WO2022048639A1 - 数据发送方法、数据接收处理方法及相关设备 - Google Patents

数据发送方法、数据接收处理方法及相关设备 Download PDF

Info

Publication number
WO2022048639A1
WO2022048639A1 PCT/CN2021/116461 CN2021116461W WO2022048639A1 WO 2022048639 A1 WO2022048639 A1 WO 2022048639A1 CN 2021116461 W CN2021116461 W CN 2021116461W WO 2022048639 A1 WO2022048639 A1 WO 2022048639A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
mapping
frequency domain
frequency
data set
Prior art date
Application number
PCT/CN2021/116461
Other languages
English (en)
French (fr)
Inventor
袁璞
刘昊
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21863701.5A priority Critical patent/EP4195601A4/en
Publication of WO2022048639A1 publication Critical patent/WO2022048639A1/zh
Priority to US18/116,832 priority patent/US20230208575A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2639Modulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26532Demodulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application belongs to the field of communication technologies, and in particular, relates to a data sending method, a data receiving and processing method, and related equipment.
  • ISI Inter Symbol Interference
  • ICI Inter Symbol Interference
  • the available Orthogonal Frequency Division Multiplex (OFDM) multi-carrier system can improve the anti-ISI performance by adding a cyclic prefix (CP) design.
  • CP cyclic prefix
  • the size of the sub-carrier spacing in the OFDM multi-carrier system is limited. Therefore, in response to high-speed mobile scenarios (such as high-speed rail), due to the large Doppler frequency shift caused by the relatively large relative speed between the transceivers, the OFDM sub-carriers are destroyed.
  • the orthogonality between subcarriers causes serious ICI between subcarriers.
  • Orthogonal Time Frequency Space (OTFS) technology can also be used in communication technology.
  • OTFS technology defines the transformation between the delay Doppler domain and the time-frequency domain. It is mapped to the delay Doppler domain processing, and the delay and Doppler characteristics of the channel are captured through the pilot frequency in the delay Doppler domain.
  • the guard interval is set to avoid the pilot frequency pollution problem caused by ICI in the OFDM system. , so that the channel estimation is more accurate, which is beneficial for the receiver to improve the success rate of data decoding.
  • the mapping from the delay Doppler to the time-frequency domain is a one-to-one mapping from M*N to M*N, where M is the side length of the frame structure in the delay dimension or the side length in the frequency dimension, and N is the frame.
  • M is the side length of the frame structure in the delay dimension or the side length in the frequency dimension
  • N is the frame.
  • M*N is set too large, resources will be wasted, resulting in low utilization of resources.
  • Embodiments of the present application provide a method for sending data, a method for receiving and processing data, and related equipment, which can solve the problem of low utilization of resources.
  • a data sending method executed by a sending device, including:
  • the time-frequency domain data set is mapped to the time-frequency resource block
  • the resource mapping rule includes sparse mapping.
  • a data receiving and processing method executed by a receiving device, including:
  • the resource mapping rule includes sparse mapping.
  • a data sending device including:
  • the first transformation module is used to transform the delayed Doppler domain data set on the delayed Doppler resource block into a time-frequency domain data set;
  • mapping module configured to map the time-frequency domain data set to a time-frequency resource block according to a preset resource mapping rule
  • a sending module configured to send the time-frequency domain data set on the time-frequency resource block
  • the resource mapping rule includes sparse mapping.
  • a data receiving and processing device including:
  • a demodulation module for demodulating the received data to obtain a time domain data set corresponding to the current processing time unit
  • a second transformation module configured to transform the time-domain data set into a time-frequency domain data set
  • an obtaining module configured to obtain a third time-frequency domain data set corresponding to the receiving device from the time-frequency domain data set according to a preset resource mapping rule
  • a third transformation module configured to transform the third time-frequency domain data set into a delayed Doppler domain data set
  • the resource mapping rule includes sparse mapping.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are realized, or the steps of the method as described in the second aspect are realized.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • the steps of the method of the second aspect are provided, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement The method described in the second aspect.
  • the delayed Doppler domain data set on the delayed Doppler resource block is transformed into a time-frequency domain data set; the time-frequency domain data set is mapped to a time-frequency resource according to a preset resource mapping rule sending the time-frequency domain data set on the time-frequency resource block; wherein the resource mapping rule includes sparse mapping.
  • the embodiment of the present application improves the utilization rate of resources to be low.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present application can be applied;
  • Fig. 2 is the conversion schematic diagram of delay Doppler plane and time frequency plane
  • 3 is a schematic diagram of the channel response relationship under different planes
  • FIG. 5 is a flowchart of a data sending method provided by an embodiment of the present application.
  • FIG. 6 is one of the schematic diagrams of sparse mapping in a data sending method provided by an embodiment of the present application.
  • FIG. 7 is one of schematic diagrams of interleaving mapping in a data sending method provided by an embodiment of the present application.
  • FIG. 8 is the second schematic diagram of interleaving and mapping in a data transmission method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of resources occupied by sparse mapping in a data sending method provided by an embodiment of the present application.
  • FIG. 10 is the second schematic diagram of sparse mapping in a data sending method provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of a data receiving and processing method provided by an embodiment of the present application.
  • FIG. 12 is a structural diagram of a data sending apparatus provided by an embodiment of the present application.
  • FIG. 13 is a structural diagram of a data receiving and processing apparatus provided by an embodiment of the present application.
  • FIG. 14 is a structural diagram of a communication device provided by an embodiment of the present application.
  • 15 is a structural diagram of a network side device provided by an embodiment of the present application.
  • FIG. 16 is a structural diagram of a terminal device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation (6th Generation) , 6G) communication system.
  • 6th Generation 6th Generation
  • 6G 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes user equipment 11 and network equipment 12 .
  • the user equipment 11 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the user equipment 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, Personal Digital Assistant (PDA), PDA, Netbook, Ultra-mobile Personal Computer (UMPC), Mobile Internet Device (MID), Wearable Device (Wearable Device) or Vehicle-mounted equipment (VUE), pedestrian user equipment (Pedestrian User Equipment, PUE) and other terminal-side equipment, wearable equipment includes: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • UMPC Ultra-mobile Personal Computer
  • MID Mobile Internet Device
  • MID Wearable Device
  • VUE Vehicle-mounted equipment
  • pedestrian user equipment Pedestrian User Equipment, PUE
  • wearable equipment includes: bracelets
  • the network device 12 may be a base station or a core network device, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the delay and Doppler characteristics of the channel are essentially determined by the multipath channel. Signals arriving at the receiver through different paths have different arrival times because of differences in propagation paths. For example, two echoes s 1 and s 2 reach the receiver through distances d 1 and d 2 respectively, then the time difference between them arriving at the receiver is c is the speed of light. Due to this time difference between the echoes s 1 and s 2 , their coherent superposition at the receiver side causes the observed signal amplitude jitter, a fading effect. Similarly, the Doppler spread of multipath channels is also caused by multipath effects. We know that the Doppler effect is due to the relative velocities at both ends of the sending and receiving ends.
  • the signals arriving at the receiver through different paths have different incident angles relative to the antenna normal, thus causing the difference in relative velocities, which in turn causes different paths.
  • the Doppler shift of the signal is different. Assuming that the original frequency of the signal is f 0 , the relative velocity of the transmitter and receiver is ⁇ V, and the angle between the signal and the normal incidence of the receiver antenna is ⁇ . Then there are: Obviously, when the two echoes s 1 and s 2 travel through different paths to reach the receiving antenna with different incident angles ⁇ 1 and ⁇ 2 , the Doppler shifts ⁇ v 1 and ⁇ v 2 obtained by them are also different.
  • the signal seen by the receiver is the superposition of component signals with different time delays and Dopplers from different paths, and the overall embodiment is a received signal with fading and frequency shift relative to the original signal.
  • the delay Doppler analysis of the channel is helpful to collect the delay Doppler information of each path, so as to reflect the delay Doppler response of the channel.
  • OTFS modulation technology Orthogonal Time Frequency Space (OTFS) modulation.
  • This technology logically maps the information in a data packet of size M ⁇ N, such as Quadrature Amplitude Modulation (QAM) symbols, to an M ⁇ N lattice point on the two-dimensional delayed Doppler plane. , that is, the pulses within each lattice point modulate one QAM symbol in the data packet.
  • QAM Quadrature Amplitude Modulation
  • the data set on the M ⁇ N delayed Doppler domain plane is transformed to the N ⁇ M time-frequency domain plane. This transformation is mathematically called inverse.
  • Sympic Fourier Transform Inverse Sympletic Finite Fourier Transform, ISFFT).
  • the transformation from the time-frequency domain to the delayed Doppler domain is called the Sympletic Finite Fourier Transform (SFFT).
  • SFFT Sympletic Finite Fourier Transform
  • the OTFS technology transforms the time-varying multipath channel into a time-invariant two-dimensional delay Doppler domain channel (within a certain duration), which directly reflects the relative relationship between the reflectors between the transceivers in the wireless link.
  • the channel delay Doppler response characteristic caused by the geometry of the location.
  • OTFS technology to analyze in the delay Doppler domain can make the packaging of reference signals more compact and flexible, which is especially beneficial for supporting large-scale multiple-input multiple-output (Multi-User Multiple-Input Multiple-Output, MIMO) systems.
  • MIMO Multiple-Input Multiple-Output
  • OTFS modulation defines the QAM symbols on the delayed Doppler plane, transforms them to the time-frequency domain for transmission, and returns to the delayed Doppler domain for processing at the receiving end. Therefore, a wireless channel response analysis method in the delayed Doppler domain can be introduced.
  • Figure 3 When a signal passes through a linear time-varying wireless channel, the relationship between the expression of its channel response in different planes is shown in Figure 3:
  • v represents the delay variable
  • represents the Doppler variable
  • f represents the frequency variable
  • t represents the time variable
  • Equation (6) implies that the analysis of the delay Doppler domain in the OTFS system can be realized by relying on the existing communication framework established in the time-frequency domain and adding additional signal processing processes at the transceiver end. Moreover, the additional signal processing only consists of Fourier transform, which can be completely implemented by existing hardware without adding new modules. This good compatibility with the existing hardware system greatly facilitates the application of the OTFS system. In the actual system, the OTFS technology can be easily implemented as a pre- and post-processing module of a filtered OFDM system, so it has good compatibility with the multi-carrier system under the existing NR technology architecture.
  • the implementation of the transmitter is as follows: the QAM symbols containing the information to be transmitted are carried by the waveform of the delayed Doppler plane, and converted into the time-frequency domain plane in the traditional multi-carrier system through a two-dimensional ISFFT. The waveform is then converted into a time-domain sample point through a symbol-level one-dimensional inverse fast Fourier transform (Inverse Fast Fourier Transform, IFFT) and serial-to-parallel conversion.
  • IFFT inverse Fast Fourier Transform
  • the receiving end of the OTFS system is roughly the inverse process of the sending end: after the time domain sampling points are received by the receiver, they undergo parallel transformation and symbol-level one-dimensional Fast Fourier Transform (FFT), and then transform to the time
  • FFT Fast Fourier Transform
  • the waveform on the frequency domain plane is then converted into a waveform on the delayed Doppler domain plane through SFFT, and the receiver processes the QAM symbols carried by the delayed Doppler domain waveform: including channel estimation and equalization, demodulation and interpretation code, etc.
  • OTFS modulation converts a time-varying fading channel in the time-frequency domain between transceivers into a deterministic fading-free channel in the delay-Doppler domain.
  • SNR Signal Noise Ratio
  • the OTFS system resolves the reflectors in the physical channel by delaying the Doppler image and coherently combines the energies from the different reflected paths with the receive equalizer, which actually provides a static channel response without fading.
  • the OTFS system does not need to introduce closed-loop channel adaptation to cope with the fast-changing channel like the OFDM system, thus improving the system robustness and reducing the complexity of system design.
  • the channel in an OTFS system can be expressed in a very compact form.
  • the channel estimation overhead of the OTFS system is less and more accurate.
  • OTFS Another advantage of OTFS is to deal with extreme Doppler channels. Through the analysis of delayed Doppler images with appropriate signal processing parameters, the Doppler characteristics of the channel will be fully presented, which is beneficial for signal analysis and processing in Doppler-sensitive scenarios such as high-speed movement and millimeter waves.
  • the channel estimation in the OTFS system adopts the following method: the transmitter maps the pilot pulse on the delay Doppler domain, and the receiver uses the delay Doppler image analysis of the pilot to estimate the delay Doppler domain.
