影响。
结合第一方面和/或第二方面,在一种可能的设计中,
Figure PCTCN2021092880-appb-000003
结合第一方面和/或第二方面,在一种可能的设计中,第一参考信号所占用资源单元的 图案pattern的周期为所述第一参考信号所对应时隙的整数倍。
第三方面,本申请提供一种装置,该装置可以是发送端设备,也可以是发送端设备中的装置,或者是能够和发送端设备匹配使用的装置,该装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第一方面以及第一方面任一种设计的方法的相应功能。
在一种可能的设计中,发送端设备为网络设备,或者终端设备。
第四方面,本申请提供一种装置,该装置可以是接收端设备,也可以是接收端设备中的装置,或者是能够和接收端设备匹配使用的装置,该装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第二方面及第二方面任一种设计的方法的相应功能。
在一种可能的设计中,发送端设备为终端设备,或者网络设备。
第五方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面及第一方面任一种可能的设计的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第一方面及第一方面任一种可能的设计的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第六方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二方面及第二方面任一种可能的设计的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第二方面描述及第二方面任一种可能的设计的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第七方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面以及第一方面任一种可能的设计的方法、第二方面以及第二方面任意一种可能的设计的方法。
第八方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面以及第一方面任一种可能的设计的方法、第二方面以及第二方面任意一种可能的设计的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面以及第一方面任一种可能的设计的方法、第二方面以及第二方面任意一种可能的设计的方法。
第十方面,本申请实施例中还提供一种通信系统,包括第三方面的装置和第四方面的装置。或者包括第五方面的装置和第六方面的装置。
另外,第三方面至第十面中任一种可能设计方式所带来的技术效果可参见方法部分中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请一实施例的一种通信场景示意图;
图2为本申请一实施例的一种资源栅格示意图;
图3为本申请一实施例的一种通信方法的流程图;
图4(a)为本申请一实施例的一种第一参考信号的自相关特性图
图4(b)为本申请一实施例的一种第一参考信号的互相关特性图;
图5为本申请一实施例的一种第一参考信号的图样示意图;
图6为本申请一实施例的装置的结构示意图;
图7为本申请另一实施例的装置的结构示意图。
具体实施方式
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c中的每一个本身可以是元素,也可以是包含一个或多个元素的集合。
在本申请实施例中,“示例的”“在一些实施例中”“在另一实施例中”“作为一种实现方式”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中通信、传输有时可以混用,应当指出的是,在不强调区别时,其所表达的含义是一致的。例如传输可以包括发送和/或接收,可以为名词,也可以是动词。
本申请实施例中,公式e x与exp(x)等价。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案,需要说明的是,当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
本申请可以位于如图1所示的通信场景下。如图1所示,终端设备1-6可以通过网络设备接入无线网络,并实现与该网络设备的上行通信和/或下行通信。其中所述无线网络包括但不限于:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统中的新无线(new radio,NR)系统以及未来的移动通信系统等。其中,图1中的双向箭头可以代表终端设备和网络设备之间使用通信信道进行通信。关于时频双选信道将在下文中进行说明。
以下对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1、终端设备。本申请实施例中终端设备是一种具有无线收发功能的设备,可以称为终 端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如LTE、NR、宽带码分多址(wideband code division multiple access,WCDMA)等。例如,终端设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。在本申请的一些实施例中,终端还可以是具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
2、网络设备。本申请实施例中网络设备是一种为终端设备提供无线通信功能的设备,也可称之为接入网设备、无线接入网(radio access network,RAN)设备等。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR、WCDMA等。示例的,网络设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的网络设备或者未来演进的PLMN中的网络设备等。在一些实施例中,网络设备还可以为具有为终端设备提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
