WO2023179478A1 - 传输模式确定方法、装置、终端及网络侧设备 - Google Patents

传输模式确定方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2023179478A1
WO2023179478A1 PCT/CN2023/082134 CN2023082134W WO2023179478A1 WO 2023179478 A1 WO2023179478 A1 WO 2023179478A1 CN 2023082134 W CN2023082134 W CN 2023082134W WO 2023179478 A1 WO2023179478 A1 WO 2023179478A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
mode
transmission mode
indicated
uplink data
Prior art date
Application number
PCT/CN2023/082134
Other languages
English (en)
French (fr)
Inventor
孙荣荣
刘昊
塔玛拉卡拉盖施
宋扬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023179478A1 publication Critical patent/WO2023179478A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a transmission mode determination method, device, terminal and network side equipment.
  • the terminal When the terminal transmits uplink data, the terminal precodes the uplink data and maps it to uplink channel resources for transmission.
  • terminals For different data transmission scenarios or uplink data transmission of different services, terminals perform uplink data transmission based on a single fixed transmission mode, resulting in inflexible uplink data transmission methods.
  • Embodiments of the present application provide a transmission mode determination method, device, terminal and network-side equipment, which can solve the problem in related technologies that the uplink transmission mode of the terminal is inflexible.
  • the first aspect provides a transmission mode determination method, including:
  • the terminal receives the first indication information
  • the terminal determines a transmission mode of uplink data based on the first indication information, wherein the transmission mode includes at least one of the following:
  • a method for determining the transmission mode including:
  • the network side device sends first indication information to the terminal, where the first indication information is used to instruct the terminal Transmission mode for uplink data transmission;
  • the transmission mode includes at least one of the following:
  • a transmission mode determination device including:
  • a receiving module configured to receive the first indication information
  • Determining module configured to determine the transmission mode of uplink data based on the first indication information, wherein the transmission mode includes at least one of the following:
  • a transmission mode determination device including:
  • a sending module configured to send first indication information to the terminal, where the first indication information is used to instruct the terminal in a transmission mode for uplink data transmission;
  • the transmission mode includes at least one of the following:
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is configured to receive first indication information, and the processor is configured to determine a transmission mode of uplink data based on the first indication information, wherein, the transmission mode includes at least one of the following:
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send first instruction information to a terminal, and the first instruction information is used to instruct the terminal to perform uplink data transmission. transmission mode;
  • the transmission mode includes at least one of the following:
  • a ninth aspect provides a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the transmission mode determination method as described in the first aspect.
  • the network side device can be used to perform the steps of the second aspect. The steps of the transmission mode determination method described in the aspect.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. Transmission mode determination method, or implement the transmission mode determination method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the terminal determines the transmission mode of the uplink data based on the received first indication information. That is, a solution for dynamically determining the terminal's uplink data transmission mode is proposed, which can Realizing dynamic instructions for the terminal's uplink data transmission mode makes the terminal's uplink data transmission no longer limited to fixed transmission methods, and can improve the flexibility of the terminal's uplink data transmission.
  • the transmission mode includes at least one of SDM mode, FDM mode, SFN mode and TDM mode, and the terminal can select one of the at least one transmission mode for uplink data transmission, so that the terminal's uplink data Transmission is no longer limited to a single fixed transmission method, further improving the flexibility and diversity of terminal uplink data transmission.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a flow chart of a transmission mode determination method provided by an embodiment of the present application.
  • Figure 2a is one of the schematic diagrams of a transmission mode in a transmission mode determination method provided by an embodiment of the present application
  • Figure 2b is a second schematic diagram of a transmission mode in a transmission mode determination method provided by an embodiment of the present application.
  • Figure 2c is a third schematic diagram of a transmission mode in a method for determining a transmission mode provided by an embodiment of the present application;
  • Figure 2d is a schematic diagram of the fourth transmission mode in a method for determining a transmission mode provided by an embodiment of the present application
  • Figure 2e is a fifth schematic diagram of a transmission mode in a method for determining a transmission mode provided by an embodiment of the present application
  • Figure 2f is a schematic diagram of the sixth transmission mode in a transmission mode determination method provided by an embodiment of the present application.
  • Figure 2g is a schematic diagram of the seventh transmission mode in a method for determining a transmission mode provided by an embodiment of the present application
  • Figure 3 is a flow chart of another transmission mode determination method provided by an embodiment of the present application.
  • Figure 4 is a structural diagram of a transmission mode determination device provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of another transmission mode determination device provided by an embodiment of the present application.
  • Figure 6 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 8 is a structural diagram of a network side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer or a personal computer.
  • PDA Personal Digital Assistant
  • UMPC Ultra-mobile personal computer
  • MID Mobile Internet Device
  • AR augmented reality
  • VR Virtual reality
  • robots wearable devices
  • VUE vehicle user equipment
  • pedestrian terminals pedestrian terminals
  • PUE personal terminals
  • smart homes homes with wireless communication functions equipment, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (PCs), teller machines or self-service machines and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, Smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • the base station may be called a Node B, an Evolved Node B (eNB), an access point, or a base station.
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B-node home evolved B-node
  • TRP Transmission Reception Point
  • the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example for introduction, and the specific type of base station is not limited.
  • Figure 2 is a flow chart of a transmission mode determination method provided by an embodiment of the present application, and the method is applied to a terminal. As shown in Figure 2, the method includes the following steps:
  • Step 201 The terminal receives first indication information.
  • the first indication information may be sent by the network side device to the terminal.
  • the first indication information may be an explicit indication by the network side device through signaling; for example, the first indication information may be a Radio Resource Control (Radio Resource Control) message sent by the network side device. Control (RRC) signaling; or the first indication information may also be downlink control information (DCI) sent by the network side device; or the first indication information may also be sent by the network side device Medium Access Control Control Element (MAC CE) signaling; or, the first indication information may also be an implicit indication by the network side device through signaling.
  • RRC Radio Resource Control
  • DCI downlink control information
  • MAC CE Medium Access Control Control Element
  • the first indication information is used to indicate the transmission mode of the terminal's uplink data transmission.
  • the network side device instructs the terminal to perform at least one transmission mode for uplink data transmission through RRC signaling; or the network side device indicates at least one transmission mode through the indication field contained in the DCI; or the network side device indicates the solution by indicating Demodulation Reference Signal (DMRS) is used to indicate the transmission mode of the terminal for uplink data transmission, etc.
  • DMRS Demodulation Reference Signal
  • Step 202 The terminal determines the transmission mode of uplink data based on the first indication information.
  • the transmission mode includes at least one of the following:
  • SDM Space Division Multiplexing
  • FDM Frequency Division Multiplexing
  • SFN Single Frequency Network
  • TDM Time Division Multiplexing
  • the first indication information may indicate at least one of the above transmission modes. For example, if the first indication information instructs the terminal to use the SDM mode for uplink data transmission, then the terminal determines that the uplink data transmission mode is the SDM mode based on the first indication information, and the terminal uses the SDM mode for uplink data transmission; or , the first indication information may instruct the terminal to perform uplink data transmission in a mode including SDM mode and FDM mode, then the terminal may determine based on the first indication information that the uplink data transmission mode may be one of SDM mode and FDM mode. Either way, the terminal can use SDM mode for uplink data transmission, or FDM mode for uplink data transmission.
  • the specific content of the transmission mode indicated by the first indication information may also be other situations, and this embodiment will not list them one by one.
  • the terminal determines the uplink data transmission mode based on the received first indication information, that is, a solution for dynamically determining the terminal's uplink data transmission mode is proposed, which can dynamically indicate the terminal's uplink data transmission mode. , so that the terminal’s uplink data transmission is no longer limited to Based on the fixed transmission method, it can improve the flexibility of the terminal's uplink data transmission.
  • the transmission mode includes at least one of SDM mode, FDM mode, SFN mode and TDM mode, and the terminal can select one of the at least one transmission mode for uplink data transmission, so that the terminal's uplink data Transmission is no longer limited to a single fixed transmission method, further improving the flexibility and diversity of terminal uplink data transmission.
  • the SDM mode includes a first transmission mode and a second transmission mode, the first transmission mode corresponds to one transmission code word (CW), and the second transmission mode corresponds to the transmission of two code words;
  • the terminal uses two target objects to transmit a redundancy version (RV) of a codeword.
  • the terminal uses two target objects to transmit two codewords respectively.
  • the first The transport layer uses the first target object, and the second transport layer uses the second target object.
  • the FDM mode includes a third transmission mode, a fourth transmission mode and a fifth transmission mode.
  • the third transmission mode corresponds to transmitting a redundancy version (Redundancy Version, RV) of a codeword
  • the fourth transmission mode corresponds to Transmitting two redundant versions of one codeword
  • the fifth transmission mode corresponds to transmitting two codewords;
  • the SFN mode corresponds to transmitting two identical redundant versions of one codeword
  • the TDM mode corresponds to transmitting two redundant versions of one codeword.
  • the first transmission mode included in the SDM mode corresponds to a codeword (single CW) or a transmission block (single TB), and corresponds to a redundant version (RV0).
  • the terminal can pass The two layers use two beams to transmit uplink data to two transmission and reception points (Transmission and Reception Point, TRP): layer0 for TRP 0 and layer1 for TRP 1.
  • TRP Transmission and Reception Point
  • the second transmission mode included in the SDM mode corresponds to two codewords: CW0 and CW1.
  • the terminal can use two beams to transmit uplink data to the two TRPs through two layers: layer0 for TRP 0, layer1 for TRP 1, where layer0 for TRP 0 corresponds to CW0, and layer1 for TRP 1 corresponds to CW1.
  • the third transmission mode included in the FDM mode corresponds to a codeword or a redundant version of the transmission block (single CW/TB).
  • the terminal can pass two sets of physical resource blocks respectively. (Physical Resource Block, PRB) to transmit uplink data to two TRPs. Each group contains at least one PRB. For example, these two sets of PRBs are the first PRBs and the second PRBs respectively.
  • the uplink data transmission of the terminal is: the first PRBs for TRP 0, second PRBs for TRP 1. .
  • the fourth transmission mode included in the FDM mode corresponds to two redundant versions (such as RV0 and RV1) of a codeword or transmission block (single CW/TB).
  • the terminal can transmit data through two sets of PRBs respectively. Uplink data transmission is performed to two TRPs: the first PRBs for TRP 0 and the second PRBs for TRP 1.
  • the first PRBs for TRP 0 corresponds to RV0 and the second PRBs for TRP 1 corresponds to RV1.
