WO2022116890A1 - 相位噪声参数的估计方法、装置、用户设备和基站 - Google Patents

相位噪声参数的估计方法、装置、用户设备和基站 Download PDF

Info

Publication number
WO2022116890A1
WO2022116890A1 PCT/CN2021/133157 CN2021133157W WO2022116890A1 WO 2022116890 A1 WO2022116890 A1 WO 2022116890A1 CN 2021133157 W CN2021133157 W CN 2021133157W WO 2022116890 A1 WO2022116890 A1 WO 2022116890A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
phase noise
resource
frequency
Prior art date
Application number
PCT/CN2021/133157
Other languages
English (en)
French (fr)
Inventor
刘殷卉
李�根
刘昊
孙鹏
蔡日开
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022116890A1 publication Critical patent/WO2022116890A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method, apparatus, user equipment, base station, and readable storage medium for estimating phase noise parameters.
  • phase noise caused by unsatisfactory radio frequency devices of user equipment (UE) and base station (eNodeB) becomes more serious as the working frequency increases. It is necessary to compensate the phase noise of the received signal to ensure the system performance. By introducing a phase noise compensation reference signal at the transmitting end, it can be ensured that the receiving end can estimate the phase noise of the link and compensate the received signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CPE Common Phase Error
  • ICI Inter-Carrier Interference
  • the ICI greatly affects the transmission performance of the system in high-order modulation (for example, 16QAM, 64QAM).
  • the subcarrier spacing of the OFDM system is 120KHz or 240KHz, the time of each OFDM symbol is very short (for example, 8.93us and 4.47us, respectively), which means that the processing time of the receiving end is very limited, and the low-complexity solution The scheme is very necessary for the receiving end.
  • the density of the phase tracking reference signal (Phase Tracking Reference Signal, PTRS) in the frequency domain is configured such that every two physical resource blocks (Physical Resource Block, PRB) have one resource unit (Resource Element, RE) is PTRS, There are PTRS on each OFDM symbol that transmits Physical Downlink Share Channel (PDSCH) data.
  • PDSCH Physical Downlink Share Channel
  • Embodiments of the present application provide a method, apparatus, user equipment, and base station for estimating phase noise parameters, which can estimate phase noise parameters with low system overhead and complexity, so as to reduce the CPE impact and ICI caused by phase noise influences.
  • an embodiment of the present application provides a method for estimating a phase noise parameter, including:
  • an embodiment of the present application provides a method for estimating a phase noise parameter, including:
  • the uplink signal is sent according to the first time-frequency resource and the second time-frequency resource, so that the base station determines the phase noise parameter according to the uplink signal.
  • an embodiment of the present application provides a method for estimating a phase noise parameter, including:
  • the downlink signal is sent by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and the two The number of punctured sub-carriers on the side is different.
  • an embodiment of the present application provides a method for estimating a phase noise parameter, including:
  • the uplink signal is received by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and the two The number of punctured sub-carriers on the side is different;
  • an embodiment of the present application provides an apparatus for estimating a phase noise parameter, including:
  • an acquisition module configured to acquire a first time-frequency resource for transmitting a phase tracking reference signal PTRS and a punctured second time-frequency resource; wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and The number of punctured sub-carriers on both sides is different;
  • a receiving module configured to receive downlink signals according to the first time-frequency resource and the second time-frequency resource
  • the calculation module is used for determining the phase noise parameter according to the downlink signal.
  • an apparatus for estimating a phase noise parameter including:
  • an acquisition module configured to acquire a first time-frequency resource for transmitting a phase tracking reference signal PTRS and a punctured second time-frequency resource; wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and The number of punctured sub-carriers on both sides is different;
  • the sending module is configured to send the uplink signal according to the first time-frequency resource and the second time-frequency resource.
  • an embodiment of the present application provides an apparatus for estimating a phase noise parameter, including:
  • the sending module is configured to transmit the downlink signal by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, wherein the second time-frequency resource includes the time-frequency resource located on both sides of the first time-frequency resource. punctured sub-carriers, and the number of punctured sub-carriers on both sides is different.
  • an apparatus for estimating a phase noise parameter including:
  • the receiving module is used for receiving the uplink signal by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, wherein the second time-frequency resource includes the time-frequency resource located on both sides of the first time-frequency resource. punctured sub-carriers, and the number of punctured sub-carriers on both sides is different;
  • the calculation module is used to determine the phase noise parameter according to the uplink signal.
  • an embodiment of the present application provides a user equipment, including a processor, a memory, and a program or instruction stored on the memory and run on the processor, and the program or instruction is executed by the processor to achieve the first The steps of the method for estimating a phase noise parameter provided by the aspect or the second aspect.
  • an embodiment of the present application provides a base station, including a processor, a memory, and a program or instruction stored on the memory and running on the processor, and the program or instruction is executed by the processor to implement the third aspect or the steps of the method for estimating phase noise parameters provided by the fourth aspect.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the first aspect, the second aspect, and the third aspect are implemented or the steps of the method for estimating phase noise parameters provided by the fourth aspect.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled with the processor, and the processor is used to run a program or instruction to implement the first aspect, the second aspect, and the third aspect.
  • the steps of the method for estimating phase noise parameters provided by the aspect or the fourth aspect.
  • a thirteenth aspect provides a computer program product, the computer program product being stored in a non-volatile storage medium, the computer program product being executed by at least one processor to implement the first aspect and the second aspect The steps of the method for estimating phase noise parameters provided by the third aspect or the fourth aspect.
  • a first time-frequency resource for transmitting a phase tracking reference signal PTRS and a punctured second time-frequency resource are acquired; wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource , and the number of punctured subcarriers on both sides is different; the downlink signal is received according to the first time-frequency resource and the second time-frequency resource; the phase noise parameter is determined according to the downlink signal.
  • the first time-frequency resource of the phase tracking reference signal (Phase Tracking Reference Signal, PTRS) and the punctured second time-frequency resource are transmitted.
  • the relative relationship between resources reduces the number of punctured second subcarriers on one side of the first time-frequency resource for transmitting PTRS.
  • the phase noise parameter is calculated using the received downlink signals of the first time-frequency resource and the second time-frequency resource, the user equipment can estimate the phase noise parameter with low system overhead and complexity, and can ensure the accurate estimation of the phase noise parameter It is beneficial to reduce the influence of CPE and ICI caused by phase noise.
  • FIG. 1 shows one of the flowcharts of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 2 shows the second flowchart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 3 shows the third flowchart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 4 shows a fourth flowchart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • Fig. 5 shows the fifth flowchart of the estimation method of the phase noise parameter according to an embodiment of the present application
  • FIG. 6 shows a sixth flowchart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 7 shows the seventh flowchart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 8 shows the eighth flow chart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 9 shows a ninth flow chart of a method for estimating a phase noise parameter according to an embodiment of the present application.
  • FIG. 10 shows a tenth flow chart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 11 shows the eleventh flow chart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 12 shows a twelfth flowchart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • Fig. 13 shows the thirteenth flowchart of a method for estimating phase noise parameters according to an embodiment of the present application
  • FIG. 14 shows a fourteenth flowchart of a method for estimating phase noise parameters according to an embodiment of the present application
  • FIG. 15 shows a fifteenth flowchart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 16 shows a sixteenth flowchart of a method for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 17 shows one of the structural block diagrams of an apparatus for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 18 shows the second structural block diagram of an apparatus for estimating a phase noise parameter according to an embodiment of the present application
  • FIG. 19 shows the third structural block diagram of an apparatus for estimating phase noise parameters according to an embodiment of the present application.
  • FIG. 20 shows the fourth structural block diagram of an apparatus for estimating phase noise parameters according to an embodiment of the present application
  • FIG. 21 shows a structural block diagram of a user equipment according to an embodiment of the present application.
  • FIG. 22 shows a structural block diagram of a base station according to an embodiment of the present application.
  • FIG. 23 shows a block diagram of a hardware structure of a user equipment according to an embodiment of the present application.
  • a method for estimating a phase noise parameter, an estimating apparatus for a phase noise parameter, a user equipment, a base station, and a readable storage medium according to some embodiments of the present application are described below with reference to FIG. 1 to FIG. 23 .
  • FIG. 1 shows one of the flowcharts of the method for estimating phase noise parameters in the embodiment of the present application, including:
  • Step 102 obtaining a first time-frequency resource for transmitting a phase tracking reference signal PTRS and a second time-frequency resource for puncturing;
  • the second time-frequency resource includes punctured subcarriers located on both sides of the frequency domain of the first time-frequency resource, and the number of punctured subcarriers on both sides is different;
  • the number of punctured subcarriers on both sides of the first time-frequency resource for transmitting PTRS is different, that is, compared with the case where the number of punctured subcarriers on both sides of the first time-frequency resource in the frequency domain is equal, it is possible to Reducing the number of punctured subcarriers on one side of the first time-frequency resource for transmitting PTRS can effectively reduce the amount of computation on each Orthogonal Frequency Division Multiplexing (OFDM) symbol, thereby reducing system overhead.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Step 104 Receive downlink signals according to the first time-frequency resource and the second time-frequency resource;
  • the downlink signal in the time domain resource includes the downlink demodulation reference signal (DMRS) indicating the demodulation of the physical downlink shared channel (Physical Downlink Share Channel, PDSCH), the physical resource block (Physical Resource Block, PRB) in the
  • DMRS downlink demodulation reference signal
  • PRB Physical Resource Block
  • Step 106 Determine the phase noise parameter according to the downlink signal.
  • s(n) is the baseband signal to be transmitted in the time domain
  • h(n) is the time-domain channel impulse response
  • m(n) is the white Gaussian noise in the time domain
  • x(n) is the baseband signal received in the time domain
  • j is the ordinal of a complex number.
  • S(k) is the baseband signal to be transmitted in the frequency domain
  • H(k) is the channel estimation in the frequency domain
  • M(k) is the white Gaussian noise in the frequency domain
  • X(k) is the baseband received in the frequency domain.
  • I(0) is the effect of CPE
  • I(l) is the phase noise parameter.
  • the user equipment can accurately calculate the first time-frequency resource for transmitting PTRS, the punctured second time-frequency resource, and the downlink signal related to the first time-frequency resource and the second time-frequency resource.
  • the phase noise parameter can be obtained to compensate by the phase noise parameter, so as to reduce the influence of CPE and ICI caused by the phase noise, and improve the transmission performance of the OFDM system with small subcarrier spacing in high-order modulation.
  • step 102 acquiring the first time-frequency resource for transmitting the phase tracking reference signal PTRS and the second time-frequency resource for puncturing include the following three ways.
  • Mode 1 as shown in Figure 2, includes:
  • Step 202 receiving the first configuration information sent by the base station
  • Step 204 Determine the first time-frequency resource and the second time-frequency resource according to the first configuration information.
  • the first configuration information includes first indication information indicating the first time-frequency resource and second indication information indicating the second time-frequency resource.
  • the base station determines the first time-frequency resource and the second time-frequency resource through the resource mapping pattern, and delivers first configuration information that can indicate the first time-frequency resource and the punctured second time-frequency resource .
  • the user equipment can directly parse the first configuration information to determine the first time-frequency resource and the positions of subcarriers that can be used for puncturing on both sides of the first time-frequency resource in the frequency domain, so that the user equipment can receive downlink signals at the corresponding resource positions, In order to estimate the phase noise parameter according to the downlink signal.
  • the second method includes:
  • Step 302 receiving the second configuration information sent by the base station
  • Step 304 Determine the first time-frequency resource and the second time-frequency resource according to the second configuration information
  • the second configuration information includes first indication information indicating the first time-frequency resource.
  • Step 306 Determine second time-frequency resources on both sides of the first time-frequency resource according to a preset puncturing rule.
  • the preset puncturing rule is used to indicate the positions of subcarriers on both sides of the first time-frequency resource that can be used for puncturing.
  • the second configuration information delivered by the base station only indicates the first time-frequency resource.
  • the user equipment can determine the first time-frequency resource by analyzing the second configuration information, and determine the positions of the second time-frequency resource on both sides of the first time-frequency resource in combination with the preset puncturing rule. Further, the user equipment can receive the downlink signal at the corresponding resource position, so as to estimate the phase noise parameter according to the downlink signal.
  • the first configuration information and the second configuration information are carried by signaling, and the signaling includes: radio resource control signaling (Radio Resource Control, RRC) and/or physical layer control signaling.
  • RRC Radio Resource Control
  • the base station configures the user equipment with PTRS on a specific resource unit (RE), and then the user equipment determines which REs cannot be used as PDSCH according to certain puncturing rules, that is, transmits PTRS and punctured REs.
  • the base station configures the PTRS and the corresponding punctured REs for the user equipment, and specifies in the configuration which REs transmit PTRS and which REs are punctured.
  • Mode three as shown in Figure 4, includes:
  • Step 402 receiving third configuration information sent by the base station
  • the third configuration information is carried in RRC and/or physical layer control signaling.
  • Step 404 Determine a target resource mapping pattern from at least one resource mapping pattern according to the third configuration information.
  • At least one resource mapping pattern is agreed by a protocol or configured by a network device.
  • the user equipment and the base station agree on at least one resource mapping pattern through an agreement, and the at least one resource mapping pattern not only indicates the relative position between the first time-frequency resource and the second time-frequency resource, but also indicates the first time-frequency resource.
  • the number of punctured subcarriers on both sides of the time-frequency resource may indicate different relationships between the first time-frequency resource and the second time-frequency resource. For example, one resource mapping pattern indicates that the number of punctured subcarriers on both sides of the frequency domain of the first time-frequency resource is 1 and 2 respectively, and the other resource mapping pattern indicates that the number of punctured subcarriers on both sides of the frequency domain of the first time-frequency resource is respectively for 4 and 2.
  • the base station can configure the target resource mapping pattern to the user equipment, so that different resource mapping patterns can be selected according to different requirements.
  • the user equipment can directly perform time-frequency resource demapping through the target resource mapping pattern to determine the first time-frequency resource and the second time-frequency resource resource.
  • the number of punctured subcarriers on one side of the first time-frequency resource is u1
  • the number of punctured subcarriers on the other side of the first time-frequency resource is u2
  • u1 is equal to N times u2 or N times u2.
  • step 102 before acquiring the first time-frequency resource and the punctured second time-frequency resource of the transmission phase tracking reference signal PTRS, the method further includes:
  • Step 502 obtaining fourth configuration information
  • the fourth configuration information is configured by the base station and/or stipulated by the protocol.
  • Step 504 Determine the values of u1 and u2 according to the fourth configuration information.
  • u1 and u2 can be determined according to the received fourth configuration information The value of , makes the base station and the user equipment reach the same value of u1 and u2, which is beneficial to the estimation of the phase noise parameter.
  • u1 and u2 are predefined non-negative integers, and the typical values are 0, 1, 2, etc.
  • the base station and the user equipment can reach the same value by any of the following methods.
  • the protocol is predefined, including the relationship between u1/u2 and RRC parameters or physical measurement parameters;
  • the base station notifies the user equipment (UE) through RRC signaling;
  • the base station notifies the user equipment (UE) through physical layer control signaling.
  • the first time-frequency resource in the frequency domain is a part of consecutive subcarriers in a plurality of consecutive subcarriers, or a subcarrier in a plurality of consecutive subcarriers.
  • the first time-frequency resource and the second time-frequency resource constitute a frequency domain resource block; in the frequency domain, one or more frequency domain resource blocks are included. In the time domain, one or more OFDM symbols carry frequency domain resource blocks.
  • the basic unit in the frequency domain is a subcarrier
  • the physical unit of the available resources in the frequency domain A resource block (PRB) contains 12 subcarriers, wherein the first time-frequency resource is a subcarrier or partially continuous subcarriers in the physical resource block for transmitting PTRS, and the second time-frequency resource is two of the first time-frequency resource. punctured subcarriers on the side.
  • the subcarriers and punctured subcarriers for transmitting PTRS are denoted as frequency domain resource blocks, and there may be one or more frequency domain resource blocks in the frequency domain.
  • a time-frequency resource element can be determined by one subcarrier and one OFDM symbol, and the physical layer uses the time-frequency resource element as a unit when performing resource mapping.
  • the first time-frequency resource indicates the RE bearing the PTRS, and the second time-frequency resource indicates the RE bearing the puncturing.
  • step 104 receiving a downlink signal according to the first time-frequency resource and the second time-frequency resource includes: receiving a first baseband signal of the first time-frequency resource; receiving a second time-frequency resource The second baseband signal; receiving the phase tracking reference signal PTRS; receiving the downlink demodulation reference signal DMRS for demodulating the physical downlink shared channel PDSCH.
  • the first baseband signal of the PTRS and the PTRS to be transmitted are received on the corresponding physical resource block according to the first time-frequency resource, and the punctured signal is received on the corresponding physical resource block according to the second time-frequency resource.
  • second baseband signal By indicating the relevant configuration parameters of the demodulation reference signal of the demodulation physical data channel, the user equipment can receive the downlink DMRS at the corresponding resource position, thereby realizing PDSCH demodulation.
  • the phase noise parameter is determined according to the downlink signal, including:
  • Step 602 performing channel estimation on the first time-frequency resource according to the downlink demodulation reference signal DMRS;
  • the user equipment can receive the downlink DMRS at the corresponding resource position, thereby realizing PDSCH demodulation, and using the downlink demodulation reference signal Channel estimation is performed on the first time-frequency resource.
  • Step 604 Determine the first phase noise parameter according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource, and the first baseband signal;
  • Step 606 Determine m second phase noise parameters according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource, and the second baseband signal.
  • n is an integer greater than or equal to 0, and m is related to the values of u1 and u2, for example, m is 0, 2, and 4.
  • the channel estimation of the first time-frequency resource, the first baseband signal, the second baseband signal, and the PTRS are put into Equation 5, and the first time-frequency resource on the first time-frequency resource of the transmission phase tracking reference signal can be calculated respectively.
  • a phase noise parameter, and calculating a second phase noise parameter on the punctured second time-frequency resource are different, system overhead can be effectively reduced by reducing the number of punctured subcarriers on one side of the first time-frequency resource for transmitting PTRS.
  • step 106 determining the phase noise parameter according to the downlink signal, further includes:
  • Step 702 averaging i first phase noise parameters among the first phase noise parameters of the n frequency-domain resource blocks to obtain an average result of the first phase noise parameters;
  • Step 704 averaging the w second phase noise parameters among the m second phase noise parameters of the n frequency domain resource blocks, to obtain an average result of the second phase noise parameters;
  • n is greater than 1
  • i is less than or equal to n
  • w is less than or equal to m.
  • each of the n frequency-domain resource blocks includes a set of first time-frequency resources and second time-frequency resources, that is, n frequency-domain resource blocks can obtain n first phases noise parameters and n ⁇ m second phase noise parameters.
  • the user equipment averages the i first phase noise parameters in the first phase noise parameters of the n frequency domain resource blocks to obtain an average result of the first phase noise parameters, and obtains an average of the first phase noise parameters of the n frequency domain resource blocks.
  • the w second phase noise parameters at the same position of the frequency domain resource block are averaged to obtain an average result of the second phase noise parameters. Compensation can be performed by averaging the results of phase noise parameters, thereby reducing the effects of phase noise.
  • each frequency domain resource block has one first phase noise parameter and two second phase noise parameters calculated.
