WO2024041416A1 - 信号的传输方法、装置、终端和存储介质 - Google Patents

信号的传输方法、装置、终端和存储介质 Download PDF

Info

Publication number
WO2024041416A1
WO2024041416A1 PCT/CN2023/113110 CN2023113110W WO2024041416A1 WO 2024041416 A1 WO2024041416 A1 WO 2024041416A1 CN 2023113110 W CN2023113110 W CN 2023113110W WO 2024041416 A1 WO2024041416 A1 WO 2024041416A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource domain
signal
modulated signal
domain
dimension
Prior art date
Application number
PCT/CN2023/113110
Other languages
English (en)
French (fr)
Inventor
魏继东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024041416A1 publication Critical patent/WO2024041416A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a signal transmission method, device, terminal and storage medium.
  • LTE and NR systems mainly use orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) two waveform technologies, single carrier and multi-carrier.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the waveform is more suitable for signal transmission of low-speed mobile users.
  • the fast time-varying characteristics of high-speed mobile users cause certain demodulation performance limitations in this waveform. Therefore, a method for high-speed mobile users is needed.
  • User a signal transmission method that improves signal demodulation performance.
  • Embodiments of the present application provide a signal transmission method, device, terminal and storage medium, which can improve signal demodulation performance for high-speed mobile users.
  • a signal transmission method includes: encoding bit data to be transmitted to obtain a modulated signal corresponding to the bit data to be transmitted; and converting the modulated signal to The signal is written into the first resource domain constructed by the Doppler dimension and the frequency dimension to obtain the modulated signal in the first resource domain; the modulated signal in the first resource domain is transformed into the time dimension and the frequency dimension.
  • the constructed second resource domain is used to obtain a modulated signal in the second resource domain; based on the modulated signal in the second resource domain, a transmittable signal of the bit data to be transmitted is determined.
  • a signal transmission method including: receiving a transmissible signal, and determining a modulated signal corresponding to the transmissible signal in a second resource domain constructed from a time dimension and a frequency dimension; Transform the modulated signal in the second resource domain to the first resource domain constructed from the Doppler dimension and the frequency dimension to obtain the modulated signal in the first resource domain; extract the modulated signal in the first resource domain Modulate the signal, and decode the extracted modulated signal to obtain the bit data to be processed.
  • a transmitting device including: a coding module for coding bit data to be transmitted to obtain a modulated signal corresponding to the bit data to be transmitted; and a writing module for converting the modulated signal to Write the first resource domain constructed from the Doppler dimension and the frequency dimension to obtain the modulated signal in the first resource domain; the conversion module is used to convert the modulated signal in the first resource domain into a time-based modulated signal.
  • the second resource domain constructed by the dimension and the frequency dimension is used to obtain the modulated signal in the second resource domain; the transmitting module is used to determine the transmittable bit data of the to-be-transmitted bit data based on the modulated signal in the second resource domain. Signal.
  • a receiving device including: a receiving module configured to receive a transmissible signal and determine a modulated signal corresponding to the transmissible signal in a second resource domain constructed from a time dimension and a frequency dimension;
  • the transformation module is used to transform the modulation signal in the second resource domain into the first resource domain constructed from the Doppler dimension and the frequency dimension to obtain the modulation signal in the first resource domain;
  • the extraction module uses Extracting the modulated signal in the first resource domain and decoding the extracted modulated signal to obtain bit data to be processed.
  • a readable storage medium stores a program or Instructions, programs or instructions when executed by a processor implement the steps of the method described in the first aspect, or implement the steps of the method described in the second aspect.
  • a chip in a sixth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. , or implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect or the second aspect. The steps of the signal transmission method described in this aspect.
  • Figure 1 shows a schematic diagram of a wireless communication system to which embodiments of the present application are applicable.
  • Figure 2 is a schematic flow chart of a signal transmission method according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of a signal conversion process between domains according to an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a transmitting device according to an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a signal transmission method according to another embodiment of the present application.
  • Figure 6 is a schematic diagram illustrating the performance comparison of ODFS and OFDM waveforms in a Los channel scenario according to an embodiment of the present application
  • Figure 7 is a schematic diagram illustrating the performance comparison of ODFS and OFDM waveforms in the NLos channel scenario according to an embodiment of the present application
  • Figure 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a receiving device according to another embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a network side device according to another embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a transmitting device 11 and a receiving device 12.
  • the transmitting device 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • PDA Personal Digital Assistant
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands , smart clothing, etc.
  • the receiving device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • the access network device 12 may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, etc.
  • Base Transceiver Station BTS
  • radio base station radio transceiver
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B node home evolved B Node
  • TRP Transmitting Receiving Point
  • the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application The description only takes the base station in the NR system as an example, and does not limit the specific type of the base station.
  • the core network equipment can include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), Access and Mobility Management Function (AMF), Session Management Function (SMF), User Plane Function (UPF), Policy Control Function (PCF) , Policy and Charging Rules Function (PCRF), Edge Application Server Discovery Function (EASDF), Unified Data Management, UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Centralized network configuration (CNC), Network Repository Function (NRF), network openness Function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • PCF Policy and Charging Rules Function
  • EASDF Edge Application Server Discovery
  • one embodiment of the present application provides a signal transmission method 200.
  • the method can be executed by a transmitting device, which can be a terminal or a network-side device.
  • the method can be performed by an installation device.
  • the method includes the following steps:
  • S202 Encode the bit data to be transmitted to obtain a modulated signal corresponding to the bit data to be transmitted.
  • bit-level processing such as channel coding can be performed according to the bit data stream to be transmitted to obtain a modulated signal corresponding to the bit data to be transmitted.
  • S204 Write the modulated signal into the first resource domain constructed from the Doppler dimension and the frequency dimension to obtain the modulated signal in the first resource domain.
  • the encoded modulated signal can be mapped to the first resource domain constructed from the Doppler dimension and the frequency dimension (ie, the Frequency-Doppler domain, which can be referred to as the DF domain) according to certain rules.
  • the specific data The mapping process of symbols can be written sequentially by rows or sequentially by columns. There is no restriction here.
  • S206 Transform the modulated signal in the first resource domain into a time dimension and a frequency dimension.
  • the second resource domain is constructed to obtain the modulated signal in the second resource domain.
  • the size of the grid in the first resource domain and the size of the grid in the second resource domain may be the same or different. In one implementation, if the size of the grid in the first resource domain is the same as the size of the grid in the second resource domain, If the sizes are the same, the modulated signal in the first resource domain can be directly transformed into the second resource domain constructed from the time dimension and the frequency dimension to obtain the modulated signal in the second resource domain.
  • the size of the grid in the first resource domain may be inconsistent with the size of the grid in the second resource domain (i.e., Time-Frequency domain, which may be referred to as the physical TF domain)
  • the size of the grid in the first resource domain may be The modulation signal of The grid size is consistent with the grid size in the first resource domain, and then the modulated signal in the third resource domain is mapped to the second resource domain constructed from the time dimension and frequency dimension, and the second resource is written in rows or columns in sequence. area.
  • Figure 3 is a schematic diagram of the resource mapping process of signals from the first resource domain to the second resource domain.
  • the grid in the third resource domain can be the same size as the grid in the first resource domain, and the data flow in the first resource domain can be transformed into the third resource domain constructed from the time dimension and the frequency dimension. resource domain.
  • the modulated signal in the first resource domain can be transformed along the Doppler direction based on the inverse Fourier transform to a third resource domain constructed from the time dimension and the frequency dimension.
  • the inverse Fourier transform can be a transformation method such as an inverse discrete Fourier transform or an inverse short-time Fourier transform.
  • the resource grid in the DF domain can be represented by M*N, M can be used to represent the number of sampling points in the frequency dimension, N can be used to represent the number of sampling points in the Doppler dimension, and the modulation signal of each resource grid It can be represented by X[m,d].
  • IDFT Inverse Discrete Fouriertransform
  • N can be the number of points of the IDFT transform, and its values can be the same or different in different frequency directions.
  • the modulated signals of the virtual TF domain are mapped to the physical resource blocks of the physical TF domain according to the preset mapping rules.
  • the TF signals of the virtual TF domain can be written in rows in sequence.
  • the size of the physical resource block transmitted by the actual user is F*T, and the resources can be mapped row by row, that is,
  • S208 Based on the modulated signal in the second resource domain, determine the transmittable signal of the bit data to be transmitted.
  • the demodulation reference signal corresponding to the bit data to be transmitted can be mapped to the second resource domain to obtain the demodulation reference signal (Demodulation Reference Signal, DMRS) in the second resource domain, as shown in Figure 3 , DMRS and Data (ie, modulated signal) can be mapped in the physical TF domain, and then, the transmittable signal is determined based on the modulated signal and the demodulation reference signal in the second resource domain.
