WO2023169430A1 - Pusch传输方法、终端及网络侧设备 - Google Patents

Pusch传输方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023169430A1
WO2023169430A1 PCT/CN2023/080139 CN2023080139W WO2023169430A1 WO 2023169430 A1 WO2023169430 A1 WO 2023169430A1 CN 2023080139 W CN2023080139 W CN 2023080139W WO 2023169430 A1 WO2023169430 A1 WO 2023169430A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
srs
terminal
precoding matrix
pusch transmission
Prior art date
Application number
PCT/CN2023/080139
Other languages
English (en)
French (fr)
Inventor
孙荣荣
刘昊
拉盖施塔玛拉卡
宋扬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023169430A1 publication Critical patent/WO2023169430A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a physical uplink shared channel (PUSCH) transmission method, terminal and network side equipment.
  • PUSCH physical uplink shared channel
  • terminals may use antennas with more ports (such as 6-port or 8-port, etc.) for uplink transmission.
  • the precoding matrix is only designed for 4-port antenna transmission in related technologies and is not suitable for use with 6-port antennas.
  • Port or 8-port antenna transmission terminal affects the communication performance of the terminal.
  • Embodiments of the present application provide a PUSCH transmission method, a terminal, and a network-side device, which can solve the problem of affecting the communication performance of the terminal because the related technology does not support antenna transmission using more ports for the terminal.
  • a PUSCH transmission method including: the terminal determines a second precoding matrix based on two first precoding matrices, the second precoding matrix is used for PUSCH transmission on the K port, and K is a positive integer. ; The terminal sends PUSCH according to the second precoding matrix.
  • a PUSCH transmission method including: the network side device sends DCI, the DCI is used to indicate two first precoding matrices, and the two first precoding matrices are used by the terminal to determine a second Precoding matrix, the second precoding matrix is used for PUSCH transmission of K port, K is a positive integer.
  • a PUSCH transmission device including: a determination module configured to determine a second precoding matrix based on two first precoding matrices, the second precoding matrix being used for PUSCH transmission on the K port, K is a positive integer; the sending module is configured to use the second precoding moment The array sends PUSCH.
  • a PUSCH transmission device including: a sending module, configured to send DCI, where the DCI is used to indicate two first precoding matrices, and the two first precoding matrices are used by the terminal to determine a The second precoding matrix is used for PUSCH transmission of K port, and K is a positive integer.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to determine a second precoding matrix based on two first precoding matrices, and the second precoding matrix is used for K PUSCH transmission of the port, K is a positive integer, and the communication interface is used to send PUSCH according to the second precoding matrix.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send DCI, and the DCI is used to indicate two first precoding matrices.
  • the precoding matrix is used by the terminal to determine a second precoding matrix.
  • the second precoding matrix is used for PUSCH transmission on the K port, and K is a positive integer.
  • a PUSCH transmission system including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the method described in the first aspect
  • the network side device can be used to perform the steps of the method described in the second aspect. steps of the method described.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. The steps of a method, or steps of implementing a method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the terminal can determine a second precoding matrix based on two first precoding matrices, and perform K-port PUSCH transmission based on the second precoding matrix.
  • the embodiment of the present application can use two precoding matrices that support PUSCH transmission with fewer ports to implement multi-port PUSCH transmission, which is beneficial to improving the communication performance of the terminal.
  • Figure 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a PUSCH transmission method according to an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a PUSCH transmission method according to an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a PUSCH transmission device according to an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a PUSCH transmission device according to an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single-carrier frequency division multiple access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless device.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a Wireless Fidelity (WiFi) node, etc.
  • the base station may be called a Node B, an Evolved Node B (eNB), or an access point.
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmission Reception Point
  • the base station is not limited to specific technical terms. It should be noted that in this application, in the embodiment, only the base station in the NR system is used as an example for introduction, and the base station is not limited to The specific type of site.
  • PUSCH physical uplink shared channel
  • this embodiment of the present application provides a PUSCH transmission method 200.
  • the method can be executed by a terminal.
  • the method can be executed by software or hardware installed on the terminal.
  • the method includes the following steps.
  • the terminal determines a second precoding matrix based on two first precoding matrices.
  • the second precoding matrix is used for PUSCH transmission on the K port, and K is a positive integer.
  • the two first precoding matrices may be indicated by the network side device.
  • the terminal may receive downlink control information (DCI), and the DCI may be used to indicate the above two first precoding matrices. Precoding matrix, etc.
  • DCI downlink control information
  • K can be 6 or 8, etc.
  • the values of M and N can be 2 and 4 respectively; for another example, when K is 8, the values of M and N can both be 4.
  • the first precoding matrix may be a precoding matrix configured for the terminal by the network side device in the related art.
  • the first precoding matrix may be a precoding matrix that supports 4-port PUSCH transmission, such as
  • the first precoding matrix may be a precoding matrix that supports 2-port PUSCH transmission, such as
  • the second precoding matrix determined by the terminal may be one of the following:
  • W 1 and W 2 are the first precoding matrix
  • are coefficients, which can be phase, amplitude or coefficient matrix, such as [1 j] T , etc.
  • the "0" in the upper right corner represents: an all-0 matrix with the same number of rows as W 1 and the same number of columns as W 2 ; the "0" in the lower left corner means: An all-zero matrix with the same number of columns as W 1 and the same number of rows as W 2 .
  • the two all-zero matrices here can be configured or instructed by the network side device, or determined based on W 1 and W 2 .
  • S204 The terminal sends PUSCH according to the second precoding matrix.
  • the terminal may precode the uplink data according to the second precoding matrix, and then map the precoded uplink data to the PUSCH resource for transmission.
  • the terminal can determine a second precoding matrix based on two first precoding matrices, and perform K-port PUSCH transmission based on the second precoding matrix.
  • the embodiment of the present application can use two precoding matrices that support PUSCH transmission with fewer ports to implement multi-port PUSCH transmission, which is beneficial to improving the communication performance of the terminal.
  • the embodiments of the present application do not require reconfiguration of the precoding matrix and make minor changes to existing protocols.
  • 8Tx transmission can be achieved without introducing a new 8Tx (transmission) precoding matrix.
  • the terminal implementation is simple and is conducive to more Less resource overhead.
  • the method further includes: the terminal receives configuration information, the configuration information includes one or two codes for the codebook. Transmitted Sounding Reference Signal (SRS) resource set.
  • SRS Transmitted Sounding Reference Signal
  • the SRS resource set may include one of the following 1) to 3):
  • the SRS resource set includes at least one 8-antenna transmission (Tx) SRS, that is, an 8-port SRS, for 8Tx PUSCH transmission, that is, K is 8.
  • At least one M port SRS and at least one N port SRS, M+N K, M and N are positive integers, the M port SRS and the N port SRS are used for the PUSCH of the K port transmission.
  • the configuration information configures an SRS resource set for codebook transmission for the terminal.
  • the SRS resource set includes at least two 4-port SRSs, that is, M and N are both 4, and K is 8.
  • the two first precoding matrices may be an M-port precoding matrix and an N-port precoding matrix respectively.
  • the SRS of the M port in the one SRS resource set is associated with the SRS of the N port.
  • the SRS can be associated in at least one of the following ways: a) explicit configuration of the configuration information; b) association The same spatial relationship, where the spatial relationship can be a beam, transmission configuration indication (Transmission Configuration Indicator, TCI) status, path loss reference signal, etc.; c) Predefined, as agreed in the protocol, the protocol can stipulate the associated SRS; d) Determined based on the SRS resource index size.
  • the configuration information configures an SRS resource set for codebook transmission for the terminal.
  • the SRS resource set includes 8-port SRS resources and 4-port SRS resources, that is, L is 4 and K is 8.
  • the one SRS resource set includes at least one K-port SRS and at least one L-port SRS; wherein the K-port SRS is used for the PUSCH transmission on K port.
  • the power control parameters configured in the two SRS resource sets are the same. This embodiment can try to ensure that the transmit power of the SRS in the two SRS resource sets is the same, so that the network side device can obtain the channel condition based on the received SRS, further calculate the precoding matrix for uplink transmission, and improve communication performance.
  • the configuration information configures two SRS resource sets for codebook transmission for the terminal.
  • Each SRS resource set contains at least one 4-port SRS.
  • the power control parameters configured in the two SRS resource sets are the same; from all The two SRSs in the above two SRS resource sets are used for 8Tx PUSCH transmission, that is, M and N are both 4, and K is 8.
  • the method further includes: the terminal receives DCI, and the DCI is used for Indicate the two first precoding matrices.
  • the DCI may include at least one SRS Resource Indicator (SRI) field, the SRI field is used to indicate SRS, and the SRS is used for the PUSCH transmission.
  • SRI SRS Resource Indicator
  • the DCI when the configuration information received by the terminal configures an SRS resource set for the terminal, the DCI includes an SRI domain; when the configuration information received by the terminal includes two SRS resource sets, the DCI Contains one SRI domain or two SRI domains.
  • the configuration information configures two SRS resource sets for the terminal and the DCI includes one SRI domain, the one SRI domain simultaneously indicates the SRS in the two SRS resource sets.
  • the bit length of the SRI field Determined by the number of associated SRS groups.
  • the interrelated SRS are a group, and the value of the SRI field is mapped to a group of SRS resources. It can be understood that the more groups of associated SRS, the greater the bit length of the SRI field.
  • the PUSCH uses the K port for transmission.