  • the first phase noise parameter is denoted as I(0) 1
  • the first phase noise parameter of the second frequency domain resource block is denoted as I(0) 2
  • the second phase noise parameter of the first frequency domain resource block Denoted as I(1) 1 and I(2) 1 respectively
  • the second phase noise parameters of the second frequency domain resource block as I(1) 2 and I(2) 2 respectively, then calculate I(0) 1 and the average value of I(0) 2 to obtain the average result of the first phase noise parameter, calculate the average value of I(1) 1 and I(1) 2 , and calculate the average value of I(2) 1 and I(2) 2 , obtain the average result of the second phase noise parameter.
  • the receiving end is a user equipment as an example
  • the PTRS frequency domain resource block resource mapping has only one second subcarrier on the higher frequency side, and has two second subcarriers on the lower frequency side.
  • the first subcarrier k carries PTRS, which is used to estimate the phase noise parameter I(0)
  • the second subcarrier (k-1) is punctured
  • the baseband signal received by the user equipment on this subcarrier is the first
  • the second subcarrier (k+1) and the second subcarrier (k-2) are used as protection subcarriers to protect other subcarriers in the frequency domain resource block from subcarrier signals outside the frequency domain resource block impact of ICI.
  • the method for calculating the phase noise parameter by the user equipment is:
  • Equation 5 The channel estimate of the first subcarrier k, the PTRS and the baseband signal of the second subcarrier k-1 are brought into Equation 5, and Equation 7 is obtained:
  • Equation 8 is obtained from Equation 7 and Equation 4:
  • the estimated results I(0), I(1), and I(-1) of each PTRS resource block can be averaged respectively to obtain here That is, the result of phase noise parameter estimation, which can be used to filter the received signal of each sub-carrier on the OFDM symbol, that is, ICI compensation, and input the compensated result to the multiple-in-multiple-out (MIMO) equalization module .
  • MIMO multiple-in-multiple-out
  • Example 2 of the PTRS resource mapping pattern is shown in Table 2.
  • the PTRS frequency domain resource block resource mapping has two second subcarriers on the higher frequency side and four second subcarriers on the lower frequency side.
  • the first subcarrier k carries PTRS, which is used to estimate the phase noise parameter I(0)
  • the second subcarriers (k-1) and (k-2) are punctured, and the user equipment passes through the second subcarrier (k-1) and (k-2).
  • k-1) can calculate I(1)
  • the second subcarrier (k-2) can calculate I(2).
  • the second subcarriers (k+1), (k+2), (k-3), (k-4) are used as protection subcarriers to protect other subcarriers in the frequency domain resource block from being affected by the frequency domain. ICI impact of subcarrier signals outside the domain resource block.
  • the method for calculating the phase noise parameter by the user equipment is:
  • Equation 5 The channel estimate of the first subcarrier k, the PTRS and the baseband signal of the second subcarrier k-1 are brought into Equation 5, and Equation 9 is obtained:
  • Equation 5 The channel estimate of the first subcarrier k, the PTRS and the baseband signal of the second subcarrier k-2 are brought into Equation 5, and Equation 10 is obtained:
  • I(2) X(k-2)/(S(k) ⁇ H(k));
  • Equation 11 is obtained from Equation 9 and Equation 4:
  • Equation 12 is obtained from Equation 10 and Equation 4:
  • FIG. 17 shows one of the structural block diagrams of an apparatus for estimating a phase noise parameter according to an embodiment of the present application.
  • the apparatus 1700 for estimating a phase noise parameter includes: an obtaining module 1702, and the obtaining module 1702 is used for Obtain a first time-frequency resource for transmitting the phase tracking reference signal PTRS and a punctured second time-frequency resource; wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and the punctured subcarriers on both sides The number of carriers is different; the receiving module 1704 is used to receive the downlink signal according to the first time-frequency resource and the second time-frequency resource; the calculation module 1706 is used to determine the phase noise parameter according to the downlink signal.
  • the user equipment can estimate the phase noise parameter with lower system overhead and complexity, and the phase noise parameter estimation is more accurate, so as to reduce the CPE influence and the ICI influence caused by the phase noise.
  • the receiving module 1704 is further configured to receive the first configuration information sent by the base station; the obtaining module 1702 is further configured to determine the first time-frequency resource and the second time-frequency resource according to the first configuration information; wherein the first configuration information Used to indicate the first time-frequency resource and the second time-frequency resource.
  • the receiving module 1704 is further configured to receive the second configuration information sent by the base station; the obtaining module 1702 is further configured to determine the first time-frequency resource according to the second configuration information; and determine the first time-frequency resource according to the preset puncturing rule The second time-frequency resources on both sides; wherein the second configuration information is used to indicate the first time-frequency resource; the preset puncturing rule is used to indicate the positions of the punctured subcarriers on both sides of the first time-frequency resource that can be used for puncturing.
  • the receiving module 1704 is further configured to receive third configuration information sent by the base station; the obtaining module 1702 is further configured to determine a target resource mapping pattern from at least one resource mapping pattern according to the third configuration information, wherein at least one resource mapping pattern The pattern is used to indicate the first time-frequency resource and the second time-frequency resource.
  • the first time-frequency resource is a part of the continuous subcarriers in the multiple continuous subcarriers, or one subcarrier in the multiple continuous subcarriers.
  • the number of punctured subcarriers on one side of the first time-frequency resource is u1
  • the number of punctured subcarriers on one side of the first time-frequency resource is u2
  • the obtaining module 1702 is further configured to obtain fourth configuration information; determine the values of u1 and u2 according to the fourth configuration information; wherein, the fourth configuration information is configured by the base station and/or stipulated by the protocol.
  • the first time-frequency resource and the second time-frequency resource constitute a frequency-domain resource block; in the frequency domain, one or more frequency-domain resource blocks are included; in the time domain, one or more OFDM Symbols are used to carry frequency domain resource blocks.
  • the receiving module 1704 is further configured to receive the first baseband signal of the first time-frequency resource; receive the second baseband signal of the second time-frequency resource; receive the phase tracking reference signal PTRS; Downlink demodulation reference signal DMRS.
  • the calculation module 1706 is further configured to perform channel estimation on the first time-frequency resource according to the downlink demodulation reference signal DMRS; according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource, and the first baseband signal, determine the a phase noise parameter; m second phase noise parameters are determined according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource and the second baseband signal; where m is an integer greater than or equal to 0.
  • the calculation module 1706 is further configured to average i first phase noise parameters among the first phase noise parameters of the n frequency domain resource blocks to obtain an average result of the first phase noise parameters; Among the m second phase noise parameters of , the w second phase noise parameters are averaged to obtain an average result of the second phase noise parameters; where n is greater than 1, i is less than or equal to n, and w is less than or equal to m.
  • each module of the apparatus for estimating phase noise parameters 1700 implements the steps of the method for estimating phase noise parameters in any of the above embodiments when performing their respective functions. Therefore, the apparatus for estimating phase noise parameters also includes steps such as All the beneficial effects of the method for estimating phase noise parameters in any of the above embodiments will not be repeated here.
  • the apparatus for estimating the phase noise parameter in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a user equipment.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • FIG. 8 shows the eighth flow chart of a method for estimating a phase noise parameter according to an embodiment of the present application, including:
  • Step 802 acquiring a first time-frequency resource for transmitting a phase tracking reference signal PTRS and a second time-frequency resource for puncturing;
  • the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and the number of punctured subcarriers on both sides is different.
  • the number of punctured subcarriers on both sides of the first time-frequency resource for transmitting PTRS is different, that is, compared with the case where the number of punctured subcarriers on both sides of the first time-frequency resource in the frequency domain is equal, it is possible to Reducing the number of punctured subcarriers on one side of the first time-frequency resource for transmitting PTRS can effectively reduce the amount of computation on each OFDM symbol, thereby reducing system overhead.
  • Step 804 Send an uplink signal according to the first time-frequency resource and the second time-frequency resource.
  • the uplink signal in the time domain resource includes an uplink demodulation reference signal (DMRS) indicating the demodulation of a physical uplink shared channel (Physical Uplink Share Channel, PUSCH), and a phase tracking reference is carried in the physical resource block (Physical Resource Block, PRB)
  • DMRS uplink demodulation reference signal
  • PRB Physical Resource Block
  • the baseband signal of the resource unit (Resource Element, RE) of the signal Phase Tracking Reference Signal, PTRS); the baseband signal of the punctured RE in the PRB; the PTRS that the base station needs to transmit.
  • the user equipment makes the user equipment know the time-frequency resources consistent with the base station according to the first time-frequency resource for transmitting PTRS and the punctured second time-frequency resource, and sends the uplink signal to the base station, It is convenient for the base station to receive the uplink signal according to the first time-frequency resource and the second time-frequency resource, and use the uplink signal to determine the phase noise parameter, thereby enabling the base station to estimate the phase noise parameter with low system overhead and complexity.
  • step 802 the acquisition of the first time-frequency resource for transmitting the phase tracking reference signal PTRS and the second time-frequency resource for puncturing includes the following three ways.
  • Manner 1 Receive the first configuration information sent by the base station; and determine the first time-frequency resource and the second time-frequency resource according to the first configuration information.
  • the first configuration information includes first indication information indicating the first time-frequency resource and second indication information indicating the second time-frequency resource.
  • the base station determines the first time-frequency resource and the second time-frequency resource through the resource mapping pattern, and delivers first configuration information that can indicate the first time-frequency resource and the punctured second time-frequency resource.
  • the user equipment can directly analyze the first configuration information to determine the first time-frequency resource and the positions of the subcarriers that can be used for puncturing on both sides of the first time-frequency resource in the frequency domain, so that the first time-frequency resource and the second time-frequency resource can be
  • the uplink signal is sent to the base station, so that the base station can estimate the phase noise parameter with low system overhead and complexity.
  • Manner 2 Receive second configuration information sent by the base station; determine the first time-frequency resource and the second time-frequency resource according to the second configuration information; and determine the second time-frequency resource on both sides of the first time-frequency resource according to a preset puncturing rule resource.
  • the second configuration information includes first indication information indicating the first time-frequency resource.
  • the preset puncturing rule is used to indicate the positions of subcarriers on both sides of the first time-frequency resource that can be used for puncturing.
  • the second configuration information delivered by the base station only indicates the first time-frequency resource.
  • the user equipment can determine the first time-frequency resource for transmitting the PTRS by analyzing the second configuration information, and determine the positions of the second time-frequency resource on both sides of the first time-frequency resource in combination with the preset puncturing rule.
  • the base station can estimate the phase noise parameter with lower system overhead and complexity.
  • the first configuration information and the second configuration information are carried by signaling, and the signaling includes: radio resource control signaling (Radio Resource Control, RRC) and/or physical layer control signaling.
  • RRC Radio Resource Control
  • the base station configures the PTRS on a specific resource unit (RE) for the user equipment, and then the user equipment determines which REs cannot be used as PUSCH according to certain puncturing rules, that is, transmits PTRS and punctured REs.
  • the base station configures the PTRS and the corresponding punctured REs for the user equipment, and specifies in the configuration which REs transmit PTRS and which REs are punctured.
  • Manner 3 Receive third configuration information sent by the base station; and determine a target resource mapping pattern from at least one resource mapping pattern according to the third configuration information.
  • At least one resource mapping pattern is agreed by a protocol or configured by a network device.
  • the user equipment and the base station agree on at least one resource mapping pattern through an agreement, and the at least one resource mapping pattern not only indicates the relative position between the first time-frequency resource and the second time-frequency resource, but also indicates the first time-frequency resource.
  • the number of punctured subcarriers on both sides of the time-frequency resource may indicate different relationships between the first time-frequency resource and the second time-frequency resource.
  • one resource mapping pattern indicates that the number of punctured subcarriers on both sides of the frequency domain of the first time-frequency resource is 1 and 2 respectively
  • the other resource mapping pattern indicates that the number of punctured subcarriers on both sides of the frequency domain of the first time-frequency resource is respectively for 4 and 2.
  • the base station can configure the resource mapping pattern to the user equipment, so that different resource mapping patterns can be selected according to different requirements. . Thereby, the requirement of the user equipment on the calculation amount is reduced, and the application scenarios of the phase noise parameters are broadened.
  • the third configuration information may be carried in RRC and/or physical layer control signaling.
  • the number of punctured subcarriers on one side of the first time-frequency resource is u1
  • the number of punctured subcarriers on the other side of the first time-frequency resource is u2
  • u1 is equal to N times u2 or N times u2.
  • the method before acquiring the first time-frequency resource of the transmission phase tracking reference signal PTRS and the punctured second time-frequency resource, the method further includes: acquiring fourth configuration information; determining u1 and u1 according to the fourth configuration information The value of u2.
  • the fourth configuration information is configured by the base station and/or stipulated by the protocol.
  • u1 and u2 can be determined according to the received fourth configuration information The value of , makes the base station and the user equipment reach the same value of u1 and u2, which is beneficial to the estimation of the phase noise parameter.
  • the fourth configuration information and the first configuration information may be sent to the user equipment through the same signaling, and of course may also be transmitted through different signaling.
  • u1 and u2 are predefined non-negative integers, and the typical values are 0, 1, 2, etc.
  • the base station and the user equipment can reach the same value by any of the following methods.
  • the protocol is predefined, including the relationship between u1/u2 and RRC parameters or physical measurement parameters;
  • the base station notifies the user equipment (UE) through RRC signaling;
  • the base station notifies the user equipment (UE) through physical layer control signaling.
  • the first time-frequency resource in the frequency domain is a part of consecutive subcarriers in a plurality of consecutive subcarriers, or a subcarrier in a plurality of consecutive subcarriers.
  • the first time-frequency resource and the second time-frequency resource constitute a frequency domain resource block, and in the frequency domain, one or more frequency domain resource blocks are included; in the time domain, one or more Orthogonal frequency division multiplexing symbols carry frequency domain resource blocks.
  • the basic unit in the frequency domain is a subcarrier
  • the physical unit of the available resources in the frequency domain is a subcarrier.
  • a resource block (RB) includes 12 subcarriers, wherein the first time-frequency resource is a subcarrier or partially continuous subcarriers used for transmitting PTRS in the physical resource block, and the second time-frequency resource is two of the first time-frequency resource. punctured subcarriers on the side.
  • the subcarriers and punctured subcarriers for transmitting PTRS are denoted as frequency domain resource blocks. There may be one or more frequency domain resource blocks in the frequency domain.
  • a time-frequency resource element can be determined by one subcarrier and one OFDM symbol, and the physical layer uses the time-frequency resource element as a unit when performing resource mapping.
  • the first time-frequency resource indicates REs used for transmitting PTRS, and the second time-frequency resource indicates REs used for puncturing.
  • FIG. 18 shows the second structural block diagram of an apparatus for estimating phase noise parameters according to an embodiment of the present application.
  • the apparatus 1800 for estimating phase noise parameters includes: an acquisition module 1802, and the acquisition module 1802 is used for Obtain a first time-frequency resource for transmitting the phase tracking reference signal PTRS and a punctured second time-frequency resource; wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and the punctured subcarriers on both sides The number of carriers is different; the sending module 1804, the sending module 1804 is configured to send the uplink signal according to the first time-frequency resource and the second time-frequency resource.
  • the user equipment can estimate the phase noise parameter with low system overhead and complexity, and in the case of transmitting PUSCH, the uplink signal is sent to the base station, so that the base station can use the uplink signal, the first time-frequency The resource and the second time-frequency resource determine the phase noise parameter, thereby reducing the CPE effect and the ICI effect caused by the phase noise.
  • the phase noise parameter estimation apparatus 1800 further includes: a receiving module (not shown in the figure), the receiving module is configured to receive the first configuration information sent by the base station; the obtaining module 1802 is further configured to determine according to the first configuration information The first time-frequency resource and the second time-frequency resource; wherein, the first configuration information is used to indicate the first time-frequency resource and the second time-frequency resource.
  • a receiving module not shown in the figure
  • the receiving module is configured to receive the first configuration information sent by the base station
  • the obtaining module 1802 is further configured to determine according to the first configuration information The first time-frequency resource and the second time-frequency resource; wherein, the first configuration information is used to indicate the first time-frequency resource and the second time-frequency resource.
  • the receiving module is further configured to receive the second configuration information sent by the base station; the obtaining module 1802 is further configured to determine the first time-frequency resource according to the second configuration information; The second time-frequency resource on the side of the first time-frequency resource; wherein the second configuration information is used to indicate the first time-frequency resource; the preset puncturing rule is used to indicate the positions of the subcarriers on both sides of the first time-frequency resource that can be used for puncturing.
  • the receiving module is further configured to receive third configuration information sent by the base station; the obtaining module 1802 is further configured to determine a target resource mapping pattern from at least one resource mapping pattern according to the third configuration information, wherein the at least one resource mapping pattern Used to indicate the first time-frequency resource and the second time-frequency resource.
  • the first time-frequency resource is a part of continuous subcarriers in multiple continuous subcarriers, or one subcarrier in multiple continuous subcarriers.
  • the number of punctured subcarriers on one side of the first time-frequency resource is u1
  • the number of punctured subcarriers on one side of the first time-frequency resource is u2
  • u1 (1/N) ⁇ u2, where N is a positive integer.
  • the obtaining module 1802 is further configured to obtain fourth configuration information; determine the values of u1 and u2 according to the fourth configuration information; wherein, the fourth configuration information is configured by the base station and/or stipulated by the protocol.
  • the first time-frequency resource and the second time-frequency resource constitute a frequency-domain resource block; in the frequency domain, one or more frequency-domain resource blocks are included; in the time domain, one or more OFDM Symbols are used to carry frequency domain resource blocks.
  • a user equipment 2100 including: a processor 2104, a memory 2102, and programs or instructions stored in the memory 2102 and executable on the processor 2104, When the program or instruction is executed by the processor 2104, the steps of implementing the method for estimating phase noise parameters as provided in any of the above embodiments, therefore, the user equipment 2100 includes the method for estimating phase noise parameters as provided in any of the above embodiments All the beneficial effects will not be repeated here.
  • the user equipment in this embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • FIG. 23 is a block diagram of a hardware structure of a user equipment 2300 implementing an embodiment of the present application.
  • the user equipment 2300 includes but is not limited to: a radio frequency unit 2302, a network module 2304, an audio output unit 2306, an input unit 2308, a sensor 2310, a display unit 2312, a user input unit 2314, an interface unit 2316, a memory 2318, a processor 2320 and other components .
  • the user equipment 2300 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 2320 through a power management system, so as to manage charging, discharging, and power management through the power management system. consumption management and other functions.
  • a power supply such as a battery
  • the structure of the user equipment shown in FIG. 20 does not constitute a limitation on the user equipment, and the user equipment may include more or less components than those shown, or combine some components, or arrange different components.
  • the user equipment includes, but is not limited to, mobile user equipment, tablet computers, notebook computers, handheld computers, in-vehicle electronic devices, wearable devices, and pedometers.
  • the processor 2320 is configured to acquire a first time-frequency resource for transmitting the phase tracking reference signal PTRS and a punctured second time-frequency resource; wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource , and the number of punctured subcarriers on both sides is different; the radio frequency unit 2302 is configured to receive the downlink signal according to the first time-frequency resource and the second time-frequency resource; the processor 2320 is further configured to determine the phase noise parameter according to the downlink signal.
  • the user equipment can estimate the phase noise parameter with lower system overhead and complexity, and the phase noise parameter estimation is more accurate, so as to reduce the CPE influence and the ICI influence caused by the phase noise.
  • the radio frequency unit 2302 is further configured to send the uplink signal according to the first time-frequency resource and the second time-frequency resource.
