WO2023016338A1 - 数据传输处理方法、装置、通信设备及存储介质 - Google Patents

数据传输处理方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023016338A1
WO2023016338A1 PCT/CN2022/110267 CN2022110267W WO2023016338A1 WO 2023016338 A1 WO2023016338 A1 WO 2023016338A1 CN 2022110267 W CN2022110267 W CN 2022110267W WO 2023016338 A1 WO2023016338 A1 WO 2023016338A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
signal
ofdm
entity
data signal
Prior art date
Application number
PCT/CN2022/110267
Other languages
English (en)
French (fr)
Inventor
吴建明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023016338A1 publication Critical patent/WO2023016338A1/zh
Priority to US18/435,642 priority Critical patent/US20240178951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a data transmission processing method, device, communication device and storage medium.
  • Integrated Sensing And Communication In communication technology, in order to realize Integrated Sensing And Communication (ISAC) in communication, it is usually used to map different subcarriers and perform spectrum interleaving on different transmitting antennas to realize mutual orthogonality between transmitting antennas.
  • MIMO Multiple Input Multiple Output
  • OFDM orthogonal frequency division multiplex
  • the number of transmitting antennas is N
  • the periodic interval of mapping subcarriers is also at least N
  • the maximum distance that the radar can perceive will be reduced by N times. Therefore, there is a problem of poor performance of radar perception in the prior art.
  • Embodiments of the present application provide a data transmission processing method, device, communication device, and storage medium, which can solve the problem of poor radar sensing performance.
  • a data transmission processing method including:
  • the sending end spreads the data to be sent through K orthogonal sequences to obtain K orthogonal data matrices, where K is an integer greater than 1;
  • the sending end maps K orthogonal data matrices to different frequency division multiplexing OFDM subcarriers to obtain K first OFDM signals, and the first OFDM signals are spread spectrum data matrix OFDM signals;
  • the sending end performs fast Fourier transform IFFT processing on the kth first OFDM signal among the K first OFDM signals to obtain the kth first OFDM time domain signal, where k is less than or equal to K positive integer;
  • the sending end maps the kth first OFDM time domain signal to the kth sending antenna, and sends the first data signal through the kth sending antenna.
  • a data transmission processing method including:
  • the receiving end receives the target data signal
  • the receiving end preprocesses the target data signal to obtain a target time domain signal
  • the receiving end performs discrete Fourier transform on the target time domain signal to obtain a data matrix
  • the receiving end uses an orthogonal sequence to perform inverse spread spectrum processing on the data matrix to obtain a received signal;
  • the data matrix is an orthogonal data matrix.
  • a data transmission processing device including:
  • a spread spectrum module used to spread the data to be sent through K orthogonal sequences to obtain K orthogonal data matrices, where K is an integer greater than 1;
  • the first mapping module is used to map K orthogonal data matrices to different frequency division multiplexing OFDM subcarriers to obtain K first OFDM signals, and the first OFDM signals are spread spectrum data matrix OFDM signals;
  • the first conversion module is configured to perform IFFT processing on the kth first OFDM signal among the K first OFDM signals to obtain the kth first OFDM time domain signal, where k is less than or A positive integer equal to K;
  • the first sending module is configured to map the kth first OFDM time domain signal to the kth sending antenna, and send the first data signal through the kth sending antenna.
  • a data transmission processing device including:
  • the second receiving module is used for the receiving end to receive the target data signal
  • a preprocessing module used for the receiving end to preprocess the target data signal to obtain the target time domain signal
  • the second conversion module is used to perform discrete Fourier transform on the target time-domain signal to obtain a data matrix
  • An anti-spreading module configured to use an orthogonal sequence to perform anti-spreading processing on the data matrix to obtain a received signal when the target data signal is the first data signal;
  • the data matrix is an orthogonal data matrix.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor Implement the steps of the method described in the first aspect, or implement the steps of the method described in the second aspect.
  • a terminal including a processor and a communication interface, wherein the processor is used to: spread the data to be transmitted through K orthogonal sequences to obtain K orthogonal data matrices, where K is greater than 1 Integer; K orthogonal data matrices are mapped to different frequency division multiplexing OFDM subcarriers to obtain K first OFDM signals, and the first OFDM signals are spread spectrum data matrix OFDM signals; for the K first OFDM signals The k-th first OFDM signal in an OFDM signal is subjected to inverse fast Fourier transform IFFT processing to obtain the k-th first OFDM time-domain signal, where k is a positive integer less than or equal to K; the communication interface is used to transfer the The kth first OFDM time domain signal is mapped to the kth transmitting antenna, and the first data signal is transmitted through the kth transmitting antenna; or, the communication interface is used to receive the target data signal, and the processor is used to: Preprocessing the target data signal to obtain
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the When executed by the processor, the steps of the method described in the first aspect are realized.
  • a network side device including a processor and a communication interface, wherein the processor is used to: spread the data to be sent through K orthogonal sequences to obtain K orthogonal data matrices, where K is greater than An integer of 1; K orthogonal data matrices are mapped onto different frequency division multiplexing OFDM subcarriers to obtain K first OFDM signals, and the first OFDM signals are spread spectrum data matrix OFDM signals; for the K The kth first OFDM signal in the first OFDM signal is subjected to inverse fast Fourier transform IFFT processing to obtain the kth first OFDM time domain signal, k is a positive integer less than or equal to K; the communication interface is used to The kth first OFDM time domain signal is mapped to the kth sending antenna, and the first data signal is sent through the kth sending antenna.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect.
  • the embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, so as to implement the first aspect The steps of the method, or the steps of the method for realizing the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method, or implement the method as described in the second aspect.
  • the data to be sent is spread by K orthogonal sequences through the transmitting end to obtain K orthogonal data matrices, and K is an integer greater than 1; the transmitting end maps the K orthogonal data matrices On different frequency division multiplexing OFDM subcarriers, K first OFDM signals are obtained, and the first OFDM signals are spread spectrum data matrix OFDM signals; The k first OFDM signals are subjected to inverse fast Fourier transform IFFT processing to obtain the k first OFDM time domain signal, where k is a positive integer less than or equal to K; the sending end converts the k first OFDM The time domain signal is mapped to the kth sending antenna, and the first data signal is sent through the kth sending antenna.
  • the MIMO transmitting antennas can be made orthogonal, and the MIMO space diversity is increased. Therefore, the embodiment of the present application improves the performance of radar perception.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present application
  • Fig. 2 is an example diagram of the ISAC model applied in the embodiment of the present application.
  • FIG. 3 is a flow chart of a data transmission processing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an OFDM transmission block in a data transmission processing method provided in an embodiment of the present application
  • FIG. 5 is one of the flowchart illustrations of a data transmission processing method provided in an embodiment of the present application.
  • FIG. 6 is the second flow diagram of a data transmission processing method provided by the embodiment of the present application.
  • Fig. 7 is an example diagram of the detection process of DoA, distance and Doppler frequency shift in a data transmission processing method provided by the embodiment of the present application;
  • Fig. 8 is the third example flow diagram of a data transmission processing method provided by the embodiment of the present application.
  • FIG. 9 is one of the example diagrams of spectrum spreading in a data transmission processing method provided by an embodiment of the present application.
  • FIG. 10 is the second example diagram of spectrum spreading in a data transmission processing method provided by an embodiment of the present application.
  • FIG. 11 is the third example diagram of spectrum spreading in a data transmission processing method provided by an embodiment of the present application.
  • Fig. 12 is the fourth exemplary flowchart of a data transmission processing method provided by the embodiment of the present application.
  • Fig. 13 is the fifth exemplary flowchart of a data transmission processing method provided by the embodiment of the present application.
  • Fig. 14 is the sixth example flow diagram of a data transmission processing method provided by the embodiment of the present application.
  • Fig. 15 is the seventh exemplary flowchart of a data transmission processing method provided by the embodiment of the present application.
  • FIG. 16 is a flowchart of another data transmission processing method provided by the embodiment of the present application.
  • Fig. 17 is a structural diagram of a data transmission processing device provided by an embodiment of the present application.
  • Fig. 18 is a structural diagram of another data transmission processing device provided by the embodiment of the present application.
  • FIG. 19 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 20 is a structural diagram of a terminal provided in an embodiment of the present application.
  • Fig. 21 is a structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terms in most of the following descriptions. These technologies can also be applied to applications other than NR system applications, such as the 6th generation (6th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (Vehicle User Equipment, VUE), pedestrian terminals (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.) and other terminal-side equipment, wearable Devices include: smart watches, smart bracelets, smart headphones, smart glasses,
  • the network side device 12 may be a base station or a core network device, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Networks, WLAN) access point, wireless fidelity (Wireless Fidelity, WiFi) node, transmitting and receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station does not Limited to specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is taken as an example, but the specific type of the base station
  • the first model is based on a Co-located Antenna based Device-free Sensing system (Co-located Antenna based Device-free Sensing), and the second model is based on a distributed antenna No device perception system (Distributed Antenna based Device-free Sensing).
  • the second model is used, the azimuth angles of the transceiver end are different, that is ⁇ 1 ⁇ 2 .
  • ⁇ 1 can be calculated by ⁇ 2 in the second model, so the performance that can be achieved by using the two models should be the same.
  • the first model is mainly used as an example for illustration.
  • ISAC Global System for Mobile Communications
  • TS entity Transmitter/ Sensing Entity
  • the base station of the cellular network or the vehicle (equipped with radar and communication module functions) in the application of vehicle wireless communication technology (Vehicle To Everything, V2X).
  • the receiving function of the TS entity refers to receiving radar wave information emitted and reflected by itself.
  • the TS entity does not receive data packets sent by other entities.
  • the second is to reflect the target entity, that is, the radar wave will be reflected when it reaches a target entity, and the TS entity perceives the target entity's angle of arrival (Direction of Arrival) ⁇ range (Range) and Doppler (Doppler) through the reflected wave .
  • the TS entity perceives the target entity's angle of arrival (Direction of Arrival) ⁇ range (Range) and Doppler (Doppler) through the reflected wave .
  • the RO entity Reflect Object Entity
  • the RO entity does not need to have send and receive functionality. Such as traditional vehicles without communication functions, etc.
  • the third is the data receiving entity, that is, the TS entity transmits radar waves and also attaches communication data.
  • the data receiving entity is only interested in communication data, so it is equipped with a communication receiving module.
  • CO entity Communication Object Entity
  • the CO entity receives communication data and also reflects radar waves.
  • the TS entity has perception and communication functions, mainly providing perception of objects and communication services to terminals.
  • Each TS entity includes a transmitter and a receiver, both located at the same location, but physically separated from each other, and there is no signal interference with each other. Information exchange can be performed between the transmitter and receiver, so the receiver knows the data information sent by the transmitter for use in radar data processing.
  • each transmitter is equipped with K transmitting antennas, and each receiver is equipped with L receiving antennas.
  • millimeter waves will act as a catalyst for MIMO radar.
  • the inherent characteristics of millimeter waves (such as large bandwidth and high frequency) can effectively realize the benefits of small-sized antennas and high-resolution, and can also greatly increase the communication data transmission rate.
  • Another advantage of MIMO radar is that it can simultaneously sense multiple reflectors and effectively identify the positions of different objects. Therefore, MIMO radar is an indispensable technology in the field of communication perception integration.
  • the transmit antennas of MIMO radars need to be orthogonalized. That is, each transmit antenna needs to transmit an independent omnidirectional radar waveform.
  • the reason why MIMO radar transmit antennas are orthogonal is that in the absence of reflector position information, MIMO radar will transmit spatially omnidirectional detection signals, thus providing constant power at any position. Therefore, MIMO radar based on omni-directional antenna, MIMO multi-set feature and using Capon's method can effectively perceive DoA.
  • OFDM radar is a new technology that can be used in radio systems for communication and radar integration purposes. While transmitting OFDM small data packets, OFDM radar can produce radar images and related surrounding environments by receiving and processing the echoes of the transmitted signals.
  • OFDM radar is mainly processed by Discrete Fourier Transform (DFT) on the echo received signal, then optimized by using Maximum Likelihood Estimation (MLE) algorithm, and finally using Fast Fourier Transform (Fast Fourier Transform, FFT) and fast Fourier inverse transform (Inverse Fast Fourier Transform, IFFT) dual processing, to obtain information in the delay Doppler domain (Delay-Doppler Domain, DD domain), so as to accurately obtain the distance and multi- Puller information.
  • DFT Discrete Fourier Transform
  • MLE Maximum Likelihood Estimation
  • FFT Fast Fourier Transform
  • IFFT Fast Fourier inverse transform
  • DD domain delay Doppler Domain
  • OFDM radar waves do not need to be optimized for transmitted data, because during detection, received data symbols are removed before being converted to the DD domain. Therefore, OFDM radar's requirements for transmission data may not need to be considered.
  • MIMO-OFDM radar combines the characteristics of MIMO radar and OFDM radar, and it is also a new technology proposed recently.
  • MIMO-OFDM radar has the detection capabilities of both MIMO radar and OFDM radar. Therefore, compared with single-technology radar, the radar has better detection range, speed and angle performance, and has stronger communication capabilities. For example, area surveillance of multiple portable wireless networks can be achieved with MIMO-OFDM radar.
  • MIMO-OFDM radar for multi-user access can be implemented with spectrally interleaved OFDM signals. That is, the spacing between subcarriers and the number of MIMO transmit antennas should remain the same. Since all antennas only transmit sub-carrier channels independent of each other, the interference of signals transmitted between different antennas can be considered to be zero. In addition, because each antenna transmits an independent full-bandwidth radar signal, the diversity gain of MIMO will be improved, so it has a strong radar resolution function.
  • DoA Direction of Arrival
  • MUSIC Multiple SIgnal Classification
  • ESPRIT Estimation of Signal Parameters using Rotational Invariance Techniques
  • Matrix Pencil matrix beam
  • the algorithm of this subspace is mainly aimed at the perception of unknown reflective objects.
  • MVDR Minimum Variance Distortionless Response
  • Delay and sum Beamformer Delay and sum Beamformer
  • SNR Signal Noise Ratio
  • FIG. 3 is a flow chart of a data transmission processing method provided in the embodiment of the present application. As shown in FIG. 3, it includes the following steps:
  • Step 301 the transmitting end spreads the data to be transmitted through K orthogonal sequences to obtain K orthogonal data matrices, where K is an integer greater than 1;
  • Step 302 the transmitting end maps K orthogonal data matrices to different frequency division multiplexing OFDM subcarriers to obtain K first OFDM signals, and the first OFDM signals are spread spectrum data matrix OFDM signals;
  • Step 303 the transmitting end performs IFFT processing on the kth first OFDM signal among the K first OFDM signals to obtain the kth first OFDM time domain signal, where k is less than or A positive integer equal to K;
  • Step 304 the transmitting end maps the kth first OFDM time domain signal to the kth transmitting antenna, and transmits the first data signal through the kth transmitting antenna.
  • the aforementioned K antennas may be understood as all or part of the transmitting antennas of the transmitting end, and in the embodiment of the present application, it is assumed that the K antennas are all transmitting antennas of the transmitting end.
  • the data transmission processing method provided by the embodiment of the present application is mainly applied in the MIMO-OFDM system, wherein, the transmitting end has K transmitting antennas, and the receiving end has L receiving antennas.
  • the name of the antenna port (Antenna Port) is generally used.
  • Each antenna port can be an antenna panel (Antenna Panel) with multiple antenna elements (Antenna Element) for forming analog beams. Therefore, in this embodiment of the present application, each antenna port may be understood as a transmitting antenna, and the transmitting antenna includes a correlated and/or non-correlated MIMO antenna involved in the MIMO technology.
  • the sending end may use an OFDM modulator to map K orthogonal data matrices to different frequency division multiplexed OFDM subcarriers to obtain K first OFDM signals.
  • the sending end may be understood as a terminal-side device or as a network-side device, which is not further limited here.
  • the above-mentioned data to be sent can be understood as MIMO-OFDM data, and the sending end spreads the data to be sent through K orthogonal sequences to obtain K orthogonal data matrices, which can be understood as using orthogonal code division multiplexing
  • the data to be transmitted is precoded by the (Code Division Multiplexing, CDM) method, so as to obtain a new waveform suitable for the orthogonal radar of each transmitting antenna.
  • CDM Code Division Multiplexing
  • the data to be sent is spread by K orthogonal sequences through the transmitting end to obtain K orthogonal data matrices, and K is an integer greater than 1; the transmitting end maps the K orthogonal data matrices On different frequency division multiplexing OFDM subcarriers, K first OFDM signals are obtained, and the first OFDM signals are spread spectrum data matrix OFDM signals; The k first OFDM signals are subjected to inverse fast Fourier transform IFFT processing to obtain the k first OFDM time domain signal, where k is a positive integer less than or equal to K; the sending end converts the k first OFDM The time domain signal is mapped to the kth sending antenna, and the first data signal is sent through the kth sending antenna.
  • the MIMO transmitting antennas can be made orthogonal, and the MIMO space diversity is increased. Therefore, the embodiment of the present application improves the performance of radar perception.
  • the transmitting end spreads the data to be transmitted through K orthogonal sequences, and obtains K orthogonal data matrices including:
  • the sending end uses K orthogonal sequences to perform time-frequency domain spread spectrum on the number to be sent to obtain K orthogonal data matrices;
  • the rule of time-frequency domain spreading satisfies any of the following:
  • K t OFDM symbols First perform time domain spread K t OFDM symbols, and then frequency domain spread K f subcarriers, K t and K f are both positive integers, and the sum of K t and K f is greater than 2;
  • K t OFDM symbols are spread in the time domain. Both K t and K f are positive integers, and the sum of K t and K f is greater than 2.
  • the K' is configured or pre-configured through high-layer signaling, or K' is determined based on the number of antennas.
  • the above high-level signaling may include radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • K t and K f are indicated through underlying signaling.