  • the SRI field indicates the SRS of the 8-port, it means that the PUSCH uses the 8Tx transmission; in the When the SRI domain indicates both the SRS of the M port and the SRS of the N port, the PUSCH is transmitted using the K port.
  • the SRI indicates two associated 4-port SRS, it means that the PUSCH is transmitted using 8Tx. That is, M and N are both 4, and K is 8.
  • the DCI received by the terminal may also include two Transmitted Precoding Matrix Indicator (TPMI) fields, and the two TPMI fields are used to indicate the two third A precoding matrix, for example, a TPMI field indicates a first precoding matrix.
  • TPMI Transmitted Precoding Matrix Indicator
  • the method further includes: the terminal selects the two first precoding matrices from two codebook subsets according to the two TPMI domains, and the two codebook subsets may be controlled by wireless resources.
  • RRC Radio Resource Control
  • the correlation types of the two codebook subsets can also be configured by RRC.
  • the method further includes: the terminal determining the two codebook subsets from multiple codebook subsets according to at least one of the following:
  • the number of ports of the precoding matrices included in the two codebook subsets selected by the terminal is determined by one of the following: a) The configuration of the SRS configured for the terminal, for example, the port numbers are M and M respectively. N, the configuration of the SRS mentioned here can be found in the previous configuration information; b) Agreed value, such as the protocol pre-agrees the number of ports of the precoding matrix included in the two codebook subsets, such as for an 8-port SRS , the two codebook subsets are 4 ports respectively.
  • the terminal may determine the two codebook subsets according to the PUSCH transmission (antenna port coherence type) of the K port.
  • the network side device configures the antenna port coherence type for 8Tx transmission through RRC, and the terminal determines two codebook subsets through the antenna port coherence type.
  • the network side configures the coherence type of the codebook subset for 8Tx transmission, and the terminal The coherence type of the codebook subset determines the coherence type of the precoding of the two codebook subsets.
  • the maximum rank information corresponding to the two TPMI domains may be equal to the maximum rank information corresponding to the two codebook subsets.
  • the coherence types of the two codebook subsets may include at least one of the following: fully coherent and fully coherent ⁇ full-coherent; full-coherent ⁇ , partially coherent and partially coherent ⁇ partial-coherent; partial-coherent ⁇ , non-coherent and non-coherent ⁇ non-coherent; non-coherent ⁇ , partially non-coherent and partially non-coherent ⁇ partial-non-coherent; partial-non-coherent ⁇ , fully partial non-coherent and fully partial non-coherent ⁇ full-partial-non- coherent;full-partial-non-coherent ⁇ .
  • the method further includes: the terminal determines the two codebook subsets according to the antenna port coherence type of the PUSCH transmission of the K port.
  • the antenna port coherence type may be configured by RRC signaling.
  • the network side device configures the antenna port coherence type for 8Tx transmission through RRC, and the terminal determines two codebook subsets through the antenna port coherence type.
  • the network side configures the coherence type of the codebook subset for 8Tx transmission, and the terminal determines the precoding coherence type of the two codebook subsets based on the coherence type of the codebook subset for 8Tx transmission.
  • the two codebook subsets are fully coherent and fully coherent.
  • the antenna port coherence type is 8-port fully coherent
  • the two codebook subsets corresponding to the two TPMIs are fully coherent and fully coherent ⁇ full-coherent; full-coherent ⁇ .
  • the two codebook subsets are one of the following: all partially incoherent and all partially incoherent, all Correlation and partial correlation.
  • 8 ports are divided into two groups, each group has 4 antenna ports that are fully coherent (4+4).
  • the two codebook subsets corresponding to the two TPMIs are at least one of the following: all partially incoherent and all partially incoherent ⁇ full-partial-non-coherent; full-partial-non-coherent ⁇ ; full coherence and partial coherent ⁇ full-coherent; full-coherent ⁇ .
  • the two codebook subsets are one of the following: partially coherent and partially coherent, partially incoherent and Partially irrelevant.
  • 8 ports are divided into two groups, and 2 antenna ports in each group of 4 antenna ports are a group of coherent ports (2+2+2+2).
  • the two codebook subsets corresponding to the two TPMIs are It is at least one of the following: partially coherent and partially coherent ⁇ partial-coherent; partial-coherent ⁇ ; partially non-coherent and partially non-coherent ⁇ partial-non-coherent; partial-non-coherent ⁇ .
  • the two codebooks A subset is one of: fully partially incoherent and partially incoherent, fully coherent and partially coherent.
  • 8 ports are divided into two groups. In one group of antenna ports, 4 antenna ports are fully coherent, and in the other group of antenna ports, 2 antenna ports are a group of coherent ports (4+2+2).
  • two TPMI The corresponding two codebook subsets are at least one of the following: fully partially non-coherent and partially non-coherent ⁇ full-partial-non; partial-non-coherent ⁇ ; fully coherent and partially coherent ⁇ full-coherent; partial-coherent ⁇ .
  • the fully coherent, partially coherent, and incoherent codebook subsets are precoding matrices whose TPMI index satisfies the following Table 1:
  • the method further The method includes: the terminal determines the maximum rank information (such as the maximum rank) corresponding to the two codebook subsets according to at least one of the following 1) to 3):
  • RRC signaling configuration wherein the RRC signaling is configured with maximum rank information corresponding to the two codebook subsets.
  • the maximum rank corresponding to the first codebook subset is A
  • the maximum rank corresponding to the second codebook subset is (R max -A); where A is half of R max rounded up or down. Obtained by rounding, the R max may be configured by RRC signaling;
  • the maximum rank corresponding to the first codebook subset and the second codebook subset is the smallest of the number of ports indicated by the SRS domain and R max , that is, the maximum rank is min ⁇ the number of ports indicated by the SRS domain, R max ⁇ , the R max may be configured by RRC signaling.
  • the method further The method includes: the terminal determines the bit length and meaning of the two TPMI fields according to the two codebook subsets, where the bit length and meaning of the TPMI field are as shown in Table 2 and Table 3.
  • the method further includes: the terminal determines an invalid TPMI domain among the two TPMI domains according to at least one of the following:
  • the indicated precoding matrix combination exceeds the maximum rank limit. For example, if a precoding matrix combination that exceeds the maximum rank limit is indicated, that is, the indicated combination of ranks of the two first precoding matrices exceeds the maximum rank limit, then the The two TPMI fields are invalid.
  • the method further includes: the SRI domain in the DCI indicates the SRS of the J port for PUSCH transmission, and J is less than In the case of K, the terminal only interprets the first TPMI domain among the two TPMI domains.
  • the terminal can normally interpret the indication fields other than the TPMI domain in the DCI; or, the terminal interprets the two TPMI domains. Joint interpretation of TPMI domain; among them, J is a positive integer, J can be 2 or 4, etc.
  • K 8.
  • the terminal only interprets the first TPMI field among the two TPMI fields, or the terminal will Two TPMI domains are interpreted jointly as one TPMI domain.
  • the DCI may also include a first indication field, and the first indication field is used to indicate one of the following: the first TPMI domain is valid; The second TPMI domain is valid; both TPMI domains are valid; among them, if the TPMI domain is valid, the terminal interprets the TPMI domain, or the terminal uses the parameters indicated by the valid TPMI domain for uplink transmission.
  • the DCI may also include a second indication field, and the second indication field is used to indicate coefficients of the two first precoding matrices.
  • the coefficient is used to calculate the second precoding matrix, the coefficient can be phase, amplitude Or coefficient matrix, etc.
  • the second precoding matrix is one of the following:
  • W 1 and W 2 are the two first precoding matrices, and W 1 and W 2 are respectively associated with different SRS; and ⁇ are coefficients, which can be indicated by DCI, such as ⁇ [1 0]; [0 1]; [1 1]; [1 j] ⁇ .
  • W 1 and W 2 are the first precoding matrix
  • W 1 and W 2 are indicated by two TPMI fields
  • the right side of the equal sign is the second precoding matrix
  • the transmission rank of the second precoding matrix is the sum of the ranks of W 1 and W 2 , and the ranks of W 1 and W 2 can meet certain conditions.
  • the terminal does not expect the rank combination of W 1 and W 2 Yes: 3+2; 1+4; 4+1; 4+2; 2+4; 4+3.
  • the transmission rank of the second precoding matrix does not exceed the maximum transmission rank, and the maximum transmission rank may be configured by the network side device.
  • the rank of the second precoding matrix is the sum of the ranks of the effective first precoding matrices.
  • the method further includes: one of the two TPMI fields indicates an invalid code point or an invalid precoding matrix, and the other When a TPMI field indicates a valid precoding matrix W 1 , the terminal determines the third precoding matrix for PUSCH transmission based on W 1 , and the third precoding matrix is one of the following:
  • the method further includes: the terminal determines the number of codewords for PUSCH transmission of the K port according to the precoding indication; wherein, when the transmission rank is greater than the first value, two codewords are enabled, and/ Or, when both TPMI fields are valid, both codewords are enabled.
  • the first codeword is mapped to P transmission layers
  • the second codeword is mapped to Q transmission layers.
  • P is the rank number of W 1
  • Q is the rank number of W 2
  • W 1 and W 2 are the two first precoding matrices
  • P and Q are predefined
  • P and Q are positive integers.
  • the PUSCH transmission method according to the embodiment of the present application is described in detail above with reference to FIG. 2 .