  • the radio frequency unit 2302 is further configured to receive the first configuration information sent by the base station; the processor 2320 is further configured to determine the first time-frequency resource and the second time-frequency resource according to the first configuration information; wherein the first configuration information uses for indicating the first time-frequency resource and the second time-frequency resource.
  • the radio frequency unit 2302 is further configured to receive the second configuration information sent by the base station; the processor 2320 is further configured to determine the first time-frequency resource according to the second configuration information; The second time-frequency resource on the side of the first time-frequency resource; wherein the second configuration information is used to indicate the first time-frequency resource; the preset puncturing rule is used to indicate the positions of the subcarriers on both sides of the first time-frequency resource that can be used for puncturing.
  • the radio frequency unit 2302 is further configured to receive third configuration information sent by the base station; the processor 2320 is further configured to determine a target resource mapping pattern from at least one resource mapping pattern according to the third configuration information, wherein the at least one resource mapping pattern Used to indicate the first time-frequency resource and the second time-frequency resource.
  • the first time-frequency resource is a part of the continuous subcarriers in the multiple continuous subcarriers, or one subcarrier in the multiple continuous subcarriers.
  • the number of punctured subcarriers on one side of the first time-frequency resource is u1
  • the number of punctured subcarriers on one side of the first time-frequency resource is u2
  • the processor 2320 is further configured to acquire fourth configuration information; determine the values of u1 and u2 according to the fourth configuration information; wherein, the fourth configuration information is configured by the base station and/or stipulated by the protocol.
  • first time-frequency resource and the second time-frequency resource constitute a frequency-domain resource block; in the frequency domain, one or more frequency-domain resource blocks are included; in the time domain, one or more orthogonal frequency division multiplexing Symbols carry frequency domain resource blocks.
  • the radio frequency unit 2302 is further configured to receive the first baseband signal of the first time-frequency resource; receive the second baseband signal of the second time-frequency resource; receive the phase tracking reference signal PTRS; Downlink demodulation reference signal DMRS.
  • the processor 2320 is further configured to perform channel estimation on the first time-frequency resource according to the downlink demodulation reference signal DMRS; according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource and the first baseband signal, determine the first time-frequency resource.
  • Phase noise parameters; m second phase noise parameters are determined according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource, and the second baseband signal; where m is an integer greater than or equal to 0.
  • the processor 2320 is further configured to average i first phase noise parameters of the first phase noise parameters of the n frequency domain resource blocks to obtain an average result of the first phase noise parameters;
  • the wth second phase noise parameter among the m second phase noise parameters is averaged to obtain an average result of the second phase noise parameter; wherein, n is greater than 1, i is less than or equal to n, and w is less than or equal to m.
  • the radio frequency unit 2302 may be used to send and receive information or send and receive signals during a call, and specifically, receive downlink data from the base station or send uplink data to the base station.
  • the radio frequency unit 2302 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the network module 2304 provides users with wireless broadband Internet access, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 2306 may convert audio data received by the radio frequency unit 2302 or the network module 2304 or stored in the memory 2318 into audio signals and output as sound. Also, the audio output unit 2306 may also provide audio output related to a specific function performed by the user device 2300 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 2306 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 2308 is used to receive audio or video signals.
  • the input unit 2308 may include a graphics processor (Graphics Processing Unit, GPU) 5082 and a microphone 5084, and the graphics processor 5082 is used for still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode data is processed.
  • the processed image frames may be displayed on the display unit 2312, or stored in the memory 2318 (or other storage medium), or transmitted via the radio frequency unit 2302 or the network module 2304.
  • the microphone 5084 can receive sound, and can process the sound into audio data, and the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 2302 for output in the case of a phone call mode.
  • User device 2300 also includes at least one sensor 2310, such as a fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared sensor, light sensor, motion sensor, and other sensors.
  • sensor 2310 such as a fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared sensor, light sensor, motion sensor, and other sensors.
  • the display unit 2312 is used to display information input by the user or information provided to the user.
  • the display unit 2312 may include a display panel 5122, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 2314 may be used to receive input numerical or character information, and generate key signal input related to user settings and function control of the user equipment.
  • the user input unit 2314 includes a touch panel 5142 and other input devices 5144 .
  • the touch panel 5142 also referred to as a touch screen, collects the user's touch operations on or near it.
  • the touch panel 5142 may include two parts, a touch detection device and a touch controller. Among them, the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller.
  • Other input devices 5144 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the touch panel 5142 can be overlaid on the display panel 5122.
  • the touch panel 5142 detects a touch operation on or near it, it transmits it to the processor 2320 to determine the type of the touch event, and then the processor 2320 determines the type of the touch event according to the touch
  • the type of event provides corresponding visual output on display panel 5122.
  • the touch panel 5142 and the display panel 5122 can be used as two independent components, or can be integrated into one component.
  • the interface unit 2316 is an interface for connecting an external device to the user equipment 2300 .
  • the external device may include a wired or wireless headset end interface, an external power supply (or battery charger) end interface, a wired or wireless data end interface, a memory card end interface, an end interface for connecting to a device with an identification module , audio input/output (I/O) port, video I/O port, headphone port and so on.
  • the interface unit 2316 may be used to receive input from external devices (eg, data information, power, etc.) and transmit the received input to one or more elements within the user equipment 2300 or may be used between the user equipment 2300 and external Transfer data between devices.
  • Memory 2318 may be used to store software programs as well as various data.
  • the memory 2318 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phonebook, etc.) created by the use of the mobile user equipment, etc.
  • memory 2318 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 2320 executes various functions of the user equipment 2300 and processes data by running or executing the software programs and/or modules stored in the memory 2318, and calling the data stored in the memory 2318, so as to perform overall monitoring of the user equipment 2300 .
  • the processor 2320 may include one or more processing units; the processor 2320 may integrate an application processor and a modem processor, wherein the application processor mainly handles the operating system, user interface and application programs, etc., and the modem processor mainly handles Correlation functions that handle the estimation of phase noise parameters.
  • FIG. 9 shows the ninth flow chart of a method for estimating a phase noise parameter according to an embodiment of the present application, including:
  • Step 902 Send a downlink signal by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource.
  • the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and the number of punctured subcarriers on both sides is different.
  • the number of punctured subcarriers on both sides of the first time-frequency resource for transmitting PTRS is different, that is, compared with the case where the number of punctured subcarriers on both sides of the first time-frequency resource in the frequency domain is equal, it is possible to Reducing the number of punctured subcarriers on one side of the first time-frequency resource for transmitting PTRS can effectively reduce the amount of computation on each OFDM symbol, thereby reducing system overhead.
  • the base station sends a downlink signal to the user equipment through the first time-frequency resource and the second time-frequency resource, so that the user equipment can determine the phase noise parameter according to the use of the downlink signal, so that the user equipment can use the lower system overhead and
  • the complexity estimates the phase noise parameters. It is beneficial to reduce the influence of CPE and ICI caused by phase noise, and improve the transmission performance of OFDM systems with small subcarrier spacing in high-order modulation.
  • the downlink signal in the time domain resource includes downlink DMRS indicating PDSCH demodulation, the baseband signal of the RE carrying the PTRS in the PRB; the baseband signal of the punctured RE in the PRB; and the PTRS that the base station needs to transmit.
  • step 902 by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, before sending the downlink signal, the method further includes:
  • Step 1002 Send the first configuration information to the user equipment.
  • the first configuration information is used to indicate the first time-frequency resource and the second time-frequency resource.
  • the base station can determine the first time-frequency resource through communication parameters configured by the network device, and determine the second time-frequency resource through a preset puncturing rule or a resource mapping pattern agreed in a protocol. Generate corresponding first indication information and second indication information according to the first time-frequency resource and the second time-frequency resource, and send the first configuration information including the first indication information and the second indication information to the user equipment, and then provide the user
  • the device configures the first time-frequency resource for transmitting PTRS and the second time-frequency resource for puncturing, so that the user equipment can specify which REs transmit PTRS and which REs are used for puncturing, so as to know the time-frequency resources consistent with the base station. So that the user equipment can receive the downlink signal at the corresponding resource position and estimate the phase noise parameter.
  • the first configuration information is carried by signaling, and the signaling includes: radio resource control signaling and/or physical layer control signaling.
  • step 902 by transmitting the first time-frequency resource and the punctured second time-frequency resource of the phase tracking reference signal PTRS, before sending the downlink signal, the method further includes:
  • Step 1102 Send the second configuration information to the user equipment.
  • the second configuration information is used to indicate the first time-frequency resource.
  • the base station can determine the first time-frequency resource through communication parameters configured by the network device.
  • the corresponding first indication information is generated according to the first time-frequency resource, and the second configuration information including the first indication information is sent to the user equipment, that is, the base station only configures the first time-frequency resource for the user equipment.
  • the user equipment may determine the first time-frequency resource according to the second configuration information, and determine which REs cannot be used as the PDSCH according to the preset puncturing rule, so that the user equipment knows the time-frequency resources consistent with the base station. In order to facilitate the user equipment to receive the downlink signal at the corresponding resource position and estimate the phase noise parameter.
  • the second configuration information is carried by signaling, and the signaling includes: radio resource control signaling and/or physical layer control signaling.
  • step 902 by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, before sending the downlink signal, the method further includes:
  • Step 1202 sending third configuration information to the user equipment.
  • the third configuration information is used to indicate the target resource mapping pattern in the at least one resource mapping pattern.
  • the user equipment and the base station agree on at least one resource mapping pattern through an agreement, and the at least one resource mapping pattern not only indicates the relative position between the first time-frequency resource and the second time-frequency resource, but also indicates the first time-frequency resource.
  • Different resource mapping patterns may indicate different relationships between the first time-frequency resource and the second time-frequency resource.
  • the base station configures the target resource mapping pattern to the user equipment through the third configuration information, so as to select different resource mapping patterns according to different requirements, so that the user equipment can directly perform time-frequency resource demapping through the target resource mapping pattern to determine the first time-frequency resource.
  • the user equipment can receive the downlink signal at the corresponding resource position and estimate the phase noise parameter.
  • the third configuration information is carried by radio resource control signaling and/or physical layer control signaling.
  • the number of punctured subcarriers on one side of the first time-frequency resource is u1
  • the number of punctured subcarriers on the other side of the first time-frequency resource is u2
  • N is a positive integer
  • u1 is equal to N times u2 or N times u2.
  • u1 1
  • step 902 by transmitting the first time-frequency resource and the punctured second time-frequency resource of the phase tracking reference signal PTRS, before sending the downlink signal, further comprising:
  • Step 1302 obtaining fourth configuration information
  • the fourth configuration information is stipulated by the protocol.
  • Step 1304 determine the values of u1 and u2 according to the fourth configuration information
  • Step 1306 Send fourth configuration information to the user equipment.
  • the specific number of subcarriers on both sides of the frequency domain of the first time-frequency resource is determined through the fourth configuration information, so as to accurately determine the second time-frequency resource.
  • the fourth configuration information is sent to the user equipment, so that the base station and the user equipment reach the same values of u1 and u2.
  • u1 and u2 are predefined non-negative integers, and the typical values are 0, 1, 2, etc.
  • u1 and u2 can be predefined by the protocol. Specifically, the protocol predefined u1/u2 and RRC parameters Or the physical measurement parameters are related.
  • the first time-frequency resource in the frequency domain, is a part of consecutive subcarriers in a plurality of consecutive subcarriers, or a subcarrier in a plurality of consecutive subcarriers.
  • the first time-frequency resource and the second time-frequency resource constitute a frequency domain resource block; in the frequency domain, one or more frequency domain resource blocks are included; in the time domain, one or more Orthogonal frequency division multiplexing symbols carry frequency domain resource blocks.
  • the basic unit in the frequency domain is a subcarrier
  • the physical unit of the available resources in the frequency domain is a subcarrier.
  • a resource block (RB) includes 12 subcarriers, wherein the first time-frequency resource is a subcarrier or partially continuous subcarriers used for transmitting PTRS in the physical resource block, and the second time-frequency resource is two of the first time-frequency resource. punctured subcarriers on the side.
  • the subcarriers and punctured subcarriers for transmitting PTRS are denoted as frequency domain resource blocks.
  • one or more of the frequency domain resource blocks may be included.
  • downlink transmission is organized into system frames, the smallest resource unit is an OFDM symbol, and one or more OFDM symbols carry frequency domain resource blocks.
  • a time-frequency resource element (RE) can be determined by one subcarrier and one OFDM symbol, and the physical layer uses the time-frequency resource element as a unit when performing resource mapping.
  • the first time-frequency resource indicates the same RE that transmits the PTRS, and the second time-frequency resource indicates the RE used for puncturing.
  • FIG. 19 shows the third structural block diagram of an apparatus for estimating phase noise parameters according to an embodiment of the present application.
  • the apparatus 1900 for estimating phase noise parameters includes: a sending module 1902 for transmitting phase
  • the first time-frequency resource and the punctured second time-frequency resource of the reference signal PTRS are tracked, and the downlink signal is sent, wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and the punctured subcarriers on both sides are The number of Confucius sub-carriers is different.
  • the sending module 1902 is further configured to send first configuration information to the user equipment, where the first configuration information is used to indicate the first time-frequency resource and the second time-frequency resource.
  • the sending module 1902 is further configured to send second configuration information to the user equipment, where the second configuration information is used to indicate the first time-frequency resource.
  • the sending module 1902 is further configured to send third configuration information to the user equipment, where the third configuration information is used to indicate a target resource mapping pattern in the at least one resource mapping pattern.
  • the first time-frequency resource is a part of the continuous subcarriers in the multiple continuous subcarriers, or one subcarrier in the multiple continuous subcarriers.
  • the number of punctured subcarriers on one side of the first time-frequency resource is u1
  • the number of punctured subcarriers on the other side of the first time-frequency resource is u2
  • the phase noise parameter estimation apparatus 1900 further includes: an acquisition module (not shown in the figure), the acquisition module is used to acquire fourth configuration information; determine the values of u1 and u2 according to the fourth configuration information; send module 1902 It is also used for sending the fourth configuration information to the user equipment.
  • an acquisition module (not shown in the figure)
  • the acquisition module is used to acquire fourth configuration information
  • send module 1902 It is also used for sending the fourth configuration information to the user equipment.
  • the first time-frequency resource and the second time-frequency resource constitute a frequency-domain resource block; in the frequency domain, one or more frequency-domain resource blocks are included; in the time domain, one or more OFDM Symbols are used to carry frequency domain resource blocks.
  • each module of the phase noise parameter estimation apparatus 1900 implements the steps of the phase noise parameter estimation method as in any of the above embodiments when performing their respective functions. Therefore, the phase noise parameter estimation apparatus also includes steps such as All the beneficial effects of the method for estimating phase noise parameters in any of the above embodiments will not be repeated here.
  • FIG. 14 shows a fourteenth flowchart of a method for estimating a phase noise parameter according to an embodiment of the present application, including:
  • Step 1402 receiving an uplink signal by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource;
  • the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and the number of punctured subcarriers on the two sides is different.
  • the number of punctured subcarriers on both sides of the first time-frequency resource for transmitting PTRS is different, that is, compared with the case where the number of punctured subcarriers on both sides of the first time-frequency resource in the frequency domain is equal, it is possible to Reducing the number of punctured subcarriers on one side of the first time-frequency resource for transmitting PTRS can effectively reduce the amount of computation on each OFDM symbol, thereby reducing system overhead.
  • the uplink signals in the time domain resources include uplink DMRS indicating demodulation of PUSCH, baseband signals of REs carrying PTRS in PRBs, baseband signals of punctured REs in PRBs, and PTRSs that the base station needs to transmit.
  • Step 1404 Determine the phase noise parameter according to the uplink signal.
  • the base station can accurately calculate the value of The phase noise parameter can be compensated by the phase noise parameter, so as to reduce the influence of CPE and ICI caused by the phase noise, and improve the transmission performance of the OFDM system with small subcarrier spacing in high-order modulation.
  • step 1402 by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, before receiving the uplink signal, includes: sending the first configuration information to the user equipment , where the first configuration information is used to indicate the first time-frequency resource and the second time-frequency resource.
  • the base station generates corresponding first indication information and second indication information by using the first time-frequency resource and the second time-frequency resource, and sends the first configuration information including the first indication information and the second indication information For the user equipment, and then configure the first time-frequency resource for transmitting PTRS and the second time-frequency resource for puncturing, so that the user equipment can specify which REs transmit PTRS and which REs are used for puncturing, so as to know which REs are consistent with the base station.
  • time-frequency resources and the user equipment sends the uplink signal to the base station.
  • the base station is made to receive the uplink signal according to the first time-frequency resource and the second time-frequency resource, and use the uplink signal to determine the phase noise parameter, thereby reducing the system overhead and complexity when estimating the phase noise parameter.
  • the first configuration information is carried by signaling, and the signaling includes: radio resource control signaling and/or physical layer control signaling.
  • step 1402 by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, before receiving the uplink signal, includes: sending the second configuration information to the user equipment , where the second configuration information is used to indicate the first time-frequency resource.
  • the base station can determine the first time-frequency resource through communication parameters configured by the network device.
  • the corresponding first indication information is generated according to the first time-frequency resource, and the second configuration information including the first indication information is sent to the user equipment, that is, the base station only configures the first time-frequency resource for the user equipment.
  • the user equipment can determine the first time-frequency resource according to the second configuration information, and determine which REs cannot be used as the PUSCH according to the preset puncturing rule, so that the user equipment knows the time-frequency resources consistent with the base station, and sends the uplink signal to the base station.
  • the base station is made to receive the uplink signal according to the first time-frequency resource and the second time-frequency resource, and use the uplink signal to determine the phase noise parameter, thereby reducing the system overhead and complexity when estimating the phase noise parameter.
  • the second configuration information is carried by signaling, and the signaling includes: radio resource control signaling and/or physical layer control signaling.
  • step 1402 by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, before receiving the uplink signal, further comprising: sending third configuration information to the user The device, wherein the third configuration information is used to indicate a target resource mapping pattern in the at least one resource mapping pattern.
  • the user equipment and the base station agree on at least one resource mapping pattern through an agreement, and the at least one resource mapping pattern not only indicates the relative position between the first time-frequency resource and the second time-frequency resource, but also indicates the first time-frequency resource.
  • Different resource mapping patterns may indicate different relationships between the first time-frequency resource and the second time-frequency resource.
  • the base station configures the target resource mapping pattern to the user equipment through the third configuration information, so as to select different resource mapping patterns according to different requirements, so that the user equipment can directly perform time-frequency resource demapping through the target resource mapping pattern to determine the first time-frequency resource.
  • the base station is made to receive the uplink signal according to the first time-frequency resource and the second time-frequency resource, and use the uplink signal to determine the phase noise parameter, thereby reducing the system overhead and complexity when estimating the phase noise parameter.
  • the third configuration information is carried by radio resource control signaling and/or physical layer control signaling.
  • At least one resource mapping pattern is agreed by a protocol or configured by a network device.
  • the first time-frequency resource in the frequency domain, is a part of consecutive subcarriers in a plurality of consecutive subcarriers, or a subcarrier in a plurality of consecutive subcarriers.
  • the number of punctured subcarriers on one side of the first time-frequency resource is u1
  • the number of punctured subcarriers on the other side of the first time-frequency resource is u2
  • N is a positive integer
  • u1 is equal to N times u2 or N times u2.
