WO2023231924A1 - 信号发送方法、发送设备及接收设备 - Google Patents

信号发送方法、发送设备及接收设备 Download PDF

Info

Publication number
WO2023231924A1
WO2023231924A1 PCT/CN2023/096576 CN2023096576W WO2023231924A1 WO 2023231924 A1 WO2023231924 A1 WO 2023231924A1 CN 2023096576 W CN2023096576 W CN 2023096576W WO 2023231924 A1 WO2023231924 A1 WO 2023231924A1
Authority
WO
WIPO (PCT)
Prior art keywords
dres
doppler
pilot
delay
domain resource
Prior art date
Application number
PCT/CN2023/096576
Other languages
English (en)
French (fr)
Inventor
袁璞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023231924A1 publication Critical patent/WO2023231924A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a signal sending method, sending equipment and receiving equipment.
  • the communication channel is usually a time-varying multipath fading channel.
  • OTFS Orthogonal Time Frequency Space
  • the OTFS system at the transmitting end can map the pilot symbols in the information frame to a Delay-Doppler domain resource element (DRE) in the Delay-Doppler domain resource grid,
  • DRE Delay-Doppler domain resource element
  • the time-domain discrete sequence generated by the OTFS system has a high peak-to-average power ratio (PAPR).
  • PAPR peak-to-average power ratio
  • Embodiments of the present application provide a signal sending method, sending device, and receiving device, which can solve the problem that time domain discrete sequences have high PAPR, making the hardware cost of the sending end high.
  • a signal sending method which method includes:
  • the sending device obtains the information frame;
  • the information frame includes a pilot sequence with a first number of pilot symbols inside, and the first number is greater than or equal to 2;
  • the sending device maps the pilot sequence to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid to obtain a delayed Doppler domain information frame;
  • the sending device sends the target signal to the receiving device based on the delayed Doppler domain information frame.
  • a signal sending method which method includes:
  • the receiving device receives the target signal sent by the sending device; the target signal is obtained by the sending device based on the delayed Doppler domain information frame, and the delayed Doppler domain information frame is the first number of pilot symbols inside the information frame that the sending device.
  • the pilot sequence is mapped to the first number of delays continuously set in the delay dimension in the delay Doppler domain resource grid. Obtained from the late Doppler domain resource element DRE, the first quantity is greater than or equal to 2;
  • the receiving device obtains the delayed Doppler domain target frame based on the target signal; and based on the sample pilot sequence, detects and processes the delayed Doppler domain target frame to obtain the time delay and Doppler offset of the target signal.
  • a signal sending device applied to sending equipment, and the device includes:
  • An acquisition module is used to acquire an information frame;
  • the information frame includes a pilot sequence with a first number of pilot symbols inside, and the first number is greater than or equal to 2;
  • a processing module configured to map the pilot sequence to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid to obtain a delayed Doppler domain information frame;
  • the sending module is used to send the target signal to the receiving device based on the delayed Doppler domain information frame.
  • a signal sending device applied to receiving equipment, and the device includes:
  • the receiving module is used to receive the target signal sent by the sending device; the target signal is obtained by the sending device based on the delayed Doppler domain information frame, and the delayed Doppler domain information frame is the first number of conductors inside the information frame that the sending device.
  • the pilot sequence of frequency symbols is obtained by mapping to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid, and the first number is greater than or equal to 2;
  • the processing module is used to obtain the delayed Doppler domain target frame based on the target signal; and based on the sample pilot sequence, detect and process the delayed Doppler domain target frame to obtain the time delay and Doppler offset of the target signal. quantity.
  • a fifth aspect provides a sending device, including a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the signal sending method provided in the first aspect is implemented.
  • a sending device including a processor and a communication interface, wherein,
  • the processor is used to obtain the information frame;
  • the information frame includes a pilot sequence with a first number of pilot symbols inside, and the first number is greater than or equal to 2; map the pilot sequence to the delay Doppler domain resource grid in the delay On the first number of delayed Doppler domain resource elements DRE set continuously in the dimension, a delayed Doppler domain information frame is obtained;
  • the communication interface is used to send target signals to the receiving device based on delayed Doppler domain information frames.
  • a seventh aspect provides a receiving device, including a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the signal sending method provided in the second aspect is implemented.
  • a receiving device including a processor and a communication interface, wherein,
  • the communication interface is used to receive the target signal sent by the sending device; the target signal is obtained by the sending device based on the delayed Doppler domain information frame.
  • the delayed Doppler domain information frame is the first number of pilots in the information frame that the sending device contains.
  • the pilot sequence of the symbol is obtained by mapping to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid, and the first number is greater than or equal to 2;
  • the processor is used to obtain the delayed Doppler domain target frame based on the target signal; and based on the sample pilot sequence, Delay the Doppler domain target frame for detection processing to obtain the time delay and Doppler offset of the target signal.
  • a communication system including: a sending device and a receiving device;
  • the sending device may be used to perform the signal sending method as provided in the first aspect
  • the receiving device may be used to perform the signaling method as provided in the second aspect.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the signal sending method as in the first aspect is implemented, or the signal sending as in the second aspect is implemented. method.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the signal sending method provided in the first aspect, or to implement the second method.
  • the signal sending method provided by the aspect.
  • a computer program/program product is provided.
  • the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the methods provided in the first aspect or the second aspect. Signaling method.
  • the transmitting device maps the pilot sequence with the first number of pilot symbols inside to the first number of delay Doppler domains that are continuously set in the delay dimension in the delay Doppler domain resource grid.
  • a delayed Doppler domain information frame is obtained. Since the first number is greater than or equal to 2, that is, the total number of pilot symbols is greater than or equal to 2, the time domain obtained according to the delayed Doppler domain information frame can be made discrete. There are multiple pilot sample points in the sequence, thereby reducing the PAPR of the time domain discrete sequence, thereby reducing the hardware cost of the sending device.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • FIG. 2 is a block diagram of an OTFS system provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the process of obtaining a time domain discrete sequence provided by an embodiment of the present application
  • FIG. 4 is one of the flow diagrams of the signal sending method provided by the embodiment of the present application.
  • Figure 5 is one of the schematic diagrams of mapping the pilot protection symbols and pilot sequences provided by this application into the delayed Doppler domain resource grid
  • Figure 6 is the second schematic diagram of mapping data symbols, pilot guard symbols and pilot sequences provided by this application into the delayed Doppler domain resource grid
  • Figure 7 is the third schematic diagram of mapping data symbols, pilot guard symbols and pilot sequences provided by this application into the delayed Doppler domain resource grid;
  • Figure 8 is the fourth schematic diagram of mapping the pilot protection symbols and pilot sequences provided by this application into the delayed Doppler domain resource grid
  • Figure 9 is the fifth schematic diagram of mapping data symbols, pilot guard symbols and pilot sequences provided by this application into the delayed Doppler domain resource grid;
  • Figure 10 is the sixth schematic diagram of mapping data symbols, pilot guard symbols and pilot sequences provided by this application into the delayed Doppler domain resource grid;
  • FIG. 11 is the second schematic flowchart of the signal sending method provided by the embodiment of the present application.
  • Figure 12 is one of the schematic diagrams of a pilot sequence with time delay and Doppler offset provided by this application;
  • Figure 13 is the second schematic diagram of the pilot sequence with time delay and Doppler offset provided by this application.
  • Figure 14 is one of the structural schematic diagrams of the signal sending device provided by the embodiment of the present application.
  • Figure 15 is the second structural schematic diagram of the signal sending device provided by the embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of the hardware structure of the terminal provided by the embodiment of the present application.
  • Figure 18 is a schematic diagram of the hardware structure of a network-side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation , 6G) communication system.
  • NR New Radio
  • FIG 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), laptop computer (Laptop Computer), also known as notebook computer, personal digital assistant
  • PDA Personal Digital Assistant
  • handheld computer netbook
  • ultra-mobile personal computer UMPC
  • mobile Internet device Mobile Internet Device, MID
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminals
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • teller machines or self-service machines and other terminal-side devices
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network (Radio Access Network, RAN) device, radio access network function or radio access network unit.
  • Access network equipment can include base stations, WLAN access points or WiFi nodes, etc.
  • the base station can be called Node B, Evolved Node B (eNB), access point, Base Transceiver Station (BTS), radio base station , radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmission and reception point (Transmission Reception Point, TRP) or in the field Other appropriate terms can be used as long as the same technical effect is achieved.
  • Base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the base station in the NR system is used as an example for introduction, and the specific terms of the base station are not limited. type.
  • FIG. 2 is a block diagram of an OTFS system provided by an embodiment of the present application. As shown in Figure 2, the OTFS system includes: sending equipment and receiving equipment.
  • the sending device maps the symbols in the information frame to the delayed Doppler domain resource grid to obtain the delayed Doppler domain information frame; based on the Inverse Discrete Fourier Transform (IDFT), the delayed Doppler domain
  • IDFT Inverse Discrete Fourier Transform
  • the information frame is mapped to the delay time domain resource grid to obtain the delay time domain information frame; based on sequence conversion processing, the delay time domain information frame is converted into a time domain discrete sequence; based on the relevant processing method on the sending side, the time domain discrete sequence is converted into
  • a communication channel can transmit a target signal and send the target signal to the receiving device.
  • the sequence conversion processing may include parallel/serial conversion (P/S) processing and adding sequential cyclic prefix (cyclic prefix, CP) processing.
  • P/S parallel/serial conversion
  • CP sequential cyclic prefix
  • the quality of the target signal received by the receiving device is lower than the signal quality of the target signal sent by the sending device. Signal quality is poor.
  • the receiving device usually needs to detect the time delay and Doppler offset of the target signal transmitted through the communication channel (that is, the target signal received by the receiving device).
  • Specific detection methods include:
  • the receiving device processes the received target signal into a time domain discrete sequence based on the relevant processing method on the receiving side; based on the inverse processing method of the above sequence conversion processing, converts the time domain discrete sequence into a delayed time domain information frame; based on the discrete Fourier Leaf Transform (Discrete Fourier Transform, DFT), inversely maps the delayed time domain information frame to the delayed Doppler domain resource grid to obtain the delayed Doppler domain target frame, and uses the sample pilot sequence to map the delayed Doppler domain target The frame is detected and processed to obtain the time delay and Doppler offset of the target signal received by the receiving device.
  • DFT discrete Fourier Transform
  • the sending device may be the terminal or the network side device shown in FIG. 1
  • the receiving device may also be the terminal or the network side device shown in FIG. 1 .
  • the sending device is the terminal shown in FIG. 1
  • the receiving device may be the network side device shown in FIG. 1
  • the sending device is the network side device shown in Figure 1
  • the receiving device can be the terminal shown in Figure 1.
  • FIG. 3 is a schematic diagram of the process of obtaining a time domain discrete sequence provided by an embodiment of the present application.
  • This pilot symbol is mapped to a DRE in the delayed Doppler domain resource grid.
  • the delayed Doppler domain resource grid includes M times N DREs, M represents the total number of DREs in the delay dimension on the delayed Doppler domain resource grid, and N represents the total number of DREs in the Doppler dimension on the delayed Doppler domain resource grid. ).
  • M represents the total number of DREs in the delay dimension on the delayed Doppler domain resource grid
  • N represents the total number of DREs in the Doppler dimension on the delayed Doppler domain resource grid.
  • FIG. 3 takes M equal to 8 and N equal to 7 as an example for illustration.
  • the power of the pilot symbol (for example, the first power) is usually larger, so the power corresponding to one pilot sample point of the pilot symbol is also larger.
  • the power corresponding to the pilot sample point is relatively large, there will be one high-power pilot sample point in every M signal sample points, resulting in a high PAPR of the time domain discrete sequence.
  • FIG. 4 is one of the schematic flow charts of the signal sending method provided by the embodiment of the present application. As shown in Figure 4, the method provided by this embodiment includes:
  • Step 401 The sending device obtains an information frame.
  • the information frame includes a pilot sequence with a first number of pilot symbols inside, and the first number is greater than or equal to 2.
  • the specific value of the first quantity can be set according to actual design requirements.
  • the first number may be 4 or 8, etc.
  • Step 402 The transmitting device maps the pilot sequence to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid to obtain a delayed Doppler domain information frame.
  • all symbols in the information frame are respectively mapped to DREs in the delayed Doppler domain resource grid, and one symbol is mapped to one DRE.
  • the pilot sequence in the information frame is mapped to the first number of DREs continuously set in the delay dimension in the delay Doppler domain resource grid.
  • Step 403 The sending device sends the target signal to the receiving device based on the delayed Doppler domain information frame.
  • the sending device obtains the time domain discrete sequence based on the delayed Doppler domain information frame, and sends the target signal to the receiving device based on the time domain discrete sequence.
  • the process of obtaining the time domain discrete sequence based on the delayed Doppler domain information frame and the process of sending the target signal to the receiving device based on the time domain discrete sequence please refer to the process of the sending device sending the target signal to the receiving device in the embodiment of Figure 2, No further details will be given here.
  • the transmitting device maps the pilot sequence to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid to obtain the delay Doppler domain information frame, since the first number is greater than or equal to 2, that is, the total number of pilot symbols is greater than or equal to 2, it is possible to make every M signals in the time domain discrete sequence obtained according to the delayed Doppler domain information frame There are multiple pilot sample points in the sample points, thereby reducing the PAPR of the time domain discrete sequence, thereby reducing the hardware cost of the sending device.
  • the pilot sequence in this application is generated by the sending device based on a preset sequence, and the preset sequence is a ZC sequence or a pseudo-random sequence.
  • the pilot sequence is generated based on a ZC sequence or a pseudo-random sequence, which can make the pilot sequence have good autocorrelation and/or cross-correlation, so that the receiving device can accurately determine the time delay and multiple times of the target signal. Puller offset.
  • pilot sequence is any of the following:
  • P is greater than or equal to the first number and less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the default sequence is a symbol sequence.
  • the pilot sequence is a transform sequence obtained by performing a P-point discrete Fourier transform or an inverse discrete Fourier transform on the modulation sequence
  • the number of symbols in the modulation sequence i.e., the sequence length
  • 0 can be added to the modulation sequence so that the sequence length after adding 0 is equal to P, and then the discrete Fourier transform or the inverse discrete Fourier transform of point P is performed.
  • the preset modulation method may be, for example, a quadrature amplitude (Quadrature Amplitude Modul, QAM) modulation method or a binary phase shift keying (Binary Phase Shift Keying, BPSK) modulation method.
  • QAM Quadrature Amplitude Modul
  • BPSK Binary Phase Shift Keying
  • the total number of DREs in the Doppler dimension is M.
  • the first number is less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the total number of DREs in the delay dimension is equal to M.
  • the first number may be an integer greater than or equal to 2 and less than or equal to M.
  • the first number is greater than or equal to 1 and less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid, which can make the number of pilot symbols included in the information frame flexible.
  • the powers of the first number of pilot symbols are the same.
  • the power of the first number of pilot symbols can make the transmission power corresponding to all pilot samples of the first number of pilot symbols included in the time domain discrete sequence the same, thereby reducing the time domain discrete sequence PAPR.
  • the first number may be less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the first number of DREs have the same Doppler offset in the Doppler dimension in the delayed Doppler domain resource grid. That is, the first number of DREs is a column of DREs in the Doppler dimension in the delayed Doppler domain resource grid.
  • the first number may be less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the first number of DREs are in the delay
  • the Doppler offset in the Doppler dimension of the Doppler domain resource grid is the same.
  • the first number of DREs are continuously set in the delay dimension in the delay Doppler domain resource grid, and the first number of DREs is a column of DREs in the Doppler dimension, which enables the time-domain discrete sequence to be
  • Each M signal sample points include samples of the first number of pilot symbols.
  • the power of each pilot symbol is the second power, it is possible to avoid the presence of one high-power sample point in every M signal sample points, thereby reducing the PAPR of the time domain discrete sequence.
  • the first power and the second power meet any of the following conditions:
  • the first power is equal to the second power
  • the first power is greater than the second power
  • the first power is less than the second power
  • the first power is equal to the product of the first quantity and the second power
  • the first power is greater than the product of the first quantity and the second power
  • the first power is less than the product of the first quantity and the second power.
  • the information frame also includes any of the following: pilot protection symbols; data symbols and pilot protection symbols.
  • the information frame when the information frame also includes pilot protection symbols, the information frame is a pilot frame; when the information frame also includes data symbols and pilot protection symbols, the information frame is a data frame.