  • the fifth transmission mode included in the FDM mode corresponds to two codewords (such as CW0 and CW1).
  • the terminal can perform uplink data transmission to two TRPs through two sets of PRBs: first PRBs for TRP 0 , the second PRBs for TRP 1, where the first PRBs for TRP 0 corresponds to CW0, and the second PRBs for TRP 1 corresponds to CW1.
  • the SFN mode corresponds to two identical redundant versions of a codeword (such as RV0).
  • the terminal can transmit uplink data to two TRPs through two layers: layer0 for TRP 0 , layer1 for TRP 1, where layer0 for TRP 0 corresponds to RV0, and layer1 for TRP 1 also corresponds to RV0.
  • the TDM mode corresponds to two redundant versions of a codeword.
  • the terminal can perform retransmission based on the number of repetitions (such as retransmission 1 (repetition 1) and retransmission 2 (repetition 2) shown in Figure 2g). Perform repeated transmission of uplink data.
  • the transmission mode is associated with at least one target object
  • the target object is parameter information related to uplink data transmission.
  • the target object may include: beam (beam), transmission and reception point (Transmission and Reception Point, TRP), antenna panel (panel), transmission configuration indicator (Transmission Configuration Indicator, TCI) status, TCI status pool, space Spatial relationship, Sounding Reference Signal (SRS) resources, SRS resource sets, reference signals, path loss reference signals, etc.
  • the antenna panel may also be called: antenna group, antenna port group, antenna set, antenna port set, beam set, beam sub-set, antenna array, antenna port array, antenna sub-array, antenna port sub-array, logic Entity, entity or antenna entity, antenna panel entity (panel entity), timing error group (TEG), terminal capability value, terminal capability value set Together.
  • the antenna panel includes a corresponding panel identifier
  • the panel identifier can be: an antenna panel identifier, a reference signal resource identifier, a reference signal resource set identifier, a TCI status identifier, and a quasi co-location (Quasi co-location, QCL) information identifier. , spatial relationship identification, terminal capability value index, terminal capability value collection index, etc.
  • the beam information involved can also be called: beam identification information, spatial relationship information, spatial domain transmission filter information, spatial domain reception filter information, spatial domain filtering Spatial filter information, transmission configuration indication status (TCI state) information, QCL information, QCL parameters, etc.
  • TCI state transmission configuration indication status
  • QCL QCL parameters
  • downlink beam information can usually be represented by TCI state information or QCL information
  • uplink beam information can usually be represented by TCI state information.
  • any of the above transmission modes may be associated with two target objects, and the target objects associated with each transmission mode may be different.
  • the target objects associated with the SDM mode may include beams, panels, TCI states, and SRS resource sets
  • the target objects associated with the FDM mode may include TRPs, panels, beams, spatial relationships, SRS resources, etc.
  • the terminal can simultaneously perform uplink data transmission based on at least one panel. Based on the above transmission mode, multiple panels can be in the same Or transmit the same or different data simultaneously on different frequency domain resources, thereby effectively improving the throughput and reliability of the terminal's uplink data transmission.
  • the network side device may indicate the first indication information through RRC signaling.
  • the RRC signaling is configured with at least one SRS resource set
  • the at least one SRS resource set is consistent with the at least one target.
  • Objects correspond one to one.
  • the RRC signaling is configured with two SRS resource sets, and the two SRS resource sets correspond to two panels respectively, or the two SRS resource sets correspond to two uplink TCI states respectively.
  • the SRS in the two SRS resource sets may be sent using two associated panels respectively, or may be sent using two associated TCI states respectively, and the Physical Uplink Shared Channel associated with the two SRS resource sets , PUSCH) can also be sent using two panels associated with two SRS resource sets, or two TCI associated with two SRS resource sets. status sent.
  • the Channel State Information Reference Signal (CSI-RS) associated with the SRS resource set and the shared common beam (share common beam) are not configured at the same time.
  • CSI-RS Channel State Information Reference Signal
  • the same beam indicated by the network side device using MAC CE and/or DCI can be used for multiple channel transmission.
  • This beam is also called a common beam.
  • the shared beam may refer to a shared common beam.
  • the method when the transmission mode is associated with at least two target objects, the method further includes:
  • the terminal switches to associate with a target object for uplink data transmission.
  • the SDM mode is associated with at least two target objects, and the terminal can switch to associate one target object for uplink data transmission.
  • the terminal can dynamically switch transmission modes, effectively improving the flexibility of the terminal for uplink data transmission.
  • the terminal switches to associate a target object for uplink data transmission, including at least one of the following:
  • the terminal receives the DCI and switches to associate with a target object for uplink data transmission based on the DCI.
  • the DCI is used to instruct the terminal to switch to associate with a target object for uplink data transmission;
  • the terminal switches to associate with a target object for uplink data transmission
  • the terminal switches to associate a The target object performs uplink data transmission;
  • the terminal switches to associate with a target object for uplink data transmission based on the antenna port domain;
  • the terminal switches to associate a target object for uplink data transmission
  • the terminal switches to associate with a target object. Perform upstream data transmission.
  • the network side device sends DCI to the terminal.
  • the DCI includes an indication field to instruct the terminal to switch to associate with a target object for uplink data transmission. Then the terminal switches to associate with a target object based on the DCI. Perform upstream data transmission.
  • the terminal can implement dynamic switching of uplink data transmission based on DCI instructions, effectively improving the flexibility of the terminal's uplink data transmission.
  • the terminal switches to associate with a target object for uplink data transmission. That is, a TCI state taking effect is equivalent to indicating that the terminal needs to switch to associate with a target object for uplink data transmission. In this way, the terminal can realize flexible switching of uplink data transmission based on the validity of its TCI status.
  • the terminal can switch to associate a target object for uplink data transmission, then the terminal The transmission mode is switched, and the terminal can realize flexible switching of uplink data transmission based on whether the DMRS port belongs to the same CDM group.
  • the terminal when the value in the antenna port field is 0, the terminal is instructed to associate with multiple target objects for uplink data transmission. When the value in the antenna port field is 1, the terminal is instructed to associate with one target object for uplink data transmission. ; If the terminal receives a value of 1 in the antenna port field, which instructs the terminal to switch to associate a target object for uplink data transmission, the terminal switches the transmission mode.
  • the terminal when the value in the antenna port field is 0, the terminal is instructed to associate with multiple target objects for uplink data transmission. When the value in the antenna port field is 1, the terminal is instructed to associate with one target object for uplink data transmission. ; If the terminal receives a value of 1 in the antenna port field, which instructs the terminal to switch to associate a target object for uplink data transmission, the terminal switches the transmission mode.
  • the terminal switches to associate with a target object for uplink data transmission. In this way, the terminal can realize flexible switching of uplink data transmission based on the enabling status of the codeword to ensure the uplink transmission of the terminal.
  • the terminal switches to associate a target object for uplink data transmission.
  • the preset conditions include any one of the following:
  • the number of transmission layers indicated by the target SRS resource indicator (SRS resource indicator, SRI) field is equal to the first preset value
  • the number of transmission layers indicated by the target transmission precoding matrix indicator (Transmission Precoding matrix indicator, TPMI) field is equal to the first preset value
  • the sum of the number of transmission layers indicated by the two SRI fields is greater than the second preset value
  • the sum of the number of transmission layers indicated by the two TPMI fields is greater than the second preset value.
  • the first preset value is 3.
  • the terminal switches to associate with a target object for uplink data transmission.
  • the second preset value is 4.
  • the terminal switches to associate with one target. right to perform upstream data transmission.
  • the terminal can determine whether to switch to the transmission mode associated with a target object based on the number of transmission layers indicated by the SRI domain or TPMI domain, thereby realizing flexible switching of uplink data transmission.
  • the transmission parameters of the uplink transmission are determined by at least one of the following:
  • the DMRS port determined by the number of transport layers indicated by the first SRI field or TPMI field;
  • the power control parameters associated with the first TCI state in the currently effective TCI state or the power control parameters associated with the TCI state with an index smaller than the preset index, or the power control parameters associated with the target TCI state indicated by DCI;
  • the first phase-tracking reference signal-demodulation reference signal (Phase-tracking reference signal-Demodulation Reference Signal, PTRS-DMRS) association indication field indicates the PTRS-DMRS association relationship;
  • MCS Modulation and coding scheme
  • RV RV indicated by the target redundancy version RV field
  • NDI NDI indicated by the target new data indication
  • the DCI includes a first indication field.
  • a value of 0 for the first indication field indicates that all uplink data transmissions adopt the first TCI state, and a value of 1 indicates that all uplink data transmissions adopt the second TCI state.
  • the transmission parameters of the terminal's uplink transmission may be determined based on the value of the first indication field in the DCI. For example, when the value of the first indication field is 0, based on The first TCI state determines the transmission parameters of the terminal's uplink transmission.
  • the transmission parameters of the terminal's uplink transmission are determined based on the PTRS-DMRS association relationship indicated by the first PTRS-DMRS association indication field.
  • the PTRS-DMRS association indication field includes 2 bits.
  • PTRS -DMRS association indication fields are shown in Table 3 below:
  • the target MCS domain at least one of the RV domain and the NDI domain is associated with a target transport block (Transport Block, TB), and the target TB is determined based on at least one of the following:
  • the terminal's uplink transmission mode is associated with only one target object, only one codeword is enabled, and the MCS corresponding to the enabled codeword is indicated by the MCS field of the first TB, or the MCS corresponding to the enabled codeword is The RV is indicated by the RV field of the first TB, or the NDI corresponding to the enabled codeword is indicated by the NDI field of the first TB.
  • the DCI received by the terminal includes a second indication field.
  • the second indication field takes a value of 0 to identify the target TB as the first TB, and a value of 1 indicates that the target TB is the second TB, so that the terminal can Instructions to determine the target TB.
  • the transmission mode is determined by at least one of the following:
  • RRC signaling DCI; MAC CE; the number of transmission layers indicated by the first indication information; the DMRS port indicated by the first indication information; the number of codewords enabled by the first indication information; the first The number of repeated transmissions indicated by the indication information.
  • the DCI indicates the transmission mode based on at least one of the following:
  • the antenna port field in the DCI is also used to indicate the DMRS port;
  • the time domain resource allocation domain in the DCI is the time domain resource allocation domain in the DCI.
  • the antenna port field indication is as shown in Table 5 below:
  • the antenna port field indication is as shown in Table 6 below:
  • the antenna port field indication is as shown in Table 7 below:
  • the terminal can determine based on the antenna port domain indicated in the above DCI. Determine the transmission mode of uplink data.