  • K t and K f may be indicated through a medium access control element (Medium Access Control Control Element, MAC-CE) or a physical downlink control channel (Physical downlink control channel, PDCCH).
  • MAC-CE Medium Access Control Control Element
  • PDCCH Physical downlink control channel
  • the method also includes:
  • the sending end maps the data to be sent to different OFDM subcarriers to obtain K" second OFDM signals, where K" is a positive integer less than or equal to K;
  • the sending end performs fast Fourier transform IFFT processing on the k-th second OFDM signal among the K" second OFDM signals to obtain the k-th second OFDM time-domain signal, where k is less than or equal to K A positive integer of ";
  • the transmitting end maps the kth second OFDM time-domain signal to K transmitting antennas through multiple-input multiple-output MIMO precoding or MIMO beamforming, and transmits the second data signal through the K transmitting antennas;
  • the first data signal is carried in a first transmission block
  • the second data signal is carried in a second transmission block
  • the first transmission block and the second transmission block are alternately transmitted in the time domain.
  • the first data signal and the second data signal are alternately transmitted in the time domain by using the first transmission block and the second transmission block, so that the data transmission performance can be improved while improving the radar performance.
  • QAM Quadrature Amplitude Modulation
  • the above-mentioned first transmission block can be understood as a Type-I block
  • the above-mentioned second transmission block can be understood as a Type-II block.
  • Both the first transmission block and the second transmission block can be called ODFM transmission blocks. Since two types of The ODFM transmission block is used to dynamically switch or adjust the sensing and communication waveforms, so that the data transmission performance can be guaranteed while improving the radar performance.
  • Carrying the first data signal on the first transmission block can be understood as: transmitting the first data signal on the first transmission block, that is, transmitting an orthogonal CDM-based MIMO OFDM radar signal in the first transmission block.
  • the carrying of the second data signal on the second transmission block can be understood as transmitting the second data signal on the second transmission block, that is, sending a traditional MIMO OFDM data signal in the second transmission block.
  • the first data signals sent on different antennas are orthogonal to each other.
  • the method further includes:
  • the transmitting end performs beamforming according to the transmission type and the angle of arrival DoA acquired in the first transmission block, and the transmission type is single-user MIMO (Single-User MIMO) or multi-user MIMO (Multi-User MIMO).
  • the sending end performs beamforming according to the transmission type and the DoA obtained in the first transmission block, including:
  • the sending end performs beamforming on the communication object CO entity of the receiving end according to the transmission type and the DoA obtained in the first transmission block;
  • the sending end In the case that the QoS of the CO entity is satisfied, and the sending end has remaining available shaped beams and/or energy that can be used for transmission with the CO entity, the sending end The DoA obtained in the first transmission block performs beamforming on the reflection object RO entity at the receiving end.
  • the sending end performing beamforming according to the transmission type and the DoA obtained in the first transmission block includes:
  • the transmitting end determines at least two beam directions of each MIMO layer according to the azimuth angles of the CO entity and the RO entity;
  • the transmitting end For each MIMO layer, the transmitting end performs beamforming on the CO entity and the RO entity in the at least two beam directions to perform beamforming.
  • the difference between the MIMO-OFDM transmission method of the second transmission block and the traditional MIMO-OFDM transmission method is that, on each MIMO layer, in addition to sending data packets, the TS entity It is necessary to consider the perception of the RO entity at the same time. Therefore, the beamforming of each MIMO layer needs to consider the azimuth angles of both the CO entity and the RO entity. That is, the TS entity considers multi-directional beamforming for each MIMO layer. According to the azimuth angles of the CO entity and the RO entity, and through the MVDR algorithm, for each MIMO layer, the TS entity will determine multi-directional beamforming.
  • the number of beamforming for the CO entity is one, and the number of beamforming for the RO entity is at least one.
  • the first beam corresponding to the first data signal and the second beam corresponding to the second data signal satisfy:
  • the beam direction of the first beam is different
  • the beam direction of the second beam remains unchanged in different time periods.
  • the above-mentioned first beam may be understood as a perception target beam
  • the above-mentioned second beam may be understood as a communication target beam.
  • the beamforming direction with the communication target remains unchanged, but the sensing target beam direction can be switched from one to another.
  • the first transmission block includes X sensing sub-blocks, each sensing sub-block includes N OFDM symbols, and both X and N are positive integers.
  • the second transmission block includes Y time slots, where Y is a positive integer.
  • X and Y can be configured in RRC.
  • the sending end sends the first data signal and the second data signal periodically and alternately through the first transmission block and the second transmission block; or,
  • the sending end sends the first data signal through the first transmission block or sends the second data signal through the second transmission block according to target switching signaling, wherein the target signaling is used to indicate A data signal is sent using the first transmission block or the second transmission block.
  • first transmission block and the second transmission block may be switched periodically, or may be switched through target signaling. It should be understood that the understanding of the sending end and the receiving end on switching between the first transmission block and the second transmission block should be consistent.
  • the method after the transmitting end maps the k-th first OFDM time-domain signal to the k-th transmitting antenna, and transmits the first data signal through the k-th transmitting antenna , the method also includes:
  • the sending end receives feedback information and first indication information sent by the CO entity of the receiving end, the feedback information is used to indicate that the first data signal is successfully received, and the first indication information is used to indicate the The geographic location of the CO entity.
  • the TS entity at the sending end sends an orthogonal CDM radar wave (that is, the above-mentioned first data signal) and carries data at the same time.
  • the CO entity at the receiving end needs to feed back the successful reception information of the data packet to the TS entity at the sending end.
  • the CO entity may notify the TS entity of its geographic location through control signaling.
  • the TS entity can comprehensively determine which entities (ie reflectors) belong to the CO entity and which entities belong to the RO entity according to all parameters detected in the Type-I block. For example, the TS entity can calculate the general coordinates of the CO entity by using the azimuth and distance information, and calculate whether the reflector belongs to the CO entity by comparing it with the feedback geographic location information.
  • the feedback information and the first indication information are carried on a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH); or a physical uplink signaling channel (Physical Uplink Control Channel, PUSCH); the first indication information carries In high-level signaling.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Control Channel
  • the sending end is a network-side device and the receiving end is a terminal as an example.
  • the first indication information is carried on a physical sidelink shared channel (Physical sidelink shared channel, PSSCH), or a physical sidelink signaling channel (Physical sidelink control channel, PSSCH).
  • Solution 1 MIMO OFDM waveform technology based on CDM characteristics.
  • the transmitting end has K transmitting antennas, and the receiving end has L receiving antennas.
  • the orthogonal sequence (Orthogonal Sequence) c k spreads the data in the time domain and/or frequency domain; then maps the data to different OFDM subcarriers (OFDM Subcarrier) through the OFDM modulator to obtain OFDM signals, and then passes IFFT processing converts the OFDM signal into an OFDM time domain signal. Finally, the radar data signal is transmitted through the kth independent MIMO antenna.
  • Orthogonal sequence c k can be expressed in vector form, namely
  • c k [c k,1 ,c k,2 ,...,c k,K' ] T ;
  • C [c 1 ,c 2 ,...,c K ], which should meet the following requirements:
  • K' is the length of each orthogonal sequence, and K is the number of transmitting antennas, which needs to satisfy K' ⁇ K.
  • the OFDM transmission block is a CDM-MIMO OFDM transmission resource, which consists of frequency domain, time domain, and air domain.
  • the frequency domain is M OFDM sub-carriers (sub-carriers).
  • the TS entity consists of the following parts.
  • modulation eg, QAM
  • channel coding eg, Low Density Parity Check (LDCP)
  • the data vector d k is spread in the time domain and/or frequency domain by an orthogonal sequence c k , forming a two-dimensional M ⁇ N data matrix, namely in is an orthogonal sequence mapping symbol, which is determined according to different CDM mapping methods, and is specifically described in the second scheme below.
  • the matrix data is processed by IFFT to generate a 1 ⁇ MN time-domain signal, which is sent to the k-th transmit antenna.
  • the receiving end of the TS entity will use the signal for each receiving antenna Implement anti-spreading, and then perform coherent combining (Coherent Combining).
  • the output signal will be input into the perception module (Sensor) for angle of arrival ⁇ , distance range ⁇ and Doppler f D perception.
  • the receiving end of the CO entity will use Implement anti-spreading, and then perform coherent combining (Coherent Combining).
  • the output signal will be input into the FFT and data detection module to detect the data signal,
  • the data detection is the same as the traditional OFDM data packet detection, which will not be repeated here.
  • the transmission performance for communication (eg, the peak value of transmitted data) may have a certain impact.
  • CDM spread spectrum can adopt the mapping manner of time domain and/or frequency domain direction. It is assumed here that the spreading factors (Spreading Factor) of the time-frequency domain (ie, Time Frequency Domain, TF domain) of OFDM are K t and K f respectively. Each data symbol sk is spread by an orthogonal sequence ck in the time domain direction, and then transmitted at the kth transmit antenna. Therefore, the receiver passes After despreading, the symbols sk sent from different transmitting antennas are orthogonal without any mutual interference.
  • the OFDM signal can be firstly spread K t OFDM symbols in the time domain, and then spread K f subcarriers in the frequency domain. Similarly, K f subcarriers may be spread in the frequency domain first, and then K t OFDM symbols may be spread in the time domain.
  • the size of the spreading factors K t and K f is determined according to different services of the sending end.
  • the TS entity can adjust the length of the time domain direction and the frequency domain direction according to the required quality of service (Quality of Service, QoS) in the sensing process.
  • QoS Quality of Service
  • the TS entity In the scenario of high-speed movement or few reflectors (open area), the TS entity needs to consider the mechanism of CDM spreading in the frequency domain; while in the scenario of low speed or many reflectors (dense area), the TS entity needs to consider the The mechanism of domain spreading.
  • the orthogonal sequence length K' required for CDM spreading is at least equal to the number K of transmitting antennas, that is, K' ⁇ K.
  • K f or K t can be compared with the underlying Signaling is used to notify the CO entity (such as MAC-CE or PDCCH, etc.), so that the CO entity can correctly receive the data packet sent by the TS entity.
  • the orthogonal sequence ck used in the CDM spread spectrum mapping method can adopt any orthogonal sequence or pseudo-orthogonal sequence (Pseudo Orthogonal Sequence), such as Walsh code, Barker code, PN sequence, Zadoff–Chu sequence, etc.
  • Orthogonal Sequence such as Walsh code, Barker code, PN sequence, Zadoff–Chu sequence, etc.
  • the MIMO-OFDM transmitted signal of the kth antenna and the nth symbol can be expressed as:
  • d k (m+nT) represents the mth subcarrier data of the nth OFDM symbol
  • ⁇ f is the subcarrier spacing (Sub-carrier Spacing)
  • rect(t) is a rectangular function
  • t ⁇ [0,1] take The value is 1, otherwise the value is 0, is the floor function of x, is defined as:
  • the signal t ⁇ [0,NT sym ] transmitted on N OFDM symbol blocks can be expressed as:
  • f c is the center frequency, is a real function of x.
  • the vectors of transmit and receive antennas can be expressed as:
  • ⁇ , d T and d R represent the signal wavelength, the distance between the transmitting antenna and the receiving antenna, respectively.
  • the transmitted signal reaches the p-th point target and reaches the l-th receiving antenna through reflection
  • the received signal can be expressed as:
  • [x] l is the lth element representing the vector x.
  • the received time domain signal can be expressed as:
  • the signal of the lth receiving antenna can be expressed as
  • the transmitted signal of the kth transmitting antenna and the signal received by the lth receiving antenna can be expressed as:
  • z k,l,n′ (m′) is the orthogonal sequence
  • the AWGN Additional White Gaussian Noise
  • y′ k,l,n′ (m′) will be used as the input signal to detect and obtain the DoA (ie ⁇ p ), distance (ie ⁇ p ) and Doppler frequency shift (ie f D , p ).
  • DoA ie ⁇ p
  • distance ie ⁇ p
  • Doppler frequency shift ie f D , p
  • Different algorithms are considered here to obtain DoA, range and Doppler shift respectively.
  • the TS entity since the TS entity knows the data signal [d k ] n′,m′ transmitted on each transmit antenna, it can be removed from the received signal y′ k,l,n′ (m′).
  • the received signals of the kth transmitting antenna and the lth receiving antenna after division can be expressed as:
  • the Capon method or MUSIC-related algorithms can be considered.
  • the first space diversity calculation method is to only consider the receiving antenna diversity when the receiving SNR is relatively low.
  • the form can be expressed as:
  • the second space diversity calculation method is that in the case of relatively high receiving SNR, the diversity of transmitting and receiving antennas can be considered at the same time, that is, by receiving signals y′′ k,l,n′ (m′), forming M ⁇ KL matrix, the matrix form can be expressed as:
  • the spatial covariance matrix R (2) of KL ⁇ KL can be obtained, which is expressed as:
  • the spatial covariance matrix R (1) or R (2) can be used as the input of the Capon method or MUSIC-related algorithms to obtain the DoA, ie, ⁇ p .
  • the difference in the algorithm of the spatial covariance matrix R (1) or R (2) is that the former obtains the SNR gain from the transmitting antenna, which greatly improves the accuracy of DoA acquisition, but the latter is due to the space domain Diversity gain, the number of objects that can be sensed will increase.
  • an OFDM radar algorithm will be considered.
  • the distance and Doppler frequency shift more accurately according to the estimation obtained above and the spatial covariance matrix R (1) of L ⁇ L, calculated using the MVDR method right
  • the signal undergoes receive beamforming. Therefore, through matrix operations, an M ⁇ 1 vector can be obtained:
  • the signal processed by beamforming can be used Representation in matrix form
  • the matrix Y (3) will be used as the input of the OFDM radar algorithm module to obtain the range and Doppler frequency shift.
  • the specific detection process is as follows: the processed received signal y′′ k, l, n′ (m′) is input to the DoA detection module, and the DoA of P targets is obtained through an algorithm such as MUSIC.
  • the estimated DoA is input into the receiving beamforming module for receiving beamforming processing.
  • the beamforming processing The matrix signal is input to the distance and Doppler frequency shift detection module, and finally the distance and Doppler frequency shift are obtained through the OFDM radar algorithm.
  • Orthogonal CDM radar waveforms can be used to detect unknown target locations.
  • CDM spread spectrum reasons there are certain restrictions on the peak value of the data rate.
  • CDM spread spectrum can provide the corresponding SNR gain and indirectly increase the data rate, but this needs to increase the modulation order of QAM.
  • too high modulation order may affect the performance of the radar waveform. Therefore, this application considers two types of waveforms to simultaneously achieve improved radar performance and data transmission performance.
  • two types of OFDM transport blocks are considered to realize dynamic switching or scheduling of sensing and communication waveforms.
  • the use of the two OFDM transmission blocks is periodically alternated, that is, the TS entity can first transmit an orthogonal CDM-based MIMO OFDM radar signal in the Type-I block (Type-I Block) to detect unknown targets. Then periodically switch to the Type-II Block (Type-II Block) to send traditional MIMO OFDM data signals.
  • the perception and communication process of each Type-I block and Type-II block is considered as an ISAC cycle (ISAC Cycle).
  • the Type-I block adopts a newly designed waveform based on OFDM, and the waveform relies on a CDM method to make transmission signals on different antennas orthogonal to each other.
  • the use of the Type-I block is mainly to improve the perception performance, but it also has a certain guarantee for the data transmission performance.
  • scheme three will be used to acquire the DoA, range and Doppler (or velocity) of multiple targets.
  • the Type-II block uses a classic OFDM waveform, where the transmission relies on Single-User MIMO (Single-User MIMO) or Multi-User MIMO (Multi-User MIMO), according to the DoA obtained in the Type-I block Beamforming.
  • Single-User MIMO Single-User MIMO
  • Multi-User MIMO Multi-User MIMO
  • Utilizing Type-II blocks is primarily to improve data performance rather than perceived performance. Since accurate DoA can be obtained in the Type-I block, the accuracy of beamforming can be guaranteed, so the beam interference among multi-user MIMO can be suppressed accordingly. This can also guarantee the perceived performance in the Type-II block.
  • the TS entity also needs to implement the radar detection process by receiving the MIMO OFDM data signal. Since the communication symbols between any two transmit antennas of the TS entity are not orthogonal, the radar detection performance cannot be guaranteed. In this case, the radar detection process can only be used as a supplementary function (Supplemental), and the precise radar detection process depends on the implementation of the Type-I block.
  • each Type-I block is composed of X sensing sub-blocks (Sensing Sub-block, SSB), and the sensing sub-block can be called a synchronization block.
  • Each sensing sub-block contains N OFDM symbols.
  • Each Type-II block consists of Y time slots (Slot).
  • X and Y can be configured in RRC.
  • the use of Type-I blocks and Type-II blocks can be switched alternately to form an ISAC cycle (ISAC Cycle). More effectively, the use of Type-I blocks and Type-II blocks can also be switched by means of signaling.
  • RO entity In general, there are two types of reflective targets. One is, RO entity and the other is CO entity.
  • CO entity Here it is first assumed that the TS entity has the ability to distinguish between the RO entity and the CO entity.
  • the TS entity will detect targets with larger eigenvalues (such as larger and closer targets) and obtain the related DoA, range and Doppler.
  • the TS entity will focus on the communication terminals, that is, the CO entity, giving it a more concentrated beam and greater energy, and ensuring the QoS of these communication terminals.
  • the number of beams P' that can be formed by the sending end must satisfy, P' ⁇ K-1.
  • the transmission power is limited. Therefore, in the Type-II block, how to better meet the QoS requirements required by the CO entity must be considered first.
  • the TS entity Only when the TS entity has remaining available beamforming beams and/or energy for the RO entity, the TS entity will select the DoA to perform beamforming on the RO entity. In this case, at different time periods, the beamforming direction of the owning communication target remains unchanged, but the sensing target beam direction can be switched from one to another. This is because if the TS entity uses a larger number of beams for sensing, it will have a bad impact on the communication performance. For example, the more total beams are formed, the less accurate the data beamforming will be. Also, the more beams are used to perceive the target, the less energy will be used for data, and the received signal for data communication will be weaker; that is, the SNR will not be able to meet the communication requirements.