  • the pilot protection symbol is the protection symbol of the pilot symbol in the Doppler dimension within the delayed Doppler domain resource grid.
  • the pilot protection symbol is used to ensure that the pilot symbol will not exceed the pilot symbol after passing through the communication channel. Protecting the Doppler units occupied by symbols in the Doppler dimension enables the receiving device to accurately estimate the time delay and Doppler offset of the target signal.
  • the pilot guard symbols are mapped to a second number of DREs respectively located on both sides of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid.
  • the second quantity is greater than the first quantity.
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid. For example, as shown in Figure 5.
  • Figure 5 is one of the schematic diagrams of mapping pilot guard symbols and pilot sequences into delayed Doppler domain resource grids provided by this application.
  • the total number of DREs in the delay dimension within the delay Doppler domain resource grid is equal to M, and the first number is equal to M.
  • the first number of DREs have the same Doppler offset in the Doppler dimension in the delayed Doppler domain resource grid (for example, the Doppler offset ⁇ is equal to 4 in Figure 5).
  • the delay Doppler domain information frame is mapped to the delay time domain resource grid to obtain the delay time domain information frame.
  • the samples in each resource element are pilot samples.
  • the delay time domain information frame is converted into a time domain discrete sequence.
  • every M signal sample points include M pilot sample points (ie, one pilot sample point of M pilot symbols).
  • the power of M pilot symbols is the same, the power of all pilot sample points in the time domain discrete sequence is also the same, which effectively avoids the existence of one pilot sample point in every M signal sample points (all of which should be The problem of higher power of pilot samples) reduces the PAPR of time domain discrete sequences.
  • the data symbols are mapped to the delay Doppler domain resource grid except the first number of DREs and the second number of DREs. on a third number of DREs; the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surround the second number of DREs located on both sides of the first number of DREs.
  • Figure 6 For example, as shown in Figure 6.
  • Figure 6 is the second schematic diagram of mapping data symbols, pilot guard symbols and pilot sequences into delayed Doppler domain resource grids provided by this application. As shown in Figure 6, the total number of DREs in the delay dimension within the delay Doppler domain resource grid is equal to M, and the first number is equal to M.
  • the Doppler offsets of the first number of DREs in the Doppler dimension in the delayed Doppler domain resource grid are the same (for example, the Doppler offset ⁇ is equal to 4 in Figure 6).
  • Figure 6 (e.g. 2M in Figure 6)
  • the delay Doppler domain information frame is mapped to the delay time domain resource grid to obtain the delay time domain information frame.
  • the samples in each resource element (including the components of the pilot samples of the pilot symbols and the components of the data samples of the data symbols) have components of the pilot samples of the pilot symbols.
  • the delay time domain information frame is converted into a time domain discrete sequence.
  • each M signal sample points include one pilot sample point of M pilot sample points. Since the power of the M pilot symbols are all the same, the power corresponding to the M pilot sample points Similarly, it effectively avoids the problem of high power corresponding to only one pilot sample point among every M signal samples, and reduces the PAPR of the time domain discrete sequence (for example, reducing the PAPR by more than 10lgM dB).
  • the Doppler units occupied by the second number of DREs in the Doppler dimension are the number of columns of the second number of DREs in the Doppler dimension.
  • the Doppler units occupied by the second number of DREs in the Doppler dimension are equal to 2K
  • the Doppler dimension in the delayed Doppler domain resource grid the sums located on both sides of the pilot symbol and the pilot
  • the Doppler unit between the DREs where the frequency symbol is closest to the data symbol is equal to 4K+1.
  • the second number of DREs run through the delay dimension of the delay time domain resource grid. Therefore, mutual interference between data symbols and pilot symbols after channel transmission can be avoided, ensuring that the receiving device can demodulate and obtain data. Symbol accuracy.
  • the Doppler dimension in the delayed Doppler domain resource grid the Doppler unit between the DREs located on both sides of the pilot symbol and the data symbol closest to the pilot symbol is equal to 4K+1 , which can ensure that after the pilot sequence undergoes channel transmission, the pilot sequence will not exceed the DRE range where the pilot protection symbol is located, so that the receiving device can obtain accurate time delay and Doppler offset.
  • the data symbols are mapped to the delayed Doppler domain resource grid except for the first number of DREs and the second number of DREs. on the third number of DREs; the first number is less than the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surround the second number of DREs located on both sides of the first number of DREs. DRE.
  • Figure 7 is the third schematic diagram of mapping data symbols, pilot guard symbols and pilot sequences into delayed Doppler domain resource grids provided by this application.
  • the total number of DREs in the delay dimension is equal to M, and the first number is less than M.
  • the first quantity is equal to M/2.
  • the first number of DREs have the same Doppler offset in the Doppler dimension in the delayed Doppler domain resource grid (for example, the Doppler offset ⁇ is equal to 4 in Figure 7).
  • the delay Doppler domain information frame is mapped to the delay time domain resource grid to obtain the delay time domain information frame.
  • the target row in the delay time field resource cell including pilot symbols, pilot protection symbols and data symbols
  • pilot samples exist in each resource element (including the components of the pilot samples of the pilot symbols and the components of the data samples of the data symbols).
  • the samples in each resource element are data samples of the data symbols.
  • the delay time domain information frame is converted into a time domain discrete sequence.
  • every M signal sample points have a sample point with power 1 and a sample point with power 2, where the sample point with power 1 includes the components of the pilot sample point of the pilot symbol and the data symbol Components of data samples, samples with power 2 include only data samples of data symbols.
  • power 1 may be greater than or equal to power 2.
  • power 1 power 2.
  • Power 1 is greater than Power 2.
  • power 1 is greater than power 2.
  • a pilot sample point including the first number of pilot sample points Since the powers of the first number of pilot symbols are all the same, the corresponding powers of the first number of pilot sample points are also the same, effectively avoiding the need for each M
  • the problem of having only one pilot sample left in the signal sample corresponds to a higher power, which reduces the PAPR of the time domain discrete sequence (for example, the PAPR is reduced by more than 10lgL dB, L represents the first number).
  • the Doppler units occupied by the second number of DREs in the Doppler dimension are equal to 2K; K is greater than or equal to the maximum Doppler frequency of the channel transmitting the target signal, and the total number of DREs in the Doppler dimension, and the product of the symbol duration of the pilot symbol. It should be noted that the Doppler units occupied by the second number of DREs in the Doppler dimension are the number of columns of the second number of DREs in the Doppler dimension.
  • the Doppler units occupied by the second number of DREs in the Doppler dimension are equal to 2K
  • the elements located on both sides of the pilot symbol and with The Doppler unit between the DREs where the pilot symbol is closest to the data symbol is equal to 4K+1.
  • the receiving device can be based on continuous interference cancellation (SIC). After detecting the paths where all pilot symbols are located, the components of the pilot sample points of each path can be subtracted from the signal sample points. Thereby improving the demodulation performance.
  • SIC continuous interference cancellation
  • the Doppler offset of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid is X
  • the second number of DREs are in When the Doppler unit occupied by the Doppler dimension is equal to G
  • the range of Doppler offsets of the second number of DREs to the left of the first number of DREs is [X-G,
  • the Doppler offset range of the second number of DREs to the left of the first number of DREs includes [1,X-1] and [X-1+N,X-G+N];
  • the range of the Doppler offset of the second number of DREs to the right of the first number of DREs is [X+1, In the case of , the range of Doppler offsets of the second number of DREs on the right side of the first number of DREs includes [X+1,N] and [1,X+G-N];
  • X is an integer greater than or equal to 1 and less than or equal to N.
  • N is the total number of DREs in the Doppler dimension within the delay Doppler domain resource grid.
  • G is greater than or equal to 2K
  • K is greater than or equal to the maximum Doppler frequency of the channel transmitting the target signal, the total number of DREs in the Doppler dimension, and the symbol duration of the pilot symbol. product between.
  • [1,0] is the empty set.
  • Figure 8 is the fourth schematic diagram of mapping pilot guard symbols and pilot sequences into delayed Doppler domain resource grids provided by this application.
  • the range of the Doppler offset of the second number of DREs on the left side of the first number of DREs includes [1,0] and [7,5]; and N-G is greater than X, so the range of the Doppler offset of the second number of DREs on the left side of the first number of DREs
  • the Doppler offset of the second number of DREs is in the range [2,4].
  • Figure 9 is a fifth schematic diagram of mapping data symbols, pilot guard symbols and pilot sequences into delayed Doppler domain resource grids provided by this application.
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid, for example, X equals 1, G equals 2, and N equals 7, and X is less than or equal to G, Therefore, the range of the Doppler offset of the second number of DREs on the left side of the first number of DREs includes [1,0] and [7,6]; and N-G is greater than X, so the range of the Doppler offset of the second number of DREs on the left side of the first number of DREs The Doppler offset of the second number of DREs is in the range [2,3].
  • Figure 10 is the sixth schematic diagram of mapping data symbols, pilot guard symbols and pilot sequences into delayed Doppler domain resource grids provided by this application.
  • the delay dimension in the first number is less than the delay Doppler domain resource grid
  • the range of the Doppler offset includes [1,0] and [7,6]; and it satisfies that NG is greater than X, so the range of the Doppler offset of the second number of DREs on the right side of the first number of DREs is [ 2,3].
  • Figures 8 to 10 take the first number of delayed Doppler domain resource elements DRE as the first column DRE on the left in the Doppler domain resource grid as an example.
  • Figures 5 to 7 take the first number of delayed Doppler domain resource elements DRE as an example.
  • a number of delayed Doppler domain resource elements DRE are DREs in the non-left first column of the Doppler domain resource grid, as an example for illustration.
  • FIG 11 is the second schematic flowchart of the signal sending method provided by the embodiment of the present application. As shown in Figure 11, the method provided by this embodiment includes:
  • Step 1101. The receiving device receives the target signal sent by the sending device; the target signal is obtained by the sending device based on the delayed Doppler domain information frame, and the delayed Doppler domain information frame is the first number of leads inside the information frame that the sending device.
  • the pilot sequence of frequency symbols is obtained by mapping to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid, and the first number is greater than or equal to 2.
  • Step 1102 The receiving device obtains the delayed Doppler domain target frame based on the target signal; and based on the sample pilot sequence, detects and processes the delayed Doppler domain target frame to obtain the time delay and Doppler offset of the target signal. quantity.
  • the receiving device obtains a time domain discrete sequence based on the target signal; based on the time domain discrete sequence, the delayed Doppler domain target frame is obtained; based on the sample pilot sequence, the delayed Doppler domain target frame is detected and processed to obtain The time delay and Doppler shift of the target signal.
  • the sample pilot sequence may be a sample pilot sequence negotiated between the receiving device and the sending device, or may be a sample pilot sequence specified in the communication protocol.
  • the first number is less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the powers of the first number of pilot symbols are the same.
  • the first number of DREs have the same Doppler offset in the Doppler dimension in the delayed Doppler domain resource grid.
  • the information frame also includes any of the following: pilot protection symbols; data symbols and pilot protection symbols.
  • the pilot protection symbol is a protection symbol of the pilot symbol in the Doppler dimension within the delayed Doppler domain resource grid.
  • the pilot guard symbols are mapped to a second number of DREs respectively located on both sides of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid.
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the data symbols are mapped to the delay Doppler domain resource grid except the first number of DREs and the second number of DREs. On the third number of DREs;
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surrounds the second number of DREs located on both sides of the first number of DREs.
  • the data symbols are mapped to the delayed Doppler domain resource grid except for the first number of DREs and the second number of DREs. on the third number of DREs;
  • the first number is less than the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surrounds the second number of DREs located on both sides of the first number of DREs.
  • the Doppler units occupied by the second number of DREs in the Doppler dimension are equal to 2K; K is greater than or equal to the maximum Doppler frequency of the channel transmitting the target signal, and the total number of DREs in the Doppler dimension, and the product of the symbol duration of the pilot symbol.
  • the delayed Doppler domain target frame is detected and processed to obtain the time delay and Doppler offset of the target signal, including:
  • the receiving device shifts a first number of pilot symbols included in the sample pilot sequence based on a plurality of preset Doppler offsets and a preset time delay corresponding to each preset Doppler offset. Process to obtain multiple target pilot sequences;
  • the receiving device determines the correlation values between the delayed Doppler domain target frame and multiple target pilot sequences respectively;
  • the receiving equipment determines the preset Doppler offset and preset time delay corresponding to the first M target pilot sequences with the largest correlation values among the multiple target pilot sequences as the time delay and Doppler of the target signal.
  • Offset; M is an integer greater than or equal to 1.
  • the value of M has nothing to do with the value of M in the above-mentioned Figure 3, Figure 5 to Figure 7.
  • M is equal to the number of paths of the channel.
  • the pilot sequence is generated by the sending device based on a preset sequence, and the preset sequence is a ZC sequence or a pseudo-random sequence.
  • pilot sequence is any of the following:
  • P is greater than or equal to the first number and less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the Doppler offset of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid is X
  • the second number of DREs are in When the Doppler unit occupied by the Doppler dimension is equal to G
  • the range of Doppler offsets of the second number of DREs to the left of the first number of DREs is [X-G,
  • the Doppler offset range of the second number of DREs to the left of the first number of DREs includes [1,X-1] and [X-1+N,X-G+N];
  • the range of the Doppler offset of the second number of DREs to the right of the first number of DREs is [X+1, In the case of , the range of Doppler offsets of the second number of DREs on the right side of the first number of DREs includes [X+1,N] and [1,X+G-N];
  • X is an integer greater than or equal to 1 and less than or equal to N;
  • N is the total number of DREs in the Doppler dimension within the delay Doppler domain resource grid
  • G is greater than or equal to 2K
  • K is greater than or equal to the product of the maximum Doppler frequency of the channel transmitting the target signal, the total number of DREs in the Doppler dimension, and the symbol duration of the pilot symbol.
  • the pilot sequence with time delay and Doppler offset will be described below with reference to Figures 12 and 13. It should be noted that the time delay amount and Doppler offset amount of the pilot sequence are the time delay amount and Doppler offset amount of the target signal including the pilot sequence.
  • Figure 12 is one of the schematic diagrams of a pilot sequence with time delay and Doppler offset provided by this application.
  • the pilot sequence is [s_1,s_2,...,s_8]
  • the time delay and Doppler shift generated after experiencing the single-path channel are In the case of (3,2)
  • the corresponding cyclic shift sequence is [s_6,s_7,s_8,s_1,...,s_5].
  • the target pilot sequence is [s_6,s_7,s_8,s_1,...,s_5]
  • a maximum correlation value can be detected, so the receiving device can convert [s_6,s_7,s_8,s_1,..., s_5] corresponds to (3,2), which is determined as the time delay amount and Doppler offset amount of the pilot sequence.
  • Figure 13 is the second schematic diagram of a pilot sequence with time delay and Doppler offset provided by this application.
  • the pilot sequence is [s_1, s_2,...,s_8]
  • the time delay and Doppler shift generated after experiencing the 3-path channel are:
  • the corresponding cyclic shift sequences are [s_1,s_2,...,s_8], and [s_6,s_7,s_8,s_1, ...,s_5] and the superposition sequence of [s_4,...,s_8,s_1,s_2,s_3].
  • the target pilot sequence is [s_1,s_2,...,s_8], [s_6,s_7,s_8,s_1,...,s_5], [s_4,...,s_8,s_1,s_2,s_3], It is possible to detect the three values with the largest correlation value, so [s_6,s_7,s_8,s_1,...,s_5] can be corresponding to (3,2) and [s_4,...,s_8,s_1,s_2,s_3].
  • the (0,-1), [s_4,...,s_8,s_1,s_2,s_3] corresponding to (5,2) are determined as the time delay and Doppler shift of the target signal.
  • FIG 14 is one of the structural schematic diagrams of the signal sending device provided by the embodiment of the present application.
  • the device of this embodiment is applied to sending equipment.
  • the signal sending device in this embodiment includes:
  • the acquisition module 110 is used to acquire an information frame;
  • the information frame includes a pilot sequence with a first number of pilot symbols inside, and the first number is greater than or equal to 2;
  • the processing module 120 is configured to map the pilot sequence to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid to obtain a delayed Doppler domain information frame. ;
  • the sending module 130 is configured to send the target signal to the receiving device based on the delayed Doppler domain information frame.
  • the first number is less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the powers of the first number of pilot symbols are the same.
  • the first number of DREs have the same Doppler offset in the Doppler dimension in the delayed Doppler domain resource grid.
  • the information frame also includes any of the following: pilot protection symbols; data symbols and pilot protection symbols.
  • the pilot protection symbol is a protection symbol of the pilot symbol in the Doppler dimension within the delayed Doppler domain resource grid.
  • the pilot guard symbols are mapped to a second number of DREs respectively located on both sides of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid.
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the data symbols are mapped to the delay Doppler domain resource grid except the first number of DREs and the second number of DREs. On the third number of DREs;
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surrounds the second number of DREs located on both sides of the first number of DREs.
  • the data symbols are mapped to the delayed Doppler domain resource grid except for the first number of DREs and the second number of DREs. on the third number of DREs;
  • the first number is less than the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surrounds the second number of DREs located on both sides of the first number of DREs.
  • the pilot sequence is generated by the sending device based on a preset sequence, and the preset sequence is a ZC sequence or a pseudo-random sequence.
  • pilot sequence is any of the following:
  • P is greater than or equal to the first number and less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the Doppler offset of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid is X
  • the second number of DREs are in When the Doppler unit occupied by the Doppler dimension is equal to G
  • the range of Doppler offsets of the second number of DREs to the left of the first number of DREs is [X-G,