  • the transmission mode may also be determined based on the number of repetitions indicated by the first indication information. For example, when the number of repetitions (repetition) is greater than 1, it indicates that the transmission mode is the TDM mode; or the transmission mode may also be It is determined based on the DMRS port indicated by the first indication information. For example, when the indicated DMRS port belongs to the same CDM group, it means that the transmission mode is FDM mode or SFN mode; or the transmission mode can also be determined based on the first indication information indication.
  • the number of transmission layers is determined. For example, when the indicated number of transmission layers is greater than 4, it means that the transmission mode is FDM mode.
  • Table 8 the above situation of determining the transmission mode based on the first indication information may be as shown in Table 8 below:
  • the transmission mode may also be explicitly or implicitly indicated by the network side device, for example, RRC signaling indicates that the transmission mode of the terminal's uplink data is SFN mode or FDM mode.
  • RRC signaling indicates that the transmission mode of the terminal's uplink data is SFN mode or FDM mode.
  • the DMRS port indicated by the first indication information belongs to the same CDM group, it indicates that the transmission mode of the terminal's uplink data is the SFN mode or the FDM mode.
  • a solution is proposed to dynamically determine the uplink data transmission mode of the terminal, and dynamically indicate the uplink data transmission mode of the terminal based on the first indication information; and, the terminal can operate in SDM mode, FDM mode, SFN mode and TDM mode. Selecting one of the modes for uplink data transmission makes the terminal's uplink data transmission no longer limited to a single fixed transmission method, effectively improving the flexibility and diversity of the terminal's uplink data transmission.
  • Figure 3 is a flow chart of another transmission mode determination method provided by an embodiment of the present application. This method is applied to network-side equipment. As shown in Figure 3, the method includes the following steps:
  • Step 301 The network side device sends first indication information to the terminal, where the first indication information is used to instruct the terminal in the transmission mode for uplink data transmission.
  • the transmission mode includes at least one of the following:
  • the first indication information may be an explicit indication by the network side device through signaling; for example, the first indication information may be RRC signaling sent by the network side device; or, the first indication information It can also be DCI sent by the network side device; or the first indication information can also be MAC CE signaling sent by the network side device; or the first indication information can also be hidden signaling by the network side device. instructions.
  • the first indication information is used to indicate the transmission mode of the terminal's uplink data transmission.
  • the network side device instructs the terminal to perform at least one transmission mode for uplink data transmission through RRC signaling; or the network side device indicates at least one transmission mode through the indication field contained in the DCI; or the network side device indicates DMRS To indicate the transmission mode of the terminal for uplink data transmission, etc., this embodiment will not enumerate too many details.
  • the network side device dynamically instructs the terminal on the transmission mode of uplink data through the first indication information, so that the terminal's uplink data transmission is no longer limited to a fixed transmission mode; and, the transmission mode includes SDM mode , FDM mode, SFN mode and TDM mode At least one of the above, and then the terminal can select one of at least one transmission mode for uplink data transmission, so that the terminal's uplink data transmission is no longer limited to a single fixed transmission method, further improving the terminal's uplink Flexibility and diversity of data transfer.
  • the transmission mode is associated with at least one target object, and the target object is parameter information related to uplink data transmission.
  • the possible forms of the target object may be as described in detail with reference to the embodiment described in FIG. 2 , which will not be described again in this embodiment.
  • Any of the above transmission modes can be associated with at least one target object, and the target objects associated with each transmission mode can be different.
  • the at least one SRS resource set corresponds to the at least one target object in a one-to-one manner.
  • the RRC signaling is configured with two SRS resource sets, and the two SRS resource sets correspond to two panels respectively, or the two SRS resource sets correspond to two uplink TCI states respectively.
  • the SRS in the two SRS resource sets can be sent using the two associated panels, or the two associated TCI states.
  • the PUSCH associated with the two SRS resource sets can also be sent using the two SRS. Two panels associated with resource sets are sent, or two TCI statuses associated with two SRS resource sets are sent.
  • the CSI-RS associated with the SRS resource set and the shared beam are not configured at the same time.
  • the SDM mode includes a first transmission mode and a second transmission mode.
  • the first transmission mode corresponds to the transmission of one codeword
  • the second transmission mode corresponds to the transmission of two codewords
  • the FDM mode includes a third transmission mode, a fourth transmission mode and a fifth transmission mode.
  • the third transmission mode corresponds to transmitting one redundant version of a codeword
  • the fourth transmission mode corresponds to transmitting two versions of a codeword.
  • a redundant version, the fifth transmission mode corresponds to the transmission of two codewords;
  • the SFN mode corresponds to transmitting two identical redundant versions of one codeword
  • the TDM mode corresponds to transmitting two redundant versions of one codeword.
  • the above transmission mode is indicated by at least one of the following:
  • the number of repeated transmissions indicated by the first indication information is the number of repeated transmissions indicated by the first indication information.
  • the DCI indicates the transmission mode based on at least one of the following:
  • the antenna port field in the DCI is also used to indicate the DMRS port;
  • the time domain resource allocation domain in the DCI is the time domain resource allocation domain in the DCI.
  • the transmission mode determination method provided by the embodiments of the present application is applied to the network side device, and corresponds to the transmission mode determination method applied to the terminal side in Figure 2 mentioned above.
  • the relevant concepts and specific processes involved in the embodiments of the present application can be referred to The description in the embodiment shown in Figure 2 will not be repeated in this embodiment.
  • the execution subject may be a transmission mode determination device.
  • the transmission mode determination device performing the transmission mode determination method is taken as an example to illustrate the transmission mode determination device provided by the embodiment of the present application.
  • FIG. 4 is a structural diagram of a transmission mode determining device provided by an embodiment of the present application.
  • the transmission mode determining device 400 includes:
  • Receiving module 401 used to receive first indication information
  • Determining module 402 configured to determine a transmission mode of uplink data based on the first indication information, wherein the transmission mode includes at least one of the following:
  • the transmission mode is associated with at least one target object, and the target object is parameter information related to uplink data transmission.
  • the at least one SRS resource set corresponds to the at least one target object in a one-to-one manner.
  • the channel state information reference signal CSI-RS associated in the SRS resource set is shared with Sharing beams are not configured at the same time.
  • the SDM mode includes a first transmission mode and a second transmission mode, the first transmission mode corresponds to the transmission of one codeword, and the second transmission mode corresponds to the transmission of two codewords;
  • the FDM mode includes a third transmission mode, a fourth transmission mode and a fifth transmission mode.
  • the third transmission mode corresponds to transmitting one redundant version of a codeword
  • the fourth transmission mode corresponds to transmitting two versions of a codeword.
  • a redundant version, the fifth transmission mode corresponds to the transmission of two codewords.
  • the transmission mode is associated with at least two target objects, and the device further includes:
  • the switching module is used to switch to associate a target object for uplink data transmission.
  • the switching module is used to perform at least one of the following:
  • the transmission mode includes at least one of SDM mode and SFN mode
  • the demodulation reference signal DMRS port indicated by the uplink data transmission belongs to the same code division multiplexing CDM group, switch to associate a target object for uplink data transmission;
  • the transmission mode includes SDM mode or SFN mode
  • the number of transmission layers indicated by the DCI received by the device meets the preset conditions, it switches to associate a target object for uplink data transmission.
  • the preset conditions include any of the following:
  • the number of transmission layers indicated by the target SRI field is equal to the first preset value
  • the number of transport layers indicated by the target TPMI field is equal to the first preset value
  • the sum of the number of transmission layers indicated by the two SRI fields is greater than the second preset value
  • the sum of the number of transmission layers indicated by the two TPMI fields is greater than the second preset value.
  • the transmission parameters of the uplink transmission are determined by at least one of the following:
  • the DMRS port determined by the number of transport layers indicated by the first SRI field or TPMI field;
  • the power control parameters associated with the first TCI state in the currently effective TCI state or the power control parameters associated with the TCI state with an index smaller than the preset index, or the power control parameters associated with the target TCI state indicated by DCI;
  • At least one of the target MCS domain, the RV domain and the NDI domain is associated with a target TB, and the target TB is determined based on at least one of the following:
  • the transmission mode is determined by at least one of the following:
  • the number of repetitions indicated by the first indication information is the number of repetitions indicated by the first indication information.
  • the DCI indicates the transmission mode based on at least one of the following:
  • the antenna port field in the DCI is also used to indicate the DMRS port;
  • the time domain resource allocation domain in the DCI is the time domain resource allocation domain in the DCI.
  • the device determines the transmission mode of the uplink data based on the received first indication information, and thereby can dynamically indicate the uplink data transmission mode of the device, so that the uplink data transmission of the device is no longer required.
  • the transmission mode includes at least one of SDM mode, FDM mode, SFN mode and TDM mode, and the device can select one of the at least one transmission mode for uplink data transmission, so that the The uplink data transmission of the device is no longer limited to a single fixed transmission method, further improving the flexibility and diversity of the device's uplink data transmission.
  • the transmission mode determining device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the transmission mode determination device provided by the embodiment of the present application can realize each process implemented by the terminal in the above method embodiment of Figure 2, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • FIG. 5 is a structural diagram of a transmission mode determining device provided by an embodiment of the present application.
  • the transmission mode determining device 500 includes:
  • the sending module 501 is configured to send first indication information to the terminal, where the first indication information is used to indicate the transmission mode of the terminal for uplink data transmission;
  • the transmission mode includes at least one of the following:
  • the transmission mode is associated with at least one target object, and the target object is parameter information related to uplink data transmission.
  • the at least one SRS resource set corresponds to the at least one target object in a one-to-one manner.
  • the CSI-RS associated with the SRS resource set and the shared beam are not configured at the same time.
  • the SDM mode includes a first transmission mode and a second transmission mode, the first transmission mode corresponds to the transmission of one codeword, and the second transmission mode corresponds to the transmission of two codewords;
  • the FDM mode includes a third transmission mode, a fourth transmission mode and a fifth transmission mode.
  • the third transmission mode corresponds to transmitting one redundant version of a codeword
  • the fourth transmission mode corresponds to transmitting two versions of a codeword.
  • a redundant version, the fifth transmission mode corresponds to the transmission of two codewords.
  • the transmission mode is indicated by at least one of the following:
  • the number of repeated transmissions indicated by the first indication information is the number of repeated transmissions indicated by the first indication information.