  • u1 1
  • step 1402 by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, before receiving the uplink signal, the method further includes: acquiring fourth configuration information, the first The fourth configuration information is stipulated by the protocol; the values of u1 and u2 are determined according to the fourth configuration information; and the fourth configuration information is sent to the user equipment.
  • the specific number of subcarriers on both sides of the frequency domain of the first time-frequency resource is determined through the fourth configuration information, so as to accurately determine the second time-frequency resource.
  • the fourth configuration information is sent to the user equipment, so that the base station and the user equipment reach the same values of u1 and u2.
  • the first time-frequency resource and the second time-frequency resource constitute a frequency domain resource block; in the frequency domain, one or more frequency domain resource blocks are included; in the time domain, one or more Orthogonal frequency division multiplexing symbols carry frequency domain resource blocks.
  • the basic unit in the frequency domain is a subcarrier
  • the physical unit of the available resources in the frequency domain is a subcarrier.
  • a resource block (RB) includes 12 subcarriers, wherein the first time-frequency resource is a subcarrier or partially continuous subcarriers used for transmitting PTRS in the physical resource block, and the second time-frequency resource is two of the first time-frequency resource. punctured subcarriers on the side.
  • the subcarriers and punctured subcarriers for transmitting PTRS are denoted as frequency domain resource blocks.
  • One or more frequency domain resource blocks may be included in the frequency domain.
  • a time-frequency resource element can be determined by one subcarrier and one OFDM symbol, and the physical layer uses the time-frequency resource element as a unit when performing resource mapping.
  • the first time-frequency resource indicates the same RE that transmits the PTRS, and the second time-frequency resource indicates the RE used for puncturing.
  • step 1402 receiving an uplink signal by transmitting a first time-frequency resource of a phase tracking reference signal PTRS and a punctured second time-frequency resource, including: receiving a first time-frequency resource of the first time-frequency resource baseband signal; receiving the second baseband signal of the second time-frequency resource; receiving the phase tracking reference signal PTRS; receiving the uplink demodulation reference signal DMRS for demodulating the physical uplink shared channel PUSCH.
  • the first baseband signal of the PTRS and the PTRS to be transmitted are received on the corresponding physical resource block according to the first time-frequency resource, and the punctured signal is received on the corresponding physical resource block according to the second time-frequency resource.
  • second baseband signal By indicating the relevant configuration parameters of the demodulation reference signal for demodulating the physical data channel, the base station can receive the uplink DMRS at the corresponding resource position, thereby realizing the demodulation of the PUSCH.
  • the phase noise parameter is determined according to the uplink signal, including:
  • Step 1502 Perform channel estimation on the first time-frequency resource according to the uplink demodulation reference signal DMRS;
  • the base station can receive the uplink DMRS at the corresponding resource position, thereby realizing the demodulation of the PDSCH, and using the uplink demodulation reference signal to Channel estimation is performed at the first time-frequency resource location.
  • Step 1504 Determine the first phase noise parameter according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource, and the first baseband signal;
  • Step 1506 Determine m second phase noise parameters according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource, and the second baseband signal.
  • n is an integer greater than or equal to 0, and m is related to the values of u1 and u2, for example, m is 0, 2, and 4.
  • the channel estimation of the first time-frequency resource, the first baseband signal of the first time-frequency resource, the second baseband signal of the second time-frequency resource, and the PTRS are brought into Formula 5 to calculate the transmission phase respectively.
  • a first phase noise parameter on the first time-frequency resource of the reference signal is tracked, and a second phase noise parameter on the punctured second time-frequency resource is calculated.
  • system overhead can be effectively reduced by reducing the number of punctured subcarriers on one side of the first time-frequency resource for transmitting PTRS.
  • step 1404 determining the phase noise parameter according to the uplink signal, further comprising:
  • Step 1602 averaging i first phase noise parameters of the first phase noise parameters of the n frequency domain resource blocks to obtain an average result of the first phase noise parameters;
  • Step 1604 Average the w second phase noise parameters among the m second phase noise parameters of the n frequency-domain resource blocks to obtain an average result of the second phase noise parameters.
  • n is greater than 1
  • i is less than or equal to n
  • w is less than or equal to m.
  • each of the n frequency-domain resource blocks includes a set of first time-frequency resources and second time-frequency resources, that is, n frequency-domain resource blocks can obtain n first phases noise parameters and n ⁇ m second phase noise parameters.
  • the base station averages i first phase noise parameters in the first phase noise parameters of the n frequency domain resource blocks to obtain an average result of the first phase noise parameters, and obtains an average of the first phase noise parameters of the n frequency domain resource blocks.
  • the w second phase noise parameters at the same position of the frequency domain resource block are averaged to obtain an average result of the second phase noise parameters.
  • the frequency domain or time domain includes 3 frequency domain resource blocks, and each frequency domain resource block has a first phase noise parameter and two second phase noise parameters calculated.
  • the first phase noise parameter is denoted as I(0) 1
  • the first phase noise parameter of the second frequency domain resource block is denoted as I(0) 2
  • the first phase noise parameter of the third frequency domain resource block is denoted as I (0) 3
  • the second phase noise parameters of the first frequency domain resource block are denoted as I(1) 1 , I(2) 1 , and I(-1) 1 respectively
  • the second frequency domain resource block The second phase noise parameters of the third frequency domain resource block are denoted as I(1) 2 , I(2) 2 , I(-1) 2 respectively
  • the second phase noise parameters of the third frequency domain resource block are denoted as I(1) 3 , I(2) 3 , I(-1) 3
  • calculate the average value of I(0) 1 , I(0) 2 and I(0) 3 to obtain the average result of the first phase noise parameter, and calculate I( 1) Average of 1 , I(1) 2
  • the receiving end is the base station as an example
  • the first subcarrier k carries PTRS, which is used to estimate the phase noise parameter I(0), the second subcarrier (k+1) is punctured, and the baseband signal received by the base station on this subcarrier is the first
  • the second subcarrier (k-1) and the second subcarrier (k+2) are used as protection subcarriers to protect other subcarriers in the resource block from being affected by the ICI of subcarrier signals outside the resource block.
  • the PTRS frequency domain resource block resource mapping has two second subcarriers on the higher frequency side, and only one second subcarrier on the lower frequency side.
  • the method for calculating the phase noise parameter by the user equipment is:
  • Equation 5 The channel estimation of the first subcarrier k, the PTRS, and the baseband signal of the second subcarrier k+1 are brought into Equation 5, and Equation 13 is obtained:
  • Equation 14 is obtained from Equation 13 and Equation 4:
  • the estimated results I(0), I(1), and I(-1) of each PTRS resource block can be averaged respectively to obtain here That is, the result of the phase noise parameter estimation, which can be used to filter the received signal of each subcarrier on the OFDM symbol, ie, ICI compensation, and input the compensated result to a multiple-input multiple-output (MIMO) equalization module.
  • MIMO multiple-input multiple-output
  • the PTRS frequency domain resource block resource mapping has four second subcarriers on the higher frequency side and two second subcarriers on the lower frequency side.
  • the first subcarrier k carries PTRS, which is used to estimate the phase noise parameter I(0)
  • the second subcarriers (k+1) and (k+2) are punctured
  • the base station passes the second subcarrier (k +1) can calculate I(-1)
  • the second subcarrier (k+2) can calculate I(-2).
  • the second subcarriers (k-1), (k-2), (k+3), (k+4) are used as protection subcarriers to protect other subcarriers in the frequency domain resource block from being affected by the frequency domain. ICI impact of subcarrier signals outside the domain resource block.
  • the method for calculating the phase noise parameter by the user equipment is:
  • Equation 15 Substituting the channel estimate for the first subcarrier k, the PRTS, and the baseband signal for the second subcarrier k+1 into Equation 5 yields Equation 15:
  • Equation 5 The channel estimate of the first subcarrier k, the PRTS and the baseband signal of the second subcarrier k+2 are brought into Equation 5, and Equation 16 is obtained:
  • I(-2) X(k+2)/(S(k) ⁇ H(k));
  • Equation 17 is obtained from Equation 15 and Equation 4:
  • Equation 18 is obtained from Equation 16 and Equation 4:
  • the results I(0), I(1), I(-1), I(2), I(- 2) Take the average respectively to get here That is, the result of phase noise parameter estimation, which can be used to filter the received signal of each subcarrier on the OFDM symbol, that is, ICI compensation, and input the compensated result to the MIMO equalization module.
  • FIG. 20 shows the fourth structural block diagram of an apparatus for estimating a phase noise parameter according to an embodiment of the present application.
  • the apparatus 2000 for estimating a phase noise parameter includes: a sending module 2002, and the sending module 2002 is used for The uplink signal is received by transmitting the first time-frequency resource of the phase tracking reference signal PTRS and the punctured second time-frequency resource, wherein the second time-frequency resource includes punctured subcarriers located on both sides of the first time-frequency resource, and the two The number of punctured sub-carriers on the side is different.
  • a calculation module 2004, the calculation module 2004 is used for determining the phase noise parameter according to the uplink signal.
  • the sending module 2002 is further configured to send first configuration information to the user equipment, where the first configuration information is used to indicate the first time-frequency resource and the second time-frequency resource.
  • the sending module 2002 is further configured to send second configuration information to the user equipment, where the second configuration information is used to indicate the first time-frequency resource.
  • the sending module 2002 is further configured to send third configuration information to the user equipment, where the third configuration information is used to indicate a target resource mapping pattern in the at least one resource mapping pattern.
  • the first time-frequency resource is a part of the continuous subcarriers in the multiple continuous subcarriers, or one subcarrier in the multiple continuous subcarriers.
  • the number of punctured subcarriers on one side of the first time-frequency resource is u1
