WO2022171076A1 - 资源确定、配置方法及通信设备 - Google Patents

资源确定、配置方法及通信设备 Download PDF

Info

Publication number
WO2022171076A1
WO2022171076A1 PCT/CN2022/075498 CN2022075498W WO2022171076A1 WO 2022171076 A1 WO2022171076 A1 WO 2022171076A1 CN 2022075498 W CN2022075498 W CN 2022075498W WO 2022171076 A1 WO2022171076 A1 WO 2022171076A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
resource
doppler
blank
end device
Prior art date
Application number
PCT/CN2022/075498
Other languages
English (en)
French (fr)
Inventor
孙布勒
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22752237.2A priority Critical patent/EP4293945A1/en
Publication of WO2022171076A1 publication Critical patent/WO2022171076A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2639Modulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a resource determination and configuration method and a communication device.
  • ISI Inter-symbol interference
  • ICI Inter-carrier interference
  • the Orthogonal Frequency Division Multiplexing (OFDM) multi-carrier system used in the existing protocol has better anti-ISI performance by adding a cyclic prefix (CP) design.
  • CP cyclic prefix
  • OFDM Orthogonal Frequency Division Multiplexing
  • the weakness of OFDM is that the size of the sub-carrier spacing is limited. Therefore, in response to high-speed mobile scenarios (such as high-speed rail), due to the large Doppler frequency shift caused by the relatively large relative speed between the transmitter and the receiver, the distance between the OFDM sub-carriers is destroyed.
  • the orthogonality between subcarriers causes serious ICI between subcarriers.
  • the Orthogonal Time Frequency Space (OTFS) technology is proposed to solve the above problems in the OFDM system.
  • the OTFS technique defines the transformation between the delay Doppler domain and the time-frequency domain. By simultaneously mapping service data and pilot frequencies to the delayed Doppler domain processing at the transceiver end, ICI and ISI in high-speed scenarios
  • DC carrier noise is also an important issue in OFDM systems.
  • Signal transmitters and receivers in LTE and NR communication systems generally use a zero-IF scheme or a one-time frequency conversion scheme to realize the conversion between baseband and radio frequency.
  • the zero-IF and one-frequency conversion schemes have the problem of local oscillator leakage, which will generate a large DC sub-carrier noise at the signal carrier frequency during transmission and reception, resulting in a very poor signal-to-noise ratio at this frequency.
  • This sub-carrier is called DC ( direct current, DC) subcarriers.
  • the downlink OFDM leaves DC sub-carriers blank, and the uplink SC-FDMA adopts a scheme with a frequency offset of 7.5KHz.
  • the width of the bandwidth used and the location in the frequency domain are not fixed (mainly because the Bandwidth Part (BWP) and Carrier Aggregation (CA) are used.
  • BWP Bandwidth Part
  • CA Carrier Aggregation
  • the position of the DC sub-carrier in the frequency band is also not fixed. Therefore, when the DC sub-carrier is left blank, the method used is more complicated and the signaling overhead is also higher.
  • the embodiments of the present application provide a resource acquisition and configuration method and a communication device, which can solve the problems of high complexity and high signaling overhead in the related art when DC subcarriers are left blank.
  • a resource determination method including:
  • the receiving end device determines a first resource grid, where the first resource grid is a delayed Doppler domain resource grid related to the DC subcarrier;
  • the first resource grid includes a DC dedicated blank grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • a resource allocation method including:
  • the transmitting end device determines a first resource grid, where the first resource grid is a delayed Doppler domain resource grid related to the DC subcarrier;
  • the first resource grid includes a DC dedicated blank grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • a resource determination device including:
  • a first determination module configured to determine a first resource grid, where the first resource grid is a delayed Doppler domain resource grid related to the DC subcarrier;
  • the first resource grid includes a DC dedicated blank grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • a resource configuration device including:
  • a second determining module configured to determine a first resource grid, where the first resource grid is a delayed Doppler domain resource grid related to the DC subcarrier;
  • the first resource grid includes a DC dedicated blank grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being implemented when executed by the processor.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • the steps of the method of the second aspect are provided, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • a chip in a seventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect , or implement the method described in the second aspect.
  • a computer program product is provided, the computer program product is stored in a non-transitory storage medium, the computer program product is executed by at least one processor to implement the method according to the first aspect, Or implement the method as described in the second aspect.
  • a first resource grid is determined, where the first resource grid is a delay-Doppler domain resource grid related to DC subcarriers, and the first resource grid includes a DC dedicated blank grid , or, the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid. Since the response position of DC subcarrier noise in the delay Doppler domain is fixed, the above-mentioned first resource grid can be used to perform resource blanking in the delay Doppler domain or estimate the DC subcarrier noise in the delay Doppler domain. It can reduce the signaling overhead and processing complexity on the premise of ensuring service reliability.
  • FIG. 1 shows a structural diagram of a communication system to which an embodiment of the present application can be applied
  • FIG. 2 shows a schematic flowchart of a resource determination method according to an embodiment of the present application
  • FIG. 3 shows one of the schematic diagrams of the resource grid in the embodiment of the present application
  • FIG. 4 shows the second schematic diagram of the resource grid in the embodiment of the present application
  • FIG. 5 shows the third schematic diagram of the resource grid in the embodiment of the present application.
  • FIG. 6 shows the fourth schematic diagram of the resource grid in the embodiment of the present application.
  • FIG. 7 shows the fifth schematic diagram of the resource grid in the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a resource configuration method according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a resource determination apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a resource configuration apparatus according to an embodiment of the present application.
  • FIG. 11 shows a structural block diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 shows a structural block diagram of a terminal according to an embodiment of the present application.
  • FIG. 13 shows a structural block diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, these techniques are also applicable to applications other than NR system applications, such as 6th generation (6 th Generation, 6G) communication system.
  • 6th generation 6 th Generation, 6G
  • FIG. 1 shows a structural diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device ( VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network device, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic Service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiments of this application, only Take the base station in the NR system as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides a resource determination method, including:
  • Step 201 The receiving end device determines a first resource grid, where the first resource grid is a delayed Doppler domain resource grid related to a DC subcarrier;
  • the first resource grid includes a DC dedicated blank grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • the above-mentioned receiving end device may be a network side device, such as a base station, or may be a terminal device.
  • the above-mentioned DC dedicated blank grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • the pilot grid, the guard interval of the pilot grid, and the data grid may also be determined.
  • the pilot can be any pilot, such as pulse pilot or sequence pilot.
  • it can occupy the data grid and pilot frequency grid, but cannot occupy the guard interval of 0-Doppler blank grid and 0-Doppler blank grid or The blank grid dedicated to DC cannot be occupied.
  • a first resource grid is determined, where the first resource grid is a delayed Doppler domain resource grid related to a DC subcarrier, and the first resource grid includes a DC dedicated blank The grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid. Since the response position of DC subcarrier noise in the delay Doppler domain is fixed, the above-mentioned first resource grid can be used to perform resource blanking in the delay Doppler domain or estimate the DC subcarrier noise in the delay Doppler domain. It can reduce the signaling overhead and processing complexity on the premise of ensuring service reliability.
  • the DC dedicated blank grid or the 0-Doppler blank grid includes all grids with a Doppler of 0.
  • the DC dedicated blank grid or the 0-Doppler blank grid includes a partial grid with a Doppler of 0.
  • the number of the partial grids with the Doppler being 0 is related to the jitter of the signal on the grids with the Doppler being 0 received by the receiving end device.
  • the jitter includes at least the amplitude jitter of the signal.
  • the DC-specific blank grid or the 0-Doppler blank grid includes a partial grid with a Doppler of 0, the number of blank grids is different from the delay grid with a Doppler of 0
  • the jitter of the upper signal is related. When the jitter is large, more blank grids are required, and when the jitter is small, less blank grids are required.
  • the number of blank cells needs to be adaptively changed with channel conditions (eg, signal-to-noise ratio) that affect the jitter.
  • the estimated value can be used not only for the current OTFS grid, but also for the subsequent Q-1 OTFS grids, and the grids with Doppler of 0 in the subsequent Q-1 OTFS grids do not need to be left blank.
  • the DC dedicated blank grid or the 0-Doppler blank grid and the guard interval of the pilot frequency grid share the same grid.
  • the guard interval of the pilot grid and the guard interval of the blank grid may be shared.
  • K P Dopplers in the positive and negative directions around the pilot frequency are required.
  • the placement position of the pilot frequency is the same as the 0-Doppler blank grid. The distance between the boundaries of the guard interval of the grid or the boundaries of the DC dedicated blank grid does not exceed K P Dopplers in the Doppler domain.
  • the receiving end device determines the first resource grid, including:
  • the receiving end device determines the first resource grid by receiving the signaling sent by the network side device;
  • the receiving end device autonomously determines the first resource grid according to the first rule determined by the network side device.
  • the first rule may be a 0-Doppler blank grid determined according to the transmission environment (such as signal-to-noise ratio, multipath environment, etc.) and the state of the transmitting end device and the receiving end device (such as moving speed, moving direction, etc.).
  • the Doppler number occupied by the guard interval or the Doppler number occupied by the DC dedicated blank grid, the difference between the boundary of the guard interval of the 0-Doppler blank grid and the 0-Doppler blank grid Doppler distance or the Doppler distance between the boundary of the DC dedicated blank grid and the 0-Doppler blank grid, etc.