  • the DCI indicates the transmission mode based on at least one of the following:
  • the antenna port field in the DCI is also used to indicate the DMRS port;
  • the time domain resource allocation domain in the DCI is the time domain resource allocation domain in the DCI.
  • the device dynamically indicates the terminal's transmission mode for uplink data through the first indication information, so that the terminal's uplink data transmission is no longer limited to a fixed transmission method; and, the transmission mode includes the SDM mode , FDM mode, SFN mode and TDM mode, and then the terminal can select one of at least one transmission mode for uplink data transmission, so that the terminal's uplink data transmission is no longer limited to a single fixed mode.
  • a certain transmission method further improves the flexibility and diversity of the terminal's uplink data transmission.
  • the transmission mode determination device provided by the embodiment of the present application can realize each process implemented by the network side device in the method embodiment of Figure 3, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 600, which includes a processor 601 and a memory 602.
  • the memory 602 stores programs or instructions that can run on the processor 601.
  • the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each step of the above transmission mode determination method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, the steps of the above-mentioned transmission mode determination method embodiment are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the communication interface is configured to receive first indication information; the processor is configured to determine a transmission mode of uplink data based on the first indication information, wherein the transmission mode Including at least one of the following: SDM mode, FDM mode, SFN mode and TDM mode.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 7 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, etc. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and at least one of other input devices 7072 . Touch panel 7071, also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 701 after receiving downlink data from the network side device, can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • the radio frequency unit 701 is used to receive the first indication information
  • Processor 710 configured to determine a transmission mode of uplink data based on the first indication information, wherein the transmission mode includes at least one of the following:
  • the transmission mode is associated with at least one target object, and the target object is parameter information related to uplink data transmission.
  • the at least one SRS resource set corresponds to the at least one target object in a one-to-one manner.
  • the CSI-RS associated with the SRS resource set and the shared beam are not configured at the same time.
  • the SDM mode includes a first transmission mode and a second transmission mode, the first transmission mode corresponds to the transmission of one codeword, and the second transmission mode corresponds to the transmission of two codewords;
  • the FDM mode includes a third transmission mode, a fourth transmission mode and a fifth transmission mode.
  • the third transmission mode corresponds to transmitting one redundant version of a codeword
  • the fourth transmission mode corresponds to transmitting two versions of a codeword.
  • a redundant version, the fifth transmission mode corresponds to the transmission of two codewords.
  • the transmission mode is associated with at least two target objects, and the processor 710 is also used to:
  • the processor 710 is configured to perform at least one of the following:
  • the transmission mode includes at least one of SDM mode and SFN mode
  • the DMRS port indicated for uplink data transmission belongs to the same CDM group
  • the antenna port domain instructs the terminal to switch to associate with a target object for uplink data transmission, switch to associate with a target object for uplink data transmission based on the antenna port domain;
  • the transmission mode includes SDM mode or SFN mode
  • the number of transmission layers indicated by the DCI received by the terminal meets the preset conditions, it switches to associate a target object for uplink. data transmission.
  • the preset conditions include any of the following:
  • the target SRS resource indicates that the number of transmission layers indicated by the SRI field is equal to the first preset value
  • the target transmission precoding matrix indicates that the number of transmission layers indicated by the TPMI field is equal to the first preset value
  • the sum of the number of transmission layers indicated by the two SRI fields is greater than the second preset value
  • the sum of the number of transmission layers indicated by the two TPMI fields is greater than the second preset value.
  • the transmission parameters of the uplink transmission are determined by at least one of the following:
  • the DMRS port determined by the number of transport layers indicated by the first SRI field or TPMI field;
  • the power control parameters associated with the first TCI state in the currently effective TCI state or the power control parameters associated with the TCI state with an index smaller than the preset index, or the power control parameters associated with the target TCI state indicated by DCI;
  • At least one of the target MCS domain, the RV domain and the NDI domain is associated with a target transport block TB, and the target TB is determined based on at least one of the following:
  • the transmission mode is determined by at least one of the following:
  • the number of repetitions indicated by the first indication information is the number of repetitions indicated by the first indication information.
  • the DCI indicates the transmission mode based on at least one of the following:
  • the antenna port field in the DCI is also used to indicate the DMRS port;