  • the number of punctured subcarriers on one side of the first time-frequency resource is u2
  • u1 (1/N) ⁇ u2, where N is a positive integer.
  • the phase noise parameter estimation apparatus 2000 further includes: an acquisition module (not shown in the figure), the acquisition module is used to acquire fourth configuration information, and the fourth configuration information is stipulated by the protocol; u1 and u2 are determined according to the fourth configuration information. The value of ; the sending module 2002 is further configured to send the fourth configuration information to the user equipment.
  • the first time-frequency resource and the second time-frequency resource constitute a frequency-domain resource block in the frequency domain, including one or more frequency-domain resource blocks; in the time domain, one or more OFDM Symbols carry frequency domain resource blocks.
  • the phase noise parameter estimation apparatus 2000 includes: a receiving module (not shown in the figure), the receiving module is configured to receive the first baseband signal of the first time-frequency resource; and receive the second baseband signal of the second time-frequency resource; Receive the phase tracking reference signal PTRS; receive the uplink demodulation reference signal DMRS for demodulating the physical uplink shared channel PUSCH.
  • the calculation module 2004 is further configured to perform channel estimation on the first time-frequency resource according to the uplink demodulation reference signal DMRS; determine the first time-frequency resource according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource and the first baseband signal. a phase noise parameter; m second phase noise parameters are determined according to the phase tracking reference signal PTRS, the channel estimation of the first time-frequency resource and the second baseband signal; where m is an integer greater than or equal to 0.
  • the calculation module 2004 is further configured to average i first phase noise parameters of the first phase noise parameters of the n frequency domain resource blocks to obtain an average result of the first phase noise parameters; Among the m second phase noise parameters of , the w second phase noise parameters are averaged to obtain an average result of the second phase noise parameters; wherein, n is greater than 1, i is less than or equal to n, and w is less than or equal to m.
  • each module of the apparatus for estimating phase noise parameters 2000 implements the steps of the method for estimating phase noise parameters in any of the above embodiments when performing their respective functions. Therefore, the apparatus for estimating phase noise parameters also includes steps such as All the beneficial effects of the method for estimating phase noise parameters in any of the above embodiments will not be repeated here.
  • a base station 2200 including: a memory 2202, on which a computer program is stored; a processor 2204, configured to execute the computer program to implement any of the above-mentioned implementations Therefore, the base station 2200 includes all the beneficial effects of the method for estimating phase noise parameters provided in any of the above embodiments, which will not be repeated here.
  • a readable storage medium on which programs or instructions are stored, and when the program or instructions are executed by a processor, implement the estimation of phase noise parameters as provided in any of the above embodiments steps of the method.
  • the readable storage medium can implement each process of the phase noise parameter estimation method provided by the embodiment of the present application, and can achieve the same technical effect, which is not repeated here to avoid repetition.
  • the processor is the processor in the communication device provided in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running a program or an instruction to implement each process of the above-mentioned method for estimating a phase noise parameter, and can To achieve the same technical effect, in order to avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a computer program product, the computer program product is stored in a non-volatile storage medium, and the computer program product is executed by at least one processor to implement the above method for estimating a phase noise parameter. In order to avoid repetition, the details are not repeated here.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus.
  • the term “plurality” refers to two or more, unless expressly limited otherwise.
  • the terms “connected”, “connected” and other terms should be understood in a broad sense. For example, “connected” may be a fixed connection, a detachable connection, or an integral connection; “connected” may be directly connected or connected through The intermediary is indirectly connected.
  • the terms “first,” “second,” etc. are used to distinguish between different objects, rather than to describe a particular order of the objects. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种相位噪声参数的估计方法、装置、用户设备和基站,属于通信技术领域。其中,方法包括:获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;根据第一时频资源和第二时频资源,接收下行信号;根据下行信号确定相位噪声参数。

Description

相位噪声参数的估计方法、装置、用户设备和基站
相关申请的交叉引用
本申请主张在2020年12月02日在中国提交的中国专利申请No.202011390899.4的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,具体而言,涉及相位噪声参数的估计方法、装置、用户设备、基站和可读存储介质。
背景技术
为了支持更高的传输速率、更广泛的业务类型,同时考虑到52.6GHz以上频段的频率资源更丰富,需要对52.6GHz以上频段的移动通信做进一步的研究。但在工作于高频点的移动通信系统中,用户设备(User Equipment,UE)与基站(eNodeB)的射频器件不理想带来的相位噪声的影响随工作频点升高而变得更加严重,需要对接收信号进行相位噪声的补偿以保证系统性能。通过在发射端引入相位噪声补偿参考信号,可以保证接收端能够进行链路的相位噪声估计,并对接收信号进行补偿。在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中,相位噪声带来的影响主要包括两方面:1.通用相位错误(Common Phase Error,CPE);2.载波间干扰(Inter Carrier Interference,ICI)。当OFDM系统中子载波间隔较小(例如120KHz或者240KHz)时,ICI对系统在高阶调制(例如16QAM、64QAM)的传输性能影响很大。而且,当OFDM系统的子载波间隔为120KHz或者240KHz时,每个OFDM符号的时间很短(例如分别为8.93us和4.47us),这意味着,接收端的处理时间很有限,低复杂度的解决方案对接收端来说非常必要。
相关技术中,配置相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)在频域上的密度为每2个物理资源块(Physical Resource Block, PRB)有一个资源单位(Resource Element,RE)为PTRS,传输物理下行共享信道(Physical Downlink Share Channel,PDSCH)数据的每个OFDM符号上都有PTRS,虽然对64QAM调制的传输性能有一定的提升,但在每个OFDM符号上的运算量较大,对接收端处理器的运算能力提出了很高的要求。
发明内容
本申请实施例提供了一种相位噪声参数的估计方法、装置、用户设备、和基站,能够以较低的系统开销和复杂度,估计相位噪声参数,以便降低由相位噪声导致的CPE影响与ICI影响。
第一方面,本申请实施例提供了一种相位噪声参数的估计方法,包括:
获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;
根据第一时频资源和第二时频资源,接收下行信号;
根据下行信号确定相位噪声参数。
第二方面,本申请实施例提供了一种相位噪声参数的估计方法,包括:
获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;
根据第一时频资源和第二时频资源,发送上行信号,以使基站根据上行信号确定相位噪声参数。
第三方面,本申请实施例提供了一种相位噪声参数的估计方法,包括:
通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号,其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同。
第四方面,本申请实施例提供了一种相位噪声参数的估计方法,包括:
通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号,其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;
根据上行信号确定相位噪声参数。
第五方面,本申请实施例提供了一种相位噪声参数的估计装置,包括:
获取模块,用于获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;
接收模块,用于根据第一时频资源和第二时频资源,接收下行信号;
计算模块,用于根据下行信号确定相位噪声参数。
第六方面,本申请实施例提供了一种相位噪声参数的估计装置,包括:
获取模块,用于获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;
发送模块,用于根据第一时频资源和第二时频资源,发送上行信号。
第七方面,本申请实施例提供了一种相位噪声参数的估计装置,包括:
发送模块,用于通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号,其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同。
第八方面,本申请实施例提供了一种相位噪声参数的估计装置,包括:
接收模块,用于通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号,其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;
计算模块,用于根据上行信号确定相位噪声参数。
第九方面,本申请实施例提供了一种用户设备,包括处理器、存储器及存储在该存储器上并在处理器上运行的程序或指令,该程序或指令被处理器执行时实现如第一方面或第二方面提供的相位噪声参数的估计方法 的步骤。
第十方面,本申请实施例提供了一种基站,包括处理器、存储器及存储在该存储器上并在处理器上运行的程序或指令,该程序或指令被处理器执行时实现如第三方面或第四方面提供的相位噪声参数的估计方法的步骤。
第十一方面,本申请实施例提供了一种可读存储介质,可读存储介质上存储程序或指令,该程序或指令被处理器执行时实现如第一方面、第二方面、第三方面或第四方面提供的相位噪声参数的估计方法的步骤。
第十二方面,本申请实施例提供了一种芯片,芯片包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行程序或指令,实现如第一方面、第二方面、第三方面或第四方面提供的相位噪声参数的估计方法的步骤。
第十三方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面、第二方面、第三方面或第四方面提供的相位噪声参数的估计方法的步骤。
在本申请实施例中,获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;根据第一时频资源和第二时频资源,接收下行信号;根据下行信号确定相位噪声参数。从而在用户设备和基站传输物理下行共享信道(Physical Downlink Share Channel,PDSCH)过程中,通过传输相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)的第一时频资源以及打孔的第二时频资源之间的相对关系,减少传输PTRS的第一时频资源其中一侧的打孔第二子载波的个数。当利用第一时频资源和第二时频资源的接收的下行信号计算相位噪声参数时,使得用户设备能够以较低的系统开销和复杂度估计相位噪声参数,而且能够保证相位噪声参数估计精确度,有利于降低由相位噪声导致的CPE影响与ICI影响。
附图说明
图1示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之一;
图2示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之二;
图3示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之三;
图4示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之四;
图5示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之五;
图6示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之六;
图7示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之七;
图8示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之八;
图9示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之九;
图10示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之十;
图11示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之十一;
图12示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之十二;
图13示出了根据本申请的一个实施例的相位噪声参数的估计方法的 流程图之十三;
图14示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之十四;
图15示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之十五;
图16示出了根据本申请的一个实施例的相位噪声参数的估计方法的流程图之十六;
图17示出了根据本申请的一个实施例的相位噪声参数的估计装置的结构框图之一;
图18示出了根据本申请的一个实施例的相位噪声参数的估计装置的结构框图之二;
图19示出了根据本申请的一个实施例的相位噪声参数的估计装置的结构框图之三;
图20示出了根据本申请的一个实施例的相位噪声参数的估计装置的结构框图之四;
图21示出了根据本申请的一个实施例的用户设备的结构框图;
图22示出了根据本申请的一个实施例的基站的结构框图;
图23示出了根据本申请的一个实施例的用户设备的硬件结构框图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图23描述根据本申请一些实施例相位噪声参数的估 计方法、相位噪声参数的估计装置、用户设备、基站和可读存储介质。
在本申请的一个实施例中,图1示出了本申请实施例的相位噪声参数的估计方法的流程图之一,包括:
步骤102,获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;
其中,第二时频资源包括位于第一时频资源频域两侧的打孔子载波,且两侧的打孔子载波的数量不同;
在该实施例中,传输PTRS的第一时频资源的两侧打孔子载波的数量不同,也即相对于第一时频资源在频域上两侧的打孔子载波个数相等的情况,能够减少传输PTRS的第一时频资源其中一侧的打孔子载波的个数,可以有效地降低在每个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上的运算量,进而减少系统开销。
步骤104,根据第一时频资源和第二时频资源,接收下行信号;
其中,时域资源中的下行信号包括指示解调物理下行共享信道(Physical Downlink Share Channel,PDSCH)的下行解调参考信号(demodulation reference signal,DMRS)、物理资源块(Physical Resource Block,PRB)中承载有相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)的资源单位(Resource Element,RE)的基带信号、PRB中打孔RE的基带信号、基站需要传输的PTRS。
步骤106,根据下行信号确定相位噪声参数。
其中,相位噪声对通信系统的影响,系统模型的时域表示,如下所示。
公式1:
Figure PCTCN2021133157-appb-000001
其中,
Figure PCTCN2021133157-appb-000002
表示卷积运算,s(n)是时域上需要传输的基带信号,h(n)是时域信道冲击响应,
Figure PCTCN2021133157-appb-000003
是时域上相位噪声,m(n)是时域上高斯白噪声,x(n)是时域上接收到的基带信号,j是复数的序数。
对公式1等式两边做快速傅立叶变换(FFT)运算,可以得到对应的频域表示,如下所示。
公式2:
Figure PCTCN2021133157-appb-000004
其中,S(k)是频域上需要传输的基带信号,H(k)是频域信道估计,M(k)是频域上高斯白噪声,X(k)是频域上接收到的基带信号,I(0)是CPE的影响,
Figure PCTCN2021133157-appb-000005
是ICI的影响,I(l)是相位噪声参数。
进一步的,通过公式2进行换算得到相位噪声参数的公式,如下:
公式3:
Figure PCTCN2021133157-appb-000006
对于l≠0,有公式4:I(-l)=-1×conj(I(l));
通过公式4得到公式5:I(l)=X(k)/(S(k)×H(k))。
可以理解的是,对于公式3表示的相位噪声参数,当l的绝对值较大时,I(l)可被忽略,即可被认为是0,那么,对相位噪声参数的估计,只需要对l的绝对值较小的I(l)进行估计即可。
在该实施例中,对于PDSCH,用户设备根据传输PTRS的第一时频资源、打孔的第二时频资源以及与第一时频资源和第二时频资源相关的下行信号,能够准确计算出相位噪声参数,从而通过相位噪声参数进行补偿,以便降低由相位噪声导致的CPE影响与ICI影响,提升子载波间隔较小的OFDM系统在高阶调制的传输性能。
在本申请的一个实施例中,步骤102,获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源包括以下三种方式。
方式一,如图2所示,包括:
步骤202,接收基站发送的第一配置信息;
步骤204,根据第一配置信息,确定第一时频资源和第二时频资源。
其中,第一配置信息中包括指示第一时频资源的第一指示信息,以及指示第二时频资源的第二指示信息。第二指示信息所指示的第二时频资源中位于第一时频资源两侧的打孔子载波的位置。
在该实施例中,基站通过该资源映射图案确定第一时频资源和第二时频资源,并下发能够指示了第一时频资源和打孔的第二时频资源的第一配置信息。用户设备可直接通过解析第一配置信息,确定第一时频资源以及第一时频资源频域两侧可用于打孔的子载波位置,进而使用户设备能够在相应资源位置上接收下行信号,以便于根据下行信号进行相位噪声参数的估计。
方式二,如图3所示,包括:
步骤302,接收基站发送的第二配置信息;
步骤304,根据第二配置信息确定第一时频资源和第二时频资源;
其中,第二配置信息包括指示第一时频资源的第一指示信息。
步骤306,根据预设打孔规则,确定第一时频资源两侧的第二时频资源。
其中,预设打孔规则用于指示第一时频资源两侧可用于打孔的子载波位置。在该实施例中,基站下发的第二配置信息仅指示了第一时频资源。用户设备解析第二配置信息能够确定出第一时频资源,并结合预设打孔规则确定出第一时频资源两侧的第二时频资源位置。进而使用户设备能够在相应资源位置上接收下行信号,以便于根据下行信号进行相位噪声参数的估计。
需要说明的是,第一配置信息和第二配置信息通过信令承载,信令包括:无线资源控制信令(Radio Resource Control,RRC)和/或物理层控制信令。
具体举例来说,基站对用户设备配置PTRS在特定的资源单位(RE)上,然后用户设备按照一定打孔规则确定哪些RE不能作为PDSCH使用,也即传输PTRS和打孔的RE。或者基站对用户设备配置PTRS以及对应打孔的RE,在配置中指明哪些RE传输PTRS,哪些RE是打孔的。
方式三,如图4所示,包括:
步骤402,接收基站发送的第三配置信息;
其中,第三配置信息承载于RRC和/或物理层控制信令。
步骤404,根据第三配置信息,从至少一个资源映射图案中确定目标资源映射图案。
其中,至少一个资源映射图案是协议约定的,或网络设备配置的。
