WO2022048642A1 - 帧结构指示方法、帧结构更新方法及相关设备 - Google Patents

帧结构指示方法、帧结构更新方法及相关设备 Download PDF

Info

Publication number
WO2022048642A1
WO2022048642A1 PCT/CN2021/116472 CN2021116472W WO2022048642A1 WO 2022048642 A1 WO2022048642 A1 WO 2022048642A1 CN 2021116472 W CN2021116472 W CN 2021116472W WO 2022048642 A1 WO2022048642 A1 WO 2022048642A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame structure
scaling factor
doppler
dimension
indication information
Prior art date
Application number
PCT/CN2021/116472
Other languages
English (en)
French (fr)
Inventor
袁璞
秦飞
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21863704.9A priority Critical patent/EP4210285A4/en
Publication of WO2022048642A1 publication Critical patent/WO2022048642A1/zh
Priority to US18/116,831 priority patent/US20230208698A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3455Modifications of the signal space to allow the transmission of additional information in order to facilitate carrier recovery at the receiver end, e.g. by transmitting a pilot or by using additional signal points to allow the detection of rotations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0222Estimation of channel variability, e.g. coherence bandwidth, coherence time, fading frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2639Modulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]

Definitions

  • the present application belongs to the field of communication technologies, and in particular, relates to a frame structure indication method, a frame structure update method and related equipment.
  • ISI Inter Symbol Interference
  • ICI Inter Symbol Interference
  • the available Orthogonal Frequency Division Multiplex (OFDM) multi-carrier system can improve the anti-ISI performance by adding a cyclic prefix (CP) design.
  • CP cyclic prefix
  • the size of the sub-carrier spacing in the OFDM multi-carrier system is limited. Therefore, in response to high-speed mobile scenarios (such as high-speed rail), due to the large Doppler frequency shift caused by the relatively large relative speed between the transceivers, the OFDM sub-carriers are destroyed.
  • the orthogonality between subcarriers causes serious ICI between subcarriers.
  • Orthogonal Time Frequency Space (OTFS) technology can also be used in communication technology.
  • OTFS technology defines the transformation between the delay Doppler domain and the time-frequency domain.
  • Mapping to Delay Doppler domain processing captures the delay and Doppler characteristics of the channel through pilots in the Delay Doppler domain.
  • the control of the channel estimation performance is realized by adjusting the side length M of the frame structure in the delay dimension and/or the side length N of the frame structure in the Doppler dimension. However, if M*N is set too large, resources will be wasted, and if M*N is set too small, pilot pollution cannot be avoided.
  • Embodiments of the present application provide a frame structure indication method, a frame structure update method, and related equipment, which can ensure estimation accuracy and reduce waste of resources.
  • a frame structure indication method executed by a first device, including:
  • indication information is sent, where the indication information is used to indicate the first frame structure.
  • a frame structure update method executed by a second device, including:
  • the indication information is used to indicate the first frame structure
  • the first frame structure is determined according to the user data to be transmitted.
  • a frame structure indicating device including:
  • a first determining module configured to determine a first frame structure according to the user data to be transmitted
  • a first sending module configured to send indication information when the first frame structure is different from the second frame structure corresponding to the second device, where the indication information is used to indicate the first frame structure.
  • an apparatus for updating a frame structure including:
  • the second receiving module is configured to receive the indication information sent by the first device; wherein, the indication information is used to indicate the first frame structure;
  • an update module for updating the second frame structure corresponding to the second device to the first frame structure
  • the first frame structure is determined according to the user data to be transmitted.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are realized, or the steps of the method as described in the second aspect are realized.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect, or the The steps of the method of the second aspect.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement The method described in one aspect.
  • the first frame structure is determined according to the user data to be transmitted; in the case where the first frame structure is different from the second frame structure corresponding to the second device, indication information is sent, and the indication information uses to indicate the first frame structure.
  • the frame structure can be flexibly adjusted according to the user data to be transmitted, thereby ensuring the estimation accuracy and reducing the waste of resources.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present application can be applied;
  • Fig. 2 is the conversion schematic diagram of delay Doppler plane and time frequency plane
  • 3 is a schematic diagram of the channel response relationship under different planes
  • FIG. 5 is a flowchart of a frame structure indication method provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for updating a frame structure provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of a frame structure indicating device provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of an apparatus for updating a frame structure provided by an embodiment of the present application.
  • FIG. 9 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a structural diagram of a network side device provided by an embodiment of the present application.
  • FIG. 11 is a structural diagram of a terminal device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes user equipment 11 and network equipment 12 .
  • the user equipment 11 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the user equipment 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, Personal Digital Assistant (PDA), PDA, Netbook, Ultra-mobile Personal Computer (UMPC), Mobile Internet Device (MID), Wearable Device (Wearable Device) or Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE) and other terminal-side equipment, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • MID Ultra-mobile Personal Computer
  • MID Mobile Internet Device
  • MID Wearable Device
  • VUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • the network device 12 may be a base station or a core network device, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the delay and Doppler characteristics of the channel are essentially determined by the multipath channel.
  • Signals arriving at the receiver through different paths have different arrival times because of differences in propagation paths. For example, two echoes s 1 and s 2 respectively travel distances d 1 and d 2 to reach the receiver, then the time difference between them arriving at the receiver is c is the speed of light. Due to this time difference between the echoes s 1 and s 2 , their coherent superposition at the receiver side causes the observed signal amplitude jitter, a fading effect. Similarly, the Doppler spread of multipath channels is also caused by multipath effects. We know that the Doppler effect is due to the relative velocities at both ends of the sending and receiving ends.
  • the signals arriving at the receiver through different paths have different incident angles relative to the antenna normal, thus causing the difference in relative velocities, which in turn causes different paths.
  • the Doppler shift of the signal is different. Assuming that the original frequency of the signal is f 0 , the relative velocity of the transceiver is ⁇ V, and the angle between the signal and the normal incidence of the receiving antenna is ⁇ . Then there are: Obviously, when the two echoes s 1 and s 2 travel through different paths to the receiving antenna and have different incident angles ⁇ 1 and ⁇ 2 , the Doppler frequency shifts ⁇ v 1 and ⁇ v 2 obtained by them are also different.
  • the signal seen by the receiver is the superposition of component signals with different time delays and Dopplers from different paths, and the overall embodiment is a received signal with fading and frequency shift relative to the original signal.
  • the delay Doppler analysis of the channel is helpful to collect the delay Doppler information of each path, so as to reflect the delay Doppler response of the channel.
  • OTFS modulation technology Orthogonal Time Frequency Space (OTFS) modulation.
  • This technology logically maps the information in a data packet of size M ⁇ N, such as Quadrature Amplitude Modulation (QAM) symbols, to an M ⁇ N lattice point on the two-dimensional delayed Doppler plane. , that is, the pulses within each lattice point modulate one QAM symbol in the data packet.
  • QAM Quadrature Amplitude Modulation
  • the data set on the M ⁇ N delayed Doppler domain plane is transformed to the N ⁇ M time-frequency domain plane. This transformation is mathematically called inverse.
  • Sympic Fourier Transform Inverse Sympletic Finite Fourier Transform, ISFFT).
  • the transformation from the time-frequency domain to the delayed Doppler domain is called the Sympletic Finite Fourier Transform (SFFT).
  • SFFT Sympletic Finite Fourier Transform
  • the OTFS technology transforms the time-varying multipath channel into a time-invariant two-dimensional delay Doppler domain channel (within a certain duration), which directly reflects the relative relationship between the reflectors between the transceivers in the wireless link.
  • the channel delay Doppler response characteristic caused by the geometry of the location.
  • OTFS technology to analyze in the delay Doppler domain can make the packaging of reference signals more compact and flexible, which is especially beneficial for supporting large-scale multiple-input multiple-output (Multi-User Multiple-Input Multiple-Output, MIMO) systems.
  • MIMO Multiple-Input Multiple-Output
  • OTFS modulation defines the QAM symbols on the delayed Doppler plane, transforms them to the time-frequency domain for transmission, and returns to the delayed Doppler domain for processing at the receiving end. Therefore, a wireless channel response analysis method in the delayed Doppler domain can be introduced.
  • Figure 3 When a signal passes through a linear time-varying wireless channel, the relationship between the expression of its channel response in different planes is shown in Figure 3:
  • v represents the delay variable
  • represents the Doppler variable
  • f represents the frequency variable
  • t represents the time variable
  • Equation (6) implies that the analysis of the delay Doppler domain in the OTFS system can be realized by relying on the existing communication framework established in the time-frequency domain and adding additional signal processing processes at the transceiver end. Moreover, the additional signal processing only consists of Fourier transform, which can be completely implemented by existing hardware without adding new modules. This good compatibility with the existing hardware system greatly facilitates the application of the OTFS system. In the actual system, the OTFS technology can be easily implemented as a pre- and post-processing module of a filtered OFDM system, so it has good compatibility with the multi-carrier system under the existing NR technology architecture.
  • the implementation of the transmitter is as follows: the QAM symbols containing the information to be transmitted are carried by the waveform of the delayed Doppler plane, and converted into the time-frequency domain plane in the traditional multi-carrier system through a two-dimensional ISFFT. The waveform is then converted into a time-domain sample point through a symbol-level one-dimensional inverse fast Fourier transform (Inverse Fast Fourier Transform, IFFT) and serial-to-parallel conversion.
  • IFFT inverse Fast Fourier Transform
  • the receiving end of the OTFS system is roughly the inverse process of the sending end: after the time domain sampling points are received by the receiver, they undergo parallel transformation and symbol-level one-dimensional Fast Fourier Transform (FFT), and then transform to the time
  • FFT Fast Fourier Transform
  • the waveform on the frequency domain plane is then converted into a waveform on the delayed Doppler domain plane through SFFT, and the receiver processes the QAM symbols carried by the delayed Doppler domain waveform: including channel estimation and equalization, demodulation and interpretation code, etc.
  • OTFS modulation converts a time-varying fading channel in the time-frequency domain between transceivers into a deterministic fading-free channel in the delay-Doppler domain.
  • SNR Signal Noise Ratio
  • the OTFS system resolves the reflectors in the physical channel by delaying the Doppler image and coherently combines the energies from the different reflected paths with the receive equalizer, which actually provides a static channel response without fading.
  • the OTFS system does not need to introduce closed-loop channel adaptation to cope with the fast-changing channel like the OFDM system, thus improving the system robustness and reducing the complexity of system design.
  • the channel in an OTFS system can be expressed in a very compact form.
  • the channel estimation overhead of the OTFS system is less and more accurate.
  • OTFS Another advantage of OTFS is to deal with extreme Doppler channels. Through the analysis of delayed Doppler images with appropriate signal processing parameters, the Doppler characteristics of the channel will be fully presented, which is beneficial for signal analysis and processing in Doppler-sensitive scenarios such as high-speed movement and millimeter waves.
  • the channel estimation in the OTFS system adopts the following method: the transmitter maps the pilot pulse on the delay Doppler domain, and the receiver uses the delay Doppler image analysis of the pilot to estimate the delay Doppler domain.
  • the channel response h(v, ⁇ ), and then the channel response expression in the time-frequency domain can be obtained according to the relationship in Figure 3, which is convenient for applying the existing technology in the time-frequency domain for signal analysis and processing.
  • the pilot mapping on the delayed Doppler plane can be as shown in Figure 4.
  • the transmission signal is located at the single-point pilot (401) of ( lp , kp ), surrounded by a guard symbol (402) with an area of ( 2lv +1)( 4kv +1)-1. ), and the data part of MN-(2l v +1)(4k v +1).
  • two offset peaks (such as 4021 and 4022) appear in the guard band of the delay Doppler domain lattice, which means that there are two secondary channels with different delay Dopplers in addition to the main channel. path.
  • the amplitude, delay and Doppler parameters of all secondary paths are measured to obtain the delayed Doppler domain expression of the channel, ie h(v, ⁇ ).
  • the area of the guard symbol should meet the following conditions:
  • ⁇ max and v max are the maximum time delay and the maximum Doppler frequency shift of all paths of the channel, respectively.
  • Multiple guard symbols 402 surround the single-point pilot 401 to form a guard band, and the multiple guard symbols 402 correspond to blank resource elements. .