  • the above signaling may be Radio Resource Control (Radio Resource Control, RRC) signaling, Physical Downlink Control Channel (Physical Downlink Control Channel, PDCCH) signaling, Medium Access Control (Medium Access Control, MAC) Control unit (Control Element, CE), system information block (System Information Block, SIB), etc. That is, the network side can notify the terminal of the index of the pattern of the above-mentioned blank or protection grid by signaling, wherein each pattern corresponds to one index, and the pattern of each index is defined by the protocol.
  • RRC Radio Resource Control
  • PDCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • Medium Access Control Medium Access Control
  • MAC Medium Access Control
  • SIB System Information Block
  • the receiving end device determines the first resource grid, including:
  • the receiving end device determines the first resource grid according to the criteria agreed in the protocol.
  • the transmitting end device determines the first resource grid according to the criteria agreed in the protocol, including:
  • the receiving end device determines the first resource grid according to the criteria agreed in the protocol and the target parameter;
  • the criterion agreed in the protocol includes an association relationship between the first resource grid and the target parameter
  • the target parameter includes at least one of the following:
  • the symplectic Fourier transform dimension The symplectic Fourier transform dimension.
  • the above-mentioned blank or protected grid can be specified through a protocol, and the pattern of the above-mentioned blank or protected grid is associated with the parameters of the OTFS, and each parameter corresponds to a pattern of the blank or protected grid, that is, As long as the terminal knows the parameters of the OTFS, it will determine the pattern of the above-mentioned blank or protection grid according to the protocol.
  • the resource determination method in the embodiment of the present application further includes:
  • the receiving end device performs data detection or pilot-based channel estimation on a grid whose Doppler is non-zero.
  • the receiving end needs to perform data detection on a grid with a non-zero Doppler. Or perform pilot-based channel estimation, and the information on the guard interval normally participates in data detection or perform pilot-based channel estimation.
  • the resource determination method in the embodiment of the present application further includes:
  • the receiving end device estimates the response of the DC noise of the DC sub-carrier in the delay Doppler domain according to at least a part of the first resource grid, and obtains the estimated response value.
  • the resource determination method of the present application also includes:
  • the receiving end device After removing the estimated response value from the signal on at least one grid other than the first resource grid, the receiving end device performs data detection or performs pilot-based channel estimation.
  • the receiving end uses the blank grid to estimate the DC sub-carrier DC noise The response in the delayed Doppler domain. After estimating the response, subtract the response from the data or pilot grid with Doppler 0, and then perform data detection or pilot-based channel estimation.
  • the information on the guard interval normally participates in data detection or based on Channel estimation for pilots.
  • the resource determination method is applicable to single-user and multi-user transmission.
  • Example 1 All grids with a Doppler of 0 are left blank.
  • a guard interval should be set in the Doppler domain to prevent data and/or pilots from falling on the grid with 0 Doppler after experiencing a delayed Doppler domain channel. Setting the guard interval in the Doppler domain needs to occupy K 0 Dopplers, where K 0 >K MaxDopp . Therefore, the additional resource overhead is at least (K 0 +1) ⁇ M grids.
  • DC-specific blank grids In the four types of grid schemes (DC dedicated blank grid, pilot frequency grid, guard interval of pilot frequency grid, and data grid), the 0-Doppler blank grid and The guard intervals of blank grids are collectively referred to as DC-specific blank grids.
  • the index of the pattern of the above-mentioned blank or protection grid can be notified to the terminal by the network side through signaling (RRC, PDCCH, MAC CE, SIB, etc.); wherein, each pattern corresponds to an index, and the pattern of each index is defined by the protocol .
  • the above-mentioned blank or protected grid can also be specified through the protocol, and the pattern of the above-mentioned blank or protected grid is associated with the parameters of OTFS.
  • Each parameter corresponds to a pattern of blank or protected grid, that is, the terminal only needs to know the OTFS. parameters, the pattern of the above blank or protected grid will be determined according to the agreement.
  • the pilot frequency and its guard interval the data must be placed outside the above-mentioned 0-Doppler blank grid and blank grid area, and around the pilot frequency (Doppler domain and delay domain) Leave enough guard interval to avoid mutual interference between data and pilot.
  • the receiving end device perform data detection or pilot-based channel estimation on grids with a non-zero Doppler, all grids with a Doppler of 0 are processed as 0, and the information on the guard interval normally participates in data detection or pilot-based channel estimation.
  • the guard interval of the pilot frequency can be shared with the guard interval of the blank grid (the five-type grid scheme) or a part of the DC-only blank grid (the four-type grid scheme). As shown in FIG. 4 , it is the case where the pilot guard interval and the blank grid guard interval are shared among the five types of grid schemes. The distance between the placement position of this pilot and the boundary of the guard interval of the blank grid (five types of grid schemes) or the boundary of the DC dedicated blank grid (four types of grid schemes) does not exceed the Doppler domain K P Doppler. Beyond this distance, there is no guard interval to share.
  • the resource areas of multiple users are normally divided on the grid for transmission, and the blank grid and the guard interval of the blank grid with the Doppler value of 0 shall not be occupied.
  • Embodiment 2 The scheme of leaving some grids with a Doppler of 0 blank.
  • ⁇ grids left blank are used to estimate the response of DC sub-carrier DC noise in the delay Doppler domain. After estimating the response, subtract this response from the data or pilot grid with Doppler of 0, and then perform data detection or pilot-based channel estimation.
  • the ⁇ grids left empty are processed as 0, The information on the guard interval is normally involved in data detection or pilot-based channel estimation.
  • DC-specific blank grids In the four types of grid schemes (DC dedicated blank grid, pilot frequency grid, guard interval of pilot frequency grid, and data grid), the 0-Doppler blank grid and The guard intervals of blank grids are collectively referred to as DC-specific blank grids.
  • the index of the pattern of the above-mentioned blank or protection grid can be notified to the terminal by the network side through signaling (RRC, PDCCH, MAC CE, SIB, etc.); wherein, each pattern corresponds to an index, and the pattern of each index is defined by the protocol .
  • the above-mentioned blank or protected grid can also be specified through the protocol, and the pattern of the above-mentioned blank or protected grid is associated with the parameters of OTFS.
  • Each parameter corresponds to a pattern of blank or protected grid, that is, the terminal only needs to know the OTFS. parameters, the pattern of the above blank or protected grid will be determined according to the agreement.
  • the number of blank grids is related to the jitter on different delay grids with a Doppler of 0.
  • the jitter is mainly related to the noise level (signal-to-noise ratio). The higher the noise (lower the signal-to-noise ratio) the higher the jitter. This is because the response of the DC sub-carrier DC noise in the delay Doppler domain can be estimated at each Doppler zero grid point. However, at the lattice point where the Doppler of the receiving end is 0, in addition to the response of the DC sub-carrier DC noise in the delayed Doppler domain, it also includes the influence of noise in the transmission channel.
  • the number of grid points ⁇ where the Doppler is 0 should change adaptively with the SNR.
  • the Doppler domain guard interval K 0 needs to be greater than K MaxDopp Dopplers , and no guard interval is required in the delay domain (because the data will only generate positive to delay). At this time, the total cost is (K 0 +1) ⁇ lattice points.
  • the Doppler domain guard interval K 0 must be greater than K MaxDopp Dopplers , and the delay domain guard interval L 0 must be greater than L MaxDelay delays (because the data only has a forward delay). At this time, the total cost is (K 0 +1) ⁇ (L 0 + ⁇ ) lattice points.
  • the guard interval of the pilot frequency can be shared with the guard interval of the blank grid (the five-type grid scheme) or a part of the DC-only blank grid (the four-type grid scheme).
  • the guard interval of the blank grid the five-type grid scheme
  • the four-type grid scheme the situation in which pilot guard intervals and blank grid guard intervals are shared in five types of grid schemes is described.
  • the distance between the placement position of this pilot and the boundary of the guard interval of the blank grid (five types of grid schemes) or the boundary of the DC dedicated blank grid (four types of grid schemes) does not exceed the Doppler domain K P Doppler. Beyond this distance, there is no guard interval to share.
  • each Doppler grid point of 0 contains the DC sub-carrier DC information of N OFDM symbols in the time frequency domain, which has been averaged in the delay Doppler domain, so the change in the delay Doppler domain is more slow.
  • the above blank and guard interval are still used when there are multiple users.
  • what the base station estimates is the response of all terminals' DC subcarriers in the delayed Doppler domain. No matter which terminal is assigned to other data grids whose Doppler is 0, the above-mentioned "responses of DC subcarriers of all terminals in the delayed Doppler domain" are first subtracted from the received data or pilot frequency. The estimated value is then used for detection or channel estimation.
  • the terminal estimates the response of its own DC subcarriers in the delayed Doppler domain. In summary, there is no need to add extra overhead when there are multiple users.
  • a first resource grid is determined, where the first resource grid is a delayed Doppler domain resource grid related to a DC subcarrier, and the first resource grid includes a DC dedicated blank The grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid. Since the response position of DC subcarrier noise in the delay Doppler domain is fixed, the above-mentioned first resource grid can be used to perform resource blanking in the delay Doppler domain or estimate the DC subcarrier noise in the delay Doppler domain. It can reduce the signaling overhead and processing complexity on the premise of ensuring service reliability.