  • DMRS Demodulation Reference Signal
  • Data ie, modulated signal
  • the modulated signal in the second resource domain can be precoded to obtain a precoded signal corresponding to the modulated signal in the second resource domain. Then, the precoded signal and the modulated signal in the second resource domain can be combined.
  • the demodulation reference signal is converted into a time domain transmission signal, and the time domain transmission signal is determined to be a transmittable signal.
  • the modulated signal in the second resource domain can be modified based on Discrete Fourier Transform (DFT).
  • DFT Discrete Fourier Transform
  • M represents the number of Re carried by the user on one symbol.
  • the modulated signal in the second resource domain may be determined as a precoding signal corresponding to the modulated signal in the second resource domain. That is, if the signal in the second resource domain is a multi-carrier signal, there is no need to perform transmission precoding processing on X[m,t], that is, X[f,t] ⁇ X[m,t].
  • resource mapping of ports and antennas can be performed on the resource blocks to be transmitted.
  • This process can implement data mapping to ports and antennas through precoding weights (which can be referred to as W weights for short).
  • the precoding weights on the data symbols (ie, precoding signals) and DMRS symbols may be the same or different.
  • the specific method shall be subject to the actual method adopted by the system, and there is no restriction here.
  • the W weight can be calculated through channel monitoring signals, or can be obtained through feedback information from the transmitting device/receiving device, or it can also be selected from a preset weight set. This application does not elaborate on this process. limited.
  • frequency-time transformation can be performed on the modulated signal and demodulation reference signal in the second resource domain to obtain the time domain signal (that is, the transmitted signal).
  • the radio frequency unit can be converted from the radio frequency signal through processes such as windowing and shaping filtering in the radio frequency unit.
  • the air interface will send out the transmittable signal.
  • the signal transmission method provided by the embodiment of the present application obtains a modulated signal corresponding to the bit data to be transmitted by encoding the bit data to be transmitted, and writes the modulated signal into the first resource domain constructed from the Doppler dimension and the frequency dimension. , obtain the modulated signal in the first resource domain, transform the modulated signal in the first resource domain into the second resource domain constructed from the time dimension and the frequency dimension, and obtain the modulated signal in the second resource domain, based on the second resource
  • the modulated signal in the domain determines the transmittable signal of the bit data to be transmitted, based on Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing (OFDM) waveform, a new waveform - Orthogonal Frequency-Doppler Space (ODFS) is proposed.
  • OFDM Orthogonal Frequency Division Multiplexing
  • ODFS Orthogonal Frequency-Doppler Space
  • This waveform is not only better backward compatible, but also retains OFDM. It has the technical advantages of being resistant to the deterioration of demodulation performance caused by rapid time-varying channels, and also takes into account Doppler diversity gain, which can greatly improve demodulation performance and user perception, especially for high-speed mobile users. In addition, this waveform technology can also weaken the impact of sub-band level or symbol-level interference in different systems within the system and improve anti-interference capabilities.
  • the execution subject may be a signal transmission device.
  • the signal transmission device performs the transmission method of loading the signal as an example to illustrate the method provided by the embodiment of the present application. signal transmission device.
  • Figure 4 is a schematic structural diagram of a transmitting device according to an embodiment of the present application.
  • the sending device 400 includes: an encoding module 410 , a writing module 420 , a conversion module 430 and a transmitting module 440 .
  • the encoding module 410 is used to encode the bit data to be transmitted to obtain a modulated signal corresponding to the bit data to be transmitted; the writing module 420 is used to write the modulated signal into the Doppler dimension and the frequency dimension. the first resource domain to obtain the modulated signal in the first resource domain; the conversion module 430 is used to transform the modulated signal in the first resource domain into a second resource domain constructed from the time dimension and the frequency dimension. , obtain the modulated signal in the second resource domain; the transmitting module 440 is configured to determine the transmittable signal based on the modulated signal in the second resource domain, and send the transmittable signal of the bit data to be transmitted.
  • the transmitting module 440 is configured to map the demodulation reference signal corresponding to the bit data to be transmitted to the second resource domain to obtain the demodulation reference signal in the second resource domain. ; Determine the transmittable signal based on the modulated signal and the demodulation reference signal in the second resource domain.
  • the transmitting module 440 is configured to perform precoding processing on the modulated signal in the second resource domain to obtain a precoded signal corresponding to the modulated signal in the second resource domain;
  • the precoded signal and the demodulation reference signal of the second resource domain are converted into time domain transmission signals. number, and determine the time domain transmitted signal as the transmittable signal.
  • the grid size in the first resource domain is inconsistent with the grid size in the second resource domain
  • the conversion module 430 is configured to convert the modulated signal in the first resource domain into , transform to the third resource domain constructed from the time dimension and the frequency dimension, and obtain the modulated signal in the third resource domain.
  • the grid in the third resource domain is the same as the grid size in the first resource domain. Consistent; map the modulated signal in the third resource domain to the second resource domain constructed from the time dimension and the frequency dimension.
  • the conversion module 430 is used to convert the modulated signal in the first resource domain to the third resource domain constructed from the time dimension and the frequency dimension based on the inverse Fourier transform. .
  • the modulated signal in the second resource domain is a single carrier signal
  • the transmitting module is configured to, based on discrete Fourier transform, perform Perform precoding processing on the second resource domain to obtain a precoded signal corresponding to the modulated signal in the second resource domain.
  • the signal in the second resource domain is a multi-carrier signal
  • the sending module is configured to determine the modulation signal in the second resource domain to be consistent with the modulated signal in the second resource domain.
  • the precoded signal corresponding to the modulated signal.
  • a modulated signal corresponding to the bit data to be transmitted is obtained, and the modulated signal is written into the first resource domain constructed from the Doppler dimension and the frequency dimension, and the first resource domain is obtained.
  • the modulated signal in the resource domain is transformed from the modulated signal in the first resource domain to the second resource domain constructed from the time dimension and the frequency dimension to obtain the modulated signal in the second resource domain. Based on the modulation in the second resource domain signal to determine the transmittable signal of the bit data to be transmitted.
  • Orthogonal Frequency Division Multiplexing OFDM
  • OFDM Orthogonal Frequency Division Multiplexing
  • ODFS Orthogonal Frequency-Doppler Space
  • this waveform is not only better backward compatible, but also It retains the technical advantages of OFDM, while resisting the impact of demodulation performance deterioration caused by rapid channel time variation, and taking into account the Doppler diversity gain, especially for high-speed mobile users, which can greatly improve the demodulation performance and User perception.
  • this waveform technology can also weaken the impact of sub-band level or symbol-level interference in different systems within the system and improve anti-interference capabilities.
  • the transmitting device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the transmitting device may include but is not limited to the type of transmitting device 11 listed above.
  • Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the transmitting equipment provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 2 to 3, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the signal transmission method according to the embodiment of the present application is described in detail above with reference to FIG. 2 .
  • a signal transmission method according to another embodiment of the present application will be described in detail below with reference to FIG. 5 . It can be understood that the interaction between the receiving device and the transmitting device described from the receiving device side is the same as the description from the transmitting device side in the method shown in FIG. 2. To avoid duplication, the relevant description is appropriately omitted.
  • Figure 5 is a schematic flow chart of the signal transmission method according to the embodiment of the present application. It can be applied on the receiving device side.
  • the receiving device can be a terminal or a network side device.
  • the method 500 includes:
  • S502 Receive a transmissible signal, and determine the modulated signal in the second resource domain constructed from the time dimension and the frequency dimension corresponding to the transmissible signal.
  • the baseband obtains the time domain signal in the digital domain (that is, the transmittable signal) through the transmission of the radio frequency remote unit (RRU), and then the frequency domain signal corresponding to the transmittable signal can be determined , after performing precoding inverse processing on the frequency domain signal, a modulated signal in the second resource domain constructed from the time dimension and the frequency dimension is obtained.
  • RRU radio frequency remote unit
  • the demodulation reference signal can be obtained based on the frequency domain signal
  • the demodulation parameter can be The signal is subjected to channel estimation and basic measurement to determine the precoding weight. Based on the precoding weight, the frequency domain signal is equalized to eliminate the channel response and obtain an equalized frequency domain signal. After using the equalized [f,t] performs inverse precoding processing to obtain X[m,t] (that is, the modulated signal in the second resource domain).
  • the inverse processing of transmission precoding can be performed on the data sequentially according to symbols in the time dimension, that is, IDFT transformation is performed, as follows:
  • M represents the number of Re carried by the user on one symbol.
  • S504 Transform the modulated signal in the second resource domain into the first resource domain constructed from the Doppler dimension and the frequency dimension to obtain the modulated signal in the first resource domain.
