WO2023280094A1 - 信号发送方法、接收方法、装置及设备 - Google Patents

信号发送方法、接收方法、装置及设备 Download PDF

Info

Publication number
WO2023280094A1
WO2023280094A1 PCT/CN2022/103596 CN2022103596W WO2023280094A1 WO 2023280094 A1 WO2023280094 A1 WO 2023280094A1 CN 2022103596 W CN2022103596 W CN 2022103596W WO 2023280094 A1 WO2023280094 A1 WO 2023280094A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
time domain
domain
doppler
symbol matrix
Prior art date
Application number
PCT/CN2022/103596
Other languages
English (en)
French (fr)
Inventor
王方刚
单雅茹
郝亚星
王东
李淅然
袁璞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22836845.2A priority Critical patent/EP4369670A1/en
Publication of WO2023280094A1 publication Critical patent/WO2023280094A1/zh
Priority to US18/404,217 priority patent/US20240163140A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2639Modulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26532Demodulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms

Definitions

  • the present application belongs to the technical field of communication, and specifically relates to a signal sending method, receiving method, device and equipment.
  • Orthogonal Frequency Division Multiplexing realizes high-speed transmission and effectively counters inter-symbol interference caused by multipath channels.
  • OFDM symbols generate low-complexity transmitted signals through Inverse Fast Fourier Transform (IFFT), but after IFFT, all subcarrier signals are superimposed, so that the time domain waveform has a high peak-to-average power ratio ( Peak-to-Average Power Ratio, PAPR).
  • PAPR Peak-to-Average Power Ratio
  • a (Discrete Fourier transform, DFT) processing block is added to improve power efficiency so that the resulting waveform behaves like a single carrier, which is called the discrete Fourier transform-diffusion - Orthogonal Frequency Division Multiplexing (Discrete Fourier Transform-Spread-Orthogonal frequency division multiplexing, DFT-S-OFDM), used in uplink Long Term Evolution (LTE) to improve power efficiency.
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal frequency division multiplexing
  • LTE Long Term Evolution
  • the Doppler frequency shift seriously destroys the orthogonality between subcarriers, causing inter-carrier interference and affecting the performance of OFDM in high-speed mobile scenarios.
  • related technologies mainly use carrier frequency offset estimation and compensation. However, as the speed continues to increase, the coherence time of the channel decreases and the difficulty of frequency offset estimation and compensation increases.
  • Orthogonal Time Frequency Space has recently been proposed as a new two-dimensional multi-carrier modulation technology.
  • OFDM which uses the time-frequency domain to multiplex symbols
  • OTFS uses the delay-Doppler delay-Doppler domain for multiplexing.
  • the transmitted symbols are converted to the time-frequency time-frequency domain by inverse symplectic Fourier transform (ISFFT).
  • ISFFT inverse symplectic Fourier transform
  • the channel is characterized by slow changes and sparseness, which can effectively combat fast time changes.
  • the time-frequency domain double dispersion effect brought by the channel.
  • PAPR Physical Time Frequency Space
  • Embodiments of the present application provide a signal sending method, receiving method, device, and equipment, which can solve the problem of reducing PAPR on the premise of ensuring the performance of OTFS in high-speed mobile scenarios.
  • a method for sending a signal includes:
  • the transmitting end maps modulation symbols in the delay-time delay-time domain to obtain a symbol matrix in the first delay-time domain
  • the transmitting end performs first preset processing on the symbol matrix in the first delay-time domain to obtain sampling points in the time domain, which are pulse-shaped and sent.
  • a signal receiving method comprising:
  • the receiving end performs second preset processing on the received time domain signal to obtain the received signal in the delay-time delay-time domain;
  • the receiving end Based on the pilot sequence in the delay-time domain, the receiving end performs channel estimation in the delay-Doppler domain to obtain channel related parameters;
  • the receiving end performs symbol detection in a delay-time domain on the received signal according to the channel-related parameters.
  • a signal sending device in a third aspect, includes:
  • a mapping unit configured to map modulation symbols in the delay-time delay-time domain, to obtain a symbol matrix in the first delay-time domain
  • the first processing unit is configured to perform first preset processing on the symbol matrix in the first delay-time domain to obtain sampling points in the time domain, which are pulse-shaped and sent.
  • a signal receiving device which includes:
  • the second processing unit is configured to perform second preset processing on the received time domain signal to obtain a received signal in the delay-time delay-time domain;
  • the channel estimation unit is used to perform channel estimation in the delay-Doppler domain based on the pilot sequence in the delay-time domain to obtain channel related parameters;
  • a symbol detection unit configured to perform symbol detection in a delay-time domain on the received signal according to the channel-related parameters.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor. The steps of the method described in the first aspect or the second aspect are realized.
  • a terminal including a processor and a communication interface, wherein the processor is configured to map modulation symbols in the delay-time delay-time domain to obtain a symbol matrix in the first delay-time domain; The first preset processing is performed on the symbol matrix in the first delay-time domain to obtain sampling points in the time domain, which are pulse-shaped and sent.
  • the processor is configured to perform second preset processing on the received time domain signal to obtain the received signal in the delay-time delay-time domain; based on the pilot sequence in the delay-time domain, perform the processing in the delay-Doppler domain channel estimation to obtain channel related parameters; perform symbol detection in a delay-time domain on the received signal according to the channel related parameters.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction being executed by the
  • the processor implements the steps of the method described in the first aspect or the second aspect when executed.
  • a network side device including a processor and a communication interface, wherein the processor is configured to map modulation symbols in the delay-time delay-time domain to obtain a symbol matrix in the first delay-time domain; Performing a first preset process on the symbol matrix in the first delay-time domain to obtain sampling points in the time domain, which are pulse-shaped and sent.
  • the processor is configured to perform second preset processing on the received time domain signal to obtain the received signal in the delay-time delay-time domain; based on the pilot sequence in the delay-time domain, perform the processing in the delay-Doppler domain channel estimation to obtain channel related parameters; perform symbol detection in a delay-time domain on the received signal according to the channel related parameters.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect , or implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the first The steps of the method described in the first aspect, or the steps of the method described in the second aspect.
  • the symbol matrix in the first delay-time domain is obtained by mapping the modulation symbols in the delay-time domain, and the first preset processing is performed on the symbol matrix in the first delay-time domain to obtain Time-domain sampling points are sent after pulse shaping.
  • the transmission process maintains the single-carrier characteristics, and the PAPR is reduced under the premise of ensuring the performance of OTFS in high-speed mobile scenarios.
  • FIG. 1 is a structural diagram of a wireless communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a signal sending method provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a modulation and demodulation process provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a pilot pattern design in a delay-time domain provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a signal receiving method provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a signal processing flow provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a signal sending device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a signal receiving device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network-side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • FIG. 1 shows a structural diagram of a wireless communication system to which this embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, robots, wearable devices (Wearable Device), vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture etc.) and other terminal-side devices, wearable devices include: smart watches, smart bracelets, smart headphones
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • Fig. 2 is a schematic flow chart of the signal transmission method provided by the embodiment of the present application. As shown in Fig. 2, the method includes the following steps:
  • Step 200 the transmitting end maps modulation symbols in the delay-time delay-time domain to obtain a symbol matrix in the first delay-time domain;
  • the transmitting end may be a network side device or a terminal.
  • Mapping the modulation symbols in the delay-time delay-time domain refers to placing the modulation symbols in the resource cells of the delay-time delay-time domain.
  • the delay-time delay-time domain resource grid is a two-dimensional plane grid in which the delay dimension is the row and the time dimension is the column.
  • the transmitter places the modulation symbols in the delay-time delay-time domain resource grid, thus obtaining the first delay- A symbolic matrix in the time domain.
  • the embodiment of the present application does not limit the type of the modulation symbol, for example, the modulation symbol may be a quadrature amplitude modulation (Quadrature Amplitude Modulation, QAM) symbol.
  • the modulation symbol may be a quadrature amplitude modulation (Quadrature Amplitude Modulation, QAM) symbol.
  • Step 201 The transmitter performs a first preset process on the symbol matrix in the first delay-time domain to obtain sampling points in the time domain, which are pulse-shaped and sent.
  • the first preset processing includes: transforming the symbol matrix in the delay-time domain into the delay-Doppler delay-Doppler domain, and then transforming from the delay-Doppler domain into the time-frequency time-frequency domain,
  • the obtained time-frequency domain signal may also be referred to as a time-domain sampling point or a time-domain transmission signal.
  • the symbol matrix in the first delay-time domain is obtained by mapping the modulation symbols in the delay-time domain, and the first preset processing is performed on the symbol matrix in the first delay-time domain to obtain Time-domain sampling points are sent after pulse shaping.
  • the transmission process maintains the single-carrier characteristics, and the PAPR is reduced under the premise of ensuring the performance of OTFS in high-speed mobile scenarios.
  • the first preset processing is carried out to the symbol matrix in the first delay-time domain, including:
  • Perform vectorization processing on the symbol matrix in the second delay-time domain to obtain time-domain sampling points for example, arrange them end-to-end in columns to obtain time-domain sampling points.
  • the time-domain sampling points are sent after being pulse-shaped, that is, the transmitter transmits a time-domain signal.
  • Figure 3 is a schematic diagram of the modulation and demodulation process provided by the embodiment of the present application.
  • the embodiment of the present application first maps the modulation symbols in the delay-time delay-time domain, and obtains The symbol matrix of the first delay-time domain, and then transform the symbol matrix of the first delay-time domain into the symbol matrix of the delay-Doppler domain through DFT, and then transform the symbol matrix of the delay-Doppler domain into the time-frequency domain through ISSFT , and then transformed into the time domain through the Heisenberg transform, that is, the symbol matrix in the second delay-time domain, and finally vectorize the symbol matrix in the second delay-time domain to obtain the sampling points in the time domain.
  • the symbol matrix in the first delay-time domain is transformed into the symbol matrix in the delay-Doppler domain through DFT, and then the symbol matrix in the delay-Doppler domain is transformed into the time-frequency domain through ISSFT, and then through Heisenberg Transformation, transforming to the time domain, that is, the symbol matrix in the second delay-time domain, is equivalent to obtaining the symbol matrix in the second delay-time domain by IDFT transforming the symbol matrix in the first delay-time domain.
  • the first preset processing is performed on the symbol matrix in the first delay-time domain to obtain sampling points in the time domain, which are sent after pulse shaping, including:
  • M represents the row number of the symbol matrix of the first delay-time domain
  • N 1 represents the first delay-time domain
  • the symbol matrix of the first delay-time domain whose dimension is M ⁇ N 1 Among them, M is the number of grid points in the delay dimension, and N 1 is the number of grid points in the time dimension.
  • Step 2012 mapping the symbol matrix of the first delay-Doppler domain whose dimension is M ⁇ N 1 to the delay-Doppler domain resource grid whose dimension is M ⁇ N 2 to obtain the second delay whose dimension is M ⁇ N 2 - symbolic matrix of the Doppler domain;
  • N 2 is the grid point number of the Doppler dimension, and N 2 is an integer greater than or equal to N 1 .
  • the dimension is the symbol matrix of the first delay-Doppler domain of M ⁇ N 1 After the following mapping, it is still in the delay-Doppler domain:
  • mapping matrix indicating that N 1 numbers are mapped to N 2 subscripts, N 2 ⁇ N 1
  • X DDL is the symbol matrix of the second delay-Doppler domain whose dimension is M ⁇ N 2 , namely
  • Step 2013, for the symbol matrix of the second delay-Doppler domain whose dimension is M ⁇ N 2 , perform the inverse discrete Fourier transform IDFT whose length is N 2 row by row, and obtain the second delay whose dimension is M ⁇ N 2 - symbolic matrix of the time domain;
  • the symbol matrix of the second delay-Doppler domain whose dimension is M ⁇ N 2
  • the time-frequency domain symbol matrix is obtained:
  • X T is the symbol matrix in the time domain
  • G tx represents the matrix corresponding to the shaped wave at the transmitting end
  • F M H represents the conjugate of the Fourier transform matrix of point M Transpose, that is, the IDFT matrix of M points;
  • the symbol matrix of the second delay-Doppler domain whose dimension is M ⁇ N 2 can be Directly perform the inverse discrete Fourier transform IDFT with a length of N 2 row by row to obtain a time-domain symbol matrix X T with a dimension of M ⁇ N 2 .
  • the time-domain symbol matrix X T is also the symbol matrix of the second delay-time domain whose dimension is M ⁇ N 2 .
  • Step 2014 vectorize the symbol matrix in the second delay-time domain whose dimension is M ⁇ N 2 to obtain time-domain sampling points with a length of MN 2 , and pulse-shape the time-domain sampling points send;
  • time-domain symbol matrix X T is written in the form of a vector, which can be obtained as follows:
  • vec(.) represents the operation of converting the matrix into a vector by column reading
  • the formula (7) can be obtained by bringing the formula (5) into the formula (6)
  • the formula (1), (2) into the Formula (8) can be obtained from formula (7)
  • formula (9) can be obtained according to the nature of the kronecker product
  • (10) can be obtained by vectorizing the delay-time domain matrix.
  • the operation of formula (10) can be regarded as a precoding operation on the transmitted modulation symbol x DT .
  • the precoded matrix is:
  • the expression of the time-domain signal sent by the transmitter can be obtained.
  • the PAPR of each frame signal can be calculated. For example, 100,000 frames are continuously generated for statistical comparison, and finally it can be obtained that the PAPR of the signal transmission method provided by the embodiment of the present application is lower than that of OFDM and OTFS systems under 4-QAM and 16-QAM, and the effect of reducing PAPR is achieved.
  • the noise-free time-domain output can be obtained as follows,
  • the symbol matrix in the first delay-time domain is embedded with a pilot sequence in the delay-time domain, and the method further includes:
  • the channel Compared with the time-frequency domain and the time domain, the channel has slow-varying and sparse properties in the delay-Doppler domain.
  • the embodiment of the present application performs channel estimation in the delay-Doppler domain. Since symbols are multiplexed in the delay-time domain in the embodiment of the present application, the pilot-based channel estimation algorithm needs to design pilot patterns in the delay-time domain to meet the requirements of channel estimation in the delay-Doppler domain.
  • the embodiment of the present application demaps the delay-Doppler domain on the far right of Figure 4 to the middle area according to the single-dimensional mapping relationship of N1 and N2 Doppler, and then according to the inverse of the Doppler-Doppler domain and the time domain
  • the discrete Fourier transform relationship can be used to obtain the pilot pattern design in the delay-time domain on the left side of Figure 4.
  • the expression of the pilot pattern obtained by mapping the pilot sequence on the delay-time domain resource grid is:
  • X DT [l,k] represents the symbol in row l and column k in the delay-time domain resource grid
  • l p is the row where the pilot sequence is located
  • X DDS is the delay-Doppler
  • l max is the maximum delay of the channel
  • d[l,k] represents the data symbol.
  • the pilot sequence satisfies:
  • the sequence composition of the pilot delay-time domain is inserted in the l p line of the symbol set of the delay-time domain whose dimension is M ⁇ N 1 ;
  • the pilot sequence is calculated by formula (21a);
  • a pilot pattern design scheme for the delay-time domain is proposed, so that the channel estimation can be performed in the delay-Doppler domain. domain, without relying on the integer Doppler assumption, the accuracy of channel estimation in fractional Doppler shift channels is guaranteed, and the overhead of pilot patterns can be reduced.
  • Fig. 5 is a schematic flow chart of the signal receiving method provided by the embodiment of the present application. As shown in Fig. 5, the method includes the following steps:
  • Step 500 the receiving end performs second preset processing on the received time domain signal to obtain the received signal in the delay-time delay-time domain;
  • the receiving end may be a network side device or a terminal.
  • the receiving end performs second preset processing on the received time domain signal, so as to convert the received time domain signal into a delay-time delay-time domain.
  • the second preset processing is the reverse operation of the first preset processing, and the second preset processing includes:
  • Transform the received time-domain signal to the delay-Doppler domain and then transform from the delay-Doppler domain to the delay-time domain to obtain the received signal in the delay-time delay-time domain.
  • Step 501 the receiving end performs channel estimation in the delay-Doppler domain based on the pilot sequence in the delay-time domain, and obtains channel related parameters;
  • Step 502 The receiving end performs symbol detection in the delay-time domain on the received signal according to the channel-related parameters.
  • the receiving end obtains the received signal in the delay-time delay-time domain by performing the second preset processing on the received time domain signal, and then based on the pilot sequence in the delay-time domain Perform channel estimation in the Doppler domain to obtain channel-related parameters, and then perform symbol detection in the delay-time domain on the received signal according to the channel-related parameters, which reduces PAPR, improves the accuracy of channel estimation in high-speed mobile scenarios, and reduces The overhead of channel estimation is reduced, and the equalization time complexity of the proposed system is reduced.
  • the signal receiving method provided in the embodiment of the present application further includes: acquiring the pilot sequence in the delay-time domain.
  • the pilot sequence in the delay-time field is obtained in one of the following ways:
  • the index value or bitmap information is passed through downlink control information (Downlink Control Information, DCI) or radio resource control (Radio Resource Control, RRC) signaling indication
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the pilot sequence in the delay-time field is obtained by querying the pilot index table, wherein the pilot sequence index is indicated by DCI or RRC signaling, and the pilot index table is preconfigured by the protocol Or indicated by broadcast signaling.
  • DCI or RRC signaling is used to indicate an index value k 0 or bitmap
  • the index value or bitmap indicates that the single-point pilot pulse in the delay-Doppler domain is in the M ⁇ N 1 The position (coordinates) on the Doppler dimension in the delay-Doppler resource grid.
  • p DT represents the pilot sequence in the delay-time domain
  • p DD represents a row vector with a dimension of 1 ⁇ N 1 , and satisfies:
  • DCI or RRC signaling is used to indicate a pilot sequence index.
  • the UE obtains the pilot sequence by looking up the pilot index table, wherein the pilot index table is pre-configured by the protocol.
  • DCI or RRC signaling is used to indicate a pilot sequence index.
  • the UE obtains the pilot by looking up the pilot index table.
  • the pilot index table is indicated by the network side equipment through broadcast signaling, such as synchronization signal block (synchronization signal block, SSB), system information block (System Information Block type1, SIB1), etc.
  • performing the second preset processing on the received time-domain signal to obtain the received signal in the delay-time delay-time domain includes:
  • performing the second preset processing on the received time-domain signal to obtain the received signal in the delay-time delay-time domain includes:
  • Step 5001 devectorize the received time-domain signal whose length is MN2 , and obtain the symbol matrix of the third delay-time domain whose dimension is M ⁇ N2 , wherein M represents the symbol of the third delay-time domain The number of rows of the matrix, N represents the number of columns of the sign matrix of the third delay-time domain;
  • devectorization of the received time-domain signal with a length of MN 2 can be written in the form of a matrix:
  • devec(.) indicates devectorization operation
  • Step 5002 performing discrete Fourier transform DFT on the symbol matrix of the third delay-time domain whose dimension is M ⁇ N 2 , to obtain the symbol matrix of the third delay-Doppler domain whose dimension is M ⁇ N 2 ;
  • the signal is transformed into the delay-Doppler domain by SFFT, and the symbol matrix Y DDL of the third delay-Doppler domain whose dimension is M ⁇ N 2 is obtained:
  • F M H represents the conjugate transposition of the Fourier transform matrix of point M, that is, the IDFT matrix of point M, Represents the discrete Fourier transform DFT matrix of N 2 points;
  • Step 5003 demapping the symbol matrix of the third delay-Doppler domain whose dimension is M ⁇ N 2 to obtain the symbol matrix of the fourth delay-Doppler domain whose dimension is M ⁇ N 1 ;
  • the received signal in the delay-Doppler domain is transformed into a small-scale delay-Doppler domain:
  • Step 5004 perform inverse discrete Fourier transform IDFT row by row on the symbol matrix of the fourth delay-Doppler domain whose dimension is M ⁇ N 1 , and obtain the symbol matrix of the fourth delay-time domain whose dimension is M ⁇ N 1 , wherein, the symbol matrix of the fourth delay-time domain whose dimension is M ⁇ N 1 is the received signal of the delay-time domain;
  • N 1 is the number of columns of the symbol matrix in the fourth delay-Doppler domain, and N 1 is an integer less than or equal to N 2 .
  • the discrete Fourier matrix is defined as follows:
  • the matrix left and right multiplication F N is equivalent to the discrete Fourier transform of the columns and rows of the matrix.
  • the channel estimation is performed in the delay-Doppler domain based on the pilot sequence in the delay-time domain to obtain channel related parameters, including:
  • Step 5011 calculating the impulse response of the pilot sequence in the delay-time domain within the detection area in the delay-Doppler delay-Doppler domain;
  • the detection area is the area where the guide frequency and its guard band are located, such as the area where the asterisks and circles are located in FIG. 4 .
  • the point-to-point correspondence in the delay-Doppler domain is as follows:
  • P represents the total number of taps of the channel
  • h p Respectively represent the channel gain of the pth tap, the delay of the pth tap, the integer Doppler of the pth tap, the fractional Doppler of the pth tap
  • Y DDL [l, k] is the delay-multiple
  • l' is the delay subscript of the DDL domain symbol
  • k' is the Doppler frequency shift subscript of the DDL domain symbol
  • ⁇ p is the pth path
  • the phase of the channel coefficient of N cp is the length of the cyclic prefix.
  • the impulse response of the pilot sequence in the delay-Doppler domain can be expressed as follows:
  • i is the subscript of the delay dimension of the pilot
  • j is the subscript of the Doppler dimension of the pilot
  • ⁇ p is the frequency offset corresponding to the impulse response of the pilot on the pth path of the channel.
  • Step 5012 performing correlation calculation on the function of the impulse response and Doppler to obtain the first correlation function
  • Step 5013 performing threshold detection on the amplitude of the first correlation function, and obtaining a threshold detection result
  • threshold detection is performed according to the formula (29) to obtain a threshold detection result.
  • Step 5014 Estimate channel parameters according to the threshold detection result to obtain channel related parameters.
  • the channel related parameters are estimated by the following formula:
  • related technology 1 the channel estimation algorithm based on the embedded pilot conducts threshold detection on the received signal amplitude in the detection area of the receiving end, and estimates the corresponding parameters of the channel according to the position and corresponding value of the pilot at the receiving end. , this method uses the results of channel estimation at integer positions to fit the influence of fractional Doppler, and the performance is poor in high-speed channels with fractional Doppler shift.
  • the channel estimation algorithm based on the correlation function can solve the channel estimation under the fractional Doppler frequency shift, but the pilot needs to be transmitted separately in a single frame and it needs to be assumed that the channel for sending data in the next frame and the channel through which the pilot passes are Similarly, the spectrum efficiency is low and the assumption is not valid in high-speed mobile scenarios, and the feasibility is low.
  • the channel estimation method proposed in the embodiment of the present application not only ensures the accuracy based on the correlation function, but also reduces the overhead of channel estimation, and inserts data symbols while embedding pilots in each frame, without performing hypothesis guidance.
  • the channel of the frame where the frequency is located is the channel corresponding to the frame in which the data is transmitted in the next frame.
  • the embodiments of the present application improve the practicability and accuracy of channel estimation in high-speed mobile scenarios.
  • the performing delay-time symbol detection on the received signal according to the channel-related parameters includes:
  • Devectorization and demapping are performed on the symbol estimation result in the delay-Doppler domain to obtain the symbol estimation result in the delay-time domain.
  • formula (33) can be obtained according to the nature of the kronecker product; formula (34) can be obtained according to formula (13); formula (35) can be obtained by bringing formula (31) into formula (34), making Formula (36) can be obtained.
  • the solution of MMSE can be obtained as follows:
  • ⁇ 2 is the variance of the white noise.
  • formula (37) involves the operation of inverting a large matrix, the order of complexity in this system is O((MN 2 ) 3 ), and the operation time is long in the actual system. Therefore, a low-complexity symbol detection algorithm is required.
  • a symbol detection algorithm based on the MP algorithm in the delay-time domain is provided below.
  • the performing delay-time symbol detection on the received signal according to the channel-related parameters includes:
  • Step 5021 according to the input-output relationship of the delay-time domain, obtain the point-to-point input-output relationship in the delay-time domain;
  • the point-to-point is a discrete sample point to a discrete sample point.
  • Step 5022 calculate the first information transmitted from the factor node in the delay-time domain to the variable node in the delay-time domain, the first information includes the mean value of the Gaussian variable and variance;
  • the factor node is composed of some receiving samples y
  • the factor node may also be called an observation node
  • the variable node is composed of some sending samples x.
  • Step 5023 Calculate the second information transmitted from the variable node to the factor node, where the second information includes the symbolic probability mass of the variable node;
  • Step 5024 perform damping control on the symbol probability mass calculated in the current iteration and the result of the previous iteration
  • Step 5025 if the iteration stop condition is met, stop the iteration, and perform symbol detection on the variable node; or, if the iteration stop condition is not met, continue the iteration.
  • the factor node outputs "mean and variance” as the input of the variable node
  • the variable node outputs "symbolic probability mass” as the input of the observation node, and repeats the cycle until the value of "mean and variance” or “symbolic probability mass” satisfies the iteration Stop condition, then jump out of the loop, and use the output of the last loop as the result for subsequent processing.
  • a sparsely connected factor graph is constructed to perform nonlinear symbol detection.
  • d 1,...,MN
  • the point-to-point input-output relationship in the delay-time domain can be written as follows
  • d represents the subscript of the factor node
  • c represents the subscript of the current variable node
  • z[d] represents the white noise contained in the dth factor node in the delay-time domain
  • e represents the The subscript of a variable node other than the current variable node.
  • the Factor node passes the mean and variance of the Gaussian variable to the Variable node, calculated as follows:
  • a j represents the jth symbol in the symbol matrix
  • the probability mass function is for discrete random variables and corresponds to the symbolic probability density of continuous samples.
  • variable node passes the signed probability mass function to the factor node, which is updated as follows,
  • ⁇ (0,1] is the damping factor, which is used to control the convergence speed.
  • the convergence speed of the iteration is controlled as follows:
  • ⁇ >0 is a constant that controls the iteration stop, is an indicator function that takes a value of 1 when the conditions described in the brackets are satisfied, otherwise it takes a value of 0, and normalizes the symbol probability, we can get:
  • the symbol detection in the delay-time domain is performed on the received signal, including:
  • the information transmitted from the factor node in the delay-time domain to the variable node in the delay-time domain is calculated, that is, the mean value formula (45) and variance formula (46) of the Gaussian variable.
  • the information transmitted from the variable node to the factor node is calculated, that is, the symbolic probability mass of the delay-time domain variable node
  • the embodiment of the present application adopts the symbol detection algorithm based on the MP algorithm in the delay-time domain, and adjusts the linear operation relationship between the variable node and the factor node according to the input-output relationship in the delay-time domain.
  • the MP-based symbol detection algorithm in the Doppler domain DD domain is changed to the MP-based symbol detection algorithm in the delay-time domain, which reduces the equalization time complexity.
  • FIG. 6 is a schematic diagram of a signal processing flow provided by an embodiment of the present application. Firstly, the pilot pattern design at the transmitting end is performed, and then the receiving end performs channel estimation and symbol detection.
  • the channel sending method provided in the embodiment of the present application may be executed by a signal sending device, or a control module in the signal sending device for executing the channel sending method.
  • the signal sending device provided in the embodiment of the present application is described by taking the channel sending method executed by the signal sending device as an example.
  • FIG. 7 is a schematic structural diagram of a signal sending device 700 provided by an embodiment of the present application. As shown in FIG. 7 , the device includes: a mapping unit 710 and a first processing unit 720, wherein,
  • the mapping unit 710 is configured to map modulation symbols in the delay-time delay-time domain to obtain a symbol matrix in the first delay-time domain;
  • the first processing unit 720 is configured to perform first preset processing on the symbol matrix in the first delay-time domain to obtain sampling points in the time domain, which are pulse-shaped and sent.
  • the symbol matrix in the first delay-time domain is obtained by mapping the modulation symbols in the delay-time domain, and the first preset processing is performed on the symbol matrix in the first delay-time domain to obtain Time-domain sampling points are sent after pulse shaping.
  • the transmission process maintains the single-carrier characteristics, and the PAPR is reduced under the premise of ensuring the performance of OTFS in high-speed mobile scenarios.
  • the transmitting end performs first preset processing on the symbol matrix in the first delay-time domain, including:
  • the first processing unit is used for:
  • Carrying out vectorization processing to the symbol matrix of the second delay-time domain whose dimension is M ⁇ N 2 obtains the time-domain sampling points whose length is MN 2 , and sends the described time-domain sampling points after pulse shaping;
  • N 2 is the number of columns of the symbol matrix in the second delay-Doppler domain, and N 2 is an integer greater than or equal to N 1 .
  • the symbol matrix in the first delay-time domain is embedded with a pilot sequence in the delay-time domain, and the device further includes:
  • a demapping unit configured to demap the symbol matrix of the second delay-Doppler domain to the symbol matrix of the first delay-Doppler domain according to the mapping relationship between N1 and N2 ;