  • the time domain resource allocation domain in the DCI is the time domain resource allocation domain in the DCI.
  • the terminal determines the uplink data transmission mode based on the received first indication information, that is, a solution for dynamically determining the terminal's uplink data transmission mode is proposed, which can dynamically indicate the terminal's uplink data transmission mode. , so that the terminal's uplink data transmission is no longer limited to fixed transmission methods, and can improve the flexibility of the terminal's uplink data transmission.
  • the transmission mode includes at least one of SDM mode, FDM mode, SFN mode and TDM mode, and the terminal can select one of the at least one transmission mode for uplink data transmission, so that the terminal's uplink data Transmission is no longer limited to a single fixed transmission method, further improving the flexibility and diversity of terminal uplink data transmission.
  • Embodiments of the present application also provide a network side device, including a processor and a communication interface.
  • the communication interface is used to send first indication information to a terminal, where the first indication information is used to instruct the terminal to perform uplink data transmission in a transmission mode; wherein , the transmission mode includes at least one of the following: SDM mode, FDM mode, SFN mode, and TDM mode.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82.
  • the radio frequency device 82 processes the received information and then sends it out through the antenna 81.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 83, which Device 83 includes a baseband processor.
  • the baseband device 83 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, which is, for example, a common public radio interface (CPRI).
  • a network interface 86 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 800 in the embodiment of the present application also includes: instructions or programs stored in the memory 85 and executable on the processor 84.
  • the processor 84 calls the instructions or programs in the memory 85 to execute the various operations shown in Figure 5. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium, with programs or instructions stored on the readable storage medium.
  • programs or instructions When the programs or instructions are executed by a processor, each process of the method embodiment shown in Figure 2 is implemented, or Each process of the method embodiment shown in Figure 3 is implemented and the same technical effect can be achieved. To avoid repetition, details will not be described here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above method as shown in Figure 2.
  • Each process of the embodiment, or each process of implementing the above-mentioned method embodiment as shown in Figure 3, can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above as shown in Figure 2
  • Each process of the method embodiment, or each process of implementing the above-mentioned method embodiment as shown in Figure 3, can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the transmission mode determination method as shown in Figure 2 above.
  • the network side device can Steps for executing the transmission mode determination method as described in Figure 3 above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输模式确定方法、装置、终端及网络侧设备,属于通信技术领域,本申请实施例的传输模式确定方法包括:终端接收第一指示信息;所述终端基于所述第一指示信息确定上行数据的传输模式,其中,所述传输模式包括如下至少一项:空分复用SDM模式、频分复用FDM模式、单频网SFN模式、时分复用TDM模式。

Description

传输模式确定方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2022年03月21日在中国提交的中国专利申请No.202210283941.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输模式确定方法、装置、终端及网络侧设备。
背景技术
终端在进行上行数据传输时,终端在对上行数据进行预编码后映射到上行信道资源上进行传输。目前,针对不同的数据传输场景或者不同业务的上行数据传输,终端基于其单一固定的传输模式进行上行数据传输,导致上行数据传输的方式不灵活。
发明内容
本申请实施例提供一种传输模式确定方法、装置、终端及网络侧设备,能够解决相关技术中终端的上行传输模式不灵活的问题。
第一方面,提供了一种传输模式确定方法,包括:
终端接收第一指示信息;
所述终端基于所述第一指示信息确定上行数据的传输模式,其中,所述传输模式包括如下至少一项:
空分复用SDM模式;
频分复用FDM模式;
单频网SFN模式;
时分复用TDM模式。
第二方面,提供了一种传输模式确定方法,包括:
网络侧设备向终端发送第一指示信息,所述第一指示信息用于指示终端 进行上行数据传输的传输模式;
其中,所述传输模式包括如下至少一项:
空分复用SDM模式;
频分复用FDM模式;
单频网SFN模式;
时分复用TDM模式。
第三方面,提供了一种传输模式确定装置,包括:
接收模块,用于接收第一指示信息;
确定模块,用于基于所述第一指示信息确定上行数据的传输模式,其中,所述传输模式包括如下至少一项:
空分复用SDM模式;
频分复用FDM模式;
单频网SFN模式;
时分复用TDM模式。
第四方面,提供了一种传输模式确定装置,包括:
发送模块,用于向终端发送第一指示信息,所述第一指示信息用于指示终端进行上行数据传输的传输模式;
其中,所述传输模式包括如下至少一项:
空分复用SDM模式;
频分复用FDM模式;
单频网SFN模式;
时分复用TDM模式。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收第一指示信息,所述处理器用于基于所述第一指示信息确定上行数据的传输模式,其中,所述传输模式包括如下至少一项:
空分复用SDM模式;
频分复用FDM模式;
单频网SFN模式;
时分复用TDM模式。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向终端发送第一指示信息,所述第一指示信息用于指示终端进行上行数据传输的传输模式;
其中,所述传输模式包括如下至少一项:
空分复用SDM模式;
频分复用FDM模式;
单频网SFN模式;
时分复用TDM模式。
第九方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的传输模式确定方法的步骤,所述网络侧设备可用于执行如第二方面所述的传输模式确定方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的传输模式确定方法,或实现如第二方面所述的传输模式确定方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的传输模式确定方法的步骤,或者实现如第二方面所述的传输模式确定方法的步骤。
在本申请实施例中,终端基于接收到的第一指示信息,以确定上行数据的传输模式,也即提出了一种动态确定终端上行数据传输模式的方案,能够 实现动态指示终端的上行数据传输模式,使得终端的上行数据传输不再仅局限于固定的传输方式,能够提升终端上行数据传输的灵活性。并且,所述传输模式包括SDM模式、FDM模式、SFN模式和TDM模式中的至少一项,进而终端也就能够在至少一种传输模式中选择一种来进行上行数据传输,使得终端的上行数据传输不再仅局限于单一固定的某种传输方式,进一步提升了终端上行数据传输的灵活性和多样性。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种传输模式确定方法的流程图;
图2a是本申请实施例提供的一种传输模式确定方法中传输模式的示意图之一;
图2b是本申请实施例提供的一种传输模式确定方法中传输模式的示意图之二;
图2c是本申请实施例提供的一种传输模式确定方法中传输模式的示意图之三;
图2d是本申请实施例提供的一种传输模式确定方法中传输模式的示意图之四;
图2e是本申请实施例提供的一种传输模式确定方法中传输模式的示意图之五;
图2f是本申请实施例提供的一种传输模式确定方法中传输模式的示意图之六;
图2g是本申请实施例提供的一种传输模式确定方法中传输模式的示意图之七;
图3是本申请实施例提供的另一种传输模式确定方法的流程图;
图4是本申请实施例提供的一种传输模式确定装置的结构图;
图5是本申请实施例提供的另一种传输模式确定装置的结构图;
图6是本申请实施例提供的一种通信设备的结构图;
图7是本申请实施例提供的一种终端的结构图;
图8是本申请实施例提供的一种网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个 人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输模式确定方法进行详细地说明。
请参照图2,图2是本申请实施例提供的一种传输模式确定方法的流程图,该方法应用于终端。如图2所示,所述方法包括以下步骤:
步骤201、终端接收第一指示信息。