  • the Doppler offset range of the second number of DREs to the left of the first number of DREs includes [1,X-1] and [X-1+N,X-G+N];
  • the range of the Doppler offset of the second number of DREs to the right of the first number of DREs is [X+1, In the case of , the range of Doppler offsets of the second number of DREs on the right side of the first number of DREs includes [X+1,N] and [1,X+G-N];
  • X is an integer greater than or equal to 1 and less than or equal to N;
  • N is the total number of DREs in the Doppler dimension within the delay Doppler domain resource grid
  • G is greater than or equal to 2K
  • K is greater than or equal to the product of the maximum Doppler frequency of the channel transmitting the target signal, the total number of DREs in the Doppler dimension, and the symbol duration of the pilot symbol.
  • the device of this embodiment can be used to perform the signal sending method in the aforementioned sending device side embodiment. Its specific implementation process and technical effect are similar to those in the sending device side method embodiment. For details, please refer to the sending device side method embodiment. Detailed introduction will not be repeated here.
  • Figure 15 is the second structural schematic diagram of the signal sending device provided by the embodiment of the present application.
  • the device of this embodiment is applied to receiving equipment.
  • the signal sending device in this embodiment includes:
  • the receiving module 210 is used to receive the target signal sent by the sending device; the target signal is obtained by the sending device based on the delayed Doppler domain information frame, and the delayed Doppler domain information frame is the first number of information frames that are internally included in the information frame by the sending device.
  • the pilot sequence of the pilot symbol is obtained by mapping to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid, and the first number is greater than or equal to 2;
  • the processing module 220 is used to obtain the delayed Doppler domain target frame based on the target signal; and based on the sample pilot sequence, detect and process the delayed Doppler domain target frame to obtain the time delay amount and Doppler offset of the target signal. Shift amount.
  • the first number is less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the powers of the first number of pilot symbols are the same.
  • the first number of DREs have the same Doppler offset in the Doppler dimension in the delayed Doppler domain resource grid.
  • the information frame also includes any of the following:
  • the pilot protection symbol is a protection symbol of the pilot symbol in the Doppler dimension within the delayed Doppler domain resource grid.
  • the pilot guard symbols are mapped to a second number of DREs respectively located on both sides of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid.
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the data symbols are mapped to the delay Doppler domain resource grid except the first number of DREs and the second number of DREs. On the third number of DREs;
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surrounds the second number of DREs located on both sides of the first number of DREs.
  • the data symbols are mapped to the delayed Doppler domain resource grid except for the first number of DREs and the second number of DREs. on the third number of DREs;
  • the first number is less than the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surrounds the second number of DREs located on both sides of the first number of DREs.
  • the Doppler units occupied by the second number of DREs in the Doppler dimension are equal to 2K; K is greater than or equal to the maximum Doppler frequency of the channel transmitting the target signal, and the total number of DREs in the Doppler dimension, and the product of the symbol duration of the pilot symbol.
  • the delayed Doppler domain target frame is detected and processed to obtain the time delay and Doppler offset of the target signal, including:
  • the receiving device shifts a first number of pilot symbols included in the sample pilot sequence based on a plurality of preset Doppler offsets and a preset time delay corresponding to each preset Doppler offset. Process to obtain multiple target pilot sequences;
  • the receiving device determines the correlation values between the delayed Doppler domain target frame and multiple target pilot sequences respectively;
  • the receiving equipment determines the preset Doppler offset and preset time delay corresponding to the first M target pilot sequences with the largest correlation values among the multiple target pilot sequences as the time delay and Doppler of the target signal. Offset; M is an integer greater than or equal to 1.
  • the pilot sequence is generated by the sending device based on a preset sequence, and the preset sequence is a ZC sequence or a pseudo-random sequence.
  • pilot sequence is any of the following:
  • P is greater than or equal to the first number and less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the Doppler offset of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid is X
  • the second number of DREs are in When the Doppler unit occupied by the Doppler dimension is equal to G
  • the range of Doppler offsets of the second number of DREs to the left of the first number of DREs is [X-G,
  • the Doppler offset range of the second number of DREs to the left of the first number of DREs includes [1,X-1] and [X-1+N,X-G+N];
  • the range of the Doppler offset of the second number of DREs to the right of the first number of DREs is [X+1, In the case of , the range of Doppler offsets of the second number of DREs on the right side of the first number of DREs includes [X+1,N] and [1,X+G-N];
  • X is an integer greater than or equal to 1 and less than or equal to N;
  • N is the total number of DREs in the Doppler dimension within the delay Doppler domain resource grid
  • G is greater than or equal to 2K
  • K is greater than or equal to the product of the maximum Doppler frequency of the channel transmitting the target signal, the total number of DREs in the Doppler dimension, and the symbol duration of the pilot symbol.
  • the device of this embodiment can be used to perform the signal sending method in the aforementioned receiving device side embodiment. Its specific implementation process and technical effects are similar to those in the receiving device side method embodiment. For details, please refer to the receiving device side method embodiment. Detailed introduction will not be repeated here.
  • the signal sending device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the signal sending device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 4 or Figure 11, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1300 provided by the embodiment of the present application includes a processor 1301 and a memory 1302.
  • the memory 1302 stores programs or instructions that can be run on the processor 1301.
  • the communication device 1300 is a sending device
  • the program or instruction is executed by the processor 1301
  • each step of the above sending device side method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a receiving device
  • the program or instruction is executed by the processor 1301
  • each step of the above receiving device side method embodiment is implemented, and the same technical effect can be achieved.
  • the details are not repeated here.
  • An embodiment of the present application also provides a terminal.
  • the terminal includes a processor and a communication interface.
  • the processor is used to obtain an information frame; the information frame includes a pilot sequence with a first number of pilot symbols inside, and the first number is greater than or equal to 2; map the pilot sequence to the delay On the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the Doppler domain resource grid, a delayed Doppler domain information frame is obtained; the communication interface is used to obtain a delayed Doppler domain information frame based on the delayed Doppler domain information frame, Send the target signal to the receiving device.
  • Figure 17 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the present application.
  • the terminal 1400 includes but is not limited to: radio frequency unit 1401, network module 1402, audio output unit 1403, input unit 1404, sensor 1405, display unit 1406, user input unit 1407, interface unit 1408, memory 1409 and At least some components of processor 1410 and the like.
  • the terminal 1400 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1410 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 17 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1404 may include a graphics processing unit (Graphics Processing Unit, GPU) 14041 and a microphone 14042.
  • the graphics processor 14041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1406 may include a display panel 14061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1407 includes a touch panel 14071 and at least one of other input devices 14072. Touch panel 14071, also known as touch screen.
  • the touch panel 14071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 14072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1401 after receiving downlink data from the network side device, the radio frequency unit 1401 can transmit it to the processor 1410 for processing; in addition, the radio frequency unit 1401 can send uplink data to the network side device.
  • the radio frequency unit 1401 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1409 may be used to store software programs or instructions as well as various data.
  • the memory 1409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1409 may include volatile memory or nonvolatile memory, or memory 1409 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronization Dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronization Dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM, SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1410.
  • the radio frequency unit 1401 is used to obtain the information frame; the information frame includes a pilot sequence with a first number of pilot symbols inside, and the first number is greater than or equal to 2; map the pilot sequence to the delayed Doppler domain On the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the resource grid, a delayed Doppler domain information frame is obtained; based on the delayed Doppler domain information frame, the target signal is sent to the receiving device.
  • a pilot sequence with a first number of pilot symbols inside is mapped to a first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid.
  • obtaining the delayed Doppler domain information frame can cause multiple pilot sample points to exist in every M signal sample points in the time domain discrete sequence obtained according to the delayed Doppler domain information frame, thereby reducing the PAPR of the time domain discrete sequence , thereby reducing the hardware cost of the sending device.
  • the first number is less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the first number is greater than or equal to 1 and less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid, which can make the number of pilot symbols included in the information frame flexible.
  • the powers of the first number of pilot symbols are the same.
  • the first number of DREs have the same Doppler offset in the Doppler dimension in the delayed Doppler domain resource grid.
  • the first number of DREs have the same Doppler offset in the Doppler dimension in the delay Doppler domain resource grid, so that the first number of pilot samples appear in the time delay domain resource grid.
  • Band-like distribution thereby ensuring that each M signal sample points in the time domain discrete sequence includes multiple pilot sample points.
  • the information frame also includes any of the following: pilot protection symbols; data symbols and pilot protection symbols.
  • the pilot protection symbol is a protection symbol of the pilot symbol in the Doppler dimension within the delayed Doppler domain resource grid.
  • the pilot protection symbol is used to ensure that the pilot symbol will not exceed the Doppler unit occupied by the pilot protection symbol in the Doppler dimension after passing through the communication channel, so that the receiving device can accurately estimate the time of the target signal. Delay and Doppler shift.
  • the pilot guard symbols are mapped to a second number of DREs respectively located on both sides of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid.
  • a second number of DREs are set on both sides of the first number of DREs,
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the data symbols are mapped to the delay Doppler domain resource grid except the first number of DREs and the second number of DREs. On the third number of DREs;
  • the first number is equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surrounds the second number of DREs located on both sides of the first number of DREs.
  • the second number of DREs run through the delay dimension of the delay time domain resource grid. Therefore, mutual interference between data symbols and pilot symbols after channel transmission can be avoided, ensuring that the receiving device can demodulate and obtain the data symbols. accuracy.
  • the data symbols are mapped to the delayed Doppler domain resource grid except for the first number of DREs and the second number of DREs. on the third number of DREs;
  • the first number is less than the total number of DREs in the delay dimension within the delay Doppler domain resource grid, and the third number of DREs surrounds the second number of DREs located on both sides of the first number of DREs.
  • the Doppler units occupied by the second number of DREs in the Doppler dimension are equal to 2K; K is greater than or equal to the maximum Doppler frequency of the channel transmitting the target signal, and the Doppler The product between the total number of DREs in the Le dimension and the symbol duration of the pilot symbol.
  • the pilot sequence is generated by the sending device based on a preset sequence, and the preset sequence is a ZC sequence or a pseudo-random sequence.
  • pilot sequence is any of the following:
  • P is greater than or equal to the first number and less than or equal to the total number of DREs in the delay dimension within the delay Doppler domain resource grid.
  • the Doppler offset of the first number of DREs in the Doppler dimension within the delayed Doppler domain resource grid is X
  • the second number of DREs are in When the Doppler unit occupied by the Doppler dimension is equal to G
  • the range of Doppler offsets of the second number of DREs to the left of the first number of DREs is [X-G,
  • the Doppler offset range of the second number of DREs to the left of the first number of DREs includes [1,X-1] and [X-1+N,X-G+N];
  • the range of the Doppler offset of the second number of DREs to the right of the first number of DREs is [X+1, In the case of , the range of Doppler offsets of the second number of DREs on the right side of the first number of DREs includes [X+1,N] and [1,X+G-N];
  • X is an integer greater than or equal to 1 and less than or equal to N;
  • N is the total number of DREs in the Doppler dimension within the delay Doppler domain resource grid
  • G is greater than or equal to 2K
  • K is greater than or equal to the product of the maximum Doppler frequency of the channel transmitting the target signal, the total number of DREs in the Doppler dimension, and the symbol duration of the pilot symbol.
  • the Doppler unit between the DREs located on both sides of the pilot symbol and the data symbol closest to the pilot symbol is equal to 4K +1, it can ensure that after the pilot sequence undergoes channel transmission, the pilot sequence will not exceed the DRE range where the pilot protection symbol is located, so that the receiving device can obtain accurate time delay and Doppler offset.
  • the terminal of this embodiment can be used to perform the signal sending method in the aforementioned sending device side embodiment. Its specific implementation process and technical effects are similar to those in the sending device side method embodiment. For details, please refer to the sending device side method embodiment. Detailed introduction will not be repeated here.
  • the terminal in this embodiment can also be a receiving terminal.
  • the terminal in this embodiment can perform the signal sending method in the above embodiment on the receiving device side, and its specific implementation process and technical effects Similar to the method embodiment on the receiving device side, for details, please refer to the detailed introduction in the method embodiment on the receiving device side, and will not be described again here.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the processor is used to obtain an information frame; the information frame includes a pilot sequence with a first number of pilot symbols inside, and the first number is greater than or equal to 2; map the pilot sequence to to the first number of delayed Doppler domain resource elements DRE that are continuously set in the delay dimension in the delayed Doppler domain resource grid to obtain the delayed Doppler domain information frame;
  • the communication interface is used to obtain the delayed Doppler domain information frame based on the delayed Doppler domain information Frame, sending the target signal to the receiving device.
  • This network-side device embodiment corresponds to the above-mentioned sending device-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • FIG. 18 is a schematic diagram of the hardware structure of a network-side device provided by an embodiment of the present application.
  • the network side device 1500 includes: an antenna 151 , a radio frequency device 152 , a baseband device 153 , a processor 154 and a memory 155 .
  • the antenna 151 is connected to the radio frequency device 152 .
  • the radio frequency device 152 receives through the antenna 151 information, and sends the received information to the baseband device 153 for processing.
  • the baseband device 153 processes the information to be sent and sends it to the radio frequency device 152.
  • the radio frequency device 152 processes the received information and then sends it out through the antenna 151.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 153, which includes a baseband processor.
  • the baseband device 153 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 156, which is, for example, a common public radio interface (CPRI).
  • a network interface 156 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1500 in the embodiment of the present application also includes: instructions or programs stored in the memory 155 and executable on the processor 154.
  • the processor 154 calls the instructions or programs in the memory 155 to execute Figure 14 or Figure 15
  • the execution methods of each module are shown and achieve the same technical effect. To avoid repetition, they will not be described in detail here.
  • the network device in this embodiment can also be a receiving terminal.
  • the network device in this embodiment can perform the signal sending method in the above embodiment on the receiving device side, and its specific implementation process The technical effects are similar to those in the method embodiments on the receiving device side. For details, please refer to the detailed introduction in the method embodiments on the receiving device side, and will not be described again here.
  • Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above signal sending method embodiment is implemented, and the same technology can be achieved. The effect will not be described here to avoid repetition.
  • Readable storage media include computer-readable storage media.
  • Examples of computer-readable storage media include non-transitory computer-readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disks, or optical disks.
  • Embodiments of the present application also provide a chip, including a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement various processes of the above method embodiments on the receiving device side or the sending device side, and can achieve the same technical effect, so to avoid repetition, we will not repeat them here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application also provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above method on the receiving device side or the sending device side.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • Embodiments of the present application also provide a communication system, including: a sending device and a receiving device.
  • the sending device can be used to perform the above signal sending method performed on the sending device side
  • the receiving device can be used to perform the above signal sending method performed on the receiving device side.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods of various embodiments of the present application.
  • a storage medium such as ROM/RAM, disk , CD
  • a terminal which can be a mobile phone, computer, server, air conditioner, or network device, etc.
  • the embodiments of the present application have been described above in conjunction with the accompanying drawings. However, the present application is not limited to the above-mentioned specific implementations. The above-mentioned specific implementations are only illustrative and not restrictive. Those of ordinary skill in the art will inspired by this application, many forms can be made without departing from the purpose of this application and the scope protected by the claims, all of which fall within the protection of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号发送方法、发送设备及接收设备,属于通信领域,本申请实施例的信号发送方法包括:发送设备获取信息帧;信息帧中包括内部有第一数量个导频符号的导频序列,第一数量大于或等于2;发送设备将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;发送设备基于延迟多普勒域信息帧,向接收设备发送目标信号。