  • the pilot frequency determination unit is configured to determine the pilot sequence in the delay-time domain according to the inverse discrete Fourier transform relationship between the Doppler domain and the time domain.
  • the expression of the pilot pattern obtained by mapping the pilot sequence on the delay-time domain resource grid is:
  • X DT [l,k] represents the symbol in row l and column k in the delay-time domain resource grid
  • l p is the row where the pilot sequence is located
  • X DDS is the delay-Doppler
  • l max is the maximum delay of the channel
  • d[l,k] represents the data symbol.
  • a pilot pattern design scheme for the delay-time domain is proposed, so that the channel estimation can be performed in the delay-Doppler domain. domain, without relying on the integer Doppler assumption, the accuracy of channel estimation in fractional Doppler shift channels is guaranteed, and the overhead of pilot patterns can be reduced.
  • the signal sending device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the signal sending device provided by the embodiment of the present application can realize each process realized by the method embodiments in FIG. 2 to FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the channel receiving method provided in the embodiment of the present application may be executed by a signal receiving device, or a control module in the signal receiving device for executing the channel receiving method.
  • the signal receiving device provided in the embodiment of the present application is described by taking the channel receiving method performed by the signal receiving device as an example.
  • FIG. 8 is a schematic structural diagram of a signal receiving device 800 provided by an embodiment of the present application. As shown in FIG. 8, the device includes: a second processing unit 810, a channel estimation unit 820, and a symbol detection unit 830, wherein,
  • the second processing unit 810 is configured to perform second preset processing on the received time domain signal to obtain a received signal in the delay-time delay-time domain;
  • a channel estimation unit 820 configured to perform channel estimation in the delay-Doppler domain based on the pilot sequence in the delay-time domain, to obtain channel related parameters
  • the symbol detection unit 830 is configured to perform symbol detection in a delay-time domain on the received signal according to the channel related parameters.
  • the received signal in the delay-time delay-time domain is obtained, and then channel estimation is performed based on the pilot sequence in the delay-time domain to obtain Channel-related parameters, and then perform delay-time symbol detection on the received signal according to the channel-related parameters, which reduces PAPR, improves the accuracy of channel estimation in high-speed mobile scenarios and reduces the overhead of channel estimation, reducing The equilibrium time complexity of the proposed system is obtained.
  • the pilot sequence in the delay-time field is obtained in one of the following ways:
  • index value or bitmap bitmap information calculate the pilot sequence of the delay-time field, wherein the index value or bitmap bitmap information is indicated by downlink control information DCI or radio resource control RRC signaling, and the index
  • the value or bitmap bitmap information represents the position of the single-point pilot pulse in the delay-Doppler domain on the Doppler dimension in the delay-Doppler resource grid whose size is M ⁇ N 1 ;
  • the pilot sequence in the delay-time field is obtained by querying the pilot index table, wherein the pilot sequence index is indicated by DCI or RRC signaling, and the pilot index table is preconfigured by the protocol Or indicated by broadcast signaling.
  • performing the second preset processing on the received time-domain signal includes:
  • IFT inverse discrete Fourier transform
  • the second processing unit is used for:
  • the symbol matrix of the fourth delay-Doppler domain whose dimension is M ⁇ N 1 is subjected to inverse discrete Fourier transform IDFT row by row, and the symbol matrix of the fourth delay-time domain whose dimension is M ⁇ N 1 is obtained, wherein, The symbol matrix of the fourth delay-time domain whose dimension is M ⁇ N 1 is the received signal of the delay-time domain;
  • N 1 is the number of columns of the symbol matrix in the fourth delay-Doppler domain, and N 1 is an integer less than or equal to N 2 .
  • the channel estimation unit is used for:
  • channel parameters are estimated to obtain channel related parameters.
  • the embodiments of the present application improve the practicability and accuracy of channel estimation in high-speed mobile scenarios.
  • the symbol detection unit is used for:
  • the Gaussian approximation to the interference term calculate the first information transmitted from the factor node in the delay-time domain to the variable node in the delay-time domain, the first information including the mean value and variance of the Gaussian variable;
  • the second information including the symbolic probability mass of the variable node
  • the iteration stop condition When the iteration stop condition is satisfied, the iteration is stopped, and the symbol detection is performed on the variable node; or, when the iteration stop condition is not satisfied, the iteration is continued.
  • the symbol detection unit is used for:
  • Devectorization and demapping are performed on the symbol estimation result in the delay-Doppler domain to obtain the symbol estimation result in the delay-time domain.
  • the embodiment of the present application adopts the symbol detection algorithm based on the MP algorithm in the delay-time domain, and adjusts the linear operation relationship between the variable node and the factor node according to the input-output relationship in the delay-time domain.
  • the MP-based symbol detection algorithm in the Doppler domain DD domain is changed to the MP-based symbol detection algorithm in the delay-time domain, which reduces the equalization time complexity.
  • the signal receiving device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, and may also be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the signal receiving device provided by the embodiment of the present application can realize various processes realized by the method embodiments in FIG. 5 to FIG. 6 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 900, including a processor 901, a memory 902, and programs or instructions stored in the memory 902 and operable on the processor 901,
  • a communication device 900 including a processor 901, a memory 902, and programs or instructions stored in the memory 902 and operable on the processor 901
  • the communication device 900 is a terminal
  • the program or instruction is executed by the processor 901
  • each process of the above channel sending method or channel receiving method embodiment can be realized, and the same technical effect can be achieved.
  • the communication device 900 is a network-side device, when the program or instruction is executed by the processor 901, each process of the above channel sending method or channel receiving method embodiment can be achieved, and the same technical effect can be achieved. In order to avoid repetition, it is not repeated here repeat.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, and the processor is used to map modulation symbols in the delay-time delay-time domain to obtain a symbol matrix in the first delay-time domain; for the first delay -
  • the first preset processing is performed on the symbol matrix in the time domain to obtain sampling points in the time domain, which are sent after pulse shaping.
  • the processor is configured to perform second preset processing on the received time domain signal to obtain the received signal in the delay-time delay-time domain; based on the pilot sequence in the delay-time domain, perform the processing in the delay-Doppler domain channel estimation to obtain channel related parameters; perform symbol detection in a delay-time domain on the received signal according to the channel related parameters.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes but not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010, etc. at least some of the components.
  • the terminal 1000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1010 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 10041 and a microphone 10042, and the graphics processor 10041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 receives the downlink data from the network side device, and processes it to the processor 1010; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1009 can be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1009 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1010 .
  • the processor 1010 is configured to map modulation symbols in the delay-time delay-time domain to obtain a symbol matrix in the first delay-time domain;
  • the symbol matrix in the first delay-time domain is obtained by mapping the modulation symbols in the delay-time domain, and the first preset processing is performed on the symbol matrix in the first delay-time domain to obtain Time-domain sampling points are sent after pulse shaping.
  • the transmission process maintains the single-carrier characteristics, and the PAPR is reduced under the premise of ensuring the performance of OTFS in high-speed mobile scenarios.
  • the transmitting end performs first preset processing on the symbol matrix in the first delay-time domain, including:
  • the first preset processing is performed on the symbol matrix in the first delay-time domain to obtain sampling points in the time domain, which are sent after pulse shaping, including:
  • Carrying out vectorization processing to the symbol matrix of the second delay-time domain whose dimension is M ⁇ N 2 obtains the time-domain sampling points whose length is MN 2 , and sends the described time-domain sampling points after pulse shaping;
  • N 2 is the number of columns of the symbol matrix in the second delay-Doppler domain, and N 2 is an integer greater than or equal to N 1 .
  • the symbol matrix in the first delay-time domain is embedded with a pilot sequence in the delay-time domain, and the processor 1010 is further configured to:
  • the expression of the pilot pattern obtained by mapping the pilot sequence on the delay-time domain resource grid is:
  • X DT [l,k] represents the symbol in row l and column k in the delay-time domain resource grid
  • l p is the row where the pilot sequence is located
  • X DDS is the delay-Doppler
  • l max is the maximum delay of the channel
  • d[l,k] represents the data symbol.
  • a pilot pattern design scheme for the delay-time domain is proposed, so that the channel estimation can be performed in the delay-Doppler domain. domain, without relying on the integer Doppler assumption, the accuracy of channel estimation in fractional Doppler shift channels is guaranteed, and the overhead of pilot patterns can be reduced.
  • the processor 1010 is configured to:
  • channel estimation is performed in the delay-Doppler domain to obtain channel related parameters
  • the received signal in the delay-time delay-time domain is obtained, and then channel estimation is performed based on the pilot sequence in the delay-time domain to obtain Channel-related parameters, and then perform delay-time symbol detection on the received signal according to the channel-related parameters, which reduces PAPR, improves the accuracy of channel estimation in high-speed mobile scenarios and reduces the overhead of channel estimation, reducing The equilibrium time complexity of the proposed system is obtained.
  • the pilot sequence in the delay-time field is obtained in one of the following ways:
  • index value or bitmap bitmap information calculate the pilot sequence of the delay-time field, wherein the index value or bitmap bitmap information is indicated by downlink control information DCI or radio resource control RRC signaling, and the index value or bitmap bitmap information representing delay-
  • the pilot sequence in the delay-time field is obtained by querying the pilot index table, wherein the pilot sequence index is indicated by DCI or RRC signaling, and the pilot index table is preconfigured by the protocol Or indicated by broadcast signaling.
  • performing the second preset processing on the received time-domain signal includes:
  • IFT inverse discrete Fourier transform
  • performing the second preset processing on the received time-domain signal to obtain the received signal in the delay-time delay-time domain includes:
  • the symbol matrix of the fourth delay-Doppler domain whose dimension is M ⁇ N 1 is subjected to inverse discrete Fourier transform IDFT row by row, and the symbol matrix of the fourth delay-time domain whose dimension is M ⁇ N 1 is obtained, wherein, The symbol matrix of the fourth delay-time domain whose dimension is M ⁇ N 1 is the received signal of the delay-time domain;
  • N 1 is the number of columns of the symbol matrix in the fourth delay-Doppler domain, and N 1 is an integer less than or equal to N 2 .
  • the channel estimation is performed in the delay-Doppler domain based on the pilot sequence in the delay-time domain to obtain channel related parameters, including:
  • channel parameters are estimated to obtain channel related parameters.
  • performing symbol detection in a delay-time domain on the received signal according to the channel-related parameters includes:
  • the Gaussian approximation to the interference term calculate the first information transmitted from the factor node in the delay-time domain to the variable node in the delay-time domain, the first information including the mean value and variance of the Gaussian variable;
  • the second information including the symbolic probability mass of the variable node
  • the iteration stop condition When the iteration stop condition is satisfied, the iteration is stopped, and the symbol detection is performed on the variable node; or, when the iteration stop condition is not satisfied, the iteration is continued.
  • performing symbol detection in a delay-time domain on the received signal according to the channel-related parameters includes:
  • Devectorization and demapping are performed on the symbol estimation result in the delay-Doppler domain to obtain the symbol estimation result in the delay-time domain.
  • the embodiment of the present application adopts the symbol detection algorithm based on the MP algorithm in the delay-time domain, and adjusts the linear operation relationship between the variable node and the factor node according to the input-output relationship in the delay-time domain.
  • the MP-based symbol detection algorithm in the Doppler domain DD domain is changed to the MP-based symbol detection algorithm in the delay-time domain, which reduces the equalization time complexity.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the processor is configured to map modulation symbols in the delay-time delay-time domain to obtain a symbol matrix in the first delay-time domain; The first preset processing is performed on the symbol matrix in the first delay-time domain to obtain sampling points in the time domain, which are pulse-shaped and sent.
  • the processor is configured to perform second preset processing on the received time domain signal to obtain the received signal in the delay-time delay-time domain; based on the pilot sequence in the delay-time domain, perform the processing in the delay-Doppler domain channel estimation to obtain channel related parameters; perform symbol detection in a delay-time domain on the received signal according to the channel related parameters.
  • the network-side device embodiment corresponds to the above-mentioned method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to the network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network device 1100 includes: an antenna 1101 , a radio frequency device 1102 , and a baseband device 1103 .
  • the antenna 1101 is connected to the radio frequency device 1102 .
  • the radio frequency device 1102 receives information through the antenna 1101, and sends the received information to the baseband device 1103 for processing.
  • the baseband device 1103 processes the information to be sent and sends it to the radio frequency device 1102
  • the radio frequency device 1102 processes the received information and sends it out through the antenna 1101 .
  • the foregoing frequency band processing device may be located in the baseband device 1103 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 1103 , and the baseband device 1103 includes a processor 1104 and a memory 1105 .
  • the baseband device 1103 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 1103 may also include a network interface 1106 for exchanging information with the radio frequency device 1102, such as a common public radio interface (CPRI for short).
  • a network interface 1106 for exchanging information with the radio frequency device 1102, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: instructions or programs stored in the memory 1105 and operable on the processor 1104, and the processor 1104 calls the instructions or programs in the memory 1105 to execute the instructions shown in FIG. 7 or 8.
  • the methods executed by each module are shown to achieve the same technical effect. In order to avoid repetition, the details are not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the above-mentioned embodiment of the signal sending method or the signal receiving method is implemented, And can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above signal sending method or signal receiving
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above signal sending method or signal receiving
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种信号发送方法、接收方法、装置及设备,属于通信技术领域,本申请实施例的信号发送方法包括:发射端在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;发射端对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。