  • the channel response h(v, ⁇ ), and then the channel response expression in the time-frequency domain can be obtained according to the relationship in Figure 3, which is convenient for applying the existing technology in the time-frequency domain for signal analysis and processing.
  • the pilot mapping on the delayed Doppler plane can be as shown in Figure 4.
  • the single-point pilot (401) whose transmission signal is located at ( lp , kp ) is surrounded by a guard symbol (402) with an area of ( 2lv +1)( 4kv +1)-1. ), and the data part of MN-(2l v +1)(4k v +1).
  • there are two offset peaks (such as 4021 and 4022) in the guard band of the delay Doppler domain lattice which means that there are two secondary channels with different delay Dopplers in addition to the main channel. path.
  • the amplitude, delay and Doppler parameters of all secondary paths are measured to obtain the delayed Doppler domain expression of the channel, ie h(v, ⁇ ).
  • the area of the guard symbol should meet the following conditions:
  • ⁇ max and v max are the maximum time delay and the maximum Doppler frequency shift of all paths of the channel, respectively.
  • Multiple guard symbols 402 surround the single-point pilot 401 to form a guard band, and the multiple guard symbols 402 correspond to blank resource elements. .
  • the M*N plane in Figure 2 and Figure 4 is actually a discrete point value on a two-dimensional delay Doppler plane, and each grid corresponds to a quantized delay-Doppler pair ( ⁇ i , v j ).
  • the total number of resources is constant (bandwidth and time are constant)
  • M*N the number of grids increases, which is equivalent to improving the quantization accuracy of discrete delay-Doppler points.
  • M is larger, the number of delays that can be resolved by delay Doppler analysis is greater, which can be called an improved delay resolution;
  • the higher the offset value the higher the Doppler resolution.
  • M*N there is an upper limit to the gain by increasing the value of M*N.
  • the delayed Doppler characteristic of the channel is actually caused by the multipath channel experienced by the signal.
  • the number of multipaths in a channel depends on the number of reflectors in the channel and cannot be infinite.
  • the delay of the channel and the number of states of the Doppler response are also limited by the number of multipaths and cannot be infinite. Therefore, a certain number of M*N can meet the system design requirements.
  • the size of M*N also takes into account the size of the data block. For small packet data, theoretically only a small M*N resource can be carried. However, a smaller M*N implies a smaller channel resolution, and there is a risk of channel estimation performance degradation. However, if M*N is blindly increased in pursuit of channel resolution, resources will be wasted due to excessive design for small packet data.
  • FIG. 5 is a flowchart of a data sending method provided by an embodiment of the present application. The method is executed by a sending device. As shown in FIG. 5, the method includes the following steps:
  • Step 501 transforming the delayed Doppler domain data set on the delayed Doppler resource block into a time-frequency domain data set
  • Step 502 map the time-frequency domain data set to a time-frequency resource block;
  • Step 503 sending the time-frequency domain data set on the time-frequency resource block;
  • the resource mapping rule includes sparse mapping.
  • the foregoing sparse mapping may be understood as mapping according to a preset sparse interval.
  • the sparse mapping may be performed only in the frequency domain, or may be sparsely mapped in both the frequency domain and the time domain.
  • the above sparse mapping includes any of the following:
  • the sparse interval in the frequency domain and the sparse interval in the time domain may be the same or different, which is not further limited herein.
  • the delay Doppler and each parameter in the time-frequency domain have the following conversion relationship.
  • System bandwidth B M ⁇ f
  • signal duration T N ⁇ T.
  • There is a delay Doppler plane that is mutually inverse with the above time-frequency domain plane, which is determined by the delay spread ⁇ r and the Doppler spread v r , and has Obviously v r ⁇ r 1.
  • the M delay spread ⁇ r and the Doppler spread v r define an M*N delay Doppler resource grid on a two-dimensional plane. It is easy to know that the delay resolution and Doppler resolution satisfy the following equations: It is easy to see from the above relationship:
  • M can be understood as the number of resource grids in the delay dimension of the delayed Doppler resource block or the number of resource grids in the frequency dimension of the time-frequency resource block
  • N can be understood as the resource grid in the Doppler dimension of the delayed Doppler resource block
  • the number or the number of resource grids in the time dimension of the time-frequency resource block, the resource grid can be understood as a resource element.
  • sparse mapping is performed in both the time domain and the frequency domain as an example for description below.
  • the symbol interval of the time-frequency domain symbols actually mapped is 2 ⁇ T and 2 ⁇ T
  • the carrier spacing is 2 ⁇ f.
  • the Doppler resolution and the delay resolution are each improved by 2 times.
  • the resource grids with sparse intervals can map other data. For example, in the case of multiple data packets or multi-user multiplexing, the blank resource grids between the resource grids of the mapped data can also be filled with other data, thereby avoiding resource waste.
  • the delayed Doppler domain data set on the delayed Doppler resource block is transformed into a time-frequency domain data set; the time-frequency domain data set is mapped to a time-frequency resource according to a preset resource mapping rule sending the time-frequency domain data set on the time-frequency resource block; wherein the resource mapping rule includes sparse mapping.
  • the embodiment of the present application improves the utilization rate of resources to be low.
  • receiving device and sending device may both be user equipment, or one may be user equipment and the other may be network equipment, which is not further limited herein.
  • the resource mapping rule further includes interleaving mapping for multiple time-frequency domain data sets, where the interleaving mapping includes any of the following:
  • Interleaving mapping is performed only on frequency domain pairs
  • the interleaving mapping is performed in both the time and frequency domains.
  • the multiple time-frequency domain data sets may belong to one or more receiving devices.
  • the following multiple time-frequency data sets belong to multiple receiving devices are taken as an example for description.
  • the above interleaving mapping can be understood as the interleaving and mapping of multiple time-frequency domain data sets according to a certain interleaving period. It should be understood that interleaved mapping is performed, indicating that sparse mapping is performed. Take two time-frequency domain data sets as an example to illustrate. If the two time-frequency domain data sets are only interleaved and sparsely mapped in the frequency domain, then each time-frequency domain data set is sparsely mapped in the frequency domain.
  • resource grid 1, resource grid 2, resource grid 3 and resource grid 4 are four adjacent resource grids in the same time unit, and resource grid 1, resource grid 2, resource grid 3 and resource grid 4 correspond to different frequency, resource grid 1 and resource grid 3 map data of one time-frequency domain dataset, resource grid 2 and resource grid 4 map data of another time-frequency domain dataset.
  • the interleaving mapping in the time domain is the same.
  • resource grid 5, resource grid 6, resource grid 7 and resource grid 8 are four adjacent resource grids on the same frequency unit, and resource grid 5, resource grid 6, resource grid Grid 7 and resource grid 8 correspond to different times.
  • resource grid 5 and resource grid 7 map data of one time-frequency domain dataset
  • resource grid 6 and resource grid 8 map data of another time-frequency domain dataset.
  • interleaving and mapping are performed for multiple time-frequency domain data sets, so that resource waste caused by sparse intervals can be avoided, thereby further improving the utilization rate of resources.
  • mapping rule satisfies any one of the following:
  • the step of mapping the time-frequency domain data set to time-frequency resource blocks according to preset resource mapping rules includes:
  • the sparse mapping and the interleaving mapping are performed in the frequency domain
  • the target time unit is any time unit of the time-frequency resource block
  • the target frequency unit is any frequency unit of the time-frequency resource block
  • a certain time unit includes only one time-frequency domain data set, and the time unit is not in the frequency domain for this time unit. Sparse mapping and interleaved mapping are performed on. It should be understood that, in this embodiment, continuous mapping is performed in the time domain, that is, interleaved mapping and sparse mapping are not performed.
  • the above-mentioned one time unit may be one or two resource cells. As shown in FIG. 7 , one time unit is one resource cell. Assuming that there are time-frequency domain resource sets of two receiving devices in a time unit, the sparse interval for sparse mapping in the frequency domain at this time is a resource grid.
  • the step of mapping the time-frequency domain data set to the time-frequency resource block according to a preset resource mapping rule includes:
  • the sparse mapping and the interleaving mapping are performed in the frequency domain
  • the sparse mapping and the interleaving mapping are performed in the time domain
  • the target time unit is any time unit of the time-frequency resource block
  • the target frequency unit is any frequency unit of the time-frequency resource block
  • a certain time unit includes only one time-frequency domain data set, and the time unit is not in the frequency domain for this time unit.
  • Sparse mapping and interleaving mapping are performed on the frequency unit; assuming that only one time-frequency domain data set is included on a certain frequency unit, sparse mapping and interleaving mapping are not performed on the time domain for this frequency unit.
  • One time unit may be one or two resource cells, and one frequency unit may be one or two resource cells. As shown in FIG. 8 , one time unit is taken as one resource grid, and one frequency unit is taken as an example for description.
  • a time unit contains time-frequency domain resource sets of two receiving devices, and the sparse interval for sparse mapping in the frequency domain is a resource grid; a frequency unit contains time-frequency domain resources of three receiving devices At this time, the sparse interval for sparse mapping in the time domain is two resource grids.
  • the above-mentioned resource mapping rules may be stipulated by the protocol or configured by the sending device.
  • the method before the step of sending the time-frequency domain data set, the method further includes:
  • the sending device may send the first indication information by means of a broadcast message, radio resource control (Radio Resource Control, RRC) signaling, and downlink control information (Downlink Control Information, DCI) signaling, etc., which will not be further described here. limit.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the method before the step of sending the time-frequency domain data set, the method further includes:
  • the second indication information is used to indicate that the time-frequency resource block where the time-frequency domain data set is located is located at the starting resource position in the time-frequency resource grid corresponding to the current processing time unit; or, corresponding to the current processing time unit In the case that the time-frequency resource grid is divided into multiple time-frequency resource blocks according to a preset rule, the second indication information is used to indicate the index value corresponding to the time-frequency resource block where the time-frequency domain data set is located.
  • the sending device may send the second indication information by means of a broadcast message, RRC signaling, and DCI signaling, which is not further limited herein.
  • the above-mentioned preset rules may be the rules agreed in the protocol or the rules indicated by the sending device, and no further limitation is made here.
  • each divided time-frequency resource block has a corresponding index value.
  • Embodiment 1 In the scenario of multi-user multiplexing, the interleaving and placement of data of different users is used to achieve the functions of increasing delay and Doppler resolution and improving the accuracy of channel estimation.
  • the time-frequency domain resolutions in Figure 6 are:
  • the delay and Doppler resolution of channel estimation can be improved. Assuming that after sparse mapping of user data with a dimension of l ⁇ k, the symbol interval and subcarrier interval are a ⁇ T and b ⁇ f respectively, then the mapped data is distributed in a rectangular resource block. As shown in Fig. 9, the sparse mapping occupies the range of resources as shown by the dotted box.
  • the size of the physical time-frequency resource block that needs to be allocated to the user is [l+(l-1)(b-1)]*[k+(k-1)(a-1)], compared to the original
  • the additional resource overhead caused is:
  • user data of multiple users can be sparsely mapped on a physical time-frequency resource block by means of interleaving.
  • a and b are both positive integers.
  • the interleaving method of multiple users can be sparsely mapped to a physical time-frequency resource block.
  • FIG 8. there are P users in total, represented by different paddings.
  • the data block of each user is a set of QAM symbols in the l ⁇ k delayed Doppler domain.
  • the logical time-frequency resources occupied by the P pieces of user data are P*l*k.
  • the data of P users is interleaved by the method of the present application and then mapped to the physical resources in the time-frequency domain, and the occupied quantity is still P*l*k. Therefore, in the case of multiple users, the interleaving and sparse mapping methods proposed in this application will not generate additional overhead.
  • the base station when applied to downlink, schedules each UE resource according to an optimized interleaving manner.
  • Each UE only receives the data on the resource scheduled to itself, and performs OTFS transformation according to the characteristics of the resource block, namely (M, N, ⁇ f), and performs channel measurement, channel estimation and decoding in the delayed Doppler domain. .
  • the base station when used for uplink, the base station also needs to schedule each UE resource, so as to form an optimized interleaving manner.
  • Each UE performs OTFS transformation only on the resources scheduled to itself, according to the characteristics (M, N, ⁇ f) of the resource block, and sends QAM symbols converted to the time-frequency domain.
  • the base station After receiving the message sent by the UE, the base station decodes and processes the message of each UE according to the known resource scheduling situation.
  • the base station directly indicates the resource location to the UE
  • the protocol specifies several frame structure modes of different interleaving methods, and indicates the resource index in the frame to the UE;
  • the protocol specifies several frame structure modes of different interleaving modes, and the UE selects the resource location according to its own ID.
  • Embodiment 2 In a multi-user multiplexing scenario, the interleaving of different user data is used to achieve the functions of increasing delay and Doppler resolution and improving channel estimation accuracy.