  • the key lies in how the TS entity distinguishes the RO entity and the CO entity.
  • the TS entity at the sending end sends orthogonal CDM radar waves and carries data at the same time.
  • the CO entity at the receiving end needs to feed back the successful reception information of the data packet to the TS entity at the sending end.
  • the CO entity may notify the TS entity of its geographic location through control signaling.
  • the TS entity can comprehensively determine which entities belong to the CO entity and which entities belong to the RO entity according to all parameters detected in the Type-I block. For example, the TS entity can calculate the general coordinates of the CO entity by using the azimuth and distance information, and calculate whether the reflector belongs to the CO entity by comparing it with the feedback geographical location information.
  • the CO entity can send its geographic location to the TS entity through PUSCH, MAC-CE or higher-layer signaling, combined with feedback information.
  • PUSCH Physical Uplink Control Channel
  • MAC-CE Mobile Broadcast Control Channel
  • higher-layer signaling is sufficient to ensure geographical location transmission.
  • the CO entity since the TS entity knows the DoA related to the CO entity, the CO entity only needs to feedback the rank indicator (Rank indicator, RI) and the channel quality indicator (Channel quality indicator, CQI), and no feedback is required Precoding matrix indicator (Precoding matrix indicator, PMI). Since the PMI feedback requires a large amount of signaling overhead to support, this can reduce the signaling overhead for multi-user MIMO.
  • Scheme 5 Design for the MIMO-OFDM waveform in the Type-II block.
  • the TS entity When designing the MIMO-OFDM waveform in the Type-II block, the TS entity needs to consider how many MIMO layers (Layers) will be generated.
  • MIMO layers Layerers
  • the sending end In a traditional MIMO-OFDM system, if one MIMO layer can be provided to the sending end, the sending end has to determine one precoding so as to send an independent data packet on each MIMO layer. Therefore, the maximum amount of data that a MIMO system can transmit is determined by one MIMO layer.
  • the MIMO-OFDM transmission method in the Type-II block is different from the traditional MIMO-OFDM transmission method.
  • the TS entity needs to consider the perception of the RO entity at the same time. Therefore, the beamforming of each MIMO layer needs to consider the azimuth angles of the CO entity and the RO entity at the same time. That is, the TS entity considers multi-directional beamforming for each MIMO layer. According to the azimuth angles of the CO entity and the RO entity, and through the MVDR algorithm, for each MIMO layer, the TS entity will determine multi-directional beamforming.
  • the TS entity sends independent data packets on different MIMO layers, and the data packets sent may be for a single user or for multiple users.
  • different MIMO layer beamforming can target different RO entities. In this way, the mutual interference among the beams can be reduced as a whole, so as to improve the performance of the TS entity on the perception of reflectors. This is because the data signals sent between beams of MIMO-OFDM are not completely orthogonal.
  • the receiver passes After despreading, the symbols sk sent from different transmitting antennas are orthogonal without any mutual interference.
  • the mapping order of the orthogonal sequences may be first in the time domain and then in the frequency domain; in addition, in other embodiments, the mapping order of the orthogonal sequences may also adopt a reverse mapping order, that is, first in the frequency domain and then in the time domain.
  • the TS entity sends orthogonal CDM-MIMO OFDM radar waves, so the transmit signal on each transmit antenna is not beamformed, but an omnidirectional radar wave signal. Radar waves reach different reflectors and are reflected to TS entities.
  • the TS entity uses subspace algorithms such as MUSIC to receive the reflected wave, process the received signal, and obtain the DoA, distance and Doppler frequency shift related to the reflector.
  • the TS entity deduces that reflectors #1 and #3 belong to the CO entity by using the azimuth angle and distance information based on the data feedback of the two CO entities (such as the geographical location of the CO entity, etc.).
  • the TS entity performs beamforming on each reflector direction and sends data packets.
  • the TS entity will give priority to the CO entity for beamforming. Only when the QoS of the CO entity is guaranteed, the TS entity will consider performing beamforming on the RO entity.
  • CO entities #1 and #3 will decode the data packet by using the traditional OFDM receiving algorithm, and then perform data feedback.
  • the TS entity uses beamforming to receive the reflected wave, processes the received signal, and obtains the DoA, distance and Doppler frequency shift related to the reflector. It should be understood that the acquired information is for the purpose of updating the DoA, range and Doppler shift, so as to compensate the errors caused by the mobility of reflectors in the Type-II block.
  • the SU-MIMO scenario is first considered.
  • This scenario considers one TS entity, one CO entity (reflector #2) and two RO entities (reflector #1 and #3).
  • the TS entity will send MIMO data packets to the CO entity (reflector #2), and at the same time perceive the DoA, distance and Doppler frequency shift of the reflector through the reflection signal of reflector #2.
  • the TS entity also needs to perceive two RO entities (reflectors #1 and #3).
  • TS entity MIMO packet transmission is done through two MIMO layers (Two MIMO Layers). Therefore, when the TS entity sends each MIMO layer data packet, it only takes into account the perception of one RO entity (reflector #1 or #3).
  • the TS entity when sending the first MIMO layer (Layer-1) data packet, the TS entity will form two beams, one pointing to the CO entity (reflector #2), and the other pointing to the RO entity (reflector #2) #1).
  • the TS entity may select most of the energy of the shaped beam to point to the CO entity, and a small portion of the energy of the remaining beam to point to the RO entity (reflector #1).
  • the beamforming of the TS entity can be implemented by algorithms such as MVDR.
  • the TS entity can precisely shape beams pointing to different entities.
  • the TS entity when sending a second MIMO layer (Layer-2) packet, the TS entity will shape two beams, one pointing to the CO entity (reflector #2), and the other pointing to the RO entity (reflector #2) #3).
  • the TS entity may choose that most of the energy of the shaped beam is directed to the CO entity, while a small portion of the energy of the remaining beam is directed to the RO entity (reflector #3).
  • the beamformed Layer-1 and Layer-2 point to the CO entity (reflector #2) at the same time, and the CO entity can decode the data packet through the traditional MIMO-OFDM detection method.
  • the TS entity receives the echoes reflected by the three reflectors, and obtains the DoA, distance and Doppler frequency shift related to the reflectors through the MIMO-OFDM radar detection algorithm.
  • the beam directed to the CO entity is a MIMO multi-layer signal, but the beam points are consistent, so the TS entity can regard the MIMO multi-layer signal as a radar signal, that is, for radar, Layer 1 (Layer-1) and Layer 2 (Layer-2) have no interference effect on each other.
  • Layer-2 has a certain influence on Layer-2 1 should be relatively small. In this way, the perception performance of the TS entity to the RO entity (reflector #1) can be improved.
  • Layer-1's interference effect on Layer-2 should be relatively small. In this way, the perception performance of the TS entity to the RO entity (reflector #3) can be improved.
  • the TS entity may arrange and distinguish the CO entity and the RO entity, select an entity with relatively small interference impact, perform pairing and beamforming, so as to reduce mutual interference between MIMO layers.
  • sending SU-MIMO data packets in the Type-II block can guarantee the diversity performance of MIMO for the CO entity, and can guarantee the perception performance of all reflectors for the TS entity.
  • This scenario considers one TS entity, two CO entities (reflectors #1 and #3) and two RO entities (reflectors #2 and #4).
  • the TS entity will send MIMO data packets to the CO entity (reflector #1 and #3), and at the same time perceive the DoA, distance and Doppler frequency shift of the reflector through the reflection signals of reflector #1 and #3.
  • the TS entity also needs to perceive two RO entities (reflectors #2 and #4).
  • the MIMO packet transmission of the TS entity is done through two MIMO layers (Two MIMO Layers). Therefore, when sending each MIMO layer data packet, the TS entity will point to the CO entity and at the same time perceive an RO entity.
  • the TS entity when sending the first MIMO layer (Layer-1) data packet, the TS entity will form two beams, one is directed to the CO entity (reflector #1), and the other is directed to the RO entity (reflector #2).
  • the TS entity may choose that most of the energy of the shaped beam is directed to the CO entity (reflector #1), while a small portion of the energy of the remaining beam is directed to the RO entity (reflector #2).
  • the TS entity when sending the second MIMO layer (Layer-2) data packet, the TS entity will form two beams, one is directed to the CO entity (reflector #3), and the other is directed to the RO entity (reflector # 4).
  • the TS entity may choose that most of the energy of the shaped beam is directed to the CO entity (reflector #3), while a small portion of the energy of the remaining beam is directed to the RO entity (reflector #4).
  • the beamformed Layer-1 and Layer-2 point to different CO entities (reflectors #1 and #3), and the CO entities can decode data packets through a traditional MIMO-OFDM detection method.
  • the TS entity receives the echoes emitted by the four reflectors, and obtains the DoA, distance and Doppler frequency shift related to the reflectors through the MIMO-OFDM radar detection algorithm.
  • the beams directed to different CO entities are MIMO multi-layer signals, and there is certain interference between them. Therefore, when the TS entity uses MIMO multi-layer signals as radar signals, the mutual interference between MIMO layers will have a certain adverse effect on radar perception.
  • the beam signal pointing to the RO entity (reflector #2) in Layer-1 and the beam signal in Layer-2 have a certain degree of independence, so in terms of radar, Layer-2 has a certain degree of independence from Layer-2
  • the interference effect of -1 should be relatively small. In this way, the perception performance of the TS entity to the RO entity (reflector #2) can be improved.
  • Layer-1's interference effect on Layer-2 should be relatively small. In this way, the perception performance of the TS entity to the RO entity (reflector #4) can be improved.
  • the TS entity may also arrange and distinguish the CO entity and the RO entity, select an entity with relatively small interference impact, perform pairing and beamforming, so as to reduce mutual interference between MIMO layers.
  • the degree of freedom of pairing is less, because the CO entity related to MU-MIMO cannot be selected.
  • Sending MU-MIMO data packets in the Type-II block can guarantee the diversity performance of MIMO for the CO entity, and can guarantee the perception performance of the RO reflector for the TS entity, but the perception performance of the CO entity has certain limitations. Influence.
  • FIG. 16 is a flowchart of another data transmission processing method provided by the embodiment of the present application. As shown in FIG. 16, it includes the following steps:
  • Step 1601 the receiving end receives the target data signal
  • Step 1602 the receiving end preprocesses the target data signal to obtain the target time domain signal
  • Step 1603 the receiving end performs discrete Fourier transform on the target time domain signal to obtain a data matrix
  • Step 1604 when the target data signal is the first data signal, the receiving end uses an orthogonal sequence to perform inverse spread spectrum processing on the data matrix to obtain a received signal;
  • the data matrix is an orthogonal data matrix.
  • the method further includes:
  • the receiving end performs an angle-of-arrival DoA detection on the received signal to obtain a target DoA;
  • the receiving end performs receiving beamforming processing according to the target DoA to obtain a receiving matrix signal
  • the receiving end uses the OFDM radar algorithm to calculate the receiving matrix signal to obtain distance and Doppler frequency shift.
  • the receiving end performs angle of arrival DoA detection on the received signal, and obtaining the target DoA includes:
  • the receiving end constructs a first spatial covariance matrix, and the first spatial covariance matrix is associated with a signal-to-noise ratio;
  • the receiving end uses the received signal to calculate the first spatial covariance matrix to obtain a second spatial covariance matrix
  • the receiving end uses a target algorithm to calculate the second spatial covariance matrix to obtain a target DoA;
  • the target algorithm is a Capon algorithm or a MUSIC algorithm.
  • the first spatial covariance matrix satisfies at least one of the following:
  • the first spatial covariance matrix is constructed based on a first spatial diversity operation method, and the first space diversity operation method is only associated with receiving antenna diversity;
  • the first spatial covariance matrix is constructed based on a second spatial diversity operation method, and the first space diversity operation method is combined with transmit antenna diversity and receive antenna Diversity association.
  • the receiving end receiving the target data signal includes:
  • the receiving end alternately receives the first data signal sent by using the first transmission block and the second data signal sent by using the second transmission block.
  • the second data signal carries a second time-domain signal, and the second time-domain signal is obtained based on a traditional Multiple-Input Multiple-Output MIMO Orthogonal Frequency Division Multiplexing (OFDM) manner.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the receiving end alternately receives the first data signal sent by using the first transmission block and the second data signal sent by using the second transmission block, including:
  • the receiving end periodically and alternately receives the first data signal sent using the first transmission block and the second data signal sent using the second transmission block; or,
  • the receiving end receives the first data signal sent by using the first transmission block and the second data signal sent by using the second transmission block according to the target switching signaling, wherein the target signaling is used to indicate to use the The first transport block or the second transport block receives a data signal.
  • the receiving end performs receiving beamforming processing according to the target DoA to obtain a receiving matrix signal, including:
  • the receiving end performs receiving beamforming processing according to the target DoA and the minimum variance distortion-free response MVDR method to obtain a receiving matrix signal.
  • the method further includes:
  • the receiving end sends feedback information and first indication information to the sending end, the feedback information is used to indicate that the first data signal is successfully received, and the first indication information is used to indicate the geographic location of the CO entity.
  • the feedback information and the first indication information are carried on a physical uplink shared channel PUSCH.
  • the first indication information is carried in high-level signaling.
  • this embodiment is an implementation manner of the receiving end corresponding to the embodiment shown in FIG. 3 .
  • the specific implementation manner please refer to the relevant description of the embodiment shown in FIG. 3 , and to achieve the same beneficial effect, in order to avoid repetition description, which will not be repeated here.
  • the execution subject may be a data transmission processing device, or a control module in the data transmission processing device for executing data transmission processing.
  • the data transmission processing device performed by the data transmission processing device is taken as an example to illustrate the data transmission processing device provided in the embodiment of the present application.
  • FIG. 17 is a structural diagram of a data transmission processing device provided in an embodiment of the present application. As shown in FIG. 17, the data transmission processing device 1700 includes:
  • the spreading module 1701 is used to spread the data to be transmitted through K orthogonal sequences to obtain K orthogonal data matrices, where K is an integer greater than 1;
  • the first mapping module 1702 is used to map K orthogonal data matrices to different frequency division multiplexing OFDM subcarriers to obtain K first OFDM signals, and the first OFDM signals are spread spectrum data matrix OFDM signals;
  • the first conversion module 1703 is configured to perform IFFT processing on the k-th first OFDM signal among the K first OFDM signals to obtain the k-th first OFDM time-domain signal, where k is less than or a positive integer equal to K;
  • the first sending module 1704 is configured to map the kth first OFDM time domain signal to a kth sending antenna, and send a first data signal through the kth sending antenna.
  • the spreading module 1701 is specifically configured to: perform time-frequency domain spreading on the number to be sent by using K orthogonal sequences to obtain K orthogonal data matrices;
  • the rule of time-frequency domain spreading satisfies any of the following:
  • K t OFDM symbols First perform time domain spread K t OFDM symbols, and then frequency domain spread K f subcarriers, K t and K f are both positive integers, and the sum of K t and K f is greater than 2;
  • K t OFDM symbols are spread in the time domain. Both K t and K f are positive integers, and the sum of K t and K f is greater than 2.
  • the K' is configured or pre-configured through high-layer signaling, or K' is determined based on the number of antennas.
  • the K t and K f are indicated through underlying signaling.
  • the first mapping module 1702 is further configured to map the data to be sent to different OFDM subcarriers to obtain K" second OFDM signals, where K" is a positive integer less than or equal to K;
  • the first conversion module 1703 is further configured to perform IFFT processing on the kth second OFDM signal among the K′′ second OFDM signals to obtain the kth second OFDM time domain signal , k is a positive integer less than or equal to K ";
  • the first sending module 1704 is further configured to map the kth second OFDM time-domain signal to K sending antennas through multiple-input multiple-output MIMO precoding or MIMO beamforming, and send the antenna sends the second data signal;
  • the first data signal is carried in a first transmission block
  • the second data signal is carried in a second transmission block
  • the first transmission block and the second transmission block are alternately transmitted in the time domain.
  • the first data signals sent on different antennas are orthogonal to each other.
  • the first sending module 1704 is further configured to perform beamforming according to the transmission type and the DoA obtained in the first transmission block,
  • the transmission type is single-user MIMO or multi-user MIMO.
  • the first sending module 1704 is specifically configured to perform beamforming on the communication target CO entity at the receiving end according to the transmission type and the DoA obtained in the first transmission block; when the QoS of the CO entity is satisfied , and the sending end has remaining available shaped beams and/or energy that can be used for transmission with the CO entity, the reflection of the receiving end according to the transmission type and the DoA obtained in the first transmission block
  • the object RO entity performs beamforming.
  • the first sending module 1704 is specifically configured to: determine at least two beam directions of each MIMO layer according to the azimuth angles of the CO entity and the RO entity; Beamforming is performed on the CO entity and the RO entity in the beam direction.
  • the number of beamforming for the CO entity is one, and the number of beamforming for the RO entity is at least one.
  • the first beam corresponding to the first data signal and the second beam corresponding to the second data signal satisfy:
  • the beam direction of the first beam is different
  • the beam direction of the second beam remains unchanged in different time periods.
  • the first transmission block includes X sensing sub-blocks, each sensing sub-block includes N OFDM symbols, and both X and N are positive integers.
  • the second transmission block includes Y time slots, where Y is a positive integer.
  • the first sending module 1704 sends the first data signal and the second data signal periodically and alternately through the first transmission block and the second transmission block; or, according to the target switching signaling, through the The first transmission block transmits the first data signal or transmits the second data signal through the second transmission block, wherein the target signaling is used to indicate to use the first transmission block or the second transmission block to transmit data signal.