Description

信号发送方法、发送设备及接收设备
相关申请的交叉引用
本申请主张在2022年06月02日在中国提交的中国专利申请号202210625664.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信号发送方法、发送设备及接收设备。
背景技术
通信信道通常是一种时变多径衰落信道,目前通常采用正交时频空(Orthogonal Time Frequency Space,OTFS)技术来抵抗通信信道的时变特性、多径特性和衰落特性,以提高发送端和接收端之间通过通信信道进行信号传输的质量。
在相关技术中,在发送端的OTFS系统可以将信息帧中的导频符号映射至延迟多普勒域资源格中的一个延迟多普勒域资源元素(Delay-Doppler domain resource element,DRE)上,导致OTFS系统产生的时域离散序列具有较高的峰均功率比(Peak-to-average power ratio,PAPR),较高的PAPR对OTFS系统内部硬件的信息处理能力具有较高的要求,从而使得发送端的硬件成本较高。
发明内容
本申请实施例提供一种信号发送方法、发送设备及接收设备,能够解决时域离散序列具有较高的PAPR,使得发送端的硬件成本较高的问题。
第一方面,提供了一种信号发送方法,该方法包括:
发送设备获取信息帧;信息帧中包括内部有第一数量个导频符号的导频序列,第一数量大于或等于2;
发送设备将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;
发送设备基于延迟多普勒域信息帧,向接收设备发送目标信号。
第二方面,提供了一种信号发送方法,该方法包括:
接收设备接收发送设备发送的目标信号;目标信号为发送设备基于延迟多普勒域信息帧得到的,延迟多普勒域信息帧为发送设备将信息帧中内部有第一数量个导频符号的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延 迟多普勒域资源元素DRE上得到的,第一数量大于或等于2;
接收设备基于目标信号,得到延迟多普勒域目标帧;并基于样本导频序列,对延迟多普勒域目标帧进行检测处理,得到目标信号的时间延迟量和多普勒偏移量。
第三方面,提供了一种信号发送装置,应用于发送设备,该装置包括:
获取模块,用于获取信息帧;信息帧中包括内部有第一数量个导频符号的导频序列,第一数量大于或等于2;
处理模块,用于将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;
发送模块,用于基于延迟多普勒域信息帧,向接收设备发送目标信号。
第四方面,提供了一种信号发送装置,应用于接收设备,该装置包括:
接收模块,用于接收发送设备发送的目标信号;目标信号为发送设备基于延迟多普勒域信息帧得到的,延迟多普勒域信息帧为发送设备将信息帧中内部有第一数量个导频符号的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上得到的,第一数量大于或等于2;
处理模块,用于基于目标信号,得到延迟多普勒域目标帧;并基于样本导频序列,对延迟多普勒域目标帧进行检测处理,得到目标信号的时间延迟量和多普勒偏移量。
第五方面,提供了一种发送设备,包括处理器和存储器,存储器存储可在处理器上运行的程序或指令,程序或指令被处理器执行时实现如第一方面提供的信号发送方法。
第六方面,提供了一种发送设备,包括处理器及通信接口,其中,
处理器用于获取信息帧;信息帧中包括内部有第一数量个导频符号的导频序列,第一数量大于或等于2;将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;
通信接口用于基于延迟多普勒域信息帧,向接收设备发送目标信号。
第七方面,提供了一种接收设备,包括处理器和存储器,存储器存储可在处理器上运行的程序或指令,程序或指令被处理器执行时实现如第二方面提供的信号发送方法。
第八方面,提供了一种接收设备,包括处理器及通信接口,其中,
通信接口用于接收发送设备发送的目标信号;目标信号为发送设备基于延迟多普勒域信息帧得到的,延迟多普勒域信息帧为发送设备将信息帧中内部有第一数量个导频符号的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上得到的,第一数量大于或等于2;
处理器用于基于目标信号,得到延迟多普勒域目标帧;并基于样本导频序列,对 延迟多普勒域目标帧进行检测处理,得到目标信号的时间延迟量和多普勒偏移量。
第九方面,提供了一种通信系统,包括:发送设备及接收设备;
发送设备可用于执行如第一方面提供的信号发送方法;
接收设备可用于执行如第二方面提供的信号发送方法。
第十方面,提供了一种可读存储介质,可读存储介质上存储程序或指令,程序或指令被处理器执行时实现如第一方面的信号发送方法,或者实现如第二方面的信号发送方法。
第十一方面,提供了一种芯片,芯片包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行程序或指令,实现如第一方面提供的信号发送方法,或实现如第二方面提供的信号发送方法。
第十二方面,提供了一种计算机程序/程序产品,计算机程序/程序产品被存储在存储介质中,计算机程序/程序产品被至少一个处理器执行以实现如第一方面或者第二方面提供的信号发送方法。
在本申请实施例中,发送设备将内部有第一数量个导频符号的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧,由于第一数量大于或等于2,即导频符号的总数量大于或等于2,可以使得根据延迟多普勒域信息帧得到的时域离散序列中存在多个导频样点,从而降低时域离散序列的PAPR,进而降低发送设备的硬件成本。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种OTFS系统的框图。
图3是本申请实施例提供的得到时域离散序列的过程示意图;
图4是本申请实施例提供的信号发送方法的流程示意图之一;
图5是本申请提供的导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之一;
图6是本申请提供的数据符号、导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之二;
图7是本申请提供的数据符号、导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之三;
图8是本申请提供的导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之四;
图9是本申请提供的数据符号、导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之五;
图10是本申请提供的数据符号、导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之六;
图11是本申请实施例提供的信号发送方法的流程示意图之二;
图12是本申请提供的具有时间延迟量和多普勒偏移量的导频序列的示意图之一;
图13是本申请提供的具有时间延迟量和多普勒偏移量的导频序列的示意图之二;
图14是本申请实施例提供的信号发送装置的结构示意图之一;
图15是本申请实施例提供的信号发送装置的结构示意图之二。
图16是本申请实施例提供的通信设备的结构示意图;
图17是本申请实施例提供的终端的硬件结构示意图;
图18是本申请实施例提供的网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal  Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理
(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网(Radio Access Network,RAN)设备、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或领域中其他某个合适的术语,只要达到相同的技术效果,基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
图2是本申请实施例提供的一种OTFS系统的框图。如图2所示,OTFS系统包括:发送设备和接收设备。
发送设备将信息帧中的符号,映射至延迟多普勒域资源格,得到延迟多普勒域信息帧;基于离散傅里叶反变换(Inverse Discrete Fourier Transform,IDFT),将延迟多普勒域信息帧映射至延迟时间域资源格,得到延迟时间域信息帧;基于序列转换处理,将延迟时间域信息帧转换成时域离散序列;基于发送侧的相关处理方法,将时域离散序列转换为通信信道可以传输的目标信号,并向接收设备发送目标信号。
其中,序列转换处理可以包括并/串转换(P/S)处理以及增加循序循环前缀(cyclic prefix,CP)处理。
目标信号在通信信道中传输的过程中,由于受到通信信道的时变特性、多径特性和衰落特性的影响,因此相对于发送设备发送的目标信号的信号质量,接收设备接收到的目标信号的信号质量较差。
接收设备为了得到准确的信息帧,通常需要检测通过通信信道传输后的目标信号(即接收设备接收到的目标信号)的时间延迟量和多普勒偏移量,其中,具体地检测方法包括:
接收设备基于接收侧的相关处理方法,将接收到的目标信号处理成时域离散序列;基于上述序列转换处理的逆处理方法,将时域离散序列转换成延迟时间域信息帧;基于离散傅里叶变换(Discrete Fourier Transform,DFT),将延迟时间域信息帧逆映射至延迟多普勒域资源格,得到延迟多普勒域目标帧,并采用基于样本导频序列对延迟多普勒域目标帧进行检测处理,得到接收设备接收到的目标信号的时间延迟量和多普勒偏移量。
在图2实施例中,发送设备可以是图1中所示的终端或者网络侧设备,接收设备也可以是图1中所示的终端或者网络侧设备。例如在发送设备是图1中所示的终端的情况下,接收设备可以是图1所示中的网络侧设备。例如在发送设备是图1中所示的网络侧设备的情况下,接收设备可以是图1所示中的终端。
下面结合图3对相关技术中导致时域离散序列的高PAPR的原因进行解释说明。
图3是本申请实施例提供的得到时域离散序列的过程示意图。如图3所示,在采用相关技术的情况下,信息帧中的导频符号只有一个,该导频符号映射至延迟多普勒域资源格中的一个DRE上,在经过IDFT、序列转换处理得到的时域离散序列中,每M个信号样点中存在导频符号的一个导频样点。延迟多普勒域资源格包括M乘以N个DRE,M表示延迟多普勒域资源格上延迟维度的DRE总数量,N表示延迟多普勒域资源格上多普勒维度的DRE总数量)。需要说明的是,图3以M等于8且N等于7为例进行说明的。
在相关技术中,为了提高信道估计精度,该导频符号的功率(例如为第一功率)通常较大,因此导频符号的一个导频样点对应的功率也较大。在导频样点对应的功率较大的情况下,每M个信号样点中会存在高功率的一个导频样点,从而导致时域离散序列的PAPR较高。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号发送方法进行详细地说明。
图4是本申请实施例提供的信号发送方法的流程示意图之一。如图4所示,本实施例提供的方法包括:
步骤401、发送设备获取信息帧,信息帧中包括内部有第一数量个导频符号的导频序列,第一数量大于或等于2。
在本申请中,可以根据实际设计需求设置第一数量的具体取值。例如第一数量可以为4或8等。
步骤402、发送设备将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧。
具体地,信息帧中的所有符号(所有符号中包括导频序列)分别映射至延迟多普勒域资源格中的DRE上,一个符映射至一个DRE上。
特别地,信息帧中的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个DRE上。
步骤403、发送设备基于延迟多普勒域信息帧,向接收设备发送目标信号。
具体地,发送设备基于延迟多普勒域信息帧得到时域离散序列,并基于时域离散序列向接收设备发送目标信号。
其中,基于延迟多普勒域信息帧得到时域离散序列的过程及基于时域离散序列向接收设备发送目标信号的过程,请参见图2实施例中发送设备向接收设备发送目标信号的过程,此处不再赘述。
在实施例提供的信号发送方法中,发送设备将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧,由于第一数量大于或等于2,即导频符号的总数量大于或等于2,因此可以使得根据延迟多普勒域信息帧得到的时域离散序列中每M个信号样点中存在多个导频样点,从而降低时域离散序列的PAPR,进而降低发送设备的硬件成本。
可选地,本申请中的导频序列为发送设备基于预设序列生成的,预设序列为ZC序列或者伪随机序列。
在本申请中,导频序列基于ZC序列或者伪随机序列生成,可以使得导频序列具有良好的自相关性和/或互相关性,使得接收设备可以准确地确定目标信号的时间延迟量和多普勒偏移量。
可选地,所述导频序列为以下任一项:
在基于预设调制方式对所述预设序列进行调制之后,得到的调制序列;
在对所述调制序列进行P点的离散傅里叶变换或者离散傅里叶反变换变换之后,得到的变换序列;
在所述调制序列中增加循环前缀之后得到的;
在所述变换序列中增加循环前缀之后得到的;
P大于或等于所述第一数量且小于或等于所述延迟多普勒域资源格内延迟维度上的DRE总数量。
预设序列为码元序列。
在导频序列为对所述调制序列进行P点的离散傅里叶变换或者离散傅里叶反变换变换之后得到的变换序列的情况下,当调制序列中的符号数量(即序列长度)等于第一数量且第一数量小于P时,可以在调制序列中增加0,使得增加0后的序列长度等于P,进而进行P点的离散傅里叶变换或者离散傅里叶反变换变换。
预设调制方式例如可以是正交振幅(Quadrature Amplitude Modul,QAM)调制方式或者二进制相移键控(Binary Phase Shift Keying,BPSK)调制方式等。
例如在图5至图7中多普勒维度上的DRE总数量为M。
可选地,第一数量小于或等于延迟多普勒域资源格内延迟维度上的DRE总数量。例如在图3中,延迟维度上的DRE总数量等于M。在延迟维度上的DRE总数量等于M的情况下,例如第一数量可以是大于或等于2且小于或等于M的整数。
在本申请中,第一数量大于或等于1且小于或等于延迟多普勒域资源格内延迟维度上的DRE总数量,可以使得信息帧中包括导频符号的数量具有灵活性。
可选地,第一数量个导频符号的功率相同。
在本申请中,第一数量个导频符号的功率可以使得在时域离散序列中包括的第一数量个导频符号的所有导频样点对应的发送功率均相同,从而降低时域离散序列的PAPR。
可选地,在第一数量个导频符号的功率相同的情况下,第一数量可以小于或等于延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同。即第一数量个DRE是延迟多普勒域资源格中多普勒维度上的一列DRE。
可选地,在第一数量个导频符号的功率相同的情况下,第一数量可以小于或等于延迟多普勒域资源格内延迟维度上的DRE总数量,且第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同。
在本实施例中,第一数量个DRE在延迟多普勒域资源格中的延迟维度上连续设置,且第一数量个DRE是多普勒维度上的一列DRE,能够使时域离散序列中每M个信号样点中包括第一数量个导频符号的样点。在本申请中,在每个导频符号的功率为第二功率的情况下,可以避免每M个信号样点中存在一个高功率样点,进而降低时域离散序列的PAPR。
在申请中,第一功率和第二功率满足如下任一条件:
第一功率等于第二功率;
第一功率大于第二功率;
第一功率小于第二功率;
第一功率等于第一数量和第二功率的乘积;
第一功率大于第一数量和第二功率的乘积;
第一功率小于第一数量和第二功率的乘积。
可选地,信息帧还包括以下任一项:导频保护符号;数据符号和导频保护符号。
具体地,在信息帧还包括导频保护符号的情况下,信息帧为导频帧;在信息帧还包括数据符号和导频保护符号的情况下,信息帧为数据帧。
其中,导频保护符号为导频符号在延迟多普勒域资源格内多普勒维度上的保护符号。导频保护符号用于使导频符号在经历通信信道之后,保障导频符号不会超出导频 保护符号在多普勒维度上占据的多普勒单元,使得接收设备准确地估计目标信号的时间延迟量和多普勒偏移量。
可选地,在延迟多普勒域资源格中,导频保护符号映射至延迟多普勒域资源格内多普勒维度上分别位于第一数量个DRE两侧的第二数量个DRE。
需要说明的是,第一数量个DRE的两侧各有第二数量个DRE。
可选地,第二数量大于第一数量。
可选地,在信息帧包括导频保护符号和导频序列情况下,第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量。示例性地,如图5所示。
图5是本申请提供的导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之一。如图5所示,延迟多普勒域资源格内延迟维度上的DRE总数量等于M,第一数量等于M。第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同(例如在图5中多普勒偏移量ν等于4)。第一数量个DRE的两侧分别有第二数量(例如在图5中为3M)个DRE。