  • the M*N plane in Figure 2 and Figure 4 is actually a discrete point value on a two-dimensional delay Doppler plane, and each grid corresponds to a quantized delay-Doppler pair ( ⁇ i , v j ).
  • the total number of resources is constant (bandwidth and time are constant)
  • M*N the number of grids increases, which is equivalent to improving the quantization accuracy of discrete delay-Doppler points.
  • M is larger, the number of delays that can be resolved by delay Doppler analysis is greater, which can be called an improved delay resolution;
  • the higher the offset value the higher the Doppler resolution.
  • the improvement of multipath and Doppler resolution the information of the channel response obtained is more abundant, so that the channel can be estimated more accurately, thereby improving the decoding performance of the receiver.
  • M*N there is an upper limit to the gain by increasing the value of M*N.
  • the delayed Doppler characteristic of the channel is actually caused by the multipath channel experienced by the signal.
  • the number of multipaths in a channel depends on the number of reflectors in the channel and cannot be infinite.
  • the delay of the channel and the number of states of the Doppler response are also limited by the number of multipaths and cannot be infinite. Therefore, a certain number of M*N can meet the system design requirements.
  • the size of M*N also takes into account the size of the data block. For small packet data, theoretically only a small M*N resource can be carried. However, a smaller M*N implies a smaller channel resolution, and there is a risk of channel estimation performance degradation. However, if M*N is blindly increased in pursuit of channel resolution, resources will be wasted due to excessive design for small packet data.
  • FIG. 5 is a flowchart of a frame structure indication method provided by an embodiment of the present application. The method is executed by a first device, as shown in FIG. 5, and includes the following steps:
  • Step 501 determining a first frame structure according to the user data to be transmitted
  • Step 502 In the case that the first frame structure is different from the second frame structure corresponding to the second device, send indication information, where the indication information is used to indicate the first frame structure.
  • the above-mentioned second device is a device that transmits user data. Specifically, it may be a device that receives user data, or may be a device that sends user data.
  • the above-mentioned user data to be transmitted can be understood as the data that needs to be transmitted between the first device and the second device next, can be understood as the user data sent by the first device to the second device, or can be understood as the second device.
  • the first device and the second device may use the second frame structure for data transmission; after indicating the first frame structure, the first device and the second device may use the first frame for data transmission. structure.
  • the user data to be transmitted may be transmitted based on the first frame structure.
  • the first frame structure is determined according to the user data to be transmitted; in the case where the first frame structure is different from the second frame structure corresponding to the second device, indication information is sent, and the indication information uses to indicate the first frame structure.
  • the frame structure can be flexibly adjusted according to the user data to be transmitted, thereby ensuring the estimation accuracy and reducing the waste of resources.
  • the indication information carries an index value of the first frame structure, wherein different frame structures correspond to different index values.
  • This embodiment of the present application may be pre-configured or a protocol stipulates a value M of a set of frame structures in the delay dimension and a value N of a set of frame structures in the Doppler dimension, where different M may be associated with different Ns corresponding to one
  • An index value that is, a set of M and N values corresponds to an index value.
  • the indication information may indicate the values of M and N by indicating the associated index values of M and N at the same time.
  • index 1 is associated with frame structure 1 (M1, N1)
  • index 2 is associated with frame structure 2 (M2, N2).
  • the indication information may directly indicate index 1 or index 2 indicates the corresponding frame structure.
  • a set of values of M and N may be understood as a set of frame structures or a set of frame structure configurations.
  • N and M are not associated, wherein different values of N may be associated with different index values in the first type of index, and different values of M may be associated with different index values in the second type of index association.
  • N1 is associated with index value A1
  • N2 is associated with index value A2
  • M1 is associated with index value B1
  • M2 is associated with index value B2.
  • the above-mentioned indication information may indicate the indices of N and M respectively, thereby indicating the corresponding frame structure. For example, if the above indication information carries B2 and A1, the indicated frame structure is (M2, N1).
  • the indication information includes: a scaling factor for indicating a delayed Doppler domain, and the first frame structure is indicated by the scaling factor and a preset reference frame structure.
  • the above-mentioned reference frame structure may be understood as a pre-configured frame structure, that is, a reference frame structure may be agreed in a pre-protocol or pre-configured.
  • the currently used frame structure can be indicated by a scaling factor. In this way, only a set of basic M and N can be defined, and the frame structure can be further flexibly adjusted by the scaling factor, so that the signaling overhead can be reduced.
  • the above scaling factor may be one scaling factor or two scaling factors.
  • it indicates that the first frame structure is based on the scaling ratio of the reference frame structure in the delay dimension and the scaling factor in the Doppler dimension.
  • the scaling is the same.
  • each scaling factor represents a one-dimensional scaling factor.
  • the scaling factor includes a first scaling factor ⁇ and a second scaling factor ⁇ , and the first scaling factor is used to indicate the scaling ratio of the reference frame structure and the first frame structure in the delay dimension; the first scaling factor Two scaling factors are used to indicate the scaling ratio of the reference frame structure and the first frame structure in the Doppler dimension.
  • the scaling ratio can be flexibly adjusted in different dimensions, thereby improving the flexibility of frame structure adjustment.
  • determining the first frame structure according to the user data to be transmitted includes:
  • the preset association table includes the preset frame structure table including at least two values of the frame structure in the delay dimension and at least two values of the frame structure in the Doppler dimension.
  • the length N of the time domain may be usually a set of protocol-specified values with a limited number, and N is selected first, and then M is selected according to q, so as to determine the first frame structure.
  • it can be aligned in time in a short time, which is suitable for some specific scenarios or the needs of joint transmission between cells, for example, multi-user-multi-input multiple Output (Multi User Multiple Input Multiple Out-put, MU-MIMO) scenarios, multi-point coordination (Coordinated Multiple Points, COMP) requirements.
  • MU-MIMO Multi User Multiple Input Multiple Out-put
  • COMP Coordinatd Multiple Points
  • the determining the quantity q of the QAM symbols includes:
  • the number q of the QAM symbols is determined.
  • the q is determined by the size of the transmission TB and the prediction Set the MCS to be OK.
  • the association between the subcarrier interval ⁇ f of the frame structure, the value M of the frame structure in the delay dimension, and the value N of the frame structure in the Doppler dimension can be understood as the pre-protocol agreement or the network configuration at least A set of (M, N, ⁇ f), that is, adding ⁇ f to the above preset frame structure table, and in the preset frame structure table, M, N, and ⁇ f have an associated relationship, for example, a set of M, N, and ⁇ f is associated with a Index value association.
  • the number of resource elements included in the first frame structure is greater than or equal to the number of quadrature amplitude modulation QAM symbols corresponding to the user data.
  • the value M i of the first frame structure in the delay dimension satisfies:
  • q is the number of QAM symbols corresponding to the user data
  • Ni is the value of the first frame structure in the Doppler dimension
  • B is the available bandwidth
  • ⁇ f is the subcarrier of the first frame structure interval.
  • the method further includes:
  • Rate matching is performed according to the value of the first frame structure in the delay dimension and the value of the first frame structure in the Doppler dimension to determine a modulation and coding scheme (Modulation and coding scheme, MCS).
  • MCS Modulation and coding scheme
  • M and N are a set of discrete point values, they may not be exactly equal to q, and a better MCS can be obtained by performing rate matching, thereby further improving performance.
  • the selected first frame structure is represented by (M i , N i ), and the rate matching can be performed based on the selected M i and N i , which can be achieved by adjusting r and k in the following formula:
  • the method before the step of determining the first frame structure according to the user data, the method further includes:
  • the recommended frame structure information is used to assist the first device in determining the first frame structure, and the recommended frame structure information is used to indicate at least one of the following:
  • the frame structure takes at least one value in the delay dimension
  • the frame structure takes values in at least one of the Doppler dimensions.
  • the above-mentioned first frame structure may be a combination of the value of a certain frame structure in the delay dimension and the value of a certain frame structure in the Doppler dimension in the recommended frame structure information, and the first frame structure may also be It is only the value of a certain dimension selected by the recommended frame structure information, and the first frame structure may also be a frame structure determined not based on the value of any dimension of the recommended frame structure information, which is not further limited here. Because in this embodiment of the present application, the second device sends recommended frame structure information to assist the first device in determining the first frame structure.
  • the protocol predefines a set of M and N in tabular form.
  • the M and N tables used by the current cell are sent through the broadcast channel or dedicated RRC.
  • the cell instructs the UE to use specific items in the M and N tables through dedicated signaling.
  • the cell further indicates the scaling factors ⁇ and ⁇ of M and N used by the UE in the delay and Doppler domains through dedicated signaling.
  • the specific indication method can be indicated by downlink control information (Downlink Control Information, DCI) or proprietary signaling, or implicitly indicated by the association between service types and OTFS symbol mapping modes (M and N), or by transmission.
  • DCI Downlink Control Information
  • M and N OTFS symbol mapping modes
  • the association between the Transport Block (TB) size and the scaling factor is implicitly indicated.
  • the dedicated signaling may be a Medium Access Control Control Element (Medium Access Control Control Element, MAC CE) or a Radio Resource Control (Radio Resource Control, RRC).
  • multiple sets of M and N combinations can be configured through RRC, and a certain set of them can be indicated through MAC CE or DCI.
  • the UE may send the preferred M and N indices to the cell, which may be one or more of the M and N tables. indivual.
  • a parameter ⁇ f is added to the M and N tables.
  • M and N must satisfy MV ⁇ q, that is, the number of allocated resources must be greater than user data.
  • B ⁇ M ⁇ f needs to be satisfied. Therefore, the value range of M is Because in a frame structure, the length N of the time domain is usually a limited set of protocol-specified values, N is selected first. Then determine the length of the frequency domain according to the amount of data sent by the user After that, ⁇ f needs to be determined according to the obtained M, so that it satisfies Therefore, the protocol can predefine a set of (M, N, ⁇ f) tables that satisfy the above relationship. When it needs to be used, it is indicated to the UE by the cell in the manner of the above-mentioned first embodiment.
  • the time can be aligned in a short time, which is suitable for some specific scenarios or the needs of joint transmission between cells, such as MU- MIMO scenarios, COMP needs.
  • Embodiment 3 the value range of M is Because in a frame structure, the length N of the time domain is usually a limited set of protocol-specified values, N is selected first. Then, according to the user's available bandwidth B, select an appropriate value in the (M, N, ⁇ f) table so that M ⁇ f ⁇ B.
  • a set of (M, N, ⁇ f) tables can be pre-defined. ) in the table to select a suitable value such that M ⁇ f ⁇ B. That is to say, in the third embodiment, ⁇ f does not need to be associated with (M, N), and M and ⁇ f are directly determined by M ⁇ f ⁇ B, so as to obtain the selected frame structure.
  • the user needs to determine the number of transmitted symbols q first.
  • q is determined by the pre-specified MCS and TB size.
  • the user needs to perform rate matching on the user according to the number of physical resources, that is, M and N. It is assumed that the transmission parameters are known to be ( ⁇ M, ⁇ N) at this time. Rate matching can be achieved by adjusting r and k,
  • the user can first calculate the encoding rate r according to (9). When r is less than a certain threshold ro , the current calculated r value is used. When r is greater than a certain threshold ro, it is considered that the code rate is too high to be applicable, and k is increased instead, and a new r is calculated according to (9). And so on and so forth, the ultimate goal is to make r equal to r o .
  • the user selects a set of suitable (r, k) combinations according to the calculation of (9) to satisfy the
  • FIG. 6 is a flowchart of a method for updating a frame structure provided by an embodiment of the present application. The method is executed by a second device. As shown in FIG. 6, the method includes the following steps:
  • Step 601 Receive indication information sent by a first device; wherein, the indication information is used to indicate a first frame structure;
  • Step 602 updating the second frame structure corresponding to the second device to the first frame structure
  • the first frame structure is determined according to the user data to be transmitted.
  • the indication information carries an index value of the first frame structure, wherein different frame structures correspond to different index values.
  • the indication information includes: a scaling factor for indicating a delayed Doppler domain, and the first frame structure is indicated by the scaling factor and a preset reference frame structure.