  • the data transmission processing device 1700 further includes:
  • the first receiving module is configured to receive feedback information and first indication information sent by the CO entity at the receiving end, the feedback information is used to indicate that the first data signal is successfully received, and the first indication information is used for Indicates the geographic location of the CO entity.
  • the feedback information and the first indication information are carried on a physical uplink shared channel PUSCH.
  • the first indication information is carried in high-layer signaling.
  • the data transmission processing device provided in the embodiment of the present application can implement each process in the method embodiment in FIG. 3 , and details are not repeated here to avoid repetition.
  • FIG. 18 is a structural diagram of a data transmission processing device provided by an embodiment of the present application. As shown in FIG. 18, the data transmission processing device 1800 includes:
  • the second receiving module 1801 is used for the receiving end to receive the target data signal
  • a preprocessing module 1802 configured for the receiving end to preprocess the target data signal to obtain a target time domain signal
  • the second conversion module 1803 is configured to perform discrete Fourier transform on the target time domain signal to obtain a data matrix
  • An inverse spectrum spreading module 1804 configured to perform inverse spectrum spreading processing on the data matrix using an orthogonal sequence to obtain a received signal when the target data signal is the first data signal;
  • the data matrix is an orthogonal data matrix.
  • the data transmission processing device 1800 further includes:
  • a detection module configured to perform an angle of arrival DoA detection on the received signal to obtain a target DoA
  • a beamforming module configured to perform receiving beamforming processing according to the target DoA to obtain a receiving matrix signal
  • the calculation module is used to calculate the receiving matrix signal by using the OFDM radar algorithm to obtain the distance and Doppler frequency shift.
  • the detection module is specifically configured to construct a first spatial covariance matrix, the first spatial covariance matrix is associated with a signal-to-noise ratio; the first spatial covariance matrix is calculated using the received signal to obtain a second spatial covariance matrix A covariance matrix; using a target algorithm to calculate the second spatial covariance matrix to obtain a target DoA;
  • the target algorithm is a Capon algorithm or a MUSIC algorithm.
  • the first spatial covariance matrix satisfies at least one of the following:
  • the first spatial covariance matrix is constructed based on a first spatial diversity operation method, and the first space diversity operation method is only associated with receiving antenna diversity;
  • the first spatial covariance matrix is constructed based on a second spatial diversity operation method, and the first space diversity operation method is combined with transmit antenna diversity and receive antenna Diversity association.
  • the second receiving module 1801 is specifically configured to alternately receive the first data signal sent by using the first transmission block and the second data signal sent by using the second transmission block.
  • the second data signal carries a second time-domain signal, and the second time-domain signal is obtained based on a traditional Multiple-Input Multiple-Output MIMO Orthogonal Frequency Division Multiplexing (OFDM) manner.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the second receiving module 1801 is specifically configured to: periodically alternately receive the first data signal sent by using the first transmission block and the second data signal sent by using the second transmission block; or, switch according to the target Signaling, receiving the first data signal sent by using the first transmission block and the second data signal sent by using the second transmission block, wherein the target signaling is used to indicate to use the first transmission block or the second data signal
  • the transport block receives the data signal.
  • the beamforming module is specifically configured to: perform receive beamforming processing according to the target DoA and the minimum variance distortion-free response MVDR method to obtain a receive matrix signal.
  • the data transmission processing device 1800 further includes:
  • the second sending module is configured to send feedback information and first indication information to the sending end, the feedback information is used to indicate that the first data signal is successfully received, and the first indication information is used to indicate the CO entity geographic location.
  • the feedback information and the first indication information are carried on a physical uplink shared channel PUSCH.
  • the first indication information is carried in high-layer signaling.
  • the data transmission processing device provided in the embodiment of the present application can realize each process in the method embodiment in Fig. 16, and to avoid repetition, details are not repeated here.
  • the data transmission processing device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • Network Attached Storage Network Attached Storage
  • the data transmission processing device provided in the embodiment of the present application can realize each process realized by the method embodiments in FIG. 1 to FIG. 16 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 1900, including a processor 1901, a memory 1902, and programs or instructions stored in the memory 1902 and operable on the processor 1901,
  • a communication device 1900 including a processor 1901, a memory 1902, and programs or instructions stored in the memory 1902 and operable on the processor 1901,
  • the program or instruction is executed by the processor 1901, each process of the above-mentioned data transmission processing method embodiment can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, and the processor is used to: spread the data to be transmitted through K orthogonal sequences to obtain K orthogonal data matrices, where K is an integer greater than 1; K orthogonal data matrices are mapped onto different frequency division multiplexing OFDM subcarriers to obtain K first OFDM signals, and the first OFDM signals are spread spectrum data matrix OFDM signals; for the K first OFDM signals The k-th first OFDM signal in the signal is subjected to inverse fast Fourier transform IFFT processing to obtain the k-th first OFDM time-domain signal, k is a positive integer less than or equal to K; the communication interface is used to transfer the k-th The first OFDM time domain signal is mapped to the kth sending antenna, and the first data signal is sent through the kth sending antenna.
  • the communication interface is used to receive the target data signal
  • the processor is used to: preprocess the target data signal to obtain a target time domain signal; perform discrete Fourier transform on the target time domain signal to obtain a data matrix;
  • an orthogonal sequence is used to perform inverse spread spectrum processing on the data matrix to obtain a received signal; wherein, in the case where the target data signal is the first data signal, the The data matrix is an orthogonal data matrix.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 20 is a schematic diagram of a hardware structure of a terminal implementing various embodiments of the present application.
  • the terminal 2000 includes, but is not limited to: a radio frequency unit 2001, a network module 2002, an audio output unit 2003, an input unit 2004, a sensor 2005, a display unit 2006, a user input unit 2007, an interface unit 2008, a memory 2009, and a processor 2010. At least some parts.
  • the terminal 2000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 2010 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 20 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 2004 may include a graphics processor (Graphics Processing Unit, GPU) and a microphone, and the graphics processor is used by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the obtained image data of still picture or video is processed.
  • the display unit 2006 may include a display panel, and the display panel may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 2007 includes a touch panel and other input devices. Touch panel, also known as touch screen.
  • the touch panel can include two parts: a touch detection device and a touch controller.
  • Other input devices may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 2001 receives the downlink data from the network side device, and processes it to the processor 2010; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 2001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 2009 can be used to store software programs or instructions and various data.
  • the memory 109 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 2009 may include a high-speed random access memory, and may also include a non-transitory memory, wherein the non-transitory memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the processor 2010 may include one or more processing units; optionally, the processor 2010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 2010 .
  • the processor 210 is used to spread the data to be transmitted through K orthogonal sequences to obtain K orthogonal data matrices, K being an integer greater than 1; mapping the K orthogonal data matrices to different frequency division Multiplexing the OFDM sub-carriers to obtain K first OFDM signals, the first OFDM signals are spread spectrum data matrix OFDM signals; performing fast Fourier on the kth first OFDM signals in the K first OFDM signals Liye inverse transform IFFT processing to obtain the kth first OFDM time domain signal, where k is a positive integer less than or equal to K;
  • the radio frequency unit 2001 is configured to map the kth first OFDM time domain signal to a kth sending antenna, and send a first data signal through the kth sending antenna.
  • the radio frequency unit 2001 is used for receiving the target data signal at the receiving end;
  • a processor 210 configured to preprocess the target data signal to obtain a target time domain signal
  • the second conversion module is configured to perform discrete Fourier transform on the target time-domain signal to obtain a data matrix; when the target data signal is the first data signal, use an orthogonal sequence to invert the data matrix Spread spectrum processing to obtain the received signal;
  • the data matrix is an orthogonal data matrix.
  • the processor 2010 and the radio frequency unit 2001 provided in the embodiment of the present application can implement the steps in the above embodiment of the data transmission processing method, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the processor is used to: spread the data to be sent through K orthogonal sequences to obtain K orthogonal data matrices, where K is greater than 1 Integer; K orthogonal data matrices are mapped to different frequency division multiplexing OFDM subcarriers to obtain K first OFDM signals, and the first OFDM signals are spread spectrum data matrix OFDM signals; for the K first OFDM signals