在图5所示的延迟多普勒域资源格的基础上,基于IDFT,将延迟多普勒域信息帧映射至延迟时间域资源格,得到延迟时间域信息帧。在延迟时间域资源格内的每行中,每个资源元素中的点样均为导频样点。
在图5所示的延迟时间域资源格的基础上,基于序列转换处理,将延迟时间域信息帧转换成时域离散序列。在时域离散序列中,每M个信号样点中均包括M个导频样点(即M个导频符号的一个导频样点)。在M个导频符号的功率均相同的情况下,时域离散序列中的所有导频样点的功率也相同,有效地避免了每M个信号样点中存在一个导频样点(均该导频样点的功率较高)的问题,降低了时域离散序列的PAPR。
可选地,在信息帧包括数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。示例性地,如图6所示。
图6是本申请提供的数据符号、导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之二。如图6所示,延迟多普勒域资源格内延迟维度上的DRE总数量等于M,第一数量等于M。
第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同(例如在图6中多普勒偏移量ν等于4),第一数量个DRE的两侧分别有第二数量个DRE。在图6中,(例如在图6中为2M)
在图6所示的延迟多普勒域资源格的基础上,基于IDFT,将延迟多普勒域信息帧映射至延迟时间域资源格,得到延迟时间域信息帧。在延迟时间域资源格内的每行中, 每个资源元素中的点样(包括导频符号的导频样点的分量和数据符号的数据样点的分量)均存在导频符号的导频样点的分量。
在图6所示的延迟时间域资源格的基础上,基于序列转换处理,将延迟时间域信息帧转换成时域离散序列。在时域离散序列中,每M个信号样点中均包括M个导频样点的一个导频样点,由于M个导频符号的功率均相同,因此M个导频样点对应的功率也相同,有效避免了每M个信号样点中只有仅存的一个导频样点对应的功率较高的问题,降低了时域离散序列的PAPR(例如使得PAPR降低越10lgM dB)。
在一些实施例中,第二数量个DRE在多普勒维度上占据的多普勒单元等于2K;K大于或等于传输目标信号的信道的最大多普勒频率,多普勒维度上的DRE总数量,以及导频符号的符号时长之间的乘积(即K=Vmax×N×T,其中,Vmax表示最大多普勒频率,N表示多普勒维度上的DRE总数量,T表示导频符号的符号时长)。
需要说明的是,第二数量个DRE在多普勒维度上占据的多普勒单元为第二数量个DRE在多普勒维度上的列数。在第二数量个DRE在多普勒维度上占据的多普勒单元等于2K的情况下,在延迟多普勒域资源格中的多普勒维度上,位于导频符号两侧的且与导频符号距离最近的数据符号所在的DRE之间的多普勒单元等于4K+1。
在图6实施例中,第二数量个DRE贯穿延迟时间域资源格的延迟维度,因此可以避免在经历信道传输之后数据符号和导频符号之间的互相干扰,保障接收设备进行解调得到数据符号的准确性。进一步地,在延迟多普勒域资源格中的多普勒维度上,位于导频符号两侧的且与导频符号距离最近的数据符号所在的DRE之间的多普勒单元等于4K+1,可以保障导频序列在经历信道传输之后,导频序列不会超出导频保护符号所在的DRE范围,使得接收设备可以得到准确的时间延迟量和多普勒偏移量。
可选地,在信息帧中的数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;第一数量小于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。示例性地,如图7所示。
图7是本申请提供的数据符号、导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之三。如图7所示,延迟维度上的DRE总数量等于M,第一数量小于M。例如第一数量等于M/2。
第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同(例如在图7中多普勒偏移量ν等于4)。第一数量个DRE的两侧分别有第二数量(例如在图6中为2M)个DRE。
在图7所示的延迟多普勒域资源格的基础上,基于IDFT,将延迟多普勒域信息帧映射至延迟时间域资源格,得到延迟时间域信息帧。在延迟时间域资源格内的目标行 (包括导频符号、导频保护符号和数据符号)中,每个资源元素中的点样(包括导频符号的导频样点的分量和数据符号的数据样点的分量)均存在导频符号的导频样点的分量。在延迟时间域资源格内除目标行之外的其他行(只包括数据符号)中,每个资源元素中的点样均为数据符号的数据样点。
在图7所示的延迟时间域资源格的基础上,基于序列转换处理,将延迟时间域信息帧转换成时域离散序列。在时域离散序列中,每M个信号样点中具有功率1的样点和具有功率2的样点,其中,具有功率1的样点包括导频符号的导频样点的分量和数据符号的数据样点的分量,具有功率2的样点仅包括数据符号的数据样点。
可选地,功率1可以大于或等于功率2。
例如,在导频符号的功率(在进行功率增强之后的功率)等于在保护间隔(即4K+1)对应的DRE上假定发送数据符号时所用的总功率,功率1=功率2。例如在图7的基础上,在数据符号的功率为P、导频符号的功率为5P的情况下,功率1=功率2。
例如,在导频符号的功率(在进行功率增强之后的功率)为某一设定的较大功率(例如大于在保护间隔对应的DRE上假定发送数据符号时所用的总功率)的情况下,功率1大于功率2。例如在图7的基础上,在数据符号的功率为P、导频符号的功率为6P(大于5P)的情况下,功率1大于功率2。
包括第一数量个导频样点的一个导频样点,由于第一数量个导频符号的功率均相同,因此第一数量个导频样点对应的功率也相同,有效避免了每M个信号样点中只有仅存的一个导频样点对应的功率较高的问题,降低了时域离散序列的PAPR(例如使得PAPR降低越10lgL dB,L表示第一数量)。
可选地,第二数量个DRE在多普勒维度上占据的多普勒单元等于2K;K大于或等于传输目标信号的信道的最大多普勒频率,多普勒维度上的DRE总数量,以及导频符号的符号时长之间的乘积。需要说明的是,第二数量个DRE在多普勒维度上占据的多普勒单元为第二数量个DRE在多普勒维度上的列数。在第二数量个DRE在多普勒维度上占据的多普勒单元等于2K的情况下,在延迟多普勒域资源格中的多普勒维度上,位于导频符号两侧的、且与导频符号距离最近的数据符号所在的DRE之间的多普勒单元等于4K+1。
在本实施例中,在延迟多普勒域资源格中的延迟维度上,数据符号和导频符号之间缺少导频保护符号,在经历信道传输之后存在数据符号和导频符号之间的相互干扰。该相互干扰会带来两种后果:1)影响信道估计的准确度(主要是信道增益);2)受导频符号干扰的部分数据符号的样点影响对数据符号的解调性能。
对于1),在导频序列的自相关性良好的情况下,若导频符号的功率较高,则可以忽略。
对于2),接收设备可以基于连续干扰消除(Succesive interference cancellation,SIC)的基于,在检测出所有的导频符号所在径后,在信号样点上减去各径的导频样点的分量,从而改善解调性能。
可选地,在所述第一数量个DRE在所述延迟多普勒域资源格内多普勒维度上的多普勒偏移量为X的情况下,当所述第二数量个DRE在所述多普勒维度占据的多普勒单元等于G时;
在X大于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围为[X-G,X-1];在X小于或等于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量范围包括[1,X-1]及[X-1+N,X-G+N];
在N-G大于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[X+1,X+G];在N-G小于或等于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围包括[X+1,N]及[1,X+G-N];
可选地,X为大于或等于1且小于或等于N的整数。
可选地,N为所述延迟多普勒域资源格内多普勒维度上的DRE总数量。
可选地,G大于或等于2K,K大于或等于传输所述目标信号的信道的最大多普勒频率、所述多普勒维度上的DRE总数量、以及所述导频符号的符号时长之间的乘积。
例如在图5中,X=4、N=7、G=3,满足X大于G,因此第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围为[1,3],满足N-G小于或等于X,因此第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围包括[5,7]及[1,0]。
需要说明的是,在本申请中,[1,0]为空集。
图8是本申请提供的导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之四。如图8所示,在第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量的情况下,例如X等于1、G等于3、N等于7,满足X小于或等于G,因此第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围包括[1,0]及[7,5];并且满足N-G大于X,因此第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[2,4]。
图9是本申请提供的数据符号、导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之五。如图9所示,在第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量的情况下,例如X等于1、G等于2、N等于7,满足X小于或等于G,因此第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围包括[1,0]及[7,6];并且满足N-G大于X,因此第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[2,3]。
图10是本申请提供的数据符号、导频保护符号和导频序列映射至延迟多普勒域资源格内的示意图之六。如图10所示,在第一数量小于延迟多普勒域资源格内延迟维度 上的DRE总数量的情况下,例如在X等于1、G等于2、N等于7的情况下,满足X小于或等于G,因此第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围包括[1,0]及[7,6];并且满足N-G大于X,因此第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[2,3]。
需要说明的是,图8-图10是以第一数量个延迟多普勒域资源元素DRE为多普勒域资源格中左侧首列DRE为例进行说明,图5-图7是以第一数量个延迟多普勒域资源元素DRE为多普勒域资源格中非左侧首列DRE为例进行说明。
图11是本申请实施例提供的信号发送方法的流程示意图之二。如图11所示,本实施例提供的方法包括:
步骤1101、接收设备接收发送设备发送的目标信号;目标信号为发送设备基于延迟多普勒域信息帧得到的,延迟多普勒域信息帧为发送设备将信息帧中内部有第一数量个导频符号的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上得到的,第一数量大于或等于2。
步骤1102、接收设备基于目标信号,得到延迟多普勒域目标帧;并基于样本导频序列,对延迟多普勒域目标帧进行检测处理,得到目标信号的时间延迟量和多普勒偏移量。
具体地,接收设备基于目标信号,得到时域离散序列;基于时域离散序列,得到的延迟多普勒域目标帧;基于样本导频序列,对延迟多普勒域目标帧进行检测处理,得到目标信号的时间延迟量和多普勒偏移量。
其中,基于目标信号得到时域离散序列的过程及基于时域离散序列得到的延迟多普勒域目标帧的过程,请参见图2实施例,此处不再赘述。
可选地,样本导频序列可以为接收设备和发送设备之间协商的样本导频序列,也可以为通信协议中规定的样本导频序列。
可选地,第一数量小于或等于延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,第一数量个导频符号的功率相同。
可选地,第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同。
可选地,信息帧还包括以下任一项:导频保护符号;数据符号和导频保护符号。
可选地,导频保护符号为导频符号在延迟多普勒域资源格内多普勒维度上的保护符号。
可选地,在延迟多普勒域资源格中,导频保护符号映射至延迟多普勒域资源格内多普勒维度上分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,在信息帧包括导频保护符号和导频序列情况下,第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,在信息帧包括数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;
第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,在信息帧中的数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;
第一数量小于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,第二数量个DRE在多普勒维度上占据的多普勒单元等于2K;K大于或等于传输目标信号的信道的最大多普勒频率,多普勒维度上的DRE总数量,以及导频符号的符号时长之间的乘积。
可选地,基于样本导频序列,对延迟多普勒域目标帧进行检测处理,得到目标信号的时间延迟量和多普勒偏移量,包括:
接收设备基于多个预设多普勒偏移量和每个预设多普勒偏移量对应的预设时间延迟量,对样本导频序列中包括的第一数量个导频符号进行移位处理,得到多个目标导频序列;
接收设备分别确定延迟多普勒域目标帧和多个目标导频序列之间的相关值;
接收设备将多个目标导频序列中相关值最大的前M个目标导频序列各自对应的预设多普勒偏移量和预设时间延迟量,确定为目标信号的时间延迟量和多普勒偏移量;M为大于或等于1的整数。此处,M的取值,与上述图3、图5至图7中的M的取值无关。可选地,M等于信道的径数。
可选地,所述导频序列为所述发送设备基于预设序列生成的,所述预设序列为ZC序列或者伪随机序列。
可选地,所述导频序列为以下任一项:
在基于预设调制方式对所述预设序列进行调制之后,得到的调制序列;
在对所述调制序列进行P点的离散傅里叶变换或者离散傅里叶反变换变换之后,得到的变换序列;
在所述调制序列中增加循环前缀之后得到的;
在所述变换序列中增加循环前缀之后得到的;
P大于或等于所述第一数量且小于或等于所述延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,在所述第一数量个DRE在所述延迟多普勒域资源格内多普勒维度上的多普勒偏移量为X的情况下,当所述第二数量个DRE在所述多普勒维度占据的多普勒单元等于G时;
在X大于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围为[X-G,X-1];在X小于或等于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量范围包括[1,X-1]及[X-1+N,X-G+N];
在N-G大于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[X+1,X+G];在N-G小于或等于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围包括[X+1,N]及[1,X+G-N];
X为大于或等于1且小于或等于N的整数;
N为所述延迟多普勒域资源格内多普勒维度上的DRE总数量;
G大于或等于2K,K大于或等于传输所述目标信号的信道的最大多普勒频率、所述多普勒维度上的DRE总数量、以及所述导频符号的符号时长之间的乘积。
下面结合图12和图13对具有时间延迟量和多普勒偏移量的导频序列进行说明。需要说明的是,导频序列的时间延迟量和多普勒偏移量是包括导频序列的目标信号的时间延迟量和多普勒偏移量。
图12是本申请提供的具有时间延迟量和多普勒偏移量的导频序列的示意图之一。如图12所示,在导频序列为[s_1,s_2,…,s_8]的情况下,其在经历单径信道(即M=1)后产生的时间延迟量和多普勒偏移量为(3,2)的情况下,其对应的循环移位序列为[s_6,s_7,s_8,s_1,…,s_5]。
进一步地,在目标导频序列为[s_6,s_7,s_8,s_1,…,s_5]的情况下,可以检测出一个最大相关值,因此接收设备可以将[s_6,s_7,s_8,s_1,…,s_5]对应的为(3,2)确定为导频序列的时间延迟量和多普勒偏移量。