  • an embodiment of the present application further provides a resource configuration method, including:
  • Step 801 The transmitting end device determines a first resource grid, where the first resource grid is a delayed Doppler domain resource grid related to a DC subcarrier;
  • the first resource grid includes a DC dedicated blank grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • the above-mentioned sending end device may be a network side device, such as a base station, or may be a terminal device.
  • the above-mentioned DC dedicated blank grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • the pilot grid, the guard interval of the pilot grid, and the data grid may also be determined.
  • the pilot can be any pilot, such as pulse pilot or sequence pilot.
  • it can occupy the data grid and pilot frequency grid, but cannot occupy the guard interval of 0-Doppler blank grid and 0-Doppler blank grid or The blank grid dedicated to DC cannot be occupied.
  • a first resource grid is determined, where the first resource grid is a delayed Doppler domain resource grid related to a DC subcarrier, and the first resource grid includes a DC dedicated blank The grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid. Since the response position of DC subcarrier noise in the delay Doppler domain is fixed, the above-mentioned first resource grid can be used to perform resource blanking in the delay Doppler domain or estimate the DC subcarrier noise in the delay Doppler domain. It can reduce the signaling overhead and processing complexity on the premise of ensuring service reliability.
  • the DC dedicated blank grid or the 0-Doppler blank grid includes all grids with a Doppler of 0.
  • the DC dedicated blank grid or the 0-Doppler blank grid includes a partial grid with a Doppler of 0.
  • the number of the partial grids with the Doppler being 0 is related to the jitter of the signal on the grids with the Doppler being 0 received by the receiving end device.
  • the DC dedicated blank grid or the 0-Doppler blank grid and the guard interval of the pilot frequency grid share the same grid.
  • the resource configuration method of the present application further includes:
  • the sending end device In the case where the sending end device is a network side device, the sending end device autonomously determines the first resource grid according to the first rule determined by the network side device.
  • the transmitting end device determines the first resource grid by receiving signaling sent by the network side device.
  • the transmitting end device determines the first resource grid, including:
  • the sending end device determines the first resource grid according to the criteria agreed in the protocol.
  • the transmitting end device determines the first resource grid according to the criteria agreed in the protocol, including:
  • the sending end device determines the first resource grid according to the criteria agreed in the protocol and the target parameter;
  • the criterion agreed in the protocol includes an association relationship between the first resource grid and the target parameter
  • the target parameter includes at least one of the following:
  • the symplectic Fourier transform dimension The symplectic Fourier transform dimension.
  • the resource configuration method in the embodiment of the present application further includes:
  • the transmitting end device configures guard intervals for data or pilots on grids other than the first resource grid.
  • the resource configuration method in the embodiment of the present application is a method corresponding to the above-mentioned resource determination method, which is not described in detail here.
  • a first resource grid is determined, where the first resource grid is a delay-Doppler domain resource grid related to a DC subcarrier, and the first resource grid includes a DC dedicated blank The grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid. Since the response position of DC subcarrier noise in the delay Doppler domain is fixed, the above-mentioned first resource grid can be used to perform resource blanking in the delay Doppler domain or estimate the DC subcarrier noise in the delay Doppler domain. It can reduce the signaling overhead and processing complexity on the premise of ensuring service reliability.
  • the execution subject may be a resource determination apparatus, or a control module in the resource determination apparatus for executing the resource determination method.
  • the resource determining device provided by the embodiment of the present application is described by taking the resource determining device executing the resource determining method as an example.
  • an embodiment of the present application provides a resource determination apparatus 900, including:
  • a first determination module 900 configured to determine a first resource grid, where the first resource grid is a delayed Doppler domain resource grid related to the DC subcarrier;
  • the first resource grid includes a DC dedicated blank grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • the resource determination apparatus in the embodiment of the present application further includes: a third determination module, configured to determine a pilot grid, a guard interval of the pilot grid, and a data grid.
  • a third determination module configured to determine a pilot grid, a guard interval of the pilot grid, and a data grid.
  • the DC-specific blank grid or the 0-Doppler blank grid includes all grids with a Doppler of 0.
  • the DC-specific blank grid or the 0-Doppler blank grid includes a partial grid with a Doppler of 0.
  • the number of the partial grids with the Doppler being 0 is related to the jitter of the signal on the grids with the Doppler being 0 received by the receiving end device.
  • the DC dedicated blank grid or the 0-Doppler blank grid and the guard interval of the pilot grid share the same grid.
  • the first determination module is configured to determine the first resource grid by receiving signaling sent by a network side device when the receiving end device is a terminal device;
  • the first resource grid is autonomously determined according to a first rule determined by the network side device.
  • the first determination module is configured to determine the first resource grid according to a criterion agreed in a protocol.
  • the first determination module is configured to determine the first resource grid according to a criterion agreed in a protocol and a target parameter;
  • the criterion agreed in the protocol includes an association relationship between the first resource grid and the target parameter
  • the target parameter includes at least one of the following:
  • the symplectic Fourier transform dimension The symplectic Fourier transform dimension.
  • the first processing module is configured to perform data detection or pilot-based channel estimation on a grid whose Doppler is non-zero.
  • the second processing module is configured to estimate the response of the DC noise of the DC sub-carrier in the delayed Doppler domain according to at least a part of the grids in the first resource grid to obtain an estimated response value.
  • a third processing module configured to perform data detection or pilot-based channel estimation after removing the response estimated value from the signal on at least one grid other than the first resource grid.
  • the resource determination apparatus determines a first resource grid, where the first resource grid is a delayed-Doppler domain resource grid related to a DC subcarrier, and the first resource grid includes a DC-specific blank The grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid. Since the response position of DC subcarrier noise in the delay Doppler domain is fixed, the above-mentioned first resource grid can be used to perform resource blanking in the delay Doppler domain or estimate the DC subcarrier noise in the delay Doppler domain. It can reduce the signaling overhead and processing complexity on the premise of ensuring service reliability.
  • the resource determination apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiments in FIG. 2 to FIG. 7 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a resource configuration apparatus 1000, including:
  • the second determination module 1001 is configured to determine a first resource grid, where the first resource grid is a delayed Doppler domain resource grid related to the DC subcarrier;
  • the first resource grid includes a DC dedicated blank grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • the resource configuration apparatus in this embodiment of the present application further includes: a fourth determination module, configured to determine a pilot grid, a guard interval of the pilot grid, and a data grid.
  • a fourth determination module configured to determine a pilot grid, a guard interval of the pilot grid, and a data grid.
  • the DC dedicated blank grid or the 0-Doppler blank grid includes all grids with a Doppler of 0.
  • the DC dedicated blank grid or the 0-Doppler blank grid includes a partial grid with a Doppler of 0.
  • the number of the partial grids with the Doppler value of 0 is related to the jitter of the signal on the grid with the Doppler value of 0 received by the receiving end device.
  • the DC dedicated blank grid or the 0-Doppler blank grid and the guard interval of the pilot grid share the same grid.
  • the second determination module is configured to autonomously determine the first resource grid according to a first rule determined by the network side device when the transmitting end device is a network side device;
  • the first resource grid is determined by receiving signaling sent by the network side device.
  • the second determination module is configured to determine the first resource grid according to the criterion agreed in the protocol by the transmitting end device.
  • the second determination module is configured to determine the first resource grid according to the criterion agreed in the protocol and the target parameter by the transmitting end device;
  • the criterion agreed in the protocol includes an association relationship between the first resource grid and the target parameter
  • the target parameter includes at least one of the following:
  • the symplectic Fourier transform dimension The symplectic Fourier transform dimension.
  • the second processing module is configured to configure guard intervals for data or pilots on grids other than the first resource grid.
  • the resource configuration apparatus determines a first resource grid, where the first resource grid is a delay-Doppler domain resource grid related to a DC subcarrier, and the first resource grid includes a DC dedicated blank The grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid. Since the response position of DC subcarrier noise in the delay Doppler domain is fixed, the above-mentioned first resource grid can be used to perform resource blanking in the delay Doppler domain or estimate the DC subcarrier noise in the delay Doppler domain. It can reduce the signaling overhead and processing complexity on the premise of ensuring service reliability.
  • the resource determination apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiment of FIG. 9 and achieve the same technical effect, and to avoid repetition, details are not described here.
  • the above-mentioned resource determination apparatus and resource configuration apparatus may be a terminal, or may be a network-side device, and in the case of a terminal, may be a component, an integrated circuit, or a chip in the terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the resource determination device and the resource configuration device in the embodiments of the present application may be devices having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • an embodiment of the present application further provides a communication device 1100, including a processor 1101, a memory 1102, a program or instruction stored in the memory 1102 and executable on the processor 1101,
  • the communication device 1100 is a terminal or a network-side device, and when the program or instruction is executed by the processor 1101, each process of the foregoing resource determination method embodiment or each process of the foregoing resource configuration method embodiment is realized, and the same technical effect can be achieved , in order to avoid repetition, it will not be repeated here.
  • the resource determination device and the resource configuration device in the embodiment of the present application may be a terminal or a network side device.
  • the schematic diagram of the hardware structure is shown in FIG. 12 , including but not Limited to: radio frequency unit 1201, network module 1202, audio output unit 1203, input unit 1204, sensor 1205, display unit 1206, user input unit 1207, interface unit 1208, memory 1209, and processor 1210 and other components.