  • the k-th first OFDM signal in an OFDM signal is subjected to inverse fast Fourier transform IFFT processing to obtain the k-th first OFDM time-domain signal, where k is a positive integer less than or equal to K; the communication interface is used to transfer the The kth first OFDM time domain signal is mapped to the kth sending antenna, and the first data signal is sent through the kth sending antenna.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and
  • the embodiment of the present application also provides a network side device.
  • the network side device 2100 includes: an antenna 2101 , a radio frequency device 2102 , and a baseband device 2103 .
  • the antenna 2101 is connected to the radio frequency device 2102 .
  • the radio frequency device 2102 receives information through the antenna 2101, and sends the received information to the baseband device 2103 for processing.
  • the baseband device 2103 processes the information to be sent and sends it to the radio frequency device 2102
  • the radio frequency device 2102 processes the received information and sends it out through the antenna 2101 .
  • the foregoing frequency band processing device may be located in the baseband device 2103 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 2103 , and the baseband device 2103 includes a processor 2104 and a memory 2105 .
  • the baseband device 2103 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG. The operation of the network side device shown in the above method embodiments.
  • the baseband device 2103 may also include a network interface 2106 for exchanging information with the radio frequency device 2102, such as a common public radio interface (common public radio interface, CPRI for short).
  • a network interface 2106 for exchanging information with the radio frequency device 2102, such as a common public radio interface (common public radio interface, CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application also includes: instructions or programs stored in the memory 2105 and executable on the processor 2104, and the processor 2104 calls the instructions or programs in the memory 2105 to execute the modules shown in FIG. 18 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each process of the above-mentioned embodiment of the data transmission processing method is realized, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the electronic device described in the above embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned embodiment of the data transmission processing method Each process, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
  • An embodiment of the present application further provides a computer program product, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the above data transmission processing method embodiments. process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , optical disc), including several instructions to enable a terminal (which may be a mobile phone, computer, server, air conditioner, or base station, etc.) to execute the methods described in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种数据传输处理方法、装置、通信设备及存储介质,属于通信技术领域。本申请实施例的数据传输处理方法,包括:发送端将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;所述发送端将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;所述发送端对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;所述发送端将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。

Description

数据传输处理方法、装置、通信设备及存储介质
相关申请的交叉引用
本申请主张在2021年8月9日在中国提交的中国专利申请No.202110909085.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,尤其涉及一种数据传输处理方法、装置、通信设备及存储介质。
背景技术
随着通信技术的发展,为了在通信中实现通信感知一体化(Integrated Sensing And Communication,ISAC),通常采用映射不同的子载波在不同的发射天线上进行频谱交错的方式实现发射天线间相互正交。但是,多输入多输出(Multiple Input Multiple Output,MIMO)-频分复用(Orthogonal frequency division multiplex,OFDM)雷达波形的缺点是:由于每个发射天线上的映射子载波是周期性间隔交错放置,而间隔数是由发射天线数决定的,这会对最大感知距离产生很大的影响。例如,假设发射天线数是N,映射子载波的周期性间隔至少也是N,雷达能够感知的最大距离将减少N倍。因此,现有技术中存在雷达感知的性能较差的问题。
发明内容
本申请实施例提供一种数据传输处理方法、装置、通信设备及存储介质,能够解决雷达感知的性能较差的问题。
第一方面,提供了一种数据传输处理方法,包括:
发送端将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;
所述发送端将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信 号;
所述发送端对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;
所述发送端将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。
第二方面,提供了一种数据传输处理方法,包括:
接收端接收目标数据信号;
所述接收端对所述目标数据信号进行预处理,得到目标时域信号;
所述接收端对所述目标时域信号进行离散傅里叶变换得到数据矩阵;
在所述目标数据信号为第一数据信号的情况下,所述接收端利用正交序列对所述数据矩阵进行反扩频处理得到接收信号;
其中,在所述目标数据信号为第一数据信号的情况下,所述数据矩阵为正交数据矩阵。
第三方面,提供了一种数据传输处理装置,包括:
扩频模块,用于将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;
第一映射模块,用于将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;
第一转换模块,用于对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;
第一发送模块,用于将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。
第四方面,提供了一种数据传输处理装置,包括:
第二接收模块,用于接收端接收目标数据信号;
预处理模块,用于接收端对所述目标数据信号进行预处理,得到目标时域信号;
第二转换模块,用于对所述目标时域信号进行离散傅里叶变换得到数据矩阵;
反扩频模块,用于在所述目标数据信号为第一数据信号的情况下,利用正交序列对所述数据矩阵进行反扩频处理得到接收信号;
其中,在所述目标数据信号为第一数据信号的情况下,所述数据矩阵为正交数据矩阵。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,处理器用于:将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;通信接口用于将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号;或者,通信接口用于接收目标数据信号,处理器用于:对所述目标数据信号进行预处理,得到目标时域信号;对所述目标时域信号进行离散傅里叶变换得到数据矩阵;在所述目标数据信号为第一数据信号的情况下,利用正交序列对所述数据矩阵进行反扩频处理得到接收信号;其中,在所述目标数据信号为第一数据信号的情况下,所述数据矩阵为正交数据矩阵。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,处理器用于:将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;将K个正交数据矩阵映射到不同的频分复用OFDM 子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;通信接口用于将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第二方面所述的方法。
本申请实施例中,通过发送端将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;所述发送端将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;所述发送端对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;所述发送端将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。这样,由于通过K个正交序列对待发送数据进行扩频,从而可以使得MIMO发射天线正交,MIMO空间分集增大,因此本申请实施例提高雷达感知的性能。
附图说明
图1是本申请实施例可应用的一种网络系统的结构图;
图2是本申请实施例应用的ISAC模型示例图;
图3是本申请实施例提供的一种数据传输处理方法的流程图;
图4是本申请实施例提供的一种数据传输处理方法中OFDM传输块的结构示意图;
图5是本申请实施例提供的一种数据传输处理方法的流程示例图之一;
图6是本申请实施例提供的一种数据传输处理方法的流程示例图之二;
图7是本申请实施例提供的一种数据传输处理方法中DoA、距离和多普勒频移的检测流程示例图;
图8是本申请实施例提供的一种数据传输处理方法的流程示例图之三;
图9是本申请实施例提供的一种数据传输处理方法中扩频示例图之一;
图10是本申请实施例提供的一种数据传输处理方法中扩频示例图之二;
图11是本申请实施例提供的一种数据传输处理方法中扩频示例图之三;
图12是本申请实施例提供的一种数据传输处理方法的流程示例图之四;
图13是本申请实施例提供的一种数据传输处理方法的流程示例图之五;
图14是本申请实施例提供的一种数据传输处理方法的流程示例图之六;
图15是本申请实施例提供的一种数据传输处理方法的流程示例图之七;
图16是本申请实施例提供的另一种数据传输处理方法的流程图;
图17是本申请实施例提供的一种数据传输处理装置的结构图;
图18是本申请实施例提供的另一种数据传输处理装置的结构图;
图19是本申请实施例提供的一种通信设备的结构图;
图20是本申请实施例提供的一种终端的结构图;
图21是本申请实施例提供的一种网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描 述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网设备,其中, 基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Networks,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、ISAC模型。
本申请实施例中涉及的ISAC模型有两种;第一种模型是根据共置式天线的无设备感知系统(Co-located Antenna based Device-free Sensing),而第二种模型是根据分布式天线的无设备感知系统(Distributed Antenna based Device-free Sensing)。如2图所示,当采用第一种模型的时候,收发端的方位角是相同的,即θ 1=θ 2,而当采用第二种模型的时候,收发端的方位角是不相同的,即θ 1≠θ 2。但是,在第二种模型中可以通过θ 2来算出θ 1,因此采用两种模型能够达到的性能应该是同等的。在本申请实施例中,主要采用第一种模型为例进行说明。
在ISAC中,主要考虑三种实体。第一种是ISAC实体,即拥有发送(包括雷达波和针对它实体的数据信息)和接收(包括反射雷达波和它实体来的数据信息)功能的实体,在此命名为TS实体(Transmitter/Sensing Entity)。如蜂窝网的基站,或车用无线通信技术(Vehicle To Everything,V2X)应用中的车辆(配备雷达和通信模块功能)等。
可选地,TS实体的接收功能是指接收自己发射并反射的雷达波信息。为了简单起见,并且不影响本申请的技术说明,TS实体不接收其它实体发送的数据包。
第二种是反射目标实体,即雷达波到达一个目标实体会被反射,而TS实体通过反射波感知目标实体相关的到达角(Direction of Arrival)\距离(Range),和多普勒(Doppler)。在此命名为RO实体(Reflect Object Entity)。 RO实体不需要拥有发送和接收功能。如没有通信功能的传统车辆等。
第三种是数据接收实体,即TS实体发射雷达波同时还会附带通信数据,数据接收实体只对通信数据感兴趣,因此配有通信接收模块。在此命名为CO实体(Communication Object Entity)。CO实体接收通信数据,同时也会反射雷达波。如蜂窝网业务中的终端,V2X应用中的车辆(至少配备通信接收模块功能)等。
TS实体具有感知和通信功能,主要是提供对物体的感知和对终端的通信服务。每个TS实体包含一个发射机和一个接收机,两者位于同一位置,但在物理上是相互分开的,并且相互没有信号干扰。发射机和接收机之间能够进行信息交互,因此接收机是知道发射机发送的数据信息的,以备雷达数据处理时使用。另外,每个发射机配备K个发射天线,每个接收机配备L个接收天线。
TS实体对P RO个RO实体进行感知,主要检测DoA,距离和多普勒频移。另外,TS实体对P CO个CO实体进行同样的感知,同时还提供通信业务。其中,TS实体进行感知实体的数量P满足:P=P RO+P CO。而每个CO实体需要接收来自TS实体发送的数据包。
二、MIMO雷达。
毫米波的使用对MIMO雷达将起到一个催化剂的作用。毫米波的固有特性(如大带宽,高频率)可以有效地实现小尺寸天线,和高分辨率好处,同时也能大大提高通信数据传播速率。MIMO雷达另外一个好处是,能够对多个反射体同时感知,并有效地识别不同物体的位置。因此MIMO雷达在通信感知一体化领域是不可缺少的技术。
在反射体未知的情况下,MIMO雷达的发射天线需要被正交化。也就是说,每个发射天线需要发射独立的全方位雷达波形。MIMO雷达发射天线正交的理由是,在对反射体位置信息缺乏的情况下,MIMO雷达将发射空间全方位的探测信号,从而在任何位置提供恒定功率。因此,MIMO雷达基于全向天线,MIMO多集特性和利用Capon的方法能有效地感知DoA。
三、OFDM雷达。
OFDM雷达是一种新技术,能够用于通信和雷达一体化目的的无线电系 统。在传输OFDM小数据包的同时,OFDM雷达通过对传输信号的回波接收和处理,可以制作雷达图像和相关的周围环境。
OFDM雷达主要是通过对回波接收信号进行离散傅里叶变换(Discrete Fourier Transform,DFT)处理后,通过利用最大似然估计(Maximum Likelihood Estimation,MLE)算法进行优化,最后利用快速傅里叶变换(Fast Fourier Transform,FFT)和快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)的双处理,获取在延迟多普勒域(Delay-Doppler Domain,DD域)信息,从而准确得到距离和多普勒信息。
可选地,OFDM雷达波不需要对传输数据进行优化,因为在检测过程中,接收到的数据符号在转换成DD域以前会被除去。因此OFDM雷达对传输数据要求可以不需要被考虑。
四、MIMO-OFDM雷达。
MIMO-OFDM雷达结合了MIMO雷达和OFDM雷达的特征,也是一种最近提出的新技术。MIMO-OFDM雷达同时具有MIMO雷达和OFDM雷达的检测能力,因此和单技术雷达相比,雷达的检测范围,速度和角度等性能会更好,并且具备较强的通信能力。例如,多个便携式无线联网的区域监视就可以通过MIMO-OFDM雷达来实现。
用于多用户接入的MIMO-OFDM雷达可以通过频谱交错的OFDM信号来实现。即,子载波的间距和MIMO发射天线数要保持一样。由于所有天线仅发射相互独立的子载波信道,不同天线间传输信号干扰可以被认为是零。另外,由于每个天线传输独立的全带宽雷达信号,MIMO的分集增益会被提高,因此具有很强的雷达分辨率功能。
五、雷达(Radar)检测技术。
针对到达方向(Direction of Arrival,DoA)感知,可以依赖的传统的基于子空间的算法,如多信号分类(MUltiple SIgnal Classification,MUSIC)、利用旋转不变性技术估计信号参数(Estimation of Signal Parameters using Rotational Invariance Techniques,ESPRIT)、矩阵束(Matrix Pencil)等算法。这种子空间的算法主要是针对未知反射物体的感知。
另外,针对已知物体的波束赋形,可以依赖的传统的算法,如Capon方 法,即,最小方差无失真响应(Minimum Variance Distortionless Response,MVDR)、延迟和波束形成器(Delay and sum Beamformer)和信噪比(Signal Noise Ratio,SNR)最大化(maximizer)等。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的数据传输处理方法进行详细地说明。
请参见图3,图3是本申请实施例提供的一种数据传输处理方法的流程图,如图3所示,包括以下步骤:
步骤301,发送端将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;
步骤302,所述发送端将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;
步骤303,所述发送端对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;
步骤304,所述发送端将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。
应理解,上述K个天线可以理解为发送端的全部发射天线或者部分发射天线,本申请实施例中,假设K个天线为发送端的全部发射天线。
本申请实施例提供的数据传输处理方法主要应用在MIMO-OFDM系统中,其中,发送端拥有K个发射天线,接收端拥有L个接收天线。在实际系统中,一般会使用天线端口(Antenna Port)命名。每个天线端口可以是天线面板(Antenna Panel),具有多个天线元(Antenna Element),用于形成模拟波束。因此,在本申请实施例中,可以将每个天线端口理解为一个发射天线,且发射天线包括MIMO技术中涉及的具有相关性和/或非相关性MIMO天线。
可选地,发送端可以通过OFDM调制器将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号。该发送端可以理解为终端侧设备,也可以理解为网络侧设备,在此不做进一步的限定。
上述K个正交序列可以通过C表示,C=[c 1,c 2,…,c K],其中,第k个正交 序列c k可以通过向量形式表示:c k=[c k,1,c k,2,…,c k,K′] T,K′是每个正交序列的长度,K′≥K。
需要说明的是,上述待发送数据可以理解为MIMO-OFDM数据,发送端将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,可以理解为利用正交码分复用(Code Division Multiplexing,CDM)方法对待发送数据进行预编码,从而得到适应每个发送天线的正交雷达的新波形。这样可以使得MIMO发射天线正交,MIMO空间分集增大,使MIMO雷达的探测增益有很大的提高。
本申请实施例中,通过发送端将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;所述发送端将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;所述发送端对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;所述发送端将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。这样,由于通过K个正交序列对待发送数据进行扩频,从而可以使得MIMO发射天线正交,MIMO空间分集增大,因此本申请实施例提高雷达感知的性能。
可选地,在一些实施例中,所述发送端将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵包括:
所述发送端利用K个正交序列对所述待发送数进行时频域扩频,得到K个正交数据矩阵;
其中,时频域扩频的规则满足以下任一项:
先进行时域扩频K t个OFDM符号后,再进行频域扩频K f个子载波,K t和K f均为正整数,且K t和K f之和大于2;