在该实施例中,用户设备和基站通过协议约定了至少一个资源映射图案,至少一个资源映射图案不仅指示第一时频资源和第二时频资源之间的相对位置,而且还指示了第一时频资源两侧的打孔子载波的数量。不同的资源映射图案可以指示不同的第一时频资源和第二时频资源之间的关系。例如,一个资源映射图案指示了第一时频资源频域两侧的打孔子载波数量分别为1和2,另一个资源映射图案指示了第一时频资源频域两侧的打孔子载波数量分别为4和2。基站能够向用户设备配置目标资源映射图案,以便于根据不同需求选择不同的资源映射图案,用户设备可直接通过目标资源映射图案做时频资源解映射确定出第一时频资源和第二时频资源。
在本申请的一个实施例中,在频域上,第一时频资源的一侧的打孔子载波数量为u1,第一时频资源的另一侧的打孔子载波数量为u2,u1和u2满足u1=N×u2或u1=(1/N)×u2。
在该实施例中,u1等于N倍的u2或N分之一的u2。
具体举例来说,频域上,预先协议约定PTRS子载波的两侧打孔子载波的数量不同,具体地,传输PTRS的子载波的一侧有u1个子载波打孔,另外一侧有u2个子载波打孔,u1=2×u2,或u1=(1/2)×u2。例如,u1=1,则u2=2,也即频域资源块中承载PTRS的子载波的一侧有一个打孔子载波, 另一侧有两个打孔子载波。
在本申请的一个实施例中,如图5所示,步骤102,获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源之前,还包括:
步骤502,获取第四配置信息;
其中,第四配置信息由基站配置和/或协议约定。
步骤504,根据第四配置信息确定u1和u2的取值。
在该实施例中,在通过第一配置信息或预设打孔规则明确第一时频资源频域两侧的打孔子载波的位置之后,可根据接收到的第四配置信息来确定u1和u2的取值,使得基站与用户设备达到u1和u2一致的取值,有利于相位噪声参数的估计。
具体举例来说,u1和u2为一个预定义的非负整数,典型取值为0、1、2等,通过以下任一种方式使基站与用户设备达到一致的取值。
(1)协议预定义,包括u1/u2与RRC参数或物理测参数有关联关系;
(2)基站通过RRC信令通知用户设备(UE);
(3)基站通过物理层控制信令通知用户设备(UE)。
在本申请的一个实施例中,在频域上第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
在本申请的一个实施例中,第一时频资源和第二时频资源构成频域资源块;在频域上,包括一个或多个频域资源块。在时域上,一个或多个正交频分复用符号承载频域资源块。
在该实施例中,长期演进(Long Term Evolution,LTE)通信系统中,在基站分配给用户设备的时频资源内,在频域上的基本单位为一个子载波,频域上可用资源的物理资源块(PRB)包含12个子载波,其中,第一时频资源为物理资源块中的用于传输PTRS的一个子载波或部分连续的子载波,第二时频资源为第一时频资源两侧的打孔子载波。将传输PTRS的子载波和打孔子载波记作频域资源块,在频域上可存在一个或多个频域资源块。在时域上,下行传输被组织成系统帧,最小的资源单位为OFDM符 号,一个或多个OFDM符号承载频域资源块。通过一个子载波和一个OFDM符号可以确定时频资源单元(RE),物理层在进行资源映射时,以时频资源单元为单位。第一时频资源指示了承载PTRS的RE,第二时频资源指示了承载打孔的RE。
在本申请的一个实施例中,步骤104,根据第一时频资源、第二时频资源,接收下行信号,包括:接收第一时频资源的第一基带信号;接收第二时频资源的第二基带信号;接收相位跟踪参考信号PTRS;接收解调物理下行共享信道PDSCH的下行解调参考信号DMRS。
在该实施例中,根据第一时频资源在响应的物理资源块上接收PTRS的第一基带信号以及需要传输的PTRS,并根据第二时频资源在响应的物理资源块上接收打孔的第二基带信号。通过指示解调物理数据信道的解调参考信号的相关配置参数,使得用户设备能够在相应资源位置上接收下行DMRS,从而实现PDSCH的解调。
在本申请的一个实施例中,如图6所示,步骤106,根据下行信号确定相位噪声参数,包括:
步骤602,根据下行解调参考信号DMRS对第一时频资源进行信道估计;
在该实施例中,通过指示解调物理数据信道的解调参考信号的相关配置参数,使得用户设备能够在相应资源位置上接收下行DMRS,从而实现PDSCH的解调,并利用下行解调参考信号对第一时频资源进行信道估计。
步骤604,根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第一基带信号,确定第一相位噪声参数;
步骤606,根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第二基带信号,确定m个第二相位噪声参数。
其中,m为大于或等于0的整数,m与u1和u2的取值相关,例如,m取值为0、2、4。
在该实施例中,将第一时频资源的信道估计、第一基带信号、第二基 带信号和PTRS带入公式5,可分别计算传输相位跟踪参考信号的第一时频资源上的第一相位噪声参数,以及计算打孔的第二时频资源上的第二相位噪声参数。而且由于传输PTRS的第一时频资源的两侧打孔子载波的数量不同,从而通过减少传输PTRS的第一时频资源其中一侧的打孔子载波的个数,可以有效地降低系统开销。
在本申请的一个实施例中,在频域上包括n个频域资源块的情况下;如图7所示,步骤106,根据下行信号确定相位噪声参数,还包括:
步骤702,对n个频域资源块的第一相位噪声参数中i个第一相位噪声参数取平均,得到第一相位噪声参数平均结果;
步骤704,对n个频域资源块的m个第二相位噪声参数中w个第二相位噪声参数取平均,得到第二相位噪声参数平均结果;
其中,n大于1,i小于或等于n,w小于或等于m。
在该实施例中,n个频域资源块中每一个频域资源块中包含一组第一时频资源和第二时频资源,也即n个频域资源块能够得到n个第一相位噪声参数和n×m个第二相位噪声参数。用户设备对n个频域资源块的第一相位噪声参数中i个第一相位噪声参数取平均,得到第一相位噪声参数平均结果,以及对n个频域资源块中的m个第二相位噪声参数中处于频域资源块同一位置的w个第二相位噪声参数取平均,得到第二相位噪声参数平均结果。通过相位噪声参数平均结果进即可行补偿,从而能够降低相位噪声导致的影响。
例如,频域或时域上包括2个频域资源块,每一个频域资源块均计算得到的1个第一相位噪声参数和2个第二相位噪声参数,第一个频域资源块的第一相位噪声参数记作I(0) 1,第二个频域资源块的第一相位噪声参数记作I(0) 2,同样的,第一个频域资源块的第二相位噪声参数分别记作I(1) 1和I(2) 1,第二个频域资源块的第二相位噪声参数分别记作I(1) 2和I(2) 2,则计算I(0) 1和I(0) 2的平均值,得到第一相位噪声参数平均结果,计算I(1) 1和I(1) 2的平均值以及计算I(2) 1和I (2) 2的平均值,得到第二相位噪声参数平均结果。
需要说明的是,频域或时域上只有一个频域资源块时,则仅得到一组第一相位噪声参数和第二相位噪声参数,无需进行平均计算。
具体举例来说,在传输PDSCH时,接收端为用户设备为例,PTRS资源映射图案示例1如表1所示,频域资源块包括4个子载波,其中u1=1、u2=2,也即4个子载波中有1个用于承载PTRS的第一子载波和3个用于打孔的第二子载波。PTRS频域资源块资源映射在频率较高一侧只有一个第二子载波,而在频率较低一侧有两个第二子载波。
表1
Figure PCTCN2021133157-appb-000007
具体工作原理:第一子载波k承载PTRS,用于估计相位噪声参数I(0),第二子载波(k-1)上打孔,用户设备在这个子载波上收到的基带信号为第一子载波k导致的ICI结果,也即X(k-1)=S(k)×H(k)×I(1)。所以,用户设备通过第二子载波(k-1)可以计算出I(1)。第二子载波(k+1)与第二子载波(k-2)是用作保护子载波,用于保护该频域资源块内其他子载波不受到该频域资源块外的子载波信号的ICI影响。
该实施例中用户设备计算相位噪声参数的方法为:
将第一子载波k的信道估计、PTRS、基带信号带入公式5,得到公式6:
I(0)=X(k)/(S(k)×H(k));
将第一子载波k的信道估计、PTRS和第二子载波k-1的基带信号带入公式5,得到公式7:
I(1)=X(k-1)/(S(k)×H(k));
根据公式7和公式4得到公式8:
I(-1)=-1×conj(I(1));
由于一个OFDM符号内可以有多个PTRS频域资源块,所以,可以对各个PTRS资源块估计得到的结果I(0)、I(1)、I(-1)分别取平均,得到
Figure PCTCN2021133157-appb-000008
这里的
Figure PCTCN2021133157-appb-000009
即是相位噪声参数估计的结果,可用于对该OFDM符号上各个子载波的接收信号进行滤波,即ICI补偿,并将补偿后的结果输入多进多出(multiple in multiple out,MIMO)均衡模块。
PTRS资源映射图案示例2如表2所示,频域资源块包括7个子载波,其中u1=2、u2=4,也即7个子载波中有1个第一子载波和6个第二子载波。PTRS频域资源块资源映射在频率较高一侧有二个第二子载波,而在频率较低一侧有四个第二子载波。
表2
Figure PCTCN2021133157-appb-000010
Figure PCTCN2021133157-appb-000011
具体工作原理:第一子载波k承载PTRS,用于估计相位噪声参数I(0),第二子载波(k-1)和(k-2)上打孔,用户设备通过第二子载波(k-1)可以计算出I(1),第二子载波(k-2)可以计算出I(2)。第二子载波(k+1)、(k+2)、(k-3)、(k-4)是用作保护子载波,用于保护该频域资源块内其他子载波不受到该频域资源块外的子载波信号的ICI影响。
该实施例中用户设备计算相位噪声参数的方法为:
将第一子载波k的信道估计、PTRS、基带信号带入公式5,得到公式6:
I(0)=X(k)/(S(k)×H(k));
将第一子载波k的信道估计、PTRS和第二子载波k-1的基带信号带入公式5,得到公式9:
I(1)=X(k-1)/(S(k)×H(k));
将第一子载波k的信道估计、PTRS和第二子载波k-2基带信号带入公式5,得到公式10:
I(2)=X(k-2)/(S(k)×H(k));
根据公式9和公式4得到公式11:
I(-1)=-1×conj(I(1));
根据公式10和公式4得到公式12:
I(-2)=-1×conj(I(2));
由于一个OFDM内可以有多个PTRS频域资源块,所以,可以对各个PTRS资源块估计得到的结果I(0)、I(1)、I(-1)、I(2)、I(-2)分别取平均,得到
Figure PCTCN2021133157-appb-000012
这里的
Figure PCTCN2021133157-appb-000013
即是相位噪声参数估计的结果,可用于对该OFDM符号上各个子载波的接收信号进行滤波,即ICI补偿,并将补偿后的结果输入MIMO均衡模块。由u1=1扩展为u1=2,用户设备 对相位噪声参数估计更加精确,能更大程度地降低相位噪声的影响。
在本申请的一个实施例中,图17示出了根据本申请实施例的相位噪声参数的估计装置的结构框图之一,相位噪声参数的估计装置1700包括:获取模块1702,获取模块1702用于获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;接收模块1704,接收模块1704用于根据第一时频资源和第二时频资源,接收下行信号;计算模块1706,计算模块1706用于根据下行信号确定相位噪声参数。
在该实施例中,使得用户设备能够以较低的系统开销和复杂度估计相位噪声参数,而且相位噪声参数估计更加精确,以便降低由相位噪声导致的CPE影响与ICI影响。
可选的,接收模块1704还用于接收基站发送的第一配置信息;获取模块1702还用于根据第一配置信息,确定第一时频资源和第二时频资源;其中,第一配置信息用于指示第一时频资源和第二时频资源。
可选的,接收模块1704还用于接收基站发送的第二配置信息;获取模块1702还用于根据第二配置信息确定第一时频资源;根据预设打孔规则,确定第一时频资源两侧的第二时频资源;其中,第二配置信息用于指示第一时频资源;预设打孔规则用于指示第一时频资源两侧可用于打孔的打孔子载波位置。
可选的,接收模块1704还用于接收基站发送的第三配置信息;获取模块1702还用于根据第三配置信息,从至少一个资源映射图案中确定目标资源映射图案,其中,至少一个资源映射图案用于指示第一时频资源和第二时频资源。
可选的,在频域上,第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
可选的,在频域上,第一时频资源的一侧的打孔子载波数量为u1,第 一时频资源的一侧的打孔子载波数量为u2,u1和u2满足u1=N×u2或u1=(1/N)×u2。
可选的,获取模块1702还用于获取第四配置信息;根据第四配置信息确定u1和u2的取值;其中,第四配置信息由基站配置和/或协议约定。
可选的,第一时频资源和第二时频资源构成频域资源块;在频域上,包括一个或多个频域资源块;在时域上,一个或多个正交频分复用符号承载频域资源块。
可选地,接收模块1704还用于接收第一时频资源的第一基带信号;接收第二时频资源的第二基带信号;接收相位跟踪参考信号PTRS;接收解调物理下行共享信道PDSCH的下行解调参考信号DMRS。
可选的,计算模块1706还用于根据下行解调参考信号DMRS对第一时频资源进行信道估计;根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第一基带信号,确定第一相位噪声参数;根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第二基带信号,确定m个第二相位噪声参数;其中,m为大于或等于0的整数。
可选的,计算模块1706还用于对n个频域资源块的第一相位噪声参数中i个第一相位噪声参数取平均,得到第一相位噪声参数平均结果;对n个频域资源块的m个第二相位噪声参数中w个第二相位噪声参数取平均,得到第二相位噪声参数平均结果;其中,n大于1,i小于或等于n,w小于或等于m。
在该实施例中,相位噪声参数的估计装置1700的各模块执行各自功能时实现如上述任一实施例中的相位噪声参数的估计方法的步骤,因此,相位噪声参数的估计装置同时也包括如上述任一实施例中的相位噪声参数的估计方法的全部有益效果,在此不再赘述。
具体地,本申请实施例中的相位噪声参数的估计装置可以是装置,也可以是用户设备中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平 板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
在本申请的一个实施例中,图8示出了本申请实施例的相位噪声参数的估计方法的流程图之八,包括:
步骤802,获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;
其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同。
在该实施例中,传输PTRS的第一时频资源的两侧打孔子载波的数量不同,也即相对于第一时频资源在频域上两侧的打孔子载波个数相等的情况,能够减少传输PTRS的第一时频资源其中一侧的打孔子载波的个数,可以有效地降低在每个OFDM符号上的运算量,进而减少系统开销。
步骤804,根据第一时频资源和第二时频资源,发送上行信号。
其中,时域资源中上行信号包括指示解调物理上行共享信道(Physical Uplink Share Channel,PUSCH)的上行解调参考信号(DMRS),物理资源块(Physical Resource Block,PRB)中承载有相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)的资源单位(Resource Element,RE)的基带信号;PRB中打孔RE的基带信号;基站需要传输的PTRS。
在该实施例中,对于PUSCH,用户设备根据传输PTRS的第一时频资源、打孔的第二时频资源,使得用户设备获知与基站一致的时频资源,并将上行信号发送给基站,以便于基站根据第一时频资源和第二时频资源接收上行信号,并利用上行信号确定相位噪声参数,进而使得基站能够以较低的系统开销和复杂度估计相位噪声参数。
在本申请的一个实施例中,步骤802,获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源包括以下三种方式。
方式一,接收基站发送的第一配置信息;根据第一配置信息,确定第一时频资源和第二时频资源。
其中,第一配置信息中包括指示第一时频资源的第一指示信息,以及指示第二时频资源的第二指示信息。第二指示信息所指示的第二时频资源中位于第一时频资源两侧的打孔子载波的位置。
在该实施例中,基站通过该资源映射图案确定第一时频资源和第二时频资源,并下发能够指示第一时频资源和打孔的第二时频资源的第一配置信息。用户设备可直接通过解析第一配置信息,确定第一时频资源以及第一时频资源频域两侧可用于打孔的子载波位置,以便于根据第一时频资源和第二时频资源向基站发送上行信号,进而使得基站能够以较低的系统开销和复杂度估计相位噪声参数。
方式二,接收基站发送的第二配置信息;根据第二配置信息确定第一时频资源和第二时频资源;根据预设打孔规则,确定第一时频资源两侧的第二时频资源。其中,第二配置信息包括指示第一时频资源的第一指示信息。预设打孔规则用于指示第一时频资源两侧可用于打孔的子载波位置。
在该实施例中,基站下发的第二配置信息仅指示了第一时频资源。用户设备解析第二配置信息能够确定出传输PTRS的第一时频资源,并结合预设打孔规则确定出第一时频资源两侧的第二时频资源位置。以便于根据第一时频资源和第二时频资源向基站发送上行信号,进而使得基站能够以较低的系统开销和复杂度估计相位噪声参数。
需要说明的是,第一配置信息和第二配置信息通过信令承载,信令包括:无线资源控制信令(Radio Resource Control,RRC)和/或物理层控制信令。
具体举例来说,基站对用户设备配置PTRS在特定的资源单位(RE)上,然后用户设备按照一定打孔规则确定哪些RE不能作为PUSCH使用, 也即传输PTRS和打孔的RE。或者基站对用户设备配置PTRS以及对应打孔的RE,在配置中指明哪些RE传输PTRS,哪些RE是打孔的。
方式三,接收基站发送的第三配置信息;根据第三配置信息,从至少一个资源映射图案中确定目标资源映射图案。
其中,至少一个资源映射图案是协议约定的,或网络设备配置的。
在该实施例中,用户设备和基站通过协议约定了至少一个资源映射图案,至少一个资源映射图案不仅指示第一时频资源和第二时频资源之间的相对位置,而且还指示了第一时频资源两侧的打孔子载波的数量。不同的资源映射图案可以指示不同的第一时频资源和第二时频资源之间的关系。例如,一个资源映射图案指示了第一时频资源频域两侧的打孔子载波数量分别为1和2,另一个资源映射图案指示了第一时频资源频域两侧的打孔子载波数量分别为4和2。基站能够向用户设备配置资源映射图案,以便于根据不同需求选择不同的资源映射图案,用户设备可直接通过目标资源映射图案做时频资源解映射确定出第一时频资源和第二时频资源。从而降低用户设备对运算量的要求,拓宽相位噪声参数的应用场景。
具体地,第三配置信息可以承载于RRC和/或物理层控制信令。
在本申请的一个实施例中,在频域上,第一时频资源的一侧的打孔子载波数量为u1,第一时频资源的另一侧的打孔子载波数量为u2,u1和u2满足u1=N×u2或u1=(1/N)×u2。
在该实施例中,u1等于N倍的u2或N分之一的u2。
具体举例来说,频域上,预先协议约定PTRS子载波的两侧打孔子载波的数量不同,具体地,传输PTRS的子载波的一侧有u1个子载波打孔,另外一侧有u2个子载波打孔,u1=2×u2,或u1=(1/2)×u2。例如,u1=1,则u2=2,也即频域资源块中承载PTRS的子载波的一侧有一个打孔子载波,另一侧有两个打孔子载波。
在本申请的一个实施例中,获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源之前,还包括:获取第四配置信息;根据 第四配置信息确定u1和u2的取值。其中,第四配置信息由基站配置和/或协议约定。
在该实施例中,在通过第一配置信息或预设打孔规则明确第一时频资源频域两侧的打孔子载波的位置之后,可根据接收到的第四配置信息来确定u1和u2的取值,使得基站与用户设备达到u1和u2一致的取值,有利于相位噪声参数的估计。
可以理解的是,第四配置信息与第一配置信息可以通过同一个信令发送至用户设备,当然也可以通过不同的信令进行传输。
具体举例来说,u1和u2为一个预定义的非负整数,典型取值为0、1、2等,通过以下任一种方式使基站与用户设备达到一致的取值。
(1)协议预定义,包括u1/u2与RRC参数或物理测参数有关联关系;
(2)基站通过RRC信令通知用户设备(UE);
(3)基站通过物理层控制信令通知用户设备(UE)。在本申请的一个实施例中,在频域上第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
在本申请的一个实施例中,第一时频资源和第二时频资源构成频域资源块,在频域上,包括一个或多个频域资源块;在时域上,一个或多个正交频分复用符号承载频域资源块。
在该实施例中,长期演进(Long Term Evolution,LTE)通信系统中,在基站分配给用户设备的时频资源内,在频域上的基本单位为一个子载波,频域上可用资源的物理资源块(RB)包含12个子载波,其中,第一时频资源为物理资源块中的用于传输PTRS的一个子载波或部分连续的子载波,第二时频资源为第一时频资源两侧的打孔子载波。将传输PTRS的子载波和打孔子载波记作频域资源块。在频域上可存在一个或多个频域资源块,在时域上,下行传输被组织成系统帧,最小的资源单位为OFDM符号,时频资源中的一个或多个OFDM符号承载频域资源块。通过一个子载波和一个OFDM符号可以确定时频资源单元(RE),物理层在进行资源映 射时,以时频资源单元为单位。第一时频资源指示了用于传输PTRS的RE,第二时频资源指示了用于打孔的RE。
在本申请的一个实施例中,图18示出了根据本申请实施例的相位噪声参数的估计装置的结构框图之二,相位噪声参数的估计装置1800包括:获取模块1802,获取模块1802用于获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;发送模块1804,发送模块1804用于根据第一时频资源和第二时频资源,发送上行信号。
在该实施例中,使得用户设备能够以较低的系统开销和复杂度估计相位噪声参数,而且在传输PUSCH情况下,并将上行信号发送给基站,以便于基站根据上行信号、第一时频资源和第二时频资源确定相位噪声参数,从而降低由相位噪声导致的CPE影响与ICI影响。
可选的,相位噪声参数的估计装置1800还包括:接收模块(图中未示出),接收模块用于接收基站发送的第一配置信息;获取模块1802还用于根据第一配置信息,确定第一时频资源和第二时频资源;其中,第一配置信息用于指示第一时频资源和第二时频资源。
可选的,接收模块还用于接收基站发送的第二配置信息;获取模块1802还用于根据第二配置信息确定第一时频资源;根据预设打孔规则,确定第一时频资源两侧的第二时频资源;其中,第二配置信息用于指示第一时频资源;预设打孔规则用于指示第一时频资源两侧可用于打孔的子载波位置。
可选的,接收模块还用于接收基站发送的第三配置信息;获取模块1802还用于根据第三配置信息,从至少一个资源映射图案中确定目标资源映射图案,其中,至少一个资源映射图案用于指示第一时频资源和第二时频资源。
可选的,在频域上,第一时频资源为多个连续的子载波中的部分连续 的子载波,或多个连续的子载波中的一个子载波。
可选的,在频域上,第一时频资源的一侧的打孔子载波数量为u1,第一时频资源的一侧的打孔子载波数量为u2,u1和u2满足u1=N×u2或u1=(1/N)×u2,其中N为正整数。
可选的,获取模块1802还用于获取第四配置信息;根据第四配置信息确定u1和u2的取值;其中,第四配置信息由基站配置和/或协议约定。
可选的,第一时频资源和第二时频资源构成频域资源块;在频域上,包括一个或多个频域资源块;在时域上,一个或多个正交频分复用符号承载频域资源块。
在本申请的一个实施例中,如图21所示,提供了一种用户设备2100,包括:处理器2104,存储器2102及存储在存储器2102上并可在处理器2104上运行的程序或指令,程序或指令被处理器2104执行时实现如上述任一实施例中提供的相位噪声参数的估计方法的步骤,因此,该用户设备2100包括如上述任一实施例中提供的相位噪声参数的估计方法的全部有益效果,在此不再赘述。
具体地,本申请实施例中的用户设备可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
图23为实现本申请实施例的一种用户设备2300的硬件结构框图。该用户设备2300包括但不限于:射频单元2302、网络模块2304、音频输出单元2306、输入单元2308、传感器2310、显示单元2312、用户输入单元2314、接口单元2316、存储器2318、处理器2320等部件。
本领域技术人员可以理解,用户设备2300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器2320逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图20中示出的用户设备结构并不构成对用户设备的限定,用户设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。 在本申请实施例中,用户设备包括但不限于移动用户设备、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、以及计步器等。
其中,处理器2320用于获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同;射频单元2302用于根据第一时频资源和第二时频资源,接收下行信号;处理器2320还用于根据下行信号确定相位噪声参数。
在该实施例中,使得用户设备能够以较低的系统开销和复杂度估计相位噪声参数,而且相位噪声参数估计更加精确,以便降低由相位噪声导致的CPE影响与ICI影响。
进一步地,射频单元2302还用于根据第一时频资源和第二时频资源,发送上行信号。
进一步地,射频单元2302还用于接收基站发送的第一配置信息;处理器2320还用于根据第一配置信息,确定第一时频资源和第二时频资源;其中,第一配置信息用于指示第一时频资源和第二时频资源。
进一步地,射频单元2302还用于接收基站发送的第二配置信息;处理器2320还用于根据第二配置信息确定第一时频资源;根据预设打孔规则,确定第一时频资源两侧的第二时频资源;其中,第二配置信息用于指示第一时频资源;预设打孔规则用于指示第一时频资源两侧可用于打孔的子载波位置。
进一步地,射频单元2302还用于接收基站发送的第三配置信息;处理器2320还用于根据第三配置信息,从至少一个资源映射图案中确定目标资源映射图案,其中,至少一个资源映射图案用于指示第一时频资源和第二时频资源。
进一步地,在频域上,第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
进一步地,在频域上,第一时频资源的一侧的打孔子载波数量为u1, 第一时频资源的一侧的打孔子载波数量为u2,u1和u2满足u1=N×u2或u1=(1/N)×u2,其中N为正整数。
进一步地,处理器2320还用于获取第四配置信息;根据第四配置信息确定u1和u2的取值;其中,第四配置信息由基站配置和/或协议约定。
进一步地,第一时频资源和第二时频资源构成频域资源块;在频域上,包括一个或多个频域资源块;在时域上,一个或多个正交频分复用符号承载频域资源块。
可选地,射频单元2302还用于接收第一时频资源的第一基带信号;接收第二时频资源的第二基带信号;接收相位跟踪参考信号PTRS;接收解调物理下行共享信道PDSCH的下行解调参考信号DMRS。
进一步地,处理器2320还用于根据下行解调参考信号DMRS对第一时频资源进行信道估计;根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第一基带信号,确定第一相位噪声参数;根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第二基带信号,确定m个第二相位噪声参数;其中,m为大于或等于0的整数。