本申请实施例中,所述第一指示信息可以是由网络侧设备发送给终端。可选地,所述第一指示信息可以是网络侧设备通过信令显式进行指示;例如,所述第一指示信息可以是网络侧设备发送的无线资源控制(Radio Resource  Control,RRC)信令;或者,所述第一指示信息也可以是网络侧设备发送的下行控制信息(Downlink Control Information,DCI);或者,所述第一指示信息还可以是网络侧设备发送的媒体接入控制控制元素(Medium Access Control Control Element,MAC CE)信令;又或者,所述第一指示信息还可以是网络侧设备通过信令隐式进行指示。
可选地,所述第一指示信息用于指示终端上行数据传输的传输模式。例如,网络侧设备通过RRC信令指示终端进行上行数据传输的至少一种传输模式;或者,网络侧设备通过DCI中包含的指示域来指示至少一种传输模式;或者,网络侧设备通过指示解调参考信号(Demodulation Reference Signal,DMRS)来指示终端进行上行数据传输的传输模式,等等,本实施例不做过多列举。
步骤202、所述终端基于所述第一指示信息确定上行数据的传输模式。
其中,所述传输模式包括如下至少一项:
空分复用(Space Division Multiplexing,SDM)模式;
频分复用(Frequency Division Multiplexing,FDM)模式;
单频网(Single Frequency Network,SFN)模式;
时分复用(Time Division Multiplexing,TDM)模式。
可选地,所述第一指示信息可以是指示上述传输模式中的至少一种。例如,所述第一指示信息指示终端进行上行数据的传输模式为SDM模式,则终端基于所述第一指示信息确定上行数据的传输模式为SDM模式,则终端采用SDM模式进行上行数据传输;或者,所述第一指示信息可以是指示终端进行上行数据传输的模式包括SDM模式和FDM模式,则终端可以是基于所述第一指示信息确定上行数据的传输模式可以是SDM模式和FDM模式中的任一者,终端可以是采用SDM模式进行上行数据传输,或者是采用FDM模式进行上行数据传输。当然,所述第一指示信息所指示的传输模式的具体内容还可以为其他的情况,本实施例不做一一列举。
本申请实施例中,终端基于接收到的第一指示信息,以确定上行数据的传输模式,也即提出了一种动态确定终端上行数据传输模式的方案,能够实现动态指示终端的上行数据传输模式,使得终端的上行数据传输不再仅局限 于固定的传输方式,能够提升终端上行数据传输的灵活性。并且,所述传输模式包括SDM模式、FDM模式、SFN模式和TDM模式中的至少一项,进而终端也就能够在至少一种传输模式中选择一种来进行上行数据传输,使得终端的上行数据传输不再仅局限于单一固定的某种传输方式,进一步提升了终端上行数据传输的灵活性和多样性。
可选地,所述SDM模式包括第一传输模式和第二传输模式,所述第一传输模式对应一个传输码字(Code Word,CW),所述第二传输模式对应传输两个码字;
第一传输模式中,终端使用两个目标对象传输一个码字的一个冗余版本(Redundancy Version,RV),第二传输模式中,终端使用两个目标对象分别传输两个码字,其中第一传输层使用第一目标对象,第二传输层使用第二目标对象。
所述FDM模式包括第三传输模式、第四传输模式和第五传输模式,所述第三传输模式对应传输一个码字的一个冗余版本(Redundancy Version,RV),所述第四传输模式对应传输一个码字的两个冗余版本,所述第五传输模式对应传输两个码字;
所述SFN模式对应传输一个码字的两个相同的冗余版本;
所述TDM模式对应传输一个码字的两个冗余版本。
具体地,如图2a所示,SDM模式包括的第一传输模式对应一个码字(single CW)或者说一个传输块(single TB),以及对应一个冗余版本(RV0),终端可以是分别通过两个层(layer)分别采用两个波束来向两个发射接收点(Transmission and Reception Point,TRP)进行上行数据传输:layer0 for TRP 0、layer1 for TRP 1。
如图2b所示,SDM模式包括的第二传输模式对应两个码字:CW0和CW1,终端可以是分别通过两个层(layer)分别采用两个波束来向两个TRP进行上行数据传输:layer0 for TRP 0、layer1 for TRP 1,其中,layer0 for TRP 0对应CW0,layer1 for TRP 1对应CW1。
如图2c所示,FDM模式包括的第三传输模式对应一个码字或者传输块(single CW/TB)、的一个冗余版本,终端可以是分别通过两组物理资源块 (Physical Resource Block,PRB)来向两个TRP进行上行数据传输,每组都包含至少一个PRB,例如这两组PRBs分别为第一PRBs和第二PRBs,终端的上行数据传输为:第一PRBs for TRP 0、第二PRBs for TRP 1。。
如图2d所示,FDM模式包括的第四传输模式对应一个码字或者传输块(single CW/TB)、的两个冗余版本(例如RV0和RV1),终端可以是分别通过两组PRBs来向两个TRP进行上行数据传输:第一PRBs for TRP 0、第二PRBs for TRP 1,其中,第一PRBs for TRP 0对应RV0,第二PRBs for TRP 1对应RV1。
如图2e所示,FDM模式包括的第五传输模式对应两个码字(例如CW0和CW1),终端可以是分别通过两组PRBs来向两个TRP进行上行数据传输:第一PRBs for TRP 0、第二PRBs for TRP 1,其中,第一PRBs for TRP 0对应CW0,第二PRBs for TRP 1对应CW1。
如图2f所示,SFN模式对应一个码字的两个相同的冗余版本(例如RV0),终端可以是分别通过两个层(layer)来向两个TRP进行上行数据传输:layer0 for TRP 0、layer1 for TRP 1,其中,layer0 for TRP 0对应RV0,layer1 for TRP 1也对应RV0。
如图2g所示,TDM模式对应一个码字的2个冗余版本,该模式下终端可以是基于重复次数(例如图2g中所示重传1(repetition1)和重传2(repetition2))来进行上行数据的重复传输。
本申请实施例中,所述传输模式关联至少一个目标对象,所述目标对象为与上行数据传输相关的参数信息。例如,所述目标对象可以是包括:波束(beam)、发射接收点(Transmission and Reception Point,TRP)、天线面板(panel)、传输配置指示(Transmission Configuration Indicator,TCI)状态、TCI状态池、空间关系(spatial relation)、探测参考信号(Sounding Reference Signal,SRS)资源、SRS资源集、参考信号、路损参考信号等。
其中,所述天线面板,也可以称为:天线组、天线端口组、天线集合、天线端口集合、波束集合、波束子集合、天线阵列、天线端口阵列、天线子阵列、天线端口子阵列、逻辑实体、实体或天线实体、天线面板实体(panel entity)、定时误差组(timing error group,TEG)、终端能力值、终端能力值集 合等。
所述天线面板包括对应的panel标识,所述panel标识可以为:天线面板的标识、参考信号资源标识、参考信号资源集标识、TCI状态标识、准共址(Quasi co-location,QCL)信息标识、空间关系标识、终端能力值索引、终端能力值集合索引等。
所涉及的波束信息,也可以称为:波束的标识信息、空间关系(spatial relation)信息、空域发送滤波器(spatial domain transmission filter)信息、空域接收滤波器(spatial domain reception filter)信息、空域滤波器(spatial filter)信息、传输配置指示状态(TCI state)信息、QCL信息、QCL参数等。其中,下行波束信息通常可使用TCI state信息或QCL信息表示,上行波束信息通常可使用TCI state信息表示。
本申请实施例中,上述任一种传输模式均可以是关联两个目标对象,每个传输模式关联的目标对象可以不同。例如,SDM模式关联的目标对象可以是包括波束、panel、TCI状态、SRS资源集,FDM模式关联的目标对象可以是包括TRP、panel、波束、空间关系、SRS资源等。上述仅为举例,不构成对本申请中传输模式关联的目标对象的具体限定。
需要说明地,在所述传输模式关联的目标对象包括波束、panel、SRS资源集中的至少一项时,终端能够基于至少一个panel同时进行上行数据传输,基于上述传输模式,多个panel可以在相同或不同的频域资源上同时传输相同或不同的数据,进而有效提升终端上行数据传输的吞吐量和可靠性。
可选地,网络侧设备可以是通过RRC信令来指示所述第一指示信息,在RRC信令配置有至少一个SRS资源集的情况下,所述至少一个SRS资源集与所述至少一个目标对象一一对应。
例如,所述RRC信令配置有两个SRS资源集,这两个SRS资源集分别与两个panel对应,或者这两个SRS资源集分别与两个上行TCI状态对应。可选地,两个SRS资源集中的SRS可以是分别采用关联的两个panel发送,或者分别采用关联的两个TCI状态发送,与两个SRS资源集关联的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)也可以分别采用与两个SRS资源集关联的两个panel发送,或者是与两个SRS资源集关联的两个TCI 状态发送。
可选地,所述SRS资源集中关联的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)与共享波束(share common beam)不同时配置。需要说明地,网络侧设备使用MAC CE和/或DCI指示的同一个beam可以用于多个信道传输,这种beam也称为公共波束(common beam)。所述共享波束可以是指共享的common beam。
本申请实施例中,在所述传输模式关联至少两个目标对象的情况下,所述方法还包括:
所述终端切换至关联一个目标对象进行上行数据传输。
例如,所述SDM模式关联有至少两个目标对象,终端可以切换至关联一个目标对象进行上行数据传输。这样,也就使得终端能够动态地实现传输模式的切换,有效提升了终端对于上行数据传输的灵活性。
可选地,所述终端切换至关联一个目标对象进行上行数据传输,包括如下至少一项:
所述终端接收DCI,并基于所述DCI切换至关联一个目标对象进行上行数据传输,所述DCI用于指示所述终端切换至关联一个目标对象进行上行数据传输;
在所述终端只有一个TCI状态生效的情况下,所述终端切换至关联一个目标对象进行上行数据传输;
在所述传输模式包括SDM模式和SFN模式中的至少一者,上行数据传输指示的DMRS端口属于相同的码分复用(Code Division Multiplexing,CDM)组的情况下,所述终端切换至关联一个目标对象进行上行数据传输;
在天线端口域指示终端切换至关联一个目标对象进行上行数据传输的情况下,所述终端基于所述天线端口域切换至关联一个目标对象进行上行数据传输;
在所述传输模式配置有两个码字,且只有其中一个码字使能的情况下,所述终端切换至关联一个目标对象进行上行数据传输;
在所述传输模式包括SDM模式或者SFN模式,所述终端接收到的DCI指示的传输层数满足预设条件的情况下,所述终端切换至关联一个目标对象 进行上行数据传输。
例如,在方式一中,网络侧设备向终端发送DCI,所述DCI中包含指示域,用于指示终端切换到关联一个目标对象进行上行数据传输,则终端基于所述DCI切换至关联一个目标对象进行上行数据传输。这样,也就使得终端能够基于DCI的指示来实现上行数据传输的动态切换,有效提升终端上行数据传输的灵活性。
在方式二中,若所述终端只有一个TCI状态生效,则终端切换至关联一个目标对象进行上行数据传输。也即,一个TCI状态生效的情况相当于指示终端需要切换到关联一个目标对象进行上行数据传输。这样,也就使得终端能够基于其TCI状态的生效情况,来实现上行数据传输的灵活切换。
在方式三中,对于SDM模式和/或SFN模式,若上行数据传输(如PUSCH传输)指示的DMRS端口属于相同的CDM组,则说明终端可以切换到关联一个目标对象进行上行数据传输,则终端进行传输方式的切换,进而终端能够基于DMRS端口是否属于相同的CDM组来实现上行数据传输的灵活切换。
在方式四中,若天线端口域在指示DMRS端口的同时还指示切换到关联一个目标对象进行上行数据传输,则终端基于所述天线端口域的指示切换到关联一个目标对象进行上行数据传输。示例性地,在DMRS类型(dmrs-Type)=1,最大长度(maxLength)=1,秩(rank)=3时,天线端口域如下表1所示:
表1.天线端口域
如表1所示,在天线端口域中的value为0时,指示终端关联多个目标对象进行上行数据传输,在天线端口域中的value为1时,指示终端关联一个目标对象进行上行数据传输;若终端接收到天线端口域中的value为1,也即指示终端切换至关联一个目标对象进行上行数据传输,则终端进行传输方式的切换。
或者,在DMRS类型(dmrs-Type)=1,最大长度(maxLength)=1,秩(rank)=4时,天线端口域如下表2所示:
表2.天线端口域
如表2所示,在天线端口域中的value为0时,指示终端关联多个目标对象进行上行数据传输,在天线端口域中的value为1时,指示终端关联一个目标对象进行上行数据传输;若终端接收到天线端口域中的value为1,也即指示终端切换至关联一个目标对象进行上行数据传输,则终端进行传输方式的切换。
在方式五中,若第一指示信息指示的传输模式为配置有两个码字的传输模式,如SDM模式中的第二传输模式、FDM模式中的第五传输模式,在两个码字中只有一个码字使能的情况下,则终端切换至关联一个目标对象进行上行数据传输。这样,也就使得终端能够基于码字的使能情况来实现上行数据传输的灵活切换,以确保终端的上行传输。
在方式六中,对于SDM模式或者SFN模式,若DCI指示的传输层数满足预设条件,则终端切换至关联一个目标对象进行上行数据传输。其中,所述预设条件包括如下任意一项:
目标SRS资源指示(SRS resource indicator,SRI)域指示的传输层数等于第一预设值;
目标传输预编码矩阵指示(Transmission Precoding matrix indicator,TPMI)域指示的传输层数等于所述第一预设值;