  • the delay resolution of channel estimation can be improved.
  • the Doppler resolution can only be achieved by selecting a larger N.
  • N As shown in Figure 10, compared to Figure 6, in order to obtain twice the Doppler resolution, the number of time-domain resources needs to be set to 2N. When the total number of resources remains unchanged, the frequency-domain resources become Therefore, in order to obtain twice the delay resolution, it is necessary to change ⁇ f to four times.
  • the time domain and frequency domain resolutions of this embodiment are respectively:
  • FIG. 11 is a flowchart of a data receiving and processing method provided by an embodiment of the present application. The method is executed by a receiving device. As shown in FIG. 11, the method includes the following steps:
  • Step 1101 demodulate the received data to obtain a time domain data set corresponding to the current processing time unit
  • Step 1102 transforming the time-domain data set into a time-frequency domain data set
  • Step 1103 Acquire a third time-frequency domain data set corresponding to the receiving device from the time-frequency domain data set according to a preset resource mapping rule
  • Step 1104 transforming the third time-frequency domain data set into a delayed Doppler domain data set
  • the resource mapping rule includes sparse mapping.
  • the sparse map includes any of the following:
  • the resource mapping rule further includes interleaving mapping for multiple time-frequency domain data sets, where the interleaving mapping includes any of the following:
  • Interleaving mapping is performed only on frequency domain pairs
  • the interleaving mapping is performed in both the time and frequency domains.
  • the multiple time-frequency domain data sets belong to multiple receiving devices.
  • mapping rule satisfies any of the following:
  • the method before the step of demodulating the received data to obtain the time domain data set corresponding to the current processing time unit, the method further includes:
  • the receiving and sending device sends first indication information, where the first indication information is used to indicate the resource mapping rule.
  • the method before the step of demodulating the received data to obtain the time domain data set corresponding to the current processing time unit, the method further includes:
  • the second indication information is used to indicate that the time-frequency resource block where the time-frequency domain data set is located is located at the starting resource position in the time-frequency resource grid corresponding to the current processing time unit; or, corresponding to the current processing time unit In the case that the time-frequency resource grid is divided into multiple time-frequency resource blocks according to a preset rule, the second indication information is used to indicate the index value corresponding to the time-frequency resource block where the time-frequency domain data set is located.
  • this embodiment is an implementation of the receiving device corresponding to the embodiment shown in FIG. 5 , and the specific implementation can refer to the relevant description of the embodiment shown in FIG. 5 to achieve the same beneficial effects. In order to avoid The description is repeated and will not be repeated here.
  • the execution body may be a data sending apparatus, or a control module in the data sending apparatus for executing the data sending method.
  • the data sending device provided by the embodiments of the present application is described by taking the data sending method performed by the data sending device as an example.
  • FIG. 12 is a structural diagram of a data sending apparatus provided by an embodiment of the present application. As shown in FIG. 12, the data sending apparatus 1200 includes:
  • a first transformation module 1201 configured to transform the delayed Doppler domain data set on the delayed Doppler resource block into a time-frequency domain data set
  • a mapping module 1202 configured to map the time-frequency domain data set to a time-frequency resource block according to a preset resource mapping rule
  • a sending module 1203, configured to send the time-frequency domain data set on the time-frequency resource block;
  • the resource mapping rule includes sparse mapping.
  • the sparse map includes any of the following:
  • the resource mapping rule further includes interleaving mapping for multiple time-frequency domain data sets, where the interleaving mapping includes any of the following:
  • Interleaving mapping is performed only on frequency domain pairs
  • the interleaving mapping is performed in both the time and frequency domains.
  • the multiple time-frequency domain data sets belong to multiple receiving devices.
  • mapping rule satisfies any of the following:
  • mapping module 1202 is specifically used for:
  • the sparse mapping and the interleaving mapping are performed in the frequency domain
  • the target time unit is any time unit of the time-frequency resource block
  • the target frequency unit is any frequency unit of the time-frequency resource block
  • mapping module 1202 is specifically used for:
  • the sparse mapping and the interleaving mapping are performed in the frequency domain
  • the sparse mapping and the interleaving mapping are performed in the time domain
  • the target time unit is any time unit of the time-frequency resource block
  • the target frequency unit is any frequency unit of the time-frequency resource block
  • the sending module 1203 is further configured to: send first indication information to the receiving device, where the first indication information is used to indicate the resource mapping rule.
  • the sending module 1203 is further configured to: send the second indication information to the receiving device;
  • the second indication information is used to indicate that the time-frequency resource block where the time-frequency domain data set is located is located at the starting resource position in the time-frequency resource grid corresponding to the current processing time unit; or, corresponding to the current processing time unit In the case that the time-frequency resource grid is divided into multiple time-frequency resource blocks according to a preset rule, the second indication information is used to indicate the index value corresponding to the time-frequency resource block where the time-frequency domain data set is located.
  • the data sending apparatus 1200 provided in this embodiment of the present application can implement each process implemented by the sending device in the method embodiment of FIG. 5 , and to avoid repetition, details are not repeated here.
  • the execution body may be a data receiving and processing apparatus, or a control module in the data receiving and processing apparatus for executing the data receiving and processing method.
  • the data receiving and processing apparatus provided by the embodiment of the present application is described by taking the data receiving and processing apparatus executing the data receiving and processing method as an example.
  • FIG. 13 is a structural diagram of a data receiving and processing apparatus provided by an embodiment of the present application. As shown in FIG. 13 , the data receiving and processing apparatus 1300 includes:
  • the demodulation module 1301 is used to demodulate the received data to obtain the time domain data set corresponding to the current processing time unit;
  • a second transformation module 1302, configured to transform the time-domain data set into a time-frequency domain data set
  • an obtaining module 1303, configured to obtain a third time-frequency domain data set corresponding to the receiving device from the time-frequency domain data set according to a preset resource mapping rule;
  • the resource mapping rule includes sparse mapping.
  • the sparse map includes any of the following:
  • the resource mapping rule further includes interleaving mapping for multiple time-frequency domain data sets, where the interleaving mapping includes any of the following:
  • Interleaving mapping is performed only on frequency domain pairs
  • the interleaving mapping is performed in both the time and frequency domains.
  • the multiple time-frequency domain data sets belong to multiple receiving devices.
  • mapping rule satisfies any of the following:
  • the demodulation received data before the step of obtaining the time domain data set corresponding to the current processing time unit, the method also includes:
  • the receiving and sending device sends first indication information, where the first indication information is used to indicate the resource mapping rule.
  • the method before the step of demodulating the received data to obtain the time domain data set corresponding to the current processing time unit, the method further includes:
  • the data receiving and processing apparatus 1300 provided in this embodiment of the present application can implement each process implemented by the receiving device in the method embodiment of FIG. 11 , and to avoid repetition, details are not repeated here.
  • the data sending apparatus and the data receiving and processing apparatus in the embodiments of the present application may be apparatuses, and may also be components, integrated circuits, or chips in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the data sending apparatus and the data receiving and processing apparatus in the embodiments of the present application may be apparatuses having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the data sending apparatus and the data receiving and processing apparatus provided by the embodiments of the present application can implement each process implemented by the method embodiments in FIG. 5 to FIG. 11 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a network side device.
  • the network-side device may be a receiving device or a sending device.
  • the sending device may be another terminal or a network-side device.
  • the receiving device is a network side device
  • the sending device is a terminal.
  • the network side device 1500 includes: an antenna 1501 , a radio frequency device 1502 , and a baseband device 1503 .
  • the antenna 1501 is connected to the radio frequency device 1502 .
  • the radio frequency device 1502 receives information through the antenna 1501, and sends the received information to the baseband device 1503 for processing.
  • the baseband device 1503 processes the information to be sent and sends it to the radio frequency device 1502
  • the radio frequency device 1502 processes the received information and sends it out through the antenna 1501 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1503 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1503 .
  • the baseband apparatus 1503 includes a processor 1504 and a memory 1505 .
  • the baseband device 1503 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 15 , one of the chips is, for example, the processor 1504 , which is connected to the memory 1505 to call the program in the memory 1505 to execute
  • the network-side device shown in the above method embodiments operates.
  • the baseband device 1503 may further include a network interface 1506 for exchanging information with the radio frequency device 1502, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 1505 and run on the processor 1504 , wherein, when the network-side device is a sending device, the processor 1504 calls the memory
  • the instruction or program in 1505 controls the execution of the method executed by each module shown in FIG. 12 .
  • the processor 1504 invokes the instruction or program in the memory 1505 to execute the control execution method of each module shown in FIG. 13 . method and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • FIG. 16 is a schematic diagram of a hardware structure of a terminal device implementing various embodiments of the present application.
  • the terminal device 1600 includes but is not limited to: a radio frequency unit 1601, a network module 1602, an audio output unit 1603, an input unit 1604, a sensor 1605, a display unit 1606, a user input unit 1607, an interface unit 1608, a memory 1609, a processor 1610 and other components .
  • the terminal device 1600 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1610 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. consumption management and other functions.
  • a power source such as a battery
  • the terminal device structure shown in FIG. 16 does not constitute a limitation on the terminal device.
  • the terminal device may include more or less components than the one shown in the figure, or combine some components, or arrange different components, which will not be repeated here. .
  • the input unit 1604 may include a graphics processor (Graphics Processing Unit, GPU) 16041 and a microphone 16042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1606 may include a display panel 16061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1607 includes a touch panel 16071 and other input devices 16072 . Touch panel 16071, also called touch screen.
  • the touch panel 16071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 16072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 1601 receives the downlink data from the network side device, and then processes it to the processor 1610; in addition, sends the uplink data to the network device.
  • the radio frequency unit 1601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1609 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1609 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1610 may include one or more processing units; optionally, the processor 1610 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1610.
  • the sending device is a terminal and the receiving device is another terminal or a network-side device
  • the processor 1610 is configured to: transform the delayed-Doppler domain data set on the delayed-Doppler resource block into a time-frequency domain data set; and map the time-frequency domain data set to a time-frequency domain according to a preset resource mapping rule on the resource block;
  • the radio frequency unit 1601 is configured to: send the time-frequency domain data set on the time-frequency resource block;
  • the resource mapping rule includes sparse mapping.
  • the above-mentioned processor 1610 and the radio frequency unit 1601 can implement each process implemented by the sending device in the method embodiment of FIG. 5 , which is not repeated here to avoid repetition.
  • the receiving device is a terminal and the sending device is another terminal or a network-side device
  • the radio frequency unit 1601 is used for:
  • the resource mapping rule includes sparse mapping.
  • the above-mentioned processor 1610 and the radio frequency unit 1601 can implement each process implemented by the receiving device in the method embodiment of FIG. 11 , which is not repeated here to avoid repetition.
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing data sending method or data receiving and processing method embodiment is implemented , and can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network device program or instruction to implement the above data receiving and processing method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a network device program or instruction to implement the above data receiving and processing method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, for in other electronic units or combinations thereof that perform the functions described herein.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据发送方法、数据接收处理方法及相关设备。该方法包括:将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;发送所述时频资源块上的所述时频域数据集;其中,所述资源映射规则包括稀疏映射。