先进行频域扩频K f个子载波后,再进行时域扩频K t个OFDM符号,K t和K f均为正整数,且K t和K f之和大于2。
本申请实施例中,在利用K个正交序列对所述待发送数进行时扩频时,可以仅进行时域扩频,也可以仅进行频域扩频,还可同时进行时域扩频和频 域扩频。其中,在上述K t等于1时,可以理解为未进行时域扩频,在上述K f等于1时,可以理解为未进行频域扩频。
可选地,所述正交序列的长度K′满足:K′=K tK f,K′≥K。
可选地,在一些实施例中,所述K′通过高层信令配置或预配置,或者K′基于天线的数量确定。
本申请实施例中,上述高层信令可以包括无线资源控制(Radio Resource Control,RRC)信令。若K′基于天线的数量确定的情况下,K′可以等于K,也可以为K增加预设值或者为K的倍数,在此不做进一步的限定。
可选地,所述K t和K f通过底层信令指示。例如可以通过媒体接入控制控制单元(Medium Access Control Control Element,MAC-CE)或物理下行控制信道(Physical downlink control channel,PDCCH)指示K t和K f
可选地,在一些实施例中,所述方法还包括:
所述发送端将待发送数据映射到不同的OFDM子载波上,得到K″个第二OFDM信号,其中,K″为小于或等于K的正整数;
所述发送端对所述K″个第二OFDM信号中的第k个第二OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第二OFDM时域信号,k为小于或等于K″的正整数;
所述发送端将所述第k个第二OFDM时域信号通过多输入多输出MIMO预编码或MIMO波束赋形映射到K个发送天线,并通过所述K个发送天线发送第二数据信号;
其中,所述第一数据信号承载于第一传输块中,所述第二数据信号承载于第二传输块中,所述第一传输块与所述第二传输块在时域上交替传输。
本申请实施例中,由于CDM扩频原因,对数据速率的峰值有一定的限制。虽然CDM扩频能够提供相应的SNR增益,间接地提高数据速率,但是这需要增加正交幅度调制(Quadrature Amplitude Modulation,QAM)的调制阶数,然而过高的调制阶数可能会影响雷达波形的性能。因此,本申请实施例中,利用第一传输块与第二传输块在时域上交替传输第一数据信号和第二数据信号,从而可以在提高雷达性能的同时提高数据传输性能。
上述第一传输块可以理解为Type-I块,上述第二传输块可以理解为 Type-II块,第一传输块和第二传输块都可以称之为ODFM传输块,由于采用两种类型的ODFM传输块来动态切换或调整感知和通信波形,从而可以在提高雷达性能的同时保证数据传输性能。第一数据信号承载于第一传输块可以理解为:在第一传输块上传输第一数据信号,即在第一传输块中,发射基于正交CDM的MIMO OFDM雷达信号。所述第二数据信号承载于第二传输块可以理解为第二传输块上传输第二数据信号,即在第二传输块中发送传统的MIMO OFDM数据信号。
可选地,在一些实施例中,不同天线上发送的第一数据信号相互正交。
可选地,所述发送端利用第二传输块发送所述第二数据信号的情况下,所述方法还包括:
所述发送端根据传输类型和在第一传输块中获取的到达角DoA进行波束赋形,所述传输类型为单用户MIMO(Single-User MIMO)或多用户MIMO(Multi-User MIMO)。
可选地,在一些实施例中,所述发送端根据传输类型和在第一传输块中获取的DoA进行波束赋形,包括:
所述发送端根据传输类型和在第一传输块中获取的DoA对接收端的通信对象CO实体进行波束赋形;
在满足所述CO实体的服务质量QoS,且所述发送端存在剩余的且可用于与所述CO实体传输的可用赋形波束和/或能量的情况下,所述发送端根据传输类型和在第一传输块中获取的DoA对所述接收端的反射对象RO实体进行波束赋形。
本申请实施例中,所述发送端根据传输类型和在第一传输块中获取的DoA进行波束赋形包括:
所述发送端根据CO实体和RO实体的方位角,确定每个MIMO层的至少两个波束方向;
所述发送端针对每个MIMO层,在所述至少两个波束方向上对CO实体和RO实体进行波束赋形进行波束赋形。
需要说明的是,本申请实施例中,第二传输块的MIMO-OFDM的传输方法与传统的MIMO-OFDM的传输方法的区别在于,在每个MIMO层上,除 了发送数据包外,TS实体需要同时考虑对RO实体进行感知。因此每个MIMO层的波束赋形需要同时考虑CO实体和RO实体的方位角。也就是说,TS实体对每MIMO层考虑多方向的波束赋形。根据CO实体和RO实体的方位角,并通过MVDR算法,对每MIMO层,TS实体将决定多方向的波束赋形。
可选地,在每个MIMO层中,面向CO实体的波束赋形数量为一个,面向RO实体的波束赋形数量至少为一个。
可选地,在一些实施例中,所述第一数据信号对应的第一波束和所述第二数据信号对应的第二波束满足:
在相邻的两个时间段内,所述第一波束的波束方向不同;
在不同的时间段内所述第二波束的波束方向不变。
本申请实施例中,上述第一波束可以理解为感知目标波束,上述第二波束可以理解为通信目标波束。在不同的时间段,拥有通信目标的波束赋形方向不变,但感知目标波束方向可以从一个切换到另一个。
可选地,所述第一传输块包括X个传感子块,每个传感子块包含N个OFDM符号,X和N均为正整数。所述第二传输块包括Y个时隙,Y为正整数。
本申请实施例中,X和Y可以在RRC中配置。
可选地,所述发送端通过第一传输块和第二传输块周期性交替发送所述第一数据信号和所述第二数据信号;或者,
所述发送端根据目标切换信令,通过所述第一传输块发送所述第一数据信号或通过所述第二传输块发送所述第二数据信号,其中,所述目标信令用于指示利用所述第一传输块或第二传输块发送数据信号。
本申请实施例中,上述第一传输块和第二传输块可以周期性切换,也可以通过目标信令进行切换。应理解,发送端和接收端对于第一传输块和第二传输块的切换的理解应保持一致。
可选地,在一些实施例中,在所述发送端将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号之后,所述方法还包括:
所述发送端接收由所述接收端的CO实体发送的反馈信息和第一指示信 息,所述反馈信息用于指示所述第一数据信号被成功接收,所述第一指示信息用于指示所述CO实体的地理位置。
本申请实施例中,在Type-I块中,发送端的TS实体发送正交CDM雷达波(即上述第一数据信号),并同时携带数据。当接收端的CO实体接收到相关数据包后,接收端的CO实体需要反馈数据包接收成功信息给发送端的TS实体。在此同时,CO实体可以把自己的地理位置通过控制信令通知TS实体。TS实体可以根据在Type-I块中,检测到的所有参数,综合判断哪些实体(即反射体)属于CO实体,哪些实体属于RO实体。例如,TS实体利用方位角和距离信息,可以计算出CO实体的大体坐标,通过和反馈的地理位置信息比较推算反射体是否属于CO实体。
可选地,所述反馈信息和第一指示信息承载于物理上行共享信道(Physical Uplink Shared Channel,PUSCH);或物理上行信令信道(Physical Uplink Control Channel,PUSCH);所述第一指示信息携带在高层信令中。
应理解,在本申请实施例中,以发送端为网络侧设备,接收端为终端为例进行说明,当然如V2X的应用场景中,在发送端为终端,接收端也为终端设备的情况下,第一指示信息承载于物理侧链路共享信道(Physical sidelink shared channel,PSSCH),或物理侧链路信令信道(Physical sidelink control channel,PSSCH)。
为了更好的理解本申请,以下通过一些具体实例进行详细说明。
方案1:基于CDM特性的MIMO OFDM波形技术。
在MIMO-OFDM系统中,发送端拥有K发射天线,接收端拥有L接收天线。
首先正交序列(Orthogonal Sequence)c k,把数据在时域和/或频域上扩频;然后通过OFDM调制器把数据映射到不同的OFDM子载波(OFDM Subcarrier)上得到OFDM信号,然后通过IFFT处理把OFDM信号转换为OFDM时域信号。最后通过第k个独立MIMO天线发射雷达数据信号。
正交序列c k可以通过向量形式表示,即
c k=[c k,1,c k,2,…,c k,K′] T
可选地,C=[c 1,c 2,…,c K],应该满足以下要求:
Figure PCTCN2022110267-appb-000001
因此,正交序列方差将满足以下条件:C HC=1或C TC *=1;其中,C H是矩阵C的埃尔米特矩阵(Hermitian Matrix)。
可选地,K′是每个正交序列的长度,而K是发射天线数,需要满足K′≥K。
可选地,如图4所示,OFDM传输块是CDM-MIMO OFDM传输资源,由频域,时域,和空域组成。频域是M个OFDM子载波(sub-carriers)。时域是N个OFDM符号,每个符号长度为T sym=T+T cp,T cp是循环前缀(Cyclic Prefix,CP)长度,而空域是K个发送天线。
如图5所示,TS实体由以下几个部分组成。在经过调制(如,QAM)和信道编码(如低密度校验码(Low Density Parity Check,LDCP))后的数据向量d k被正交序列c k在时域和/或频域上扩频,形成了一个两维M×N的数据矩阵,即
Figure PCTCN2022110267-appb-000002
其中
Figure PCTCN2022110267-appb-000003
是正交序列映射符号,是根据不同CDM的映射方式而定,具体在以下方案二中详细描述。矩阵数据通过IFFT处理,产生1×MN时域信号,并将在第k发送天线发送。
TS实体的接收端会向对每个接收天线的信号利用
Figure PCTCN2022110267-appb-000004
实施反扩频,然后进行相干组合(Coherent Combining)。输出信号将被输入感知模块(Sensor),进行到达角θ、距离范围τ和多普勒f D感知。
同样地,如图6所示,CO实体的接收端会向对每个接收天线的信号利用
Figure PCTCN2022110267-appb-000005
实施反扩频,然后进行相干组合(Coherent Combining)。输出信号将被输入FFT和数据检测模块,进行检测数据信号,
Figure PCTCN2022110267-appb-000006
可选地,数据检测和传统的OFDM数据包检测相同,在此不再赘述。
由于CDM-MIMO OFDM传输方法通过引入正交序列c k,主要是为了提高MIMO分集增益,从而增强雷达感知性能,而针对通信的传输性能(如,传输数据峰值)可能会有一定的影响。
方案二:CDM的映射方式。
CDM扩频可以采用时域和/或频域方向的映射方式。在此假设OFDM的时频域(即,Time Frequency Domain,T-F域)的扩频因子(Spreading Factor)分别为K t和K f。每个数据符号s k被一个正交序列c k在时域方向扩频,然后在第k个发送天线发送。因此,接收端通过
Figure PCTCN2022110267-appb-000007
反扩频后,从不同发射天线发送 的符号s k是正交的,相互没有任何干扰。
OFDM信号可以先在时域上先扩频K t个OFDM符号,然后在频域上扩频K f子载波。同样地,也可以先在频域上扩频K f子载波,然后再在时域上先扩频K t个OFDM符号。扩频因子K t和K f的大小是根据发送端的不同业务来决定的。当CDM扩频仅仅采用时域方向的映射方式的时候,K f=1;也可以仅仅采用频域方向的映射方式,即K t=1。
对被感知物体的不同要求,应采用不同的扩频映射方式。这是由于,如果CDM扩频采用时域方向的映射方式,能被感知的物体最大距离将被缩小,而如果CDM扩频采用频域方向的映射方式,能被感知的物体最大多普勒频率将被缩小。因此,TS实体可以根据在感知过程中的所需业务质量(Quality of Service,QoS)来调整时域方向和频域方向的长度。在移动高速或少反射体(空旷区域)的场景下,TS实体需要考虑CDM在频域扩频的机制;而在低速或多反射体(密集区域)的场景下,TS实体需要考虑CDM在时域扩频的机制。
CDM扩频所需的正交序列长度K′至少等于发射天线数K,即,K′≥K。另外,在扩频映射过程中,TS实体可以考虑两个参数来实现时频域方向的映射的,即,频域方向的扩频映射参数为K f,而时域方向的扩频映射参数为K t,因此K f和K t需要满足以下条件:K′=K fK t
在实际应用中参数K′可以通过RRC等高层信令来配置,或预配置,或直接通过和发射天线映射方法(即,K′=K),而K f或K t可以通过相对比较底层的信令来通知CO实体(如果MAC-CE或PDCCH等),以便CO实体能够正确的接收TS实体发送的数据包。
CDM扩频映射方式中使用的正交序列c k可以采用任何正交序列或伪正交序列(Pseudo Orthogonal Sequence)如,Walsh code,Barker code,PN sequence,Zadoff–Chu sequence等。
方案三:DoA,Range和Doppler的检测方法。
通过c k对MIMO-OFDM信号扩频后(或可以被认为正交预编码),在第k天线和第n符号的MIMO-OFDM发射信号可以表示为:
Figure PCTCN2022110267-appb-000008
其中,
Figure PCTCN2022110267-appb-000009
是正交序列映射符号,被定义为:
Figure PCTCN2022110267-appb-000010
其中,d k(m+nT)表示第n个OFDM符号第m个子载波数据,Δf是子载波间距(Sub-carrier Spacing),rect(t)是矩形函数,对于t∈[0,1]取值为1的,否则取值为0,
Figure PCTCN2022110267-appb-000011
是x的地板函数(Floor Function),
Figure PCTCN2022110267-appb-000012
被定义为:
Figure PCTCN2022110267-appb-000013
应理解,如果通过
Figure PCTCN2022110267-appb-000014
反扩频后,可以得到以下结果:
Figure PCTCN2022110267-appb-000015
其中,
Figure PCTCN2022110267-appb-000016
Figure PCTCN2022110267-appb-000017
因此在第k天线上,在N个OFDM符号块上传输的信号t∈[0,NT sym]可以表示为:
Figure PCTCN2022110267-appb-000018
其中,f c是中心频率,
Figure PCTCN2022110267-appb-000019
是x的实数函数。
针对第p个点目标,发送电波是通过复杂的信道增益h p(包括路径损耗和雷达截面(Radar Cross Section)效应),方位角θ p,往返延迟τ p和归化的多普勒频移f D,p=2v pf c/c,其中f c,v p和c分别表示为中心频率,径向速度和光传播速度。
针对方位角θ p,发射天线和接收天线的向量可以表示为:
Figure PCTCN2022110267-appb-000020
Figure PCTCN2022110267-appb-000021
其中,
Figure PCTCN2022110267-appb-000022
分别是针对目标方位角θ p的发射和接收向量,λ,d T和d R分别表示信号波长,发送天线和接收天线间距。
为了简单说明,在不考虑接收过程中的噪声,发射信号抵达第p个点目标并通过反射到达第l个接收天线,其接收信号可以被表示为:
Figure PCTCN2022110267-appb-000023
其中,[x] l是表示向量x的第l个元素。
因为
Figure PCTCN2022110267-appb-000024
是恒定的,可以用
Figure PCTCN2022110267-appb-000025
来表示,因此
Figure PCTCN2022110267-appb-000026
在此考虑以下假设,CP持续时间大于最远点目标的往返延迟,即,T cp≥τ max
因此,去除第n个OFDM符号的CP后,并对接收信号进行M采样,即
Figure PCTCN2022110267-appb-000027
接收到的时域信号可以表示为:
Figure PCTCN2022110267-appb-000028
另外,由于ΔfT sym≈ΔfT=1,可以考虑
Figure PCTCN2022110267-appb-000029
因此
Figure PCTCN2022110267-appb-000030
一般情况下,可以假设T cp≥τ max和f D,pT<<1,因此就不需要考虑ISI和ICI的影响,即,
Figure PCTCN2022110267-appb-000031
项对DFT运算不会产生影响,并且可以被融合到h′ pp)。经过DFT处理后,以上公式可以被表示为:
Figure PCTCN2022110267-appb-000032
其中,
Figure PCTCN2022110267-appb-000033
如果考虑P个点目标和K发送天线,第l个接收天线的信号可以表示为
Figure PCTCN2022110267-appb-000034
如果通过正交序列
Figure PCTCN2022110267-appb-000035
对每个K f×K t时频域块进行反扩频,每个发射天线上的信号被正交分离。因此,考虑了接收噪声后,第k个发送天线的发送信号,被第l个接收天线接收的信号可以被表示为:
Figure PCTCN2022110267-appb-000036
其中z k,l,n′(m′)是通过正交序列
Figure PCTCN2022110267-appb-000037
反扩频处理后,在第l个接收天线,m′子载波,n′符号上接收的AWGN(Additive White Gaussian Noise)噪声,均值为零且噪声功率谱密度为N 0,
Figure PCTCN2022110267-appb-000038
Figure PCTCN2022110267-appb-000039
因此y′ k,l,n′(m′)将被作为输入信号,检测并获取P点目标相关的DoA(即θ p),距离(即τ p)和多普勒频移(即f D,p)。在此考虑使用不同的算法来分别获取DoA、距离和多普勒频移。
应理解,以上y′ k,l,n′(m′)处理过程对TS实体和CO实体是相同的,唯一不同的是TS实体和CO实体的接收天线向量a Rp)是分别定义的,并且,反射物体的对象也有所不同。
另外,对CO实体来说,在获取y′ k,l,n′(m′)后,具体的所需的数据检测算法和传统的OFDM接收机的方法完全相同,在此不作详细说明。
可选地,由于TS实体是已知每个发射天线上发送的数据信号[d k] n′,m′,因此可以从接收信号y′ k,l,n′(m′)中除去。被除法运算后的第k个发送天线和第l个接收天线的接收信号可以被表示为:
Figure PCTCN2022110267-appb-000040
其中
Figure PCTCN2022110267-appb-000041
为了获取DoA,可以考虑使用Capon方法或MUSIC相关的算法。在Capon方法或MUSIC相关的算法过程中,首先需要构造接收信号的空间协方差矩阵(Spatial Covariance Matrix)。在此考虑两种空间分集运算方法。
第一种空间分集运算方法是,在接收SNR相对比较低的情况下,仅考虑接收天线分集,即,通过接收信号y″ k,l,n′(m′),形成M×K矩阵,矩阵形式可以被表示为:
Figure PCTCN2022110267-appb-000042
其中,
Figure PCTCN2022110267-appb-000043
通过对
Figure PCTCN2022110267-appb-000044
计算空间协方差矩阵(Spatial Covariance Matrix),可以得到L×L的空间协方差矩阵R (1),被表示为:
Figure PCTCN2022110267-appb-000045
第二种空间分集运算方法是,在接收SNR相对比较高的情况下,可以同时考虑发送和接收天线分集,即,通过接收信号y″ k,l,n′(m′),形成M×KL矩阵,矩阵形式可以被表示为:
Figure PCTCN2022110267-appb-000046
其中,
Figure PCTCN2022110267-appb-000047
通过对
Figure PCTCN2022110267-appb-000048
计算空间协方差矩阵(Spatial Covariance Matrix),可以得到KL×KL的空间协方差矩阵R (2),被表示为:
Figure PCTCN2022110267-appb-000049
空间协方差矩阵R (1)或R (2)可以作为Capon方法或MUSIC相关的算法的输入,从而获取DoA,即,θ p
可选地,空间协方差矩阵R (1)或R (2)的的算法不同之处在于,前者从发送天线得到SNR增益,对获取DoA准确性由很大的提升,但后者由于空域的分集增益,对能够感知的物体数会有所增加。
可选地,为了获取距离和多普勒频移信息,将考虑使用OFDM雷达算法。为了更精准的获取距离和多普勒频移,根据前文获取的估算
Figure PCTCN2022110267-appb-000050
和L×L的空间协方差矩阵R (1),使用MVDR方法算出
Figure PCTCN2022110267-appb-000051
Figure PCTCN2022110267-appb-000052
信号进行接收波束赋形。因此,通过矩阵运算,可以得到M×1向量:
Figure PCTCN2022110267-appb-000053
可选地,被波束赋形处理后的信号可以用
Figure PCTCN2022110267-appb-000054
矩阵形式表示
Figure PCTCN2022110267-appb-000055
因此矩阵Y (3)将被作为OFDM雷达算法模块的输入,从而获取距离和多普勒频移。
具体的,如图7所示,检测的具体流程如下:处理后的接收信号y″ k,l,n′(m′)被输入到DoA检测模块,通过MUSIC等算法获取P个目标的DoA。估计得到的DoA被输入接收波束赋形模块,进行接收波束赋形处理。波束赋形处理的
Figure PCTCN2022110267-appb-000056
矩阵信号被输入到距离和多普勒频移检测模块,最后通过OFDM雷达算法获取距离和多普勒频移。
方案四:新波形动态控制。
正交CDM雷达波形可用于检测未知目标位置。但是由于CDM扩频原因,对数据速率的峰值有一定的限制。虽然CDM扩频能够提供相应的SNR增益,间接地提高数据速率,但是这需要增加QAM的调制阶数。然而过高的调制阶数可能会影响雷达波形的性能。因此,本申请考虑两种波形来同时实现提高雷达性能和数据传输性能。
如图8所示,考虑两种类型的OFDM传输块来实现动态切换或调度感知和通信波形。两种OFDM传输块的使用是周期性的交替的,即,TS实体可以首先在Type-I块(Type-I Block)中,发射基于正交CDM的MIMO OFDM雷达信号,检测未知目标。然后周期性地切换到Type-II块(Type-II Block)中,发送传统的MIMO OFDM数据信号。在此每次Type-I块和Type-II块的感知和通信过程被考虑为ISAC循环(ISAC Cycle)。
可选地,Type-I块是采用基于OFDM的全新设计波形,该波形依靠CDM方式,使不同天线上的传输信号相互正交。利用Type-I块主要是为了提高感知性能,但对数据传输性能也有一定的保障。在感知过程中,将使用方案三来获取多个目标的DoA、距离和多普勒(或速度)。
可选地,Type-II块是使用经典的OFDM波形,其中传输依赖于单用户MIMO(Single-User MIMO)或多用户MIMO(Multi-User MIMO),根据Type-I块中获取的DoA来进行波束赋形。利用Type-II块主要是为了提高数据性能而非感知性能。由于在Type-I块中能获取精准的DoA,从而保障了波束赋形准确度,因此多用户MIMO间的波束干扰也就能够得到相应的抑制。这对Type-II块中感知性能也能得到一定的保障。
应理解,在Type-II块中,TS实体也需要通过接收MIMO OFDM数据信号进行实施雷达检测过程。由于TS实体的任何两个发送天线之间的通信符号 不是正交的,因此对雷达检测性能无法得到保障。在这种情况下,雷达检测过程只能作为一种辅助性的功能(Supplemental),而精准的雷达检测过程是依赖于Type-I块实现的。
在图8中,假设每个Type-I块由X个传感子块(Sensing Sub-block,SSB)组成,该传感子块可以称之为同步块。每个传感子块包含N个OFDM符号。每个Type-II块由Y时隙(Slot)组成。X和Y可以在RRC中配置。Type-I块和Type-II块的使用可以是交替周期切换的,从而形成ISAC循环(ISAC Cycle)。更有效地,Type-I块和Type-II块的使用也可以通过信令发送的方法进行切换。
一般来说,有两种类型的反射目标。一种是,RO实体,而另一种是CO实体。在此首先假设TS实体有能力区分RO实体和CO实体。
在Type-I块中,TS实体将检测具有较大特征值的目标(如体积较大,距离较近的目标),并获取相关的DoA、距离和多普勒。在Type-II块中,TS实体将专注于通信终端,即CO实体,给与其更集中波束和更大的能量,并确保这些通信终端的QoS。在Type-II块中,由于发送端能够赋形的波束数P′必须满足,P′≤K-1。另外,根据功放硬件等原因,发射功力的是受到限制的,因此,在Type-II块中,必须首先考虑如何更好的满足CO实体所需的QoS要求。只有当TS实体有剩余的可用赋形波束和/或能量用于RO实体,TS实体才会选择DoA对RO实体进行波束赋形。在这种情况下,在不同的时间段,拥有通信目标的波束赋形方向不变,但感知目标波束方向可以从一个切换到另一个。这是因为如果TS实体将更多数量的波束用于感知,这将对通信性能造成不良的影响。比如,赋形的总波束越多,数据波束赋形的精准度就会降低。还有,用于感知目标的波束越多,用于数据的能量就会越少,数据通信接收信号也就会变弱;也就是说,SNR将无法满足通信要求。