两个SRI域指示的传输层数的和大于第二预设值;
两个TPMI域指示的传输层数的和大于所述第二预设值。
例如,所述第一预设值为3,当目标SRI域或者目标TPMI域指示的传输层数等于3,则终端切换至关联一个目标对象进行上行数据传输。
又如,所述第二预设值为4,当两个SRI域指示的传输层数之和大于4,或者两个TPMI域指示的传输层数之和大于4,则终端切换至关联一个目标对 象进行上行数据传输。
这样,终端在SDM模式下,能够基于SRI域或TPMI域指示的传输层数的情况,来确定是否切换到关联一个目标对象的传输方式,实现了上行数据传输的灵活切换。
可选地,在所述终端确定切换至关联一个目标对象进行上行数据传输的情况下,所述上行传输的传输参数通过以下至少一项确定:
第一个SRI域指示的SRS;
当前生效的TCI状态中的第一个TCI状态,或者索引小于预设索引的TCI状态,或者DCI指示的目标TCI状态;
第一个SRI域指示的SRS组,或者第一个TPMI域指示的TPMI;
第一个SRI域或TPMI域指示的传输层数确定的DMRS端口;
当前生效的TCI状态中的第一个TCI状态关联的功控参数,或者索引小于预设索引的TCI状态关联的功控参数,或者DCI指示的目标TCI状态关联的功控参数;
第一个相位跟踪参考信号-解调参考信号(Phase-tracking reference signal-Demodulation Reference Signal,PTRS-DMRS)关联指示域指示的PTRS-DMRS关联关系;
目标调制和编码方案(Modulation and coding scheme,MCS)域指示的MCS,或者目标冗余版本RV域指示的RV,或者目标新数据指示(New Date Indicator,NDI)域指示的NDI。
例如,DCI中包括第一指示域,该第一指示域取值0表示上行数据传输都采用第一个TCI状态,取值1表示上行数据传输都采用第二个TCI状态。当终端确定切换至关联一个目标对象进行上行数据传输时,终端上行传输的传输参数可以是基于DCI中第一指示域的取值来确定,例如在第一指示域的取值为0时,基于第一个TCI状态来确定终端上行传输的传输参数。
又如,终端上行传输的传输参数基于第一个PTRS-DMRS关联指示域指示的PTRS-DMRS关联关系确定,例如PTRS-DMRS关联指示域包括2比特(bit),对于端口(port)0,PTRS-DMRS关联指示域如下表3所示:
表3.PTRS-DMRS关联指示域
对于端口0和端口1,PTRS-DMRS关联指示域如下表4所示:
表4.PTRS-DMRS关联指示域
可选地,在所述终端上行传输的传输参数基于目标MCS域指示的MCS确定,或者基于目标RV域指示的RV确定,或者基于目标NDI域指示的NDI确定的情况下,所述目标MCS域、所述RV域及所述NDI域中的至少一项与目标传输块(Transport Block,TB)关联,所述目标TB基于如下至少一项确定:
第一个TB;
DCI指示。
例如,当终端的上行传输模式仅关联一个目标对象时,只有一个码字使能,该使能的码字对应的MCS由第一个TB的MCS域指示,或者该使能的码字对应的RV由第一个TB的RV域指示,或者该使能的码字对应的NDI由第一个TB的NDI域指示。
或者,终端接收到的DCI中包含第二指示域,该第二指示域取值0标识目标TB为第一个TB,取值为1表示目标TB为第二个TB,进而终端能够基于DCI的指示来确定目标TB。
本申请实施例中,所述传输模式通过如下至少一项确定:
RRC信令;DCI;MAC CE;所述第一指示信息指示的传输层数;所述第一指示信息指示的DMRS端口;所述第一指示信息使能的码字个数;所述第一指示信息指示的重复传输次数。
可选地,在所述传输模式通过DCI指示的情况下,所述DCI基于如下至少一项指示所述传输模式:
所述DCI中包含的指示域;
所述DCI中的天线端口域,所述天线端口域还用于指示DMRS端口;
所述DCI中的时域资源分配域。
例如,在dmrs-Type=1,maxLength=1,rank=2时,天线端口域指示如下表5所示:
表5.天线端口域
或者,在dmrs-Type=1,maxLength=1,rank=3时,天线端口域指示如下表6所示:
表6.天线端口域
或者,在dmrs-Type=1,maxLength=1,rank=4时,天线端口域指示如下表7所示:
表7.天线端口域
如上述表5~表7所示,终端能够基于上述DCI中指示的天线端口域来确 定上行数据的传输模式。
可选地,所述传输模式还可以是基于第一指示信息指示的重复次数确定,例如,当重复次数(repetition)次数大于1,则表示传输模式为TDM模式;或者,所述传输模式还可以是基于第一指示信息指示的DMRS端口确定,例如当指示的DMRS端口属于同一个CDM组,则表示传输模式为FDM模式或SFN模式;或者,所述传输模式还可以是基于第一指示信息指示的传输层数确定,例如,当指示的传输层数大于4,则表示传输模式为FDM模式。示例性地,上述基于第一指示信息确定传输模式的情况可如下表8所示:
表8.传输模式的确定
可选地,所述传输模式还可以是基于网络侧设备显式和隐式的方式指示,例如RRC信令指示终端的上行数据的传输模式为SFN模式或FDM模式,当 第一指示信息指示的DMRS端口属于同一个CDM组时,此时表示终端的上行数据的传输模式为SFN模式或FDM模式。
本申请实施例中,提出了一种动态确定终端上行数据传输模式的方案,基于第一指示信息实现动态指示终端的上行数据传输模式;并且,终端能够在SDM模式、FDM模式、SFN模式和TDM模式中选择一种来进行上行数据传输,使得终端的上行数据传输不再仅局限于单一固定的某种传输方式,有效提升了终端上行数据传输的灵活性和多样性。
请参照图3,图3是本申请实施例提供的另一种传输模式确定方法的流程图,该方法应用于网络侧设备。如图3所示,所述方法包括以下步骤:
步骤301、网络侧设备向终端发送第一指示信息,所述第一指示信息用于指示终端进行上行数据传输的传输模式。
其中,所述传输模式包括如下至少一项:
SDM模式;
FDM模式;
SFN模式;
TDM模式。
可选地,所述第一指示信息可以是网络侧设备通过信令显式进行指示;例如,所述第一指示信息可以是网络侧设备发送的RRC信令;或者,所述第一指示信息也可以是网络侧设备发送的DCI;或者,所述第一指示信息还可以是网络侧设备发送的MAC CE信令;又或者,所述第一指示信息还可以是网络侧设备通过信令隐式进行指示。
可选地,所述第一指示信息用于指示终端上行数据传输的传输模式。例如,网络侧设备通过RRC信令指示终端进行上行数据传输的至少一种传输模式;或者,网络侧设备通过DCI中包含的指示域来指示至少一种传输模式;或者,网络侧设备通过指示DMRS来指示终端进行上行数据传输的传输模式,等等,本实施例不做过多列举。
本申请实施例中,网络侧设备通过第一指示信息动态地指示终端对于上行数据的传输模式,使得终端的上行数据传输不再仅局限于固定的传输方式;并且,所述传输模式包括SDM模式、FDM模式、SFN模式和TDM模式中 的至少一项,进而终端也就能够在至少一种传输模式中选择一种来进行上行数据传输,使得终端的上行数据传输不再仅局限于单一固定的某种传输方式,进一步提升了终端上行数据传输的灵活性和多样性。
可选地,所述传输模式关联至少一个目标对象,所述目标对象为与上行数据传输相关的参数信息。
其中,所述目标对象的可能形式可以是参照上述图2所述实施例中的具体描述,本实施例不再赘述。上述任一种传输模式均可以是关联至少一个目标对象,每个传输模式关联的目标对象可以不同。
可选地,在RRC信令配置有至少一个SRS资源集的情况下,所述至少一个SRS资源集与所述至少一个目标对象一一对应。例如,所述RRC信令配置有两个SRS资源集,这两个SRS资源集分别与两个panel对应,或者这两个SRS资源集分别与两个上行TCI状态对应。可选地,两个SRS资源集中的SRS可以是分别采用关联的两个panel发送,或者分别采用关联的两个TCI状态发送,与两个SRS资源集关联的PUSCH也可以分别采用与两个SRS资源集关联的两个panel发送,或者是与两个SRS资源集关联的两个TCI状态发送。
可选地,所述SRS资源集中关联的CSI-RS与共享波束不同时配置。
本申请实施例中,所述SDM模式包括第一传输模式和第二传输模式,所述第一传输模式对应传输一个码字,所述第二传输模式对应传输两个码字;
所述FDM模式包括第三传输模式、第四传输模式和第五传输模式,所述第三传输模式对应传输一个码字的一个冗余版本,所述第四传输模式对应传输一个码字的两个冗余版本,所述第五传输模式对应传输两个码字;
所述SFN模式对应传输一个码字的两个相同的冗余版本;
所述TDM模式对应传输一个码字的两个冗余版本。
可选地,上述传输模式通过如下至少一项进行指示:
RRC信令;
DCI;
媒体接入控制控制元素MAC CE;
所述第一指示信息指示的传输层数;
所述第一指示信息指示的DMRS端口;
所述第一指示信息使能的码字个数;
所述第一指示信息指示的重复传输次数。
可选地,在所述传输模式通过DCI指示的情况下,所述DCI基于如下至少一项指示所述传输模式:
所述DCI中包含的指示域;
所述DCI中的天线端口域,所述天线端口域还用于指示DMRS端口;
所述DCI中的时域资源分配域。
需要说明地,本申请实施例提供的传输模式确定方法应用于网络侧设备,与上述图2应用于终端侧的传输模式确定方法对应,本申请实施例中涉及的相关概念及具体流程可以是参照上述图2所述实施例中的描述,本实施例中不再赘述。
本申请实施例提供的传输模式确定方法,执行主体可以为传输模式确定装置。本申请实施例中以传输模式确定装置执行传输模式确定方法为例,说明本申请实施例提供的传输模式确定装置。
请参照图4,图4是本申请实施例提供的一种传输模式确定装置的结构图。如图4所示,所述传输模式确定装置400包括:
接收模块401,用于接收第一指示信息;
确定模块402,用于基于所述第一指示信息确定上行数据的传输模式,其中,所述传输模式包括如下至少一项:
空分复用SDM模式;
频分复用FDM模式;
单频网SFN模式;
时分复用TDM模式。
可选地,所述传输模式关联至少一个目标对象,所述目标对象为与上行数据传输相关的参数信息。
可选地,在RRC信令配置有至少一个SRS资源集的情况下,所述至少一个SRS资源集与所述至少一个目标对象一一对应。
可选地,所述SRS资源集中关联的信道状态信息参考信号CSI-RS与共 享波束不同时配置。
可选地,所述SDM模式包括第一传输模式和第二传输模式,所述第一传输模式对应传输一个码字,所述第二传输模式对应传输两个码字;
所述FDM模式包括第三传输模式、第四传输模式和第五传输模式,所述第三传输模式对应传输一个码字的一个冗余版本,所述第四传输模式对应传输一个码字的两个冗余版本,所述第五传输模式对应传输两个码字。
可选地,所述传输模式关联至少两个目标对象,所述装置还包括:
切换模块,用于切换至关联一个目标对象进行上行数据传输。
可选地,所述切换模块用于执行如下至少一项:
接收下行控制信息DCI,并基于所述DCI切换至关联一个目标对象进行上行数据传输,所述DCI用于指示所述装置切换至关联一个目标对象进行上行数据传输;
在所述装置只有一个传输配置指示TCI状态生效的情况下,切换至关联一个目标对象进行上行数据传输;
在所述传输模式包括SDM模式和SFN模式中的至少一者,上行数据传输指示的解调参考信号DMRS端口属于相同的码分复用CDM组的情况下,切换至关联一个目标对象进行上行数据传输;
在天线端口域指示所述装置切换至关联一个目标对象进行上行数据传输,基于所述天线端口域切换至关联一个目标对象进行上行数据传输;
在所述传输模式配置有两个码字,且只有其中一个码字使能的情况下,切换至关联一个目标对象进行上行数据传输;
在所述传输模式包括SDM模式或者SFN模式,所述装置接收到的DCI指示的传输层数满足预设条件的情况下,切换至关联一个目标对象进行上行数据传输。
可选地,所述预设条件包括如下任意一项:
目标SRI域指示的传输层数等于第一预设值;
目标TPMI域指示的传输层数等于所述第一预设值;
两个SRI域指示的传输层数的和大于第二预设值;
两个TPMI域指示的传输层数的和大于所述第二预设值。
可选地,在所述装置确定切换至关联一个目标对象进行上行数据传输的情况下,所述上行传输的传输参数通过以下至少一项确定:
第一个SRI域指示的SRS;
当前生效的TCI状态中的第一个TCI状态,或者索引小于预设索引的TCI状态,或者DCI指示的目标TCI状态;
第一个SRI域指示的SRS组,或者第一个TPMI域指示的TPMI;
第一个SRI域或TPMI域指示的传输层数确定的DMRS端口;
当前生效的TCI状态中的第一个TCI状态关联的功控参数,或者索引小于预设索引的TCI状态关联的功控参数,或者DCI指示的目标TCI状态关联的功控参数;
第一个PTRS-DMRS关联指示域指示的PTRS-DMRS关联关系;
目标MCS域指示的MCS,或者目标RV域指示的RV,或者目标NDI域指示的NDI。
可选地,所述目标MCS域、所述RV域及所述NDI域中的至少一项与目标TB关联,所述目标TB基于如下至少一项确定:
第一个TB;
DCI指示。
可选地,所述传输模式通过如下至少一项确定:
RRC信令;
DCI;
媒体接入控制控制元素MAC CE;
所述第一指示信息指示的传输层数;
所述第一指示信息指示的DMRS端口;
所述第一指示信息使能的码字个数;
所述第一指示信息指示的重复次数。
可选地,在所述传输模式通过DCI指示的情况下,所述DCI基于如下至少一项指示所述传输模式:
所述DCI中包含的指示域;
所述DCI中的天线端口域,所述天线端口域还用于指示DMRS端口;
所述DCI中的时域资源分配域。
本申请实施例中,所述装置基于接收到的第一指示信息,以确定上行数据的传输模式,进而能够实现动态指示所述装置的上行数据传输模式,使得所述装置的上行数据传输不再仅局限于固定的传输方式。并且,所述传输模式包括SDM模式、FDM模式、SFN模式和TDM模式中的至少一项,进而所述装置也就能够在至少一种传输模式中选择一种来进行上行数据传输,使得所述装置的上行数据传输不再仅局限于单一固定的某种传输方式,进一步提升了所述装置上行数据传输的灵活性和多样性。