Description

数据发送方法、数据接收处理方法及相关设备
相关申请的交叉引用
本申请主张在2020年9月4日在中国提交的中国专利申请号No.202010923636.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,尤其涉及一种数据发送方法、数据接收处理方法及相关设备。
背景技术
在复杂的电磁波传输环境中,由于存在大量的散射、反射和折射面,造成了无线信号经不同路径到达接收天线的时刻不同,即传输的多径效应。当发送信号的前后符号经过不同路径同时抵达时,或者说,当后一个符号在前一个符号的时延扩展内到达时,即产生了符号间干扰(Inter Symbol Interference,ISI)。类似的,在频域上,由于收发端相对速度引起的多普勒效应,信号所在的各个子载波会产生频率上不同程度的偏移,造成原本可能正交的子载波产生重叠,即产生了载波间干扰(Inter Carrier Interference,ICI)。在通信技术中,可使用的正交频分复用(Orthogonal frequency division multiplex,OFDM)多载波系统,通过添加循环前缀(cyclic prefix,CP)的设计,提高抗ISI的性能。但是OFDM多载波系统的子载波间隔的大小有限,因此在应对高速移动场景下(如高铁),由于收发端之间较大的相对速度带来的较大多普勒频移,破坏了OFDM子载波之间的正交性,使子载波间产生严重的ICI。
通信技术中还可采用正交时频空域(Orthogonal Time Frequency Space,OTFS)技术,OTFS技术定义了延迟多普勒域和时频域之间的变换,通过同时在收发端把业务数据和导频映射到延迟多普勒域处理,通过在延迟多普勒域的导频,捕捉信道的延迟和多普勒特性,此外还通过设置保护间隔,规避了OFDM系统中的ICI导致的导频污染问题,从而使信道估计更加准确,有 利于接收机提升数据译码的成功率。
OTFS技术中,延迟多普勒到时频域的映射是为M*N到M*N的一一对应的映射,M为帧结构在延迟维度的边长或频率维度的边长,N为帧结构在多普勒维度或时间维度的边长,信道估计性能的控制通过调整M*N来实现。但是M*N设置的过大,会造成资源浪费,导致资源的利用率较低。
发明内容
本申请实施例提供一种数据发送方法、数据接收处理方法及相关设备,能够解决资源的利用率较低的问题。
第一方面,提供了一种数据发送方法,由发送设备执行,包括:
将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;
按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;
发送所述时频资源块上的所述时频域数据集;
其中,所述资源映射规则包括稀疏映射。
第二方面,提供了一种数据接收处理方法,由接收设备执行,包括:
解调接收到的数据,获得当前处理时间单元对应的时域数据集;
将所述时域数据集变换为时频域数据集;
按照预设的资源映射规则,从所述时频域数据集中获取所述接收设备对应的第三时频域数据集;
将所述第三时频域数据集变换为延迟多普勒域数据集;
其中,所述资源映射规则包括稀疏映射。
第三方面,提供了一种数据发送装置,包括:
第一变换模块,用于将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;
映射模块,用于按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;
发送模块,用于发送所述时频资源块上的所述时频域数据集;
其中,所述资源映射规则包括稀疏映射。
第四方面,提供了一种数据接收处理装置,包括:
解调模块,用于解调接收到的数据,获得当前处理时间单元对应的时域数据集;
第二变换模块,用于将所述时域数据集变换为时频域数据集;
获取模块,用于按照预设的资源映射规则,从所述时频域数据集中获取所述接收设备对应的第三时频域数据集;
第三变换模块,用于将所述第三时频域数据集变换为延迟多普勒域数据集;
其中,所述资源映射规则包括稀疏映射。
第五方面,提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第七方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如第二方面所述的方法。
本申请实施例通过将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;发送所述时频资源块上的所述时频域数据集;其中,所述资源映射规则包括稀疏映射。这样,可以避免增加M和N导致大量资源占用,因此本申请实施例提高了资源的利用率较低。
附图说明
图1是本申请实施例可应用的一种网络系统的结构图;
图2是延迟多普勒平面和时间频率平面的转换示意图;
图3是不同平面下信道响应关系示意图;
图4是延迟多普勒域的导频映射示意图;
图5是本申请实施例提供的一种数据发送方法的流程图;
图6是本申请实施例提供的一种数据发送方法中稀疏映射的示意图之一;
图7是本申请实施例提供的一种数据发送方法中交织映射的示意图之一;
图8是本申请实施例提供的一种数据发送方法中交织映射的示意图之二;
图9是本申请实施例提供的一种数据发送方法中稀疏映射占用资源的示意图;
图10是本申请实施例提供的一种数据发送方法中稀疏映射的示意图之二;
图11是本申请实施例提供的一种数据接收处理方法的流程图;
图12是本申请实施例提供的一种数据发送装置的结构图;
图13是本申请实施例提供的一种数据接收处理装置的结构图;
图14是本申请实施例提供的一种通信设备的结构图;
图15是本申请实施例提供的一种网络侧设备的结构图;
图16是本申请实施例提供的一种终端设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用 于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括用户设备11和网络设备12。其中,用户设备11也可以称作终端设备或者用户终端(User Equipment,UE),用户设备11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人用户设备(Pedestrian User Equipment,PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定用户设备11的具体类型。网络设备12可以是基站或核心网设备,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
信道的延迟和多普勒的特性本质上由多径信道决定。通过不同路径到达接收机的信号,因为传播路程存在差异,因此到达时间也不同。例如两个回波s 1和s 2各自经历距离d 1和d 2到达接收机,则他们抵达接收机的时间差为
Figure PCTCN2021116461-appb-000001
c为光速。由于回波s 1和s 2之间存在这种时间差,它们在接收机侧的相干叠加造成了观测到的信号幅度抖动,即衰落效应。类似的,多径信道的多普勒扩散也是由于多径效应造成。我们知道,多普勒效应是由于收发两端存在相对速度,历经不同路径到达接收机的信号,其相对于天线法线的入射角度存在差异,因此造成了相对速度的差异,进而造成了不同路径信号的多普勒频移不同。假设信号的原始频率为f 0,收发端的相对速度为ΔV,信号与收端天线的法线入射夹角为θ。则有:
Figure PCTCN2021116461-appb-000002
显然,当两个回波s 1和s 2历经不同路径到达接收端天线而具有不同的入射角θ 1和θ 2时,他们所得到的多普勒频移Δv 1和Δv 2也不同。综上所述,接收机端看到的信号是来自不同路径的具有不同时延和多普勒的分量信号的叠加,整体体现为一个相对原信号具有衰落和频移的接收信号。而对信道进行延迟多普勒分析,则有助于收集每个路径的延迟多普勒信息,从而反映信道的延迟多普勒响应。
OTFS调制技术的全称是正交时频空域(Orthogonal Time Frequency Space,OTFS)调制。该技术把一个大小为M×N的数据包中的信息,例如正交幅度调制(Quadrature Amplitude Modulation,QAM)符号,在逻辑上映射到二维延迟多普勒平面上的一个M×N格点中,即每个格点内的脉冲调制了数据包中的一个QAM符号。进一步的,通过设计一组正交二维基函数,将M×N的延迟多普勒域平面上的数据集变换到N×M的时频域平面上,这种变换在数学上被称为逆辛傅里叶变换(Inverse Sympletic Finite Fourier Transform,ISFFT)。对应的,从时频域到延迟多普勒域的变换被称为辛傅里叶变换(Sympletic Finite Fourier Transform,SFFT)。其背后的物理意义是,信号的延迟和多普勒效应,实际上是一种信号通过多经信道后的一系列具有不同时间和频率偏移的回波的线性叠加效应。从这个意义上说,延迟多普勒分析和时频域分析可以通过所述的ISFFT和SFFT相互转换得到。
其中,上述格点可以理解为资源元素(Resource element,RE),上述的转换关系如图2所示:
由此,OTFS技术把时变多径信道变换为一个(一定持续时间内的)时不变二维延迟多普勒域信道,从而直接体现了无线链路中由于收发机之间的反射体相对位置的几何特性造成的信道延迟多普勒响应特性。这样的好处是,OTFS消除了传统时频域分析跟踪时变衰落特性的难点,转而通过延迟多普勒域分析抽取出时频域信道的所有分集特性。实际系统中,信道的延迟径和多普勒频移的数量远远小于信道的时域和频域响应数量,所以用延迟多普勒域表征的信道较为简洁。所以利用OTFS技术在延迟多普勒域进行分析,可以使参考信号的封装更加紧密和灵活,尤其有利于支持大规模多输入多输出(Multi-User Multiple-Input Multiple-Output,MIMO)系统中的大型天线阵列。
OTFS调制定义在延迟多普勒平面上的QAM符号,变换到时频域进行发送,收端回到延迟多普勒域处理。因而可以引入延迟多普勒域上的无线信道响应分析方法。信号通过线性时变无线信道时,其信道响应在不同平面下的表达之间的关系如图3所示:
在图3中,SFFT变换公式为:
h(τ,v)=∫∫H(t,f)e -j2π(vt-fτ)dτdv   (1)
对应的,ISFFT的变换公式为:
H(t,f)=∫∫h(τ,v)e j2π(vt-fτ)dτdv    (2)
信号通过线性时变信道时,令时域接收信号为r(t),其对应的频域接收信号为R(f),且有
Figure PCTCN2021116461-appb-000003
r(t)可以表示为如下形式:
r(t)=s(t)*h(t)=∫g(t,τ)s(t-τ)dτ    (3)
由图3关系可知,
g(t,τ)=∫h(v,τ)e j2πvtdv    (4)
把(4)代入(3)可得:
r(t)=∫∫h(ν,τ)s(t-τ)e j2πvtdτdν     (5)
由图3所示关系,经典傅里叶变换理论,以及公式(5)可知,
Figure PCTCN2021116461-appb-000004
其中,v表示延迟变量,τ表示多普勒变量,f表示频率变量,t表示时间变量。
等式(6)暗示,在OTFS系统进行延迟多普勒域的分析,可以依托现有的建立在时频域上的通信框架,在收发端加上额外的信号处理过程来实现。并且,所述额外的信号处理仅由傅里叶变换组成,可以完全通过现有的硬件实现,无需新增模块。这种与现有硬件体系的良好兼容性大大方便了OTFS系统的应用。实际系统中,OTFS技术可以很方便的被实现为一个滤波OFDM系统的前置和后置处理模块,因此与现有的NR技术架构下的多载波系统有着很好的兼容性。
OTFS与多载波系统结合时,发送端的实现方式如下:含有需要发送信息的QAM符号由延迟多普勒平面的波形承载,经过一个二维的ISFFT,转换为传统多载波系统中的时频域平面的波形,再经过符号级的一维逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)和串并转换,变成时域采样点发送出去。
OTFS系统的接收端大致是一个发送端的逆过程:时域采样点经接收机接收后,经过并传转换和符号级的一维快速傅里叶变换(Fast Fourier Transform,FFT),先变换到时频域平面上的波形,再经过SFFT,转换为延迟多普勒域平面的波形,对由延迟多普勒域波形承载的QAM符号进行接收机的处理:包括信道估计和均衡,解调和译码等。
OTFS调制的优越性主要体现在以下方面:
OTFS调制把收发机之间的时频域中的时变衰落信道转化为延迟多普勒域中的确定性的无衰落信道。在延迟多普勒域中,一次发送的一组信息符号 中的每个符号都经历相同的静态信道响应和信噪比(Signal Noise Ratio,SNR)。
OTFS系统通过延迟多普勒图像解析出物理信道中的反射体,并用接收均衡器对来自不同反射路径的能量进行相干合并,实际上提供了一个无衰落的静态信道响应。利用上述静态信道特性,OTFS系统无需像OFDM系统一样引入闭环信道自适应来应对快变的信道,因而提升了系统健壮性并降低了系统设计的复杂度。
由于延迟多普勒域中的延迟-多普勒的状态数量远小于时频域的时间-频率状态数量,因而OTFS系统中的信道可以表达为非常紧凑的形式。OTFS系统的信道估计开销更少,更加精确。
OTFS的另一个优越性体现应对极致多普勒信道上。通过适当信号处理参数下对延迟多普勒图像的分析,信道的多普勒特性会被完整呈现,因而有利于多普勒敏感场景(例如高速移动和毫米波)下的信号分析和处理。
综上,OTFS系统中的信道估计采用如下方法:发射机将导频脉冲映射在延迟多普勒域上,接收机利用对导频的延迟多普勒图像分析,估计出延迟多普勒域的信道响应h(v,τ),进而可以根据图3关系得到时频域的信道响应表达式,方便应用时频域的已有技术进行信号分析和处理。延迟多普勒平面上的导频映射可以采取如图4方式。
在图4中,发送信号位于(l p,k p)的单点导频(401),环绕在其周围的面积为(2l v+1)(4k v+1)-1的保护符号(402),以及MN-(2l v+1)(4k v+1)的数据部分组成。而在接收端,在延迟多普勒域格点的保护带中出现了两个偏移峰(如4021和4022),意味着信道除了主径外存在两个具有不同延迟多普勒的次要路径。对所有的次要路径的幅度、延迟和多普勒参数进行测量,就得到了信道的延迟多普勒域表达式,即h(v,τ)。为了防止接收信号格点上数据对导频符号的污染,导致不准确的信道估计,保护符号的面积应该满足如下条件:
l τ≥τ maxMΔf,k v≥v maxNΔT    (7)
其中,τ max和v max分别是信道所有路径的最大时延和最大多普勒频移,多个保护符号402环绕单点导频401形成保护带,该多个保护符号402对应为空白资源元素。
图2和图4中的M*N平面,实际上是一个二维延迟多普勒平面上的离散点值,每个栅格对应了一个量化后的延迟-多普勒对(τ i,v j)。当总的资源数一定时(带宽和时间一定),如果M*N越大,栅格数就越多,相当于提升了离散延迟-多普勒点的量化精度。当M越大,则通过延迟多普勒分析可以分辨的延迟数量就越多,对此可以称之为提升了延迟分辨率;当N越大,则通过延迟多普勒分析可以分辨的多普勒偏移值就越多,对此可以称之为提升了多普勒分辨率。随着多径和多普勒分辨率的提升,我们获得的信道响应的信息就更丰富,从而可以更精确的估计信道,进而提高接收机译码表现。
然而,通过增大M*N的值带来的增益是有上限的。信道的延迟多普勒特性实际上是因为信号经历了多径信道产生的。信道的多径数量取决于信道中反射体数量,因此不可能无穷大。而信道的延迟和多普勒响应的状态数也受限于多径数量,也不可能无穷大。所以,一定数量大小的M*N即可以满足系统设计需求。另一方面,M*N的大小还要考虑到数据块的大小。对于小包数据,理论上只需要较小的M*N的资源就能承载。但是较小的M*N暗示这较小的信道分辨率,存在信道估计性能下降侧风险。但是,如果为了追求信道分辨率一味增大M*N,则对于小包数据则会因为过度设计造成资源浪费。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的数据发送方法进行详细地说明。
请参见图5,图5是本申请实施例提供的一种数据发送方法的流程图,该方法由发送设备执行,如图5所示,包括以下步骤:
步骤501,将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;
步骤502,按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;
步骤503,发送所述时频资源块上的所述时频域数据集;
其中,所述资源映射规则包括稀疏映射。
本申请实施例中,上述稀疏映射可以理解为按照预设的稀疏间隔进行映射。可选地,稀疏映射可以仅在频域上进行稀疏映射,也可以在频域上和时域上都进行稀疏映射,换句话说,上述稀疏映射包括以下任一项:
在时域上进行连续映射,在频域上进行稀疏映射;
在时域和频域上均进行稀疏映射。
其中,在时域和频域上均进行稀疏映射时,频域上的稀疏间隔和时域上的稀疏间隔可以相同,也可以不同,在此不做进一步的限定。
在图2中,延迟多普勒和时频域中的各个参量存在如下的转换关系。系统带宽B=MΔf,信号持续时间T=NΔT。在OFDM系统中,系统的子载波间隔Δf与符号时间ΔT成反比,即
Figure PCTCN2021116461-appb-000005
可以看出,时频域平面的两个基本度量存在如下倒数关系,即Δf·ΔT=1。存在与上述时频域平面互倒的延迟多普勒平面,由时延扩展τ r和多普勒扩展v r确定,且有
Figure PCTCN2021116461-appb-000006
显然v r·τ r=1。M时延扩展τ r和多普勒扩展v r确定了一个二维平面上的M*N的延迟多普勒资源栅格。易知延迟分辨率和多普勒分辨率满足如下等式:
Figure PCTCN2021116461-appb-000007
Figure PCTCN2021116461-appb-000008
由上述关系易知:
Figure PCTCN2021116461-appb-000009
由公式(8)可以看出增大ΔT和/或Δf,保持M和N不变,可以提升延迟分辨率和多普勒分辨率。因此本申请实施例使延迟多普勒域到实际时频资源的映射上,采用稀疏映射,等于等效地增加了ΔT和/或Δf,通过实际信道后再转换到延迟多普勒域分析,可以获得更高的时延和多普勒分辨率。这样,可以避免增加M和N导致大量资源占用,因此本申请实施例提高了资源的利用率较低。其中,M可以理解为延迟多普勒资源块的延迟维度的资源格数量或者时频资源块的频率维度的资源格数量,N可以理解为延迟多普勒资源块的多普勒维度的资源格数量或者时频资源块的时间维度的资源格数量,该资源格可以为理解为资源元素。
如图6所示,以下以在时域和频域上均进行稀疏映射为例进行说明。在图6中,针对占用4*2个资源格的数据,在时域和频域上均按照1个资源格的稀疏间隔进行稀释映射时,实际映射的时频域符号的符号间隔为2ΔT和子载波间隔为2Δf,基于公式(8)可知,多普勒分辨率和延迟分辨率各提升了2倍。此时,具有稀疏间隔的资源格可以映射其他数据,例如在多数据包或者 多用户复用的情况下,映射数据的资源格之间空白资源格还可以填充其他数据,从而避免资源浪费。
本申请实施例通过将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;发送所述时频资源块上的所述时频域数据集;其中,所述资源映射规则包括稀疏映射。这样,可以避免增加M和N导致大量资源占用,因此本申请实施例提高了资源的利用率较低。
应理解,上述接收设备和发送设备可以均为用户设备,也可以是一者为用户设备,另一者为网络设备,在此不做进一步的限定。
可选地,在一些实施例中,所述资源映射规则还包括针对多个时频域数据集的交织映射,上述交织映射包括以下任一项:
仅在频域对上进行交织映射;
在时域和频域上均进行交织映射。
本实施例中,所述多个时频域数据集可以归属于一或者多个接收设备。以下各实施例中,以下多个时频数据集归属于多个接收设备为例进行说明。上述交织映射可以理解为多个时频域数据集按照一定的交织周期进行交织映射。应理解,进行了交织映射,表示进行了稀疏映射。以两个时频域数据集为例进行说明,若两个时频域数据集仅在频域上进行交织映射和稀疏映射,此时,每一个时频域数据集在频域上进行稀疏映射,且一个时频域数据集对应的稀疏间隔的资源格上映射有另一时频域数据集的数据,这样使得两个时频域数据集中的数据在频域上依次交替映射。例如,资源格1、资源格2、资源格3和资源格4为同一时间单元上依次相邻的四个资源格,且资源格1、资源格2、资源格3和资源格4对应不同的频率,此时资源格1和资源格3映射一个时频域数据集的数据,资源格2和资源格4映射另一个时频域数据集的数据。在时域上的交织映射同理,例如资源格5、资源格6、资源格7和资源格8为同一频率单元上依次相邻的四个资源格,且资源格5、资源格6、资源格7和资源格8对应不同的时间,此时资源格5和资源格7映射一个时频域数据集的数据,资源格6和资源格8映射另一个时频域数据集的数据。
由于在本实施例中,针对多个时频域数据集进行交织映射,从而可以避 免稀疏间隔造成的资源浪费,从而进一步提高了资源的利用率。
换句话说,在本申请实施例中,所述映射规则满足以下任一项:
规则1,针对多个接收设备的时频域数据集仅在频域上进行交织映射,且在时域上进行连续映射,在频域上进行稀疏映射;
规则2,针对多个接收设备的时频域数据集在频域和时域上均进行交织映射,且在时域和频域上均进行稀疏映射。
可选地,在一些实施例中,所述按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上的步骤,包括:
在目标时间单元内存在至少两个接收设备的第一时频域数据集的情况下,针对所述第一时频域数据集,在频域上进行所述稀疏映射以及所述交织映射;
针对目标频率单元内的第二时频域数据集,在时域上进行连续映射;
其中,所述目标时间单元为时频资源块的任一个时间单元,所述目标频率单元为时频资源块的任一个频率单元。
本申请实施例中,由于发送的数据大小不一,为了避免单独进行稀疏映射造成稀疏间隔的资源浪费,假设某一时间单元上仅包括一个时频域数据集时,针对该时间单元不在频域上进行稀疏映射和交织映射。应理解,本实施例中,在时域上进行连续映射,即不进行交织映射和稀疏映射。上述一个时间单元可以为一个或者两个资源格,如图7所示,一个时间单元为一个资源格。假设一个时间单元存在两个接收设备的时频域资源集,此时在频域上进行稀疏映射的稀疏间隔为一个资源格。
在另一些实施例中,所述按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上的步骤,包括:
在目标时间单元内存在至少两个接收设备的第一时频域数据集的情况下,针对所述第一时频域数据集,在频域上进行所述稀疏映射以及所述交织映射;
在目标频率单元内存在至少两个接收设备的第二时频域数据集的情况下,针对所述第二时频域数据集,在时域上进行所述稀疏映射以及所述交织映射;
其中,所述目标时间单元为时频资源块的任一个时间单元,所述目标频率单元为时频资源块的任一个频率单元。
本申请实施例中,由于发送的数据大小不一,为了避免单独进行稀疏映 射造成稀疏间隔的资源浪费,假设某一时间单元上仅包括一个时频域数据集时,针对该时间单元不在频域上进行稀疏映射和交织映射;假设某一频率单元上仅包括一个时频域数据集时,针对该频率单元不在时域上进行稀疏映射和交织映射。一个时间单元可以为一个或者两个资源格,一个频率单元可以为一个或者两个资源格。如图8所示,以一个时间单元为一个资源格,一个频率单元为一个资源格为例进行说明。本实施例中,一个时间单元存在两个接收设备的时频域资源集,此时在频域上进行稀疏映射的稀疏间隔为一个资源格;一个频率单元存在三个接收设备的时频域资源集,此时在时域上进行稀疏映射的稀疏间隔为两个资源格。
应理解,上述资源映射规则可以由协议约定,也可以由发送设备配置,当由发送设备配置时,所述发送所述时频域数据集的步骤之前,所述方法还包括:
向接收设备发送第一指示信息,所述第一指示信息用于指示所述资源映射规则。
本实施例中,发送设备可以通过广播消息、无线资源控制(Radio Resource Control,RRC)信令和下行控制信息(Downlink Control Information,DCI)信令等方式发送第一指示信息,在此不做进一步的限定。
可选地,在一些实施例中,所述发送所述时频域数据集的步骤之前,所述方法还包括:
向接收设备发送第二指示信息;
其中,所述第二指示信息用于指示所述时频域数据集所在的时频资源块位于当前处理时间单元对应的时频资源格内的起始资源位置;或者,在当前处理时间单元对应的时频资源格按照预设规则划分为多个时频资源块的情况下,所述第二指示信息用于指示所述时频域数据集所在的时频资源块对应的索引值。
本实施例中,发送设备可以通过广播消息、RRC信令和DCI信令等方式发送第二指示信息,在此不做进一步的限定。
应理解,一个无线帧(radio frame)长度为10ms,被分为十个子帧(subframe),一个子帧为长度为1ms。在LTE中,一个子帧为物理层数据包 处理的基本资源单元,即一个子帧中的数据(即一个传输块(Transport Block,TB))一起编码译码;在新空口(New Radio,NR)中,子帧被进一步分为时隙(slot),slot为数据包处理的基本资源单元。处理时间单元可以理解为基本资源单元,上述当前处理时间单元可以理解为当前处理子帧或者当前处理时隙。
应理解,上述预设规则可以是协议约定的规则也可以是发送设备指示的规则,在此不做进一步的限定,在当前处理时间单元对应的时频资源格按照预设规则划分为多个时频资源块的情况下,划分的每一时频资源块都具有对应的索引值。
为了更好的理解本申请,以下通过具体实例对本申请的实现过程进行详细说明。
实施例一:在多用户复用的场景下,利用不同用户数据的交织放置,达到了增大延迟和多普勒分辨率,提升信道估计准确度的功能。图6的时频域分辨率分别为:
Figure PCTCN2021116461-appb-000010
本申请实施例,通过将变换后的延迟多普勒域QAM符号在物理时频域资源上进行稀疏映射,可以提高信道估计的延迟和多普勒分辨率。假设一个维度为l×k的用户数据稀疏映射后,符号间隔和子载波间隔分别为aΔT和bΔf,则映射后的数据分布在一个矩形资源块中。如图9所示稀疏映射占用资源如虚线框所示的范围。
如果只有单用户数据,则需要分配给用户的物理时频资源块大小为[l+(l-1)(b-1)]*[k+(k-1)(a-1)],相比原始数据的大小,造成的额外的资源开销为:
Figure PCTCN2021116461-appb-000011
为了进一步避免资源浪费,可以将多个用户的用户数据通过交织的方法,稀疏映射在一块物理时频资源块上。其中a和b均为正整数。
为了避免资源浪费,可以将多个用户的通过交织的方法,稀疏映射在一 块物理时频资源块上。具体如图8所示。在图8中,总共有P个用户,用不同的填充表示。每个用户的数据块为一个l×k的延迟多普勒域上的QAM符号集。P个用户数据总共占用的逻辑上的时频资源为P*l*k。把P个用户的数据通过本申请的方法进行交织后再映射到时频域的物理资源上,占用数量仍然为P*l*k。因此,多用户情况下,采用本申请提出的交织映射和稀疏映射的方式,并不会产生额外开销。
应理解,本申请数据发送方法可以应用于上行,也可以应用于下行。
可选地,一些实施例中,应用于下行时,由基站根据优化的交织方式对每个UE资源进行调度。每个UE仅接收被调度给自己的资源上的数据,并根据该资源块的特性,即(M,N,Δf)进行OTFS变换,到延迟多普勒域进行信道测量,信道估计和译码。
另一些实施例中,用于上行时,同样需要由基站对每个UE资源进行调度,从而形成优化的交织方式。每个UE仅在被调度给自己的资源上,根据该资源块的特性(M,N,Δf)进行OTFS变换,发送转换到时频域上的QAM符号。基站在收到UE发送的消息后,根据已知的资源调度情况对每个UE的消息分别译码处理。
其中(M,N,Δf)的传递可以由如下方式确定:
由基站直接指示资源位置给UE;
由协议规定好几种不同交织方式帧结构模式,指示帧内资源索引给UE;
由协议规定好几种不同交织方式帧结构模式,由UE根据自身ID自己选择资源位置。
实施例二:在多用户复用的场景下,利用不同用户数据的交织放置,达到了增大延迟和多普勒分辨率,提升信道估计准确度的功能。
本申请实施例中,通过将变换后的延迟多普勒域QAM符号在频域上进行稀疏映射,可以提高信道估计的延迟分辨率。而多普勒分辨率只能通过选取较大的N来实现。如图10所示,相比图6,为获得2倍的多普勒分辨率,需要时域资源数设为2N,在总资源数不变的情况下,频域资源变成了