  • the terminal 1200 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1210 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1204 may include a graphics processor (Graphics Processing Unit, GPU) 12041 and a microphone 12042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1206 may include a display panel 12061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1207 includes a touch panel 12071 and other input devices 12072 .
  • the touch panel 12071 is also called a touch screen.
  • the touch panel 12071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 12072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 1201 receives the downlink data from the network side device, and then processes it to the processor 1210; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1201 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1209 may be used to store software programs or instructions as well as various data.
  • the memory 1209 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1209 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1210.
  • a processor 1210 configured to determine a first resource grid, where the first resource grid is a delayed Doppler domain resource grid related to the DC subcarrier;
  • the first resource grid includes a DC dedicated blank grid, or the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid.
  • the DC dedicated blank grid or the 0-Doppler blank grid includes all grids with a Doppler of 0.
  • the DC dedicated blank grid or the 0-Doppler blank grid includes a partial grid with a Doppler of 0.
  • the number of the partial grids with the Doppler being 0 is related to the jitter of the signal on the grids with the Doppler being 0 received by the receiving end device.
  • the DC dedicated blank grid or the 0-Doppler blank grid and the guard interval of the pilot frequency grid share the same grid.
  • processor 1210 is further configured to:
  • the first resource grid is determined by receiving signaling sent by the network side device;
  • the first resource grid is autonomously determined according to a first rule determined by the network-side device.
  • processor 1210 is further configured to:
  • the first resource grid is determined according to the criteria agreed in the protocol.
  • processor 1210 is further configured to:
  • the criterion agreed in the protocol includes an association relationship between the first resource grid and the target parameter
  • the target parameter includes at least one of the following:
  • the symplectic Fourier transform dimension The symplectic Fourier transform dimension.
  • processor 1210 is further configured to:
  • Data detection or pilot-based channel estimation is performed on a grid with non-zero Doppler.
  • processor 1210 is further configured to:
  • the response of the DC noise of the DC sub-carrier in the delay Doppler domain is estimated according to at least a part of the grids of the first resource, and the estimated response value is obtained.
  • processor 1210 is further configured to:
  • response estimation value is removed from the signal on at least one grid other than the first resource grid.
  • data detection or pilot-based channel estimation is performed.
  • the processor 1210 is further configured to: configure guard intervals for data or pilots on grids other than the first resource grid.
  • the above-mentioned terminal determines a first resource grid
  • the first resource grid is a delayed Doppler domain resource grid related to DC subcarriers
  • the first resource grid includes a DC dedicated blank grid or
  • the first resource grid includes a 0-Doppler blank grid and a guard interval of the 0-Doppler blank grid. Since the response position of DC subcarrier noise in the delay Doppler domain is fixed, the above-mentioned first resource grid can be used to perform resource blanking in the delay Doppler domain or estimate the DC subcarrier noise in the delay Doppler domain. It can reduce the signaling overhead and processing complexity on the premise of ensuring service reliability.
  • the network side equipment may include: an antenna 1301 , a radio frequency apparatus 1302 , and a baseband apparatus 1303 .
  • the antenna 1301 is connected to the radio frequency device 1302 .
  • the radio frequency device 1302 receives information through the antenna 1301, and sends the received information to the baseband device 1303 for processing.
  • the baseband device 1303 processes the information to be sent and sends it to the radio frequency device 1302
  • the radio frequency device 1302 processes the received information and sends it out through the antenna 1301 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1303 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1303 .
  • the baseband apparatus 1303 includes a processor 1304 and a memory 1305 .
  • the baseband device 1303 may include, for example, at least one baseband board on which a plurality of chips are arranged, as shown in FIG. 13 , one of the chips is, for example, the processor 1304 , which is connected to the memory 1305 to call a program in the memory 1305 to execute Operations in the above resource determination method embodiments or resource configuration method embodiments.
  • the baseband device 1303 may further include a network interface 1306 for exchanging information with the radio frequency device 1302, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: an instruction or program stored in the memory 1305 and executable on the processor 1304, and the processor 1304 invokes the instruction or program in the memory 1305 to execute the instruction or program shown in FIG. 9 or FIG. 10 . In order to avoid repetition, it is not repeated here.