  • the size of the grid in the first resource domain and the size of the grid in the second resource domain may be the same or different. In one implementation, if the size of the grid in the first resource domain is the same as the size of the grid in the second resource domain, If the sizes are consistent, the modulated signal in the second resource domain can be directly transformed into the first resource domain constructed from the Doppler dimension and the frequency dimension to obtain the modulated signal in the first resource domain.
  • the size of the grid in the first resource domain is inconsistent with the size of the grid in the second resource domain (i.e., Time-Frequency domain, which may be referred to as the physical TF domain)
  • the size of the grid may be the same as that of the transmitting device.
  • the mapping relationship between the virtual DF domain and the physical DF domain maps the modulated signal in the second resource domain to the third resource domain constructed from the time dimension and the frequency dimension.
  • the grid in the third resource domain is consistent with the first resource domain.
  • the grid sizes are the same, and the modulated signal in the third resource domain is transformed into the first resource domain constructed from the Doppler dimension and the frequency dimension to obtain the modulated signal in the first resource domain.
  • X[m,t] obtained by inverse precoding processing can be resource inversely mapped on the virtual resource block of the virtual TF domain (ie, the third resource domain) to obtain the TF domain signal on the virtual resource block.
  • the signal can be converted from the virtual TF domain to the DF domain through transformations such as DFT, FFT ⁇ STFT, etc., taking DFT as an example, that is
  • N is related to whether the DMRS symbol carries data Re.
  • N is related to whether the DMRS symbol carries data Re.
  • S506 Extract the modulated signal in the first resource domain, and decode the extracted modulated signal to obtain bit data to be processed.
  • effective modulation signals can be extracted from the DF domain, and then the modulation information is transferred to the deprecoding, demodulation, delayering module and bit-level processing module to obtain effective decoded bit data.
  • the terminal's DMRS and modulated signals use the same precoding weight, inverse precoding processing does not need to be performed here.
  • the extracted modulated signal can be decoded to obtain the bit data to be processed and the first verification result.
  • the first verification result can be a verification generated by the transmitting device based on the bit data to be processed.
  • a second verification result is generated based on the bit data to be processed, and based on the second verification result and the first verification result, it is determined whether the bit data to be processed has been tampered with during transmission.
  • the first verification result may be a cyclic redundancy check (Cyclic Redundancy Check, CRC) result.
  • CRC Cyclic Redundancy Check
  • Figure 6 shows the performance comparison of ODFS and OFDM waveforms in the line of sight (Los) channel scenario.
  • Figure 7 shows the performance of the two waveforms in the non-line of sight (Non Line of Sight, NLos) channel scenario.
  • Figure 6 and Figure 7 show the performance comparison of ODFS and OFDM waveforms in different channel scenarios obtained through simulation experiments. From Figure 6 and Figure 7, it can be seen that Los In channel scenarios and NLos channel scenarios, the performance of the OFDM waveform proposed in this application is higher than the performance of the ODFS waveform.
  • the modulated signal in the second resource domain is transformed into The first resource domain constructed by the Doppler dimension and the frequency dimension is used to obtain the modulated signal in the first resource domain, extract the modulated signal in the first resource domain, and decode the extracted modulated signal to obtain the bits to be processed. data.
  • This application proposes a new waveform-frequency Doppler Orthogonal Space Division technology (Orthogonal Frequency-Doppler Space, ODFS) based on the Orthogonal Frequency Division Multiplexing (OFDM) waveform.
  • the waveform is not only better backward compatible, but also retains the technical advantages of OFDM. It is also resistant to the deterioration of demodulation performance caused by rapid channel time changes, and it also takes into account the Doppler diversity gain, especially for high-speed mobile users. , which can greatly improve demodulation performance and user perception. In addition, this waveform technology can also weaken the impact of sub-band level or symbol-level interference in different systems within the system and improve anti-interference capabilities.
  • this embodiment of the present application provides a transmitting device that can implement each process implemented by the signal transmission method embodiment in Figures 2-3 or each process corresponding to it, and achieve the same or corresponding technical effects. To avoid duplication, they will not be described again here.
  • this embodiment of the present application also provides a terminal 800, which includes a processor 801 and a memory 802.
  • the memory 802 stores programs or instructions that can be run on the processor 801. The program Or when the instruction is executed by the processor 801, each step of the above signal transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • the terminal may also include, but is not limited to, at least some components of a radio frequency unit, a network module, an audio output unit, an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and the like.
  • the terminal can also include a power supply (such as a battery) that supplies power to various components.
  • the power supply can be logically connected to the processor through a power management system, thereby managing charging, discharging, and power consumption management through the power management system.
  • the terminal structure shown in the figure does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or may combine certain components, or arrange different components, which will not be described again here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above signal transmission method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage media includes computer-readable storage media, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc.
  • Figure 9 is a schematic structural diagram of a receiving device according to an embodiment of the present application.
  • the receiving device 900 includes: a receiving module 910 , a transformation module 920 and an extraction module 930 .
  • the receiving module 910 is used to receive the transmissible signal and determine the modulated signal in the second resource domain constructed from the time dimension and the frequency dimension corresponding to the transmissible signal; the transformation module 920 is used to convert the second resource into The modulated signal in the domain is transformed into the first resource domain constructed from the Doppler dimension and the frequency dimension to obtain the modulated signal in the first resource domain; the extraction module 930 is used to extract the modulated signal in the first resource domain. Modulate the signal, and decode the extracted modulated signal to obtain the bit data to be processed.
  • the receiving module 910 is used to determine the frequency domain signal corresponding to the transmittable signal; perform precoding inverse processing on the frequency domain signal to obtain the said frequency domain signal constructed from the time dimension and the frequency dimension. modulated signal in the second resource domain.
  • the grid in the first resource domain and the network in the second resource domain The grid size is inconsistent.
  • the transformation module 920 is used to map the modulated signal in the second resource domain to a third resource domain constructed from the time dimension and the frequency dimension.
  • the grid in the third resource domain is consistent with the grid size.
  • the grid sizes in the first resource domain are consistent; the modulated signal in the third resource domain is transformed into the first resource domain constructed from the Doppler dimension and the frequency dimension to obtain the first resource domain modulated signal in.
  • the extraction module 930 is used to decode the extracted modulated signal to obtain the bit data to be processed and a first verification result.
  • the first verification result is The transmitting device generates a verification result based on the bit data to be processed; generates a second verification result based on the bit data to be processed, and based on the second verification result and the first verification result, Determine whether the bit data to be processed has been tampered with during transmission.
  • the receiving module 910 is configured to obtain a demodulation reference signal based on the frequency domain signal, and determine a precoding weight based on the demodulation reference signal; based on the precoding weight, The frequency domain signal is equalized to obtain an equalized frequency domain signal, and the equalized frequency domain signal is determined as a modulated signal in the second resource domain.
  • the signal transmission device provided by the embodiment of the present application can implement each process implemented by the transmission method embodiment in Figure 5 or each process corresponding to it, and achieve the same or corresponding technical effects. To avoid duplication, they will not be described again here.
  • Embodiments of the present application also provide a receiving device.
  • This receiving device embodiment corresponds to the above-mentioned signal transmission method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this receiving device embodiment. And can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network device 1000 includes: an antenna 1001, a radio frequency device 1002, a baseband device 1003, a processor 1004 and a memory 1005.
  • Antenna 1001 is connected to radio frequency device 1002.
  • the radio frequency device 1002 receives information through the antenna 1001 and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002.
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 1003, which includes a baseband processor.
  • the baseband device 1003 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 1006, which is, for example, a common public radio interface (CPRI).
  • a network interface 1006 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1000 in the embodiment of the present application also includes: instructions or programs stored in the memory 1005 and executable on the processor 1004.
  • the processor 1004 calls the instructions or programs in the memory 1005 to execute each of the steps shown in Figure 9. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above signal transmission method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the transmitting device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above signal transmission method embodiments. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above signal transmission method.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • Embodiments of the present application also provide a signal transmission system, including: a transmitting device and a receiving device.
  • the transmitting device can be used to perform the steps of the signal transmission method as described above.
  • the receiving device can be used to perform the steps of the signal transmission method as described above. The steps of the signal transmission method.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号的传输方法、装置、终端和存储介质,属于通信领域。本申请实施例的信号的传输方法包括:对待传比特数据进行编码处理,得到与所述待传比特数据对应的调制信号;将所述调制信号写入由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第二资源域,得到所述第二资源域中的调制信号;基于所述第二资源域中的调制信号,确定所述待传比特数据的可发射信号。