3、终端设备与网络设备之间的通信。本申请实施例中终端设备和网络设备使用通信信道通过通信接口进行通信的。例如,终端设备与网络设备之间的通信接口可以为通用的UE和网络之间的接口(universal UE to network interface,Uu空口)。当终端设备与网络设备之间的通信接口为Uu空口时,终端设备与网络设备之间的通信又可以称之为Uu空口通信。
4、时隙和符号。时隙可以理解为一种时间单位,指在时域上的一段时间长度。本申请实施例中的数据通信可以以时间单元为单位。其中,一个时隙的时长与子载波间隔的大小相关,不同大小的子载波间隔对应的时隙的时长是不同的。例如,子载波间隔为 15kHz时,一个时隙的时长可以为1ms;子载波间隔为30kHz时,一个时隙的时长可以为0.5ms。本申请实施例中一个时隙可以包括一个或多个符号。比如,正常(normal)循环前缀(cyclic prefix,CP)下,一个时隙可以包括14个符号;扩展(extended)CP下,一个时隙可以包括12个符号。应理解,本申请实施例中符号又可以称之为时域符号,例如,符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以为基于离散傅立叶变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)符号等。另外,本申请实施例中微时隙(或迷你时隙)可以是比时隙更小的时间单位,一个微时隙可以包括一个或多个符号。比如一个微时隙(或迷你时隙)可以包括2个符号,4个符号或7个符号等。。一个时隙可以包括一个或多个微时隙(或迷你时隙)。
5、资源和资源单元(resource element,RE)。本申请实施例中资源又可以被称为时频资源,用于进行各种信号或者数据的传输,可以通过资源栅格表示。图2所示为资源栅格的示例图。资源栅格中,RE是用于进行数据传输的资源单位,或者用于对待发送数据进行资源映射的资源单位。一个RE在时域对应一个符号,例如OFDM符号或者DFT-s-OFDM符号,频域对应一个子载波。一个RE可以用于映射一个复数符号,例如经过调制得到的复数符号,或者经过预编码得到的复数符号,本申请不做限制。在频域,在资源栅格中可以定义RB,在频域一个RB中可以包括正整数个子载波,例如12个。进一步地,RB的定义还可以扩展到时域,例如一个RB包括正整数子载波且时域包括正整数个符号,例如一个RB是频域包括12个子载波且时域包括7个符号的时频资源块。资源栅格中可以包括正整数个RB。在资源栅格或者时频资源的时域可以定义时隙(slot),如前所述一个时隙中可以包括正整数个符号,例如14个符号等。
6、参考信号的频域范围长度以及时域范围长度。也即需要进行信道估计的时频资源的频域范围长度以及时域范围长度。参考信号使用至少部分需要进行信道估计的时频资源进行信道估计,本申请实施例中需要进行信道估计的时频资源在频域上所占用的频域范围长度被定义为参考信号的频域范围长度,此外,参考信号的频域范围还可以称为需要进行信道估计的时频资源的频域跨度,或者参考信号的频域跨度等。例如,对于OFDM通信系统,其单位是一个子载波的带宽f scs。本申请实施例中需要进行信道估计的时频资源在时域上所占用的时域范围长度被定义为参考信号的时域范围长度,此外,参考信号的时域范围还可以称为需要进行信道估计的时频资源的时域跨度,或者参考信号的时域跨度等。例如,对于OFDM通信系统,其单位是时域上一个OFDM符号的持续时间1/f scs。需要说明的是,需要进行信道估计的时频资源即承载由发送端设备向接收端设备发送的数据的一块时频资源。
7、时频双选信道和时频双选信道的扩展函数h(τ,v)。时频双选信道指的是信道在时域与频域上都具有选择性的信道,或者说时频双选信道的信道质量随着时间的变化而变化、并且随着频率的变化而变化。例如,对于OFDM通信系统,在需要进行信道估计的时频资源上,时频双选信道的信道系数H(n,l)的值在不同的n和l处是不相同的,n和l分别为RE的子载波索引号(频域位置)和符号索引号(时域位置),0≤n≤N-1,0≤l≤M-1,N表示需要进行信道估计的时频资源频域范围长度,M表示需要进行信道估计的时频资源 时域范围长度。另外,本申请实施例中所涉及的“二维”,可以指时域维度和频域维度。
时频双选信道的时变冲击响应g(τ,l)与时频双选信道的信道系数H(n,l)有如下所示的关系:
Figure PCTCN2021092880-appb-000004
其中τ表示输入信号经过该时频双选信道的时延,0≤τ≤N-1,τ对应的精度(或者称为单位)为1/(N*f scs)。时变冲击响应g(τ,l)表示在符号(时域位置)l上,当对该时频双选信道输入一个单位脉冲信号时,该时频双选信道的响应输出信号,其反应了该时频双选信道的基本特性。
时频双选信道的扩展函数h(τ,v)定义为时频双选信道的时变冲击响应g(τ,l)对于l的傅里叶变换,即
Figure PCTCN2021092880-appb-000005
其中v表示输入信号经过该时频双选信道的多普勒频移,-M/2≤v≤M/2-1,v的精度(或者称为单位)为f scs/M。
根据上面所述公式(1)和公式(2),时频双选信道的扩展函数h(τ,v)与时频双选信道的信道系数H(n,l)有如下所示的关系:
Figure PCTCN2021092880-appb-000006
可以看到由于τ与v的作用,H(n,l)呈现出时频双选的特征。
8、参考信号的频域与时域表示。一个参考信号在时频域的表示为S(n,l),其中n和l分别为RE的子载波索引号(频域位置)和符号索引号(时域位置),0≤n≤N-1,0≤l≤M-1。对应的,该参考信号在时间域上的表示为s(t,l),其中l为符号索引号,t为符号中采样点索引号。时间域表示s(t,l)与时频域表示S(n,l)有如下关系:
Figure PCTCN2021092880-appb-000007
参考信号s 1(t,l)经过经过时延τ和多普勒平移v变换后的参考信号s 2(t,l)为:
Figure PCTCN2021092880-appb-000008
其中mod表示取模运算符。
参考信号s 1(t,l)与参考信号s 2(t,l)的二维相关,也可以理解为二维点积为
Figure PCTCN2021092880-appb-000009
其中
Figure PCTCN2021092880-appb-000010
表示s 2(t,l)的共轭。
通过在RE上放置参考信号,也即导频信号,可以获得该RE上的信道状态信息。现有的参考信号大都基于伪随机序列,如Golden序列。下面介绍一下如何使用现有的参考信号获得h(τ,v)。