Description

信号发送方法、接收方法、装置及设备
相关申请的交叉引用
本申请要求于2021年07月05日提交的申请号为2021107588635,发明名称为“信号发送方法、接收方法、装置及设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种信号发送方法、接收方法、装置及设备。
背景技术
目前正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术,实现高速率传输的同时,有效对抗多径信道带来的符号间干扰。OFDM符号通过逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)产生低复杂度的发射信号,但经过IFFT之后,所有子载波信号进行叠加,使得时域波形具有很高的峰均功率比(Peak-to-Average Power Ratio,PAPR)。高PAPR导致发射机处的功率放大器效率以及数模转换器和模数转换器的信号量化噪声比值降低。在发射机处的子载波映射提高功率效率之前,先添加(Discrete Fourier transform,DFT)处理模块,以提高功率效率,使所得波形表现得像单载波,该波形称为离散傅里叶变换-扩散-正交频分复用(Discrete Fourier Transform-Spread-Orthogonal frequency division multiplexing,DFT-S-OFDM),在上行链路长期演进(Long Term Evolution,LTE)中使用以提高功率效率。高速移动场景下,多普勒频移严重使得子载波间的正交性被破坏,产生载波间干扰进而影响OFDM在高速移动场景下的性能。针对载波间干扰,相关技术主要使用载波频偏估计和补偿。然而,随着速度的不断提升,信道的相 干时间降低频偏估计和补偿的难度加大。
为了对抗高速移动场景下的多普勒频移,正交时频空(Orthogonal Time Frequency Space,OTFS)作为新型二维多载波调制技术最近被提出。不同于OFDM采用时频域复用符号,OTFS采用延时-多普勒delay-Doppler域进行复用。发送符号经逆辛傅里叶变换(Inverse symplectic Fourier transform,ISFFT)转换到时-频time-frequency域,在delay-Doppler域中,信道呈缓慢变化且稀疏的特征,可有效地对抗快速时变信道带来的时频域双弥散效应。然而作为多载波系统同样会面临高PAPR问题,如何进行系统设计,保证OTFS在高速移动场景下的性能的同时,降低PAPR是当前亟待解决的问题。
发明内容
本申请实施例提供一种信号发送方法、接收方法、装置及设备,能够解决解决在保证OTFS在高速移动场景下性能的前提下降低PAPR的问题。
第一方面,提供了一种信号发送方法,该方法包括:
发射端在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;
发射端对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。
第二方面,提供了一种信号接收方法,该方法包括:
接收端对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;
接收端基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;
接收端根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。
第三方面,提供了一种信号发送装置,该装置包括:
映射单元,用于在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;
第一处理单元,用于对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。
第四方面,提供了一种信号接收装置,该装置包括:
第二处理单元,用于对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;
信道估计单元,用于基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;
符号检测单元,用于根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。或者,所述处理器用于对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。或者,所述处理器用于对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,通过将调制符号映射在延时-时间域,得到第一delay-time域的符号矩阵,对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送,发送过程保持了单载波特性,在保证OTFS在高速移动场景下性能的前提下降低PAPR。
附图说明
图1是本申请实施例可应用的一种无线通信系统的结构图;
图2为本申请实施例提供的信号发送方法的流程示意图;
图3为本申请实施例提供的调制解调流程示意图;
图4为本申请实施例提供的在延时-时间域导频图案设计的示意图;
图5为本申请实施例提供的信号接收方法的流程示意图;
图6为本申请实施例提供的信号处理流程示意图;
图7为本申请实施例提供的信号发送装置的结构示意图;
图8为本申请实施例提供的信号接收装置的结构示意图;
图9为本申请实施例提供的通信设备的结构示意图;
图10为实现本申请实施例的一种终端的硬件结构示意图;
图11为本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分 多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅 以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号发送方法、信号接收方法及装置进行详细地说明。
图2为本申请实施例提供的信号发送方法的流程示意图,如图2所示,该方法包括以下步骤:
步骤200、发射端在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;
需要说明的是,发射端可以是网络侧设备,也可以是终端。
在延时-时间delay-time域映射调制符号是指将调制符号放置在延时-时间delay-time域资源格中。
可选地,延时-时间delay-time域资源格是以delay维度为行,time维度为列的二维平面网格。
由于OTFS将符号复用在延时-多普勒域,为了降低在高速移动场景下的PAPR,发射端将调制符号放置在延时-时间delay-time域资源格中,从而得到第一delay-time域的符号矩阵。
其中,本申请实施例不限制调制符号的类型,例如,调制符号可以是正交振幅调制(Quadrature Amplitude Modulation,QAM)符号。
步骤201、发射端对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。
可选地,所述第一预设处理包括:将delay-time域的符号矩阵变换到延时-多普勒delay-Doppler域,再从delay-Doppler域变换到时-频time-frequency域,得到时频域信号,也可以称为时域采样点或时域发送信号。
在本申请实施例中,通过将调制符号映射在延时-时间域,得到第一delay-time域的符号矩阵,对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送,发送过程保持了单载波特性,在保证OTFS在高速移动场景下性能的前提下降低PAPR。
可选地,所述对所述第一delay-time域的符号矩阵进行第一预设处 理,包括:
对所述第一delay-time域的符号矩阵在时间time维度进行离散傅里叶变换DFT,得到第一延时-多普勒delay-Doppler域的符号矩阵;
对所述第一delay-Doppler域的符号矩阵进行多普勒Doppler维度扩展,得到第二delay-Doppler域的符号矩阵;
对所述第二delay-Doppler域的符号矩阵在多普勒Doppler维度进行逆离散傅里叶变换IDFT,得到第二delay-time域的符号矩阵;
对所述第二delay-time域的符号矩阵进行向量化处理,得到时域采样点,例如,按列首尾相接排放,得到时域采样点。
时域采样点经脉冲成型后发送,即发射端发射时域信号。
图3为本申请实施例提供的调制解调流程示意图,如图3所示,为了降低高速移动场景下OTFS的PAPR,本申请实施例首先在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵,然后将第一delay-time域的符号矩阵通过DFT变换为delay-Doppler域的符号矩阵,然后将delay-Doppler域的符号矩阵经过ISSFT变换到time-frequency域,再经过海森堡变换,变换到时域,也即第二delay-time域的符号矩阵,最后对所述第二delay-time域的符号矩阵进行向量化处理,得到时域采样点。需要说明的是,将第一delay-time域的符号矩阵通过DFT变换为delay-Doppler域的符号矩阵,然后将delay-Doppler域的符号矩阵经过ISSFT变换到time-frequency域,再经过海森堡变换,变换到时域,也即第二delay-time域的符号矩阵,与将第一delay-time域的符号矩阵通过IDFT变换得到第二delay-time域的符号矩阵是等价的。
可选地,所述对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送,包括:
步骤2011、对维度为M×N 1的所述第一delay-time域的符号矩阵,其中M代表所述第一delay-time域的符号矩阵的行数,N 1代表所述第一delay-time域的符号矩阵的列数,逐行进行长度为N 1的离散傅里叶变换 DFT,得到维度为M×N 1的第一延时-多普勒delay-Doppler域的符号矩阵;
可选地,维度为M×N 1的所述第一delay-time域的符号矩阵
Figure PCTCN2022103596-appb-000001
其中,M也即delay维度的格点数,N 1为time维度的格点数。
经过M次N 1点DFT后,转化到延时-多普勒delay-Doppler域中,得到维度为M×N 1的第一延时-多普勒delay-Doppler域的符号矩阵
Figure PCTCN2022103596-appb-000002
Figure PCTCN2022103596-appb-000003
其中,
Figure PCTCN2022103596-appb-000004
表示N 1点傅里叶变换矩阵。
步骤2012、将所述维度为M×N 1的第一delay-Doppler域的符号矩阵映射到维度为M×N 2的delay-Doppler域资源格上,得到维度为M×N 2的第二delay-Doppler域的符号矩阵;
其中,N 2为多普勒Doppler维度的格点数,N 2为大于等于N 1的整数。
可选地,所述维度为M×N 1的第一delay-Doppler域的符号矩阵
Figure PCTCN2022103596-appb-000005
经过如下映射后仍在delay-Doppler域:
X DDL=X DDSS      (2)
其中,
Figure PCTCN2022103596-appb-000006
为映射矩阵,表示将N 1个数映射到N 2个下标上,N 2≥N 1,X DDL为维度为M×N 2的第二delay-Doppler域的符号矩阵,即
Figure PCTCN2022103596-appb-000007
步骤2013、对所述维度为M×N 2的第二delay-Doppler域的符号矩阵,逐行进行长度为N 2的逆离散傅里叶变换IDFT,得到维度为M×N 2的第二delay-time域的符号矩阵;
可选地,将所述维度为M×N 2的第二delay-Doppler域的符号矩阵
Figure PCTCN2022103596-appb-000008
经过逆辛傅里叶变换ISFFT后,转化到时-频time-frequency域 中,得到time-frequency域符号矩阵:
Figure PCTCN2022103596-appb-000009
其中,
Figure PCTCN2022103596-appb-000010
表示N 2点的逆离散傅里叶变换IDFT矩阵,F M表示M点的傅里叶变换矩阵,X TF为所述time-frequency域符号矩阵。
然后,对所述time-frequency域符号矩阵X TF进行海森堡变换(Heisenberg transform),转化到时域中:
Figure PCTCN2022103596-appb-000011
其中,X T为时域符号矩阵,G tx表示发射端成形波对应的矩阵,在此处采用矩形波,即G tx=I M,F M H表示M点的傅里叶变换矩阵的共轭转置,即M点的IDFT矩阵;
将公式(3)代入公式(4),得到如下公式:
Figure PCTCN2022103596-appb-000012
可以理解的是,根据公式(5),可以对所述维度为M×N 2的第二delay-Doppler域的符号矩阵
Figure PCTCN2022103596-appb-000013
直接逐行进行长度为N 2的逆离散傅里叶变换IDFT,得到维度为M×N 2的时域符号矩阵X T。该时域符号矩阵X T也即维度为M×N 2的第二delay-time域的符号矩阵。
步骤2014、对所述维度为M×N 2的第二delay-time域的符号矩阵进行向量化处理,得到长度为MN 2的时域采样点,并将所述时域采样点经脉冲成型后发送;
可选地,将时域符号矩阵X T写成向量的形式,可得:
Figure PCTCN2022103596-appb-000014
其中,vec(.)表示将矩阵按列读取转化成向量的操作,将公式(5)带入 到公式(6)可以得到公式(7);将公式(1),(2)带入到公式(7)可以得公式(8);根据kronecker乘积的性质可以得到公式(9);对延时-时间域的矩阵进行向量化可以得到(10)。
其中,公式(10)的操作可看作是对发送的调制符号x DT的预编码操作。预编码的矩阵为:
Figure PCTCN2022103596-appb-000015
根据公式(6)-(10),可以得到发射端发送的时域信号的表达式。根据所述表达式,可以计算出每一帧信号的PAPR。例如,连续生成100000帧进行统计对比,最终可以得到,在4-QAM和16-QAM下采用本申请实施例提供的信号发送方法的PAPR均比OFDM和OTFS系统低,达到了降低PAPR的效果。
进一步地,经快速时变信道,可得无噪声的时域输出如下,
Figure PCTCN2022103596-appb-000016
其中,
Figure PCTCN2022103596-appb-000017
是时域等价信道矩阵。将(10)带入到公式(13)可以得到(14),对延时-时域符号矩阵进行向量化操作可得(15)。
可选地,所述第一delay-time域的符号矩阵嵌入了delay-time域的导频序列,所述方法还包括:
根据N 1与N 2的映射关系,将所述第二delay-Doppler域的符号矩阵解映射到所述第一delay-Doppler域的符号矩阵;
根据Doppler域与time域的逆离散傅里叶变换关系,确定所述delay-time域的导频序列。
相较于time-frequency域和时域而言,信道在delay-Doppler域中具有慢变、稀疏等性质。为了保证高速移动场景下信道估计的准确性,本申请实施例在delay-Doppler域进行信道估计。由于本申请实施例符号复用在delay-time域,基于导频的信道估计算法需要在delay-time域中进行导频图案设计,以满足delay-Doppler域中信道估计的需要。
由于delay-Doppler域中二维卷积的输入-输出关系,为了保证导频符 号不受周围数据符号的污染,需要根据信道的最大延时和最大多普勒频移安插保卫符号。在有小数多普勒频移的信道下,多普勒域需要全部安插保卫符号,而延时维度需要在导频所在的延时处前后各预留最大延时的范围即可。考虑小数多普勒频移下,延时-多普勒域的信道估计的开销如图4最右侧图所示,其中,图4为本申请实施例提供的在延时-时间域导频图案设计的示意图。本申请实施例根据N1和N2多普勒单一维度的映射关系将图4最右侧的延时-多普勒域解映射到中间区域,接着根据多普勒-Doppler域与时间time域的反离散傅里叶变化关系,可以得到图4左侧图中delay-time域的导频图案设计。
可选地,所述导频序列在delay-time域资源格上映射得到的导频图案的表达式为:
Figure PCTCN2022103596-appb-000018
其中,
Figure PCTCN2022103596-appb-000019
为delay-time域的符号矩阵,X DT[l,k]表示delay-time域资源格中的第l行第k列的符号,l p为导频序列所在的行,X DDS为delay-Doppler域的符号矩阵,l max为信道最大延时,d[l,k]表示数据符号。
其中,导频序列满足:
导频delay-time域的序列组成,插入在维度为M×N 1的delay-time域的符号集的第l p行上;
导频序列由公式(21a)计算得出;
与第l p行相邻的第l p-l max到l p-1行,以及第l p+1到l p+l max行,其中的符号均为零。
在本申请实施例中,根据延时-时间域与延时-多普勒域的对应关系,提出延时-时间域的导频图案设计方案,进而可以使得信道估计在延时-多 普勒域进行,在不依赖于整数多普勒假设的情形下,保证了在小数多普勒频移信道下信道估计的准确性,且可降低导频图案的开销。
图5为本申请实施例提供的信号接收方法的流程示意图,如图5所示,该方法包括以下步骤:
步骤500、接收端对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;
需要说明的是,接收端可以是网络侧设备,也可以终端。
可选地,接收端对接收到的时域信号进行第二预设处理,以将接收到的时域信号转换到延时-时间delay-time域。
可选地,所述第二预设处理为第一预设处理的逆操作,所述第二预设处理包括:
将接收到的时域信号变换到delay-Doppler域,然后从delay-Doppler域变换到delay-time域,得到延时-时间delay-time域的接收信号。
步骤501、接收端基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;
步骤502、接收端根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。
在本申请实施例中,接收端通过对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号,然后基于delay-time域的导频序列在delay-Doppler域进行信道估计,得到信道相关参数,进而根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测,降低了PAPR,提高了高速移动场景下信道估计的准确性且降低了信道估计的开销,降低了所提出系统的均衡时间复杂度。
可选地,本申请实施例提供的信号接收方法还包括:获取所述delay-time域的导频序列。
可选地,所述delay-time域的导频序列通过以下方式之一得到:
根据索引值或位图bitmap信息,计算得到所述delay-time域的导频序 列,其中,所述索引值或位图bitmap信息通过下行控制信息(Downlink Control Information,DCI)或无线资源控制(Radio Resource Control,RRC)信令指示,所述索引值或位图bitmap信息表示delay-Doppler域的单点导频脉冲在大小为M×N 1的delay-Doppler资源格中的Doppler维度上的位置;