  • the scaling factor includes a first scaling factor and a second scaling factor, and the first scaling factor is used to indicate the scaling ratio of the reference frame structure and the first frame structure in the delay dimension; the first scaling factor Two scaling factors are used to indicate the scaling ratio of the reference frame structure and the first frame structure in the Doppler dimension.
  • the method further includes:
  • the modulation and coding scheme MCS is determined by performing rate matching according to the value of the first frame structure in the delay dimension and the value of the first frame structure in the Doppler dimension.
  • the number of resource elements included in the first frame structure is greater than or equal to the number of quadrature amplitude modulation QAM symbols corresponding to the user data.
  • the value M i of the first frame structure in the delay dimension satisfies:
  • q is the number of QAM symbols corresponding to the user data
  • Ni is the value of the first frame structure in the Doppler dimension
  • B is the available bandwidth
  • ⁇ f is the subcarrier of the first frame structure interval.
  • the q is determined by the size of the transmission TB and the predetermined value.
  • the method before the step of receiving the indication information sent by the first device, the method further includes:
  • the recommended frame structure information is used to assist the first device in determining the first frame structure, and the recommended frame structure information is used to indicate at least one of the following:
  • the frame structure takes at least one value in the delay dimension
  • the frame structure takes values in at least one of the Doppler dimensions.
  • this embodiment is an implementation of the second device corresponding to the embodiment shown in FIG. 5 .
  • the execution body may be a frame structure indication apparatus, or a control module in the frame structure indication apparatus for executing the frame structure indication method.
  • the frame structure indicating device provided by the embodiment of the present application is described by taking the frame structure indicating device executing the frame structure indicating method as an example.
  • FIG. 7 is a structural diagram of a frame structure indication apparatus provided by an embodiment of the present application. As shown in FIG. 7, the frame structure indication apparatus 700 includes:
  • a first determining module 701, configured to determine a first frame structure according to the user data to be transmitted;
  • the first sending module 702 is configured to send indication information when the first frame structure is different from the second frame structure corresponding to the second device, where the indication information is used to indicate the first frame structure.
  • the indication information carries an index value of the first frame structure, wherein different frame structures correspond to different index values.
  • the indication information includes: a scaling factor for indicating a delayed Doppler domain, and the first frame structure is indicated by the scaling factor and a preset reference frame structure.
  • the scaling factor includes a first scaling factor and a second scaling factor, and the first scaling factor is used to indicate the scaling ratio of the reference frame structure and the first frame structure in the delay dimension; the first scaling factor Two scaling factors are used to indicate the scaling ratio of the reference frame structure and the first frame structure in the Doppler dimension.
  • the first determining module 701 is further configured to: perform rate matching according to the value of the first frame structure in the delay dimension and the value of the first frame structure in the Doppler dimension, and determine the modulation and Coding Scheme MCS.
  • the number of resource elements included in the first frame structure is greater than or equal to the number of quadrature amplitude modulation QAM symbols corresponding to the user data.
  • the first determining module 701 is specifically configured to:
  • the preset association table includes the preset frame structure table including at least two values of the frame structure in the delay dimension and at least two values of the frame structure in the Doppler dimension.
  • the first determining module 701 is specifically configured to:
  • the user data includes original information bits a, coding efficiency r, parity bit length c and QAM modulation order k, according to The number q of the QAM symbols is determined.
  • the value M i of the first frame structure in the delay dimension satisfies:
  • q is the number of QAM symbols corresponding to the user data
  • Ni is the value of the first frame structure in the Doppler dimension
  • B is the available bandwidth
  • ⁇ f is the subcarrier of the first frame structure interval.
  • the q is determined by the size of the transmission TB and the preset value.
  • the frame structure indicating device 700 further includes:
  • a first receiving module configured to receive the recommended frame structure information sent by the second device
  • the recommended frame structure information is used to assist the first device in determining the first frame structure, and the recommended frame structure information is used to indicate at least one of the following:
  • the frame structure takes at least one value in the delay dimension
  • the frame structure takes values in at least one of the Doppler dimensions.
  • the network device provided in this embodiment of the present application can implement each process implemented by the first device in the method embodiment of FIG. 5 , and to avoid repetition, details are not repeated here.
  • the execution body may be a frame structure update device, or a control module in the frame structure update device for executing the frame structure update method.
  • a method for updating a frame structure performed by a frame structure updating apparatus is used as an example to describe the apparatus for updating a frame structure provided by the embodiments of the present application.
  • FIG. 8 is a structural diagram of a frame structure updating apparatus provided by an embodiment of the present application.
  • the frame structure updating apparatus 800 includes:
  • the second receiving module 801 is configured to receive the indication information sent by the first device; wherein the indication information is used to indicate the first frame structure;
  • an update module 802 configured to update the second frame structure corresponding to the second device to the first frame structure
  • the first frame structure is determined according to the user data to be transmitted.
  • the indication information carries an index value of the first frame structure, wherein different frame structures correspond to different index values.
  • the indication information includes: a scaling factor for indicating a delayed Doppler domain, and the first frame structure is indicated by the scaling factor and a preset reference frame structure.
  • the scaling factor includes a first scaling factor and a second scaling factor, and the first scaling factor is used to indicate the scaling ratio of the reference frame structure and the first frame structure in the delay dimension; the first scaling factor Two scaling factors are used to indicate the scaling ratio of the reference frame structure and the first frame structure in the Doppler dimension.
  • the frame structure updating apparatus 800 further includes:
  • the second determining module is configured to perform rate matching according to the value of the first frame structure in the delay dimension and the value of the first frame structure in the Doppler dimension, and determine the modulation and coding scheme MCS.
  • the number of resource elements included in the first frame structure is greater than or equal to the number of quadrature amplitude modulation QAM symbols corresponding to the user data.
  • the value M i of the first frame structure in the delay dimension satisfies:
  • q is the number of QAM symbols corresponding to the user data
  • Ni is the value of the first frame structure in the Doppler dimension
  • B is the available bandwidth
  • ⁇ f is the subcarrier of the first frame structure interval.
  • the q is determined by the size of the transmission TB and the predetermined value.
  • the frame structure updating apparatus 800 further includes:
  • a second sending module used for sending recommended frame structure information
  • the recommended frame structure information is used to assist the first device in determining the first frame structure, and the recommended frame structure information is used to indicate at least one of the following:
  • the frame structure takes at least one value in the delay dimension
  • the frame structure takes values in at least one of the Doppler dimensions.
  • the network device provided in this embodiment of the present application can implement each process implemented by the second device in the method embodiment of FIG. 6 , which is not repeated here to avoid repetition.
  • the frame structure indicating device and the frame structure updating device in the embodiments of the present application may be devices, and may also be components, integrated circuits, or chips in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of user equipment 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (PC), a television (television, TV), teller machine or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the frame structure indicating device and the frame structure updating device in the embodiments of the present application may be devices having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the frame structure indicating device and the frame structure updating device provided by the embodiments of the present application can implement each process implemented by the method embodiments in FIG. 5 to FIG. 6 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 900, including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901,
  • a communication device 900 including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901
  • the communication device 900 is the second device, when the program or instruction is executed by the processor 901, each process of the foregoing frame structure updating method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 900 is the first device, when the program or instruction is executed by the processor 901, each process of the above frame structure indication method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a network-side device, where the network-side device may be a first device or a second device.
  • the second device may be another terminal or a network-side device.
  • the first device is a network-side device
  • the second device is a terminal.
  • the network side device 1000 includes: an antenna 1001 , a radio frequency device 1002 , and a baseband device 1003 .
  • the antenna 1001 is connected to the radio frequency device 1002 .
  • the radio frequency device 1002 receives information through the antenna 1001, and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1003 , and the method performed by the first device in the above embodiment may be implemented in the baseband apparatus 1003 .
  • the baseband apparatus 1003 includes a processor 1004 and a memory 1005 .
  • the baseband device 1003 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 10 , one of the chips is, for example, the processor 1004 , which is connected to the memory 1005 to call a program in the memory 1005 to execute The first device operation shown in the above method embodiments.
  • the baseband device 1003 may further include a network interface 1006 for exchanging information with the radio frequency device 1002, the interface being, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: an instruction or program that is stored in the memory 1005 and can be run on the processor 1004, wherein, when the network-side device is the first device, the processor 1004 calls the The instructions or programs in the memory 1005 control the execution of the method executed by the modules shown in FIG. 7 . When the network-side device is the second device, the processor 1004 calls the instructions or programs in the memory 1005 to control the execution of the methods executed by the modules shown in FIG. 8 . method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal device implementing various embodiments of the present application.
  • the terminal device 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, a processor 1110 and other components .
  • the terminal device 1100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. consumption management and other functions.
  • a power supply such as a battery
  • the terminal device structure shown in FIG. 11 does not constitute a limitation on the terminal device.
  • the terminal device may include more or less components than the one shown in the figure, or combine some components, or arrange different components, which will not be repeated here. .
  • the input unit 1104 may include a graphics processor (Graphics Processing Unit, GPU) 11041 and a microphone 11042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1106 may include a display panel 11061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072 .
  • the touch panel 11071 is also called a touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1101 receives the downlink data from the network device, and then processes it to the processor 1110; in addition, sends the uplink data to the network device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1109 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1109 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1110.
  • the first device is a terminal and the second device is another terminal or a network-side device
  • a processor 1110 configured to determine the first frame structure according to the user data to be transmitted
  • the radio frequency unit 1101 is configured to send indication information, where the first frame structure is different from the second frame structure corresponding to the second device, where the indication information is used to indicate the first frame structure.
  • the above-mentioned processor 1110 and the radio frequency unit 1101 can implement each process implemented by the second device in the method embodiment of FIG. 5 , which is not repeated here to avoid repetition.
  • the second device is a terminal and the first device is a network-side device or another terminal device
  • the radio frequency unit 1101 is configured to receive the indication information sent by the first device; wherein, the indication information is used to indicate the first frame structure;
  • a processor 1110 configured to update the second frame structure corresponding to the second device to the first frame structure
  • the first frame structure is determined according to the user data to be transmitted.
  • the above-mentioned processor 1110 and the radio frequency unit 1101 can implement each process implemented by the second device in the method embodiment of FIG. 6 , which is not repeated here to avoid repetition.
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each of the foregoing frame structure indicating method or frame structure updating method embodiment is implemented process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network device program or instruction to implement the above frame structure indication method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a network device program or instruction to implement the above frame structure indication method
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种帧结构指示方法、帧结构更新方法及相关设备。该方法包括:根据待传输的用户数据确定第一帧结构;在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。