图13是本申请提供的具有时间延迟量和多普勒偏移量的导频序列的示意图之二。如图13所示,在导频序列为[s_1,s_2,…,s_8]的情况下,其在经历3径信道(即M=3)后产生的时间延迟量和多普勒偏移量为(3,2)、(0,-1)、(5,2)的情况下,其对应的循环移位序列为[s_1,s_2,…,s_8]、以及[s_6,s_7,s_8,s_1,…,s_5]和[s_4,…,s_8,s_1,s_2,s_3]的叠加序列。
进一步地,在目标导频序列为[s_1,s_2,…,s_8]、[s_6,s_7,s_8,s_1,…,s_5]、[s_4,…,s_8,s_1,s_2,s_3]的情况下,可以检测出一个相关值最大的3个值,因此可以将[s_6,s_7,s_8,s_1,…,s_5]对应的(3,2)、[s_4,…,s_8,s_1,s_2,s_3]对应的(0,-1)、[s_4,…,s_8,s_1,s_2,s_3]对应的(5,2)确定为目标信号的时间延迟量和多普勒偏移量。
图14是本申请实施例提供的信号发送装置的结构示意图之一。本实施例的装置应用于发送设备。如图14所示,本实施例中的信号发送装置包括:
获取模块110,用于获取信息帧;信息帧中包括内部有第一数量个导频符号的导频序列,第一数量大于或等于2;
处理模块120,用于将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;
发送模块130,用于基于延迟多普勒域信息帧,向接收设备发送目标信号。
可选地,第一数量小于或等于延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,第一数量个导频符号的功率相同。
可选地,第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同。
可选地,信息帧还包括以下任一项:导频保护符号;数据符号和导频保护符号。
可选地,导频保护符号为导频符号在延迟多普勒域资源格内多普勒维度上的保护符号。
可选地,在延迟多普勒域资源格中,导频保护符号映射至延迟多普勒域资源格内多普勒维度上分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,在信息帧包括导频保护符号和导频序列情况下,第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,在信息帧包括数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;
第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,在信息帧中的数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;
第一数量小于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,所述导频序列为所述发送设备基于预设序列生成的,所述预设序列为ZC序列或者伪随机序列。
可选地,所述导频序列为以下任一项:
在基于预设调制方式对所述预设序列进行调制之后,得到的调制序列;
在对所述调制序列进行P点的离散傅里叶变换或者离散傅里叶反变换变换之后,得到的变换序列;
在所述调制序列中增加循环前缀之后得到的;
在所述变换序列中增加循环前缀之后得到的;
P大于或等于所述第一数量且小于或等于所述延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,在所述第一数量个DRE在所述延迟多普勒域资源格内多普勒维度上的多普勒偏移量为X的情况下,当所述第二数量个DRE在所述多普勒维度占据的多普勒单元等于G时;
在X大于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围为[X-G,X-1];在X小于或等于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量范围包括[1,X-1]及[X-1+N,X-G+N];
在N-G大于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[X+1,X+G];在N-G小于或等于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围包括[X+1,N]及[1,X+G-N];
X为大于或等于1且小于或等于N的整数;
N为所述延迟多普勒域资源格内多普勒维度上的DRE总数量;
G大于或等于2K,K大于或等于传输所述目标信号的信道的最大多普勒频率、所述多普勒维度上的DRE总数量、以及所述导频符号的符号时长之间的乘积。
本实施例的装置,可以用于执行前述发送设备侧实施例中的信号发送方法,其具体实现过程和技术效果与发送设备侧方法实施例中类似,具体可以参见发送设备侧方法实施例中的详细介绍,此处不再赘述。
图15是本申请实施例提供的信号发送装置的结构示意图之二。本实施例的装置应用于接收设备。如图15所示,本实施例中的信号发送装置包括:
接收模块210,用于接收发送设备发送的目标信号;目标信号为发送设备基于延迟多普勒域信息帧得到的,延迟多普勒域信息帧为发送设备将信息帧中内部有第一数量个导频符号的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上得到的,第一数量大于或等于2;
处理模块220,用于基于目标信号,得到延迟多普勒域目标帧;并基于样本导频序列,对延迟多普勒域目标帧进行检测处理,得到目标信号的时间延迟量和多普勒偏移量。
可选地,第一数量小于或等于延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,第一数量个导频符号的功率相同。
可选地,第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同。
可选地,信息帧还包括以下任一项:
导频保护符号;
数据符号和导频保护符号。
可选地,导频保护符号为导频符号在延迟多普勒域资源格内多普勒维度上的保护符号。
可选地,在延迟多普勒域资源格中,导频保护符号映射至延迟多普勒域资源格内多普勒维度上分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,在信息帧包括导频保护符号和导频序列情况下,第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,在信息帧包括数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;
第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,在信息帧中的数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;
第一数量小于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,第二数量个DRE在多普勒维度上占据的多普勒单元等于2K;K大于或等于传输目标信号的信道的最大多普勒频率,多普勒维度上的DRE总数量,以及导频符号的符号时长之间的乘积。
可选地,基于样本导频序列,对延迟多普勒域目标帧进行检测处理,得到目标信号的时间延迟量和多普勒偏移量,包括:
接收设备基于多个预设多普勒偏移量和每个预设多普勒偏移量对应的预设时间延迟量,对样本导频序列中包括的第一数量个导频符号进行移位处理,得到多个目标导频序列;
接收设备分别确定延迟多普勒域目标帧和多个目标导频序列之间的相关值;
接收设备将多个目标导频序列中相关值最大的前M个目标导频序列各自对应的预设多普勒偏移量和预设时间延迟量,确定为目标信号的时间延迟量和多普勒偏移量;M为大于或等于1的整数。
可选地,导频序列为发送设备基于预设序列生成的,预设序列为ZC序列或者伪随机序列。
可选地,所述导频序列为以下任一项:
在基于预设调制方式对所述预设序列进行调制之后,得到的调制序列;
在对所述调制序列进行P点的离散傅里叶变换或者离散傅里叶反变换变换之后,得到的变换序列;
在所述调制序列中增加循环前缀之后得到的;
在所述变换序列中增加循环前缀之后得到的;
P大于或等于所述第一数量且小于或等于所述延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,在所述第一数量个DRE在所述延迟多普勒域资源格内多普勒维度上的多普勒偏移量为X的情况下,当所述第二数量个DRE在所述多普勒维度占据的多普勒单元等于G时;
在X大于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围为[X-G,X-1];在X小于或等于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量范围包括[1,X-1]及[X-1+N,X-G+N];
在N-G大于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[X+1,X+G];在N-G小于或等于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围包括[X+1,N]及[1,X+G-N];
X为大于或等于1且小于或等于N的整数;
N为所述延迟多普勒域资源格内多普勒维度上的DRE总数量;
G大于或等于2K,K大于或等于传输所述目标信号的信道的最大多普勒频率、所述多普勒维度上的DRE总数量、以及所述导频符号的符号时长之间的乘积。
本实施例的装置,可以用于执行前述接收设备侧实施例中的信号发送方法,其具体实现过程和技术效果与接收设备侧方法实施例中类似,具体可以参见接收设备侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例中的信号发送装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性地,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信号发送装置能够实现图4或图11方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图16是本申请实施例提供的通信设备的结构示意图。如图16所示,本申请实施例提供的通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在处理器1301上运行的程序或指令。例如,该通信设备1300为发送设备时,该程序或指令被处理器1301执行时实现上述发送设备侧方法实施例的各个步骤,且能达到相同的技术效果。例如,该通信设备1300为接收设备时,该程序或指令被处理器1301执行时实现上述接收设备侧方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端。终端包括处理器和通信接口。在终端为发送设备的情况下,处理器用于获取信息帧;信息帧中包括内部有第一数量个导频符号的导频序列,第一数量大于或等于2;将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;通信接口用于基于延迟多普勒域信息帧,向接收设备发送目标信号。
图17是本申请实施例提供的终端的硬件结构示意图。如图17所示,该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图17中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理单元(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072中的至少一种。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401接收来自网络侧设备的下行数据后,可以传输给处理器1410进行处理;另外,射频单元1401可以向网络侧设备发送上行数据。通常,射频单元1401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括易失性存储器或非易失性存储器,或者,存储器1409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器 (Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1409包括但不限于这些和任意其它适合类型的存储器。
处理器1410可包括一个或多个处理单元;可选的,处理器1410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,射频单元1401,用于获取信息帧;信息帧中包括内部有第一数量个导频符号的导频序列,第一数量大于或等于2;将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;基于延迟多普勒域信息帧,向接收设备发送目标信号。
在本申请中,将内部有第一数量个导频符号的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧,可以使得根据延迟多普勒域信息帧得到的时域离散序列中每M个信号样点中存在多个导频样点,从而降低时域离散序列的PAPR,进而降低发送设备的硬件成本。
可选地,第一数量小于或等于延迟多普勒域资源格内延迟维度上的DRE总数量。
在本申请中,第一数量大于或等于1且小于或等于延迟多普勒域资源格内延迟维度上的DRE总数量,可以使得信息帧中包括导频符号的数量具有灵活性。
可选地,第一数量个导频符号的功率相同。
可选地,第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同。
在本申请中,第一数量个DRE在延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同,使得第一数量个导频样点在时间延迟域资源格中呈带状分布,进而保障时域离散序列中每M个信号样点中包括多个导频样点。
可选地,信息帧还包括以下任一项:导频保护符号;数据符号和导频保护符号。
可选地,导频保护符号为导频符号在延迟多普勒域资源格内多普勒维度上的保护符号。
导频保护符号用于使导频符号在经历通信信道之后,保障导频符号不会超出导频保护符号在多普勒维度上占据的多普勒单元,使得接收设备准确地估计目标信号的时间延迟量和多普勒偏移量。
可选地,在延迟多普勒域资源格中,导频保护符号映射至延迟多普勒域资源格内多普勒维度上分别位于第一数量个DRE两侧的第二数量个DRE。
第一数量个DRE两侧分别设置第二数量个DRE,
可选地,在信息帧包括导频保护符号和导频序列情况下,第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,在信息帧包括数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;
第一数量等于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。
在本申请中,第二数量个DRE贯穿延迟时间域资源格的延迟维度,因此可以避免在经历信道传输之后数据符号和导频符号之间的互相干扰,保障接收设备进行解调得到数据符号的准确性。
可选地,在信息帧中的数据符号、导频保护符号和导频序列的情况下,数据符号映射至延迟多普勒域资源格中除第一数量个DRE和第二数量个DRE之外的第三数量个DRE上;
第一数量小于延迟多普勒域资源格内延迟维度上的DRE总数量,且第三数量个DRE环绕包围分别位于第一数量个DRE两侧的第二数量个DRE。
可选地,所述第二数量个DRE在所述多普勒维度上占据的多普勒单元等于2K;K大于或等于传输所述目标信号的信道的最大多普勒频率,所述多普勒维度上的DRE总数量,以及所述导频符号的符号时长之间的乘积。
可选地,所述导频序列为所述发送设备基于预设序列生成的,所述预设序列为ZC序列或者伪随机序列。
可选地,所述导频序列为以下任一项:
在基于预设调制方式对所述预设序列进行调制之后,得到的调制序列;
在对所述调制序列进行P点的离散傅里叶变换或者离散傅里叶反变换变换之后,得到的变换序列;
在所述调制序列中增加循环前缀之后得到的;
在所述变换序列中增加循环前缀之后得到的;
P大于或等于所述第一数量且小于或等于所述延迟多普勒域资源格内延迟维度上的DRE总数量。
可选地,在所述第一数量个DRE在所述延迟多普勒域资源格内多普勒维度上的多普勒偏移量为X的情况下,当所述第二数量个DRE在所述多普勒维度占据的多普勒单元等于G时;
在X大于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围为[X-G,X-1];在X小于或等于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量范围包括[1,X-1]及[X-1+N,X-G+N];
在N-G大于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[X+1,X+G];在N-G小于或等于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围包括[X+1,N]及[1,X+G-N];