  • a PUSCH transmission method according to another embodiment of the present application will be described in detail below with reference to FIG. 3 . It can be understood that the interaction between the network side device and the terminal described from the network side device is the same as or corresponding to the description on the terminal side in the method shown in Figure 2. To avoid duplication, the relevant description is appropriately omitted.
  • FIG 3 is a schematic flowchart of the implementation of the PUSCH transmission method according to the embodiment of the present application, which can be applied to network-side equipment. As shown in Figure 3, the method 300 includes the following steps.
  • the network side device sends DCI.
  • the DCI is used to indicate two first precoding matrices.
  • the two first precoding matrices are used by the terminal to determine a second precoding matrix.
  • the second precoding matrix is For PUSCH transmission on K port, K is a positive integer.
  • the network side device sends DCI
  • the DCI is used to indicate two first precoding matrices
  • the two first precoding matrices are used by the terminal to determine a second precoding matrix
  • the second precoding matrix is used for PUSCH transmission of the K port.
  • the embodiment of the present application can use two precoding matrices that support PUSCH transmission with fewer ports to implement multi-port PUSCH transmission, which is beneficial to improving the communication performance of the terminal.
  • the method further includes: the network side device sends configuration information, where the configuration information includes one or two SRS resources for codebook transmission.
  • the one SRS resource set includes one of the following: at least one K-port SRS; at least one M-port SRS and at least one N-port SRS; at least one K-port SRS and at least one L-port SRS;
  • the DCI includes at least one SRI field, the SRI field is used to indicate SRS, and the SRS is used for the PUSCH transmission.
  • the DCI includes two TPMI fields, and the two TPMI fields are used to indicate the two first precoding matrices.
  • the execution subject may be a PUSCH transmission device.
  • the PUSCH transmission method performed by the PUSCH transmission device is used as an example to illustrate the PUSCH transmission device provided by the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a PUSCH transmission device according to an embodiment of the present application.
  • the device can to correspond to terminals in other embodiments.
  • the device 400 includes the following modules.
  • the determination module 402 is configured to determine a second precoding matrix based on two first precoding matrices.
  • the second precoding matrix is used for PUSCH transmission on the K port, and K is a positive integer.
  • Sending module 404 configured to send PUSCH according to the second precoding matrix.
  • the PUSCH transmission device provided by the embodiment of the present application can determine a second precoding matrix based on two first precoding matrices, and perform K-port PUSCH transmission based on the second precoding matrix.
  • the embodiment of the present application can use two precoding matrices that support PUSCH transmission with fewer ports to implement multi-port PUSCH transmission, which is beneficial to improving the communication performance of the terminal.
  • the device further includes a receiving module for receiving configuration information, where the configuration information includes one or two SRS resource sets for codebook transmission; the one SRS resource set includes the following One: at least one K-port SRS; at least one M-port SRS and at least one N-port SRS; at least one K-port SRS and at least one L-port SRS; the two SRS resource sets are one SRS resource set.
  • the SRS of the M port and the SRS of the N port in the one SRS resource set are associated in at least one of the following ways: the configuration information is explicitly configured; the same space is associated Relationship; predefined by protocol; determined based on the index size of the SRS resource.
  • the power control parameters configured in the two SRS resource sets are the same.
  • the one SRS resource set includes at least one K port SRS and at least one L port SRS, and the K port SRS Used for PUSCH transmission on the K port.
  • the device further includes a receiving module configured to receive DCI, where the DCI is used to indicate the two first precoding matrices.
  • the DCI includes at least one SRI field, the SRI field is used to indicate SRS, and the SRS is used for the PUSCH transmission.
  • the DCI when the configuration information configures one SRS resource set for the device, the DCI includes an SRI domain; when the configuration information configures two SRS resource sets for the device, The DCI contains one SRI domain or two SRI domains.
  • the one SRS resource is concentrated, and the SRS of the M port It is associated with the SRS of the N port; wherein the bit length of the SRI field is determined by the number of associated SRS groups; where the associated SRS is one group.
  • the PUSCH when the SRI domain indicates the SRS of the K port, the PUSCH is transmitted using the K port; the SRI domain simultaneously indicates the SRS of the M port and the SRS of the N port. In the case of SRS, the PUSCH is transmitted using the K port.
  • the DCI includes two TPMI fields, and the two TPMI fields are used to indicate the two first precoding matrices.
  • the device further includes a selection module configured to select the two first precoding matrices from two codebook subsets according to the two TPMI domains.
  • the determination module 402 is further configured to determine the two codebook subsets from multiple codebook subsets according to at least one of the following: 1) The precoding contained in the codebook subset The number of ports of the matrix; 2) the coherence type of the codebook subset; 3) the maximum rank information corresponding to the codebook subset.
  • the number of ports of the precoding matrices included in the two codebook subsets is determined by one of the following: the configuration of the SRS configured for the device; an agreed value.
  • the coherence types of the two codebook subsets include at least one of the following: fully coherent and fully coherent, partially coherent and partially coherent, non-coherent and non-coherent, partially non-coherent and partially non-coherent. Coherent, fully partially incoherent and fully partially incoherent.
  • the coherence types of the two codebook subsets are configured by RRC.
  • the determination module 402 is further configured to determine the two codebook subsets according to the antenna port coherence type of the PUSCH transmission of the K port.
  • the two codebook subsets are fully coherent and fully coherent;
  • the K port is divided into two groups, When the antenna ports in each group are fully coherent, the two codebook subsets are one of the following: fully incoherent and fully incoherent, fully coherent and partially coherent;
  • the K port is divided into two groups , when each group has two sets of coherent antenna ports, the two codebook subsets are one of the following: partially coherent and partially coherent, partially non-coherent and partially non-coherent; and the K port is divided into two group, the antenna ports in the first group are fully coherent, a part of the antenna ports in the second group are fully coherent, and the other part of the antenna ports are fully coherent, the two codebook subsets are one of the following: all partially incoherent and Partially incoherent, fully coherent and partially coherent.
  • the determining module 402 is further configured to determine the maximum rank information corresponding to the two codebook subsets according to at least one of the following: RRC signaling configuration; wherein, the RRC signaling is configured with the maximum rank information corresponding to the two codebook subsets; the maximum rank corresponding to the first codebook subset is A, and the maximum rank corresponding to the second codebook subset is R max -A ; Among them, A is obtained by rounding up or rounding down half of R max ; the maximum rank corresponding to the first codebook subset and the second codebook subset is the number of ports indicated by the SRS domain and the number in R max The smallest one; wherein, the R max is configured by RRC signaling.
  • RRC signaling is configured with the maximum rank information corresponding to the two codebook subsets
  • the maximum rank corresponding to the first codebook subset is A
  • the maximum rank corresponding to the second codebook subset is R max -A ;
  • A is obtained by rounding up or rounding down half of
  • the determination module 402 is also configured to determine the bit lengths and meanings of the two TPMI fields according to the two codebook subsets.
  • the determination module 402 is also configured to determine the invalid TPMI domain among the two TPMI domains according to at least one of the following: whether a reserved code point is indicated; whether codewords are enabled; Whether the indicated precoding matrix combination exceeds the maximum rank limit.
  • the determination module 402 is also configured to interpret only the two SRSs in the DCI when the SRS of port J is used for PUSCH transmission and J is less than K.
  • the first TPMI domain among the TPMI domains; or, the two TPMI domains are jointly interpreted; where, J is a positive integer.
  • the DCI includes a first indication field, and the first indication field is used to indicate one of the following: the first TPMI domain is valid; the second TPMI domain is valid; both TPMI domains are valid. efficient.
  • the DCI includes a second indication field
  • the second indication field is used to indicate coefficients of the two first precoding matrices
  • the coefficients are used to calculate the second precoding matrix. Coding matrix.
  • the second precoding matrix is one of the following:
  • W 1 and W 2 are the two first precoding matrices, and W 1 and W 2 are respectively associated with different SRS; and ⁇ are coefficients.
  • the determining module 402 is also configured to: among the two TPMI fields, one TPMI field indicates an invalid code point or an invalid precoding matrix, and the other TPMI field indicates a valid
  • precoding matrix W 1 the third precoding matrix used for PUSCH transmission is determined according to W 1 , and the third precoding matrix is one of the following:
  • the determining module 402 is also configured to determine Determine the number of codewords for PUSCH transmission of the K port; wherein, when the transmission rank is greater than the first value, two codewords are enabled, and/or when two TPMI domains are valid, two codewords are enabled.
  • the first codeword is mapped to P transmission layers, and the second codeword is mapped to Q transmission layers; where P is the rank of W 1 number, Q is the rank number of W 2 , W 1 and W 2 are the two first precoding matrices, and/or, P and Q are predefined, and P and Q are positive integers.
  • the rank of the second precoding matrix is the sum of the ranks of the effective first precoding matrices.
  • the device 400 according to the embodiment of the present application can refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the device 400 are respectively to implement the corresponding process in the method 200, And can achieve the same or equivalent technical effects. For the sake of simplicity, they will not be described again here.
  • the PUSCH transmission device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • FIG. 5 is a schematic structural diagram of a PUSCH transmission device according to an embodiment of the present application. This device may correspond to network-side equipment in other embodiments. As shown in Figure 5, the device 500 includes the following modules.
  • Sending module 502 configured to send DCI, where the DCI is used to indicate two first precoding matrices.
  • the two first precoding matrices are used by the terminal to determine a second precoding matrix.