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the foregoing resource configuration method or resource determination method embodiment is implemented, And can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above resource determination method or resource configuration
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above resource determination method or resource configuration
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源确定、配置方法及通信设备,属于通信技术领域。其资源确定方法包括:接收端设备确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。

Description

资源确定、配置方法及通信设备
相关申请的交叉引用
本申请主张在2021年02月09日在中国提交的中国专利申请No.202110180929.7的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,特别涉及一种资源确定、配置方法及通信设备。
背景技术
在复杂的电磁波传输环境中,由于存在大量的散射、反射和折射面,造成了无线信号经不同路径到达接收天线的时刻不同,即传输的多径效应。当发送信号的前后符号经过不同路径同时抵达时,或者说,当后一个符号在前一个符号的时延扩展内到达时,即产生了符号间干扰(inter symbol interference,ISI)。类似的,在频域上,由于收发端相对速度引起的多普勒效应,信号所在的各个子载波会产生频率上不同程度的偏移,造成原本可能正交的子载波产生重叠,即产生了载波间干扰(inter carrier interference,ICI)。现有协议中使用的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)多载波系统,通过添加循环前缀(cyclic prefix,CP)的设计,抗ISI的性能较好。但是OFDM的弱点是子载波间隔的大小有限,因此在应对高速移动场景下(如高铁),由于收发端之间较大的相对速度带来的较大多普勒频移,破坏了OFDM子载波之间的正交性,使子载波间产生严重的ICI。正交时频空域(Orthogonal Time Frequency Space,OTFS)技术的提出则致力于解决以上OFDM系统中的问题。OTFS技术定义了延迟多普勒域和时频域之间的变换。通过同时在收发端把业务数据和导频映射到延迟多普勒域处理,避免在高速场景下的ICI和ISI。
此外,在OFDM系统中直流载波噪声也是一个重要问题。LTE和NR通 信系统中的信号发射机和接收机一般采用零中频方案或一次变频方案实现基带和射频之间的变换。零中频和一次变频方案存在本振泄漏问题,会在发射和接收时在信号载频处产生一个较大的直流子载波噪声,导致该频率上信噪比非常差,该子载波称为直流(direct current,DC)子载波。
长期演进(Long Term Evolution,LTE)中,下行OFDM留空DC子载波,上行SC-FDMA采用频偏7.5KHz的方案。目前,5G新空口(New Radio,NR)中由于其使用的带宽的宽度和频域位置不固定(主要是因为使用了部分带宽(Bandwidth Part,BWP)和载波聚合(Carrier Aggregation,CA),其直流子载波在频段内的位置也不固定,因此,在留空DC子载波时,使用的方法复杂度较高,信令开销也较大。
发明内容
本申请实施例提供了一种资源获取、配置方法及通信设备,能够解决相关技术中在留空DC子载波时,使用的方法复杂度较高,信令开销也较大的问题。
第一方面,提供了一种资源确定方法,包括:
接收端设备确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
第二方面,提供了一种资源配置方法,包括:
发送端设备确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
第三方面,提供了一种资源确定装置,包括:
第一确定模块,用于确定第一资源栅格,所述第一资源栅格为与直流子 载波相关的延迟多普勒域资源栅格;
所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
第四方面,提供了一种资源配置装置,包括:
第二确定模块,用于确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
第五方面,提供了一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的资源确定方法的步骤,或者,实现如第二方面所述的资源配置方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第二方面所述的方法。
在本申请实施例中,确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格,该第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。由于直流子载波噪声在延迟多普勒域的响应位置是固定的,因此,可通过上述第一资源栅格在延迟多普勒域进行资源留空或估计直流子载波噪声在延迟多普勒域的响应来抑制直流子载波噪声对数据造成的影响,可以在 保证业务可靠性的前提下,减少信令开销和处理复杂度。
附图说明
图1表示本申请实施例可应用的一种通信系统的结构图;
图2表示本申请实施例的资源确定方法的流程示意图;
图3表示本申请实施例中资源栅格的示意图之一;
图4表示本申请实施例中资源栅格的示意图之二;
图5表示本申请实施例中资源栅格的示意图之三;
图6表示本申请实施例中资源栅格的示意图之四;
图7表示本申请实施例中资源栅格的示意图之五;
图8表示本申请实施例的资源配置方法的流程示意图;
图9表示本申请实施例的资源确定装置的模块示意图;
图10表示本申请实施例的资源配置装置的模块示意图;
图11表示本申请实施例的通信设备的结构框图;
图12表示本申请实施例的终端的结构框图;
图13表示本申请实施例的网络侧设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说 明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网设备,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、 WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的资源确定方法进行详细地说明。
如图2所示,本申请实施例提供了一种资源确定方法,包括:
步骤201:接收端设备确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
本申请实施例中,上述接收端设备可以为网络侧设备,如基站,也可以为终端设备。上述直流专用留空栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
在本申请实施例中,还可确定导频栅格、导频栅格的保护间隔和数据栅格。导频可以是任意导频,如脉冲导频、序列导频。除上述数据和导频外,若有其他类型的信息传输,可以占用数据栅格和导频栅格,不能占用0多普勒留空栅格和0多普勒留空栅格的保护间隔或者不能占用直流专用留空栅格。
本申请实施例的资源确定方法,确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格,该第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。由于直流子载波噪声在延迟多普勒域的响应位置是固定的,因此,可通过上述第一资源栅格在延迟多普勒域进行资源留空或估计直流子载波噪声在延迟多普勒域的响应来抑制直流子载波噪声对数据造成的影响,可以在保证业务可靠性的前提下,减少信令开销和处理复杂度。
可选地,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的所有栅格。
这里,为了避免数据和导频落到上述0多普勒留空栅格,需要一定的多普勒域保护间隔。
可选地,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的部分栅格。
这里,为了避免数据和导频落到上述留空栅格,需要一定的多普勒域和/或延迟域保护间隔。
进一步可选地,所述多普勒为0的部分栅格的数量与所述接收端设备接收到的多普勒为0的栅格上信号的抖动相关。
其中,所述抖动至少包括信号的幅度抖动。在所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的部分栅格的情况下,留空栅格数与多普勒为0的不同延迟栅格上信号的抖动有关,抖动大时需要的留空栅格多,抖动小时需要的留空栅格少。留空栅格数需要随着影响该抖动的信道条件(如信噪比)自适应变化。该模式下,只需每隔Q个正交时频空域(Orthogonal Time Frequency Space,OTFS)网格留空一部分多普勒为0的栅格,并估计DC子载波噪声响应。该估计值不仅可以用于当前的OTFS网格,还可用于后续Q-1个OTFS网格,后续的这Q-1个OTFS网格中多普勒为0的栅格无需留空。
可选地,所述直流专用留空栅格或所述0多普勒留空栅格与导频栅格的保护间隔共用相同的栅格。
这里,为了降低保护间隔的开销,导频栅格的保护间隔与留空栅格的保护间隔可以共用。
假设导频栅格的保护间隔在多普勒域需要留空导频周围的正负向各K P个多普勒,则为了共用保护间隔,导频的放置位置与0多普勒留空栅格的保护间隔的边界或直流专用留空栅格的边界之间的距离在多普勒域上不超过K P个多普勒。
可选地,接收端设备确定第一资源栅格,包括:
在接收端设备是终端设备的情况下,接收端设备通过接收网络侧设备发送的信令,确定所述第一资源栅格;
或者,在接收端设备是网络侧设备的情况下,接收端设备根据网络侧设备确定的第一规则自主确定所述第一资源栅格。所述第一规则可以是根据传输环境(如信噪比,多径环境等)以及发送端设备、接收端设备的状态(如移动速度、移动方向等)确定的0多普勒留空栅格的保护间隔所占的多普勒数或者直流专用留空栅格所占的多普勒数,0多普勒留空栅格的保护间隔的边界与0多普勒留空栅格之间的多普勒距离或者直流专用留空栅格的边界与0多普勒留空栅格之间的多普勒距离等。
本申请实施例中,上述信令可以是无线资源控制(Radio Resource Control,RRC)信令、物理下行控制信道(Physical Downlink Control Channel,PDCCH)信令、媒体接入控制(Medium Access Control,MAC)控制单元(Control Element,CE)、系统信息块(System Information Block,SIB)等。即可由网络侧通过信令通知终端上述留空或保护栅格的图样的索引,其中,每种图样对应一种索引,每种索引的图样是协议定义的。
可选地,所述接收端设备确定第一资源栅格,包括:
接收端设备根据协议约定的准则,确定所述第一资源栅格。
进一步可选地,发送端设备根据协议约定的准则,确定所述第一资源栅格,包括:
接收端设备根据协议约定的准则以及目标参数,确定所述第一资源栅格;
其中,所述协议约定的准则包括所述第一资源栅格与所述目标参数之间的关联关系;
所述目标参数包括以下至少一项:
正交时频空域OTFS的参数;
多普勒域资源栅格的数量;
延迟域资源栅格的数量;
延迟多普勒域资源栅格的数量;
辛傅里叶变换维度。
本申请实施例中,可通过协议规定上述留空或保护栅格,且上述留空或 保护栅格的图样与OTFS的参数关联,每种参数对应一种留空或保护栅格的图样,即终端只要知道了OTFS的参数,就会根据协议确定上述留空或保护栅格的图样。
可选地,本申请实施例的资源确定方法,还包括:
接收端设备在多普勒为非0的栅格上进行数据检测或者进行基于导频的信道估计。
这里所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的所有栅格的方案中,接收端需在多普勒非0的栅格上进行数据检测或进行基于导频的信道估计,保护间隔上的信息正常参与数据的检测或进行基于导频的信道估计。
可选地,本申请实施例的资源确定方法,还包括:
接收端设备根据所述第一资源栅格中的至少部分栅格,估计直流子载波的直流噪声在延迟多普勒域的响应,得到响应估计值。
进一步可选地,本申请的资源确定方法,还包括:
接收端设备在所述第一资源栅格以外的至少一个栅格上的信号中除去所述响应估计值后,再进行数据检测或进行基于导频的信道估计。
这里,在所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的部分栅格的方案中,接收端利用留空的栅格估计DC子载波直流噪声在延迟多普勒域的响应。估计出该响应后,从多普勒为0的数据或导频栅格上减掉这个响应,再进行数据检测或基于导频的信道估计,保护间隔上的信息正常参与数据的检测或进行基于导频的信道估计。
需要说明的是,本申请实施例中,资源确定方法适用于单用户和多用户传输。
下面结合具体的实施例对本申请的资源确定方法进行说明。
实施例一:多普勒为0的所有栅格留空方案。