Description

信号的传输方法、装置、终端和存储介质
交叉引用
本申请要求在2022年08月22日提交中国专利局、申请号为202211006871.5、发明名称为“信号的传输方法、装置、终端和存储介质”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种信号的传输方法、装置、终端和存储介质。
背景技术
随着通信和工业技术的发展,人们对高速移动场景下无线通信速率要求日益增高。长期演进型(Long Term Evolution,LTE)和新空口(New Radio,NR)系统主要采用的是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的单载波和多载波两种波形技术,该波形从用户的移动速度角度考虑,更适合低速移动用户的信号传输,而对于高速移动用户的快速时变特性造成该波形下存在一定解调性能受限的情况,因此,需要一种针对高速移动用户,提高信号解调性能的信号传输方式。
发明内容
本申请实施例提供一种信号的传输方法、装置、终端和存储介质,能够针对高速移动用户,提高信号解调性能。
第一方面,提供了一种信号的传输方法,所述方法包括:对待传比特数据进行编码处理,得到与所述待传比特数据对应的调制信号;将所述调制信 号写入由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第二资源域,得到所述第二资源域中的调制信号;基于所述第二资源域中的调制信号,确定所述待传比特数据的可发射信号。
第二方面,提供了一种信号的传输方法,所述方法包括:接收可发射信号,并确定与所述可发射信号对应的由时间维度和频率维度构建的第二资源域中的调制信号;将所述第二资源域中的调制信号,变换到由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;提取所述第一资源域中的调制信号,并对提取出的调制信号进行解码处理,得到待处理的比特数据。
第三方面,提供了一种发射设备,包括:编码模块,用于对待传比特数据进行编码处理,得到与所述待传比特数据对应的调制信号;写入模块,用于将所述调制信号写入由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;转换模块,用于将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第二资源域,得到所述第二资源域中的调制信号;发射模块,用于基于所述第二资源域中的调制信号,确定所述待传比特数据的可发射信号。
第四方面,提供了一种接收设备,包括:接收模块,用于接收可发射信号,并确定与所述可发射信号对应的由时间维度和频率维度构建的第二资源域中的调制信号;变换模块,用于将所述第二资源域中的调制信号,变换到由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;提取模块,用于提取所述第一资源域中的调制信号,并对提取出的调制信号进行解码处理,得到待处理的比特数据。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或 指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的信号的传输方法的步骤。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的示意图。
图2是根据本申请的一个实施例的信号的传输方法的示意性流程图;
图3是根据本申请的一个实施例的信号在域之间的转换过程的示意图;
图4是根据本申请的一个实施例的发射设备的结构示意图;
图5是根据本申请的另一个实施例的信号的传输方法的示意性流程图;
图6是根据本申请的一个实施例的Los信道场景下ODFS和OFDM两种波形的性能对比的示意图;
图7是根据本申请的一个实施例的NLos信道场景下ODFS和OFDM两种波形的性能对比的示意图;
图8是根据本申请的一个实施例的终端的结构示意图;
图9是根据本申请的另一个实施例的接收设备的结构示意图;
图10是根据本申请的另一个实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的 实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括发射设备11和接收设备12。其中,发射设备11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上 网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定发射设备11的具体类型。接收设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B((evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management, UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号的传输方法进行详细地说明。
如图2所示,本申请的一个实施例提供一种信号的传输方法200,该方法可以由发射设备执行,该发射设备可以为终端,也可以为网络侧设备,换言之,该方法可以由安装在终端的软件或硬件来执行,该方法包括如下步骤:
S202:对待传比特数据进行编码处理,得到与所述待传比特数据对应的调制信号。
在一种实现方式中,可以根据待传比特数据流进行信道编码等比特级的处理,得到待传比特数据对应的调制信号。
S204:将所述调制信号写入由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号。
在一种实现方式中,可以将编码得到的调制信号按照一定规则映射到由多普勒维度和频率维度构建的第一资源域(即Frequency-Doppler域,可以简称为DF域),具体的数据符号的映射过程,可以按照行依次写入,也可以按照列依次写入,在此不作限制。
S206:将所述第一资源域中的调制信号,变换到由时间维度和频率维度 构建的第二资源域,得到所述第二资源域中的调制信号。
第一资源域中的网格与第二资源域中的网格大小可以一致,也可以不一致,在一种实现方式中,若第一资源域中的网格与第二资源域中的网格大小一致,则可以将第一资源域中的调制信号,直接变换到由时间维度和频率维度构建的第二资源域,得到第二资源域中的调制信号。
在一种实现方式中,若第一资源域中的网格与第二资源域(即Time-Frequency域,可以简称为物理TF域)中的网格大小不一致,则可以将第一资源域中的调制信号,变换到由时间维度和频率维度构建的第三资源域(即Time-Frequency域,可以简称为虚拟TF域),得到第三资源域中的调制信号,第三资源域中的网格与第一资源域中的网格大小一致,然后,再将第三资源域中的调制信号映射到由时间维度和频率维度构建的第二资源域,依次按行或者列写入第二资源域。
图3是信号从第一资源域到第二资源域的资源映射过程示意图。如图3所示,第三资源域中的网格可以与第一资源域中的网格大小一致,可以将第一资源域中的数据流,变换到由时间维度和频率维度构建的第三资源域。
在一种实现方式中,可以沿着多普勒方向,基于傅里叶逆变换,将第一资源域中的调制信号,变换到由时间维度和频率维度构建的第三资源域。其中,傅里叶逆变换可以如离散傅里叶逆变换或短时傅里叶逆变换等变换方式。
在一些示例中,DF域的资源网格可以用M*N表示,M可以用于表示频率维度的采样点数,N可以用于表示多普勒维度的采样点数,每个资源网格的调制信号可以用X[m,d]表示,X[m,d]可以用于标识在频率维度上的第m个且多普勒维度上第d个调制信号,如下公式(1)以离散傅立叶逆变换(Inverse Discrete Fouriertransform,IDFT)为例,将DF域的调制信号X[m,d]转换到 TF域,即
需要说明的是,N可以是IDFT变换的点数,其取值在不同的频率方向可以相同,也可以不相同。
然后,在按照预设映射规则将虚拟TF域的调制信号映射到物理TF域的物理资源块,其中,预设映射规则可以有多种,例如可以按照行依次把虚拟TF域的TF信号写入实际物理资源块的物理TF域的资源网格中,实际用户传输的物理资源块大小为F*T,可以逐行进行资源的映射,即
S208:基于所述第二资源域中的调制信号,确定所述待传比特数据的可发射信号。