  • the second precoding matrix Used for PUSCH transmission on K port, K is a positive integer.
  • the sending module 502 sends DCI.
  • the DCI is used to indicate two first precoding matrices.
  • the two first precoding matrices are used by the terminal to determine a second precoding matrix.
  • the second precoding matrix is used for PUSCH transmission of the K port.
  • the embodiment of the present application can use two precoding matrices that support PUSCH transmission with fewer ports to implement multi-port PUSCH transmission, which is beneficial to improving the communication performance of the terminal.
  • the DCI includes at least one SRI field, the SRI field is used to indicate SRS, and the SRS is used for the PUSCH transmission.
  • the DCI includes two TPMI fields, and the two TPMI fields are used to indicate the two first precoding matrices.
  • the device 500 according to the embodiment of the present application can refer to the process corresponding to the method 300 of the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the device 500 are respectively intended to implement the corresponding process in the method 300. And can achieve the same or equivalent technical effects. For the sake of simplicity, they will not be described again here.
  • the PUSCH transmission device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figures 2 to 3, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 600, which includes a processor 601 and a memory 602.
  • the memory 602 stores programs or instructions that can be run on the processor 601, for example.
  • the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each step of the above PUSCH transmission method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, the steps of the above PUSCH transmission method embodiment are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the processor is configured to determine a second precoding matrix based on two first precoding matrices.
  • the second precoding matrix is used for the K port.
  • K is a positive integer
  • the communication interface is used to send PUSCH according to the second precoding matrix.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • FIG. 7 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, etc. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and at least one of other input devices 7072 .
  • Touch panel 7071 also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 701 after receiving downlink data from the network side device, can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • Memory 709 in embodiments of the present application includes, but is not limited to, these and any other suitable types of memory.
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • the radio frequency unit 701 may be configured to send PUSCH according to the second precoding matrix.
  • the processor 710 may be configured to determine a second precoding matrix based on two first precoding matrices, where the second precoding matrix is used for PUSCH transmission on the K port, where K is a positive integer.
  • the terminal provided by the embodiment of the present application can determine a second precoding matrix based on two first precoding matrices, and perform K-port PUSCH transmission based on the second precoding matrix.
  • the embodiment of the present application can use two precoding matrices that support PUSCH transmission with fewer ports to implement multi-port PUSCH transmission, which is beneficial to improving the communication performance of the terminal.
  • the terminal 700 provided by the embodiment of the present application can also implement each process of the above-mentioned PUSCH transmission method embodiment, and can achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Embodiments of the present application also provide a network side device, including a processor and a communication interface.
  • the communication interface is used to send DCI.
  • the DCI is used to indicate two first precoding matrices.
  • the two first precoding matrices are A second precoding matrix is determined at the terminal.
  • the second precoding matrix is used for PUSCH transmission on the K port, and K is a positive integer.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82.
  • the radio frequency device 82 processes the received information and then sends it out through the antenna 81.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 83, which includes a baseband processor.
  • the baseband device 83 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, which is, for example, a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the network side device 800 in the embodiment of the present application also includes: instructions or programs stored in the memory 85 and executable on the processor 84.
  • the processor 84 calls the instructions or programs in the memory 85 to execute the various operations shown in Figure 5. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above-mentioned PUSCH transmission method embodiment is implemented, and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above PUSCH transmission method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above PUSCH transmission method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • Embodiments of the present application also provide a PUSCH transmission system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the PUSCH transmission method as described above.