根据导频序列索引,通过查询导频索引表得到所述delay-time域的导频序列,其中,所述导频序列索引通过DCI或RRC信令指示,所述导频索引表为协议预配置或者通过广播信令指示。
在一些可选的实施例中,利用DCI或RRC信令指示一个索引值k 0或者bitmap,该索引值或bitmap表示的是delay-Doppler域的单点导频脉冲在大小为M×N 1的delay-Doppler资源格中的Doppler维度上的位置(坐标)。用户设备(user equipment,UE)接收到索引值k 0或bitmap后,进行如下运算获取导频序列:
Figure PCTCN2022103596-appb-000020
其中,p DT表示delay-time域的导频序列,p DD表示一个维度为1×N 1的行向量,且满足:
Figure PCTCN2022103596-appb-000021
在一些可选的实施例中,利用DCI或RRC信令指示一个导频序列索引。UE通过查导频索引表获取导频序列,其中,导频索引表为协议预配置。
在一些可选的实施例中,利用DCI或RRC信令指示一个导频序列索引。UE通过查导频索引表获取导频。其中,导频索引表为网络侧设备利用广播信令指示,例如同步信号块(synchronization signal block,SSB),系统信息块(System Information Block type1,SIB1)等。
可选地,所述对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号,包括:
对接收到的时域信号去向量化,得到第三delay-time域的符号矩阵;
对所述第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到第三delay-Doppler域的符号矩阵;
对所述第三delay-Doppler域的符号矩阵进行解映射,得到第四delay-Doppler域的符号矩阵;
对所述第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT,得到第四delay-time域的符号矩阵,其中,所述第四delay-time域的符号矩阵为所述delay-time域的接收信号。
对接收到的时域信号进行第二预设处理可以参考图3所示的解调流程。
可选地,所述对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号,包括:
步骤5001、对接收到的长度为MN 2的时域信号去向量化,得到维度为M×N 2的第三delay-time域的符号矩阵,其中,M代表所述第三delay-time域的符号矩阵的行数,N 2代表所述第三delay-time域的符号矩阵的列数;
可选地,将接收到的长度为MN 2的时域信号去向量化写成矩阵的形式可得:
Y T=devec(y T)      (16)
其中,devec(.)表示去向量化操作,
Figure PCTCN2022103596-appb-000022
步骤5002、对所述维度为M×N 2的第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到维度为M×N 2的第三delay-Doppler域的符号矩阵;
可选地,通过维格纳变换(Weigner transform)将所述第三delay-time域的符号矩阵转化到时-频域中,
Y TF=F MG rxY T      (17)
其中,G rx表示接收波形对应矩阵,在此处采用矩形波,即G rx=I M
然后,通过SFFT将信号转化到延时-多普勒域中,得到维度为M×N 2 的第三delay-Doppler域的符号矩阵Y DDL
Figure PCTCN2022103596-appb-000023
其中,F M H表示M点的傅里叶变换矩阵的共轭转置,即M点的IDFT矩阵,
Figure PCTCN2022103596-appb-000024
表示N 2点的离散傅里叶变换DFT矩阵;
将公式(17)代入公式(18),可得
Figure PCTCN2022103596-appb-000025
即对所述维度为M×N 2的第三delay-time域的符号矩阵Y T进行离散傅里叶变换DFT,得到维度为M×N 2的第三delay-Doppler域的符号矩阵。
步骤5003、对所述维度为M×N 2的第三delay-Doppler域的符号矩阵进行解映射,得到维度为M×N 1的第四delay-Doppler域的符号矩阵;
通过解映射,将延时-多普勒域的接收信号转化到小范围延时-多普勒域中:
Figure PCTCN2022103596-appb-000026
其中,
Figure PCTCN2022103596-appb-000027
为解映射矩阵,N 2≥N 1
步骤5004、对所述维度为M×N 1的第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT,得到维度为M×N 1的第四delay-time域的符号矩阵,其中,所述维度为M×N 1的第四delay-time域的符号矩阵为所述delay-time域的接收信号;
其中,N 1为第四delay-Doppler域的符号矩阵的列数,N 1为小于等于N 2的整数。
最后,通过逆离散傅里叶变换,将所述维度为M×N 1的第四delay-Doppler域的符号矩阵转化到延时-时域中:
Figure PCTCN2022103596-appb-000028
其中,离散傅里叶矩阵的定义如下:
Figure PCTCN2022103596-appb-000029
其中,
Figure PCTCN2022103596-appb-000030
矩阵左乘和右乘F N,等价于对矩阵的列和行进行离散 傅里叶变换。
可选地,所述基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数,包括:
步骤5011、计算检测区域内的所述delay-time域的导频序列在延时-多普勒delay-Doppler域的冲击响应;
其中,检测区域是指导频及其保护带所在的区域,如图4中星号和圆圈所在的区域。
以原点处的delay-time域的导频序列为例,延时-多普勒域的点对点对应关系如下:
Figure PCTCN2022103596-appb-000031
其中,P表示信道总抽头数,h p
Figure PCTCN2022103596-appb-000032
分别表示第p个抽头的信道增益,第p个抽头的延时,第p个抽头的整数多普勒,第p个抽头的小数多普勒,Y DDL[l,k]为延时-多普勒域的符号矩阵的第l行第k列的符号,l′为DDL域符号的延时下标,k′为DDL域符号的多普勒频移下标,φ p为第p条径的信道系数的相位,N cp为循环前缀的长度。
其中,
Figure PCTCN2022103596-appb-000033
其中,
Figure PCTCN2022103596-appb-000034
Figure PCTCN2022103596-appb-000035
由于信道的最大延时有上界,假设导频放在原点处,在延时-多普勒域导频序列的冲击响应可以表示如下:
Figure PCTCN2022103596-appb-000036
其中,i为导频的延时维度的下标,j为导频的多普勒维度的下标,ψ p为导频的冲激响应在信道的第p条径所对应的频偏。
步骤5012、对所述冲击响应与多普勒的函数进行相关计算,得到第一相关函数;
可选地,根据公式(23)-(24),通过对检测区域的导频序列的冲击响应与关于多普勒的函数
Figure PCTCN2022103596-appb-000037
进行相关计算,可以得到如下第一相关函数:
Figure PCTCN2022103596-appb-000038
步骤5013、对所述第一相关函数的幅值进行阈值检测,得到阈值检测结果;
可选地,根据所述公式(29)进行阈值检测,得到阈值检测结果。
步骤5014、根据所述阈值检测结果,对信道参数进行估计,得到信道相关参数。
根据阈值检测结果,通过如下公式对信道相关参数进行估计:
Figure PCTCN2022103596-appb-000039
其中,
Figure PCTCN2022103596-appb-000040
表示第p条径除信道系数对应的相位之外额外的相位旋转,
Figure PCTCN2022103596-appb-000041
表示第p条径对应的相位旋转。
需要说明的是,相关技术一:基于嵌入式导频的信道估计算法在接收端检测区域对接收信号幅值进行阈值检测,根据收发端导频所在的位置和相应的值估计出信道相应的参数,这种方法用整数位置处信道估计的结果去拟合小数多普勒的影响,在高速且有小数多普勒频移的信道下性能很差。相关技术二:根据相关函数的信道估计算法,能够解决小数多普勒频移下的信道估计,但需单一帧单独发射导频且需要假设下一帧发送数据的信道与导频经过的信道是同样的,频谱效率低且在高速移动场景下假设不成立,可行性低。而本申请实施例提出的信道估计方法,保证了基于相关函数的准确性的同时,降低了信道估计的开销,在每一帧中进行嵌入导频的同时,放入数据符号,不用进行假设导频所在帧的信道与下一帧传送数据的帧对应的信道。本申请实施例提高了高速移动场景下信道估计的实用性和准确性。
在一些可选的实施例中,所述根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测,包括:
基于最小均方误差(Minimum Mean Squared Error,MMSE)的线性均衡算法,根据所述接收信号和delay-Doppler域的输入输出关系,得到 delay-Doppler域的符号估计结果;
对所述delay-Doppler域的符号估计结果进行去向量化和解映射,得到delay-time域的符号估计结果。
根据公式(5)可以得到,
Figure PCTCN2022103596-appb-000042
根据公式(17)和(18)可得,
Figure PCTCN2022103596-appb-000043
进一步向量化可以得到,
Figure PCTCN2022103596-appb-000044
其中,根据kronecker积的性质可以得公式(33);根据公式(13),可以得公式(34);将公式(31)带入公式(34)可以得到公式(35),令
Figure PCTCN2022103596-appb-000045
可以得到公式(36)。根据延时-多普勒的输入输出关系,可以得到MMSE的解如下:
Figure PCTCN2022103596-appb-000046
其中,σ 2是白噪声的方差。
进一步,去向量化得到:
X DDL=devec(x DDL)      (38)
解映射得到:
Figure PCTCN2022103596-appb-000047
转化到延时-时间域得到延时-时域的符号估计结果如下:
Figure PCTCN2022103596-appb-000048
进而估计出发射端延时-时间域的符号。
由于公式(37)中涉及到大型矩阵求逆的操作,复杂度的阶数在本系统中是O((MN 2) 3),在实际系统中运算时间长。故需要低复杂度的符号检测算 法。
下面提供一种在延时-时间域的基于MP算法的符号检测算法。
在一些可选的实施例中,所述根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测,包括:
步骤5021、根据delay-time域的输入-输出关系,得到在所述delay-time域中点对点的输入-输出关系;
其中,点对点是中离散样点对离散样点。
步骤5022、根据对干扰项的高斯近似,计算所述delay-time域中的因子节点向所述delay-time域中的变量节点传递的第一信息,所述第一信息包括高斯变量的均值和方差;
其中,因子节点由部分接收样点y构成,因子节点也可以称为观测节点,变量节点由部分发送样点x构成。
步骤5023、计算所述变量节点向所述因子节点传递的第二信息,所述第二信息包括所述变量节点的符号概率质量;
步骤5024、对当前迭代计算出的符号概率质量和上一次迭代的结果进行阻尼控制;
步骤5025、在满足迭代停止条件的情况下,停止迭代,并对所述变量节点进行符号检测;或者,在不满足迭代停止条件的情况下,继续迭代。
即因子节点输出“均值和方差”,作为变量节点的输入,变量节点输出“符号概率质量”,作为观测节点的输入,反复循环;直到“均值和方差”或“符号概率质量”的数值满足迭代停止条件,则跳出循环,把最后一次循环的输出作为结果,进行后续处理。
传统的OTFS系统中,符号复用在延时-多普勒域,根据延时-多普勒域的输入输出关系构建稀疏连接的因子图。由于本申请实施例符号复用在延时-时间域,因此需推导延时-时间域的输入-输出关系。根据公式(10)可得:
Figure PCTCN2022103596-appb-000049
由于延时-时间域的等效信道矩阵H DT是稀疏的,构建稀疏连接的因子图去进行非线性符号检测。变量节点和因子节点之间进行消息传递,定义每一个因子节点y DT[d],d=1,...,MN,与W个变量节点相连并进行消息传递,其中H DT的每一行和每一列有W个非零元素,W表示delay-time域的等效信道矩阵每行或每列不为零元素的个数。定义与y DT[d]相连的x DT元素的下标在集合
Figure PCTCN2022103596-appb-000050
中;同样定义与x DT[c]相连的y DT的元素在集合
Figure PCTCN2022103596-appb-000051
中。
延时-时间域的点对点输入-输出关系可以写成如下形式
Figure PCTCN2022103596-appb-000052
其中,d表示因子节点的下标,c表示当前变量节点的下标,z[d]表示delay-time域第d个因子节点中所含的白噪声,e表示与第d个因子节点相连的除当前变量节点以外的变量节点的下标。
其中,干扰和噪声被建模成高斯变量ζ。因子节点向变量节点传递高斯变量的均值和方差,按照如下计算:
Figure PCTCN2022103596-appb-000053
Figure PCTCN2022103596-appb-000054
其中,a j表示符号矩阵中的第j个符号,
Figure PCTCN2022103596-appb-000055
表示第i-1次迭代中与第j个因子节点相连的第e个变量节点的概率质量函数。
需要说明的是,概率质量函数是针对离散型随机变量的,对应连续样点的符号概率密度。
变量节点向因子节点传递符号的概率质量函数,按照如下进行更新,
Figure PCTCN2022103596-appb-000056
其中,Δ∈(0,1]是阻尼因子,用于控制收敛速度。
Figure PCTCN2022103596-appb-000057
其中,
Figure PCTCN2022103596-appb-000058
其中,迭代的收敛速度按照如下进行控制:
Figure PCTCN2022103596-appb-000059
其中,γ>0是一个控制迭代停止的常数,
Figure PCTCN2022103596-appb-000060
是一个指示函数当括号中叙述条件满足时取值为1,否则取值为0,对符号概率进行归一化操作,可以得到:
Figure PCTCN2022103596-appb-000061
其中,
Figure PCTCN2022103596-appb-000062
表示第c个符号取a j符号的概率,Q表示星座点的个数即调制的阶数。
最终的逐符号判决按照如下进行:
Figure PCTCN2022103596-appb-000063
可以理解的是,本申请实施例中根据信道相关参数,对接收信号进行delay-time域的符号检测,包括:
根据延时-时间域的输入-输出关系,即公式(43),得到在该延时-时 间域中点对点的输入-输出关系,即公式(44);
根据对干扰项的高斯近似,计算延时-时间域的因子节点向该延时-时间域中的变量节点传递的信息,即高斯变量的均值公式(45)和方差公式(46)。
根据公式(49)和(52)计算变量节点向因子节点传递的信息,即延时-时间域变量节点的符号概率质量;
根据公式(47)对当前迭代计算出的符号概率质量和上一次迭代的结果进行阻尼(damping),提高收敛性能;
判断是否满足迭代停止条件,若不满足,继续迭代,若满足,停止迭代,根据公式(53)对变量节点进行符号检测。
本申请实施例采用在延时-时间域的基于MP算法的符号检测算法,根据延时-时间域的输入输出关系,调整了变量节点和因子节点之间的线性运算关系,将在延时-多普勒域DD域的基于MP的符号检测算法变为在延时-时间域的基于MP的符号检测算法,降低了均衡时间复杂度。
图6为本申请实施例提供的信号处理流程示意图,首先进行发射端的导频图案设计,然后,接收端进行信道估计以及符号检测。
需要说明的是,本申请实施例提供的信道发送方法,执行主体可以为信号发送装置,或者,该信号发送装置中的用于执行信道发送方法的控制模块。本申请实施例中以信号发送装置执行信道发送方法为例,说明本申请实施例提供的信号发送装置。
图7为本申请实施例提供的信号发送装置700的结构示意图,如图7所示,该装置包括:映射单元710和第一处理单元720,其中,
映射单元710,用于在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;
第一处理单元720,用于对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。
在本申请实施例中,通过将调制符号映射在延时-时间域,得到第一delay-time域的符号矩阵,对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送,发送过程保持了单载波特性,在保证OTFS在高速移动场景下性能的前提下降低PAPR。
可选地,所述发射端对所述第一delay-time域的符号矩阵进行第一预设处理,包括:
对所述第一delay-time域的符号矩阵在时间time维度进行离散傅里叶变换DFT,得到第一延时-多普勒delay-Doppler域的符号矩阵;
对所述第一delay-Doppler域的符号矩阵进行多普勒Doppler维度扩展,得到第二delay-Doppler域的符号矩阵;
对所述第二delay-Doppler域的符号矩阵在多普勒Doppler维度进行逆离散傅里叶变换IDFT,得到第二delay-time域的符号矩阵;
对所述第二delay-time域的符号矩阵进行向量化处理,得到时域采样点并将所述时域采样点经脉冲成型后发送。
可选地,所述第一处理单元用于:
对维度为M×N 1的所述第一delay-time域的符号矩阵,其中M代表所述第一delay-time域的符号矩阵的行数,N 1代表所述第一delay-time域的符号矩阵的列数,逐行进行长度为N 1的离散傅里叶变换DFT,得到维度为M×N 1的第一延时-多普勒delay-Doppler域的符号矩阵;
将所述维度为M×N 1的第一delay-Doppler域的符号矩阵映射到维度为M×N 2的delay-Doppler域资源格上,得到维度为M×N 2的第二delay-Doppler域的符号矩阵;
对所述维度为M×N 2的第二delay-Doppler域的符号矩阵,逐行进行长度为N 2的逆离散傅里叶变换IDFT,得到维度为M×N 2的第二delay-time域的符号矩阵;
对所述维度为M×N 2的第二delay-time域的符号矩阵进行向量化处理,得到长度为MN 2的时域采样点,并将所述时域采样点经脉冲成型后发送;
其中,N 2为第二delay-Doppler域的符号矩阵的列数,N 2为大于等于N 1的整数。
可选地,所述第一delay-time域的符号矩阵嵌入了delay-time域的导频序列,所述装置还包括:
解映射单元,用于根据N 1与N 2的映射关系,将所述第二delay-Doppler域的符号矩阵解映射到所述第一delay-Doppler域的符号矩阵;
导频确定单元,用于根据Doppler域与time域的逆离散傅里叶变换关系,确定所述delay-time域的导频序列。
可选地,所述导频序列在delay-time域资源格上映射得到的导频图案的表达式为:
Figure PCTCN2022103596-appb-000064
其中,
Figure PCTCN2022103596-appb-000065
为delay-time域的符号矩阵,X DT[l,k]表示delay-time域资源格中的第l行第k列的符号,l p为导频序列所在的行,X DDS为delay-Doppler域的符号矩阵,l max为信道最大延时,d[l,k]表示数据符号。
在本申请实施例中,根据延时-时间域与延时-多普勒域的对应关系,提出延时-时间域的导频图案设计方案,进而可以使得信道估计在延时-多普勒域进行,在不依赖于整数多普勒假设的情形下,保证了在小数多普勒频移信道下信道估计的准确性,且可降低导频图案的开销。
本申请实施例中的信号发送装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal  computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的信号发送装置能够实现图2至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例提供的信道接收方法,执行主体可以为信号接收装置,或者,该信号接收装置中的用于执行信道接收方法的控制模块。本申请实施例中以信号接收装置执行信道接收方法为例,说明本申请实施例提供的信号接收装置。
图8为本申请实施例提供的信号接收装置800的结构示意图,如图8所示,该装置包括:第二处理单元810、信道估计单元820和符号检测单元830,其中,
第二处理单元810,用于对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;
信道估计单元820,用于基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;
符号检测单元830,用于根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。
在本申请实施例中,通过对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号,然后基于delay-time域的导频序列进行信道估计,得到信道相关参数,进而根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测,降低了PAPR,提高了高速移动场景下信道估计的准确性且降低了信道估计的开销,降低了所提出系统的均衡时间复杂度。
可选地,所述delay-time域的导频序列通过以下方式之一得到:
根据索引值或位图bitmap信息,计算得到所述delay-time域的导频序列,其中,所述索引值或位图bitmap信息通过下行控制信息DCI或无线资源控制RRC信令指示,所述索引值或位图bitmap信息表示delay- Doppler域的单点导频脉冲在大小为M×N 1的delay-Doppler资源格中的Doppler维度上的位置;
根据导频序列索引,通过查询导频索引表得到所述delay-time域的导频序列,其中,所述导频序列索引通过DCI或RRC信令指示,所述导频索引表为协议预配置或者通过广播信令指示。
可选地,所述对接收到的时域信号进行第二预设处理,包括:
对接收到的时域信号去向量化,得到第三delay-time域的符号矩阵;
对所述第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到第三delay-Doppler域的符号矩阵;
对所述第三delay-Doppler域的符号矩阵进行解映射,得到第四delay-Doppler域的符号矩阵;
对所述第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT。
可选地,所述第二处理单元用于:
对接收到的长度为MN 2的时域信号去向量化,得到维度为M×N 2的第三delay-time域的符号矩阵,其中,M代表所述第三delay-time域的符号矩阵的行数,N 2代表所述第三delay-time域的符号矩阵的列数;
对所述维度为M×N 2的第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到维度为M×N 2的第三delay-Doppler域的符号矩阵;
对所述维度为M×N 2的第三delay-Doppler域的符号矩阵进行解映射,得到维度为M×N 1的第四delay-Doppler域的符号矩阵;
对所述维度为M×N 1的第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT,得到维度为M×N 1的第四delay-time域的符号矩阵,其中,所述维度为M×N 1的第四delay-time域的符号矩阵为所述delay-time域的接收信号;
其中,N 1为第四delay-Doppler域的符号矩阵的列数,N 1为小于等于N 2的整数。
可选地,所述信道估计单元用于:
计算检测区域内的所述delay-time域的导频序列在延时-多普勒delay-Doppler域的冲击响应;
对所述冲击响应与多普勒的函数进行相关计算,得到第一相关函数;
对所述第一相关函数的幅值进行阈值检测,得到阈值检测结果;
根据所述阈值检测结果,对信道参数进行估计,得到信道相关参数。
本申请实施例提高了高速移动场景下信道估计的实用性和准确性。
可选地,所述符号检测单元用于:
根据delay-time域的输入-输出关系,得到在所述delay-time域中点对点的输入-输出关系;
根据对干扰项的高斯近似,计算所述delay-time域中的因子节点向所述delay-time域中的变量节点传递的第一信息,所述第一信息包括高斯变量的均值和方差;
计算所述变量节点向所述因子节点传递的第二信息,所述第二信息包括所述变量节点的符号概率质量;
对当前迭代计算出的符号概率质量和上一次迭代的结果进行阻尼控制;
在满足迭代停止条件的情况下,停止迭代,并对所述变量节点进行符号检测;或者,在不满足迭代停止条件的情况下,继续迭代。
可选地,所述符号检测单元用于:
基于MMSE的线性均衡算法,根据所述接收信号和delay-Doppler域的输入输出关系,得到delay-Doppler域的符号估计结果;
对所述delay-Doppler域的符号估计结果进行去向量化和解映射,得到delay-time域的符号估计结果。
本申请实施例采用在延时-时间域的基于MP算法的符号检测算法,根据延时-时间域的输入输出关系,调整了变量节点和因子节点之间的线性运算关系,将在延时-多普勒域DD域的基于MP的符号检测算法变为在延时 -时间域的基于MP的符号检测算法,降低了均衡时间复杂度。
本申请实施例中的信号接收装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的信号接收装置能够实现图5至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901,存储器902,存储在存储器902上并可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述信道发送方法或信道接收方法实施例的各个过程,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述信道发送方法或信道接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。或者,所述处理器用于对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。该终端实施例是与上述方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将来自网络侧设备的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功 能、图像播放功能等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,处理器1010,用于在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;
对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。
在本申请实施例中,通过将调制符号映射在延时-时间域,得到第一delay-time域的符号矩阵,对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送,发送过程保持了单载波特性,在保证OTFS在高速移动场景下性能的前提下降低PAPR。
可选地,所述发射端对所述第一delay-time域的符号矩阵进行第一预设处理,包括:
对所述第一delay-time域的符号矩阵在时间time维度进行离散傅里叶变换DFT,得到第一延时-多普勒delay-Doppler域的符号矩阵;
对所述第一delay-Doppler域的符号矩阵进行多普勒Doppler维度扩展,得到第二delay-Doppler域的符号矩阵;
对所述第二delay-Doppler域的符号矩阵在多普勒Doppler维度进行逆离散傅里叶变换IDFT,得到第二delay-time域的符号矩阵;
对所述第二delay-time域的符号矩阵进行向量化处理。
可选地,所述对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送,包括:
对维度为M×N 1的所述第一delay-time域的符号矩阵,其中M代表所述第一delay-time域的符号矩阵的行数,N 1代表所述第一delay-time域的符号矩阵的列数,逐行进行长度为N 1的离散傅里叶变换DFT,得到维度为M×N 1的第一延时-多普勒delay-Doppler域的符号矩阵;
将所述维度为M×N 1的第一delay-Doppler域的符号矩阵映射到维度为M×N 2的delay-Doppler域资源格上,得到维度为M×N 2的第二delay-Doppler域的符号矩阵;
对所述维度为M×N 2的第二delay-Doppler域的符号矩阵,逐行进行长度为N 2的逆离散傅里叶变换IDFT,得到维度为M×N 2的第二delay-time域的符号矩阵;
对所述维度为M×N 2的第二delay-time域的符号矩阵进行向量化处理,得到长度为MN 2的时域采样点,并将所述时域采样点经脉冲成型后发送;
其中,N 2为第二delay-Doppler域的符号矩阵的列数,N 2为大于等于N 1的整数。
可选地,所述第一delay-time域的符号矩阵嵌入了delay-time域的导频序列,所述处理器1010还用于:
根据N 1与N 2的映射关系,将所述第二delay-Doppler域的符号矩阵解映射到所述第一delay-Doppler域的符号矩阵;
根据Doppler域与time域的逆离散傅里叶变换关系,确定所述delay-time域的导频序列。
可选地,所述导频序列在delay-time域资源格上映射得到的导频图案的表达式为:
Figure PCTCN2022103596-appb-000066
其中,
Figure PCTCN2022103596-appb-000067
为delay-time域的符号矩阵,X DT[l,k]表示delay-time域资源格中的第l行第k列的符号,l p为导频序列所在的行,X DDS为delay-Doppler域的符号矩阵,l max为信道最大延时,d[l,k]表示数据符号。
在本申请实施例中,根据延时-时间域与延时-多普勒域的对应关系,提出延时-时间域的导频图案设计方案,进而可以使得信道估计在延时-多普勒域进行,在不依赖于整数多普勒假设的情形下,保证了在小数多普勒频移信道下信道估计的准确性,且可降低导频图案的开销。
或者,处理器1010,用于:
对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;
基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;
根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。
在本申请实施例中,通过对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号,然后基于delay-time域的导频序列进行信道估计,得到信道相关参数,进而根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测,降低了PAPR,提高了高速移动场景下信道估计的准确性且降低了信道估计的开销,降低了所提出系统的均衡时间复杂度。
可选地,所述delay-time域的导频序列通过以下方式之一得到:
根据索引值或位图bitmap信息,计算得到所述delay-time域的导频序 列,其中,所述索引值或位图bitmap信息通过下行控制信息DCI或无线资源控制RRC信令指示,所述索引值或位图bitmap信息表示delay-
Doppler域的单点导频脉冲在大小为M×N 1的delay-Doppler资源格中的Doppler维度上的位置;
根据导频序列索引,通过查询导频索引表得到所述delay-time域的导频序列,其中,所述导频序列索引通过DCI或RRC信令指示,所述导频索引表为协议预配置或者通过广播信令指示。
可选地,所述对接收到的时域信号进行第二预设处理,包括:
对接收到的时域信号去向量化,得到第三delay-time域的符号矩阵;
对所述第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到第三delay-Doppler域的符号矩阵;
对所述第三delay-Doppler域的符号矩阵进行解映射,得到第四delay-Doppler域的符号矩阵;
对所述第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT。
可选地,所述对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号,包括:
对接收到的长度为MN 2的时域信号去向量化,得到维度为M×N 2的第三delay-time域的符号矩阵,其中,M代表所述第三delay-time域的符号矩阵的行数,N 2代表所述第三delay-time域的符号矩阵的列数;
对所述维度为M×N 2的第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到维度为M×N 2的第三delay-Doppler域的符号矩阵;
对所述维度为M×N 2的第三delay-Doppler域的符号矩阵进行解映射,得到维度为M×N 1的第四delay-Doppler域的符号矩阵;
对所述维度为M×N 1的第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT,得到维度为M×N 1的第四delay-time域的符号矩阵,其中,所述维度为M×N 1的第四delay-time域的符号矩阵为所述delay-time 域的接收信号;
其中,N 1为第四delay-Doppler域的符号矩阵的列数,N 1为小于等于N 2的整数。
可选地,所述基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数,包括:
计算检测区域内的所述delay-time域的导频序列在延时-多普勒delay-Doppler域的冲击响应;
对所述冲击响应与多普勒的函数进行相关计算,得到第一相关函数;
对所述第一相关函数的幅值进行阈值检测,得到阈值检测结果;
根据所述阈值检测结果,对信道参数进行估计,得到信道相关参数。
可选地,所述根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测,包括:
根据delay-time域的输入-输出关系,得到在所述delay-time域中点对点的输入-输出关系;
根据对干扰项的高斯近似,计算所述delay-time域中的因子节点向所述delay-time域中的变量节点传递的第一信息,所述第一信息包括高斯变量的均值和方差;
计算所述变量节点向所述因子节点传递的第二信息,所述第二信息包括所述变量节点的符号概率质量;
对当前迭代计算出的符号概率质量和上一次迭代的结果进行阻尼控制;
在满足迭代停止条件的情况下,停止迭代,并对所述变量节点进行符号检测;或者,在不满足迭代停止条件的情况下,继续迭代。
可选地,所述根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测,包括:
基于MMSE的线性均衡算法,根据所述接收信号和delay-Doppler域的输入输出关系,得到delay-Doppler域的符号估计结果;
对所述delay-Doppler域的符号估计结果进行去向量化和解映射,得到delay-time域的符号估计结果。
本申请实施例采用在延时-时间域的基于MP算法的符号检测算法,根据延时-时间域的输入输出关系,调整了变量节点和因子节点之间的线性运算关系,将在延时-多普勒域DD域的基于MP的符号检测算法变为在延时-时间域的基于MP的符号检测算法,降低了均衡时间复杂度。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述处理器用于在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。或者,所述处理器用于对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。该网络侧设备实施例是与上述方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络设备1100包括:天线1101、射频装置1102、基带装置1103。天线1101与射频装置1102连接。在上行方向上,射频装置1102通过天线1101接收信息,将接收的信息发送给基带装置1103进行处理。在下行方向上,基带装置1103对要发送的信息进行处理,并发送给射频装置1102,射频装置1102对收到的信息进行处理后经过天线1101发送出去。
上述频带处理装置可以位于基带装置1103中,以上实施例中网络侧设备执行的方法可以在基带装置1103中实现,该基带装置1103包括处理器1104和存储器1105。
基带装置1103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为处理器1104,与存储器1105 连接,以调用存储器1105中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1103还可以包括网络接口1106,用于与射频装置1102交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1105上并可在处理器1104上运行的指令或程序,处理器1104调用存储器1105中的指令或程序执行图7或图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号发送方法或信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号发送方法或信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更 多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (27)