在高速移动的场景下,时频双选信道可以分为视线(line of sight,LOS)信道和非视线(non line of sight,LOS)信道。其中,LOS信道的场景下,无线信号无遮挡地在发送端设备和接收端设备之间直线传播,h(τ,v)的主要能量集中在主径(直射径)上,即h(τ,v)只在τ=τ 0,v=v 0上有较大的幅值,而在对于其余的τ和v幅值很小。其中,τ 0和v 0分别为主径 对应的时延和多普勒频移。而NLOS信道的场景下,发送端设备和接收端设备之间存在遮挡,无线信号通过反射和/或衍射从发送端设备发送至接收端设备。此时h(τ,v)的能量分散在多个径上,即h(τ,v)对于多个τ和v都有较大的幅值。通常使用K因子来描述通信信道的LOS(或NLOS)的程度。K因子被定义为主径能量与其它径能量和之比,即
K=max|h(τ,v)| 2/(∑|h(τ,v)| 2-max|h(τ,v)| 2)      公式(4)
例如K因子大于8.98分贝(dB)时,可以认为h(τ,v)由主径对应的τ 0与v 0确定,此时对应的信道为LOS信道。当只有主径时,H(n,l)是主径对应的时延τ 0与多普勒频移v 0的函数,即公式(3)可以转化为:
Figure PCTCN2021092880-appb-000011
因此,τ 0与v 0可以通过相位差分的计算方式得到,即
Figure PCTCN2021092880-appb-000012
Figure PCTCN2021092880-appb-000013
其中,n 1与l 1分别表示RE1的子载波索引号和符号索引号,n 2与l 1分别表示RE2的子载波索引号和符号索引号,n 1与l 2分别表示RE3的子载波索引号和符号索引号,RE1、RE2和RE3为承载有参考信号的RE。
又例如K因子小于5dB时,h(τ,v)不再仅由主径对应的时延τ 0与多普勒频移v 0确定,此时对应的信道为NLOS信道。由于没有明显主径,H(n,l)由多个径分别对应的τ与v的函数的叠加组成,因此无法通过相位差分的计算方法获得h(τ,v)。如公式(3)所示,承载参考信号的每一个RE上的H(n,l)都对应一个关于h(τ,v)的方程。因此,获得NLOS信道的h(τ,v)的方法可以是通过联立多个的H(n,l)对应的方程,基于最小均方差(minimum mean square error,MMSE)的方式求解h(τ,v)。对于h(τ,v)没有先验信息的情况下,h(τ,v)包含M*N个未知数,需要联立M*N个方程才能求解,因此参考信号需要占用M*N个RE,也即占满需要进行信道估计的时频资源才能得到足够的方程用于求解h(τ,v)。这种占满需要进行信道估计的时频资源全部RE的参考信号设计显然无法支持数据传输。
需要说明的是,对于实际的时频双选信道,多径的时延范围远小于1/f scs,多普勒频移范围远小于f scs/2,即对于τ>τ max或|v|>v max,h(τ,v)=0,其中τ max表示多径的最大时延,v max表示多径的最大多普勒频移。此时,由于h(τ,v)包含2τ maxv max个未知数,即便无需在需要进行信道估计的时频资源的所有RE上放置参考信号,仍然需要至少在2τ maxv max个RE上放置参考信号用于估计H(n,l),从而得到足够的方程用于求解h(τ,v)。
同时,H(n,l)不仅会受到噪声的影响,还会受到ICI的影响,这对H(n,l)的准确性提出了更高的要求,并且由于h(τ,v)的准确性受H(n,l)的准确性影响大,而H(n,l)基于参考信号对信道进行估计得到,因此需要在RE上放置更多的参考信号用于提高H(n,l)的准确性。
由上可知,对于NLOS信道,基于MMSE的方式,要求解出h(τ,v),其算法复杂度很高。
不仅如此现有的参考信号的互相关性差,导致不同端口发送的参考信号不能码分复用, 从而大大增加了导频开销,对于多天线端口的场景无法提供良好的支持。
实施例一
基于如上现有技术中的缺陷,本申请实施例提出了一种通信方法,涉及参考信号生成、发送与接收,该方法可以应用于如图1所示的通信场景下,使得h(τ,v)可以使用低复杂度的计算方式作获得,避免了使用复杂度很高的MMSE的计算方式。同时使用新生成的参考信号可以有效支持多天线端口复用的场景。
如图3所示:
步骤301、生成第一参考信号,所述第一参考信号与第二参考信号呈二维正交,所述第二参考信号为所述第一参考信号在通信过程中经过时延τ和多普勒平移v变换后的参考信号,其中0≤τ≤τ max、0≤|v|≤v max,且τ≠0或v≠0。τ max和v max在这里可以理解为两个阈值,这两个阈值可以是先验信息,即网络设备或终端设备可以预先或者它们的值。
步骤302、发送所述第一参考信号。
步骤303、接收第五参考信号,第五参考信号包括第二参考信号。
可以基于参考信号进行发送端设备和接收端设备之间的信道估计。需要说明的是,发送端设备和接收端设备的称呼可以是相对的,例如,在某一时刻,当作为信号发送方的时候,某一可以称为发送端设备,而在另一时刻,当作为信号接收方时,则该设备被称为接收端设备。发送端设备将其生成的第一参考信号发送至接收端设备。例如,发送端设备可以是网络设备,接收端设备可以是终端设备,此时第一参考信号可以是下行参考信号,如下行解调参考信号(demodulaiton reference signal,DMRS),或者信道状态信息参考信号(channel state information-reference signal,CSI-RS);又例如,发送端设备可以是终端设备,接收端设备可以是网络设备,此时第一参考信号可以是上行参考信号,如上行DMRS,或者导频参考信号(sounding reference signal,SRS)。由于发送端设备和接收端设备的通信信道在时域上会产生时间选择性衰落、在频域上会产生多普勒效应,也就是说,信道的时延τ和多普勒平移v会使得发送端设备发送的第一参考信号在传输过程中产生时延τ和多普勒平移v的变换,到达接收端设备,例如终端设备时,接收到的参考信号即变为了第二参考信号。
步骤304、根据所述第五参考信号获得信道状态信息。