  • the network side device can be used to perform the PUSCH transmission method as described above. Steps of the transfer method.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种PUSCH传输方法、终端及网络侧设备,属于通信技术领域,本申请实施例的PUSCH传输方法包括:终端根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数;所述终端根据所述第二预编码矩阵发送PUSCH。

Description

PUSCH传输方法、终端及网络侧设备
交叉引用
本申请要求在2022年03月08日提交中国专利局、申请号为202210228037.4、发明名称为“PUSCH传输方法、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输方法、终端及网络侧设备。
背景技术
随着通信技术的发展,终端可能使用更多端口(如6端口或8端口等)的天线进行上行传输,然而,相关技术中仅针对4端口天线传输设计了预编码矩阵,不适用于使用6端口或8端口天线传输的终端,影响终端的通信性能。
发明内容
本申请实施例提供一种PUSCH传输方法、终端及网络侧设备,能够解决因相关技术中不支持终端使用更多端口的天线传输,影响终端的通信性能的问题。
第一方面,提供了一种PUSCH传输方法,包括:终端根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数;所述终端根据所述第二预编码矩阵发送PUSCH。
第二方面,提供了一种PUSCH传输方法,包括:网络侧设备发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
第三方面,提供了一种PUSCH传输装置,包括:确定模块,用于根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数;发送模块,用于根据所述第二预编码矩 阵发送PUSCH。
第四方面,提供了一种PUSCH传输装置,包括:发送模块,用于发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数,所述通信接口用于根据所述第二预编码矩阵发送PUSCH。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
第九方面,提供了一种PUSCH传输系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,所述网络侧设备可用于执行如第二方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,终端可以根据两个第一预编码矩阵确定出一个第二预编码矩阵,根据第二预编码矩阵进行K端口的PUSCH传输。本申请实施例可以使用两个支持较少端口PUSCH传输的预编码矩阵,来实现多端口的PUSCH传输,有利于提高终端的通信性能。
附图说明
图1是根据本申请实施例的无线通信系统的示意图;
图2是根据本申请实施例的PUSCH传输方法的示意性流程图;
图3是根据本申请实施例的PUSCH传输方法的示意性流程图;
图4是根据本申请实施例的PUSCH传输装置的结构示意图;
图5是根据本申请实施例的PUSCH传输装置的结构示意图;
图6是根据本申请实施例的通信设备的结构示意图;
图7是根据本申请实施例的终端的结构示意图;
图8是根据本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency  Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(Personal Computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基 站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输方法进行详细地说明。
如图2所示,本申请实施例提供一种PUSCH传输方法200,该方法可以由终端执行,换言之,该方法可以由安装在终端的软件或硬件来执行,该方法包括如下步骤。
S202:终端根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
该实施例中,两个第一预编码矩阵可以是网络侧设备指示的,例如,S202之前,终端可以接收下行控制信息(Downlink Control Information,DCI),该DCI可以用于指示上述两个第一预编码矩阵等。
上述两个第一预编码矩阵中,一个可以是支持M端口PUSCH传输的预编码矩阵,另一个可以是支持N端口PUSCH传输的预编码矩阵,M+N=K,M和N是正整数。例如,K的取值可以为6或8等,在K为6时,M和N的取值可以分别为2和4;又例如,在K为8时,M和N的取值可以均为4。
第一预编码矩阵可以是相关技术中网络侧设备为终端配置的预编码矩阵,例如,第一预编码矩阵可以为支持4端口PUSCH传输的预编码矩阵,如
等。
又例如,第一预编码矩阵可以为支持2端口PUSCH传输的预编码矩阵,如
等。
在一个例子中,终端确定出的第二预编码矩阵可以为如下之一:
其中,W1和W2为第一预编码矩阵,和α为系数,该系数可以是相位、幅度或系数矩阵,如[1 j]T等。
需要说明的是,上述第二预编码矩阵中,右上角的“0”表示的是:与W1的行数相等,且与W2的列数相等的全0矩阵;左下角的“0”表示的是: 与W1的列数相等,且与W2的行数相等的全0矩阵,这里的两个全0矩阵可以由网络侧设备配置或指示,或者根据W1,W2确定。
S204:所述终端根据所述第二预编码矩阵发送PUSCH。
该步骤中,终端可以根据所述第二预编码矩阵对上行数据进行预编码处理,然后将预编码处理后的上行数据映射到PUSCH资源上进行传输。
本申请实施例提供的PUSCH传输方法,终端可以根据两个第一预编码矩阵确定出一个第二预编码矩阵,根据第二预编码矩阵进行K端口的PUSCH传输。本申请实施例可以使用两个支持较少端口PUSCH传输的预编码矩阵,来实现多端口的PUSCH传输,有利于提高终端的通信性能。
同时,本申请实施例无需重新配置预编码矩阵,对现有的协议改动较小,例如,不需要引入新的8Tx(传输)预编码矩阵就能实现8Tx传输,终端实现简单,且有利于较少资源开销。
可选地,所述终端根据两个第一预编码矩阵确定一个第二预编码矩阵之前,所述方法还包括:所述终端接收配置信息,所述配置信息包括一个或两个用于码本传输的探测参考信号(Sounding Reference Signal,SRS)资源集。
在所述配置信息包括一个SRS资源集的情况下,所述一个SRS资源集可以包括如下1)至3)之一:
1)至少一个K端口的SRS,所述K端口的SRS用于所述K端口的PUSCH传输。例如,所述配置信息为终端配置一个用于码本传输的SRS资源集,所述一个SRS资源集包含至少一个8天线传输(Tx)SRS,即8端口SRS,用于8Tx PUSCH传输,即K为8。
2)至少一个M端口的SRS以及至少一个N端口的SRS,M+N=K,M和N为正整数,所述M端口的SRS以及所述N端口的SRS用于所述K端口的PUSCH传输。例如,所述配置信息为终端配置一个用于码本传输的SRS资源集,所述SRS资源集包含至少两个4端口SRS,即M和N均为4,K为8。
该实施例中,所述两个第一预编码矩阵可以分别为M端口预编码矩阵和N端口预编码矩阵。
可选地,所述一个SRS资源集中的所述M端口的SRS与所述N端口的SRS关联,具体可以通过如下至少之一的方式关联:a)所述配置信息显式配置;b)关联相同的空间关系,这里空间关系可以是波束,传输配置指示 (Transmission Configuration Indicator,TCI)状态,路损参考信号等;c)预定义的,如协议约定的,协议可以约定相关联的SRS;d)根据SRS资源索引大小确定。
3)至少一个K端口的SRS以及至少一个L端口的SRS,L为正整数,L小于K,所述K端口的SRS用于所述K端口的PUSCH传输。例如,所述配置信息为终端配置一个用于码本传输的SRS资源集,所述SRS资源集包含8端口SRS资源和4端口SRS资源,即L为4,K为8。
可选地,在所述终端配置了满功率传输模式的情况下,所述一个SRS资源集包含至少一个K端口的SRS以及至少一个L端口的SRS;其中所述K端口的SRS用于所述K端口的PUSCH传输。
在所述配置信息包括两个SRS资源集的情况下,所述两个SRS资源集中,一个SRS资源集包括至少一个M端口的SRS,另一个SRS资源集包含至少一个N端口的SRS,M+N=K,M和N为正整数,所述M端口的SRS以及所述N端口的SRS用于所述K端口的PUSCH传输。
可选地,所述两个SRS资源集配置的功控参数相同。该实施例可以尽量确保两个SRS资源集中SRS的发射功率相同,这样网络侧设备能根据接收SRS来获得信道情况,进一步计算上行传输的预编码矩阵,提高通信性能。
例如,所述配置信息为终端配置两个用于码本传输的SRS资源集,每个SRS资源集包含至少一个4端口SRS,所述两个SRS资源集配置的功控参数都相同;来自所述两个SRS资源集中的两个SRS用于8Tx PUSCH传输,即M和N均为4,K为8。
可选地,在上述各个实施例的基础上,所述终端根据两个第一预编码矩阵确定一个第二预编码矩阵之前,所述方法还包括:所述终端接收DCI,所述DCI用于指示所述两个第一预编码矩阵。
所述DCI可以包括至少一个SRS资源指示(SRS Resource Indicator,SRI)域,所述SRI域用于指示SRS,所述SRS用于所述PUSCH传输。
可选地,在终端接收到的配置信息为终端配置一个SRS资源集的情况下,所述DCI包含一个SRI域;在终端接收到的配置信息包括两个SRS资源集的情况下,所述DCI包含一个SRI域或两个SRI域。可选地,在配置信息为终端配置两个SRS资源集,所述DCI包含一个SRI域的情况下,所述一个SRI域同时指示两个SRS资源集中的SRS。
可选地,在终端接收到的配置信息包括一个SRS资源集,且所述一个SRS资源集中,所述M端口的SRS与所述N端口的SRS关联的情况下,所述SRI域的比特长度由相关联的SRS的组数确定。所述相互关联的SRS(资源)为一组,SRI域的取值映射到一组SRS资源,可以理解,相关联的SRS的组数越多,所述SRI域的比特长度越大。
可选地,在所述SRI域指示了K端口的SRS的情况下,所述PUSCH采用K端口传输,例如,所述SRI域指示了8端口的SRS,则表示PUSCH采用8Tx传输;在所述SRI域同时指示了M端口的SRS与所述N端口的SRS的情况下,所述PUSCH采用K端口传输,例如,所述SRI指示了两个关联的4端口SRS,则表示PUSCH采用8Tx传输,即M和N均为4,K为8。
在上述各个实施例的基础上,所述终端接收到的DCI还可以包括两个传输预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)域,所述两个TPMI域用于指示所述两个第一预编码矩阵,例如,一个TPMI域指示一个第一预编码矩阵。
可选地,所述方法还包括:所述终端根据所述两个TPMI域从两个码本子集中选择所述两个第一预编码矩阵,所述两个码本子集可以由无线资源控制(Radio Resource Control,RRC)配置,所述两个码本子集的相干类型也可以由RRC配置。
可选地,所述方法还包括:所述终端根据如下至少之一,从多个码本子集中确定所述两个码本子集:
1)码本子集包含的预编码矩阵的端口数;
该实施例中,终端选择出的所述两个码本子集包含的预编码矩阵的端口数由如下之一确定:a)为所述终端配置的SRS的配置,如端口数分别为M和N,该处提到的SRS的配置可以参见前文配置信息的内容;b)约定值,如协议预先约定所述两个码本子集包含的预编码矩阵的端口数,如对于8端口的SRS,两个码本子集分别为4端口。
2)码本子集的相干类型;
该实施例中,终端可以根据所述K端口的PUSCH传输的(天线端口相干类型),确定所述两个码本子集。例如,网络侧设备通过RRC配置8Tx传输的天线端口相干类型,终端通过天线端口相干类型来确定出两个码本子集。或者,网络侧配置8Tx传输的码本子集的相干类型,终端根据所述8Tx传输 的码本子集的相干类型确定两个码本子集的预编码的相干类型。