Figure PCTCN2021116461-appb-000012
因此,为了获得2倍的延迟分辨率,需要把Δf变为4倍。由此得到,本实施例的时 域和频域分辨率分别为:
Figure PCTCN2021116461-appb-000013
请参见图11,图11是本申请实施例提供的一种数据接收处理方法的流程图,该方法由接收设备执行,如图11所示,包括以下步骤:
步骤1101,解调接收到的数据,获得当前处理时间单元对应的时域数据集;
步骤1102,将所述时域数据集变换为时频域数据集;
步骤1103,按照预设的资源映射规则,从所述时频域数据集中获取所述接收设备对应的第三时频域数据集;
步骤1104,将所述第三时频域数据集变换为延迟多普勒域数据集;
其中,所述资源映射规则包括稀疏映射。
可选地,所述稀疏映射包括以下任一项:
在时域上进行连续映射,在频域上进行稀疏映射;
在时域和频域上均进行稀疏映射。
可选地,所述资源映射规则还包括针对多个时频域数据集的交织映射,所述交织映射包括以下任一项:
仅在频域对上进行交织映射;
在时域和频域上均进行交织映射。
可选地,所述多个时频域数据集归属于多个接收设备。
可选地,所述映射规则满足以下任一项:
规则1,针对多个接收设备的时频域数据集仅在频域上进行交织映射,且在时域上进行连续映射,在频域上进行稀疏映射;
规则2,针对多个接收设备的时频域数据集在频域和时域上均进行交织映射,且在时域和频域上均进行稀疏映射。
可选地,所述解调接收到的数据,获得当前处理时间单元对应的时域数据集的步骤之前,所述方法还包括:
接收发送设备发送第一指示信息,所述第一指示信息用于指示所述资源映射规则。
可选地,所述解调接收到的数据,获得当前处理时间单元对应的时域数据集的步骤之前,所述方法还包括:
接收发送设备发送的第二指示信息;
其中,所述第二指示信息用于指示所述时频域数据集所在的时频资源块位于当前处理时间单元对应的时频资源格内的起始资源位置;或者,在当前处理时间单元对应的时频资源格按照预设规则划分为多个时频资源块的情况下,所述第二指示信息用于指示所述时频域数据集所在的时频资源块对应的索引值。
需要说明的是,本实施例作为图5所示的实施例对应的接收设备的实施方式,其具体的实施方式可以参见图5所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
需要说明的是,本申请实施例提供的数据发送方法,执行主体可以为数据发送装置,或者,该数据发送装置中的用于执行数据发送方法的控制模块。本申请实施例中以数据发送装置执行数据发送方法为例,说明本申请实施例提供的数据发送装置。
请参见图12,图12是本申请实施例提供的一种数据发送装置的结构图,如图12所示,数据发送装置1200包括:
第一变换模块1201,用于将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;
映射模块1202,用于按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;
发送模块1203,用于发送所述时频资源块上的所述时频域数据集;
其中,所述资源映射规则包括稀疏映射。
可选地,所述稀疏映射包括以下任一项:
在时域上进行连续映射,在频域上进行稀疏映射;
在时域和频域上均进行稀疏映射。
可选地,所述资源映射规则还包括针对多个时频域数据集的交织映射,所述交织映射包括以下任一项:
仅在频域对上进行交织映射;
在时域和频域上均进行交织映射。
可选地,所述多个时频域数据集归属于多个接收设备。
可选地,所述映射规则满足以下任一项:
规则1,针对多个接收设备的时频域数据集仅在频域上进行交织映射,且在时域上进行连续映射,在频域上进行稀疏映射;
规则2,针对多个接收设备的时频域数据集在频域和时域上均进行交织映射,且在时域和频域上均进行稀疏映射。
可选地,所述映射模块1202具体用于:
在目标时间单元内存在至少两个接收设备的第一时频域数据集的情况下,针对所述第一时频域数据集,在频域上进行所述稀疏映射以及所述交织映射;
针对目标频率单元内的第二时频域数据集,在时域上进行连续映射;
其中,所述目标时间单元为时频资源块的任一个时间单元,所述目标频率单元为时频资源块的任一个频率单元。
可选地,所述映射模块1202具体用于:
在目标时间单元内存在至少两个接收设备的第一时频域数据集的情况下,针对所述第一时频域数据集,在频域上进行所述稀疏映射以及所述交织映射;
在目标频率单元内存在至少两个接收设备的第二时频域数据集的情况下,针对所述第二时频域数据集,在时域上进行所述稀疏映射以及所述交织映射;
其中,所述目标时间单元为时频资源块的任一个时间单元,所述目标频率单元为时频资源块的任一个频率单元。
可选地,所述发送模块1203还用于:向接收设备发送第一指示信息,所述第一指示信息用于指示所述资源映射规则。
可选地,所述发送模块1203还用于:向接收设备发送第二指示信息;
其中,所述第二指示信息用于指示所述时频域数据集所在的时频资源块位于当前处理时间单元对应的时频资源格内的起始资源位置;或者,在当前处理时间单元对应的时频资源格按照预设规则划分为多个时频资源块的情况下,所述第二指示信息用于指示所述时频域数据集所在的时频资源块对应的索引值。
本申请实施例提供的数据发送装置1200能够实现图5的方法实施例中发 送设备实现的各个过程,为避免重复,这里不再赘述。
需要说明的是,本申请实施例提供的数据接收处理方法,执行主体可以为数据接收处理装置,或者,该数据接收处理装置中的用于执行数据接收处理方法的控制模块。本申请实施例中以数据接收处理装置执行数据接收处理方法为例,说明本申请实施例提供的数据接收处理装置。
请参见图13,图13是本申请实施例提供的一种数据接收处理装置的结构图,如图13所示,数据接收处理装置1300包括:
解调模块1301,用于解调接收到的数据,获得当前处理时间单元对应的时域数据集;
第二变换模块1302,用于将所述时域数据集变换为时频域数据集;
获取模块1303,用于按照预设的资源映射规则,从所述时频域数据集中获取所述接收设备对应的第三时频域数据集;
第三变换模块1304,用于将所述第三时频域数据集变换为延迟多普勒域数据集;
其中,所述资源映射规则包括稀疏映射。
可选地,所述稀疏映射包括以下任一项:
在时域上进行连续映射,在频域上进行稀疏映射;
在时域和频域上均进行稀疏映射。
可选地,所述资源映射规则还包括针对多个时频域数据集的交织映射,所述交织映射包括以下任一项:
仅在频域对上进行交织映射;
在时域和频域上均进行交织映射。
可选地,所述多个时频域数据集归属于多个接收设备。
可选地,所述映射规则满足以下任一项:
规则1,针对多个接收设备的时频域数据集仅在频域上进行交织映射,且在时域上进行连续映射,在频域上进行稀疏映射;
规则2,针对多个接收设备的时频域数据集在频域和时域上均进行交织映射,且在时域和频域上均进行稀疏映射。
可选地,所述解调接收到的数据,获得当前处理时间单元对应的时域数 据集的步骤之前,所述方法还包括:
接收发送设备发送第一指示信息,所述第一指示信息用于指示所述资源映射规则。
可选地,所述解调接收到的数据,获得当前处理时间单元对应的时域数据集的步骤之前,所述方法还包括:
接收发送设备发送的第二指示信息;
其中,所述第二指示信息用于指示所述时频域数据集所在的时频资源块位于当前处理时间单元对应的时频资源格内的起始资源位置;或者,在当前处理时间单元对应的时频资源格按照预设规则划分为多个时频资源块的情况下,所述第二指示信息用于指示所述时频域数据集所在的时频资源块对应的索引值。
本申请实施例提供的数据接收处理装置1300能够实现图11的方法实施例中接收设备实现的各个过程,为避免重复,这里不再赘述。
本申请实施例中的数据发送装置和数据接收处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的数据发送装置和数据接收处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的数据发送装置和数据接收处理装置能够实现图5至图11的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图14所示,本申请实施例还提供一种通信设备1400,包括处理器1401,存储器1402,存储在存储器1402上并可在所述处理器1401上运行的程序或指令,例如,该通信设备1400为发送设备时,该程序或指令被处理器1401执行时实现上述数据发送方法实施例的各个过程,且能达到相同 的技术效果。该通信设备1400为接收设备时,该程序或指令被处理器1401执行时实现上述数据接收处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。该网络侧设备可以是接收设备,也可以是发送设备。当接收设备为终端时,发送设备可以是另一终端或网络侧设备。当接收设备为网络侧设备时,发送设备为终端。如图15所示,该网络侧设备1500包括:天线1501、射频装置1502、基带装置1503。天线1501与射频装置1502连接。在上行方向上,射频装置1502通过天线1501接收信息,将接收的信息发送给基带装置1503进行处理。在下行方向上,基带装置1503对要发送的信息进行处理,并发送给射频装置1502,射频装置1502对收到的信息进行处理后经过天线1501发送出去。
上述频带处理装置可以位于基带装置1503中,以上实施例中网络侧设备执行的方法可以在基带装置1503中实现,该基带装置1503包括处理器1504和存储器1505。
基带装置1503例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为处理器1504,与存储器1505连接,以调用存储器1505中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置1503还可以包括网络接口1506,用于与射频装置1502交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1505上并可在处理器1504上运行的指令或程序,其中,当所述网络侧设备为发送设备时,处理器1504调用存储器1505中的指令或程序控制执行图12所示各模块执行的方法,当所述网络侧设备为接收设备时,处理器1504调用存储器1505中的指令或程序执行图13所示各模块控制执行的方法并达到相同的技术效果,为避免重复,故不在此赘述。
图16为实现本申请各个实施例的一种终端设备的硬件结构示意图。
该终端设备1600包括但不限于:射频单元1601、网络模块1602、音频输出单元1603、输入单元1604、传感器1605、显示单元1606、用户输入单 元1607、接口单元1608、存储器1609以及处理器1610等部件。
本领域技术人员可以理解,终端设备1600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图16中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1604可以包括图形处理器(Graphics Processing Unit,GPU)16041和麦克风16042,图形处理器16041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1606可包括显示面板16061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板16061。用户输入单元1607包括触控面板16071以及其他输入设备16072。触控面板16071,也称为触摸屏。触控面板16071可包括触摸检测装置和触摸控制器两个部分。其他输入设备16072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1601将来自网络侧设备的下行数据接收后,给处理器1610处理;另外,将上行的数据发送给网络设备。通常,射频单元1601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1609可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1609可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1610可包括一个或多个处理单元;可选的,处理器1610可集成 应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
其中,当发送设备为终端,接收设备为另一终端或网络侧设备时,
处理器1610用于:将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;
射频单元1601用于:发送所述时频资源块上的所述时频域数据集;
其中,所述资源映射规则包括稀疏映射。
应理解,本实施例中,上述处理器1610和射频单元1601能够实现图5的方法实施例中发送设备实现的各个过程,为避免重复,这里不再赘述。
当接收设备为终端,发送设备为另一终端或网络侧设备时,
射频单元1601用于:
解调接收到的数据,获得当前处理时间单元对应的时域数据集;
将所述时域数据集变换为时频域数据集;
按照预设的资源映射规则,从所述时频域数据集中获取所述终端设备对应的第三时频域数据集;
将所述第三时频域数据集变换为延迟多普勒域数据集;
其中,所述资源映射规则包括稀疏映射。
应理解,本实施例中,上述处理器1610和射频单元1601能够实现图11的方法实施例中接收设备实现的各个过程,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述数据发送方法或数据接收处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现上述数据接收处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
可以理解的是,本公开描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光 盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (27)