Description

帧结构指示方法、帧结构更新方法及相关设备
相关申请的交叉引用
本申请主张在2020年9月4日在中国提交的中国专利申请号No.202010923662.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,尤其涉及一种帧结构指示方法、帧结构更新方法及相关设备。
背景技术
在复杂的电磁波传输环境中,由于存在大量的散射、反射和折射面,造成了无线信号经不同路径到达接收天线的时刻不同,即传输的多径效应。当发送信号的前后符号经过不同路径同时抵达时,或者说,当后一个符号在前一个符号的时延扩展内到达时,即产生了符号间干扰(Inter Symbol Interference,ISI)。类似的,在频域上,由于收发端相对速度引起的多普勒效应,信号所在的各个子载波会产生频率上不同程度的偏移,造成原本可能正交的子载波产生重叠,即产生了载波间干扰(Inter Carrier Interference,ICI)。在通信技术中,可使用的正交频分复用(Orthogonal frequency division multiplex,OFDM)多载波系统,通过添加循环前缀(cyclic prefix,CP)的设计,提高抗ISI的性能。但是OFDM多载波系统的子载波间隔的大小有限,因此在应对高速移动场景下(如高铁),由于收发端之间较大的相对速度带来的较大多普勒频移,破坏了OFDM子载波之间的正交性,使子载波间产生严重的ICI。
通信技术中还可采用正交时频空域(Orthogonal Time Frequency Space,OTFS)技术,OTFS技术定义了延迟多普勒域和时频域之间的变换,通过同时在收发端把业务数据和导频映射到延迟多普勒域处理,通过在延迟多普勒域的导频,捕捉信道的延迟和多普勒特性。在信道估计过程中,信道估计性能的控制通过调整帧结构在延迟维度的边长M和/或帧结构在多普勒维度的边长N来实现。但是M*N设置的过大,会造成资源浪费,而M*N设置的过小, 又无法规避导频污染。
发明内容
本申请实施例提供一种帧结构指示方法、帧结构更新方法及相关设备,能够解保证估计准确度的同时,减小资源的浪费。
第一方面,提供了一种帧结构指示方法,由第一设备执行,包括:
根据待传输的用户数据确定第一帧结构;
在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。
第二方面,提供了一种帧结构更新方法,由第二设备执行,包括:
接收第一设备发送的指示信息;其中,所述指示信息用于指示第一帧结构;
将所述第二设备对应的第二帧结构更新为所述第一帧结构;
其中,所述第一帧结构根据待传输的用户数据确定。
第三方面,提供了一种帧结构指示装置,包括:
第一确定模块,用于根据待传输的用户数据确定第一帧结构;
第一发送模块,用于在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。
第四方面,提供了一种帧结构更新装置,包括:
第二接收模块,用于接收第一设备发送的指示信息;其中,所述指示信息用于指示第一帧结构;
更新模块,用于将第二设备对应的第二帧结构更新为所述第一帧结构;
其中,所述第一帧结构根据待传输的用户数据确定。
第五方面,提供了一种通信设备,该通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤, 或者实现如第二方面所述的方法的步骤。
第七方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如第一方面所述的方法。
本申请实施例中,通过根据待传输的用户数据确定第一帧结构;在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。这样,可以根据待传输的用户数据灵活调整帧结构,从而可以保证估计准确度的同时,减小资源的浪费。
附图说明
图1是本申请实施例可应用的一种网络系统的结构图;
图2是延迟多普勒平面和时间频率平面的转换示意图;
图3是不同平面下信道响应关系示意图;
图4是延迟多普勒域的导频映射示意图;
图5是本申请实施例提供的一种帧结构指示方法的流程图;
图6是本申请实施例提供的一种帧结构更新方法的流程图;
图7是本申请实施例提供的一种帧结构指示装置的结构图;
图8是本申请实施例提供的一种帧结构更新装置的结构图;
图9是本申请实施例提供的一种通信设备的结构图;
图10是本申请实施例提供的一种网络侧设备的结构图;
图11是本申请实施例提供的一种终端设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数 据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括用户设备11和网络设备12。其中,用户设备11也可以称作终端设备或者用户终端(User Equipment,UE),用户设备11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人用户设备(Pedestrian User Equipment,PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定用户设备11的具体类型。网络设备12可以是基站或核心网设备,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本 服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
信道的延迟和多普勒的特性本质上由多径信道决定。通过不同路径到达接收机的信号,因为传播路程存在差异,因此到达时间也不同。例如两个回波s 1和s 2各自经历距离d 1和d 2到达接收机,则他们抵达接收机的时间差为
Figure PCTCN2021116472-appb-000001
c为光速。由于回波s 1和s 2之间存在这种时间差,它们在接收机侧的相干叠加造成了观测到的信号幅度抖动,即衰落效应。类似的,多径信道的多普勒扩散也是由于多径效应造成。我们知道,多普勒效应是由于收发两端存在相对速度,历经不同路径到达接收机的信号,其相对于天线法线的入射角度存在差异,因此造成了相对速度的差异,进而造成了不同路径信号的多普勒频移不同。假设信号的原始频率为f 0,收发端的相对速度为ΔV,信号与收端天线的法线入射夹角为θ。则有:
Figure PCTCN2021116472-appb-000002
显然,当两个回波s 1和s 2历经不同路径到达接收端天线而具有不同的入射角θ 1和θ 2时,他们所得到的多普勒频移Δv 1和Δv 2也不同。综上所述,接收机端看到的信号是来自不同路径的具有不同时延和多普勒的分量信号的叠加,整体体现为一个相对原信号具有衰落和频移的接收信号。而对信道进行延迟多普勒分析,则有助于收集每个路径的延迟多普勒信息,从而反映信道的延迟多普勒响应。
OTFS调制技术的全称是正交时频空域(Orthogonal Time Frequency Space,OTFS)调制。该技术把一个大小为M×N的数据包中的信息,例如正交幅度调制(Quadrature Amplitude Modulation,QAM)符号,在逻辑上映射到二维延迟多普勒平面上的一个M×N格点中,即每个格点内的脉冲调制了数据包中的一个QAM符号。进一步的,通过设计一组正交二维基函数,将M×N的 延迟多普勒域平面上的数据集变换到N×M的时频域平面上,这种变换在数学上被称为逆辛傅里叶变换(Inverse Sympletic Finite Fourier Transform,ISFFT)。对应的,从时频域到延迟多普勒域的变换被称为辛傅里叶变换(Sympletic Finite Fourier Transform,SFFT)。其背后的物理意义是,信号的延迟和多普勒效应,实际上是一种信号通过多经信道后的一系列具有不同时间和频率偏移的回波的线性叠加效应。从这个意义上说,延迟多普勒分析和时频域分析可以通过所述的ISFFT和SFFT相互转换得到。
其中,上述格点可以理解为资源元素(Resource element,RE),上述的转换关系如图2所示:
由此,OTFS技术把时变多径信道变换为一个(一定持续时间内的)时不变二维延迟多普勒域信道,从而直接体现了无线链路中由于收发机之间的反射体相对位置的几何特性造成的信道延迟多普勒响应特性。这样的好处是,OTFS消除了传统时频域分析跟踪时变衰落特性的难点,转而通过延迟多普勒域分析抽取出时频域信道的所有分集特性。实际系统中,信道的延迟径和多普勒频移的数量远远小于信道的时域和频域响应数量,所以用延迟多普勒域表征的信道较为简洁。所以利用OTFS技术在延迟多普勒域进行分析,可以使参考信号的封装更加紧密和灵活,尤其有利于支持大规模多输入多输出(Multi-User Multiple-Input Multiple-Output,MIMO)系统中的大型天线阵列。
OTFS调制定义在延迟多普勒平面上的QAM符号,变换到时频域进行发送,收端回到延迟多普勒域处理。因而可以引入延迟多普勒域上的无线信道响应分析方法。信号通过线性时变无线信道时,其信道响应在不同平面下的表达之间的关系如图3所示:
在图3中,SFFT变换公式为:
h(τ,v)=∫∫H(t,f)e -j2π(vt-fτ)dτdv    (1)
对应的,ISFFT的变换公式为:
H(t,f)=∫∫h(τ,v)e j2π(vt-fτ)dτdv    (2)
信号通过线性时变信道时,令时域接收信号为r(t),其对应的频域接收信号为R(f),且有
Figure PCTCN2021116472-appb-000003
r(t)可以表示为如下形式:
r(t)=s(t)*h(t)=∫g(t,τ)s(t-τ)dτ    (3)
由图3关系可知,
g(t,τ)=∫h(v,τ)e j2πvtdv    (4)
把(4)代入(3)可得:
r(t)=∫∫h(ν,τ)s(t-τ)e j2πνtdτdν    (5)
由图3所示关系,经典傅里叶变换理论,以及公式(5)可知,
Figure PCTCN2021116472-appb-000004
其中,v表示延迟变量,τ表示多普勒变量,f表示频率变量,t表示时间变量。
等式(6)暗示,在OTFS系统进行延迟多普勒域的分析,可以依托现有的建立在时频域上的通信框架,在收发端加上额外的信号处理过程来实现。并且,所述额外的信号处理仅由傅里叶变换组成,可以完全通过现有的硬件实现,无需新增模块。这种与现有硬件体系的良好兼容性大大方便了OTFS系统的应用。实际系统中,OTFS技术可以很方便的被实现为一个滤波OFDM系统的前置和后置处理模块,因此与现有的NR技术架构下的多载波系统有着很好的兼容性。
OTFS与多载波系统结合时,发送端的实现方式如下:含有需要发送信息的QAM符号由延迟多普勒平面的波形承载,经过一个二维的ISFFT,转换为传统多载波系统中的时频域平面的波形,再经过符号级的一维逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)和串并转换,变成时域采样点发送出去。
OTFS系统的接收端大致是一个发送端的逆过程:时域采样点经接收机接收后,经过并传转换和符号级的一维快速傅里叶变换(Fast Fourier Transform,FFT),先变换到时频域平面上的波形,再经过SFFT,转换为延迟多普勒域平面的波形,对由延迟多普勒域波形承载的QAM符号进行接收机的处理:包括信道估计和均衡,解调和译码等。
OTFS调制的优越性主要体现在以下方面:
OTFS调制把收发机之间的时频域中的时变衰落信道转化为延迟多普勒域中的确定性的无衰落信道。在延迟多普勒域中,一次发送的一组信息符号中的每个符号都经历相同的静态信道响应和信噪比(Signal Noise Ratio,SNR)。
OTFS系统通过延迟多普勒图像解析出物理信道中的反射体,并用接收均衡器对来自不同反射路径的能量进行相干合并,实际上提供了一个无衰落的静态信道响应。利用上述静态信道特性,OTFS系统无需像OFDM系统一样引入闭环信道自适应来应对快变的信道,因而提升了系统健壮性并降低了系统设计的复杂度。
由于延迟多普勒域中的延迟-多普勒的状态数量远小于时频域的时间-频率状态数量,因而OTFS系统中的信道可以表达为非常紧凑的形式。OTFS系统的信道估计开销更少,更加精确。
OTFS的另一个优越性体现应对极致多普勒信道上。通过适当信号处理参数下对延迟多普勒图像的分析,信道的多普勒特性会被完整呈现,因而有利于多普勒敏感场景(例如高速移动和毫米波)下的信号分析和处理。
综上,OTFS系统中的信道估计采用如下方法:发射机将导频脉冲映射在延迟多普勒域上,接收机利用对导频的延迟多普勒图像分析,估计出延迟多普勒域的信道响应h(v,τ),进而可以根据图3关系得到时频域的信道响应表达式,方便应用时频域的已有技术进行信号分析和处理。延迟多普勒平面上的导频映射可以采取如图4方式。