在一种实现方式中,可以将待传比特数据对应的解调参考信号映射到第二资源域,得到第二资源域中的解调参考信号(Demodulation Reference Signal,DMRS),如图3所示,可以将DMRS和Data(即调制信号)映射在物理TF域中,然后,在基于第二资源域中的调制信号和解调参考信号,确定可发射信号。
在一种实现方式中,可以对第二资源域中的调制信号进行预编码处理,得到与第二资源域的调制信号对应的预编码信号,然后,在将预编码信号和第二资源域的解调参考信号变换为时域发射信号,并将时域发射信号确定为可发射信号。通过对第二资源域中的调制信号进行预编码处理,不仅能够降低峰均比,而且能够同时获取频率分集和多普勒分集增益,从而整体提高用户的解调性能。
在一些示例中,若第二资源域中的调制信号为单载波信号,则可以基于离散傅里叶变换(Discrete Fourier Transform,DFT),对第二资源域中的调制 信号在频率方向上进行预编码处理,得到与第二资源域中的调制信号对应的预编码信号。即
其中,M表示用户一个符号上承载的Re个数。
在一些示例中,若第二资源域中的信号为多载波信号,则可以将第二资源域中的调制信号确定为与第二资源域中的调制信号对应的预编码信号。即若第二资源域中的信号为多载波信号,则不需要对X[m,t]进行传输预编码处理,即X[f,t]→X[m,t]。
得到第二资源域中的解调参考信号后,可以对待传输的资源块进行端口和天线的资源映射,该过程可以通过预编码权值(可以简称为W权值)实现数据映射到端口和天线。对于数据符号(即预编码信号)和DMRS符号上的预编码权值可以相同,也可以不相同,具体以系统实际采用的方式为准,在此不作限制。其中,W权值可以通过信道监测信号计算得到,或者也可以通过发射设备/接收设备的反馈信息得到,又或者,还可以在预设的权值集合里选择得到,本申请对这个过程不作具体限定。
再然后,可以对第二资源域中的调制信号和解调参考信号进行频时变换,得到时域信号(即可发射信号),然后,可以在射频单元通过加窗、成型滤波等过程从射频空口将可发射信号发出去。
本申请实施例提供的信号的传输方法,通过对待传比特数据进行编码处理,得到与待传比特数据对应的调制信号,将调制信号写入由多普勒维度和频率维度构建的第一资源域,得到第一资源域中的调制信号,将第一资源域中的调制信号,变换到由时间维度和频率维度构建的第二资源域,得到第二资源域中的调制信号,基于第二资源域中的调制信号,确定待传比特数据的可发射信号,在基于正交频分复用(Orthogonal Frequency Division  Multiplexing,OFDM)波形的基础上提出了一种新波形-频率多普勒的正交空分技术(Orthogonal Frequency-Doppler Space,ODFS),该波形不仅能够更好地向下兼容,而且可以保留OFDM的技术优点,同时具备抗信道快速时变导致的解调性能恶化的影响,而且增加考虑了多普勒分集增益,尤其是对高速移动用户,能够较大程度的提高解调性能和用户感知。除此之外,该波形技术也能够弱化系统内子带级或者异系统的符号级干扰影响,提升抗干扰能力。
需要说明的是,本申请实施例提供的信号的传输方法,执行主体可以为信号的传输装置,本申请实施例中以信号的传输装置执行加载信号的传输方法为例,说明本申请实施例提供的信号的传输装置。
图4是根据本申请实施例的发射设备的结构示意图。如图4所示,发送设备400包括:编码模块410、写入模块420、转换模块430和发射模块440。
编码模块410,用于对待传比特数据进行编码处理,得到与所述待传比特数据对应的调制信号;写入模块420,用于将所述调制信号写入由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;转换模块430,用于将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第二资源域,得到所述第二资源域中的调制信号;发射模块440,用于基于所述第二资源域中的调制信号,确定可发射信号,并发送所述待传比特数据的可发射信号。
在一种实现方式中,所述发射模块440,用于将所述待传比特数据对应的解调参考信号映射到所述第二资源域,得到所述第二资源域中的解调参考信号;基于所述第二资源域中的调制信号和解调参考信号,确定所述可发射信号。
在一种实现方式中,所述发射模块440,用于对所述第二资源域中的调制信号进行预编码处理,得到与所述第二资源域的调制信号对应的预编码信号;将所述预编码信号和所述第二资源域的解调参考信号变换为时域发射信 号,并将所述时域发射信号确定为所述可发射信号。
在一种实现方式中,所述第一资源域中的网格与所述第二资源域中的网格大小不一致,所述转换模块430,用于将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第三资源域,得到所述第三资源域中的调制信号,所述第三资源域中的网格与所述第一资源域中的网格大小一致;将所述第三资源域中的调制信号映射到所述由时间维度和频率维度构建的第二资源域。
在一种实现方式中,所述转换模块430,用于基于傅里叶逆变换,将所述第一资源域中的调制信号,变换到所述由时间维度和频率维度构建的第三资源域。
在一种实现方式中,所述第二资源域中的调制信号为单载波信号,所述发送模块,用于基于离散傅里叶变换,对所述第二资源域中的调制信号在频率方向上进行预编码处理,得到与所述第二资源域中的调制信号对应的预编码信号。
在一种实现方式中,所述第二资源域中的信号为多载波信号,所述发送模块,用于将所述第二资源域中的调制信号确定为与所述第二资源域中的调制信号对应的预编码信号。
在本申请实施例中,通过对待传比特数据进行编码处理,得到与待传比特数据对应的调制信号,将调制信号写入由多普勒维度和频率维度构建的第一资源域,得到第一资源域中的调制信号,将第一资源域中的调制信号,变换到由时间维度和频率维度构建的第二资源域,得到第二资源域中的调制信号,基于第二资源域中的调制信号,确定待传比特数据的可发射信号,在基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)波形的基础上提出了一种新波形-频率多普勒的正交空分技术(Orthogonal Frequency-Doppler Space,ODFS),该波形不仅能够更好地向下兼容,而且可 以保留OFDM的技术优点,同时具备抗信道快速时变导致的解调性能恶化的影响,而且增加考虑了多普勒分集增益,尤其是对高速移动用户,能够较大程度的提高解调性能和用户感知。除此之外,该波形技术也能够弱化系统内子带级或者异系统的符号级干扰影响,提升抗干扰能力。
本申请实施例中的发射设备可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,发射设备可以包括但不限于上述所列举的发射设备11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的发射设备能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
以上结合图2详细描述了根据本申请实施例的信号的传输方法。下面将结合图5详细描述根据本申请另一实施例的信号的传输方法。可以理解的是,从接收设备侧描述的接收设备与发射设备的交互与图2所示的方法中的发射设备侧的描述相同,为避免重复,适当省略相关描述。
图5是本申请实施例的信号的传输方法实现流程示意图,可以应用在接收设备侧,该接收设备可以是终端,也可以是网络侧设备,如图5所示,该方法500包括:
S502:接收可发射信号,并确定与所述可发射信号对应的由时间维度和频率维度构建的第二资源域中的调制信号。
在一种实现方式中,基带通过射频拉远单元(Remote Radio Unit,RRU)的传递获取到数字域的时域信号(即可发射信号),然后可以确定与该可发射信号对应的频域信号,在对频域信号进行预编码逆处理,得到由时间维度和频率维度构建的第二资源域中的调制信号。
在一些示例中,可以基于频域信号,获取解调参考信号,并基于解调参 考信号进行信道估计和基础测量,以确定预编码权值,在基于预编码权值,对频域信号进行均衡处理,以消除信道响应,得到均衡后的频域信号,在利用均衡后的X[f,t]进行预编码的逆处理,得到X[m,t](即第二资源域中的调制信号)。
在一些示例中,如果X[f,t]是单载波,则可以在时间维度按照符号对数据依次进行传输预编码的逆处理,即进行IDFT变换,如下:
其中,M表示用户一个符号上承载的Re个数。
在一些示例中,如果X[f,t]是多载波,则不需要进行数据符号的传输预编码逆处理,即X[m,t]=X[f,t]。
S504:将所述第二资源域中的调制信号,变换到由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号。