  1. 一种信号发送方法,包括:
    发射端在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;
    发射端对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。
  2. 根据权利要求1所述的信号发送方法,其中,所述发射端对所述第一delay-time域的符号矩阵进行第一预设处理,包括:
    对所述第一delay-time域的符号矩阵在时间time维度进行离散傅里叶变换DFT,得到第一延时-多普勒delay-Doppler域的符号矩阵;
    对所述第一delay-Doppler域的符号矩阵进行多普勒Doppler维度扩展,得到第二delay-Doppler域的符号矩阵;
    对所述第二delay-Doppler域的符号矩阵在多普勒Doppler维度进行逆离散傅里叶变换IDFT,得到第二delay-time域的符号矩阵;
    对所述第二delay-time域的符号矩阵进行向量化处理,得到时域采样点并将所述时域采样点经脉冲成型后发送。
  3. 根据权利要求2所述的信号发送方法,其中,所述对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送,包括:
    对维度为M×N 1的所述第一delay-time域的符号矩阵,逐行进行长度为N 1的离散傅里叶变换DFT,得到维度为M×N 1的第一延时-多普勒delay-Doppler域的符号矩阵,其中M代表所述第一delay-time域的符号矩阵的行数,N 1代表所述第一delay-time域的符号矩阵的列数;
    将所述维度为M×N 1的第一delay-Doppler域的符号矩阵映射到维度为M×N 2的delay-Doppler域资源格上,得到维度为M×N 2的第二delay-Doppler域的符号矩阵;
    对所述维度为M×N 2的第二delay-Doppler域的符号矩阵,逐行进行长度为N 2的逆离散傅里叶变换IDFT,得到维度为M×N 2的第二delay-time域的符号矩阵;
    对所述维度为M×N 2的第二delay-time域的符号矩阵进行向量化处理,得到长度为MN 2的时域采样点,并将所述时域采样点经脉冲成型后发送;
    其中,N 2为第二delay-Doppler域的符号矩阵的列数,N 2为大于等于N 1的整数。
  4. 根据权利要求3所述的信号发送方法,其中,所述第一delay-time域的符号矩阵嵌入了delay-time域的导频序列,所述方法还包括:
    根据N 1与N 2的映射关系,将所述第二delay-Doppler域的符号矩阵解映射到所述第一delay-Doppler域的符号矩阵;
    根据Doppler域与time域的逆离散傅里叶变换关系,确定所述delay-time域的导频序列。
  5. 根据权利要求4所述的信号发送方法,其中,所述导频序列在delay-time域资源格上映射得到的导频图案的表达式为:
    Figure PCTCN2022103596-appb-100001
    其中,
    Figure PCTCN2022103596-appb-100002
    为delay-time域的符号矩阵,X DT[l,k]表示delay-time域资源格中的第l行第k列的符号,l p为导频序列所在的行,X DDS为delay-Doppler域的符号矩阵,l max为信道最大延时,d[l,k]表示数据符号。
  6. 一种信号接收方法,包括:
    接收端对接收到的时域信号进行第二预设处理,得到延时-时间 delay-time域的接收信号;
    接收端基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;
    接收端根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。
  7. 根据权利要求6所述的信号接收方法,其中,所述delay-time域的导频序列通过以下方式之一得到:
    根据索引值或位图bitmap信息,计算得到所述delay-time域的导频序列,其中,所述索引值或位图bitmap信息通过下行控制信息DCI或无线资源控制RRC信令指示,所述索引值或位图bitmap信息表示delay-Doppler域的单点导频脉冲在大小为M×N 1的delay-Doppler资源格中的Doppler维度上的位置;
    根据导频序列索引,通过查询导频索引表得到所述delay-time域的导频序列,其中,所述导频序列索引通过DCI或RRC信令指示,所述导频索引表为协议预配置或者通过广播信令指示。
  8. 根据权利要求6所述的信号接收方法,其中,所述对接收到的时域信号进行第二预设处理,包括:
    对接收到的时域信号去向量化,得到第三delay-time域的符号矩阵;
    对所述第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到第三delay-Doppler域的符号矩阵;
    对所述第三delay-Doppler域的符号矩阵进行解映射,得到第四delay-Doppler域的符号矩阵;
    对所述第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT。
  9. 根据权利要求8所述的信号接收方法,其中,所述对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号,包括:
    对接收到的长度为MN 2的时域信号去向量化,得到维度为M×N 2的第三delay-time域的符号矩阵,其中,M代表所述第三delay-time域的符号矩阵的行数,N 2代表所述第三delay-time域的符号矩阵的列数;
    对所述维度为M×N 2的第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到维度为M×N 2的第三delay-Doppler域的符号矩阵;
    对所述维度为M×N 2的第三delay-Doppler域的符号矩阵进行解映射,得到维度为M×N 1的第四delay-Doppler域的符号矩阵;
    对所述维度为M×N 1的第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT,得到维度为M×N 1的第四delay-time域的符号矩阵,其中,所述维度为M×N 1的第四delay-time域的符号矩阵为所述delay-time域的接收信号;
    其中,N 1为第四delay-Doppler域的符号矩阵的列数,N 1为小于等于N 2的整数。
  10. 根据权利要求6所述的信号接收方法,其中,所述基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数,包括:
    计算检测区域内的所述delay-time域的导频序列在延时-多普勒delay-Doppler域的冲击响应;
    对所述冲击响应与多普勒的函数进行相关计算,得到第一相关函数;
    对所述第一相关函数的幅值进行阈值检测,得到阈值检测结果;
    根据所述阈值检测结果,对信道参数进行估计,得到信道相关参数。
  11. 根据权利要求6所述的信号接收方法,其中,所述根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测,包括:
    根据delay-time域的输入-输出关系,得到在所述delay-time域中点对点的输入-输出关系;
    根据对干扰项的高斯近似,计算所述delay-time域中的因子节点向所述delay-time域中的变量节点传递的第一信息,所述第一信息包括高斯变量的均值和方差;
    计算所述变量节点向所述因子节点传递的第二信息,所述第二信息包括所述变量节点的符号概率质量;
    对当前迭代计算出的符号概率质量和上一次迭代的结果进行阻尼控制;
    在满足迭代停止条件的情况下,停止迭代,并对所述变量节点进行符号检测;或者,在不满足迭代停止条件的情况下,继续迭代。
  12. 根据权利要求6所述的信号接收方法,其中,所述根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测,包括:
    基于MMSE的线性均衡算法,根据所述接收信号和delay-Doppler域的输入输出关系,得到delay-Doppler域的符号估计结果;
    对所述delay-Doppler域的符号估计结果进行去向量化和解映射,得到delay-time域的符号估计结果。
  13. 一种信号发送装置,包括:
    映射单元,用于在延时-时间delay-time域映射调制符号,得到第一delay-time域的符号矩阵;
    第一处理单元,用于对所述第一delay-time域的符号矩阵进行第一预设处理,得到时域采样点,经脉冲成型后发送。
  14. 根据权利要求13所述的信号发送装置,其中,所述对所述第一delay-time域的符号矩阵进行第一预设处理,包括:
    对所述第一delay-time域的符号矩阵在时间time维度进行离散傅里叶变换DFT,得到第一延时-多普勒delay-Doppler域的符号矩阵;
    对所述第一delay-Doppler域的符号矩阵进行多普勒Doppler维度扩展,得到第二delay-Doppler域的符号矩阵;
    对所述第二delay-Doppler域的符号矩阵在多普勒Doppler维度进行 逆离散傅里叶变换IDFT,得到第二delay-time域的符号矩阵;
    对所述第二delay-time域的符号矩阵进行向量化处理,得到时域采样点并将所述时域采样点经脉冲成型后发送。
  15. 根据权利要求14所述的信号发送装置,其中,所述第一处理单元用于:
    对维度为M×N 1的所述第一delay-time域的符号矩阵,逐行进行长度为N 1的离散傅里叶变换DFT,得到维度为M×N 1的第一延时-多普勒delay-Doppler域的符号矩阵,其中M代表所述第一delay-time域的符号矩阵的行数,N 1代表所述第一delay-time域的符号矩阵的列数;
    将所述维度为M×N 1的第一delay-Doppler域的符号矩阵映射到维度为M×N 2的delay-Doppler域资源格上,得到维度为M×N 2的第二delay-Doppler域的符号矩阵;
    对所述维度为M×N 2的第二delay-Doppler域的符号矩阵,逐行进行长度为N 2的逆离散傅里叶变换IDFT,得到维度为M×N 2的第二delay-time域的符号矩阵;
    对所述维度为M×N 2的第二delay-time域的符号矩阵进行向量化处理,得到长度为MN 2的时域采样点,并将所述时域采样点经脉冲成型后发送;
    其中,N 2为第二delay-Doppler域的符号矩阵的列数,N 2为大于等于N 1的整数。
  16. 根据权利要求15所述的信号发送装置,其中,所述第一delay-time域的符号矩阵嵌入了delay-time域的导频序列,所述装置还包括:
    解映射单元,用于根据N 1与N 2的映射关系,将所述第二delay-Doppler域的符号矩阵解映射到所述第一delay-Doppler域的符号矩阵;
    导频确定单元,用于根据Doppler域与time域的逆离散傅里叶变换关系,确定所述delay-time域的导频序列。
  17. 根据权利要求16所述的信号发送装置,其中,所述导频序列在 delay-time域资源格上映射得到的导频图案的表达式为:
    Figure PCTCN2022103596-appb-100003
    其中,
    Figure PCTCN2022103596-appb-100004
    为delay-time域的符号矩阵,X DT[l,k]表示delay-time域资源格中的第l行第k列的符号,l p为导频序列所在的行,X DDS为delay-Doppler域的符号矩阵,l max为信道最大延时,d[l,k]表示数据符号。
  18. 一种信号接收装置,包括:
    第二处理单元,用于对接收到的时域信号进行第二预设处理,得到延时-时间delay-time域的接收信号;
    信道估计单元,用于基于delay-time域的导频序列,在delay-Doppler域进行信道估计,得到信道相关参数;
    符号检测单元,用于根据所述信道相关参数,对所述接收信号进行delay-time域的符号检测。
  19. 根据权利要求18所述的信号接收装置,其中,所述delay-time域的导频序列通过以下方式之一得到:
    根据索引值或位图bitmap信息,计算得到所述delay-time域的导频序列,其中,所述索引值或位图bitmap信息通过下行控制信息DCI或无线资源控制RRC信令指示,所述索引值或位图bitmap信息表示delay-Doppler域的单点导频脉冲在大小为M×N 1的delay-Doppler资源格中的Doppler维度上的位置;
    根据导频序列索引,通过查询导频索引表得到所述delay-time域的导频序列,其中,所述导频序列索引通过DCI或RRC信令指示,所述导频索引表为协议预配置或者通过广播信令指示。
  20. 根据权利要求18所述的信号接收装置,其中,所述对接收到的时域信号进行第二预设处理,包括:
    对接收到的时域信号去向量化,得到第三delay-time域的符号矩阵;
    对所述第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到第三delay-Doppler域的符号矩阵;
    对所述第三delay-Doppler域的符号矩阵进行解映射,得到第四delay-Doppler域的符号矩阵;
    对所述第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT。
  21. 根据权利要求20所述的信号接收装置,其中,所述第二处理单元用于:
    对接收到的长度为MN 2的时域信号去向量化,得到维度为M×N 2的第三delay-time域的符号矩阵,其中,M代表所述第三delay-time域的符号矩阵的行数,N 2代表所述第三delay-time域的符号矩阵的列数;
    对所述维度为M×N 2的第三delay-time域的符号矩阵进行离散傅里叶变换DFT,得到维度为M×N 2的第三delay-Doppler域的符号矩阵;
    对所述维度为M×N 2的第三delay-Doppler域的符号矩阵进行解映射,得到维度为M×N 1的第四delay-Doppler域的符号矩阵;
    对所述维度为M×N 1的第四delay-Doppler域的符号矩阵逐行进行逆离散傅里叶变换IDFT,得到维度为M×N 1的第四delay-time域的符号矩阵,其中,所述维度为M×N 1的第四delay-time域的符号矩阵为所述delay-time域的接收信号;
    其中,N 1为第四delay-Doppler域的符号矩阵的列数,N 1为小于等于N 2的整数。
  22. 根据权利要求18所述的信号接收装置,其中,所述信道估计单元用于:
    计算检测区域内的所述delay-time域的导频序列在延时-多普勒 delay-Doppler域的冲击响应;
    对所述冲击响应与多普勒的函数进行相关计算,得到第一相关函数;
    对所述第一相关函数的幅值进行阈值检测,得到阈值检测结果;
    根据所述阈值检测结果,对信道参数进行估计,得到信道相关参数。
  23. 根据权利要求18所述的信号接收装置,其中,所述符号检测单元用于:
    根据delay-time域的输入-输出关系,得到在所述delay-time域中点对点的输入-输出关系;
    根据对干扰项的高斯近似,计算所述delay-time域中的因子节点向所述delay-time域中的变量节点传递的第一信息,所述第一信息包括高斯变量的均值和方差;
    计算所述变量节点向所述因子节点传递的第二信息,所述第二信息包括所述变量节点的符号概率质量;
    对当前迭代计算出的符号概率质量和上一次迭代的结果进行阻尼控制;
    在满足迭代停止条件的情况下,停止迭代,并对所述变量节点进行符号检测;或者,在不满足迭代停止条件的情况下,继续迭代。
  24. 根据权利要求18所述的信号接收装置,其中,所述符号检测单元用于:
    基于MMSE的线性均衡算法,根据所述接收信号和delay-Doppler域的输入输出关系,得到delay-Doppler域的符号估计结果;
    对所述delay-Doppler域的符号估计结果进行去向量化和解映射,得到delay-time域的符号估计结果。
  25. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实 现如权利要求1至5任一项所述的信号发送方法的步骤,或实现如权利要求6至12任一项所述的信号接收方法的步骤。
  26. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至5任一项所述的信号发送方法的步骤,或实现如权利要求6至12任一项所述的信号接收方法的步骤。
  27. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至5任一项所述的信号发送方法的步骤,或实现如权利要求6至12任一项所述的信号接收方法的步骤。
PCT/CN2022/103596 2021-07-05 2022-07-04 信号发送方法、接收方法、装置及设备 WO2023280094A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22836845.2A EP4369670A1 (en) 2021-07-05 2022-07-04 Signal sending and receiving method and apparatus and device
US18/404,217 US20240163140A1 (en) 2021-07-05 2024-01-04 Signal Sending Method and Apparatus, Signal Receiving Method and Apparatus, and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110758863.5A CN115589350A (zh) 2021-07-05 2021-07-05 信号发送方法、接收方法、装置及设备
CN202110758863.5 2021-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/404,217 Continuation US20240163140A1 (en) 2021-07-05 2024-01-04 Signal Sending Method and Apparatus, Signal Receiving Method and Apparatus, and Device