3)码本子集对应的最大秩信息。
该实施例中,所述两个TPMI域对应的最大秩信息可以等于所述两个码本子集对应的最大秩信息。
所述两个码本子集的相干类型可以包括如下至少一种:全相干以及全相干{full-coherent;full-coherent},部分相干以及部分相干{partial-coherent;partial-coherent},非相干以及非相干{non-coherent;non-coherent},部分非相干以及部分非相干{partial-non-coherent;partial-non-coherent},全部分非相干以及全部分非相干{full-partial-non-coherent;full-partial-non-coherent}。
可选地,所述方法还包括:所述终端根据所述K端口的PUSCH传输的天线端口相干类型,确定所述两个码本子集,该天线端口相干类型可以是RRC信令配置的。例如,网络侧设备通过RRC配置8Tx传输的天线端口相干类型,终端通过天线端口相干类型来确定出两个码本子集。或者,网络侧配置8Tx传输的码本子集的相干类型,终端根据所述8Tx传输的码本子集的相干类型确定两个码本子集的预编码的相干类型。
可选地,在所述天线端口相干类型为K端口全相干的情况下,所述两个码本子集为全相干以及全相干。例如,所述天线端口相干类型为8端口全相干,两个TPMI对应的两个码本子集为全相干以及全相干{full-coherent;full-coherent}。
可选地,在所述K端口分为两组,每组内的天线端口全相干的情况下,所述两个码本子集为如下之一:全部分非相干以及全部分非相干,全相干以及部分相干。例如,8端口分为两组,每组4个天线端口全相干(4+4),两个TPMI对应的两个码本子集为以下至少一种:全部分非相干以及全部分非相干{full-partial-non-coherent;full-partial-non-coherent};全相干以及部分相干{full-coherent;full-coherent}。
可选地,在所述K端口分为两组,每组内存在两组相干天线端口的情况下,所述两个码本子集为如下之一:部分相干以及部分相干,部分非相干以及部分非相干。例如,8端口分为两组,每组4个天线端口中2个天线端口为一组相干端口(2+2+2+2),这种情况下两个TPMI对应的两个码本子集为以下至少一种:部分相干以及部分相干{partial-coherent;partial-coherent};部分非相干以及部分非相干{partial-non-coherent;partial-non-coherent}。
可选地,在所述K端口分为两组,第一组内的天线端口全相干,第二组内一部分天线端口全相干,另一部分天线端口全相干的情况下,所述两个码本子集为如下之一:全部分非相干以及部分非相干,全相干以及部分相干。例如,8端口分为两组,一组天线端口中4天线端口全相干,另一组天线端口中2个天线端口为一组相干端口(4+2+2),这种情况下两个TPMI对应的两个码本子集为以下至少一种:全部分非相干以及部分非相干{full-partial-non;partial-non-coherent};全相干以及部分相干{full-coherent;partial-coherent}。
所述全相干,部分相干,不相干的码本子集为TPMI索引满足以下表1的预编码矩阵:
表1
可选地,在终端接收到的DCI包括两个TPMI域,所述终端根据所述两个TPMI域从两个码本子集中选择所述两个第一预编码矩阵的情况下,所述方法还包括:所述终端根据如下1)至3)至少之一,确定所述两个码本子集对应的最大秩信息(如最大秩):
1)RRC信令配置;其中,所述RRC信令配置有所述两个码本子集分别对应的最大秩信息。
2)第一个码本子集对应的最大秩为A,第二个码本子集对应的最大秩为(Rmax-A);其中,A是对Rmax的半数向上取整或向下取整得到,所述Rmax可以是RRC信令配置的;
3)第一个码本子集和第二个码本子集对应的最大秩为SRS域指示的端口数以及Rmax中的最小者,即,最大秩为min{SRS域指示的端口数,Rmax},所述Rmax可以是RRC信令配置的。
可选地,在终端接收到的DCI包括两个TPMI域的情况下,所述方法还 包括:所述终端根据所述两个码本子集,确定所述两个TPMI域的比特长度和含义,其中,TPMI域的比特长度和含义如表2和表3所示。
表2 TPMI域解读表
表3 TPMI域解读表

前文各个实施例均是以两个TPMI域均有效为例进行介绍,也可能存在两个TPMI域中一个TPMI域无效的情况。可选地,在终端接收到的DCI包括两个TPMI域的情况下,所述方法还包括:所述终端根据如下至少之一,确定所述两个TPMI域中无效的TPMI域:
1)是否指示了保留码点,例如,指示了保留码点的TPMI域无效。
2)码字是否使能,例如,若DCI中的第二码字不使能,则其中一个TPMI域无效。
3)指示的预编码矩阵组合是否超过最大秩限制,例如,若指示了超过最大秩限制的预编码矩阵组合,即指示的两个第一预编码矩阵的秩的组合超过最大秩限制,则第二个TPMI域无效。
可选地,在终端接收到的DCI包括SRI域以及两个TPMI域的情况下,所述方法还包括:在所述DCI中的SRI域指示了J端口的SRS用于PUSCH传输,且J小于K的情况下,所述终端只解读所述两个TPMI域中的第一个TPMI域,当然,终端可以正常解读DCI中TPMI域之外的指示域;或者,所述终端将所述两个TPMI域联合解读;其中,J为正整数,J可以为2或4等。
该实施例例如,K=8,当所述SRI域指示了4端口或者2端口的SRS资源用于PUSCH传输时,终端只解读所述两个TPMI域中的第一个TPMI域,或者终端将两个TPMI域看作一个TPMI域联合解读。
可选地,在终端接收到的DCI包括两个TPMI域的情况下,所述DCI还可以包括第一指示域,所述第一指示域用于指示如下之一:第一个TPMI域有效;第二个TPMI域有效;两个TPMI域均有效;其中,在TPMI域有效的情况下,终端解读该TPMI域,或者终端上行传输采用有效的TPMI域指示的参数。
可选地,在终端接收到的DCI包括两个TPMI域的情况下,所述DCI还可以包括第二指示域,所述第二指示域用于指示所述两个第一预编码矩阵的系数,所述系数用于计算所述第二预编码矩阵,所述系数可以是相位、幅度 或系数矩阵等。
在一个例子中,所述第二预编码矩阵为如下之一:
其中,W1和W2为所述两个第一预编码矩阵,W1和W2分别关联不同的SRS;和α为系数,可以由DCI指示,如{[1 0];[0 1];[1 1];[1 j]}。
例如,
其中,W1和W2为第一预编码矩阵,W1和W2由两个TPMI域指示,等号右边为第二预编码矩阵。
可以看出,第二预编码矩阵的传输秩为W1和W2的秩的和,所述W1和W2的秩可以满足一定条件,例如,终端不期望W1和W2的秩组合是:3+2;1+4;4+1;4+2;2+4;4+3。
可选地,第二预编码矩阵的传输秩不超过最大传输秩,所述最大传输秩可以由网络侧设备配置。
可选地,本申请各个实施例中,所述第二预编码矩阵的秩为有效的所述第一预编码矩阵的秩的和。
可选地,在终端接收到的DCI包括两个TPMI域的情况下,所述方法还包括:在所述两个TPMI域中一个TPMI域指示了无效的码点或者无效的预编码矩阵,另一个TPMI域指示了有效的预编码矩阵W1的情况下,所述终端根据W1确定用于PUSCH传输的第三预编码矩阵,所述第三预编码矩阵为如下之一:
可选地,所述方法还包括:所述终端根据预编码指示确定所述K端口的PUSCH传输的码字个数;其中,当传输秩大于第一数值,两个码字使能,和/或,当两个TPMI域有效时,两个码字使能。所述两个码字中,第一码字映射到P个传输层上,第二个码字映射到Q个传输层上,P为W1的秩数,Q为W2的秩数,W1和W2为所述两个第一预编码矩阵,和/或,P和Q是预定义的,P和Q为正整数,例如,P和Q由协议约定,如:(P,Q)=(2,3),(3,3),(3,4),(4,4)等。
以上结合图2详细描述了根据本申请实施例的PUSCH传输方法。下面将结合图3详细描述根据本申请另一实施例的PUSCH传输方法。可以理解的是,从网络侧设备描述的网络侧设备与终端的交互与图2所示的方法中的终端侧的描述相同或相对应,为避免重复,适当省略相关描述。
图3是本申请实施例的PUSCH传输方法实现流程示意图,可以应用在网络侧设备。如图3所示,该方法300包括如下步骤。
S302:网络侧设备发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
本申请实施例提供的PUSCH传输方法,网络侧设备发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输。本申请实施例可以使用两个支持较少端口PUSCH传输的预编码矩阵,来实现多端口的PUSCH传输,有利于提高终端的通信性能。
可选地,作为一个实施例,所述网络侧设备发送DCI之前,所述方法还包括:所述网络侧设备发送配置信息,所述配置信息包括一个或两个用于码本传输的SRS资源集;所述一个SRS资源集包括如下之一:至少一个K端口的SRS;至少一个M端口的SRS以及至少一个N端口的SRS;至少一个K端口的SRS以及至少一个L端口的SRS;所述两个SRS资源集中,一个SRS资源集包括至少一个M端口的SRS,另一个SRS资源集包含至少一个N端口的SRS;其中,所述K端口的SRS用于所述K端口的PUSCH传输;M+N=K,M、N和L为正整数,L小于K,所述M端口的SRS以及所述N端口的SRS用于所述K端口的PUSCH传输。
可选地,作为一个实施例,所述DCI包括至少一个SRI域,所述SRI域用于指示SRS,所述SRS用于所述PUSCH传输。
可选地,作为一个实施例,所述DCI包括两个TPMI域,所述两个TPMI域用于指示所述两个第一预编码矩阵。
本申请实施例提供的PUSCH传输方法,执行主体可以为PUSCH传输装置。本申请实施例中以PUSCH传输装置执行PUSCH传输方法为例,说明本申请实施例提供的PUSCH传输装置。
图4是根据本申请实施例的PUSCH传输装置的结构示意图,该装置可 以对应于其他实施例中的终端。如图4所示,装置400包括如下模块。
确定模块402,用于根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
发送模块404,用于根据所述第二预编码矩阵发送PUSCH。
本申请实施例提供的PUSCH传输装置,可以根据两个第一预编码矩阵确定出一个第二预编码矩阵,根据第二预编码矩阵进行K端口的PUSCH传输。本申请实施例可以使用两个支持较少端口PUSCH传输的预编码矩阵,来实现多端口的PUSCH传输,有利于提高终端的通信性能。
可选地,作为一个实施例,所述装置还包括接收模块,用于接收配置信息,所述配置信息包括一个或两个用于码本传输的SRS资源集;所述一个SRS资源集包括如下之一:至少一个K端口的SRS;至少一个M端口的SRS以及至少一个N端口的SRS;至少一个K端口的SRS以及至少一个L端口的SRS;所述两个SRS资源集中,一个SRS资源集包括至少一个M端口的SRS,另一个SRS资源集包含至少一个N端口的SRS;其中,所述K端口的SRS用于所述K端口的PUSCH传输;M+N=K,M、N和L为正整数,L小于K,所述M端口的SRS以及所述N端口的SRS用于所述K端口的PUSCH传输。
可选地,作为一个实施例,所述一个SRS资源集中的所述M端口的SRS与所述N端口的SRS通过如下至少之一的方式关联:所述配置信息显式配置;关联相同的空间关系;协议约定预定义的;根据SRS资源的索引大小确定。
可选地,作为一个实施例,所述两个SRS资源集配置的功控参数相同。
可选地,作为一个实施例,在所述终端配置了满功率传输模式的情况下,所述一个SRS资源集包含至少一个K端口的SRS以及至少一个L端口的SRS,所述K端口的SRS用于所述K端口的PUSCH传输。
可选地,作为一个实施例,所述装置还包括接收模块,用于接收DCI,所述DCI用于指示所述两个第一预编码矩阵。
可选地,作为一个实施例,所述DCI包括至少一个SRI域,所述SRI域用于指示SRS,所述SRS用于所述PUSCH传输。
可选地,作为一个实施例,在配置信息为所述装置配置一个SRS资源集的情况下,所述DCI包含一个SRI域;在配置信息为所述装置配置两个SRS资源集的情况下,所述DCI包含一个SRI域或两个SRI域。
可选地,作为一个实施例,所述一个SRS资源集中,所述M端口的SRS 与所述N端口的SRS关联;其中,所述SRI域的比特长度由相关联的SRS的组数确定;其中,相关联的SRS为一组。