第一资源域中的网格与第二资源域中的网格大小可以一致,也可以不一致,在一种实现方式中,若第一资源域中的网格与第二资源域中的网格大小一致,则可以将第二资源域中的调制信号,直接变换到由多普勒维度和频率维度构建的第一资源域,得到第一资源域中的调制信号。
在一种实现方式中,若第一资源域中的网格与第二资源域(即Time-Frequency域,可以简称为物理TF域)中的网格大小不一致,则可以按照和发射设备一致的虚拟DF域与和物理DF域的映射关系,将第二资源域中的调制信号映射到由时间维度和频率维度构建的第三资源域,第三资源域中的网格与第一资源域中的网格大小一致,在将第三资源域中的调制信号,变换到由多普勒维度和频率维度构建的第一资源域,得到第一资源域中的调制信号。
在一些示例中,可以把预编码逆处理得到的X[m,t]与虚拟TF域(即第三资源域)的虚拟资源块上进行资源反映射,得到虚拟资源块上的TF域信号,即然后,在将转换到DF域(即第一资源域)。其中,可以通过DFT、FFT\STFT等变换,实现信号在虚拟TF域到DF域的转换,如以DFT为例,即
其中,N的取值与DMRS符号是否承载数据Re有关,通常情况下只有两种值供选择,具体与DMRS和Data的映射图样有关。
S506:提取所述第一资源域中的调制信号,并对提取出的调制信号进行解码处理,得到待处理的比特数据。
在一种实现方式中,可以从DF域提取有效调制信号,在将调制信息传递到解预编码、解调制、解层模块和比特级处理模块,以获取有效的译码后的比特数据。其中,若终端的DMRS和调制信号采用相同的预编码权值,在此可以不进行预编码的逆处理。
在一种实现方式中,可以对提取出的调制信号进行解码处理,得到待处理的比特数据和第一校验结果,第一校验结果可以为发射设备基于待处理的比特数据生成的校验结果,在基于待处理的比特数据,生成第二校验结果,并基于第二校验结果和第一校验结果,确定待处理的比特数据在传输过程中是否被篡改。其中,第一校验结果可以是循环冗余校验(Cyclic Redundancy Check,CRC)结果。
图6为视距(line of sight,Los)信道场景下ODFS和OFDM两种波形的性能对比,图7为非视距(Non Line of Sight,NLos)信道场景下ODFS和OFDM两种波形的性能对比。图6和图7为通过仿真实验得到的不同信道场景下ODFS和OFDM两种波形的性能对比,从图6和图7可以看出Los 信道场景和NLos信道场景下,本申请提出的OFDM波形的性能高于ODFS波形的性能。
本申请实施例中,通过接收可发射信号,并确定与可发射信号对应的由时间维度和频率维度构建的第二资源域中的调制信号,将第二资源域中的调制信号,变换到由多普勒维度和频率维度构建的第一资源域,得到第一资源域中的调制信号,提取第一资源域中的调制信号,并对提取出的调制信号进行解码处理,得到待处理的比特数据。本申请在基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)波形的基础上提出了一种新波形-频率多普勒的正交空分技术(Orthogonal Frequency-Doppler Space,ODFS),该波形不仅能够更好地向下兼容,而且可以保留OFDM的技术优点,同时具备抗信道快速时变导致的解调性能恶化的影响,而且增加考虑了多普勒分集增益,尤其是对高速移动用户,能够较大程度的提高解调性能和用户感知。除此之外,该波形技术也能够弱化系统内子带级或者异系统的符号级干扰影响,提升抗干扰能力。
本申请实施例提供发射设备能够实现图2-3的信号的传输方法实施例实现的各个过程或与之对应的各个过程,并达到相同或相应的技术效果,为避免重复,这里不再赘述。可选的,如图8所示,本申请实施例还提供一种终端800,包括处理器801和存储器802,存储器802上存储有可在所述处理器801上运行的程序或指令,该程序或指令被处理器801执行时实现上述信号的传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
该终端还可以包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、以及处理器等中的至少部分部件。
本领域技术人员可以理解,终端还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
图9是根据本申请实施例的接收设备的结构示意图。如图9所示,接收设备900包括:接收模块910、变换模块920和提取模块930。
接收模块910,用于接收可发射信号,并确定与所述可发射信号对应的由时间维度和频率维度构建的第二资源域中的调制信号;变换模块920,用于将所述第二资源域中的调制信号,变换到由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;提取模块930,用于提取所述第一资源域中的调制信号,并对提取出的调制信号进行解码处理,得到待处理的比特数据。
在一种实现方式中,所述接收模块910,用于确定与所述可发射信号对应的频域信号;对所述频域信号进行预编码逆处理,得到所述由时间维度和频率维度构建的第二资源域中的调制信号。
在一种实现方式中,所述第一资源域中的网格与所述第二资源域中的网 格大小不一致,所述变换模块920,用于将所述第二资源域中的调制信号映射到由时间维度和频率维度构建的第三资源域,所述第三资源域中的网格与所述第一资源域中的网格大小一致;将所述第三资源域中的调制信号,变换到所述由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号。
在一种实现方式中,所述提取模块930,用于对所述提取出的调制信号进行解码处理,得到所述待处理的比特数据和第一校验结果,所述第一校验结果为发射设备基于所述待处理的比特数据生成的校验结果;基于所述待处理的比特数据,生成第二校验结果,并基于所述第二校验结果和所述第一校验结果,确定所述待处理的比特数据在传输过程中是否被篡改。
在一种实现方式中,所述接收模块910,用于基于所述频域信号,获取解调参考信号,并基于所述解调参考信号确定预编码权值;基于所述预编码权值,对所述频域信号进行均衡处理,得到均衡后的频域信号,并将所述均衡后的频域信号确定为所述第二资源域中的调制信号。
本申请实施例提供的信号的传输装置能够实现图5的传输方法实施例实现的各个过程或与之对应的各个过程,并达到相同或相应的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种接收设备,该接收设备实施例是与上述信号的传输方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该接收设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图10所示,该网络设备1000包括:天线1001、射频装置1002、基带装置1003、处理器1004和存储器1005。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。 在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1003中实现,该基带装置1003包括基带处理器。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1006,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1000还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,处理器1004调用存储器1005中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的发射设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信号的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信号的传输系统,包括:发射设备及接收设备,所述发射设备可用于执行如上所述的信号的传输方法的步骤,所述接收设备可用于执行如上所述的信号的传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上 述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (15)