X为大于或等于1且小于或等于N的整数;
N为所述延迟多普勒域资源格内多普勒维度上的DRE总数量;
G大于或等于2K,K大于或等于传输所述目标信号的信道的最大多普勒频率、所述多普勒维度上的DRE总数量、以及所述导频符号的符号时长之间的乘积。
在本申请中,在延迟多普勒域资源格中的多普勒维度上,位于导频符号两侧的且与导频符号距离最近的数据符号所在的DRE之间的多普勒单元等于4K+1,可以保障导频序列在经历信道传输之后,导频序列不会超出导频保护符号所在的DRE范围,使得接收设备可以得到准确的时间延迟量和多普勒偏移量。
本实施例的终端,可以用于执行前述发送设备侧实施例中的信号发送方法,其具体实现过程和技术效果与发送设备侧方法实施例中类似,具体可以参见发送设备侧方法实施例中的详细介绍,此处不再赘述。
可选地,本实施例的终端还可以为接收终端,在终端为接收终端的情况下,本实施例的终端可以执行上述接收设备侧实施例中的信号发送方法,其具体实现过程和技术效果与接收设备侧方法实施例中类似,具体可以参见接收设备侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口。在网络侧设备为发送设备的情况下,处理器用于获取信息帧;信息帧中包括内部有第一数量个导频符号的导频序列,第一数量大于或等于2;将导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;通信接口用于基于延迟多普勒域信息帧,向接收设备发送目标信号。
该网络侧设备实施例与上述发送设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
图18是本申请实施例提供的网络侧设备的硬件结构示意图。如图18所示,该网络侧设备1500包括:天线151、射频装置152、基带装置153、处理器154和存储器155。天线151与射频装置152连接。在上行方向上,射频装置152通过天线151接收 信息,将接收的信息发送给基带装置153进行处理。在下行方向上,基带装置153对要发送的信息进行处理,并发送给射频装置152,射频装置152对收到的信息进行处理后经过天线151发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置153中实现,该基带装置153包括基带处理器。
基带装置153例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为基带处理器,通过总线接口与存储器155连接,以调用存储器155中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口156,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1500还包括:存储在存储器155上并可在处理器154上运行的指令或程序,处理器154调用存储器155中的指令或程序执行图14或图15所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
可选地,本实施例的网络设备还可以为接收终端,在网络设备为接收终端的情况下,本实施例的网络设备可以执行上述接收设备侧实施例中的信号发送方法,其具体实现过程和技术效果与接收设备侧方法实施例中类似,具体可以参见接收设备侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例还提供一种可读存储介质,可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,处理器为上述实施例中的终端中的处理器。可读存储介质,包括计算机可读存储介质,计算机可读存储介质的示例包括非暂态计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例还提供了一种芯片,包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行程序或指令,实现上述接收设备侧或者发送设备侧方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序/程序产品,计算机程序/程序产品被存储在存储介质中,计算机程序/程序产品被至少一个处理器执行以实现上述接收设备侧或者发送设备侧方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:发送设备及接收设备,发送设备可用于执行如上发送设备侧执行的信号发送方法,接收设备可用于执行如上接收设备侧执行的信号发送方法。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例的方法。上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种信号发送方法,包括:
    发送设备获取信息帧;所述信息帧中包括内部有第一数量个导频符号的导频序列,所述第一数量大于或等于2;
    所述发送设备将所述导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;
    所述发送设备基于所述延迟多普勒域信息帧,向接收设备发送目标信号。
  2. 根据权利要求1所述的信号发送方法,其中,所述第一数量小于或等于所述延迟多普勒域资源格内所述延迟维度上的DRE总数量。
  3. 根据权利要求1所述的信号发送方法,其中,所述第一数量个DRE在所述延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同。
  4. 根据权利要求1至3任一项所述的信号发送方法,其中,所述信息帧还包括以下任一项:
    导频保护符号;
    数据符号和导频保护符号。
  5. 根据权利要求4所述的信号发送方法,其中,所述导频保护符号为所述导频符号在所述延迟多普勒域资源格内多普勒维度上的保护符号。
  6. 根据权利要求5所述的信号发送方法,其中,在所述延迟多普勒域资源格中,所述导频保护符号映射至所述延迟多普勒域资源格内多普勒维度上分别位于第一数量个DRE两侧的第二数量个DRE。
  7. 根据权利要求6所述的信号发送方法,其中,在所述信息帧包括所述导频保护符号和所述导频序列情况下,所述第一数量等于所述延迟多普勒域资源格内延迟维度上的DRE总数量。
  8. 根据权利要求6所述的信号发送方法,其中,在所述信息帧包括所述数据符号、导频保护符号和所述导频序列的情况下,所述数据符号映射至所述延迟多普勒域资源格中除所述第一数量个DRE和所述第二数量个DRE之外的第三数量个DRE上;
    所述第一数量等于所述延迟多普勒域资源格内所述延迟维度上的DRE总数量,且所述第三数量个DRE环绕包围所述分别位于第一数量个DRE两侧的第二数量个DRE。
  9. 根据权利要求6所述的信号发送方法,其中,在所述信息帧中包括所述数据符号、所述导频保护符号和所述导频序列的情况下,所述数据符号映射至所述延迟多普勒域资源格中除所述第一数量个DRE和所述第二数量个DRE之外的第三数量个DRE上;
    所述第一数量小于所述延迟多普勒域资源格内所述延迟维度上的DRE总数量,且所述第三数量个DRE环绕包围所述分别位于第一数量个DRE两侧的第二数量个DRE。
  10. 根据权利要求8或9所述的信号发送方法,其中,所述第二数量个DRE在所述多普勒维度上占据的多普勒单元等于2K;K大于或等于传输所述目标信号的信道的最大多普勒频率,所述多普勒维度上的DRE总数量,以及所述导频符号的符号时长之间的乘积。
  11. 根据权利要求1至3任一项所述的信号发送方法,其中,所述导频序列为所述发送设备基于预设序列生成的,所述预设序列为ZC序列或者伪随机序列。
  12. 根据权利要求11所述的信号发送方法,其中,所述导频序列为以下任一项:
    在基于预设调制方式对所述预设序列进行调制之后,得到的调制序列;
    在对所述调制序列进行P点的离散傅里叶变换或者离散傅里叶反变换变换之后,得到的变换序列;
    在所述调制序列中增加循环前缀之后得到的;
    在所述变换序列中增加循环前缀之后得到的;
    P大于或等于所述第一数量且小于或等于所述延迟多普勒域资源格内延迟维度上的DRE总数量。
  13. 根据权利要求6所述的信号发送方法,其中,在所述第一数量个DRE在所述延迟多普勒域资源格内多普勒维度上的多普勒偏移量为X的情况下,当所述第二数量个DRE在所述多普勒维度占据的多普勒单元等于G时;
    在X大于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围为[X-G,X-1];在X小于或等于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量范围包括[1,X-1]及[X-1+N,X-G+N];
    在N-G大于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[X+1,X+G];在N-G小于或等于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围包括[X+1,N]及[1,X+G-N];
    X为大于或等于1且小于或等于N的整数;
    N为所述延迟多普勒域资源格内多普勒维度上的DRE总数量;
    G大于或等于2K,K大于或等于传输所述目标信号的信道的最大多普勒频率、所述多普勒维度上的DRE总数量、以及所述导频符号的符号时长之间的乘积。
  14. 一种信号发送方法,包括:
    接收设备接收发送设备发送的目标信号;所述目标信号为所述发送设备基于延迟多普勒域信息帧得到的,所述延迟多普勒域信息帧为所述发送设备将信息帧中内部有第一数量个导频符号的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上得到的,所述第一数量大于或等于2;
    所述接收设备基于所述目标信号,得到延迟多普勒域目标帧;并基于样本导频序列,对所述延迟多普勒域目标帧进行检测处理,得到所述目标信号的时间延迟量和多普勒偏移量。
  15. 根据权利要求14所述的信号发送方法,其中,所述第一数量小于或等于所述延迟多普勒域资源格内所述延迟维度上的DRE总数量。
  16. 根据权利要求14所述的信号发送方法,其中,所述第一数量个DRE在所述延迟多普勒域资源格中多普勒维度上的多普勒偏移量相同。
  17. 根据权利要求14至16任一项所述的信号发送方法,其中,所述信息帧还包括以下任一项:
    导频保护符号;
    数据符号和导频保护符号。
  18. 根据权利要求17所述的信号发送方法,其中,所述导频保护符号为所述导频符号在所述延迟多普勒域资源格内多普勒维度上的保护符号。
  19. 根据权利要求18所述的信号发送方法,其中,在所述延迟多普勒域资源格中,所述导频保护符号映射至所述延迟多普勒域资源格内多普勒维度上分别位于第一数量个DRE两侧的第二数量个DRE。
  20. 根据权利要求19所述的信号发送方法,其中,在所述信息帧包括所述导频保护符号和所述导频序列情况下,所述第一数量等于所述延迟多普勒域资源格内延迟维度上的DRE总数量。
  21. 根据权利要求19所述的信号发送方法,其中,在所述信息帧包括所述数据符号、导频保护符号和所述导频序列的情况下,所述数据符号映射至所述延迟多普勒域资源格中除所述第一数量个DRE和所述第二数量个DRE之外的第三数量个DRE上;
    所述第一数量等于所述延迟多普勒域资源格内所述延迟维度上的DRE总数量,且所述第三数量个DRE环绕包围所述分别位于第一数量个DRE两侧的第二数量个DRE。
  22. 根据权利要求19所述的信号发送方法,其中,在所述信息帧中的所述数据符号、所述导频保护符号和所述导频序列的情况下,所述数据符号映射至所述延迟多普勒域资源格中除所述第一数量个DRE和所述第二数量个DRE之外的第三数量个DRE上;
    所述第一数量小于所述延迟多普勒域资源格内所述延迟维度上的DRE总数量,且所述第三数量个DRE环绕包围所述分别位于第一数量个DRE两侧的第二数量个DRE。
  23. 根据权利要求21或22所述的信号发送方法,其中,所述第二数量个DRE在所述多普勒维度上占据的多普勒单元等于2K;K大于或等于传输所述目标信号的信道的最大多普勒频率,所述多普勒维度上的DRE总数量,以及所述导频符号的符号时长之间的乘积。
  24. 根据权利要求14至16任一项所述的信号发送方法,其中,所述基于样本导频序列,对所述延迟多普勒域目标帧进行检测处理,得到所述目标信号的时间延迟量和多普勒偏移量,包括:
    所述接收设备基于多个预设多普勒偏移量和每个预设多普勒偏移量对应的预设时间延迟量,对所述样本导频序列中包括的第一数量个导频符号进行移位处理,得到多个目标导频序列;
    所述接收设备分别确定所述延迟多普勒域目标帧和所述多个目标导频序列之间的相关值;
    所述接收设备将所述多个目标导频序列中相关值最大的前M个目标导频序列各自对应的预设多普勒偏移量和预设时间延迟量,确定为所述目标信号的时间延迟量和多普勒偏移量;M为大于或等于1的整数。
  25. 根据权利要求14至16任一项所述的信号发送方法,其中,所述导频序列为所述发送设备基于预设序列生成的,所述预设序列为ZC序列或者伪随机序列。
  26. 根据权利要求25所述的信号发送方法,其中,所述导频序列为以下任一项:
    在基于预设调制方式对所述预设序列进行调制之后,得到的调制序列;
    在对所述调制序列进行P点的离散傅里叶变换或者离散傅里叶反变换变换之后,得到的变换序列;
    在所述调制序列中增加循环前缀之后得到的;
    在所述变换序列中增加循环前缀之后得到的;
    P大于或等于所述第一数量且小于或等于所述延迟多普勒域资源格内延迟维度上的DRE总数量。
  27. 根据权利要求19所述的信号发送方法,其中,在所述第一数量个DRE在所述延迟多普勒域资源格内多普勒维度上的多普勒偏移量为X的情况下,当所述第二数量个DRE在所述多普勒维度占据的多普勒单元等于G时;
    在X大于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量的范围为[X-G,X-1];在X小于或等于G的情况下,在所述第一数量个DRE左侧的第二数量个DRE的多普勒偏移量范围包括[1,X-1]及[X-1+N,X-G+N];
    在N-G大于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围为[X+1,X+G];在N-G小于或等于X的情况下,在所述第一数量个DRE右侧的第二数量个DRE的多普勒偏移量的范围包括[X+1,N]及[1,X+G-N];
    X为大于或等于1且小于或等于N的整数;
    N为所述延迟多普勒域资源格内多普勒维度上的DRE总数量;
    G大于或等于2K,K大于或等于传输所述目标信号的信道的最大多普勒频率、所述多普勒维度上的DRE总数量、以及所述导频符号的符号时长之间的乘积。
  28. 一种信号发送装置,应用于发送设备,所述装置包括:
    获取模块,用于获取信息帧;所述信息帧中包括内部有第一数量个导频符号的导频序列,所述第一数量大于或等于2;
    处理模块,用于将所述导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上,得到延迟多普勒域信息帧;
    发送模块,用于基于所述延迟多普勒域信息帧,向接收设备发送目标信号。
  29. 一种信号发送装置,应用于接收设备,所述装置包括:
    接收模块,用于接收发送设备发送的目标信号;所述目标信号为所述发送设备基于延迟多普勒域信息帧得到的,所述延迟多普勒域信息帧为所述发送设备将信息帧中内部有第一数量个导频符号的导频序列,映射至延迟多普勒域资源格中在延迟维度上连续设置的第一数量个延迟多普勒域资源元素DRE上得到的,所述第一数量大于或等于2;
    处理模块,用于基于所述目标信号,得到延迟多普勒域目标帧;并基于样本导频序列,对所述延迟多普勒域目标帧进行检测处理,得到所述目标信号的时间延迟量和多普勒偏移量。
  30. 一种发送设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述信号发送方法。
  31. 一种接收设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求14至27任一项所述信号发送方法。
  32. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至13任一项所述信号发送方法,或者实现如权利要求14至27任一项所述信号发送方法。
PCT/CN2023/096576 2022-06-02 2023-05-26 信号发送方法、发送设备及接收设备 WO2023231924A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210625664.1 2022-06-02
CN202210625664.1A CN117220844A (zh) 2022-06-02 2022-06-02 信号发送方法、发送设备及接收设备