可选地,作为一个实施例,在所述SRI域指示了K端口的SRS的情况下,所述PUSCH采用K端口传输;在所述SRI域同时指示了M端口的SRS与所述N端口的SRS的情况下,所述PUSCH采用K端口传输。
可选地,作为一个实施例,所述DCI包括两个TPMI域,所述两个TPMI域用于指示所述两个第一预编码矩阵。
可选地,作为一个实施例,所述装置还包括选择模块,用于根据所述两个TPMI域从两个码本子集中选择所述两个第一预编码矩阵。
可选地,作为一个实施例,所述确定模块402,还用于根据如下至少之一,从多个码本子集中确定所述两个码本子集:1)码本子集包含的预编码矩阵的端口数;2)码本子集的相干类型;3)码本子集对应的最大秩信息。
可选地,作为一个实施例,所述两个码本子集包含的预编码矩阵的端口数由如下之一确定:为所述装置配置的SRS的配置;约定值。
可选地,作为一个实施例,所述两个码本子集的相干类型包括如下至少一种:全相干以及全相干,部分相干以及部分相干,非相干以及非相干,部分非相干以及部分非相干,全部分非相干以及全部分非相干。
可选地,作为一个实施例,所述两个码本子集的相干类型由RRC配置。
可选地,作为一个实施例,所述确定模块402,还用于根据所述K端口的PUSCH传输的天线端口相干类型,确定所述两个码本子集。
可选地,作为一个实施例,在所述天线端口相干类型为K端口全相干的情况下,所述两个码本子集为全相干以及全相干;在所述K端口分为两组,每组内的天线端口全相干的情况下,所述两个码本子集为如下之一:全部分非相干以及全部分非相干,全相干以及部分相干;在所述K端口分为两组,每组内存在两组相干天线端口的情况下,所述两个码本子集为如下之一:部分相干以及部分相干,部分非相干以及部分非相干;以及在所述K端口分为两组,第一组内的天线端口全相干,第二组内一部分天线端口全相干,另一部分天线端口全相干的情况下,所述两个码本子集为如下之一:全部分非相干以及部分非相干,全相干以及部分相干。
可选地,作为一个实施例,所述确定模块402,还用于根据如下至少之一,确定所述两个码本子集对应的最大秩信息:RRC信令配置;其中,所述 RRC信令配置有所述两个码本子集分别对应的最大秩信息;第一个码本子集对应的最大秩为A,第二个码本子集对应的最大秩为Rmax-A;其中,A是对Rmax的半数向上取整或向下取整得到;第一个码本子集和第二个码本子集对应的最大秩为SRS域指示的端口数以及Rmax中的最小者;其中,所述Rmax是RRC信令配置的。
可选地,作为一个实施例,所述确定模块402,还用于根据所述两个码本子集,确定所述两个TPMI域的比特长度和含义。
可选地,作为一个实施例,所述确定模块402,还用于根据如下至少之一,确定所述两个TPMI域中无效的TPMI域:是否指示了保留码点;码字是否使能;指示的预编码矩阵组合是否超过最大秩限制。
可选地,作为一个实施例,所述确定模块402,还用于在所述DCI中的SRI域指示了J端口的SRS用于PUSCH传输,且J小于K的情况下,只解读所述两个TPMI域中的第一个TPMI域;或者,将所述两个TPMI域联合解读;其中,J为正整数。
可选地,作为一个实施例,所述DCI包括第一指示域,所述第一指示域用于指示如下之一:第一个TPMI域有效;第二个TPMI域有效;两个TPMI域均有效。
可选地,作为一个实施例,所述DCI包括第二指示域,所述第二指示域用于指示所述两个第一预编码矩阵的系数,所述系数用于计算所述第二预编码矩阵。
可选地,作为一个实施例,所述第二预编码矩阵为如下之一:
其中,W1和W2为所述两个第一预编码矩阵,W1和W2分别关联不同的SRS;和α为系数。
可选地,作为一个实施例,所述确定模块402,还用于在所述两个TPMI域中一个TPMI域指示了无效的码点或者无效的预编码矩阵,另一个TPMI域指示了有效的预编码矩阵W1的情况下,根据W1确定用于PUSCH传输的第三预编码矩阵,所述第三预编码矩阵为如下之一:
可选地,作为一个实施例,所述确定模块402,还用于根据预编码指示 确定所述K端口的PUSCH传输的码字个数;其中,当传输秩大于第一数值,两个码字使能,和/或,当两个TPMI域有效时,两个码字使能。
可选地,作为一个实施例,所述两个码字中,第一码字映射到P个传输层上,第二个码字映射到Q个传输层上;其中,P为W1的秩数,Q为W2的秩数,W1和W2为所述两个第一预编码矩阵,和/或,P和Q是预定义的,P和Q为正整数。
可选地,作为一个实施例,所述第二预编码矩阵的秩为有效的所述第一预编码矩阵的秩的和。
根据本申请实施例的装置400可以参照对应本申请实施例的方法200的流程,并且,该装置400中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的PUSCH传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
图5是根据本申请实施例的PUSCH传输装置的结构示意图,该装置可以对应于其他实施例中的网络侧设备。如图5所示,装置500包括如下模块。
发送模块502,用于发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
本申请实施例提供的PUSCH传输装置,发送模块502发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输。本申请实施例可以使用两个支持较少端口PUSCH传输的预编码矩阵,来实现多端口的PUSCH传输,有利于提高终端的通信性能。
可选地,作为一个实施例,所述发送模块502,还用于发送配置信息,所述配置信息包括一个或两个用于码本传输的SRS资源集;所述一个SRS资源集包括如下之一:至少一个K端口的SRS;至少一个M端口的SRS以及至少一个N端口的SRS;至少一个K端口的SRS以及至少一个L端口的 SRS;所述两个SRS资源集中,一个SRS资源集包括至少一个M端口的SRS,另一个SRS资源集包含至少一个N端口的SRS;其中,所述K端口的SRS用于所述K端口的PUSCH传输;M+N=K,M、N和L为正整数,L小于K,所述M端口的SRS以及所述N端口的SRS用于所述K端口的PUSCH传输。
可选地,作为一个实施例,所述DCI包括至少一个SRI域,所述SRI域用于指示SRS,所述SRS用于所述PUSCH传输。
可选地,作为一个实施例,所述DCI包括两个TPMI域,所述两个TPMI域用于指示所述两个第一预编码矩阵。
根据本申请实施例的装置500可以参照对应本申请实施例的方法300的流程,并且,该装置500中的各个单元/模块和上述其他操作和/或功能分别为了实现方法300中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例提供的PUSCH传输装置能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述PUSCH传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述PUSCH传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述处理器用于根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数,所述通信接口用于根据所述第二预编码矩阵发送PUSCH。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储 器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,可以用于根据所述第二预编码矩阵发送PUSCH。
处理器710,可以用于根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
本申请实施例提供的终端,可以根据两个第一预编码矩阵确定出一个第二预编码矩阵,根据第二预编码矩阵进行K端口的PUSCH传输。本申请实施例可以使用两个支持较少端口PUSCH传输的预编码矩阵,来实现多端口的PUSCH传输,有利于提高终端的通信性能。本申请实施例提供的终端700还可以实现上述PUSCH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本申请实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述PUSCH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述PUSCH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述PUSCH传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种PUSCH传输系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的PUSCH传输方法的步骤,所述网络侧设备可用于执行如上所述的PUSCH传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或 者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种物理上行共享信道PUSCH传输方法,包括:
    终端根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数;
    所述终端根据所述第二预编码矩阵发送PUSCH。
  2. 根据权利要求1所述的方法,其中,所述终端根据两个第一预编码矩阵确定一个第二预编码矩阵之前,所述方法还包括:所述终端接收配置信息,所述配置信息包括一个或两个用于码本传输的探测参考信号SRS资源集;
    所述一个SRS资源集包括如下之一:至少一个K端口的SRS;至少一个M端口的SRS以及至少一个N端口的SRS;至少一个K端口的SRS以及至少一个L端口的SRS;
    所述两个SRS资源集中,一个SRS资源集包括至少一个M端口的SRS,另一个SRS资源集包含至少一个N端口的SRS;
    其中,所述K端口的SRS用于所述K端口的PUSCH传输;M+N=K,M、N和L为正整数,L小于K,所述M端口的SRS以及所述N端口的SRS用于所述K端口的PUSCH传输。
  3. 根据权利要求2所述的方法,其中,所述一个SRS资源集中的所述M端口的SRS与所述N端口的SRS通过如下至少之一的方式关联:
    所述配置信息显式配置;
    关联相同的空间关系;
    预定义的;
    根据SRS资源的索引大小确定。
  4. 根据权利要求2所述的方法,其中,所述两个SRS资源集配置的功控参数相同。
  5. 根据权利要求2所述的方法,其中,在所述终端配置了满功率传输模式的情况下,所述一个SRS资源集包含至少一个K端口的SRS以及至少一个L端口的SRS,所述K端口的SRS用于所述K端口的PUSCH传输。
  6. 根据权利要求1至5任一项所述的方法,其中,所述终端根据两个第一预编码矩阵确定一个第二预编码矩阵之前,所述方法还包括:
    所述终端接收下行控制信息DCI,所述DCI用于指示所述两个第一预编码矩阵。
  7. 根据权利要求6所述的方法,其中,所述DCI包括至少一个SRI域,所述SRI域用于指示SRS,所述SRS用于所述PUSCH传输。
  8. 根据权利要求7所述的方法,其中,
    在配置信息为终端配置一个SRS资源集的情况下,所述DCI包含一个SRI域;
    在配置信息为终端配置两个SRS资源集的情况下,所述DCI包含一个SRI域或两个SRI域。
  9. 根据权利要求7所述的方法,其中,所述一个SRS资源集中,所述M端口的SRS与所述N端口的SRS关联;其中,所述SRI域的比特长度由相关联的SRS的组数确定;其中,相关联的SRS为一组。
  10. 根据权利要求7所述的方法,其中,
    在所述SRI域指示了K端口的SRS的情况下,所述PUSCH采用K端口传输;
    在所述SRI域同时指示了M端口的SRS与所述N端口的SRS的情况下,所述PUSCH采用K端口传输。
  11. 根据权利要求6所述的方法,其中,所述DCI包括两个传输预编码矩阵指示TPMI域,所述两个TPMI域用于指示所述两个第一预编码矩阵。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述终端根据所述两个TPMI域从两个码本子集中选择所述两个第一预编码矩阵。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:所述终端根据如下至少之一,从多个码本子集中确定所述两个码本子集:
    码本子集包含的预编码矩阵的端口数;
    码本子集的相干类型;
    码本子集对应的最大秩信息。
  14. 根据权利要求13所述的方法,其中,所述两个码本子集包含的预编码矩阵的端口数由如下之一确定:
    为所述终端配置的SRS的配置;
    约定值。
  15. 根据权利要求13所述的方法,其中,
    所述两个码本子集的相干类型包括如下至少一种:全相干以及全相干, 部分相干以及部分相干,非相干以及非相干,部分非相干以及部分非相干,全部分非相干以及全部分非相干。
  16. 根据权利要求12所述的方法,其中,所述两个码本子集的相干类型由RRC配置。
  17. 根据权利要求12所述的方法,其中,所述方法还包括:
    所述终端根据所述K端口的PUSCH传输的天线端口相干类型,确定所述两个码本子集。
  18. 根据权利要求17所述的方法,其中,
    在所述天线端口相干类型为K端口全相干的情况下,所述两个码本子集为全相干以及全相干;
    在所述K端口分为两组,每组内的天线端口全相干的情况下,所述两个码本子集为如下之一:全部分非相干以及全部分非相干,全相干以及部分相干;
    在所述K端口分为两组,每组内存在两组相干天线端口的情况下,所述两个码本子集为如下之一:部分相干以及部分相干,部分非相干以及部分非相干;以及
    在所述K端口分为两组,第一组内的天线端口全相干,第二组内一部分天线端口全相干,另一部分天线端口全相干的情况下,所述两个码本子集为如下之一:全部分非相干以及部分非相干,全相干以及部分相干。
  19. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述终端根据如下至少之一,确定所述两个码本子集对应的最大秩信息:
    RRC信令配置;其中,所述RRC信令配置有所述两个码本子集分别对应的最大秩信息;
    第一个码本子集对应的最大秩为A,第二个码本子集对应的最大秩为Rmax-A;其中,A是对Rmax的半数向上取整或向下取整得到;
    第一个码本子集和第二个码本子集对应的最大秩为SRS域指示的端口数以及Rmax中的最小者;
    其中,所述Rmax是RRC信令配置的。
  20. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述终端根据所述两个码本子集,确定所述两个TPMI域的比特长度和含义。
  21. 根据权利要求11所述的方法,其中,所述方法还包括:所述终端根据如下至少之一,确定所述两个TPMI域中无效的TPMI域:
    是否指示了保留码点;
    码字是否使能;
    指示的预编码矩阵组合是否超过最大秩限制。
  22. 根据权利要求11所述的方法,其中,所述方法还包括:
    在所述DCI中的SRI域指示了J端口的SRS用于PUSCH传输,且J小于K的情况下,所述终端只解读所述两个TPMI域中的第一个TPMI域;或者,所述终端将所述两个TPMI域联合解读;其中,J为正整数。
  23. 根据权利要求11所述的方法,其中,所述DCI包括第一指示域,所述第一指示域用于指示如下之一:
    第一个TPMI域有效;
    第二个TPMI域有效;
    两个TPMI域均有效。
  24. 根据权利要求11所述的方法,其中,所述DCI包括第二指示域,所述第二指示域用于指示所述两个第一预编码矩阵的系数,所述系数用于计算所述第二预编码矩阵。
  25. 根据权利要求11所述的方法,其中,所述第二预编码矩阵为如下之一:
    其中,W1和W2为所述两个第一预编码矩阵,W1和W2分别关联不同的SRS;和α为系数。
  26. 根据权利要求11所述的方法,其中,所述方法还包括:
    在所述两个TPMI域中一个TPMI域指示了无效的码点或者无效的预编码矩阵,另一个TPMI域指示了有效的预编码矩阵W1的情况下,所述终端根据W1确定用于PUSCH传输的第三预编码矩阵,所述第三预编码矩阵为如下之一:
  27. 根据权利要求11所述的方法,其中,所述方法还包括:所述终端根据预编码指示确定所述K端口的PUSCH传输的码字个数;
    其中,当传输秩大于第一数值,两个码字使能;和/或
    当两个TPMI域有效时,两个码字使能。
  28. 根据权利要求27所述的方法,其中,所述两个码字中,第一码字映射到P个传输层上,第二个码字映射到Q个传输层上;
    其中,P为W1的秩数,Q为W2的秩数,W1和W2为所述两个第一预编码矩阵,和/或,P和Q是预定义的,P和Q为正整数。
  29. 根据权利要求1所述的方法,其中,所述第二预编码矩阵的秩为有效的所述第一预编码矩阵的秩的和。
  30. 一种PUSCH传输方法,包括:
    网络侧设备发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
  31. 根据权利要求30所述的方法,其中,所述网络侧设备发送DCI之前,所述方法还包括:所述网络侧设备发送配置信息,所述配置信息包括一个或两个用于码本传输的SRS资源集;
    所述一个SRS资源集包括如下之一:至少一个K端口的SRS;至少一个M端口的SRS以及至少一个N端口的SRS;至少一个K端口的SRS以及至少一个L端口的SRS;
    所述两个SRS资源集中,一个SRS资源集包括至少一个M端口的SRS,另一个SRS资源集包含至少一个N端口的SRS;
    其中,所述K端口的SRS用于所述K端口的PUSCH传输;M+N=K,M、N和L为正整数,L小于K,所述M端口的SRS以及所述N端口的SRS用于所述K端口的PUSCH传输。
  32. 根据权利要求30所述的方法,其中,所述DCI包括至少一个SRI域,所述SRI域用于指示SRS,所述SRS用于所述PUSCH传输。
  33. 根据权利要求30所述的方法,其中,所述DCI包括两个TPMI域,所述两个TPMI域用于指示所述两个第一预编码矩阵。
  34. 一种PUSCH传输装置,包括:
    确定模块,用于根据两个第一预编码矩阵确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数;
    发送模块,用于根据所述第二预编码矩阵发送PUSCH。
  35. 一种PUSCH传输装置,包括:
    发送模块,用于发送DCI,所述DCI用于指示两个第一预编码矩阵,所述两个第一预编码矩阵用于终端确定一个第二预编码矩阵,所述第二预编码矩阵用于K端口的PUSCH传输,K为正整数。
  36. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至29任一项所述的方法的步骤。
  37. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求30至33任一项所述的方法的步骤。
  38. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至33任一项所述的方法的步骤。
PCT/CN2023/080139 2022-03-08 2023-03-07 Pusch传输方法、终端及网络侧设备 WO2023169430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210228037.4 2022-03-08
CN202210228037.4A CN116781120A (zh) 2022-03-08 2022-03-08 Pusch传输方法、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2023169430A1 true WO2023169430A1 (zh) 2023-09-14

Family

ID=87936005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080139 WO2023169430A1 (zh) 2022-03-08 2023-03-07 Pusch传输方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116781120A (zh)
WO (1) WO2023169430A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202118A (zh) * 2009-03-17 2014-12-10 华为技术有限公司 预编码码本和反馈表示
WO2016145918A1 (zh) * 2015-03-13 2016-09-22 电信科学技术研究院 一种预编码类型指示的取值确定方法及装置
WO2018171604A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 信息的传输方法和设备
CN114071475A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 上行信道的传输方法、终端、基站及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202118A (zh) * 2009-03-17 2014-12-10 华为技术有限公司 预编码码本和反馈表示
WO2016145918A1 (zh) * 2015-03-13 2016-09-22 电信科学技术研究院 一种预编码类型指示的取值确定方法及装置
WO2018171604A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 信息的传输方法和设备
CN114071475A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 上行信道的传输方法、终端、基站及存储介质

Also Published As

Publication number Publication date
CN116781120A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2022152271A1 (zh) Pusch传输方法、装置、设备及存储介质
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2023169430A1 (zh) Pusch传输方法、终端及网络侧设备
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2023151593A1 (zh) 预编码指示方法、装置、通信设备、系统及存储介质
WO2024083101A1 (zh) 信息指示方法、装置、终端、网络侧设备及可读存储介质
WO2024007918A1 (zh) 预编码矩阵指示、确定方法、装置、网络侧设备及终端
WO2023151592A1 (zh) 预编码的确定方法、装置、设备及可读存储介质
WO2023193678A1 (zh) 端口确定方法、装置、终端及可读存储介质
WO2023143361A1 (zh) 能力信息上报方法、装置及终端
WO2023011352A1 (zh) 下行控制信息指示方法、上行信道传输秩确定方法及装置
WO2023179478A1 (zh) 传输模式确定方法、装置、终端及网络侧设备
WO2023125420A1 (zh) 参考信号端口指示方法、终端及网络侧设备
WO2023051539A1 (zh) 上行预编码信息确定方法、终端及网络侧设备
WO2023104025A1 (zh) Srs资源配置方法、装置、终端及网络侧设备
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023241643A1 (zh) 联合传输的pmi参数反馈方法、终端及网络侧设备
WO2023160535A1 (zh) 解调参考信号信息确定方法、指示方法及相关设备
WO2023131316A1 (zh) 探测参考信号的端口映射方法和终端
WO2023179651A1 (zh) 波束处理方法、装置及设备
WO2023179753A1 (zh) 波束信息指示方法、装置、终端及网络侧设备
WO2023198062A1 (zh) Csi测量和上报方法、装置、设备、系统及存储介质
WO2023109759A1 (zh) Prach传输方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766008

Country of ref document: EP

Kind code of ref document: A1