  1. 一种信号的传输方法,所述方法包括:
    对待传比特数据进行编码处理,得到与所述待传比特数据对应的调制信号;
    将所述调制信号写入由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;
    将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第二资源域,得到所述第二资源域中的调制信号;
    基于所述第二资源域中的调制信号,确定所述待传比特数据的可发射信号。
  2. 如权利要求1所述的方法,其中,所述基于所述第二资源域中的调制信号,确定所述待传比特数据的可发射信号,包括:
    将所述待传比特数据对应的解调参考信号映射到所述第二资源域,得到所述第二资源域中的解调参考信号;
    基于所述第二资源域中的调制信号和解调参考信号,确定所述可发射信号。
  3. 如权利要求2所述的方法,其中,所述基于所述第二资源域中的调制信号和解调参考信号,确定所述可发射信号,包括:
    对所述第二资源域中的调制信号进行预编码处理,得到与所述第二资源域中的调制信号对应的预编码信号;
    将所述预编码信号和所述第二资源域的解调参考信号变换为时域发射信号,并将所述时域发射信号确定为所述可发射信号。
  4. 如权利要求3所述的方法,其中,所述第一资源域中的网格与所述第二资源域中的网格大小不一致,所述将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第二资源域,包括:
    将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第三资源域,得到所述第三资源域中的调制信号,所述第三资源域中的网格与所述第一资源域中的网格大小一致;
    将所述第三资源域中的调制信号映射到所述由时间维度和频率维度构建的第二资源域。
  5. 如权利要求4所述的方法,其中,所述将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第三资源域,包括:
    基于傅里叶逆变换,将所述第一资源域中的调制信号,变换到所述由时间维度和频率维度构建的第三资源域。
  6. 如权利要求5所述的方法,其中,所述第二资源域中的调制信号为单载波信号,所述对所述第二资源域中的调制信号进行预编码处理,得到与所述第二资源域中的调制信号对应的预编码信号,包括:
    基于离散傅里叶变换,对所述第二资源域中的调制信号在频率方向上进行预编码处理,得到与所述第二资源域中的调制信号对应的预编码信号。
  7. 如权利要求6所述的方法,其中,所述第二资源域中的信号为多载波 信号,所述对所述第二资源域中的调制信号进行预编码处理,得到与所述第二资源域中的调制信号对应的预编码信号,包括:
    将所述第二资源域中的调制信号确定为与所述第二资源域中的调制信号对应的预编码信号。
  8. 一种信号的传输方法,所述方法包括:
    接收可发射信号,并确定与所述可发射信号对应的由时间维度和频率维度构建的第二资源域中的调制信号;
    将所述第二资源域中的调制信号,变换到由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;
    提取所述第一资源域中的调制信号,并对提取出的调制信号进行解码处理,得到待处理的比特数据。
  9. 如权利要求8所述的方法,其中,所述确定与所述可发射信号对应的由时间维度和频率维度构建的第二资源域中的调制信号,包括:
    确定与所述可发射信号对应的频域信号;
    对所述频域信号进行预编码逆处理,得到所述由时间维度和频率维度构建的第二资源域中的调制信号。
  10. 如权利要求9所述的方法,其中,所述第一资源域中的网格与所述第二资源域中的网格大小不一致,所述将所述第二资源域中的调制信号,变换到由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号,包括:
    将所述第二资源域中的调制信号映射到由时间维度和频率维度构建的第三资源域,所述第三资源域中的网格与所述第一资源域中的网格大小一致;
    将所述第三资源域中的调制信号,变换到所述由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号。
  11. 如权利要求10所述的方法,其中,所述对提取出的调制信号进行解码处理,得到待处理的比特数据,包括:
    对所述提取出的调制信号进行解码处理,得到所述待处理的比特数据和第一校验结果,所述第一校验结果为发射设备基于所述待处理的比特数据生成的校验结果;
    基于所述待处理的比特数据,生成第二校验结果,并基于所述第二校验结果和所述第一校验结果,确定所述待处理的比特数据在传输过程中是否被篡改。
  12. 如权利要求11所述的方法,其中,所述对所述频域信号进行预编码逆处理,得到所述由时间维度和频率维度构建的第二资源域中的调制信号,包括:
    基于所述频域信号,获取解调参考信号,并基于所述解调参考信号确定预编码权值;
    基于所述预编码权值,对所述频域信号进行均衡处理,得到均衡后的频域信号,并将所述均衡后的频域信号确定为所述第二资源域中的调制信号。
  13. 一种发射设备,包括:
    编码模块,用于对待传比特数据进行编码处理,得到与所述待传比特数据对应的调制信号;
    写入模块,用于将所述调制信号写入由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;
    转换模块,用于将所述第一资源域中的调制信号,变换到由时间维度和频率维度构建的第二资源域,得到所述第二资源域中的调制信号;
    发射模块,用于基于所述第二资源域中的调制信号,确定所述待传比特数据的可发射信号。
  14. 一种接收设备,包括:
    接收模块,用于接收可发射信号,并确定与所述可发射信号对应的由时间维度和频率维度构建的第二资源域中的调制信号;
    变换模块,用于将所述第二资源域中的调制信号,变换到由多普勒维度和频率维度构建的第一资源域,得到所述第一资源域中的调制信号;
    提取模块,用于提取所述第一资源域中的调制信号,并对提取出的调制信号进行解码处理,得到待处理的比特数据。
  15. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器运行时执行如权利要求1-7中任一项所述的方法,或执行如权利要求8-12中任一项所述的方法。
PCT/CN2023/113110 2022-08-22 2023-08-15 信号的传输方法、装置、终端和存储介质 WO2024041416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211006871.5 2022-08-22
CN202211006871.5A CN117675474A (zh) 2022-08-22 2022-08-22 信号的传输方法、装置、终端和存储介质