在图4中,发送信号位于(l p,k p)的单点导频(401),环绕在其周围的面积为(2l v+1)(4k v+1)-1的保护符号(402),以及MN-(2l v+1)(4k v+1)的数据部分组成。而在接收端,在延迟多普勒域格点的保护带中出现了两个偏移峰(如4021和4022),意味着信道除了主径外存在两个具有不同延迟多普勒的次要路径。对所有的次要路径的幅度、延迟和多普勒参数进行测量,就得到了信道的延迟多普勒域表达式,即h(v,τ)。为了防止接收信号格点上数据对导频符号的污染,导致不准确的信道估计,保护符号的面积应该满足如下条件:
l τ≥τ maxMΔf,k v≥v maxNΔT   (7)
其中,τ max和v max分别是信道所有路径的最大时延和最大多普勒频移,多个保护符号402环绕单点导频401形成保护带,该多个保护符号402对应为空白资源元素。
图2和图4中的M*N平面,实际上是一个二维延迟多普勒平面上的离散点值,每个栅格对应了一个量化后的延迟-多普勒对(τ i,v j)。当总的资源数一定时(带宽和时间一定),如果M*N越大,栅格数就越多,相当于提升了离散延迟-多普勒点的量化精度。当M越大,则通过延迟多普勒分析可以分辨的延迟数量就越多,对此可以称之为提升了延迟分辨率;当N越大,则通过延迟多普勒分析可以分辨的多普勒偏移值就越多,对此可以称之为提升了多普勒分辨率。随着多径和多普勒分辨率的提升,我们获得的信道响应的信息就更丰富,从而可以更精确的估计信道,进而提高接收机译码表现。
然而,通过增大M*N的值带来的增益是有上限的。信道的延迟多普勒特性实际上是因为信号经历了多径信道产生的。信道的多径数量取决于信道中反射体数量,因此不可能无穷大。而信道的延迟和多普勒响应的状态数也受限于多径数量,也不可能无穷大。所以,一定数量大小的M*N即可以满足系统设计需求。另一方面,M*N的大小还要考虑到数据块的大小。对于小包数据,理论上只需要较小的M*N的资源就能承载。但是较小的M*N暗示这较小的信道分辨率,存在信道估计性能下降侧风险。但是,如果为了追求信道分辨率一味增大M*N,则对于小包数据则会因为过度设计造成资源浪费。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的帧结构指示方法进行详细地说明。
请参见图5,图5是本申请实施例提供的一种帧结构指示方法的流程图,该方法由第一设备执行,如图5所示,包括以下步骤:
步骤501,根据待传输的用户数据确定第一帧结构;
步骤502,在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。
本申请实施例中,上述第二设备为传输用户数据的设备。具体地,可以为接收用户数据的设备,也可以为发送用户数据的设备。上述待传输的用户 数据可以理解为,在接下来需在第一设备和第二设备之间传输的数据,可以理解为第一设备发送给第二设备的用户数据,也可以为理解为第二设备发送给第一设备的用户数据。
应理解,在指示第一帧结构之前,第一设备与第二设备进行数据传输采用第二帧结构;在指示第一帧结构之后,第一设备与第二设备进行数据传输可采用第一帧结构。本实施例中,可以基于第一帧结构对待传输的用户数据进行传输。
本申请实施例中,通过根据待传输的用户数据确定第一帧结构;在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。这样,可以根据待传输的用户数据灵活调整帧结构,从而可以保证估计准确度的同时,减小资源的浪费。
可选地,在一些实施例中,所述指示信息携带有所述第一帧结构的索引值,其中,不同的帧结构对应不同的索引值。
本申请实施例可以预先配置或者协议约定一组帧结构在延迟维度的取值M和一组帧结构在多普勒维度的取值N,其中,不同的M可以和不同的N进行关联对应一个索引值,即一套M和N的取值对应一个索引值。此时,指示信息可以通过指示M和N关联的索引值,以同时指示M和N的取值。例如索引1与帧结构1(M1,N1)关联,索引2与帧结构2(M2,N2)关联,指示信息可以直接指示索引1或者索引2指示对应的帧结构。可选地,一套M和N的取值可以理解为套帧结构或者一套帧结构配置。
当然在一些实施例中,N和M未进行关联,其中,N的不同取值可以与第一类索引中不同的索引值关联,M的不同取值可以与第二类索引中不同的索引值关联。例如,N1与索引值A1关联,N2与索引值A2关联,M1与索引值B1关联,M2与索引值B2关联。此时,上述指示信息可以分别指示N和M的索引,从而指示对应的帧结构。例如,上述指示信息携带了B2和A1,则指示的帧结构为(M2,N1)。
可选地,在一些实施例中,所述指示信息包括:用于指示延迟多普勒域的缩放因子,通过所述缩放因子和预设的基准帧结构指示所述第一帧结构。
本申请实施例中,上述基准帧结构可以理解为预先配置的帧结构,即可 以预先协议约定或者预先配置一基准帧结构。在进行帧结构变化时,可以通过缩放因子指示当前使用的帧结构。这样,可以仅定义一组基本的M和N,通过缩放因子来进行进一步灵活调整帧结构,从而可以减小信令的开销。
需要说明的是,上述缩放因子可以为一个缩放因子也可以为两个缩放因子,当为一个缩放因子时,表示第一帧结构基于基准帧结构在延迟维度的缩放比例和在多普勒维度的缩放比例相同。当采用两个缩放因子时,每一个缩放因子表示一个维多的缩放比例。例如,所述缩放因子包括第一缩放因子α和第二缩放因子β,所述第一缩放因子用于指示所述基准帧结构和所述第一帧结构在延迟维度的缩放比例;所述第二缩放因子用于指示所述基准帧结构和所述第一帧结构在多普勒维度的缩放比例。本申请实施例通过设置第一缩放因子和第二缩放因子,从而可以在不同的维度灵活调整缩放比例,提高了帧结构调整的灵活性。
可选地,在一些实施例中,上述根据待传输的用户数据确定第一帧结构包括:
确定所述正交幅度调制(Quadrature Amplitude Modulation,QAM)符号的数量q;
根据q在预设帧结构表中确定所述第一帧结构;
其中,所述预设关联表包括所述预设帧结构表包括帧结构在延迟维度的至少两个取值和帧结构在多普勒维度的至少两个取值。
本申请实施例中,可以通常时域的长度N是数量有限的一组协议规定值,首先选择N,再根据q选取M,从而确定第一帧结构。
可选地,N取值集合{N i},i∈N +中,不同大小的N i需要满足倍数关系,例如N 0=2N 1=4N 2的关系。这样在时域自适应过程中,发生时域错乱时,通过选择合适的N i,短时间能在时间上对齐,适合一些特定场景或者小区间联合发送的需求,例如,多用户-多输入多输出(Multi User Multiple Input Multiple Out-put,MU-MIMO)的场景,多点协调(Coordinated Multiple Points,COMP)的需求。
应理解,上述q的确定方式可以有多种,在一些可选实施例中,在所述用户数据包括原始信息比特a、编码效率r、校验位长度c和QAM调制阶数k的 情况下,所述确定所述QAM符号的数量q包括:
根据
Figure PCTCN2021116472-appb-000005
确定所述QAM符号的数量q。
在一些实施例中,在帧结构的子载波间隔、帧结构在延迟维度的取值以及帧结构在多普勒维度的取值的关联关系的情况下,所述q由传输TB的大小以及预设的MCS确定。
本申请实施例中,上述帧结构的子载波间隔Δf、帧结构在延迟维度的取值M以及帧结构在多普勒维度的取值N的关联关系可以理解为,预先协议约定或者网络配置至少一套(M,N,Δf),即在上述预设帧结构表中增加Δf,且在预设帧结构表中,M、N和Δf具有关联关系,例如一组M、N和Δf与一个索引值关联。
可选地,在一些实施例中,所述第一帧结构包含的资源元素的数量大于或等于所述用户数据对应的正交幅度调制QAM符号的数量。
可选地,在另一写实施例中,所述第一帧结构在延迟维度的取值M i满足:
Figure PCTCN2021116472-appb-000006
其中,q为所述用户数据对应的QAM符号的数量,N i为所述第一帧结构在多普勒维度的取值,B为可用的带宽,Δf为所述第一帧结构的子载波间隔。
可选地,在一些实施例中,所述在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息的步骤之后,方法还包括:
根据所述第一帧结构在延迟维度的取值以及所述第一帧结构在多普勒维度的取值进行速率匹配,确定调制和编码方案(Modulation and coding scheme,MCS)。
本申请实施例中,由于M和N为一组离散点值,未必能够与q恰好相等,通过进行速率匹配可以获得较优的MCS,从而进一步提升性能。例如,选定的第一帧结构通过(M i,N i)表示,可以基于根据选定的M i和N i进行速率匹配,具体可以通过调节以下公式中的r和k实现:
Figure PCTCN2021116472-appb-000007
需要说明的是,在一些实施例中,所述根据用户数据确定第一帧结构的步骤之前,所述方法还包括:
接收所述第二设备发送的推荐帧结构信息;
其中,所述推荐帧结构信息用于辅助所述第一设备确定所述第一帧结构,所述推荐帧结构信息用于指示以下至少一项:
帧结构在延迟维度的至少一个取值;
帧结构在多普勒维度的至少一个取值。
本申请实施例中,上述第一帧结构可以为推荐帧结构信息中某一帧结构在延迟维度的取值和某一帧结构在多普勒维度的取值的组合,第一帧结构也可以是仅在推荐帧结构信息选取的某一个维度的取值,第一帧结构还可以是不基于推荐帧结构信息任一维度的取值,确定的帧结构,在此不做进一步的限定。由于本申请实施例中,第二设备发送了推荐帧结构信息,以辅助第一设备确定第一帧结构。
为了更好的理解本申请,以下通过具体实施例进行详细说明。
实施例一:
协议以表格形式预先定义一组M和N。当前小区所用的M和N表格通过广播信道或者专用RRC发送。小区通过专用信令指示UE使用M和N表格中的具体项。可选的,小区通过专用信令进一步指示UE使用的M和N在延迟和多普勒域的缩放因子α和β。
具体指示方式,可以通过下行控制信息(Downlink Control Information,DCI)或专有信令显示指示,也可以通过业务类型和OTFS符号映射模式(M和N)的关联关系隐式指示,也可以通过传输块(Transport Block,TB)大小和缩放因子的关联关系隐式指示。其中专有信令可以为媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)或无线资源控制(Radio Resource Control,RRC)等。
例如,可以通过RRC配置多套M和N的组合,进一步通过MAC CE或DCI指示其中某一套。
可选地,一些实施例中,小区通过专用信令指示UE使用M和N表格中的具体项之前,UE可以向小区发送偏好的M和N索引,可以是M和N表格中的一个或者多个。
实施例二,在以上实施例的基础上,在M和N表格中增加一个参数Δf。M 和N要满足MV≥q,即分配资源数要大于用户数据。此外,用户带宽B受限的情况下,需要满足B≥MΔf。因此,M取值范围为
Figure PCTCN2021116472-appb-000008
因为一种帧结构中,通常时域的长度N是数量有限的一组协议规定值,首先选择N。再根据用户发送的数据量大小,确定频域的长度
Figure PCTCN2021116472-appb-000009
之后需要根据求得的M确定Δf,使之满足
Figure PCTCN2021116472-appb-000010
因此,协议可以预定义一组(M,N,Δf)的表格,使之满足上述关系。需要使用时,由小区通过上述实施例一的方式指示给UE。
可选地,N取值集合{N i},i∈N +中,不同大小的N i需要满足倍数关系,例如N 0=2N 1=4N 2的关系。这样在时域自适应过程中,发生时域错乱时,通过选择合适的N i,短时间能在时间上对齐,适合一些特定场景或者小区间联合发送的需求,例如,MU-MIMO的场景,COMP的需求。
实施例三:M取值范围为
Figure PCTCN2021116472-appb-000011
因为一种帧结构中,通常时域的长度N是数量有限的一组协议规定值,首先选择N。再根据用户可用带宽B,在(M,N,Δf)表中选出合适值使得MΔf≤B。
与实施例二的区别在于,实施例二通过可以预定义一组(M,N,Δf)的表格,实施例三中可以首先选择N,再根据用户可用带宽B,在(M,N,Δf)表中选出合适值使得MΔf≤B。也就是说,在实施例三中,Δf无需与(M,N)关联,直接通过MΔf≤B确定M和Δf,从而得到选定的帧结构。
实施例四
可选地,当M由实施例二中的方法配置时,用户需要先确定传输的符号数q。q由预先指定的MCS和TB大小确定。
当M由实施例三中的方法配置时,用户需要根据物理资源数,即M和N对用户进行速率匹配。假设已知此时发送参数为(αM,βN)。速率匹配可以通过调节r和k实现,