接收端设备可以使用接收到的第五参考信号,对信道进行测量,获得信道状态信息。需要说明的是,发送端设备发送第一参考信号,由于在发送端设备和接收端设备之间包括一个或者多个径(信道),在接收端接收到的第五参考信号可以包括一个或者多个经过不同径(信道)第二参考信号,可选的,若发送端设备和接收端设备之间存在τ=0且v=0的径(信道),第五参考信号还可以包括第一参考信号。第五参考信号具体可以是以上这些所包含的信号的加权和。其中,与每个所包含的参考信号对应的权值,反映在每个信道的信道系数中。在本申请实施例中,接收端设备可以使用获得的信道状态信息对数据的接收进行 均衡处理,来抑制数据传输中出现的ICI,从而提高数据传输的效率和可靠性。
可选的,接收端设备还可以将信道状态信息反馈给发送端设备。
为了降低信道获得h(τ,v)的复杂性,基于公式(3)本申请实施例提出使用二维相关运算来估计h(τ,v)。具体实现方式如下:
假设发送端设备发送的第一参考信号在时频域的表示为S(n,l)、在接收端设备接收到的第五参考信号在时频域的表示为Y(n,l),信道系数H(n,l),则Y(n,l)=H(n,l)·S(n,l)。所述第五参考信号包括第二参考信号,可选的,还可以包括第一参考信号,具体的,第五参考信号为所述第一参考信号,和/或,一个或多个所述第二参考信号的加权和。所述权值反映在信道系数H(n,l)中。使用包括二维傅里叶逆变换的二维相关运算来估计信道的扩展函数:
Figure PCTCN2021092880-appb-000014
其中,
Figure PCTCN2021092880-appb-000015
为估计的信道扩展函数,S *(n,l)是S(n,l)的共轭。
Figure PCTCN2021092880-appb-000016
Figure PCTCN2021092880-appb-000017
为是S(n,l)的自相关函数。其中,一个信号的自相关函数用于表示该信号与其自身经过时延τ和多普勒平移v变换后获得的信号的相关函数。
进一步的,τ和v为整数,0≤τ<N-1且-M/2≤v为<M/2。当corr(0,0)=1,且当τ≠0或者v≠0,corr(τ,v)=0,此时S(n,l)的自相关函数corr(τ,v)呈完美自相关特性,可以认为
Figure PCTCN2021092880-appb-000018
前述是从数学的定义对完美自相关的概念进行了表述,完美自相关还可以表示为该信号与其经过时延τ≠0或多普勒平移v≠0变换后的信号呈二维正交,即该信号与其经过时延τ≠0或多普勒平移v≠0变换后的信号二维相关为0。也即当S(n,l)呈完美自相关时,可以使用二维傅里叶逆变换(IFFT 2)的计算方式获得h(τ,v),如上公式(6)。可见,相对于使用MMSE的方式,其不需要联立多个方程组就能对h(τ,v)进行求解,算法的复杂度大大降低。
如前所述,对于实际的信道,多径的时延范围远小于1/f scs,多普勒频移范围远小于f scs/2,即对于τ>τ max或|v|>v max,h(τ,v)=0。基于此,当τ≠0或v≠0,corr(τ,v)=0的条件可以调整放宽至:当0≤τ≤τ max且0≤|v|≤v max,并且τ≠0或v≠0时,corr(τ,v)=0。
因此,当步骤401中在发送端设备发送的第一参考信号,与第一参考信号在传输过程中经过经过时延τ和多普勒平移v变换后,获得的第二参考信号呈二维正交,其中0≤τ≤τ max或0≤|v|≤v max,且τ≠0或v≠0。那么就可以使用如上方式对h(τ,v)进行计算,从而大大降低了计算复杂度。
在一种实现方式中,为了解决不同端口发送的参考信号不能码分复用问题,从而更好的支持多天线传输的场景,假设第一参考信号在多天线传输的场景下对应的端口为a,第四参考信号在多天线传输的场景下对应的端口为b,那么要使得第一参考信号和第四参考信号能够实现码分复用,可与对这两个信号的互相关性作出进一步的约束:
Figure PCTCN2021092880-appb-000019
其中,S a(n,l)为发送端设备在端口a发送的第一参考信号,S b(n,l)为发送端设备在端口b发送的第四参考信号。corr a,b(τ,v)为S a(n,l)和S b(n,l)的互相关函数。两个信号的互相关函数用于表示一个信号与另一信号经过时延τ和多普勒平移v变换后获得的信号的相关函数。∈为最大互相关。也就是说当对于0≤τ≤τ max且0≤|v|≤v max,|corr a,b(τ,v)|<∈时,corr a,b(τ,v)在0≤τ≤τ max且0≤|v|≤v max范围内呈低互相关特性,此时端口a和端口b发送的第一参考信号和第四参考信号可以码分复用。也即第一参考信号与第三参考信号需要满足呈二维准正交,所述第三参考信号为第四参考信号在传输过程中经过时延τ和多普勒平移v变换后,在接收端设备获得的参考信号,其中0≤τ≤τ max且0≤|v|≤v max。二维准正交的含义还可从如下角度进行阐述:两个信号的二维相关函数值的绝对值小于∈。
对应的,在多天线传输的场景下,从接收端设备来看,接收端设备接收到的第五参考信号中还可以包括第三参考信号,以及在一种实现方式中包括第三参考信号和第四参考信号。第五参考信号包括以上示例的参考信号的组合,具体可以是它们的加权值。
这种实现方式使得多端口复用发送参考信号成为可能,提高了通信效率,有效支持大规模多输入多输出(massive multiple-input multiple output,massive MIMO)。
实施例二
实施例一的方法中,为了解决现有技术中的缺陷,对参考信号的自相关特性做出了限定,进一步地,还对其互相关特性做出限定。
实施例二基于实施例一,提出一种参考信号的设计,其符合实施例一对参考信号的要求。
实施例一中的第一参考信号的表达式可以为:
Figure PCTCN2021092880-appb-000020
其中,n和l分别为所述第一参考信号所占用RE的子载波索引号和符号索引号,u n和u l表示所述第一参考信号的根,α n和α l分别表示所述第一参考信号的频域偏置和时频偏置,也即α n,α l分别表示第一参考信号占用的第一个RE的子载波索引号和第一参考信号占用的第一个RE的符号索引号。k n和k l分别表示所述第一参考信号所占用资源单元之间的频域间隔与时域间隔,N为所述第一参考信号的频域范围长度(也即第一参考信号在频域上 所占据的一段频域范围,或者称为第一参考信号的频域跨度),M所述第一参考信号的时域范围长度(也即第一参考信号在时域上所占据的一段时域范围,或者称为第一参考信号的时域跨度),u n,u lnl,k n,k l均为正整数,0≤α n<k n和0≤α l<k l,β和γ为≥0的整数,N/k n,M/k l为素数。
公式(8)所表示的第一参考信号可以称为二维稀疏Zadoff-Chu(ZC)序列。