但是要实现以上的动态优化控制,关键在于TS实体如何区分RO实体和CO实体。在Type-I块中,发送端的TS实体发送正交CDM雷达波,并同时携带数据。当接收端的CO实体接收到相关数据包后,接收端的CO实体需要反馈数据包接收成功信息给发送端的TS实体。在此同时,CO实体可以把自己的地理位置通过控制信令通知TS实体。TS实体可以根据在Type-I块中, 检测到的所有参数,综合判断哪些实体属于CO实体,哪些实体属于RO实体。比如,TS实体利用方位角和距离信息,可以计算出CO实体的大体坐标,通过和反馈的地理位置信息比较推算反射体是否属于CO实体。
一般情况下,CO实体可以通过PUSCH,MAC-CE或更高层信令,并结合反馈信息发送其地理位置给TS实体。针对低速的CO实体,一般来说,高层信令足以保障地理位置传递。
可选地,在Type-II块中,由于TS实体知道和CO实体相关的DoA、CO实体只需要反馈秩指示(Rank indicator,RI)和信道质量指示(Channel quality indicator,CQI),不需要反馈预编码矩阵指示(Precoding matrix indicator,PMI)。由于PMI反馈需要大量的信令开销来支持,这样可以减轻对多用户MIMO的信令开销。
方案五:针对Type-II块中的MIMO-OFDM波形设计。
在设计Type-II块中的MIMO-OFDM波形的时候,TS实体需要考虑有多少MIMO层(Layer)将被产生。在传统的MIMO-OFDM系统中,如果能够提供给发送端I个MIMO层的话,发送端就要决定I个预编码,以便在每个MIMO层上发送独立的数据包。因此MIMO系统可以传输的最高数据量是由I个MIMO层决定的。
Type-II块中的MIMO-OFDM的传输方法和传统MIMO-OFDM的传输方法是有区别的。在每MIMO层上,除了发送数据包外,TS实体需要同时考虑对RO实体进行感知。因此每MIMO层的波束赋形需要同时考虑CO实体和RO实体的方位角。也就是说,TS实体对每MIMO层考虑多方向的波束赋形。根据CO实体和RO实体的方位角,并通过MVDR算法,对每MIMO层,TS实体将决定多方向的波束赋形。在每MIMO层中,面向CO实体的波束赋形数是一个,而面向RO实体的波束赋形数可以是多个,具体数量由TS实体控制。
可选地,针对Type-II块中的MIMO-OFDM的传输,在赋形的波束上只需要发送面向CO实体的数据包。
可选地,TS实体在不同的MIMO层上发送独立的数据包,发送的数据包可以是针对单用户的,也可以是针对多用户的。但是不同的MIMO层波束 赋形可以针对不同的RO实体。这样可以整体减少波束间的相互干扰,以便提高TS实体对反射体感知的性能。这是由于MIMO-OFDM的波束间发送的数据信号不是完全正交的。
针对上述方案二,以下结合图9至图11通过具体实例进行说明。
如图9所示,CDM扩频因子为4,CDM扩频仅仅采用了时域方向的映射方式,即K f=1,K t=4。也就是说,每个数据符号s k被一个正交序列c k在时域方向扩频。当接收端通过
Figure PCTCN2022110267-appb-000057
反扩频后,从不同发射天线发送的符号s k被正交,相互没有任何干扰。
如图10所示,CDM扩频也可以仅仅采用频域方向的映射方式,即K t=1,K f=4。也就是说,每个数据符号s k被一个正交序列c k在频域方向扩频。
如图11所示,CDM扩频也可以采用时频域两方向的映射方式,即K t=2,K f=2。也就是说,每个数据符号s k被一个正交序列c k在时频域方向同时扩频。例如,正交序列的映射顺序可以是先时域然后再频域;此外,在其他实施例中,正交序列的映射顺序也可以采用相反的映射顺序,即先频域然后再时域。
针对上述方案四,以下结合图12至图13通过具体实例进行说明。
通过配置不同的Type-I块和Type-II块的相关参数,可以有效地同时实现感知和通信的目的。
具体地,可以考虑一个TS实体,两个CO实体(#1和#3反射体),和两个RO实体(#2和#4反射体)。在图12所示,Type-I块中,TS实体发送正交CDM-MIMO OFDM雷达波,因此每发送天线上的发送信号没有被波束赋形,而是全方位雷达波信号。雷达波到达不同的反射体并被反射到TS实体。TS实体采用MUSIC等子空间类算法接收反射波,对接收信号进行处理,并获取和反射体相关的DoA、距离和多普勒频移。在这同时,TS实体根据两个CO实体的数据反馈(如CO实体的地理位置等),利用方位角和距离信息推算出反射体#1和#3是属于CO实体。
如图13所示,Type-II块中,根据获取的检测信息和反射体类型,TS实体对每个反射体方向进行波束赋形,并发送数据包。在对反射体波束赋形时,TS实体会优先考虑CO实体,对其波束赋形。在确保CO实体的QoS的情况 下,TS实体才会考虑对RO实体进行波束赋形。CO实体#1和#3会通过利用传统的OFDM接收算法对数据包进行解码,然后进行数据反馈。而TS实体采用波束赋形的方式接收反射波,对接收信号进行处理,并获取和反射体相关的DoA、距离和多普勒频移。应理解,获取的信息是为了更新DoA、距离和多普勒频移的目的,以便在Type-II块中,补偿反射体的移动性而产生的误差。
针对上述方案五,以下结合图14至图15通过具体实例进行说明。
如图14所示,首先考虑SU-MIMO场景。此场景考虑一个TS实体,一个CO实体(反射体#2)和两个RO实体(反射体#1和#3)。TS实体将发送MIMO数据包给CO实体(反射体#2),同时通过反射体#2反射信号感知反射体的DoA,距离和多普勒频移。在此同时,TS实体还需要感知两个RO实体(反射体#1和#3)。TS实体MIMO数据包发送是通过两个MIMO层(Two MIMO Layers)完成的。因此TS实体在对每MIMO层数据包发送时,仅仅兼顾感知一个RO实体(反射体#1或#3)。
具体地,在发送第一MIMO层(Layer-1)数据包的时候,TS实体将赋形两个波束,一个是指向CO实体(反射体#2),而另一个是指向RO实体(反射体#1)。为了保障针对CO实体通信质量,TS实体可以选择赋形波束的大部分能量指向CO实体,而残留的波束的小部分能量指向RO实体(反射体#1)。
可选地,TS实体的波束赋形可以通过MVDR等算法实现。在已知实体的方位角的情况下,TS实体可以精准地赋形指向不同实体波束。
同样地,在发送第二MIMO层(Layer-2)数据包的时候,TS实体将赋形两个波束,一个是指向CO实体(反射体#2),而另一个是指向RO实体(反射体#3)。为了保障针对CO实体通信质量,TS实体可以选择赋形波束的大部分能量指向CO实体,而残留的波束的小部分能量指向RO实体(反射体#3)。
可选地,被波束赋形的Layer-1和Layer-2同时指向CO实体(反射体#2),CO实体可以通过传统的MIMO-OFDM检测方法解码数据包。同时,TS实体接收到三个反射体反射的回波,通过MIMO-OFDM雷达的检测算法,获取和 反射体相关的DoA、距离和多普勒频移。
应理解,指向CO实体(反射体#2)波束是MIMO多层信号,但是波束指向是一致的,因此TS实体可以把MIMO多层信号看作一个雷达信号,也就是说,针对雷达而言,层1(Layer-1)和层2(Layer-2)相互之间没有干扰的影响。
另外,值得注意的是,指向RO实体(反射体#1)在Layer-1中的波束信号和Layer-2中的波束信号存在一定的独立性,因此就雷达而言,Layer-2对Layer-1的干扰影响应该比较小。这样可以提高TS实体对RO实体(反射体#1)感知性能。
同样地,Layer-1对Layer-2的干扰影响应该比较小。这样可以提高TS实体对RO实体(反射体#3)感知性能。
可选地,TS实体可以对CO实体和RO实体进行排列区分,选择干扰影响相对比较小的实体,进行配对并波束赋形,从而降低MIMO层间的相互干扰。
因此,在Type-II块中发送SU-MIMO数据包,对CO实体来说,能够保障MIMO的分集性能,而且对TS实体来说可以保障对所有反射体的感知性能。
如图15所示,考虑MU-MIMO场景。此场景考虑一个TS实体,两个CO实体(反射体#1和#3)和两个RO实体(反射体#2和#4)。TS实体将发送MIMO数据包给CO实体(反射体#1和#3),同时通过反射体#1和#3反射信号感知反射体的DoA,距离和多普勒频移。在此同时,TS实体还需要感知两个RO实体(反射体#2和#4)。TS实体的MIMO数据包发送是通过两个MIMO层(Two MIMO Layers)完成的。因此TS实体在每MIMO层数据包发送时,将在指向CO实体的同时,兼顾感知一个RO实体。
具体地,在发送第一MIMO层(Layer-1)数据包的时候,TS实体将赋形两个波束,一个是指向CO实体(反射体#1),而另一个是指向RO实体(反射体#2)。为了保障针对CO实体通信质量,TS实体可以选择赋形波束的大部分能量指向CO实体(反射体#1),而残留的波束的小部分能量指向RO实体(反射体#2)。
同样地,在发送第二MIMO层(Layer-2)数据包的时候,TS实体将赋形两个波束一个是指向CO实体(反射体#3),而另一个是指向RO实体(反射体#4)。为了保障针对CO实体通信质量,TS实体可以选择赋形波束的大部分能量指向CO实体(反射体#3),而残留的波束的小部分能量指向RO实体(反射体#4)。
可选地,被波束赋形的Layer-1和Layer-2指向不同的CO实体(反射体#1和#3),CO实体可以通过传统的MIMO-OFDM检测方法解码数据包。同时,TS实体接收到四个反射体发射的回波,通过MIMO-OFDM雷达的检测算法,获取和反射体相关的DoA、距离和多普勒频移。
应理解,指向不同CO实体(反射体#1和#3)波束是MIMO多层信号,相互之间有一定的干扰。因此TS实体在利用MIMO多层信号作雷达信号的时候,MIMO层间的相互干扰会对雷达感知带来一定的不利影响。
和SU-MIMO相同的是,指向RO实体(反射体#2)在Layer-1中的波束信号和Layer-2中的波束信号具有一定的独立性,因此就雷达而言,Layer-2对Layer-1的干扰影响应该比较小。这样可以提高TS实体对RO实体(反射体#2)感知性能。
同样地,Layer-1对Layer-2的干扰影响应该比较小。这样可以提高TS实体对RO实体(反射体#4)感知性能。
可选地,TS实体也可以对CO实体和RO实体进行排列区分,选择干扰影响相对比较小的实体,进行配对并波束赋形,从而降低MIMO层间的相互干扰。但是和SU-MIMO相比,配对的自由度要差一些,这是因为MU-MIMO相关的CO实体是无法选择的。
在Type-II块中发送MU-MIMO数据包,对CO实体来说,能够保障MIMO的分集性能,对TS实体来说可以保障对RO反射体的感知性能,但是对CO实体感知性能有一定的影响。
请参见图16,图16是本申请实施例提供的另一种数据传输处理方法的流程图,如图16所示,包括以下步骤:
步骤1601,接收端接收目标数据信号;
步骤1602,所述接收端对所述目标数据信号进行预处理,得到目标时域 信号;
步骤1603,所述接收端对所述目标时域信号进行离散傅里叶变换得到数据矩阵;
步骤1604,在所述目标数据信号为第一数据信号的情况下,所述接收端利用正交序列对所述数据矩阵进行反扩频处理得到接收信号;
其中,在所述目标数据信号为第一数据信号的情况下,所述数据矩阵为正交数据矩阵。
可选地,所述接收端利用正交序列对所述数据矩阵进行反扩频处理得到接收信号之后,所述方法还包括:
所述接收端对所述接收信号进行到达角DoA检测,获得目标DoA;
所述接收端根据所述目标DoA进行接收波束赋形处理,获得接收矩阵信号;
所述接收端利用OFDM雷达算法对所述接收矩阵信号进行计算,获得距离和多普勒频移。
可选地,所述接收端对所述接收信号进行到达角DoA检测,获得目标DoA包括:
所述接收端构建第一空间协方差矩阵,所述第一空间协方差矩阵与信噪比关联;
所述接收端利用所述接收信号计算所述第一空间协方差矩阵,得到第二空间协方差矩阵;
所述接收端利用目标算法对所述第二空间协方差矩阵进行计算,得到目标DoA;
其中,所述目标算法为Capon算法或MUSIC算法。
可选地,所述第一空间协方差矩阵满足以下至少一项:
在所述信噪比小于第一预设值的情况下,所述第一空间协方差矩阵基于第一空间分集运算方法构建,所述第一空间分集运算方法仅与接收天线分集关联;
在所述信噪比大于或等于第一预设值的情况下,所述第一空间协方差矩阵基于第二空间分集运算方法构建,所述第一空间分集运算方法与发送天线 分集和接收天线分集关联。
可选地,所述接收端接收目标数据信号,包括:
所述接收端交替接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号。
可选地,所述第二数据信号携带有第二时域信号,所述第二时域信号基于传统的多输入多输出MIMO正交频分复用OFDM方式得到。
可选地,所述接收端交替接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号,包括:
所述接收端周期性交替接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号;或者,
所述接收端根据目标切换信令,接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号,其中,所述目标信令用于指示利用所述第一传输块或第二传输块接收数据信号。
可选地,所述接收端根据所述目标DoA进行接收波束赋形处理,获得接收矩阵信号,包括:
所述接收端根据所述目标DoA和最小方差无失真响应MVDR方法进行接收波束赋形处理,获得接收矩阵信号。
可选地,所述接收端接收目标数据信号之后,所述方法还包括:
所述接收端向发送端发送反馈信息和第一指示信息,所述反馈信息用于指示所述第一数据信号被成功接收,所述第一指示信息用于指示所述CO实体的地理位置。
可选地,所述反馈信息和第一指示信息承载于物理上行共享信道PUSCH。
可选地,所述第一指示信息携带在高层信令中。
需要说明的是,本实施例作为图3所示的实施例对应的接收端的实施方式,其具体的实施方式可以参见图3所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
需要说明的是,本申请实施例提供的数据传输处理方法,执行主体可以为数据传输处理装置,或者,该数据传输处理装置中的用于执行数据传输处理的控制模块。本申请实施例中以数据传输处理装置执行数据传输处理为例, 说明本申请实施例提供的数据传输处理装置。
请参见图17,图17是本申请实施例提供的一种数据传输处理装置的结构图,如图17所示,数据传输处理装置1700包括:
扩频模块1701,用于将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;
第一映射模块1702,用于将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;
第一转换模块1703,用于对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;
第一发送模块1704,用于将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。
可选地,所述扩频模块1701具体用于:利用K个正交序列对所述待发送数进行时频域扩频,得到K个正交数据矩阵;
其中,时频域扩频的规则满足以下任一项:
先进行时域扩频K t个OFDM符号后,再进行频域扩频K f个子载波,K t和K f均为正整数,且K t和K f之和大于2;
先进行频域扩频K f个子载波后,再进行时域扩频K t个OFDM符号,K t和K f均为正整数,且K t和K f之和大于2。
可选地,所述正交序列的长度K′满足:K′=K tK f,K′≥K。
可选地,所述K′通过高层信令配置或预配置,或者K′基于天线的数量确定。
可选地,所述K t和K f通过底层信令指示。
可选地,所述第一映射模块1702,还用于将待发送数据映射到不同的OFDM子载波上,得到K″个第二OFDM信号,其中,K″为小于或等于K的正整数;
所述第一转换模块1703,还用于对所述K″个第二OFDM信号中的第k个第二OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第二OFDM 时域信号,k为小于或等于K″的正整数;
所述第一发送模块1704,还用于将所述第k个第二OFDM时域信号通过多输入多输出MIMO预编码或MIMO波束赋形映射到K个发送天线,并通过所述K个发送天线发送第二数据信号;
其中,所述第一数据信号承载于第一传输块中,所述第二数据信号承载于第二传输块中,所述第一传输块与所述第二传输块在时域上交替传输。
可选地,不同天线上发送的第一数据信号相互正交。
可选地,在利用第二传输块发送所述第二数据信号的情况下,所述第一发送模块1704,还用于根据传输类型和在第一传输块中获取的DoA进行波束赋形,所述传输类型为单用户MIMO或多用户MIMO。
可选地,所述第一发送模块1704,具体用于根据传输类型和在第一传输块中获取的DoA对接收端的通信对象CO实体进行波束赋形;在满足所述CO实体的服务质量QoS,且所述发送端存在剩余的且可用于与所述CO实体传输的可用赋形波束和/或能量的情况下,根据传输类型和在第一传输块中获取的DoA对所述接收端的反射对象RO实体进行波束赋形。
可选地,所述第一发送模块1704,具体用于:根据CO实体和RO实体的方位角,确定每个MIMO层的至少两个波束方向;针对每个MIMO层,在所述至少两个波束方向上对CO实体和RO实体进行波束赋形进行波束赋形。
可选地,在每个MIMO层中,面向CO实体的波束赋形数量为一个,面向RO实体的波束赋形数量至少为一个。
可选地,所述第一数据信号对应的第一波束和所述第二数据信号对应的第二波束满足:
在相邻的两个时间段内,所述第一波束的波束方向不同;
在不同的时间段内所述第二波束的波束方向不变。
可选地,所述第一传输块包括X个传感子块,每个传感子块包含N个OFDM符号,X和N均为正整数。
可选地,所述第二传输块包括Y个时隙,Y为正整数。
可选地,所述第一发送模块1704通过第一传输块和第二传输块周期性交替发送所述第一数据信号和所述第二数据信号;或者,根据目标切换信令, 通过所述第一传输块发送所述第一数据信号或通过所述第二传输块发送所述第二数据信号,其中,所述目标信令用于指示利用所述第一传输块或第二传输块发送数据信号。
可选地,所述数据传输处理装置1700还包括:
第一接收模块,用于接收由所述接收端的CO实体发送的反馈信息和第一指示信息,所述反馈信息用于指示所述第一数据信号被成功接收,所述第一指示信息用于指示所述CO实体的地理位置。
可选地,所述反馈信息和第一指示信息承载于物理上行共享信道PUSCH。
可选地,所述第一指示信息携带在高层信令中。
本申请实施例提供的数据传输处理装置能够实现图3的方法实施例中各个过程,为避免重复,这里不再赘述。
请参见图18,图18是本申请实施例提供的一种数据传输处理装置的结构图,如图18所示,数据传输处理装置1800包括:
第二接收模块1801,用于接收端接收目标数据信号;
预处理模块1802,用于接收端对所述目标数据信号进行预处理,得到目标时域信号;
第二转换模块1803,用于对所述目标时域信号进行离散傅里叶变换得到数据矩阵;
反扩频模块1804,用于在所述目标数据信号为第一数据信号的情况下,利用正交序列对所述数据矩阵进行反扩频处理得到接收信号;
其中,在所述目标数据信号为第一数据信号的情况下,所述数据矩阵为正交数据矩阵。
可选地,所述数据传输处理装置1800还包括:
检测模块,用于对所述接收信号进行到达角DoA检测,获得目标DoA;
波束赋形模块,用于根据所述目标DoA进行接收波束赋形处理,获得接收矩阵信号;
计算模块,用于利用OFDM雷达算法对所述接收矩阵信号进行计算,获得距离和多普勒频移。
可选地,检测模块具体用于构建第一空间协方差矩阵,所述第一空间协 方差矩阵与信噪比关联;利用所述接收信号计算所述第一空间协方差矩阵,得到第二空间协方差矩阵;利用目标算法对所述第二空间协方差矩阵进行计算,得到目标DoA;
其中,所述目标算法为Capon算法或MUSIC算法。
可选地,所述第一空间协方差矩阵满足以下至少一项:
在所述信噪比小于第一预设值的情况下,所述第一空间协方差矩阵基于第一空间分集运算方法构建,所述第一空间分集运算方法仅与接收天线分集关联;
在所述信噪比大于或等于第一预设值的情况下,所述第一空间协方差矩阵基于第二空间分集运算方法构建,所述第一空间分集运算方法与发送天线分集和接收天线分集关联。
可选地,所述第二接收模块1801具体用于:交替接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号。
可选地,所述第二数据信号携带有第二时域信号,所述第二时域信号基于传统的多输入多输出MIMO正交频分复用OFDM方式得到。
可选地,所述第二接收模块1801具体用于:周期性交替接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号;或者,根据目标切换信令,接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号,其中,所述目标信令用于指示利用所述第一传输块或第二传输块接收数据信号。
可选地,所述波束赋形模块具体用于:根据所述目标DoA和最小方差无失真响应MVDR方法进行接收波束赋形处理,获得接收矩阵信号。
可选地,所述数据传输处理装置1800还包括:
第二发送模块,用于向发送端发送反馈信息和第一指示信息,所述反馈信息用于指示所述第一数据信号被成功接收,所述第一指示信息用于指示所述CO实体的地理位置。
可选地,所述反馈信息和第一指示信息承载于物理上行共享信道PUSCH。
可选地,所述第一指示信息携带在高层信令中。
本申请实施例提供的数据传输处理装置能够实现图16的方法实施例中 各个过程,为避免重复,这里不再赘述。
本申请实施例中的数据传输处理装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的数据传输处理装置能够实现图1至图16的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图19所示,本申请实施例还提供一种通信设备1900,包括处理器1901,存储器1902,存储在存储器1902上并可在所述处理器1901上运行的程序或指令,该程序或指令被处理器1901执行时实现上述数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于:将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;通信接口用于将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。或者,通信接口用于接收目标数据信号,处理器用于:对所述目标数据信号进行预处理,得到目标时域信号;对所述目标时域信号进行离散傅里叶变换得到数据矩阵;在所述目标数据信号为第一数据信号的情况下,利用正交序列对所述数据矩阵进行反扩频处理得到接收信号;其中,在所述目标数据信号为第一数据信号的情况下,所述数据矩阵为正交数据矩阵。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该 终端实施例中,且能达到相同的技术效果。具体地,图20为实现本申请各个实施例的一种终端的硬件结构示意图。
该终端2000包括但不限于:射频单元2001、网络模块2002、音频输出单元2003、输入单元2004、传感器2005、显示单元2006、用户输入单元2007、接口单元2008、存储器2009以及处理器2010等中的至少部分部件。
本领域技术人员可以理解,终端2000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器2010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图20中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元2004可以包括图形处理器(Graphics Processing Unit,GPU)和麦克风,图形处理器对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元2006可包括显示面板,可以采用液晶显示器、有机发光二极管等形式来配置显示面板。用户输入单元2007包括触控面板以及其他输入设备。触控面板,也称为触摸屏。触控面板可包括触摸检测装置和触摸控制器两个部分。其他输入设备可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元2001将来自网络侧设备的下行数据接收后,给处理器2010处理;另外,将上行的数据发送给网络侧设备。通常,射频单元2001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器2009可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器2009可以包括高速随机存取存储器,还可以包括非瞬态性存储器,其中,非瞬态性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器 (Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非瞬态性固态存储器件。
处理器2010可包括一个或多个处理单元;可选的,处理器2010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器2010中。
其中,处理器210,用于将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;
射频单元2001,用于将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。
或者,射频单元2001,用于接收端接收目标数据信号;
处理器210,用于对所述目标数据信号进行预处理,得到目标时域信号;