进一步地,处理器2320还用于对n个频域资源块的第一相位噪声参数的i个第一相位噪声参数取平均,得到第一相位噪声参数平均结果;对n个频域资源块的m个第二相位噪声参数中第w个第二相位噪声参数取平均,得到第二相位噪声参数平均结果;其中,n大于1,i小于或等于n,w小于或等于m。
应理解的是,本申请实施例中,射频单元2302可用于收发信息或收发通话过程中的信号,具体的,接收基站的下行数据或向基站发送上行数据。射频单元2302包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
网络模块2304为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元2306可以将射频单元2302或网络模块2304接收的或 者在存储器2318中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元2306还可以提供与用户设备2300执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元2306包括扬声器、蜂鸣器以及受话器等。
输入单元2308用于接收音频或视频信号。输入单元2308可以包括图形处理器(Graphics Processing Unit,GPU)5082和麦克风5084,图形处理器5082对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元2312上,或者存储在存储器2318(或其它存储介质)中,或者经由射频单元2302或网络模块2304发送。麦克风5084可以接收声音,并且能够将声音处理为音频数据,处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元2302发送到移动通信基站的格式输出。
用户设备2300还包括至少一种传感器2310,比如指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器、光传感器、运动传感器以及其他传感器。
显示单元2312用于显示由用户输入的信息或提供给用户的信息。显示单元2312可包括显示面板5122,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5122。
用户输入单元2314可用于接收输入的数字或字符信息,以及产生与用户设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元2314包括触控面板5142以及其他输入设备5144。触控面板5142也称为触摸屏,可收集用户在其上或附近的触摸操作。触控面板5142可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器2320,接收处理器2320发来的命令并加以执行。其他输入设备5144 可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板5142可覆盖在显示面板5122上,当触控面板5142检测到在其上或附近的触摸操作后,传送给处理器2320以确定触摸事件的类型,随后处理器2320根据触摸事件的类型在显示面板5122上提供相应的视觉输出。触控面板5142与显示面板5122可作为两个独立的部件,也可以集成为一个部件。
接口单元2316为外部装置与用户设备2300连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端接口、外部电源(或电池充电器)端接口、有线或无线数据端接口、存储卡端接口、用于连接具有识别模块的装置的端接口、音频输入/输出(I/O)端接口、视频I/O端接口、耳机端接口等等。接口单元2316可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到用户设备2300内的一个或多个元件或者可以用于在用户设备2300和外部装置之间传输数据。
存储器2318可用于存储软件程序以及各种数据。存储器2318可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据移动用户设备的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器2318可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器2320通过运行或执行存储在存储器2318内的软件程序和/或模块,以及调用存储在存储器2318内的数据,执行用户设备2300的各种功能和处理数据,从而对用户设备2300进行整体监控。处理器2320可包括一个或多个处理单元;处理器2320可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理相位噪声参数的估计的相关功能。
在本申请的一个实施例中,图9示出了本申请实施例的相位噪声参数的估计方法的流程图之九,包括:
步骤902,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号。
其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同。
在该实施例中,传输PTRS的第一时频资源的两侧打孔子载波的数量不同,也即相对于第一时频资源在频域上两侧的打孔子载波个数相等的情况,能够减少传输PTRS的第一时频资源其中一侧的打孔子载波的个数,可以有效地降低在每个OFDM符号上的运算量,进而减少系统开销。同时对于PDSCH,基站通过第一时频资源和第二时频资源,向用户设备发送下行信号,以便于用户设备根据利用下行信号确定相位噪声参数,进而使用户设备能够以较低的系统开销和复杂度估计相位噪声参数。有利于降低由相位噪声导致的CPE影响与ICI影响,提升子载波间隔较小的OFDM系统在高阶调制的传输性能。
具体地,时域资源中下行信号包括指示解调PDSCH的下行DMRS,PRB中承载有PTRS的RE的基带信号;PRB中打孔RE的基带信号;基站需要传输的PTRS。
在本申请的一个实施例中,如图10所示,步骤902,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号之前,还包括:
步骤1002,发送第一配置信息至用户设备。
其中,第一配置信息用于指示第一时频资源和第二时频资源。
在该实施例中,基站能够通过网络设备配置的通信参数确定第一时频资源,并通过预设打孔规则或协议约定的资源映射图案确定第二时频资源。根据第一时频资源和第二时频资源生成对应的第一指示信息和第二指示信息,并发送包含有第一指示信息和第二指示信息的第一配置信息给用户 设备,进而为用户设备配置传输PTRS第一时频资源以及打孔的第二时频资源,使得用户设备能够明确哪些RE传输PTRS,哪些RE以用于打孔,以获知与基站一致的时频资源。以便于用户设备能够在相应资源位置上接收下行信号并进行相位噪声参数的估计。
可以理解的是,第二指示信息所指示的第二时频资源中位于第一时频资源两侧的打孔子载波的位置。
具体地,第一配置信息通过信令承载,信令包括:无线资源控制信令和/或物理层控制信令。
在本申请的一个实施例中,如图11所示,步骤902,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号之前,还包括:
步骤1102,发送第二配置信息至用户设备。
其中,第二配置信息用于指示第一时频资源。
在该实施例中,基站能够通过网络设备配置的通信参数确定第一时频资源。根据第一时频资源生成对应的第一指示信息,并将包含第一指示信息的第二配置信息发送给用户设备,也即基站仅向用户设备配置第一时频资源。用户设备可根据第二配置信息确定第一时频资源,并按照预设打孔规则确定哪些RE不能作为PDSCH使用,使得用户设备获知与基站一致的时频资源。以便于用户设备在相应资源位置上接收下行信号并进行相位噪声参数的估计。
需要说明的是,第二配置信息通过信令承载,信令包括:无线资源控制信令和/或物理层控制信令。
在本申请的一个实施例中,如图12所示,步骤902,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号之前,还包括:
步骤1202,发送第三配置信息至用户设备。
其中,第三配置信息用于指示至少一个资源映射图案中的目标资源映 射图案。
在该实施例中,用户设备和基站通过协议约定了至少一个资源映射图案,至少一个资源映射图案不仅指示第一时频资源和第二时频资源之间的相对位置,而且还指示了第一时频资源两侧的打孔子载波的数量。不同的资源映射图案可以指示不同的第一时频资源和第二时频资源之间的关系。基站通过第三配置信息向用户设备配置目标资源映射图案,以便于根据不同需求选择不同的资源映射图案,使得用户设备可直接通过目标资源映射图案做时频资源解映射确定出第一时频资源和第二时频资源,进而使用户设备能够在相应资源位置上接收下行信号,并进行相位噪声参数的估计。同时,无需进行用于配置打孔子载波的数量的配置信息的发送,提高数据传输效率。
具体地,第三配置信息通过无线资源控制信令和/或物理层控制信令承载。
在本申请的一个实施例中,在频域上,第一时频资源的一侧的打孔子载波数量为u1,第一时频资源的另一侧的打孔子载波数量为u2,u1和u2满足u1=N×u2或u1=(1/N)×u2。
在该实施例中,N为正整数,u1等于N倍的u2或N分之一的u2。
具体举例来说,频域上,预先协议约定PTRS的传输PTRS的子载波的一侧有u1个子载波打孔,另外一侧有u2个子载波打孔,u1=2×u2,或u1=(1/2)×u2。例如,u1=1,则u2=2,也即频域资源块中承载PTRS的子载波的一侧有一个第二子载波,另一侧有两个打孔子载波。
在本申请的一个实施例中,如图13所示,步骤902,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号之前,还包括:
步骤1302,获取第四配置信息;
其中,第四配置信息由协议约定。
步骤1304,根据第四配置信息确定u1和u2的取值;
步骤1306,发送第四配置信息至用户设备。
在该实施例中,通过第四配置信息确定出第一时频资源频域两侧的子载波的具体个数,以便于精准确定第二时频资源。并将第四配置信息发送给用户设备,使得基站与用户设备达到u1和u2一致的取值。
具体举例来说,u1和u2为一个预定义的非负整数,典型取值为0、1、2等,u1和u2可通过协议预定义,具体地,协议预定义了u1/u2与RRC参数或物理测参数有关联关系。
在本申请的一个实施例中,在频域上,第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
在本申请的一个实施例中,第一时频资源和第二时频资源构成频域资源块;在频域上,包括一个或多个频域资源块;在时域上,一个或多个正交频分复用符号承载频域资源块。
在该实施例中,长期演进(Long Term Evolution,LTE)通信系统中,在基站分配给用户设备的时频资源内,在频域上的基本单位为一个子载波,频域上可用资源的物理资源块(RB)包含12个子载波,其中,第一时频资源为物理资源块中的用于传输PTRS的一个子载波或部分连续的子载波,第二时频资源为第一时频资源两侧的打孔子载波。将传输PTRS的子载波和打孔子载波记作频域资源块。在频域上,可包括一个或多个该频域资源块。在时域上,下行传输被组织成系统帧,最小的资源单位为OFDM符号,一个或多个OFDM符号承载频域资源块。通过一个子载波和一个OFDM符号可以确定时频资源单元(RE),物理层在进行资源映射时,以时频资源单元为单位。第一时频资源指示了同于传输PTRS的RE,第二时频资源指示了用于打孔的RE。
在本申请的一个实施例中,图19示出了根据本申请实施例的相位噪声参数的估计装置的结构框图之三,相位噪声参数的估计装置1900包括:发送模块1902,用于通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号,其中,第二时频资源包括位于第一 时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同。
可选的,发送模块1902还用于发送第一配置信息至用户设备,其中第一配置信息用于指示第一时频资源和第二时频资源。
可选的,发送模块1902还用于发送第二配置信息至用户设备,其中,第二配置信息用于指示第一时频资源。
可选的,发送模块1902还用于发送第三配置信息至用户设备,其中,第三配置信息用于指示至少一个资源映射图案中的目标资源映射图案。
可选地,在频域上,第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
可选的,在频域上,第一时频资源的一侧的打孔子载波数量为u1,第一时频资源的另一侧的打孔子载波数量为u2,u1和u2满足u1=N×u2或u1=(1/N)×u2,其中,N为正整数。
可选的,相位噪声参数的估计装置1900还包括:获取模块(图中未示出),获取模块用于获取第四配置信息;根据第四配置信息确定u1和u2的取值;发送模块1902还用于发送第四配置信息至用户设备。
可选的,第一时频资源和第二时频资源构成频域资源块;在频域上,包括一个或多个频域资源块;在时域上,一个或多个正交频分复用符号承载频域资源块。
在该实施例中,相位噪声参数的估计装置1900的各模块执行各自功能时实现如上述任一实施例中的相位噪声参数的估计方法的步骤,因此,相位噪声参数的估计装置同时也包括如上述任一实施例中的相位噪声参数的估计方法的全部有益效果,在此不再赘述。
在本申请的一个实施例中,图14示出了本申请实施例的相位噪声参数的估计方法的流程图之十四,包括:
步骤1402,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号;
其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两 侧的打孔子载波的数量不同。
在该实施例中,传输PTRS的第一时频资源的两侧打孔子载波的数量不同,也即相对于第一时频资源在频域上两侧的打孔子载波个数相等的情况,能够减少传输PTRS的第一时频资源其中一侧的打孔子载波的个数,可以有效地降低在每个OFDM符号上的运算量,进而减少系统开销。
其中,时域资源中上行信号包括指示解调PUSCH的上行DMRS,PRB中承载有PTRS的RE的基带信号;PRB中打孔RE的基带信号;基站需要传输的PTRS。
步骤1404,根据上行信号确定相位噪声参数。
在该实施例中,对于PUSCH,基站根据传输PTRS的第一时频资源、打孔的第二时频资源以及与第一时频资源和第二时频资源相关的上行信号,能够准确计算出相位噪声参数,从而通过相位噪声参数进行补偿,以便降低由相位噪声导致的CPE影响与ICI影响,提升子载波间隔较小的OFDM系统在高阶调制的传输性能。
在本申请的一个实施例中,步骤1402,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号之前,包括:发送第一配置信息至用户设备,其中,第一配置信息用于指示第一时频资源和第二时频资源。
在该实施例中,基站通过第一时频资源和第二时频资源生成对应的第一指示信息和第二指示信息,并发送包含有第一指示信息和第二指示信息的第一配置信息给用户设备,进而为用户设备配置传输PTRS第一时频资源以及打孔的第二时频资源,使得用户设备能够明确哪些RE传输PTRS,哪些RE以用于打孔,以获知与基站一致的时频资源,并由用户设备将上行信号发送给基站。使得基站根据第一时频资源和第二时频资源接收上行信号,并利用上行信号确定相位噪声参数,降低相位噪声参数估计时系统开销和复杂度。
可以理解的是,第二指示信息所指示的第二时频资源中位于第一时频 资源两侧的打孔子载波的位置。
具体地,第一配置信息通过信令承载,信令包括:无线资源控制信令和/或物理层控制信令。
在本申请的一个实施例中,步骤1402,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号之前,包括:发送第二配置信息至用户设备,其中,第二配置信息用于指示第一时频资源。
在该实施例中,基站能够通过网络设备配置的通信参数确定第一时频资源。根据第一时频资源生成对应的第一指示信息,并将包含第一指示信息的第二配置信息发送给用户设备,也即基站仅向用户设备配置第一时频资源。用户设备可根据第二配置信息确定第一时频资源,并按照预设打孔规则确定哪些RE不能作为PUSCH使用,使得用户设备获知与基站一致的时频资源,并将上行信号发送给基站。使得基站根据第一时频资源和第二时频资源接收上行信号,并利用上行信号确定相位噪声参数,降低相位噪声参数估计时系统开销和复杂度。
需要说明的是,第二配置信息通过信令承载,信令包括:无线资源控制信令和/或物理层控制信令。
在本申请的一个实施例中,步骤1402,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号之前,还包括:发送第三配置信息至用户设备,其中,第三配置信息用于指示至少一个资源映射图案中的目标资源映射图案。
在该实施例中,用户设备和基站通过协议约定了至少一个资源映射图案,至少一个资源映射图案不仅指示第一时频资源和第二时频资源之间的相对位置,而且还指示了第一时频资源两侧的打孔子载波的数量。不同的资源映射图案可以指示不同的第一时频资源和第二时频资源之间的关系。基站通过第三配置信息向用户设备配置目标资源映射图案,以便于根据不同需求选择不同的资源映射图案,使得用户设备可直接通过目标资源映射 图案做时频资源解映射确定出第一时频资源和第二时频资源,进而使用户设备获知与基站一致的时频资源,并将上行信号发送给基站。使得基站根据第一时频资源和第二时频资源接收上行信号,并利用上行信号确定相位噪声参数,降低相位噪声参数估计时系统开销和复杂度。
具体地,第三配置信息通过无线资源控制信令和/或物理层控制信令承载。
具体地,至少一个资源映射图案是协议约定的,或网络设备配置的。
在本申请的一个实施例中,在频域上,第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
在本申请的一个实施例中,在频域上,第一时频资源的一侧的打孔子载波数量为u1,第一时频资源的另一侧的打孔子载波数量为u2,u1和u2满足u1=N×u2或u1=(1/N)×u2。
在该实施例中,N为正整数,u1等于N倍的u2或N分之一的u2。
具体举例来说,频域上,预先协议约定PTRS的传输PTRS的子载波的一侧有u1个子载波打孔,另外一侧有u2个子载波打孔,u1=2×u2,或u1=(1/2)×u2。例如,u1=1,则u2=2,也即频域资源块中承载PTRS的子载波的一侧有一个第二子载波,另一侧有两个打孔子载波。
在本申请的一个实施例中,步骤1402,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号之前,还包括:获取第四配置信息,第四配置信息由协议约定;根据第四配置信息确定u1和u2的取值;发送第四配置信息至用户设备。
在该实施例中,通过第四配置信息确定出第一时频资源频域两侧的子载波的具体个数,以便于精准确定第二时频资源。并将第四配置信息发送给用户设备,使得基站与用户设备达到u1和u2一致的取值。
在本申请的一个实施例中,第一时频资源和第二时频资源构成频域资源块;在频域上,包括一个或多个频域资源块;在时域上,一个或多个正交频分复用符号承载频域资源块。
在该实施例中,长期演进(Long Term Evolution,LTE)通信系统中,在基站分配给用户设备的时频资源内,在频域上的基本单位为一个子载波,频域上可用资源的物理资源块(RB)包含12个子载波,其中,第一时频资源为物理资源块中的用于传输PTRS的一个子载波或部分连续的子载波,第二时频资源为第一时频资源两侧的打孔子载波。将传输PTRS的子载波和打孔子载波记作频域资源块。在频域上可包括一个或多个频域资源块。在时域上,下行传输被组织成系统帧,最小的资源单位为OFDM符号,一个或多个OFDM符号承载频域资源块。通过一个子载波和一个OFDM符号可以确定时频资源单元(RE),物理层在进行资源映射时,以时频资源单元为单位。第一时频资源指示了同于传输PTRS的RE,第二时频资源指示了用于打孔的RE。
在本申请的一个实施例中,步骤1402,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号,包括:接收第一时频资源的第一基带信号;接收第二时频资源的第二基带信号;接收相位跟踪参考信号PTRS;接收解调物理上行共享信道PUSCH的上行解调参考信号DMRS。
在该实施例中,根据第一时频资源在响应的物理资源块上接收PTRS的第一基带信号以及需要传输的PTRS,并根据第二时频资源在响应的物理资源块上接收打孔的第二基带信号。通过指示解调物理数据信道的解调参考信号的相关配置参数,使得基站能够在相应资源位置上接收上行DMRS,从而实现PUSCH的解调。
在本申请的一个实施例中,如图15所示,步骤1404,根据上行信号确定相位噪声参数,包括:
步骤1502,根据上行解调参考信号DMRS对第一时频资源进行信道估计;
在该实施例中,通过指示解调物理数据信道的解调参考信号的相关配置参数,使得基站能够在相应资源位置上接收上行DMRS,从而实现 PDSCH的解调,并利用上行解调参考信号对第一时频资源位置进行信道估计。
步骤1504,根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第一基带信号,确定第一相位噪声参数;
步骤1506,根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第二基带信号,确定m个第二相位噪声参数。
其中,m为大于或等于0的整数,m与u1和u2的取值相关,例如,m取值为0、2、4。
在该实施例中,将第一时频资源的信道估计、第一时频资源的第一基带信号、第二时频资源的第二基带信号和PTRS的带入公式5,可分别计算传输相位跟踪参考信号的第一时频资源上的第一相位噪声参数,以及计算打孔的第二时频资源上的第二相位噪声参数。而且由于传输PTRS的第一时频资源的两侧打孔子载波的数量不同,从而通过减少传输PTRS的第一时频资源其中一侧的打孔子载波的个数,可以有效地降低系统开销。
在本申请的一个实施例中,如图16所示,在上行物理资源块包括n个频域资源块的情况下,步骤1404,根据上行信号确定相位噪声参数,还包括:
步骤1602,对n个频域资源块的第一相位噪声参数的i个第一相位噪声参数取平均,得到第一相位噪声参数平均结果;
步骤1604,对n个频域资源块的m个第二相位噪声参数中w个第二相位噪声参数取平均,得到第二相位噪声参数平均结果。
其中,n大于1,i小于或等于n,w小于或等于m。
在该实施例中,n个频域资源块中每一个频域资源块中包含一组第一时频资源和第二时频资源,也即n个频域资源块能够得到n个第一相位噪声参数和n×m个第二相位噪声参数。基站对n个频域资源块的第一相位噪声参数中i个第一相位噪声参数取平均,得到第一相位噪声参数平均结果,以及对n个频域资源块中的m个第二相位噪声参数中处于频域资源块同一 位置的w个第二相位噪声参数取平均,得到第二相位噪声参数平均结果。通过对相位噪声参数平均结果进行补偿,从而能够降低相位噪声导致的影响。
例如,频域或时域上包括3个频域资源块,每一个频域资源块均计算得到的1个第一相位噪声参数和2个第二相位噪声参数,第一个频域资源块的第一相位噪声参数记作I(0) 1,第二个频域资源块的第一相位噪声参数记作I(0) 2,第三个频域资源块的第一相位噪声参数记作I(0) 3,同样的,第一个频域资源块的第二相位噪声参数分别记作I(1) 1、I(2) 1、I(-1) 1,第二个频域资源块的第二相位噪声参数分别记作I(1) 2、I(2) 2、I(-1) 2,第三个频域资源块的第二相位噪声参数分别记作I(1) 3、I(2) 3、I(-1) 3,则计算I(0) 1、I(0) 2和I(0) 3三者的平均值,得到第一相位噪声参数平均结果,计算I(1) 1、I(1) 2、I(1) 3三者的平均值、计算I(2) 1和I(2) 2、I(2) 3三者的平均值、I(-1) 1、I(-1) 2、I(-1) 3三者的平均值,得到第二相位噪声参数平均结果。
需要说明的是,当频域或时域上只有一个频域资源块时,则仅得到一组第一相位噪声参数和第二相位噪声参数,则无需进行平均计算。
具体举例来说,在传输PUSCH时,接收端为基站为例,PTRS资源映射图案示例3如表3所示,频域资源块包括4个子载波,其中u1=2、u2=1,也即4个子载波中有1个用于承载PTRS第一子载波和3个用于打孔的第二子载波。
表3
Figure PCTCN2021133157-appb-000014
Figure PCTCN2021133157-appb-000015
具体工作原理:第一子载波k承载PTRS,用于估计相位噪声参数I(0),第二子载波(k+1)上打孔,基站在这个子载波上收到的基带信号为第一子载波k导致的ICI结果,也即X(k+1)=S(k)×H(k)×I(-1)。所以,基站通过第二子载波(k+1)可以计算出I(-1)。第二子载波(k-1)与第二子载波(k+2)是用作保护子载波,用于保护该资源块内其他子载波不受到该资源块外的子载波信号的ICI影响。PTRS频域资源块资源映射在频率较高一侧有两个第二子载波,而在频率较低一侧只有一个第二子载波。
该实施例中用户设备计算相位噪声参数的方法为:
将第一子载波k的信道估计、PTRS、基带信号带入公式5,得到公式6:
I(0)=X(k)/(S(k)×H(k));
将第一子载波k的信道估计、PTRS、第二子载波k+1的基带信号带入公式5,得到公式13:
I(1)=X(k+1)/(S(k)×H(k));
根据公式13和公式4得到公式14:
I(1)=-1×conj(I(-1));
由于一个OFDM符号内可以有多个PTRS频域资源块,所以,可以对各个PTRS资源块估计得到的结果I(0)、I(1)、I(-1)分别取平均,得到
Figure PCTCN2021133157-appb-000016
这里的
Figure PCTCN2021133157-appb-000017
即是相位噪声参数估计的结果,可用于对该OFDM符号上各个子载波的接收信号进行滤波,即ICI补偿,并将补偿后的结果输入多进多出(MIMO)均衡模块。
接收端为基站为例,PTRS资源映射图案示例4如表4所示,频域资源块包括7个子载波,其中u1=2、u2=4,也即7个子载波中有1个第一 子载波和6个第二子载波。PTRS频域资源块资源映射在频率较高一侧有四个第二子载波,而在频率较低一侧有二个第二子载波。
表4
Figure PCTCN2021133157-appb-000018
具体工作原理:第一子载波k承载PTRS,用于估计相位噪声参数I(0),第二子载波(k+1)和(k+2)上打孔,基站通过第二子载波(k+1)可以计算出I(-1),第二子载波(k+2)可以计算出I(-2)。第二子载波(k-1)、(k-2)、(k+3)、(k+4)是用作保护子载波,用于保护该频域资源块内其他子载波不受到该频域资源块外的子载波信号的ICI影响。
该实施例中用户设备计算相位噪声参数的方法为:
将第一子载波k的信道估计、PRTS、基带信号带入公式5,得到公式6:
I(0)=X(k)/(S(k)×H(k));
将第一子载波k的信道估计、PRTS和第二子载波k+1的基带信号带 入公式5,得到公式15:
I(-1)=X(k+1)/(S(k)×H(k));
将第一子载波k的信道估计、PRTS和第二子载波k+2基带信号带入公式5,得到公式16:
I(-2)=X(k+2)/(S(k)×H(k));
根据公式15和公式4得到公式17:
I(1)=-1×conj(I(-1));
根据公式16和公式4得到公式18:
I(2)=-1×conj(I(-2));
由于一个OFDM内可以有多个PTRS频域资源块,所以,可以对各个PTRS资源块估计得到的结果I(0)、I(1)、I(-1)、I(2)、I(-2)分别取平均,得到
Figure PCTCN2021133157-appb-000019
这里的
Figure PCTCN2021133157-appb-000020