Figure PCTCN2021116472-appb-000012
用户可以先根据(9)计算编码速率r。当r小于一定阈值r o时,采用当前计 算得到的r值。当r大于一定阈值r o时,认为码率太高不适用,转而提高k,根据(9)计算新的r。如此循环往复,最终目的是使r等于r o
或者,当协议中规定一个MCS表格时,用户根据(9)的计算,选取一组合适的(r,k)组合使之满足
Figure PCTCN2021116472-appb-000013
请参见图6,图6是本申请实施例提供的一种帧结构更新方法的流程图,该方法由第二设备执行,如图6所示,包括以下步骤:
步骤601,接收第一设备发送的指示信息;其中,所述指示信息用于指示第一帧结构;
步骤602,将所述第二设备对应的第二帧结构更新为所述第一帧结构;
其中,所述第一帧结构根据待传输的用户数据确定。
可选地,所述指示信息携带有所述第一帧结构的索引值,其中,不同的帧结构对应不同的索引值。
可选地,所述指示信息包括:用于指示延迟多普勒域的缩放因子,通过所述缩放因子和预设的基准帧结构指示所述第一帧结构。
可选地,所述缩放因子包括第一缩放因子和第二缩放因子,所述第一缩放因子用于指示所述基准帧结构和所述第一帧结构在延迟维度的缩放比例;所述第二缩放因子用于指示所述基准帧结构和所述第一帧结构在多普勒维度的缩放比例。
可选地,所述方法还包括:
根据所述第一帧结构在延迟维度的取值以及所述第一帧结构在多普勒维度的取值进行速率匹配,确定调制和编码方案MCS。
可选地,所述第一帧结构包含的资源元素的数量大于或等于所述用户数据对应的正交幅度调制QAM符号的数量。
可选地,所述第一帧结构在延迟维度的取值M i满足:
Figure PCTCN2021116472-appb-000014
其中,q为所述用户数据对应的QAM符号的数量,N i为所述第一帧结构在多普勒维度的取值,B为可用的带宽,Δf为所述第一帧结构的子载波间隔。
可选地,在预先确定帧结构的子载波间隔、帧结构在延迟维度的取值以及帧结构在多普勒维度的取值的关联关系的情况下,所述q由传输TB的大小 以及预设的MCS确定。
可选地,所述接收第一设备发送的指示信息的步骤之前,所述方法还包括:
发送的推荐帧结构信息;
其中,所述推荐帧结构信息用于辅助所述第一设备确定所述第一帧结构,所述推荐帧结构信息用于指示以下至少一项:
帧结构在延迟维度的至少一个取值;
帧结构在多普勒维度的至少一个取值。
需要说明的是,本实施例作为图5所示的实施例对应的第二设备的实施方式,其具体的实施方式可以参见图5所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
需要说明的是,本申请实施例提供的帧结构指示方法,执行主体可以为帧结构指示装置,或者,该帧结构指示装置中的用于执行帧结构指示方法的控制模块。本申请实施例中以帧结构指示装置执行帧结构指示方法为例,说明本申请实施例提供的帧结构指示装置。
请参见图7,图7是本申请实施例提供的一种帧结构指示装置设备的结构图,如图7所示,帧结构指示装置700包括:
第一确定模块701,用于根据待传输的用户数据确定第一帧结构;
第一发送模块702,用于在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。
可选地,所述指示信息携带有所述第一帧结构的索引值,其中,不同的帧结构对应不同的索引值。
可选地,所述指示信息包括:用于指示延迟多普勒域的缩放因子,通过所述缩放因子和预设的基准帧结构指示所述第一帧结构。
可选地,所述缩放因子包括第一缩放因子和第二缩放因子,所述第一缩放因子用于指示所述基准帧结构和所述第一帧结构在延迟维度的缩放比例;所述第二缩放因子用于指示所述基准帧结构和所述第一帧结构在多普勒维度的缩放比例。
可选地,所述第一确定模块701还用于:根据所述第一帧结构在延迟维 度的取值以及所述第一帧结构在多普勒维度的取值进行速率匹配,确定调制和编码方案MCS。
可选地,所述第一帧结构包含的资源元素的数量大于或等于所述用户数据对应的正交幅度调制QAM符号的数量。
可选地,所述第一确定模块701具体用于:
确定所述QAM符号的数量q;
根据q在预设帧结构表中确定所述第一帧结构;
其中,所述预设关联表包括所述预设帧结构表包括帧结构在延迟维度的至少两个取值和帧结构在多普勒维度的至少两个取值。
可选地,所述第一确定模块701具体用于:
在所述用户数据包括原始信息比特a、编码效率r、校验位长度c和QAM调制阶数k的情况下,根据
Figure PCTCN2021116472-appb-000015
确定所述QAM符号的数量q。
可选地,所述第一帧结构在延迟维度的取值M i满足:
Figure PCTCN2021116472-appb-000016
其中,q为所述用户数据对应的QAM符号的数量,N i为所述第一帧结构在多普勒维度的取值,B为可用的带宽,Δf为所述第一帧结构的子载波间隔。
可选地,在帧结构的子载波间隔、帧结构在延迟维度的取值以及帧结构在多普勒维度的取值的关联关系的情况下,所述q由传输TB的大小以及预设的MCS确定。
可选地,所述帧结构指示装置700还包括:
第一接收模块,用于接收所述第二设备发送的推荐帧结构信息;
其中,所述推荐帧结构信息用于辅助所述第一设备确定所述第一帧结构,所述推荐帧结构信息用于指示以下至少一项:
帧结构在延迟维度的至少一个取值;
帧结构在多普勒维度的至少一个取值。
本申请实施例提供的网络设备能够实现图5的方法实施例中第一设备实现的各个过程,为避免重复,这里不再赘述。
需要说明的是,本申请实施例提供的帧结构更新方法,执行主体可以为帧结构更新装置,或者,该帧结构更新装置中的用于执行帧结构更新方法的 控制模块。本申请实施例中以帧结构更新装置执行帧结构更新方法为例,说明本申请实施例提供的帧结构更新装置。
请参见图8,图8是本申请实施例提供的一种帧结构更新装置设备的结构图,如图8所示,帧结构更新装置800包括:
第二接收模块801,用于接收第一设备发送的指示信息;其中,所述指示信息用于指示第一帧结构;
更新模块802,用于将第二设备对应的第二帧结构更新为所述第一帧结构;
其中,所述第一帧结构根据待传输的用户数据确定。
可选地,所述指示信息携带有所述第一帧结构的索引值,其中,不同的帧结构对应不同的索引值。
可选地,所述指示信息包括:用于指示延迟多普勒域的缩放因子,通过所述缩放因子和预设的基准帧结构指示所述第一帧结构。
可选地,所述缩放因子包括第一缩放因子和第二缩放因子,所述第一缩放因子用于指示所述基准帧结构和所述第一帧结构在延迟维度的缩放比例;所述第二缩放因子用于指示所述基准帧结构和所述第一帧结构在多普勒维度的缩放比例。
可选地,所述帧结构更新装置800还包括:
第二确定模块,用于根据所述第一帧结构在延迟维度的取值以及所述第一帧结构在多普勒维度的取值进行速率匹配,确定调制和编码方案MCS。
可选地,所述第一帧结构包含的资源元素的数量大于或等于所述用户数据对应的正交幅度调制QAM符号的数量。
可选地,所述第一帧结构在延迟维度的取值M i满足:
Figure PCTCN2021116472-appb-000017
其中,q为所述用户数据对应的QAM符号的数量,N i为所述第一帧结构在多普勒维度的取值,B为可用的带宽,Δf为所述第一帧结构的子载波间隔。
可选地,在预先确定帧结构的子载波间隔、帧结构在延迟维度的取值以及帧结构在多普勒维度的取值的关联关系的情况下,所述q由传输TB的大小以及预设的MCS确定。
可选地,所述帧结构更新装置800还包括:
第二发送模块,用于发送的推荐帧结构信息;
其中,所述推荐帧结构信息用于辅助所述第一设备确定所述第一帧结构,所述推荐帧结构信息用于指示以下至少一项:
帧结构在延迟维度的至少一个取值;
帧结构在多普勒维度的至少一个取值。
本申请实施例提供的网络设备能够实现图6的方法实施例中第二设备实现的各个过程,为避免重复,这里不再赘述。
本申请实施例中的帧结构指示装置和帧结构更新装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的用户设备11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的帧结构指示装置和帧结构更新装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的帧结构指示装置和帧结构更新装置能够实现图5至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901,存储器902,存储在存储器902上并可在所述处理器901上运行的程序或指令,例如,该通信设备900为第二设备时,该程序或指令被处理器901执行时实现上述帧结构更新方法实施例的各个过程,且能达到相同的技术效果。该通信设备900为第一设备时,该程序或指令被处理器901执行时实现上述帧结构指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备,该网络侧设备可以是第一设备,也可以是第二设备。当第一设备为终端时,第二设备可以是另一终端或网络侧设备。当第一设备为网络侧设备时,第二设备为终端。如图10 所示,该网络侧设备1000包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
上述频带处理装置可以位于基带装置1003中,以上实施例中第一设备执行的方法可以在基带装置1003中实现,该基带装置1003包括处理器1004和存储器1005。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器1004,与存储器1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的第一设备操作。
该基带装置1003还可以包括网络接口1006,用于与射频装置1002交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,其中,当所述网络侧设备为第一设备时,处理器1004调用存储器1005中的指令或程序控制执行图7所示各模块执行的方法,当网络侧设备为第二设备时,处理器1004调用存储器1005中的指令或程序控制执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
图11为实现本申请各个实施例的一种终端设备的硬件结构示意图。
该终端设备1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等部件。
本领域技术人员可以理解,终端设备1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器 (Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101将来自网络设备的下行数据接收后,给处理器1110处理;另外,将上行的数据发送给网络设备。通常,射频单元1101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1110可包括一个或多个处理单元;可选的,处理器1110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,当第一设备为终端,第二设备为另一终端或网络侧设备时,
处理器1110,用于根据待传输的用户数据确定第一帧结构;
射频单元1101,用于在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。
应理解,本实施例中,上述处理器1110和射频单元1101能够实现图5的方法实施例中第二设备实现的各个过程,为避免重复,这里不再赘述。
当第二设备为终端,第一设备为网络侧设备或另一终端设备时,
射频单元1101,用于接收第一设备发送的指示信息;其中,所述指示信息用于指示第一帧结构;
处理器1110,用于将所述第二设备对应的第二帧结构更新为所述第一帧结构;
其中,所述第一帧结构根据待传输的用户数据确定。
应理解,本实施例中,上述处理器1110和射频单元1101能够实现图6的方法实施例中第二设备实现的各个过程,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述帧结构指示方法或帧结构更新方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现上述帧结构指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物 品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (33)