Publications (1)

Publication Number Publication Date
WO2023231924A1 true WO2023231924A1 (zh) 2023-12-07

Family

ID=89026900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096576 WO2023231924A1 (zh) 2022-06-02 2023-05-26 信号发送方法、发送设备及接收设备

Country Status (2)

Country Link
CN (1) CN117220844A (zh)
WO (1) WO2023231924A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001278A1 (en) * 2019-07-04 2021-01-07 Volkswagen Aktiengesellschaft Adaptive transmitter symbol arrangement for otfs channel estimation in the delay-doppler domain
CN114142977A (zh) * 2020-09-04 2022-03-04 维沃移动通信有限公司 导频处理方法及相关设备
CN114142978A (zh) * 2020-09-04 2022-03-04 维沃移动通信有限公司 导频接收处理方法、发送方法及相关设备
CN114916039A (zh) * 2021-02-10 2022-08-16 维沃移动通信有限公司 接入方法、装置、通信设备及可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001278A1 (en) * 2019-07-04 2021-01-07 Volkswagen Aktiengesellschaft Adaptive transmitter symbol arrangement for otfs channel estimation in the delay-doppler domain
CN114142977A (zh) * 2020-09-04 2022-03-04 维沃移动通信有限公司 导频处理方法及相关设备
CN114142978A (zh) * 2020-09-04 2022-03-04 维沃移动通信有限公司 导频接收处理方法、发送方法及相关设备
CN114916039A (zh) * 2021-02-10 2022-08-16 维沃移动通信有限公司 接入方法、装置、通信设备及可读存储介质

Also Published As

Publication number Publication date
CN117220844A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2021129844A1 (zh) 频偏补偿方法、装置、设备和存储介质
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
WO2022183979A1 (zh) 同步信号传输方法、装置、设备及存储介质
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2024061255A1 (zh) 信号发送方法、信号接收方法及设备
WO2024017025A1 (zh) 导频参数配置方法及设备
WO2024061233A1 (zh) 信号发送方法、信号接收方法及设备
WO2023186158A1 (zh) 解调参考信号传输方法、装置、终端及网络侧设备
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024120343A1 (zh) 通信方法、装置及通信设备
WO2023193766A1 (zh) 控制信息的接收和发送方法、终端及网络侧设备
WO2024041416A1 (zh) 信号的传输方法、装置、终端和存储介质
WO2023138456A1 (zh) 信号处理方法、装置及通信设备
WO2023280094A1 (zh) 信号发送方法、接收方法、装置及设备
WO2023208042A1 (zh) 预失真处理方法、装置及设备
WO2023025000A1 (zh) 扩频方法、装置、通信设备及可读存储介质
WO2024012337A1 (zh) 定位参考信号prs的测量方法、终端及网络侧设备
WO2023036226A1 (zh) 信号传输方法、装置、设备及存储介质
WO2023185719A1 (zh) 信号传输方法、装置、发送端设备及接收端设备
WO2023109763A1 (zh) Prach传输方法、装置及终端
WO2023131316A1 (zh) 探测参考信号的端口映射方法和终端
WO2024032607A1 (zh) 帧结构确定方法、装置、通信设备及存储介质
WO2024046195A1 (zh) 感知信号处理方法、装置及通信设备
WO2023134542A1 (zh) Pdcch传输方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815107

Country of ref document: EP

Kind code of ref document: A1