即是相位噪声参数估计的结果,可用于对该OFDM符号上各个子载波的接收信号进行滤波,即ICI补偿,并将补偿后的结果输入MIMO均衡模块。
在本申请的一个实施例中,图20示出了根据本申请实施例的相位噪声参数的估计装置的结构框图之四,相位噪声参数的估计装置2000包括:发送模块2002,发送模块2002用于通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号,其中,第二时频资源包括位于第一时频资源两侧的打孔子载波,且两侧的打孔子载波的数量不同。计算模块2004,计算模块2004用于根据上行信号确定相位噪声参数。
可选的,发送模块2002还用于发送第一配置信息至用户设备,其中,第一配置信息用于指示第一时频资源和第二时频资源。
可选的,发送模块2002还用于发送第二配置信息至用户设备,其中,第二配置信息用于指示第一时频资源。
可选的,发送模块2002还用于发送第三配置信息至用户设备,其中, 第三配置信息用于指示至少一个资源映射图案中的目标资源映射图案。
可选地,在频域上,第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
可选的,在频域上,第一时频资源的一侧的打孔子载波数量为u1,第一时频资源的一侧的打孔子载波数量为u2,u1和u2满足u1=N×u2或u1=(1/N)×u2,N为正整数。
可选的,相位噪声参数的估计装置2000还包括:获取模块(图中未示出)获取模块用于获取第四配置信息,第四配置信息由协议约定;根据第四配置信息确定u1和u2的取值;发送模块2002还用于发送第四配置信息至用户设备。
可选的,第一时频资源和第二时频资源构成频域资源块在频域上,包括一个或多个频域资源块;在时域上,一个或多个正交频分复用符号承载频域资源块。
可选的,相位噪声参数的估计装置2000包括:接收模块(图中未示出)接收模块用于接收第一时频资源的第一基带信号;接收第二时频资源的第二基带信号;接收相位跟踪参考信号PTRS;接收解调物理上行共享信道PUSCH的上行解调参考信号DMRS。
可选的,计算模块2004还用于根据上行解调参考信号DMRS对第一时频资源进行信道估计;根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第一基带信号,确定第一相位噪声参数;根据相位跟踪参考信号PTRS、第一时频资源的信道估计和第二基带信号,确定m个第二相位噪声参数;其中,m为大于或等于0的整数。
可选的,计算模块2004还用于对n个频域资源块的第一相位噪声参数的i个第一相位噪声参数取平均,得到第一相位噪声参数平均结果;对n个频域资源块的m个第二相位噪声参数中w个第二相位噪声参数取平均,得到第二相位噪声参数平均结果;其中,n大于1,i小于或等于n,w小于或等于m。
在该实施例中,相位噪声参数的估计装置2000的各模块执行各自功能时实现如上述任一实施例中的相位噪声参数的估计方法的步骤,因此,相位噪声参数的估计装置同时也包括如上述任一实施例中的相位噪声参数的估计方法的全部有益效果,在此不再赘述。
在本申请的一个实施例中,如图22所示,提供了一种基站2200,包括:存储器2202,其上存储有计算机程序;处理器2204,配置为执行计算机程序以实现如上述任一实施例中提供的相位噪声参数的估计方法的步骤,因此,该基站2200包括如上述任一实施例中提供的相位噪声参数的估计方法的全部有益效果,在此不再赘述。
在本申请的一个实施例中,提供了一种可读存储介质,其上存储有程序或指令,该程序或指令被处理器执行时实现如上述任一实施例中提供的相位噪声参数的估计方法的步骤。
在该实施例中,可读存储介质能够实现本申请的实施例提供的相位噪声参数的估计方法的各个过程,并能达到相同的技术效果,为避免重复,这里不再赘述。
其中,处理器为上述实施例中提供的通信设备中的处理器。可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,芯片包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行程序或指令,实现上述相位噪声参数的估计方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实 现上述相位噪声参数的估计方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。术语“多个”则指两个或两个以上,除非另有明确的限定。术语“相连”、“连接”、等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。术语“第一”、“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (45)

  1. 一种相位噪声参数的估计方法,由用户设备执行,包括:
    获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,所述第二时频资源包括位于所述第一时频资源两侧的打孔子载波,且两侧的所述打孔子载波的数量不同;
    根据所述第一时频资源和所述第二时频资源,接收下行信号;
    根据所述下行信号确定相位噪声参数。
  2. 根据权利要求1所述的相位噪声参数的估计方法,其中,所述获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,包括:
    接收基站发送的第一配置信息;
    根据所述第一配置信息,确定所述第一时频资源和所述第二时频资源;
    所述第一配置信息用于指示所述第一时频资源和所述第二时频资源。
  3. 根据权利要求1所述的相位噪声参数的估计方法,其中,所述获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,包括:
    接收基站发送的第二配置信息;
    根据所述第二配置信息确定所述第一时频资源;
    根据预设打孔规则,确定所述第一时频资源两侧的第二时频资源;
    其中,所述第二配置信息用于指示所述第一时频资源;所述预设打孔规则用于指示所述第一时频资源两侧可用于打孔的子载波位置。
  4. 根据权利要求1所述的相位噪声参数的估计方法,其中,所述获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,包括:
    接收基站发送的第三配置信息;
    根据所述第三配置信息,从至少一个资源映射图案中确定目标资源映 射图案,其中,所述至少一个资源映射图案用于指示第一时频资源和第二时频资源。
  5. 根据权利要求1至4中任一项所述的相位噪声参数的估计方法,其中,
    所述第一时频资源的一侧的打孔子载波数量为u1,所述第一时频资源的一侧的打孔子载波数量为u2,所述u1和所述u2满足u1=N×u2或u1=(1/N)×u2。
  6. 根据权利要求5所述的相位噪声参数的估计方法,其中,所述获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源之前,还包括:
    获取第四配置信息,所述第四配置信息由基站配置和/或协议约定;
    根据所述第四配置信息确定所述u1和所述u2的取值。
  7. 根据权利要求1至4中任一项所述的相位噪声参数的估计方法,其中,
    在频域上,所述第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
  8. 根据权利要求1至4中任一项所述的相位噪声参数的估计方法,其中,
    所述第一时频资源和所述第二时频资源构成频域资源块;
    在频域上,第一时频资源第二时频资源包括一个或多个所述频域资源块;
    在时域上,一个或多个正交频分复用符号承载所述频域资源块。
  9. 根据权利要求8所述的相位噪声参数的估计方法,其中,所述根据所述第一时频资源和所述第二时频资源,接收下行信号,包括:
    接收所述第一时频资源的第一基带信号;
    接收所述第二时频资源的第二基带信号;
    接收相位跟踪参考信号PTRS;
    接收解调物理下行共享信道PDSCH的下行解调参考信号DMRS。
  10. 根据权利要求9所述的相位噪声参数的估计方法,其中,所述根据所述下行信号确定相位噪声参数,包括:
    根据所述下行解调参考信号DMRS对所述第一时频资源进行信道估计;
    根据所述相位跟踪参考信号PTRS、所述第一时频资源的信道估计和所述第一基带信号,确定第一相位噪声参数;
    根据所述相位跟踪参考信号PTRS、所述第一时频资源的信道估计和所述第二基带信号,确定m个第二相位噪声参数;
    其中,m为大于或等于0的整数。
  11. 根据权利要求10所述的相位噪声参数的估计方法,其中,在频域上包括n个所述频域资源块;所述根据所述下行信号确定相位噪声参数,还包括:
    对n个所述频域资源块的所述第一相位噪声参数中的i个所述第一相位噪声参数取平均,得到第一相位噪声参数平均结果;
    对n个所述频域资源块的m个所述第二相位噪声参数中的w个所述第二相位噪声参数取平均,得到第二相位噪声参数平均结果;
    其中,n大于1,i小于或等于n,w小于或等于m。
  12. 一种相位噪声参数的估计方法,由用户设备执行,包括:
    获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,所述第二时频资源包括位于所述第一时频资源两侧的打孔子载波,且两侧的所述打孔子载波的数量不同;
    根据所述第一时频资源和所述第二时频资源,发送上行信号,以使基站根据所述上行信号确定相位噪声参数。
  13. 根据权利要求12所述的相位噪声参数的估计方法,其中,所述获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,包括:
    接收基站发送的第一配置信息;
    根据所述第一配置信息,确定所述第一时频资源和所述第二时频资源;
    所述第一配置信息用于指示所述第一时频资源和所述第二时频资源。
  14. 根据权利要求12所述的相位噪声参数的估计方法,其中,所述获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,包括:
    接收基站发送的第二配置信息;
    根据所述第二配置信息确定所述第一时频资源;
    根据预设打孔规则,确定所述第一时频资源两侧的第二时频资源;
    其中,所述第二配置信息用于指示所述第一时频资源;所述预设打孔规则用于指示所述第一时频资源两侧可用于打孔的子载波位置。
  15. 根据权利要求12所述的相位噪声参数的估计方法,其中,所述获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,包括:
    接收所述基站发送的第三配置信息;
    选取所述第三配置信息,从至少一个资源映射图案中确定目标资源映射图案,其中,所述至少一个资源映射图案用于指示第一时频资源和第二时频资源。
  16. 根据权利要求12至14中任一项所述的相位噪声参数的估计方法,其中,
    在频域上,所述第一时频资源的一侧的打孔子载波数量为u1,所述第一时频资源的一侧的打孔子载波数量为u2,所述u1和所述u2满足u1=N×u2或u1=(1/N)×u2。
  17. 根据权利要求16所述的相位噪声参数的估计方法,其中,所述获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源之前,还包括:
    获取第四配置信息,所述第四配置信息由所述基站配置和/或协议约定;
    根据所述第四配置信息确定所述u1和所述u2的取值。
  18. 根据权利要求12至15中任一项所述的相位噪声参数的估计方法,其中,
    在频域上,第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
  19. 根据权利要求12至15中任一项所述的相位噪声参数的估计方法,其中,
    所述第一时频资源和所述第二时频资源构成频域资源块;
    在频域上,包括一个或多个所述频域资源块;
    在时域上,一个或多个正交频分复用符号承载所述频域资源块。
  20. 一种相位噪声参数的估计方法,由基站执行,包括:
    通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号,其中,所述第二时频资源包括位于所述第一时频资源两侧的打孔子载波,且两侧的所述打孔子载波的数量不同。
  21. 根据权利要求20所述的相位噪声参数的估计方法,其中,所述通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号之前,还包括:
    发送第一配置信息至用户设备,其中,所述第一配置信息用于指示所述第一时频资源和所述第二时频资源。
  22. 根据权利要求20所述的相位噪声参数的估计方法,其中,所述通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号之前,还包括:
    发送第二配置信息至用户设备,其中,所述第二配置信息用于指示所述第一时频资源。
  23. 根据权利要求20所述的相位噪声参数的估计方法,其中,所述通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号之前,还包括:
    发送第三配置信息至用户设备,其中,所述第三配置信息用于指示至少一个资源映射图案中的目标资源映射图案。
  24. 根据权利要求20至23中任一项所述的相位噪声参数的估计方法,其中,
    在频域上,所述第一时频资源的一侧的打孔子载波数量为u1,所述第一时频资源的一侧的打孔子载波数量为u2,所述u1和所述u2满足u1=N×u2或u1=(1/N)×u2。
  25. 根据权利要求24所述的相位噪声参数的估计方法,其中,所述通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号之前,还包括:
    获取第四配置信息,所述第四配置信息由协议约定;
    根据所述第四配置信息确定所述u1和所述u2的取值;
    发送所述第四配置信息至用户设备。
  26. 根据权利要求20至23中任一项所述的相位噪声参数的估计方法,其中,
    在频域上,所述第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
  27. 根据权利要求20至23中任一项所述的相位噪声参数的估计方法,其中,
    所述第一时频资源和所述第二时频资源构成频域资源块;
    在频域上,包括一个或多个所述频域资源块;
    在时域上,一个或多个正交频分复用符号承载所述频域资源块。
  28. 一种相位噪声参数的估计方法,由基站执行,包括:
    通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号,其中,所述第二时频资源包括位于所述第一时频资源两侧的打孔子载波,且两侧的所述打孔子载波的数量不同;
    根据所述上行信号确定相位噪声参数。
  29. 根据权利要求28所述的相位噪声参数的估计方法,其中,所述通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号之前,还包括:
    发送第一配置信息至用户设备,其中,所述第一配置信息用于指示所述第一时频资源和所述第二时频资源。
  30. 根据权利要求28所述的相位噪声参数的估计方法,其中,所述通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号之前,还包括:
    发送第二配置信息至用户设备,其中,所述第二配置信息用于指示所述第一时频资源。
  31. 根据权利要求28所述的相位噪声参数的估计方法,其中,所述通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号之前,还包括:
    发送第三配置信息至用户设备,其中,所述第三配置信息用于指示至少一个资源映射图案中的目标资源映射图案。
  32. 根据权利要求28至31中任一项所述的相位噪声参数的估计方法,其中,
    在频域上,所述第一时频资源的一侧的打孔子载波数量为u1,所述第一时频资源的一侧的打孔子载波数量为u2,所述u1和所述u2满足u1=N×u2或u1=(1/N)×u2。
  33. 根据权利要求32所述的相位噪声参数的估计方法,其中,通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号之前,还包括:
    获取第四配置信息,所述第四配置信息由协议约定;
    根据所述第四配置信息确定所述u1和所述u2的取值;
    发送所述第四配置信息至用户设备。
  34. 根据权利要求28至31中任一项所述的相位噪声参数的估计方法, 其中,
    在频域上,所述第一时频资源为多个连续的子载波中的部分连续的子载波,或多个连续的子载波中的一个子载波。
  35. 根据权利要求28至31中任一项所述的相位噪声参数的估计方法,其中,
    所述第一时频资源和所述第二时频资源构成频域资源块;
    在频域上,第一时频资源第二时频资源包括一个或多个所述频域资源块;
    在时域上,一个或多个正交频分复用符号承载所述频域资源块。
  36. 根据权利要求35所述的相位噪声参数的估计方法,其中,所述根据所述第一时频资源和所述第二时频资源,接收上行信号,包括:
    接收所述第一时频资源的第一基带信号;
    接收所述第二时频资源的第二基带信号;
    接收相位跟踪参考信号PTRS;
    接收解调物理上行共享信道PUSCH的上行解调参考信号DMRS。
  37. 根据权利要求36所述的相位噪声参数的估计方法,其中,所述根据所述上行信号,确定相位噪声参数,包括:
    根据所述上行解调参考信号DMRS对所述第一时频资源进行信道估计;
    根据所述相位跟踪参考信号PTRS、所述第一时频资源的信道估计和所述第一基带信号,确定第一相位噪声参数;
    根据所述相位跟踪参考信号PTRS、所述第一时频资源的信道估计和所述第二基带信号,确定m个第二相位噪声参数;
    其中,m为大于或等于0的整数。
  38. 根据权利要求37所述的相位噪声参数的估计方法,其中,在频域上包括n个所述频域资源块;所述根据所述上行信号确定相位噪声参数,还包括:
    对n个所述频域资源块的所述第一相位噪声参数中的i个所述第一相位噪声参数取平均,得到第一相位噪声参数平均结果;
    对n个所述频域资源块的m个所述第二相位噪声参数中w个所述第二相位噪声参数取平均,得到第二相位噪声参数平均结果;
    其中,n大于1,i小于或等于n,w小于或等于m。
  39. 一种相位噪声参数的估计装置,应用于用户设备,包括:
    获取模块,用于获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,所述第二时频资源包括位于所述第一时频资源两侧的打孔子载波,且两侧的所述打孔子载波的数量不同;
    接收模块,用于根据所述第一时频资源和所述第二时频资源,接收下行信号;
    计算模块,用于根据所述下行信号确定相位噪声参数。
  40. 一种相位噪声参数的估计装置,应用于用户设备,包括:
    获取模块,用于获取传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源;其中,所述第二时频资源包括位于所述第一时频资源两侧的打孔子载波,且两侧的所述打孔子载波的数量不同;
    发送模块,用于根据所述第一时频资源和所述第二时频资源,发送上行信号。
  41. 一种相位噪声参数的估计装置,应用于基站,包括:
    发送模块,用于通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,发送下行信号,其中,所述第二时频资源包括位于所述第一时频资源两侧的打孔子载波,且两侧的所述打孔子载波的数量不同。
  42. 一种相位噪声参数的估计装置,应用于基站,包括:
    接收模块,用于通过传输相位跟踪参考信号PTRS的第一时频资源和打孔的第二时频资源,接收上行信号,其中,所述第二时频资源包括位于所述第一时频资源两侧的打孔子载波,且两侧的所述打孔子载波的数量不 同;
    计算模块,用于根据所述上行信号确定相位噪声参数。
  43. 一种用户设备,包括:处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至19中任一项所述的相位噪声参数的估计方法的步骤。
  44. 一种基站,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求20至38中任一项所述的相位噪声参数的估计方法的步骤。
  45. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至38中任一项所述的相位噪声参数的估计方法的步骤。
PCT/CN2021/133157 2020-12-02 2021-11-25 相位噪声参数的估计方法、装置、用户设备和基站 WO2022116890A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011390899.4A CN114584268A (zh) 2020-12-02 2020-12-02 相位噪声参数的估计方法、装置、用户设备和基站
CN202011390899.4 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022116890A1 true WO2022116890A1 (zh) 2022-06-09

Family

ID=81766694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133157 WO2022116890A1 (zh) 2020-12-02 2021-11-25 相位噪声参数的估计方法、装置、用户设备和基站

Country Status (2)

Country Link
CN (1) CN114584268A (zh)
WO (1) WO2022116890A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217992A (zh) * 2017-06-29 2019-01-15 中国移动通信有限公司研究院 一种相位跟踪参考信号的传输方法、通信设备及存储介质
US20190296877A1 (en) * 2017-06-09 2019-09-26 Intel IP Corporation System and method for phase tracking reference signal (pt-rs) multiplexing
CN111937331A (zh) * 2018-04-05 2020-11-13 三星电子株式会社 用于在无线通信系统中解码数据的方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102396952B1 (ko) * 2017-06-15 2022-05-13 삼성전자 주식회사 차세대 통신 시스템에서 ptrs를 할당하는 방법 및 장치
CN109995488A (zh) * 2017-12-29 2019-07-09 中兴通讯股份有限公司 相位追踪参考信号的发送、接收方法及装置
GB201802543D0 (en) * 2018-02-16 2018-04-04 Samsung Electronics Co Ltd Reference signal configuration in a telecommunication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190296877A1 (en) * 2017-06-09 2019-09-26 Intel IP Corporation System and method for phase tracking reference signal (pt-rs) multiplexing
CN109217992A (zh) * 2017-06-29 2019-01-15 中国移动通信有限公司研究院 一种相位跟踪参考信号的传输方法、通信设备及存储介质
CN111937331A (zh) * 2018-04-05 2020-11-13 三星电子株式会社 用于在无线通信系统中解码数据的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On UL PTRS Design", 3GPP DRAFT; R1-1705907, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, WA, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051244018 *

Also Published As

Publication number Publication date
CN114584268A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN110719631B (zh) 调度参数的确定方法、配置方法、终端和网络侧设备
CN110719632B (zh) 一种准共址确定方法、调度方法、终端及网络设备
WO2019192385A1 (zh) 信道和信号的传输方法及通信设备
WO2020207378A1 (zh) 确定波束信息的方法及装置、通信设备
WO2018082457A1 (zh) 配置参考信号的方法和装置
CN111277300B (zh) 信息传输方法、终端及网络设备
WO2018059387A1 (zh) 一种数据传输的方法、相关装置以及系统
WO2021189216A1 (zh) 参考信号设置方法及装置
US11316722B2 (en) Orthogonal frequency division multiplexing symbol generation method and communication device
CN108289069B (zh) 一种参考信号的传输方法、发送端和接收端
EP3937564A1 (en) Communication method and apparatus
CN113225168B (zh) 解调参考信号的传输方法、装置、终端、设备及介质
WO2018112934A1 (zh) 传输信息的方法、网络设备和终端设备
WO2018053801A1 (zh) 一种资源映射方法、发送端以及接收端
TWI733971B (zh) 信號傳輸方法和設備
WO2022116890A1 (zh) 相位噪声参数的估计方法、装置、用户设备和基站
WO2022171076A1 (zh) 资源确定、配置方法及通信设备
US20220094493A1 (en) Parameter configuration method and apparatus
CN111818645B (zh) 一种信息传输方法、网络设备及终端
CN112448908B (zh) Pts的发送方法、接收方法、发送端设备及接收端设备
WO2023280094A1 (zh) 信号发送方法、接收方法、装置及设备
WO2019085913A1 (zh) 基于ofdm系统的数据处理方法及智能终端
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023066112A1 (zh) 信息比特调制方法、解调制方法、设备和存储介质
WO2022143493A1 (zh) 定位信号的测量方法、发送方法、网络侧设备和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899922

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/02/2024)