考虑一个由M×N维度的OTFS延迟多普勒网格,其中,M表示延迟域的格点数,N表示多普勒域的格点数。最大多普勒为K MaxDopp,最大延迟为 L MaxDelay。导频保护间隔需要留空导频周围的正负向各K p个多普勒和正负向各L p个延迟。
以五类栅格方案(0多普勒留空栅格、所述0多普勒留空栅格的保护间隔、导频栅格、导频栅格的保护间隔和数据栅格)为例,如图3所示,发送时,多普勒为0的所有延迟对应的栅格留空。除了多普勒为0的栅格,还要在多普勒域设置保护间隔,避免数据和/或导频经历延迟多普勒域信道后落到多普勒为0的栅格上。该多普勒域设置保护间隔需占K 0个多普勒,其中,K 0>K MaxDopp。因此,额外的资源开销至少为(K 0+1)×M个栅格。
四类栅格方案(直流专用留空栅格、导频栅格、导频栅格的保护间隔和数据栅格)中,将上述五类栅格方案中的0多普勒留空栅格和留空栅格的保护间隔统称为直流专用留空栅格。
可由网络侧通过信令(RRC,PDCCH,MAC CE,SIB等)通知终端上述留空或保护栅格的图样的索引;其中,每种图样对应一种索引,每种索引的图样是协议定义的。也可通过协议规定上述留空或保护栅格,且上述留空或保护栅格的图样与OTFS的参数关联,每种参数对应一种留空或保护栅格的图样,即终端只要知道了OTFS的参数,就会根据协议确定上述留空或保护栅格的图样。
对于发送端设备,导频及其保护间隔,数据均需放在上述0多普勒留空栅格和留空栅格栅格区域外,且在导频周围(多普勒域和延迟域)留有足够的保护间隔避免数据与导频之间的互干扰。对于接收端设备,在多普勒非0的栅格上进行数据检测或进行基于导频的信道估计,多普勒为0的所有栅格按0处理,保护间隔上的信息正常参与数据的检测或基于导频的信道估计。
为了降低保护间隔的开销,导频的保护间隔与留空栅格的保护间隔(五类栅格方案)或直流专用留空栅格(四类栅格方案)的一部分可以共用。如图4所示,为五类栅格方案中导频保护间隔与留空栅格保护间隔共用的情况。此导频的放置位置与留空栅格保护间隔(五类栅格方案)的边界或直流专用留空栅格(四类栅格方案)的边界之间的距离在多普勒域上不超过K P个多普 勒。若超过这个距离,就没有可以共用的保护间隔了。
多用户时正常在网格上划分多个用户的资源区域传输,不得占用多普勒为0的留空栅格和留空栅格的保护间隔。
该方案操作简单,相比于传统的在时频域留空的优势:在NR OFDM中,DC的位置是不确定的,若想通过留空DC子载波,需要一定的信令交互告知收发双方具体的留空位置。但是,OTFS中,DC的响应一直都是在多普勒为零处。所以,留空多普勒为零的栅格不会带来额外信令开销。
实施例二:多普勒为0的部分栅格留空的方案。
考虑一个由M×N维度的OTFS延迟多普勒网格,其中,M表示延迟域的格点数,N表示多普勒域的格点数。最大多普勒为K MaxDopp,最大延迟为L MaxDelay。导频保护间隔需要留空导频周围的正负向各K p个多普勒和正负向各L p个延迟。
以五类栅格方案(0多普勒留空栅格、所述0多普勒留空栅格的保护间隔、导频栅格、导频栅格的保护间隔和数据栅格)为例,发送时,多普勒为0的部分栅格留空(留空的格点数记为Γ),其他位置仍放数据或导频。接收端,利用留空的Γ个栅格估计DC子载波直流噪声在延迟多普勒域的响应。估计出该响应后,从多普勒为0的数据或导频栅格上减掉这个响应,再做数据的检测或基于导频的信道估计,留空的Γ个栅格处按0处理,保护间隔上的信息正常参与数据的检测或基于导频的信道估计。
四类栅格方案(直流专用留空栅格、导频栅格、导频栅格的保护间隔和数据栅格)中,将上述五类栅格方案中的0多普勒留空栅格和留空栅格的保护间隔统称为直流专用留空栅格。
可由网络侧通过信令(RRC,PDCCH,MAC CE,SIB等)通知终端上述留空或保护栅格的图样的索引;其中,每种图样对应一种索引,每种索引的图样是协议定义的。也可通过协议规定上述留空或保护栅格,且上述留空或保护栅格的图样与OTFS的参数关联,每种参数对应一种留空或保护栅格的图样,即终端只要知道了OTFS的参数,就会根据协议确定上述留空或保 护栅格的图样。
留空栅格数与多普勒为0的不同延迟栅格上的抖动有关,抖动大时需要的留空栅格多,抖动小时需要的留空栅格少。该抖动主要与噪声大小(信噪比)有关。噪声越大(信噪比越低)抖动越大。这是因为,每个多普勒为0格点上都可以估计DC子载波直流噪声在延迟多普勒域的响应。但在接收端多普勒为0的格点上,除了DC子载波直流噪声在延迟多普勒域的响应外,还包含着传输信道中噪声的影响。当SNR较高,传输信道的噪声较小时,使用较小的Γ就可以较好的估计出DC子载波直流噪声在延迟多普勒域的响应。但是,当SNR较低,传输信道的噪声较大时,需要较大的Γ(进行平均或合并)才能较好的估计出DC子载波直流噪声在延迟多普勒域的响应。因此,多普勒为0处留空的格点数Γ要随SNR自适应变化。
在多普勒为0处留空的栅格周围(多普勒域和延迟域)需要进一步留空一部分栅格作为保护间隔,避免数据和导频经历信道后落在多普勒为0处留空的栅格上。若留空的位置在延迟域始于0(如图5所示),多普勒域保护间隔K 0需大于K MaxDopp个多普勒,在延迟域不需要保护间隔(因为数据只会产生正向延迟)。此时总开销为(K 0+1)×Γ个格点。若留空的位置在延迟域始于非0处(如图6所示),多普勒域保护间隔K 0需大于K MaxDopp个多普勒,延迟域保护间隔L 0需大于L MaxDelay个延迟(因为数据只会产生正向延迟)。此时总开销为(K 0+1)×(L 0+Γ)个格点。
为了降低保护间隔的开销,导频的保护间隔与留空栅格的保护间隔(五类栅格方案)或直流专用留空栅格(四类栅格方案)的一部分可以共用。如图7所示,描述了五类栅格方案中导频保护间隔与留空栅格保护间隔共用的情况。此导频的放置位置与留空栅格保护间隔(五类栅格方案)的边界或直流专用留空栅格(四类栅格方案)的边界之间的距离在多普勒域上不超过K P个多普勒。若超过这个距离,就没有可以共用的保护间隔了。
每隔
Figure PCTCN2022075498-appb-000001
个OTFS栅格,需在多普勒为0处配置一次留空(和 对应的保护间隔),估计DC子载波直流在延迟多普勒域的响应(该估计值可用于连续的Q个OTFS栅格),其中T V表示在时间频率域DC直流持续不变的符号数(OFDM符号数),
Figure PCTCN2022075498-appb-000002
表示下取整。原则上不需要为每个M×N维度的OTFS延迟多普勒栅格都配置留空和保护间隔。因为DC子载波直流相对来讲较为稳定,随着时间变化较慢。同时,每个多普勒为0格点上都包含了时间频率域N个OFDM符号的DC子载波直流信息,在延迟多普勒域已经被平均了,所以在延迟多普勒域的变化更加缓慢。
多用户时仍然使用上述留空和保护间隔。上行时,基站估计出的是所有终端的DC子载波在延迟多普勒域的响应。在多普勒为0的其他数据栅格无论是分配给哪个终端,都是先从接收到的数据或导频上减去上述“所有终端的DC子载波在延迟多普勒域的响应”的估计值再做检测或信道估计。下行时,终端估计自己的DC子载波在延迟多普勒域的响应。综上,多用户时不需要增加额外的开销。
本申请实施例的资源确定方法,确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格,该第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。由于直流子载波噪声在延迟多普勒域的响应位置是固定的,因此,可通过上述第一资源栅格在延迟多普勒域进行资源留空或估计直流子载波噪声在延迟多普勒域的响应来抑制直流子载波噪声对数据造成的影响,可以在保证业务可靠性的前提下,减少信令开销和处理复杂度。
如图8所示,本申请实施例还提供了一种资源配置方法,包括:
步骤801:发送端设备确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
本申请实施例中,上述发送端设备可以为网络侧设备,如基站,也可以 为终端设备。上述直流专用留空栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
在本申请实施例中,还可确定导频栅格、导频栅格的保护间隔和数据栅格。导频可以是任意导频,如脉冲导频、序列导频。除上述数据和导频外,若有其他类型的信息传输,可以占用数据栅格和导频栅格,不能占用0多普勒留空栅格和0多普勒留空栅格的保护间隔或者不能占用直流专用留空栅格。
本申请实施例的资源确定方法,确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格,该第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。由于直流子载波噪声在延迟多普勒域的响应位置是固定的,因此,可通过上述第一资源栅格在延迟多普勒域进行资源留空或估计直流子载波噪声在延迟多普勒域的响应来抑制直流子载波噪声对数据造成的影响,可以在保证业务可靠性的前提下,减少信令开销和处理复杂度。
可选地,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的所有栅格。
可选地,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的部分栅格。
可选地,所述多普勒为0的部分栅格的数量与接收端设备接收到的多普勒为0的栅格上信号的抖动相关。
可选地,所述直流专用留空栅格或所述0多普勒留空栅格与导频栅格的保护间隔共用相同的栅格。
可选地,本申请的资源配置方法,还包括:
在发送端设备是网络侧设备的情况下,发送端设备根据网络侧设备确定的第一规则自主确定所述第一资源栅格。
或者,在发送端设备是终端设备的情况下,发送端设备通过接收网络侧设备发送的信令,确定所述第一资源栅格。
可选地,所述发送端设备确定第一资源栅格,包括:
发送端设备根据协议约定的准则,确定所述第一资源栅格。
可选地,所述发送端设备根据协议约定的准则,确定所述第一资源栅格,包括:
发送端设备根据协议约定的准则以及目标参数,确定所述第一资源栅格;
其中,所述协议约定的准则包括所述第一资源栅格与所述目标参数之间的关联关系;
所述目标参数包括以下至少一项:
正交时频空域OTFS的参数;
多普勒域资源栅格的数量;
延迟域资源栅格的数量;
延迟多普勒域资源栅格的数量;
辛傅里叶变换维度。
可选地,本申请实施例的资源配置方法,还包括:
发送端设备在所述第一资源栅格以外的其他栅格上配置数据或者导频的保护间隔。
需要说明的是,本申请实施例的资源配置方法是与上述资源确定方法对应的方法,此处不再进行详细说明。
本申请实施例的资源配置方法,确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格,该第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。由于直流子载波噪声在延迟多普勒域的响应位置是固定的,因此,可通过上述第一资源栅格在延迟多普勒域进行资源留空或估计直流子载波噪声在延迟多普勒域的响应来抑制直流子载波噪声对数据造成的影响,可以在保证业务可靠性的前提下,减少信令开销和处理复杂度。
需要说明的是,本申请实施例提供的资源确定方法,执行主体可以为资源确定装置,或者,该资源确定装置中的用于执行资源确定方法的控制模块。本申请实施例中以资源确定装置执行资源确定方法为例,说明本申请实施例 提供的资源确定装置。
如图9所示,本申请实施例提供了一种资源确定装置900,包括:
第一确定模块900,用于确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
可选地,本申请实施例的资源确定装置,还包括:第三确定模块,用于确定导频栅格、导频栅格的保护间隔和数据栅格。
本申请实施例的资源确定装置,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的所有栅格。
本申请实施例的资源确定装置,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的部分栅格。
本申请实施例的资源确定装置,所述多普勒为0的部分栅格的数量与所述接收端设备接收到的多普勒为0的栅格上信号的抖动相关。
本申请实施例的资源确定装置,所述直流专用留空栅格或所述0多普勒留空栅格与导频栅格的保护间隔共用相同的栅格。
本申请实施例的资源确定装置,所述第一确定模块用于在接收端设备是终端设备的情况下,通过接收网络侧设备发送的信令,确定所述第一资源栅格;
或者,在接收端设备是网络侧设备的情况下,根据网络侧设备确定的第一规则自主确定所述第一资源栅格。
本申请实施例的资源确定装置,所述第一确定模块用于根据协议约定的准则,确定所述第一资源栅格。
本申请实施例的资源确定装置,所述第一确定模块用于根据协议约定的准则以及目标参数,确定所述第一资源栅格;
其中,所述协议约定的准则包括所述第一资源栅格与所述目标参数之间的关联关系;
所述目标参数包括以下至少一项:
正交时频空域OTFS的参数;
多普勒域资源栅格的数量;
延迟域资源栅格的数量;
延迟多普勒域资源栅格的数量;
辛傅里叶变换维度。
本申请实施例的资源确定装置,还包括:
第一处理模块,用于在多普勒为非0的栅格上进行数据检测或者进行基于导频的信道估计。
本申请实施例的资源确定装置,还包括:
第二处理模块,用于根据所述第一资源栅格中的至少部分栅格,估计直流子载波的直流噪声在延迟多普勒域的响应,得到响应估计值。
本申请实施例的资源确定装置,还包括:
第三处理模块,用于在所述第一资源栅格以外的至少一个栅格上的信号中除去所述响应估计值后,再进行数据检测或进行基于导频的信道估计。