Publications (1)

Publication Number Publication Date
WO2024041416A1 true WO2024041416A1 (zh) 2024-02-29

Family

ID=90012522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113110 WO2024041416A1 (zh) 2022-08-22 2023-08-15 信号的传输方法、装置、终端和存储介质

Country Status (2)

Country Link
CN (1) CN117675474A (zh)
WO (1) WO2024041416A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091535A1 (en) * 2016-11-17 2018-05-24 Nokia Technologies Oy Processing modulated signals for wireless transmission between a mobile node and a further node
CN112737745A (zh) * 2019-10-14 2021-04-30 大众汽车股份公司 无线通信设备以及对应的装置、方法和计算机程序
CN114158090A (zh) * 2020-09-04 2022-03-08 维沃移动通信有限公司 数据发送方法、数据接收处理方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091535A1 (en) * 2016-11-17 2018-05-24 Nokia Technologies Oy Processing modulated signals for wireless transmission between a mobile node and a further node
CN112737745A (zh) * 2019-10-14 2021-04-30 大众汽车股份公司 无线通信设备以及对应的装置、方法和计算机程序
CN114158090A (zh) * 2020-09-04 2022-03-08 维沃移动通信有限公司 数据发送方法、数据接收处理方法及相关设备

Also Published As

Publication number Publication date
CN117675474A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US9025684B2 (en) Method for generating and transmitting a reference signal for uplink demodulation in a clustered DFT-spread OFDM transmission scheme
CN109462566B (zh) 一种信息传输方法和装置
Jinqiu et al. Emerging 5G multicarrier chaotic sequence spread spectrum technology for underwater acoustic communication
WO2024041416A1 (zh) 信号的传输方法、装置、终端和存储介质
WO2022165671A1 (zh) 一种通信方法和装置
Huang et al. Minimal Euclidean distance‐inspired optimal and suboptimal modulation schemes for vector OFDM system
CN102148779B (zh) 一种信号检测的方法及装置
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2023131316A1 (zh) 探测参考信号的端口映射方法和终端
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2024061233A1 (zh) 信号发送方法、信号接收方法及设备
WO2023169430A1 (zh) Pusch传输方法、终端及网络侧设备
WO2024078456A1 (zh) 上行控制信息传输方法、装置及终端
WO2023186158A1 (zh) 解调参考信号传输方法、装置、终端及网络侧设备
WO2024051452A1 (zh) 数据处理的方法、终端及可读存储介质
CN118174998A (zh) 信号发送方法、信号接收方法及设备
WO2024067379A1 (zh) Dci解析方法、动态波形切换确定方法、上行接收确定方法、装置、终端及网络侧设备
WO2022017236A1 (zh) 一种数据处理方法、装置、设备和存储介质
WO2023134542A1 (zh) Pdcch传输方法、终端及网络侧设备
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023125424A1 (zh) 解码方法、设备及可读存储介质
JP2013526816A (ja) 一種の信号受信方法と設備
WO2023116775A1 (zh) 信号生成和接收方法及设备
WO2024022276A1 (zh) 低功耗信号传输方法、装置、终端及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856506

Country of ref document: EP

Kind code of ref document: A1