在一种实现方式中,k n的取值与N、τ max相关。例如,k n与N成正比、与τ max成反比。当第一参考信号的频域范围长度比较大和/或信道的时延最大值(对应第一阈值)比较小时,第一参考信号所占用资源单元之间的频域间隔可以设置的比较大,也即从第一参考信号的图样来看,在频域上的间距比较宽松。
可选的,可以设置
Figure PCTCN2021092880-appb-000021
或者
Figure PCTCN2021092880-appb-000022
在一种实现方式中,k l的取值与M、v max相关。例如,k l与M成正比、与v max呈反比。当第一参考信号的时域范围长度比较大和/或信道的多普勒频移最大值(对应第二阈值)比较小时,第一参考信号所占用资源单元之间的时域间隔可以设置的比较大,也即从第一参考信号的图样来看,在时域上的间距比较宽松。
可选的,可以设置
Figure PCTCN2021092880-appb-000023
或者
Figure PCTCN2021092880-appb-000024
在一种实现方式中,假设时频双选信道的两个阈值τ max和v max满足v max=M/(2k l),τ max=N/k n,研究如公式(8)所述的第一参考信号在该时频双选信道的自相关函数和互相关函数。可以发现,其第一参考信号与第二参考信号呈二维正交,即当0≤τ≤N/k n且0≤|v|≤M/(2k l),并且τ≠0或v≠0时,corr(τ,v)=0;而第一参考信号与第三参考信号呈二维准正交,即当0≤τ≤N/k n且0≤|v|≤M/(2k l)时,
Figure PCTCN2021092880-appb-000025
对应的数学模型如图4(a)和4(b)所示,分别反映了该第一参考信号的自相关特性和第一参考信号与第四参考信号的互相关特性,图4(a)中,x轴表示τ,y轴表示v,z轴表示corr(τ,v),corr(τ,v)只在特定的(x,y)上值为1。图4(b)中,x轴表示τ,y轴表示v,z轴表示corr a,b(τ,v),corr a,b(τ,v)在各个(x,y)上均小于特定值,可见其自相关性能与互相关性能均良好。
在一种实现方式中,可以要求τ max的取值小于等于N/k n,且要求v max的取值小于等于M/(2k l)。以此可以保证第一参考信号的自相关函数的特性、第一参考信号和第三参考信号的互相关函数的特性满足实施例一的要求。
进一步的,以公式(8)设计的第一参考信号的图样如图5所示,第一参考信号(占用 图中的灰色的RE)在频域上的间隔为2个子载波,在时域上的间隔为3个符号(此时取k n=2,k l=3)。可以发现,第一参考信号的图样在时域上可以不以单个时隙为周期重复出现。可选的,第一参考信号的图样在时域上可以以单个时隙的整数倍为周期重复出现。另外,第一参考信号的图样可以呈梳状结构。
实施例三
在通信系统中,如果一个slot的起始符号的CP长度与该slot中的其它符号的CP长度不同,例如在NR通信系统中、子载波间隔为30KHz的场景下,一个slot中第一个符号的CP长度为88个采样点,而该slot中其余符号的CP长度为72个采样点。此时,在时域范围内,基于前述实施例的第一参考信号的自相关特性和与其它信号的互相关特性可能会受到影响,因为基于实施例二的第一参考信号在跨slot维度时域上将变得不等间隔。
实施例三在实施例一和实施例二的基础上,对第一参考信号提出一种新的设计,以解决由于一个slot中起始符号的CP长度与该slot中其它符号的CP长度不同所可能导致的第一参考信号性能受到影响的问题。
在一种实现方式中,可以基于不同的slot对实施例二中的第一参考信号加上相位旋转来修正时域的间隔。例如本实施例中对实施例二中的第一参考信号乘以一相位旋转因子
Figure PCTCN2021092880-appb-000026
得到新的第一参考信号。其中,N 1为符号l的采样点个数,N 2为第一符号的循环前缀的采样点个数与第二符号的循环前缀的采样点个数之差,所述第一符号为一个时隙的第一个符号,所述第二符号为所述一个时隙中除所述第一符号外的任一符号,M l为所述l所对应符号所在的时隙的序号。
在一种实现方式中,对于实施例二中公式(8)做出进一步调整,第一参考信号可以具有如下表达式:
Figure PCTCN2021092880-appb-000027
其中,n和l分别为所述第一参考信号所占用资源单元的子载波索引号和符号索引号,u n和u l表示所述第一参考信号的根,α n和α l分别表示所述第一参考信号的频域偏置和时频偏置,k n和k l分别表示所述第一参考信号所占用的资源单元之间的频域间隔与时域间隔,N为所述第一参考信号的频域范围长度,M所述第一参考信号的时域范围长度,u n,u lnl,k n,k l均为正整数,β和γ为≥0的整数,N/k n,M/k l为素数,N 1为所述l所对应符号的采样点个数,N 2为第一符号的循环前缀的采样点个数与第二符号的循环前缀的采样点个数之差,所述第一符号为一个时隙的第一个符号,所述第二符号为所述一个时隙中除所述第一符号外的任一符号,M l为所述l所对应符号所在的时隙的序号。
采用公式(9)生成的第一参考信号,在时域上可以始终保持等间距,从而保证了良好的自相关性和互相关性。
进一步的,在一种实现方式中,实施例一中的步骤403中,接收端设备的接收机可以在序号为M l的时隙上截取接收符号时添加时域偏置-M l*N 2,也即假设符号的采样点编号 为0至N-1,那么截取的是-M l*N 2至N-M l*N 2-1的采样点作为接收到的第五参考信号的符号。
本申请中的各个实施例可以单独使用,也可以相互结合使用,以达到不同的技术效果。
上述本申请提供的实施例中,包括了发送端设备和接收端设备作为执行主体的角度对本申请实施例提供的通信方法进行了介绍。为了实现上述本申请实施例提供的通信方法中的各功能,发送端设备和接收端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
与上述构思相同,如图6所示,本申请实施例还提供一种装置600,该装置600包括收发模块601和处理模块602。
一示例中,装置600用于实现上述方法中发送端设备的功能。例如,该装置可以是终端设备,也可以是终端设备中的装置;该装置可以是网络设备,也可以是网路设备中的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
其中,处理模块602,用于生成第一参考信号,所述第一参考信号与第二参考信号呈二维正交,所述第二参考信号为所述第一参考信号在通信过程中经过时延τ和多普勒平移v变换后的参考信号,0≤τ≤τ max、0≤|v|≤v max、且τ≠0或者v≠0,τ max为第一阈值,v max为第二阈值,其中,|x|表示对x取绝对值;