  1. 一种帧结构指示方法,由第一设备执行,包括:
    根据待传输的用户数据确定第一帧结构;
    在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。
  2. 根据权利要求1所述的方法,其中,所述指示信息携带有所述第一帧结构的索引值,其中,不同的帧结构对应不同的索引值。
  3. 根据权利要求1所述的方法,其中,所述指示信息包括:用于指示延迟多普勒域的缩放因子,通过所述缩放因子和预设的基准帧结构指示所述第一帧结构。
  4. 根据权利要求3所述的方法,其中,所述缩放因子包括第一缩放因子和第二缩放因子,所述第一缩放因子用于指示所述基准帧结构和所述第一帧结构在延迟维度的缩放比例;所述第二缩放因子用于指示所述基准帧结构和所述第一帧结构在多普勒维度的缩放比例。
  5. 根据权利要求1所述的方法,其中,所述在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息的步骤之后,方法还包括:
    根据所述第一帧结构在延迟维度的取值以及所述第一帧结构在多普勒维度的取值进行速率匹配,确定调制和编码方案MCS。
  6. 根据权利要求1所述的方法,其中,所述第一帧结构包含的资源元素的数量大于或等于所述用户数据对应的正交幅度调制QAM符号的数量。
  7. 根据权利要求6所述的方法,其中,所述根据待传输的用户数据确定第一帧结构包括:
    确定所述QAM符号的数量q;
    根据q在预设帧结构表中确定所述第一帧结构;
    其中,所述预设关联表包括所述预设帧结构表包括帧结构在延迟维度的至少两个取值和帧结构在多普勒维度的至少两个取值。
  8. 根据权利要求7所述的方法,其中,在所述用户数据包括原始信息比特a、编码效率r、校验位长度c和QAM调制阶数k的情况下,所述确定所述QAM 符号的数量q包括:
    根据
    Figure PCTCN2021116472-appb-100001
    确定所述QAM符号的数量q。
  9. 根据权利要求6所述的方法,其中,所述第一帧结构在延迟维度的取值M i满足:
    Figure PCTCN2021116472-appb-100002
    其中,q为所述用户数据对应的QAM符号的数量,N i为所述第一帧结构在多普勒维度的取值,B为可用的带宽,Δf为所述第一帧结构的子载波间隔。
  10. 根据权利要求9所述的方法,其中,在帧结构的子载波间隔、帧结构在延迟维度的取值以及帧结构在多普勒维度的取值的关联关系的情况下,所述q由传输TB的大小以及预设的MCS确定。
  11. 根据权利要求1所述的方法,其中,所述根据用户数据确定第一帧结构的步骤之前,所述方法还包括:
    接收所述第二设备发送的推荐帧结构信息;
    其中,所述推荐帧结构信息用于辅助所述第一设备确定所述第一帧结构,所述推荐帧结构信息用于指示以下至少一项:
    帧结构在延迟维度的至少一个取值;
    帧结构在多普勒维度的至少一个取值。
  12. 一种帧结构更新方法,由第二设备执行,包括:
    接收第一设备发送的指示信息;其中,所述指示信息用于指示第一帧结构;
    将所述第二设备对应的第二帧结构更新为所述第一帧结构;
    其中,所述第一帧结构根据待传输的用户数据确定。
  13. 根据权利要求12所述的方法,其中,所述指示信息携带有所述第一帧结构的索引值,其中,不同的帧结构对应不同的索引值。
  14. 根据权利要求12所述的方法,其中,所述指示信息包括:用于指示延迟多普勒域的缩放因子,通过所述缩放因子和预设的基准帧结构指示所述第一帧结构。
  15. 根据权利要求14所述的方法,其中,所述缩放因子包括第一缩放因子和第二缩放因子,所述第一缩放因子用于指示所述基准帧结构和所述第一帧 结构在延迟维度的缩放比例;所述第二缩放因子用于指示所述基准帧结构和所述第一帧结构在多普勒维度的缩放比例。
  16. 根据权利要求12所述的方法,还包括:
    根据所述第一帧结构在延迟维度的取值以及所述第一帧结构在多普勒维度的取值进行速率匹配,确定调制和编码方案MCS。
  17. 根据权利要求12所述的方法,其中,所述第一帧结构包含的资源元素的数量大于或等于所述用户数据对应的正交幅度调制QAM符号的数量。
  18. 根据权利要求17所述的方法,其中,所述第一帧结构在延迟维度的取值M i满足:
    Figure PCTCN2021116472-appb-100003
    其中,q为所述用户数据对应的QAM符号的数量,N i为所述第一帧结构在多普勒维度的取值,B为可用的带宽,Δf为所述第一帧结构的子载波间隔。
  19. 根据权利要求18所述的方法,其中,在预先确定帧结构的子载波间隔、帧结构在延迟维度的取值以及帧结构在多普勒维度的取值的关联关系的情况下,所述q由传输TB的大小以及预设的MCS确定。
  20. 根据权利要求12所述的方法,其中,所述接收第一设备发送的指示信息的步骤之前,所述方法还包括:
    发送的推荐帧结构信息;
    其中,所述推荐帧结构信息用于辅助所述第一设备确定所述第一帧结构,所述推荐帧结构信息用于指示以下至少一项:
    帧结构在延迟维度的至少一个取值;
    帧结构在多普勒维度的至少一个取值。
  21. 一种帧结构指示装置,包括:
    第一确定模块,用于根据待传输的用户数据确定第一帧结构;
    第一发送模块,用于在所述第一帧结构与第二设备对应的第二帧结构不同的情况下,发送指示信息,所述指示信息用于指示所述第一帧结构。
  22. 根据权利要求21所述的装置,其中,所述指示信息携带有所述第一帧结构的索引值,其中,不同的帧结构对应不同的索引值。
  23. 根据权利要求21所述的装置,其中,所述指示信息包括:用于指示延迟多普勒域的缩放因子,通过所述缩放因子和预设的基准帧结构指示所述第 一帧结构。
  24. 根据权利要求23所述的装置,其中,所述缩放因子包括第一缩放因子和第二缩放因子,所述第一缩放因子用于指示所述基准帧结构和所述第一帧结构在延迟维度的缩放比例;所述第二缩放因子用于指示所述基准帧结构和所述第一帧结构在多普勒维度的缩放比例。
  25. 一种帧结构更新装置,包括:
    第二接收模块,用于接收第一设备发送的指示信息;其中,所述指示信息用于指示第一帧结构;
    更新模块,用于将第二设备对应的第二帧结构更新为所述第一帧结构;
    其中,所述第一帧结构根据待传输的用户数据确定。
  26. 根据权利要求25所述的装置,其中,所述指示信息携带有所述第一帧结构的索引值,其中,不同的帧结构对应不同的索引值。
  27. 根据权利要求25所述的装置,其中,所述指示信息包括:用于指示延迟多普勒域的缩放因子,通过所述缩放因子和预设的基准帧结构指示所述第一帧结构。
  28. 根据权利要求27所述的装置,其中,所述缩放因子包括第一缩放因子和第二缩放因子,所述第一缩放因子用于指示所述基准帧结构和所述第一帧结构在延迟维度的缩放比例;所述第二缩放因子用于指示所述基准帧结构和所述第一帧结构在多普勒维度的缩放比例。
  29. 一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至11中任一项所述的帧结构指示方法中的步骤,或者所述程序被所述处理器执行时实现如权利要求12至20中任一项所述的帧结构更新方法中的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指被处理器执行时实现如权利要求1至11中任一项所述的帧结构指示方法的步骤,或者所述程序或指令被处理器执行时实现如权利要求12至20中任一项所述的帧结构更新方法的步骤。
  31. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至11中任一 项所述的帧结构指示方法中的步骤,或者如权利要求12至20中任一项所述的帧结构更新方法中的步骤。
  32. 一种程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至11中任一项所述的帧结构指示方法中的步骤,或者如权利要求12至20中任一项所述的帧结构更新方法中的步骤。
  33. 一种通信设备,被配置成用于执行如权利要求1至11中任一项所述的帧结构指示方法中的步骤,或者如权利要求12至20中任一项所述的帧结构更新方法中的步骤。
PCT/CN2021/116472 2020-09-04 2021-09-03 帧结构指示方法、帧结构更新方法及相关设备 WO2022048642A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21863704.9A EP4210285A4 (en) 2020-09-04 2021-09-03 FRAME STRUCTURE INDICATION METHOD, FRAME STRUCTURE UPDATE METHOD AND RELATED DEVICES
US18/116,831 US20230208698A1 (en) 2020-09-04 2023-03-02 Frame structure indication method, frame structure updating method, and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010923662.1A CN114221837B (zh) 2020-09-04 2020-09-04 帧结构指示方法、帧结构更新方法及相关设备
CN202010923662.1 2020-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/116,831 Continuation US20230208698A1 (en) 2020-09-04 2023-03-02 Frame structure indication method, frame structure updating method, and related device