  1. 一种数据发送方法,由发送设备执行,包括:
    将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;
    按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;
    发送所述时频资源块上的所述时频域数据集;
    其中,所述资源映射规则包括稀疏映射。
  2. 根据权利要求1所述的方法,其中,所述稀疏映射包括以下任一项:
    在时域上进行连续映射,在频域上进行稀疏映射;
    在时域和频域上均进行稀疏映射。
  3. 根据权利要求1所述的方法,其中,所述资源映射规则还包括针对多个时频域数据集的交织映射,所述交织映射包括以下任一项:
    仅在频域对上进行交织映射;
    在时域和频域上均进行交织映射。
  4. 根据权利要求3所述的方法,其中,所述多个时频域数据集归属于多个接收设备。
  5. 根据权利要求3所述的方法,其中,所述映射规则满足以下任一项:
    规则1,针对多个接收设备的时频域数据集仅在频域上进行交织映射,且在时域上进行连续映射,在频域上进行稀疏映射;
    规则2,针对多个接收设备的时频域数据集在频域和时域上均进行交织映射,且在时域和频域上均进行稀疏映射。
  6. 根据权利要求5所述的方法,其中,所述按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上的步骤,包括:
    在目标时间单元内存在至少两个接收设备的第一时频域数据集的情况下,针对所述第一时频域数据集,在频域上进行所述稀疏映射以及所述交织映射;
    针对目标频率单元内的第二时频域数据集,在时域上进行连续映射;
    其中,所述目标时间单元为时频资源块的任一个时间单元,所述目标频率单元为时频资源块的任一个频率单元。
  7. 根据权利要求5所述的方法,其中,所述按照预设的资源映射规则, 将所述时频域数据集映射到时频资源块上的步骤,包括:
    在目标时间单元内存在至少两个接收设备的第一时频域数据集的情况下,针对所述第一时频域数据集,在频域上进行所述稀疏映射以及所述交织映射;
    在目标频率单元内存在至少两个接收设备的第二时频域数据集的情况下,针对所述第二时频域数据集,在时域上进行所述稀疏映射以及所述交织映射;
    其中,所述目标时间单元为时频资源块的任一个时间单元,所述目标频率单元为时频资源块的任一个频率单元。
  8. 根据权利要求1所述的方法,其中,所述发送所述时频域数据集的步骤之前,所述方法还包括:
    向接收设备发送第一指示信息,所述第一指示信息用于指示所述资源映射规则。
  9. 根据权利要求1所述的方法,其中,所述发送所述时频域数据集的步骤之前,所述方法还包括:
    向接收设备发送第二指示信息;
    其中,所述第二指示信息用于指示所述时频域数据集所在的时频资源块位于当前处理时间单元对应的时频资源格内的起始资源位置;或者,在当前处理时间单元对应的时频资源格按照预设规则划分为多个时频资源块的情况下,所述第二指示信息用于指示所述时频域数据集所在的时频资源块对应的索引值。
  10. 一种数据接收处理方法,由接收设备执行,包括:
    解调接收到的数据,获得当前处理时间单元对应的时域数据集;
    将所述时域数据集变换为时频域数据集;
    按照预设的资源映射规则,从所述时频域数据集中获取所述接收设备对应的第三时频域数据集;
    将所述第三时频域数据集变换为延迟多普勒域数据集;
    其中,所述资源映射规则包括稀疏映射。
  11. 根据权利要求10所述的方法,其中,所述稀疏映射包括以下任一项:
    在时域上进行连续映射,在频域上进行稀疏映射;
    在时域和频域上均进行稀疏映射。
  12. 根据权利要求10所述的方法,其中,所述资源映射规则还包括针对多个时频域数据集的交织映射,所述交织映射包括以下任一项:
    仅在频域对上进行交织映射;
    在时域和频域上均进行交织映射。
  13. 根据权利要求12所述的方法,其中,所述多个时频域数据集归属于多个接收设备。
  14. 根据权利要求12所述的方法,其中,所述映射规则满足以下任一项:
    规则1,针对多个接收设备的时频域数据集仅在频域上进行交织映射,且在时域上进行连续映射,在频域上进行稀疏映射;
    规则2,针对多个接收设备的时频域数据集在频域和时域上均进行交织映射,且在时域和频域上均进行稀疏映射。
  15. 根据权利要求10所述的方法,其中,所述解调接收到的数据,获得当前处理时间单元对应的时域数据集的步骤之前,所述方法还包括:
    接收发送设备发送第一指示信息,所述第一指示信息用于指示所述资源映射规则。
  16. 根据权利要求10所述的方法,其中,所述解调接收到的数据,获得当前处理时间单元对应的时域数据集的步骤之前,所述方法还包括:
    接收发送设备发送的第二指示信息;
    其中,所述第二指示信息用于指示所述时频域数据集所在的时频资源块位于当前处理时间单元对应的时频资源格内的起始资源位置;或者,在当前处理时间单元对应的时频资源格按照预设规则划分为多个时频资源块的情况下,所述第二指示信息用于指示所述时频域数据集所在的时频资源块对应的索引值。
  17. 一种数据发送装置,包括:
    第一变换模块,用于将延迟多普勒资源块上的延迟多普勒域数据集变换为时频域数据集;
    映射模块,用于按照预设的资源映射规则,将所述时频域数据集映射到时频资源块上;
    发送模块,用于发送所述时频资源块上的所述时频域数据集;
    其中,所述资源映射规则包括稀疏映射。
  18. 根据权利要求17所述的装置,其中,所述稀疏映射包括以下任一项:
    在时域上进行连续映射,在频域上进行稀疏映射;
    在时域和频域上均进行稀疏映射。
  19. 根据权利要求17所述的装置,其中,所述资源映射规则还包括针对多个时频域数据集的交织映射,所述多个时频域数据集归属于多个接收设备。
  20. 根据权利要求19所述的装置,其中,所述交织映射包括以下任一项:
    仅在频域对上进行交织映射;
    在时域和频域上均进行交织映射。
  21. 一种数据接收处理装置,包括:
    解调模块,用于解调接收到的数据,获得当前处理时间单元对应的时域数据集;
    第二变换模块,用于将所述时域数据集变换为时频域数据集;
    获取模块,用于按照预设的资源映射规则,从所述时频域数据集中获取所述接收设备对应的第三时频域数据集;
    第三变换模块,用于将所述第三时频域数据集变换为延迟多普勒域数据集;
    其中,所述资源映射规则包括稀疏映射。
  22. 根据权利要求21所述的装置,其中,所述稀疏映射包括以下任一项:
    在时域上进行连续映射,在频域上进行稀疏映射;
    在时域和频域上均进行稀疏映射。
  23. 根据权利要求21所述的装置,其中,所述资源映射规则还包括针对多个时频域数据集的交织映射,所述多个时频域数据集归属于多个接收设备。
  24. 根据权利要求23所述的装置,其中,所述交织映射包括以下任一项:
    仅在频域对上进行交织映射;
    在时域和频域上均进行交织映射。
  25. 一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至9中任一项所述的数据发送方法中的步骤,或者所述程序被所述处理器执 行时实现如权利要求10至16中任一项所述的数据接收处理方法中的步骤。
  26. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指被处理器执行时实现如权利要求1至9中任一项所述的数据发送方法的步骤,或者所述程序或指令被处理器执行时实现如权利要求10至16中任一项所述的数据接收处理方法的步骤。
  27. 一种芯片,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至9中任一项所述的数据发送方法,或者实现如权利要求10至16中任一项所述的数据接收处理方法。
PCT/CN2021/116461 2020-09-04 2021-09-03 数据发送方法、数据接收处理方法及相关设备 WO2022048639A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21863701.5A EP4195601A4 (en) 2020-09-04 2021-09-03 METHOD FOR SENDING DATA, METHOD FOR RECEIVING AND PROCESSING DATA, AND ASSOCIATED DEVICE
US18/116,832 US20230208575A1 (en) 2020-09-04 2023-03-02 Data sending method, data receiving and processing method, and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010923636.9A CN114158090A (zh) 2020-09-04 2020-09-04 数据发送方法、数据接收处理方法及相关设备
CN202010923636.9 2020-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/116,832 Continuation US20230208575A1 (en) 2020-09-04 2023-03-02 Data sending method, data receiving and processing method, and related device