收发模块601,用于发送所述第一参考信号。。
关于处理模块601、收发模块602的具体执行过程以及相关特征,可参见上方法实施例中的记载。
在另一示例中,装置600用于实现上述方法中接收端设备的功能。例如,该装置可以是终端设备,也可以是终端设备中的装置;该装置可以是网络设备,也可以是网路设备中的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。其中,收发模块601,用于接收第五参考信号,所述第五参考信号包括所述第二参考信号,所述第二参考信号与第一参考信号呈二维正交,所述第二参考信号为所述第一参考信号在通信过程中经过时延τ和多普勒平移v变换后的参考信号,0≤τ≤τ max、0≤|v|≤v max、且τ≠0或者v≠0,τ max为第一阈值,v max为第二阈值,其中,|x|表示对x取绝对值;
处理模块602,用于根据所述第五参考信号获得信道状态信息。
关于处理模块601、收发模块602的具体执行过程,可参见上方法实施例中的记载。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图7所示,本申请实施例还提供一种装置700。
一示例中,该装置700用于实现上述方法中发送端设备的功能,该装置可以是终端设备,也可以是终端设备中的装置;该装置可以是网络设备,也可以是网路设备中的装置。装置700包括至少一个处理器701,用于实现上述方法中发送端设备的功能。具体参见方法中的详细描述,此处不再说明。
在一些实施例中,装置700还可以包括至少一个存储器702,用于存储程序指令和/或数据。存储器702和处理器701耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器702还可以位于装置700之外。处理器701可以和存储器702协同操作。处理器701可能执行存储器702中存储的程序指令,用于实现本申请上述实施例中发送送端设备执行的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
在一些实施例中,装置700还可以包括通信接口703,用于通过传输介质和其它设备进行通信,从而用于装置700中的装置可以和其它设备进行通信。示例性地,通信接口703可以是收发器、电路、总线、模块或其它类型的通信接口,该其它设备可以是接收端设备。处理器701利用通信接口703收发数据,并用于实现上述实施例中发送端设备的方法。
一示例中,该装置700用于实现上述方法中接收端设备的功能,该装置可以是网络设备,也可以是网络设备中的装置;该装置可以是终端设备,也可以是终端设备中的装置。装置700至少一个处理器701,用于实现上述方法中接收端设备的功能。具体参见方法中的详细描述,此处不再说明。
在一些实施例中,装置700还可以包括至少一个存储器702,用于存储程序指令和/或数据。存储器702和处理器701耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器702还可以位于装置700之外。处理器701可以和存储器702协同操作。处理器701可能执行存储器702中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
在一些实施例中,装置700还可以包括通信接口703,用于通过传输介质和其它设备进行通信,从而用于装置700中的装置可以和其它设备进行通信。示例性地,通信接口703可以是收发器、电路、总线、模块或其它类型的通信接口,该其它设备可以是发送端设备。处理器701利用通信接口703收发数据,并用于实现上述实施例中的方法。
本申请实施例中不限定上述通信接口703、处理器701以及存储器702之间的连接介质。例如,本申请实施例在图7中以存储器702、处理器701以及通信接口703之间可以通过总线连接,所述总线可以分为地址总线、数据总线、控制总线等。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种通信方法,其特征在于,包括:
    生成第一参考信号,所述第一参考信号与第二参考信号呈二维正交,所述第二参考信号为所述第一参考信号在通信过程中经过时延τ和多普勒平移v变换后的参考信号,0≤τ≤τ max、0≤|v|≤v max、且τ≠0或者v≠0,τ max为第一阈值,v max为第二阈值,其中,|x|表示对x取绝对值;
    发送所述第一参考信号。
  2. 如权利要求1所述的方法,其特征在于,所述第一参考信号与第三参考信号呈二维准正交,所述第三参考信号为第四参考信号经过所述τ与所述v变换后的参考信号,且所述第一参考信号与所述第四参考信号码分复用。
  3. 如权利要求1或者2所述的方法,其特征在于,所述第一参考信号所占用资源单元之间的频域间隔与所述第一参考信号的频域范围长度成正比、与所述τ max成反比;所述第一参考信号所占用资源单元之间的时域间隔与所述第一参考信号的时域范围长度成正比、与所述v max成反比。
  4. 如权利要求1至3任一所述的方法,其特征在于,所述第一参考信号所占用资源单元的图案pattern的周期为所述第一参考信号所对应时隙的整数倍。
  5. 如权利要求1至4任一所述的方法,其特征在于,所述第一参考信号的表达式为:
    Figure PCTCN2021092880-appb-100001
    其中,n和l分别为所述第一参考信号所占用资源单元的子载波索引号和符号索引号,n≥0,l≥0,u n和u l表示所述第一参考信号的根,α n和α l分别表示所述第一参考信号的频域偏置和时频偏置,k n和k l分别表示所述第一参考信号所占用资源单元之间的频域间隔与时域间隔,N为所述第一参考信号的频域范围长度,M所述第一参考信号的时域范围长度,u n,u lnl,k n,k l均为正整数,β和γ为≥0的整数,N/k n,M/k l为素数。
  6. 如权利要求1至4任一所述的方法,其特征在于,所述第一参考信号的表达式为:
    Figure PCTCN2021092880-appb-100002