Publications (1)

Publication Number Publication Date
WO2023280094A1 true WO2023280094A1 (zh) 2023-01-12

Family

ID=84771957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103596 WO2023280094A1 (zh) 2021-07-05 2022-07-04 信号发送方法、接收方法、装置及设备

Country Status (4)

Country Link
US (1) US20240163140A1 (zh)
EP (1) EP4369670A1 (zh)
CN (1) CN115589350A (zh)
WO (1) WO2023280094A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288710A1 (en) * 2016-04-01 2017-10-05 Cohere Technologies, Inc. Tomlinson-harashima precoding in an otfs communication system
CN112600783A (zh) * 2020-10-21 2021-04-02 西安电子科技大学 一种基于Golay分组编码的OTFS系统峰均比抑制方法
WO2021099168A1 (en) * 2019-11-19 2021-05-27 Volkswagen Aktiengesellschaft Otfs embedded pilot estimation extension

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288710A1 (en) * 2016-04-01 2017-10-05 Cohere Technologies, Inc. Tomlinson-harashima precoding in an otfs communication system
WO2021099168A1 (en) * 2019-11-19 2021-05-27 Volkswagen Aktiengesellschaft Otfs embedded pilot estimation extension
CN112600783A (zh) * 2020-10-21 2021-04-02 西安电子科技大学 一种基于Golay分组编码的OTFS系统峰均比抑制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. CHOCKALINGAM, YI HONG, EMANUELE VITERBO: "Orthogonal Time Frequency Space (OTFS) Modulation (Presentation)", TUTORIAL AT VTC2018-FALL ( CHICAGO, AUGUST 27TH, 2018), pages 1 - 94, XP009542351, Retrieved from the Internet <URL:https://ecse.monash.edu/staff/eviterbo/OTFS-VTC18/presentation_1.pdf> *
HOSSAIN MD. NAJMUL, SUGIURA YOSUKE, SHIMAMURA TETSUYA, RYU HEUNG-GYOON: "DFT-Spread OTFS Communication System with the Reductions of PAPR and Nonlinear Degradation", WIRELESS PERSONAL COMMUNICATIONS., SPRINGER, DORDRECHT., NL, vol. 115, no. 3, 1 December 2020 (2020-12-01), NL , pages 2211 - 2228, XP093020427, ISSN: 0929-6212, DOI: 10.1007/s11277-020-07678-4 *
SHAN, Y. ET AL.: "Low-Complexity and Low-Overhead Receiver for OTFS via Large-Scale Antenna Array", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 70, no. 6, 13 April 2021 (2021-04-13), XP011865537, DOI: 10.1109/TVT.2021.3072667 *
ZHIQIANG WEI; WEIJIE YUAN; SHUANGYANG LI; JINHONG YUAN; GANESH BHARATULA; RONNY HADANI; LAJOS HANZO: "Orthogonal Time-Frequency Space Modulation: A Promising Next-Generation Waveform", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 3 February 2021 (2021-02-03), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081873916 *

Also Published As

Publication number Publication date
EP4369670A1 (en) 2024-05-15
US20240163140A1 (en) 2024-05-16
CN115589350A (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
US9025684B2 (en) Method for generating and transmitting a reference signal for uplink demodulation in a clustered DFT-spread OFDM transmission scheme
US10263748B2 (en) Method and apparatus for transmitting uplink data and user equipment
Wei et al. A comprehensive performance evaluation of universal filtered multi-carrier technique
US10334605B2 (en) Time domain pilot of single-carrier MIMO system and synchronization method thereof
CN108289069B (zh) 一种参考信号的传输方法、发送端和接收端
US20230208698A1 (en) Frame structure indication method, frame structure updating method, and related device
WO2022199664A1 (zh) 信息发送方法和设备
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
EP3879777A1 (en) Sequence-based signal processing method and apparatus
WO2023280094A1 (zh) 信号发送方法、接收方法、装置及设备
Bandari et al. Novel hybrid PAPR reduction schemes for the MGFDM system
CN111010360B (zh) 基于预编码的混合载波调制方法
WO2022242870A1 (en) Affine frequency division multiplexing waveforms for doubly dispersive channels
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023143353A1 (zh) Dmrs生成方法、终端及网络侧设备
CN118174998A (zh) 信号发送方法、信号接收方法及设备
WO2023134542A1 (zh) Pdcch传输方法、终端及网络侧设备
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
US20240097956A1 (en) Projected signals using discrete prolate spheroidal sequences
WO2024061255A1 (zh) 信号发送方法、信号接收方法及设备
WO2022116890A1 (zh) 相位噪声参数的估计方法、装置、用户设备和基站
WO2024017025A1 (zh) 导频参数配置方法及设备
CN110971555B (zh) 一种数据传输方法及装置
CN117792971A (zh) 信号发送方法、信号接收方法及设备
CN106850492B (zh) 一种适用于ofdm系统的峰均比降低方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024500382

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022836845

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022836845

Country of ref document: EP

Effective date: 20240205