Publications (1)

Publication Number Publication Date
WO2022048639A1 true WO2022048639A1 (zh) 2022-03-10

Family

ID=80460642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116461 WO2022048639A1 (zh) 2020-09-04 2021-09-03 数据发送方法、数据接收处理方法及相关设备

Country Status (4)

Country Link
US (1) US20230208575A1 (zh)
EP (1) EP4195601A4 (zh)
CN (1) CN114158090A (zh)
WO (1) WO2022048639A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116781219A (zh) * 2022-03-11 2023-09-19 维沃移动通信有限公司 延迟多普勒域dd域的控制信道资源的指示方法及装置
CN116782261A (zh) * 2022-03-11 2023-09-19 维沃移动通信有限公司 质量信息确定方法、装置、终端及存储介质
CN114978836B (zh) * 2022-04-25 2023-12-29 北京邮电大学 探测通信一体化方法及电子设备
CN114786132B (zh) * 2022-06-16 2022-09-02 北京邮电大学 目标追踪方法、装置、电子设备和存储介质
CN117675474A (zh) * 2022-08-22 2024-03-08 中兴通讯股份有限公司 信号的传输方法、装置、终端和存储介质
CN117714251A (zh) * 2022-09-07 2024-03-15 维沃移动通信有限公司 资源映射方法、装置和通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845316A (zh) * 2018-06-04 2018-11-20 中国卫星海上测控部 一种基于压缩感知理论的雷达稀疏探测方法
CN110463285A (zh) * 2017-03-24 2019-11-15 英特尔公司 用于机器类型通信和窄带物联网设备的唤醒信号
WO2020069147A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Demodulation reference signal transmission from multiple base stations
CN111279337A (zh) * 2017-09-06 2020-06-12 凝聚技术公司 正交时频空间调制中格规约

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3497785B1 (en) * 2016-08-12 2024-03-13 Cohere Technologies, Inc. Method for multi-user multiplexing of orthogonal time frequency space signals
US11817987B2 (en) * 2017-04-11 2023-11-14 Cohere Technologies, Inc. Digital communication using dispersed orthogonal time frequency space modulated signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463285A (zh) * 2017-03-24 2019-11-15 英特尔公司 用于机器类型通信和窄带物联网设备的唤醒信号
CN111279337A (zh) * 2017-09-06 2020-06-12 凝聚技术公司 正交时频空间调制中格规约
CN108845316A (zh) * 2018-06-04 2018-11-20 中国卫星海上测控部 一种基于压缩感知理论的雷达稀疏探测方法
WO2020069147A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Demodulation reference signal transmission from multiple base stations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, LINGJUN: "Performance Analysis and Optimizition of Doppler Resilient Orthogonal Time Frequency Space Ststems", CHINESE MASTER'S THESES FULL-TEXT DATABASE, INFORMATION SCIENCE, 29 May 2019 (2019-05-29), XP055909417, [retrieved on 20220405] *
See also references of EP4195601A4 *

Also Published As

Publication number Publication date
EP4195601A1 (en) 2023-06-14
EP4195601A4 (en) 2024-01-24
CN114158090A (zh) 2022-03-08
US20230208575A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
WO2022048639A1 (zh) 数据发送方法、数据接收处理方法及相关设备
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
WO2022048649A1 (zh) 导频接收处理方法、发送方法及相关设备
US20230208698A1 (en) Frame structure indication method, frame structure updating method, and related device
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
WO2022199664A1 (zh) 信息发送方法和设备
WO2022121891A1 (zh) 导频传输方法、装置、网络侧设备及存储介质
WO2022121892A1 (zh) 导频传输方法、装置、网络侧设备及存储介质
WO2022171076A1 (zh) 资源确定、配置方法及通信设备
US20240146359A1 (en) Transmission processing method and apparatus, communication device, and readable storage medium
WO2023109734A1 (zh) 干扰测量方法、装置、设备及存储介质
WO2023036226A1 (zh) 信号传输方法、装置、设备及存储介质
WO2023040956A1 (zh) 映射方法、装置、设备及存储介质
WO2023169544A1 (zh) 质量信息确定方法、装置、终端及存储介质
WO2022166882A1 (zh) 信号处理方法、装置、通信设备及存储介质
WO2023078453A1 (zh) 传输方法、装置、设备及存储介质
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2022166880A1 (zh) 信号处理方法、装置、通信设备及存储介质
WO2022171155A1 (zh) 数据发送处理方法、接收处理方法、装置及设备
Zhao et al. A comparative analysis of pilot placement schemes in frequency-selective fast fading MIMO channel
Wu et al. Variable cyclic prefix for contention-based wireless access in OFDM-Based vehicular communication systems
Pitchaiah et al. Performance analysis of OQAM based GFDM 5G systems under line of sight fading scenarios
Yang et al. An improved pilot-assisted SNR estimation for MBSFN downlink transmission
Pandey et al. A Result Analysis of Compressive Sensing Based Channel Estimation for OFDM Systems under Long Delay Channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021863701

Country of ref document: EP

Effective date: 20230306

NENP Non-entry into the national phase

Ref country code: DE