本申请实施例的资源确定装置,确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格,该第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。由于直流子载波噪声在延迟多普勒域的响应位置是固定的,因此,可通过上述第一资源栅格在延迟多普勒域进行资源留空或估计直流子载波噪声在延迟多普勒域的响应来抑制直流子载波噪声对数据造成的影响,可以在保证业务可靠性的前提下,减少信令开销和处理复杂度。
本申请实施例提供的资源确定装置能够实现图2至图7方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图10所示,本申请实施例还提供了一种资源配置装置1000,包括:
第二确定模块1001,用于确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
可选地,本申请实施例的资源配置装置,还包括:第四确定模块,用于确定导频栅格、导频栅格的保护间隔和数据栅格。
本申请实施例的资源配置装置,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的所有栅格。
本申请实施例的资源配置装置,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的部分栅格。
本申请实施例的资源配置装置,所述多普勒为0的部分栅格的数量与接收端设备接收到的多普勒为0的栅格上信号的抖动相关。
本申请实施例的资源配置装置,所述直流专用留空栅格或所述0多普勒留空栅格与导频栅格的保护间隔共用相同的栅格。
本申请实施例的资源配置装置,所述第二确定模块用于在发送端设备是网络侧设备的情况下,根据网络侧设备确定的第一规则自主确定所述第一资源栅格;
或者,在发送端设备是终端设备的情况下,通过接收网络侧设备发送的信令,确定所述第一资源栅格。
本申请实施例的资源配置装置,所述第二确定模块用于发送端设备根据协议约定的准则,确定所述第一资源栅格。
本申请实施例的资源配置装置,所述第二确定模块用于发送端设备根据协议约定的准则以及目标参数,确定所述第一资源栅格;
其中,所述协议约定的准则包括所述第一资源栅格与所述目标参数之间的关联关系;
所述目标参数包括以下至少一项:
正交时频空域OTFS的参数;
多普勒域资源栅格的数量;
延迟域资源栅格的数量;
延迟多普勒域资源栅格的数量;
辛傅里叶变换维度。
本申请实施例的资源配置装置,还包括:
第二处理模块,用于在所述第一资源栅格以外的其他栅格上配置数据或者导频的保护间隔。
本申请实施例的资源配置装置,确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格,该第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。由于直流子载波噪声在延迟多普勒域的响应位置是固定的,因此,可通过上述第一资源栅格在延迟多普勒域进行资源留空或估计直流子载波噪声在延迟多普勒域的响应来抑制直流子载波噪声对数据造成的影响,可以在保证业务可靠性的前提下,减少信令开销和处理复杂度。
本申请实施例提供的资源确定装置能够实现图9方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
上述资源确定装置和资源配置装置可以为终端,也可以为网络侧设备,在为终端时,可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。且本申请实施例中的资源确定装置和资源配置装置,可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
可选的,如图11所示,本申请实施例还提供一种通信设备1100,包括处理器1101,存储器1102,存储在存储器1102上并可在所述处理器1101上运行的程序或指令,该通信设备1100为终端或网络侧设备,该程序或指令被处理器1101执行时实现上述资源确定方法实施例的各个过程或者实现上述资 源配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例的资源确定装置和资源配置装置,可以为终端,也可以为网络侧设备,在上述资源确定装置和资源配置装置为终端时,其硬件结构示意图如图12所示,包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209、以及处理器1210等部件。
本领域技术人员可以理解,终端1200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1204可以包括图形处理器(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1206可包括显示面板12061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板12061。用户输入单元1207包括触控面板12071以及其他输入设备12072。触控面板12071,也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1201将来自网络侧设备的下行数据接收后,给处理器1210处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1201包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1209可用于存储软件程序或指令以及各种数据。存储器1209可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储 操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1209可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1210可包括一个或多个处理单元;可选的,处理器1210可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1210中。
处理器1210,用于确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
可选地,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的所有栅格。
可选地,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的部分栅格。
可选地,所述多普勒为0的部分栅格的数量与所述接收端设备接收到的多普勒为0的栅格上信号的抖动相关。
可选地,所述直流专用留空栅格或所述0多普勒留空栅格与导频栅格的保护间隔共用相同的栅格。
可选地,处理器1210,还用于:
在接收端设备是终端设备的情况下,通过接收网络侧设备发送的信令,确定所述第一资源栅格;
或者,在接收端设备是网络侧设备的情况下,根据网络侧设备确定的第 一规则自主确定所述第一资源栅格。
可选地,处理器1210,还用于:
根据协议约定的准则,确定所述第一资源栅格。
可选地,处理器1210,还用于:
根据协议约定的准则以及目标参数,确定所述第一资源栅格;
其中,所述协议约定的准则包括所述第一资源栅格与所述目标参数之间的关联关系;
所述目标参数包括以下至少一项:
正交时频空域OTFS的参数;
多普勒域资源栅格的数量;
延迟域资源栅格的数量;
延迟多普勒域资源栅格的数量;
辛傅里叶变换维度。
在一种可选地实现方式中,处理器1210,还用于:
在多普勒为非0的栅格上进行数据检测或者进行基于导频的信道估计。
可选地,处理器1210,还用于:
根据所述第一资源栅格中的至少部分栅格,估计直流子载波的直流噪声在延迟多普勒域的响应,得到响应估计值。
可选地,处理器1210,还用于:
在所述第一资源栅格以外的至少一个栅格上的信号中除去所述响应估计值后,再进行数据检测或进行基于导频的信道估计。
在另一种可选地实现方式中,处理器1210,还用于:在所述第一资源栅格以外的其他栅格上配置数据或者导频的保护间隔。
本申请实施例中,上述终端确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格,该第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。由于直流子载波噪声在延迟多普勒域的响应位置是固定 的,因此,可通过上述第一资源栅格在延迟多普勒域进行资源留空或估计直流子载波噪声在延迟多普勒域的响应来抑制直流子载波噪声对数据造成的影响,可以在保证业务可靠性的前提下,减少信令开销和处理复杂度。
在上述资源确定装置和资源配置装置为网络侧设备的情况下,如图13所示,该网络侧设备可以包括:天线1301、射频装置1302、基带装置1303。天线1301与射频装置1302连接。在上行方向上,射频装置1302通过天线1301接收信息,将接收的信息发送给基带装置1303进行处理。在下行方向上,基带装置1303对要发送的信息进行处理,并发送给射频装置1302,射频装置1302对收到的信息进行处理后经过天线1301发送出去。
上述频带处理装置可以位于基带装置1303中,以上实施例中网络侧设备执行的方法可以在基带装置1303中实现,该基带装置1303包括处理器1304和存储器1305。
基带装置1303例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为处理器1304,与存储器1305连接,以调用存储器1305中的程序,执行以上资源确定方法实施例或者资源配置方法实施例中的操作。
该基带装置1303还可以包括网络接口1306,用于与射频装置1302交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1305上并可在处理器1304上运行的指令或程序,处理器1304调用存储器1305中的指令或程序执行图9或图10所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述资源配置方法或资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述资源确定方法或资源配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器, 或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种资源确定方法,包括:
    接收端设备确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
    所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
  2. 根据权利要求1所述的资源确定方法,其中,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的所有栅格。
  3. 根据权利要求1所述的资源确定方法,其中,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的部分栅格。
  4. 根据权利要求3所述的资源确定方法,其中,所述多普勒为0的部分栅格的数量与所述接收端设备接收到的多普勒为0的栅格上信号的抖动相关。
  5. 根据权利要求1所述的资源确定方法,其中,所述直流专用留空栅格或所述0多普勒留空栅格与导频栅格的保护间隔共用相同的栅格。
  6. 根据权利要求1所述的资源确定方法,其中,接收端设备确定第一资源栅格,包括:
    在接收端设备是终端设备的情况下,接收端设备通过接收网络侧设备发送的信令,确定所述第一资源栅格;
    或者,在接收端设备是网络侧设备的情况下,接收端设备根据网络侧设备确定的第一规则自主确定所述第一资源栅格。
  7. 根据权利要求1所述的资源确定方法,其中,所述接收端设备确定第一资源栅格,包括:
    接收端设备根据协议约定的准则,确定所述第一资源栅格。
  8. 根据权利要求7所述的资源确定方法,其中,所述接收端设备根据协议约定的准则,确定所述第一资源栅格,包括:
    接收端设备根据协议约定的准则以及目标参数,确定所述第一资源栅格;
    其中,所述协议约定的准则包括所述第一资源栅格与所述目标参数之间的关联关系;
    所述目标参数包括以下至少一项:
    正交时频空域OTFS的参数;
    多普勒域资源栅格的数量;
    延迟域资源栅格的数量;
    延迟多普勒域资源栅格的数量;
    辛傅里叶变换维度。
  9. 根据权利要求2所述的资源确定方法,其中,还包括:
    接收端设备在多普勒为非0的栅格上进行数据检测或者进行基于导频的信道估计。
  10. 根据权利要求3所述的资源确定方法,其中,还包括:
    接收端设备根据所述第一资源栅格中的至少部分栅格,估计直流子载波的直流噪声在延迟多普勒域的响应,得到响应估计值。
  11. 根据权利要求10所述的资源确定方法,其中,还包括:
    接收端设备在所述第一资源栅格以外的至少一个栅格上的信号中除去所述响应估计值后,再进行数据检测或进行基于导频的信道估计。
  12. 一种资源配置方法,包括:
    发送端设备确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