    其中,n和l分别为所述第一参考信号所占用资源单元的子载波索引号和符号索引号,n≥0,l≥0,u n和u l表示所述第一参考信号的根,α n和α l分别表示所述第一参考信号的频域偏置和时频偏置,k n和k l分别表示所述第一参考信号所占用的资源单元之间的频域间隔与时域间隔,N为所述第一参考信号的频域范围长度,M所述第一参考信号的时域范围长度,u n,u lnl,k n,k l均为正整数,β和γ为≥0 的整数,N/k n,M/k l为素数,N 1为所述l所对应符号的采样点个数,N 2为第一符号的循环前缀的采样点个数与第二符号的循环前缀的采样点个数之差,所述第一符号为一个时隙的第一个符号,所述第二符号为所述一个时隙中除所述第一时隙外的任一符号,M l为所述l所对应符号在所述l所对应符号的时隙内的序号。
  7. 如权利要求5或者6所述的方法,其特征在于,
    Figure PCTCN2021092880-appb-100003
  8. 一种通信方法,其特征在于,包括:
    接收第五参考信号,所述第五参考信号包括第二参考信号,所述第二参考信号与第一参考信号呈二维正交,所述第二参考信号为所述第一参考信号在通信过程中经过时延τ和多普勒平移v变换后的参考信号,0≤τ≤τ max、0≤|v|≤v max、且τ≠0或者v≠0,τ max为第一阈值,v max为第二阈值,其中,|x|表示对x取绝对值;
    根据所述第五参考信号获得信道状态信息。
  9. 如权利要求8所述的方法,其特征在于,所述第五参考信号还包括第三参考信号,所述第一参考信号与所述第三参考信号呈二维准正交,所述第三参考信号为第四参考信号经过所述τ与所述v变换后的参考信号,且所述第一参考信号与所述第四参考信号码分复用。
  10. 如权利要求8或者9所述的方法,其特征在于,所述第一参考信号所占用资源元之间的频域间隔与所述第一参考信号的频域范围长度成正比、与所述τ max成反比;所述第一参考信号所占用资源单元之间的时域间隔与所述第一参考信号的时域范围长度成正比、与所述v max成反比。
  11. 一种通信装置,其特征在于,包括用于实现如权利要求1-7任一方法的单元或者模块。
  12. 一种通信装置,其特征在于,包括用于实现如权利要求8-10任一方法的单元或者模块。
  13. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求1-8任一项所述的方法。
  14. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求8-10任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-10任一项所述的方法。
  16. 一种通信系统,其特征在于,包括如权利要求13所述的通信装置和权利要求14所述的通信装置。
PCT/CN2021/092880 2020-05-18 2021-05-10 一种通信方法、装置及系统 WO2021233155A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21807772.5A EP4145783A4 (en) 2020-05-18 2021-05-10 COMMUNICATION METHOD, APPARATUS AND SYSTEM
US17/988,018 US20230121294A1 (en) 2020-05-18 2022-11-16 Communication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010420667.2A CN113691476B (zh) 2020-05-18 2020-05-18 一种通信方法、装置及系统
CN202010420667.2 2020-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/988,018 Continuation US20230121294A1 (en) 2020-05-18 2022-11-16 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2021233155A1 true WO2021233155A1 (zh) 2021-11-25

Family

ID=78575556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092880 WO2021233155A1 (zh) 2020-05-18 2021-05-10 一种通信方法、装置及系统

Country Status (4)

Country Link
US (1) US20230121294A1 (zh)
EP (1) EP4145783A4 (zh)
CN (2) CN113691476B (zh)
WO (1) WO2021233155A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244655B (zh) * 2021-12-16 2023-09-12 哲库科技(北京)有限公司 信号处理方法及相关装置
CN116996352A (zh) * 2022-04-26 2023-11-03 华为技术有限公司 一种通信的方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161779A1 (en) * 2007-10-25 2009-06-25 Sergey Zhidkov Method for inter-carrier interference cancellation and equalization method, apparatus, and ofdm receiver using the method
CN102752259A (zh) * 2012-07-11 2012-10-24 天津理工大学 一种自适应门限定阶的线性最小均方误差信道估计方法
CN102804658A (zh) * 2009-06-23 2012-11-28 株式会社Ntt都科摩 无线基站装置和移动台装置、无线通信方法
CN103107969A (zh) * 2013-01-07 2013-05-15 北京工业大学 一种快变ofdm系统的渐进迭代时变信道估计和ici消除方法
CN110677361A (zh) * 2019-08-28 2020-01-10 北京邮电大学 正交时频空系统的信号均衡方法、均衡器及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126066B2 (en) * 2005-06-09 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation
WO2014038834A1 (en) * 2012-09-07 2014-03-13 Lg Electronics Inc. Method and apparatus for measuring channel in wireless communication system
KR102655272B1 (ko) * 2015-12-09 2024-04-08 코히어 테크놀로지스, 아이엔씨. 복소 직교 함수를 이용하는 파일럿 패킹
CN115694764A (zh) * 2016-02-25 2023-02-03 凝聚技术公司 用于无线通信的参考信号封装
EP3433969B1 (en) * 2016-03-23 2021-11-03 Cohere Technologies, Inc. Receiver-side processing of orthogonal time frequency space modulated signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161779A1 (en) * 2007-10-25 2009-06-25 Sergey Zhidkov Method for inter-carrier interference cancellation and equalization method, apparatus, and ofdm receiver using the method
CN102804658A (zh) * 2009-06-23 2012-11-28 株式会社Ntt都科摩 无线基站装置和移动台装置、无线通信方法
CN102752259A (zh) * 2012-07-11 2012-10-24 天津理工大学 一种自适应门限定阶的线性最小均方误差信道估计方法
CN103107969A (zh) * 2013-01-07 2013-05-15 北京工业大学 一种快变ofdm系统的渐进迭代时变信道估计和ici消除方法
CN110677361A (zh) * 2019-08-28 2020-01-10 北京邮电大学 正交时频空系统的信号均衡方法、均衡器及存储介质

Also Published As

Publication number Publication date
US20230121294A1 (en) 2023-04-20
CN115834316A (zh) 2023-03-21
EP4145783A4 (en) 2023-10-18
CN113691476A (zh) 2021-11-23
EP4145783A1 (en) 2023-03-08
CN113691476B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2020238573A1 (zh) 信号处理方法及装置
US9544171B2 (en) Zero insertion for ISI free OFDM reception
CN110868369B (zh) 基于5g nr系统的上行信道估计方法及装置
CN109391403B (zh) 用于无线信号的发送和接收的方法和装置
WO2021233155A1 (zh) 一种通信方法、装置及系统
WO2021244374A1 (zh) 干扰抑制合并方法、资源指示方法及通信装置
WO2022048639A1 (zh) 数据发送方法、数据接收处理方法及相关设备
EP3595223B1 (en) Method and device for sending demodulation reference signal, demodulation method and device
US20230318894A1 (en) Pilot transmission method and apparatus, network side device, and storage medium
US20230029215A1 (en) Reference Signal Transmission Method and Apparatus
WO2020211578A1 (zh) 参考信号发送方法和装置
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
US10999108B2 (en) Wireless communication method, apparatus, and system
WO2022048642A1 (zh) 帧结构指示方法、帧结构更新方法及相关设备
EP3573275B1 (en) Signal sending and receiving method, apparatus and system in wireless communications
WO2018127180A1 (zh) 一种参考信号传输方法及装置
CN113302867B (zh) 用于多种参数集的公共信号结构
US20220247613A1 (en) Reference signal sequence mapping and de-mapping methods, and apparatus
CN116055260A (zh) 信道估计方法及装置、存储介质、终端设备、网络设备
WO2020216068A1 (zh) 发送参考信号的方法和装置
EP3879777B1 (en) Sequence-based signal processing method and apparatus
WO2021134600A1 (zh) 信号传输的方法及装置
JP2018535598A (ja) ZT DFT−s−OFDMのためのチャンネル推定
WO2020063930A9 (zh) 一种参考信号的发送、接收方法及装置
US20240121068A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021807772

Country of ref document: EP

Effective date: 20221129

NENP Non-entry into the national phase

Ref country code: DE