第二转换模块,用于对所述目标时域信号进行离散傅里叶变换得到数据矩阵;在所述目标数据信号为第一数据信号的情况下,利用正交序列对所述数据矩阵进行反扩频处理得到接收信号;
其中,在所述目标数据信号为第一数据信号的情况下,所述数据矩阵为正交数据矩阵。
本申请实施例提供的处理器2010和射频单元2001可以实现上述数据传输处理方法实施例中的各步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于:将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;对所述K个第一OFDM信号中的第k个第一OFDM信号进行 快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;通信接口用于将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图21所示,该网络侧设备2100包括:天线2101、射频装置2102、基带装置2103。天线2101与射频装置2102连接。在上行方向上,射频装置2102通过天线2101接收信息,将接收的信息发送给基带装置2103进行处理。在下行方向上,基带装置2103对要发送的信息进行处理,并发送给射频装置2102,射频装置2102对收到的信息进行处理后经过天线2101发送出去。
上述频带处理装置可以位于基带装置2103中,以上实施例中网络侧设备执行的方法可以在基带装置2103中实现,该基带装置2103包括处理器2104和存储器2105。
基带装置2103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图21所示,其中一个芯片例如为处理器2104,与存储器2105连接,以调用存储器2105中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置2103还可以包括网络接口2106,用于与射频装置2102交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器2105上并可在处理器2104上运行的指令或程序,处理器2104调用存储器2105中的指令或程序执行图18所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可 读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述数据传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服 务器,空调器,或者基站等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (37)

  1. 一种数据传输处理方法,包括:
    发送端将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵,K为大于1的整数;
    所述发送端将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;
    所述发送端对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;
    所述发送端将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。
  2. 根据权利要求1所述的方法,其中,所述发送端将待发送数据通过K个正交序列进行扩频,得到K个正交数据矩阵包括:
    所述发送端利用K个正交序列对所述待发送数进行时频域扩频,得到K个正交数据矩阵;
    其中,时频域扩频的规则满足以下任一项:
    先进行时域扩频K t个OFDM符号后,再进行频域扩频K f个子载波,K t和K f均为正整数,且K t和K f之和大于2;
    先进行频域扩频K f个子载波后,再进行时域扩频K t个OFDM符号,K t和K f均为正整数,且K t和K f之和大于2。
  3. 根据权利要求2所述的方法,其中,所述正交序列的长度K′满足:K′=K tK f,K′≥K。
  4. 根据权利要求3所述的方法,其中,所述K′通过高层信令配置或预配置,或者K′基于天线的数量确定。
  5. 根据权利要求3所述的方法,其中,所述K t和K f通过底层信令指示。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述发送端将待发送数据映射到不同的OFDM子载波上,得到K″个第二 OFDM信号,其中,K″为小于或等于K的正整数;
    所述发送端对所述K″个第二OFDM信号中的第k个第二OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第二OFDM时域信号,k为小于或等于K″的正整数;
    所述发送端将所述第k个第二OFDM时域信号通过多输入多输出MIMO预编码或MIMO波束赋形映射到K个发送天线,并通过所述K个发送天线发送第二数据信号;
    其中,所述第一数据信号承载于第一传输块中,所述第二数据信号承载于第二传输块中,所述第一传输块与所述第二传输块在时域上交替传输。
  7. 根据权利要求1或6所述的方法,其中,不同天线上发送的所述第一数据信号相互正交。
  8. 根据权利要求6所述的方法,其中,所述发送端利用第二传输块发送所述第二数据信号的情况下,所述方法还包括:
    所述发送端根据传输类型和在第一传输块中获取的到达角DoA进行波束赋形,所述传输类型为单用户MIMO或多用户MIMO。
  9. 根据权利要求6所述的方法,其中,所述发送端根据传输类型和在第一传输块中获取的DoA进行波束赋形,包括:
    所述发送端根据传输类型和在第一传输块中获取的DoA对接收端的通信对象CO实体进行波束赋形;
    在满足所述CO实体的服务质量QoS,且所述发送端存在剩余的且可用于与所述CO实体传输的可用赋形波束和/或能量的情况下,所述发送端根据传输类型和在第一传输块中获取的DoA,对所述接收端的反射对象RO实体进行波束赋形。
  10. 根据权利要求8所述的方法,其中,所述发送端根据传输类型和在第一传输块中获取的DoA进行波束赋形包括:
    所述发送端根据CO实体和RO实体的方位角,确定每个MIMO层的至少两个波束方向;
    所述发送端针对每个MIMO层,在所述至少两个波束方向上对所述CO实体和所述RO实体进行波束赋形进行波束赋形。
  11. 根据权利要求10所述的方法,其中,在每个MIMO层中,面向CO实体的波束赋形数量为一个,面向RO实体的波束赋形数量至少为一个。
  12. 根据权利要求6所述的方法,其中,所述第一数据信号对应的第一波束和所述第二数据信号对应的第二波束满足:
    在相邻的两个时间段内,所述第一波束的波束方向不同;
    在不同的时间段内所述第二波束的波束方向不变。
  13. 根据权利要求6所述的方法,其中,所述第一传输块包括X个传感子块,每个传感子块包含N个OFDM符号,X和N均为正整数。
  14. 根据权利要求6所述的方法,其中,所述第二传输块包括Y个时隙,Y为正整数。
  15. 根据权利要求6所述的方法,其中,所述发送端通过第一传输块和第二传输块周期性交替发送所述第一数据信号和所述第二数据信号;或者,
    所述发送端根据目标切换信令,通过所述第一传输块发送所述第一数据信号或通过所述第二传输块发送所述第二数据信号,其中,所述目标信令用于指示利用所述第一传输块或第二传输块发送数据信号。
  16. 根据权利要求1所述的方法,其中,在所述发送端将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号之后,所述方法还包括:
    所述发送端接收由所述接收端的CO实体发送的反馈信息和第一指示信息,所述反馈信息用于指示所述第一数据信号被成功接收,所述第一指示信息用于指示所述CO实体的地理位置。
  17. 根据权利要求16所述的方法,其中,所述反馈信息和第一指示信息承载于物理上行共享信道PUSCH。
  18. 根据权利要求16所述的方法,其中,所述第一指示信息携带在高层信令中。
  19. 一种数据传输处理方法,包括:
    接收端接收目标数据信号;
    所述接收端对所述目标数据信号进行预处理,得到目标时域信号;
    所述接收端对所述目标时域信号进行离散傅里叶变换得到数据矩阵;
    在所述目标数据信号为第一数据信号的情况下,所述接收端利用正交序列对所述数据矩阵进行反扩频处理得到接收信号;
    其中,在所述目标数据信号为第一数据信号的情况下,所述数据矩阵为正交数据矩阵。
  20. 根据权利要求19所述的方法,其中,所述接收端利用正交序列对所述数据矩阵进行反扩频处理得到接收信号之后,所述方法还包括:
    所述接收端对所述接收信号进行DoA检测,获得目标DoA;
    所述接收端根据所述目标DoA进行接收波束赋形处理,获得接收矩阵信号;
    所述接收端利用OFDM雷达算法对所述接收矩阵信号进行计算,获得距离和多普勒频移。
  21. 根据权利要求20所述的方法,其中,所述接收端对所述接收信号进行到达角DoA检测,获得目标DoA包括:
    所述接收端构建第一空间协方差矩阵,所述第一空间协方差矩阵与信噪比关联;
    所述接收端利用所述接收信号计算所述第一空间协方差矩阵,得到第二空间协方差矩阵;
    所述接收端利用目标算法对所述第二空间协方差矩阵进行计算,得到目标DoA;
    其中,所述目标算法为Capon算法或MUSIC算法。
  22. 根据权利要求21所述的方法,其中,所述第一空间协方差矩阵满足以下至少一项:
    在所述信噪比小于第一预设值的情况下,所述第一空间协方差矩阵基于第一空间分集运算方法构建,所述第一空间分集运算方法仅与接收天线分集关联;
    在所述信噪比大于或等于第一预设值的情况下,所述第一空间协方差矩阵基于第二空间分集运算方法构建,所述第一空间分集运算方法与发送天线分集和接收天线分集关联。
  23. 根据权利要求19所述的方法,其中,所述接收端接收目标数据信号, 包括:
    所述接收端交替接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号。
  24. 根据权利要求23所述的方法,其中,所述第二数据信号携带有第二时域信号,所述第二时域信号基于传统的多输入多输出MIMO正交频分复用OFDM方式得到。
  25. 根据权利要求23所述的方法,其中,所述接收端交替接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号,包括:
    所述接收端周期性交替接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号;或者,
    所述接收端根据目标切换信令,接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号,其中,所述目标信令用于指示利用所述第一传输块或第二传输块接收数据信号。
  26. 根据权利要求20所述的方法,其中,所述接收端根据所述目标DoA进行接收波束赋形处理,获得接收矩阵信号,包括:
    所述接收端根据所述目标DoA和最小方差无失真响应MVDR方法进行接收波束赋形处理,获得接收矩阵信号。
  27. 根据权利要求19所述的方法,其中,所述接收端接收目标数据信号之后,所述方法还包括:
    所述接收端向发送端发送反馈信息和第一指示信息,所述反馈信息用于指示所述第一数据信号被成功接收,所述第一指示信息用于指示所述CO实体的地理位置。
  28. 根据权利要求27所述的方法,其中,所述反馈信息和第一指示信息承载于物理上行共享信道PUSCH。
  29. 根据权利要求27所述的方法,其中,所述第一指示信息携带在高层信令中。
  30. 一种数据传输处理装置,包括:
    扩频模块,用于将待发送数据通过K个正交序列进行扩频,得到K个正 交数据矩阵,K为大于1的整数;
    第一映射模块,用于将K个正交数据矩阵映射到不同的频分复用OFDM子载波上,得到K个第一OFDM信号,所述第一OFDM信号为扩频数据矩阵OFDM信号;
    第一转换模块,用于对所述K个第一OFDM信号中的第k个第一OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第一OFDM时域信号,k为小于或等于K的正整数;
    第一发送模块,用于将所述第k个第一OFDM时域信号映射到第k个发送天线,并通过所述第k个发送天线发送第一数据信号。
  31. 根据权利要求30所述的装置,其中,所述扩频模块具体用于:利用K个正交序列对所述待发送数进行时频域扩频,得到K个正交数据矩阵;
    其中,时频域扩频的规则满足以下任一项:
    先进行时域扩频K t个OFDM符号后,再进行频域扩频K f个子载波,K t和K f均为正整数,且K t和K f之和大于2;
    先进行频域扩频K f个子载波后,再进行时域扩频K t个OFDM符号,K t和K f均为正整数,且K t和K f之和大于2。
  32. 根据权利要求30所述的装置,其中,
    所述第一映射模块,还用于将待发送数据映射到不同的OFDM子载波上,得到K″个第二OFDM信号,其中,K″为小于或等于K的正整数;
    所述第一转换模块,还用于对所述K″个第二OFDM信号中的第k个第二OFDM信号进行快速傅里叶逆变换IFFT处理,得到第k个第二OFDM时域信号,k为小于或等于K″的正整数;
    所述第一发送模块,还用于将所述第k个第二OFDM时域信号通过多输入多输出MIMO预编码或MIMO波束赋形映射到K个发送天线,并通过所述K个发送天线发送第二数据信号;
    其中,所述第一数据信号承载于第一传输块中,所述第二数据信号承载于第二传输块中,所述第一传输块与所述第二传输块在时域上交替传输。
  33. 一种数据传输处理装置,包括:
    第二接收模块,用于接收端接收目标数据信号;
    预处理模块,用于接收端对所述目标数据信号进行预处理,得到目标时域信号;
    第二转换模块,用于对所述目标时域信号进行离散傅里叶变换得到数据矩阵;
    反扩频模块,用于在所述目标数据信号为第一数据信号的情况下,利用正交序列对所述数据矩阵进行反扩频处理得到接收信号;
    其中,在所述目标数据信号为第一数据信号的情况下,所述数据矩阵为正交数据矩阵。
  34. 根据权利要求33所述的装置,其中,所述数据传输处理装置还包括:
    检测模块,用于对所述接收信号进行到达角DoA检测,获得目标DoA;
    波束赋形模块,用于根据所述目标DoA进行接收波束赋形处理,获得接收矩阵信号;
    计算模块,用于利用OFDM雷达算法对所述接收矩阵信号进行计算,获得距离和多普勒频移。
  35. 根据权利要求33所述的装置,其中,所述第二接收模块具体用于:交替接收利用第一传输块发送的所述第一数据信号和利用第二传输块发送的第二数据信号。
  36. 一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至29中任一项所述的数据传输处理方法中的步骤。
  37. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指被处理器执行时实现如权利要求1至29中任一项所述的数据传输处理方法的步骤。
PCT/CN2022/110267 2021-08-09 2022-08-04 数据传输处理方法、装置、通信设备及存储介质 WO2023016338A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/435,642 US20240178951A1 (en) 2021-08-09 2024-02-07 Data transmission processing method and apparatus, communication device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110909085.5A CN115706691A (zh) 2021-08-09 2021-08-09 数据传输处理方法、装置、通信设备及存储介质
CN202110909085.5 2021-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/435,642 Continuation US20240178951A1 (en) 2021-08-09 2024-02-07 Data transmission processing method and apparatus, communication device, and storage medium

Publications (1)

Publication Number Publication Date
WO2023016338A1 true WO2023016338A1 (zh) 2023-02-16

Family

ID=85179959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110267 WO2023016338A1 (zh) 2021-08-09 2022-08-04 数据传输处理方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20240178951A1 (zh)
CN (1) CN115706691A (zh)
WO (1) WO2023016338A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065919A (zh) * 2004-11-25 2007-10-31 松下电器产业株式会社 多速率无线通信系统及码分配方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320346A (ja) * 2000-02-29 2001-11-16 Toshiba Corp 直交周波数分割多重変調とスペクトル拡散を併用する送信装置、受信装置および基地局
JP2006121289A (ja) * 2004-10-20 2006-05-11 Samsung Yokohama Research Institute Co Ltd 無線送信機及び無線受信器及び無線システム及び無線通信方法並びにそのプログラム
US8359041B2 (en) * 2008-02-15 2013-01-22 Futurewei Technologies, Inc. System and method for adaptively controlling feedback information
US20130156127A1 (en) * 2010-07-07 2013-06-20 Donald L. Schilling OFDM Synchronization and Signal Channel Estimation
CN104092634B (zh) * 2014-07-29 2017-08-01 中国民航大学 联合doa估计与主波束成型的测距仪脉冲干扰抑制方法
CN107390208B (zh) * 2017-06-26 2020-10-30 桂林电子科技大学 一种频率分集阵列雷达通信一体化方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065919A (zh) * 2004-11-25 2007-10-31 松下电器产业株式会社 多速率无线通信系统及码分配方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIU FAN; MASOUROS CHRISTOS; PETROPULU ATHINA P.; GRIFFITHS HUGH; HANZO LAJOS: "Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 68, no. 6, 13 February 2020 (2020-02-13), PISCATAWAY, NJ. USA. , pages 3834 - 3862, XP011793359, ISSN: 0090-6778, DOI: 10.1109/TCOMM.2020.2973976 *
LIU WENKE , JIN LIANG: "A SF-VBLAST detection scheme for MIMO-OFDM-CDM system", RADIO COMMUNICATIONS TECHNOLOGY, vol. 31, no. 3, 18 June 2005 (2005-06-18), pages 44 - 46, XP093035263, ISSN: 1003-3114 *
YUAN XIN; FENG ZHIYONG; ZHANG J. ANDREW; NI WEI; LIU REN PING; WEI ZHIQING; XU CHANGQIAO: "Spatio-Temporal Power Optimization for MIMO Joint Communication and Radio Sensing Systems With Training Overhead", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 70, no. 1, 22 December 2020 (2020-12-22), USA, pages 514 - 528, XP011837402, ISSN: 0018-9545, DOI: 10.1109/TVT.2020.3046438 *
ZHANG YUAN-TAO,YANG DA-CHENG: "A Low Complexity Turbo Detection Algorithm for MIMO-OFDM-CDM System", RADIO ENGINEERING, vol. 37, no. 7, 5 July 2007 (2007-07-05), pages 20 - 22+57, XP093035185, ISSN: 1003-3106 *

Also Published As

Publication number Publication date
US20240178951A1 (en) 2024-05-30
CN115706691A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CN111278120B (zh) 上行信道的配置方法、传输方法、网络侧设备及终端
Yuan et al. Orthogonal time frequency space modulation—Part III: ISAC and potential applications
CN105684341A (zh) 用于fdd通信的高分辨率信道探测
US20190086505A1 (en) Methods for estimating angle of arrival or angle of departure
CN112955780A (zh) Wlan雷达
WO2022007932A1 (zh) 信号发送方法、信道估计方法、发送端设备及接收端设备
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
CN111585644A (zh) 雷达通信一体化系统、信号处理方法及设备、存储介质
CN114142978B (zh) 导频接收处理方法、发送方法及相关设备
US20230208698A1 (en) Frame structure indication method, frame structure updating method, and related device
WO2022199664A1 (zh) 信息发送方法和设备
JP5203308B2 (ja) 送信指向性制御装置及び送信指向性制御方法
KR20190130315A (ko) 무선 통신 시스템에서 채널 추정 방법 및 장치
Jans et al. Frequency-selective analog beam probing for millimeter wave communication systems
WO2023025133A1 (zh) 传输方法、装置、通信设备及计算机存储介质
Han et al. Multistatic Integrated Sensing and Communication System in Cellular Networks
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2023016338A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
WO2023036226A1 (zh) 信号传输方法、装置、设备及存储介质
US20240195548A1 (en) Transmission method and apparatus, communication device, and computer storage medium
JP2016134841A (ja) 無線通信システム、無線通信方法、及び無線通信装置
WO2023040956A1 (zh) 映射方法、装置、设备及存储介质
CN107076824B (zh) 用于确定支撑角以进行多输入多输出下行传输的装置和方法
US20240146359A1 (en) Transmission processing method and apparatus, communication device, and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855321

Country of ref document: EP

Effective date: 20240311