    所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
  13. 根据权利要求12所述的资源配置方法,其中,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的所有栅格。
  14. 根据权利要求12所述的资源配置方法,其中,所述直流专用留空栅格或所述0多普勒留空栅格包括多普勒为0的部分栅格。
  15. 根据权利要求12所述的资源配置方法,其中,所述多普勒为0的部分栅格的数量与接收端设备接收到的多普勒为0的栅格上信号的抖动相关。
  16. 根据权利要求12所述的资源配置方法,其中,所述直流专用留空栅格或所述0多普勒留空栅格与导频栅格的保护间隔共用相同的栅格。
  17. 根据权利要求12所述的资源配置方法,其中,发送端设备确定第一资源栅格,包括:
    在发送端设备是网络侧设备的情况下,发送端设备根据网络侧设备确定的第一规则自主确定所述第一资源栅格;
    或者,在发送端设备是终端设备的情况下,发送端设备通过接收网络侧设备发送的信令,确定所述第一资源栅格。
  18. 根据权利要求12所述的资源配置方法,其中,所述发送端设备确定第一资源栅格,包括:
    发送端设备根据协议约定的准则,确定所述第一资源栅格。
  19. 根据权利要求18所述的资源配置方法,其中,所述发送端设备根据协议约定的准则,确定所述第一资源栅格,包括:
    发送端设备根据协议约定的准则以及目标参数,确定所述第一资源栅格;
    其中,所述协议约定的准则包括所述第一资源栅格与所述目标参数之间的关联关系;
    所述目标参数包括以下至少一项:
    正交时频空域OTFS的参数;
    多普勒域资源栅格的数量;
    延迟域资源栅格的数量;
    延迟多普勒域资源栅格的数量;
    辛傅里叶变换维度。
  20. 根据权利要求12所述的资源配置方法,其中,还包括:
    发送端设备在所述第一资源栅格以外的其他栅格上配置数据或者导频的保护间隔。
  21. 一种资源确定装置,包括:
    第一确定模块,用于确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
    所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
  22. 根据权利要求21所述的资源确定装置,其中,所述第一确定模块用于在接收端设备是终端设备的情况下,通过接收网络侧设备发送的信令,确定所述第一资源栅格;
    或者,在接收端设备是网络侧设备的情况下,根据网络侧设备确定的第一规则自主确定所述第一资源栅格。
  23. 根据权利要求21所述的资源确定装置,其中,所述第一确定模块用于根据协议约定的准则,确定所述第一资源栅格。
  24. 根据权利要求23所述的资源确定装置,其中,所述第一确定模块用于根据协议约定的准则以及目标参数,确定所述第一资源栅格;
    其中,所述协议约定的准则包括所述第一资源栅格与所述目标参数之间的关联关系;
    所述目标参数包括以下至少一项:
    正交时频空域OTFS的参数;
    多普勒域资源栅格的数量;
    延迟域资源栅格的数量;
    延迟多普勒域资源栅格的数量;
    辛傅里叶变换维度。
  25. 一种资源配置装置,包括:
    第二确定模块,用于确定第一资源栅格,所述第一资源栅格为与直流子载波相关的延迟多普勒域资源栅格;
    所述第一资源栅格包括直流专用留空栅格,或者,所述第一资源栅格包括0多普勒留空栅格和所述0多普勒留空栅格的保护间隔。
  26. 根据权利要求25所述的资源配置装置,其中,所述第二确定模块用于在发送端设备是网络侧设备的情况下,发送端设备根据网络侧设备确定的第一规则自主确定所述第一资源栅格;
    或者,在发送端设备是终端设备的情况下,发送端设备通过接收网络侧设备发送的信令,确定所述第一资源栅格。
  27. 根据权利要求25所述的资源配置装置,其中,所述第二确定模块用于根据协议约定的准则,确定所述第一资源栅格。
  28. 根据权利要求27所述的资源配置装置,其中,所述第二确定模块用于根据协议约定的准则以及目标参数,确定所述第一资源栅格;
    其中,所述协议约定的准则包括所述第一资源栅格与所述目标参数之间的关联关系;
    所述目标参数包括以下至少一项:
    正交时频空域OTFS的参数;
    多普勒域资源栅格的数量;
    延迟域资源栅格的数量;
    延迟多普勒域资源栅格的数量;
    辛傅里叶变换维度。
  29. 一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至11任一项所述的资源确定方法的步骤,或者,实现如权利要求12至20任一项所述的资源配置方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至11任一项所述的资源确定方法的步骤,或者,实现如权利要求12至20任一项所述的资源配置方法的步骤。
  31. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至11任一项所述的资源确定方法的步骤,或者,实现如权利要求12至20任一项所述的 资源配置方法的步骤。
  32. 一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至11任一项所述的资源确定方法的步骤,或者,实现如权利要求12至20任一项所述的资源配置方法的步骤。
PCT/CN2022/075498 2021-02-09 2022-02-08 资源确定、配置方法及通信设备 WO2022171076A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22752237.2A EP4293945A1 (en) 2021-02-09 2022-02-08 Resource determination method, resource configuration method, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110180929.7A CN114915388A (zh) 2021-02-09 2021-02-09 资源确定、配置方法及通信设备
CN202110180929.7 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022171076A1 true WO2022171076A1 (zh) 2022-08-18

Family

ID=82760903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075498 WO2022171076A1 (zh) 2021-02-09 2022-02-08 资源确定、配置方法及通信设备

Country Status (3)

Country Link
EP (1) EP4293945A1 (zh)
CN (1) CN114915388A (zh)
WO (1) WO2022171076A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117978338A (zh) * 2022-10-21 2024-05-03 维沃移动通信有限公司 资源大小的确定方法、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028614A1 (zh) * 2016-08-12 2018-02-15 华为技术有限公司 数据收发方法及装置
CN108781072A (zh) * 2015-12-09 2018-11-09 凝聚技术公司 利用复正交函数的导频封装
WO2021001278A1 (en) * 2019-07-04 2021-01-07 Volkswagen Aktiengesellschaft Adaptive transmitter symbol arrangement for otfs channel estimation in the delay-doppler domain
CN112235223A (zh) * 2020-09-11 2021-01-15 北京邮电大学 一种抗干扰通信方法及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3420641A4 (en) * 2016-02-25 2019-12-11 Cohere Technologies, Inc. REFERENCE SIGNAL PACKAGING FOR WIRELESS COMMUNICATIONS
CN106972915B (zh) * 2017-03-30 2020-03-06 深圳市励科机电科技工程有限公司 一种信号传输方法和窄带无线终端
CN112003808B (zh) * 2019-05-27 2021-12-28 成都华为技术有限公司 信号处理方法及装置
CN111786763B (zh) * 2020-06-23 2023-06-30 Oppo广东移动通信有限公司 信号传输方法及装置、发射端、接收端、存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781072A (zh) * 2015-12-09 2018-11-09 凝聚技术公司 利用复正交函数的导频封装
WO2018028614A1 (zh) * 2016-08-12 2018-02-15 华为技术有限公司 数据收发方法及装置
WO2021001278A1 (en) * 2019-07-04 2021-01-07 Volkswagen Aktiengesellschaft Adaptive transmitter symbol arrangement for otfs channel estimation in the delay-doppler domain
CN112235223A (zh) * 2020-09-11 2021-01-15 北京邮电大学 一种抗干扰通信方法及电子设备

Also Published As

Publication number Publication date
EP4293945A1 (en) 2023-12-20
CN114915388A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN106416305B (zh) 小区发现设备、网络及方法
RU2625816C1 (ru) Передатчик, приемник и способы для передачи/приема сигналов синхронизации
RU2644559C2 (ru) Устройство и способ передачи
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
WO2022048639A1 (zh) 数据发送方法、数据接收处理方法及相关设备
WO2018082457A1 (zh) 配置参考信号的方法和装置
WO2022048649A1 (zh) 导频接收处理方法、发送方法及相关设备
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
US20230208585A1 (en) Pilot processing method and related device
WO2018228243A1 (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
EP3913957A1 (en) Method for configuring full duplex reference signal, terminal and base station
WO2022171076A1 (zh) 资源确定、配置方法及通信设备
WO2022199664A1 (zh) 信息发送方法和设备
WO2022048642A1 (zh) 帧结构指示方法、帧结构更新方法及相关设备
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2022194056A1 (zh) 跳频处理方法、装置及终端
WO2022143868A1 (zh) 资源映射方法、装置及设备
WO2022017491A1 (zh) 信道测量处理方法、装置及设备
WO2022017492A1 (zh) 定位处理方法、装置及设备
WO2022171155A1 (zh) 数据发送处理方法、接收处理方法、装置及设备
WO2023051525A1 (zh) 行为确定方法、装置及相关设备
WO2022116890A1 (zh) 相位噪声参数的估计方法、装置、用户设备和基站
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2022166880A1 (zh) 信号处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022752237

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752237

Country of ref document: EP

Effective date: 20230911