Publications (1)

Publication Number Publication Date
WO2022048642A1 true WO2022048642A1 (zh) 2022-03-10

Family

ID=80490675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116472 WO2022048642A1 (zh) 2020-09-04 2021-09-03 帧结构指示方法、帧结构更新方法及相关设备

Country Status (4)

Country Link
US (1) US20230208698A1 (zh)
EP (1) EP4210285A4 (zh)
CN (1) CN114221837B (zh)
WO (1) WO2022048642A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117640006A (zh) * 2022-08-10 2024-03-01 维沃移动通信有限公司 帧结构确定方法、装置、通信设备及存储介质
CN117714251A (zh) * 2022-09-07 2024-03-15 维沃移动通信有限公司 资源映射方法、装置和通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716143A (zh) * 2012-09-28 2014-04-09 中兴通讯股份有限公司 一种时分双工动态帧结构配置方法、确定方法和相应装置
WO2017188486A1 (ko) * 2016-04-29 2017-11-02 엘지전자 주식회사 2d 채널 기반의 전송 방식을 이용한 데이터 수신 방법 및 이를 위한 장치
CN107493603A (zh) * 2016-06-13 2017-12-19 华为技术有限公司 调整帧结构的方法、网络设备与终端
US20180262306A1 (en) * 2015-09-07 2018-09-13 Cohere Technologies Multiple access using orthogonal time frequency space modulation
US20190379422A1 (en) * 2016-02-25 2019-12-12 Cohere Technologies, Inc. Reference signal packing for wireless communications

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10616827B2 (en) * 2012-07-10 2020-04-07 Huawei Technologies Co., Ltd. System and method for dynamically configurable air interfaces
JP6437918B2 (ja) * 2012-10-22 2018-12-12 エルジー エレクトロニクス インコーポレイティド ユーザ機器の無線フレーム設定方法及びユーザ機器、並びに基地局の無線フレーム設定方法及び基地局
US9985760B2 (en) * 2015-03-31 2018-05-29 Huawei Technologies Co., Ltd. System and method for an adaptive frame structure with filtered OFDM
CN108781160B (zh) * 2015-11-18 2022-04-29 凝聚技术公司 正交时间频率空间调制技术
KR102632966B1 (ko) * 2016-02-05 2024-02-05 삼성전자 주식회사 이동 통신 시스템에서 복수개의 프레임 구조 운용 방법 및 장치
CN107294688B (zh) * 2016-03-31 2021-01-15 华为技术有限公司 数据传输的方法以及基站
JP2019145867A (ja) * 2016-07-05 2019-08-29 シャープ株式会社 基地局装置、端末装置および通信方法
CN108964832B (zh) * 2017-05-18 2021-06-25 维沃移动通信有限公司 一种传输方法、相关设备和系统
US11252772B2 (en) * 2019-01-03 2022-02-15 Qualcomm Incorporated Single transmitter switching for dual connectivity
US11888787B2 (en) * 2019-11-22 2024-01-30 Huawei Technologies Co., Ltd. Frame structures for wireless communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716143A (zh) * 2012-09-28 2014-04-09 中兴通讯股份有限公司 一种时分双工动态帧结构配置方法、确定方法和相应装置
US20180262306A1 (en) * 2015-09-07 2018-09-13 Cohere Technologies Multiple access using orthogonal time frequency space modulation
US20190379422A1 (en) * 2016-02-25 2019-12-12 Cohere Technologies, Inc. Reference signal packing for wireless communications
WO2017188486A1 (ko) * 2016-04-29 2017-11-02 엘지전자 주식회사 2d 채널 기반의 전송 방식을 이용한 데이터 수신 방법 및 이를 위한 장치
CN107493603A (zh) * 2016-06-13 2017-12-19 华为技术有限公司 调整帧结构的方法、网络设备与终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4210285A4 *

Also Published As

Publication number Publication date
EP4210285A4 (en) 2024-02-28
CN114221837B (zh) 2023-08-11
US20230208698A1 (en) 2023-06-29
CN114221837A (zh) 2022-03-22
EP4210285A1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
WO2022048639A1 (zh) 数据发送方法、数据接收处理方法及相关设备
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
WO2022048649A1 (zh) 导频接收处理方法、发送方法及相关设备
US20230208698A1 (en) Frame structure indication method, frame structure updating method, and related device
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
WO2022121892A1 (zh) 导频传输方法、装置、网络侧设备及存储介质
WO2022199664A1 (zh) 信息发送方法和设备
WO2022242573A1 (zh) 数据传输方法、装置、通信设备及存储介质
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
WO2022121891A1 (zh) 导频传输方法、装置、网络侧设备及存储介质
CN114142977A (zh) 导频处理方法及相关设备
WO2023109734A1 (zh) 干扰测量方法、装置、设备及存储介质
US20240146359A1 (en) Transmission processing method and apparatus, communication device, and readable storage medium
WO2022166880A1 (zh) 信号处理方法、装置、通信设备及存储介质
WO2022166882A1 (zh) 信号处理方法、装置、通信设备及存储介质
WO2023169544A1 (zh) 质量信息确定方法、装置、终端及存储介质
WO2023036226A1 (zh) 信号传输方法、装置、设备及存储介质
WO2023040956A1 (zh) 映射方法、装置、设备及存储介质
WO2023061491A1 (zh) 信息传输方法、装置及发送端
WO2023016338A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
WO2022012632A1 (zh) 信息发送方法、接收方法和通信设备
WO2023174058A1 (zh) 信道估计方法及无线感知设备
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
Jieping An improved training sequence based timing synchronization algorithm for MIMO-OFDM system
Liu et al. Channel estimation method for LTE downlink MIMO transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021863704

Country of ref document: EP

Effective date: 20230404