本申请实施例中的传输模式确定装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的传输模式确定装置能够实现上述图2方法实施例中终端实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参照图5,图5是本申请实施例提供的一种传输模式确定装置的结构图。如图5所示,所述传输模式确定装置500包括:
发送模块501,用于向终端发送第一指示信息,所述第一指示信息用于指示终端进行上行数据传输的传输模式;
其中,所述传输模式包括如下至少一项:
空分复用SDM模式;
频分复用FDM模式;
单频网SFN模式;
时分复用TDM模式。
可选地,所述传输模式关联至少一个目标对象,所述目标对象为与上行数据传输相关的参数信息。
可选地,在RRC信令配置有至少一个SRS资源集的情况下,所述至少一个SRS资源集与所述至少一个目标对象一一对应。
可选地,所述SRS资源集中关联的CSI-RS与共享波束不同时配置。
可选地,所述SDM模式包括第一传输模式和第二传输模式,所述第一传输模式对应传输一个码字,所述第二传输模式对应传输两个码字;
所述FDM模式包括第三传输模式、第四传输模式和第五传输模式,所述第三传输模式对应传输一个码字的一个冗余版本,所述第四传输模式对应传输一个码字的两个冗余版本,所述第五传输模式对应传输两个码字。
可选地,述传输模式通过如下至少一项进行指示:
RRC信令;
DCI;
媒体接入控制控制元素MAC CE;
所述第一指示信息指示的传输层数;
所述第一指示信息指示的DMRS端口;
所述第一指示信息使能的码字个数;
所述第一指示信息指示的重复传输次数。
可选地,在所述传输模式通过DCI指示的情况下,所述DCI基于如下至少一项指示所述传输模式:
所述DCI中包含的指示域;
所述DCI中的天线端口域,所述天线端口域还用于指示DMRS端口;
所述DCI中的时域资源分配域。
本申请实施例中,所述装置通过第一指示信息动态地指示终端对于上行数据的传输模式,使得终端的上行数据传输不再仅局限于固定的传输方式;并且,所述传输模式包括SDM模式、FDM模式、SFN模式和TDM模式中的至少一项,进而终端也就能够在至少一种传输模式中选择一种来进行上行数据传输,使得终端的上行数据传输不再仅局限于单一固定的某种传输方式,进一步提升了终端上行数据传输的灵活性和多样性。
本申请实施例提供的传输模式确定装置能够实现上述图3方法实施例中网络侧设备实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图6所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指 令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述传输模式确定方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述传输模式确定方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收第一指示信息;处理器用于基于所述第一指示信息确定上行数据的传输模式,其中,所述传输模式包括如下至少一项:SDM模式、FDM模式、SFN模式和TDM模式。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选地,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,用于接收第一指示信息;
处理器710,用于基于所述第一指示信息确定上行数据的传输模式,其中,所述传输模式包括如下至少一项:
空分复用SDM模式;
频分复用FDM模式;
单频网SFN模式;
时分复用TDM模式。
可选地,所述传输模式关联至少一个目标对象,所述目标对象为与上行数据传输相关的参数信息。
可选地,在RRC信令配置有至少一个SRS资源集的情况下,所述至少一个SRS资源集与所述至少一个目标对象一一对应。
可选地,所述SRS资源集中关联的CSI-RS与共享波束不同时配置。
可选地,所述SDM模式包括第一传输模式和第二传输模式,所述第一传输模式对应传输一个码字,所述第二传输模式对应传输两个码字;
所述FDM模式包括第三传输模式、第四传输模式和第五传输模式,所述第三传输模式对应传输一个码字的一个冗余版本,所述第四传输模式对应传输一个码字的两个冗余版本,所述第五传输模式对应传输两个码字。
可选地,所述传输模式关联至少两个目标对象,所述处理器710,还用于:
切换至中关联一个目标对象进行上行数据传输。
可选地,所述处理器710,用于执行如下至少一项:
接收DCI,并基于所述DCI切换关联一个目标对象进行上行数据传输,所述DCI用于指示所述终端切换至关联一个目标对象的传输模式;
在所述终端只有一个传输配置指示TCI状态生效的情况下,切换至关联一个目标对象进行上行数据传输;
在所述传输模式包括SDM模式和SFN模式中的至少一者,上行数据传输指示的DMRS端口属于相同的CDM组的情况下,切换至关联一个目标对象进行上行数据传输;
在天线端口域指示终端切换至关联一个目标对象进行上行数据传输的情况下,基于所述天线端口域切换至关联一个目标对象进行上行数据传输;
在所述传输模式配置有两个码字,且只有其中一个码字使能的情况下,切换至关联一个目标对象进行上行数据传输;
在所述传输模式包括SDM模式或者SFN模式,所述终端接收到的DCI指示的传输层数满足预设条件的情况下,切换至关联一个目标对象进行上行 数据传输。
可选地,所述预设条件包括如下任意一项:
目标SRS资源指示SRI域指示的传输层数等于第一预设值;
目标传输预编码矩阵指示TPMI域指示的传输层数等于所述第一预设值;
两个SRI域指示的传输层数的和大于第二预设值;
两个TPMI域指示的传输层数的和大于所述第二预设值。
可选地,在所述终端确定切换至关联一个目标对象进行上行数据传输的情况下,所述上行传输的传输参数通过以下至少一项确定:
第一个SRI域指示的SRS;
当前生效的TCI状态中的第一个TCI状态,或者索引小于预设索引的TCI状态,或者DCI指示的目标TCI状态;
第一个SRI域指示的SRS组,或者第一个TPMI域指示的TPMI;
第一个SRI域或TPMI域指示的传输层数确定的DMRS端口;
当前生效的TCI状态中的第一个TCI状态关联的功控参数,或者索引小于预设索引的TCI状态关联的功控参数,或者DCI指示的目标TCI状态关联的功控参数;
第一个相位跟踪参考信号-解调参考信号PTRS-DMRS关联指示域指示的PTRS-DMRS关联关系;
目标调制和编码方案MCS域指示的MCS,或者目标冗余版本RV域指示的RV,或者目标新数据指示NDI域指示的NDI。
可选地,所述目标MCS域、所述RV域及所述NDI域中的至少一项与目标传输块TB关联,所述目标TB基于如下至少一项确定:
第一个TB;
DCI指示。
可选地,所述传输模式通过如下至少一项确定:
RRC信令;
DCI;
媒体接入控制控制元素MAC CE;
所述第一指示信息指示的传输层数;
所述第一指示信息指示的DMRS端口;
所述第一指示信息使能的码字个数;
所述第一指示信息指示的重复次数。
可选地,在所述传输模式通过DCI指示的情况下,所述DCI基于如下至少一项指示所述传输模式:
所述DCI中包含的指示域;
所述DCI中的天线端口域,所述天线端口域还用于指示DMRS端口;
所述DCI中的时域资源分配域。
本申请实施例中,终端基于接收到的第一指示信息,以确定上行数据的传输模式,也即提出了一种动态确定终端上行数据传输模式的方案,能够实现动态指示终端的上行数据传输模式,使得终端的上行数据传输不再仅局限于固定的传输方式,能够提升终端上行数据传输的灵活性。并且,所述传输模式包括SDM模式、FDM模式、SFN模式和TDM模式中的至少一项,进而终端也就能够在至少一种传输模式中选择一种来进行上行数据传输,使得终端的上行数据传输不再仅局限于单一固定的某种传输方式,进一步提升了终端上行数据传输的灵活性和多样性。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向终端发送第一指示信息,所述第一指示信息用于指示终端进行上行数据传输的传输模式;其中,所述传输模式包括如下至少一项:SDM模式、FDM模式、SFN模式、TDM模式。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带 装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述如图2所示方法实施例的各个过程,或实现上述如图3所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述如图2所示方法实施例的各个过程,或实现上述如图3所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述如图2所示方法实施例的各个过程,或实现上述如图3所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上图2所述传输模式确定方法的步骤,所述网络侧设备可 用于执行如上图3所述的传输模式确定方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种传输模式确定方法,包括:
    终端接收第一指示信息;
    所述终端基于所述第一指示信息确定上行数据的传输模式,其中,所述传输模式包括如下至少一项:
    空分复用SDM模式;
    频分复用FDM模式;
    单频网SFN模式;
    时分复用TDM模式。
  2. 根据权利要求1所述的方法,其中,所述传输模式关联至少一个目标对象,所述目标对象为与上行数据传输相关的参数信息。
  3. 根据权利要求2所述的方法,其中,在无线资源控制RRC信令配置有至少一个探测参考信号SRS资源集的情况下,所述至少一个SRS资源集与所述至少一个目标对象一一对应。
  4. 根据权利要求3所述的方法,其中,所述SRS资源集中关联的信道状态信息参考信号CSI-RS与共享波束不同时配置。
  5. 根据权利要求1所述的方法,其中,所述SDM模式包括第一传输模式和第二传输模式,所述第一传输模式对应传输一个码字,所述第二传输模式对应传输两个码字;
    所述FDM模式包括第三传输模式、第四传输模式和第五传输模式,所述第三传输模式对应传输一个码字的一个冗余版本,所述第四传输模式对应传输一个码字的两个冗余版本,所述第五传输模式对应传输两个码字。
  6. 根据权利要求1所述的方法,其中,所述传输模式关联至少两个目标对象,所述方法还包括:
    所述终端切换至关联一个目标对象进行上行数据传输。
  7. 根据权利要求6所述的方法,其中,所述终端切换至关联一个目标对象进行上行数据传输,包括如下至少一项:
    所述终端接收下行控制信息DCI,并基于所述DCI切换至关联一个目标 对象进行上行数据传输,所述DCI用于指示所述终端切换至关联一个目标对象进行上行数据传输;
    在所述终端只有一个传输配置指示TCI状态生效的情况下,所述终端切换至关联一个目标对象进行上行数据传输;
    在所述传输模式包括SDM模式和SFN模式中的至少一者,上行数据传输指示的解调参考信号DMRS端口属于相同的码分复用CDM组的情况下,所述终端切换至关联一个目标对象进行上行数据传输;
    在天线端口域指示终端切换至关联一个目标对象进行上行数据传输的情况下,所述终端基于所述天线端口域切换至关联一个目标对象进行上行数据传输;
    在所述传输模式配置有两个码字,且只有其中一个码字使能的情况下,所述终端切换至关联一个目标对象进行上行数据传输;
    在所述传输模式包括SDM模式或者SFN模式,所述终端接收到的DCI指示的传输层数满足预设条件的情况下,所述终端切换至关联一个目标对象进行上行数据传输。
  8. 根据权利要求7所述的方法,其中,所述预设条件包括如下任意一项:
    目标SRS资源指示SRI域指示的传输层数等于第一预设值;
    目标传输预编码矩阵指示TPMI域指示的传输层数等于所述第一预设值;
    两个SRI域指示的传输层数的和大于第二预设值;
    两个TPMI域指示的传输层数的和大于所述第二预设值。
  9. 根据权利要求6所述的方法,其中,在所述终端确定切换至关联一个目标对象进行上行数据传输的情况下,所述上行传输的传输参数通过以下至少一项确定:
    第一个SRI域指示的SRS;
    当前生效的TCI状态中的第一个TCI状态,或者索引小于预设索引的TCI状态,或者DCI指示的目标TCI状态;
    第一个SRI域指示的SRS组,或者第一个TPMI域指示的TPMI;
    第一个SRI域或TPMI域指示的传输层数确定的DMRS端口;
    当前生效的TCI状态中的第一个TCI状态关联的功控参数,或者索引小 于预设索引的TCI状态关联的功控参数,或者DCI指示的目标TCI状态关联的功控参数;
    第一个相位跟踪参考信号-解调参考信号PTRS-DMRS关联指示域指示的PTRS-DMRS关联关系;
    目标调制和编码方案MCS域指示的MCS,或者目标冗余版本RV域指示的RV,或者目标新数据指示NDI域指示的NDI。
  10. 根据权利要求9所述的方法,其中,所述目标MCS域、所述RV域及所述NDI域中的至少一项与目标传输块TB关联,所述目标TB基于如下至少一项确定:
    第一个TB;
    DCI指示。
  11. 根据权利要求1所述的方法,其中,所述传输模式通过如下至少一项确定:
    RRC信令;
    DCI;
    媒体接入控制控制元素MAC CE;
    所述第一指示信息指示的传输层数;
    所述第一指示信息指示的DMRS端口;
    所述第一指示信息使能的码字个数;
    所述第一指示信息指示的重复次数。
  12. 根据权利要求11所述的方法,其中,在所述传输模式通过DCI指示的情况下,所述DCI基于如下至少一项指示所述传输模式:
    所述DCI中包含的指示域;
    所述DCI中的天线端口域,所述天线端口域还用于指示DMRS端口;
    所述DCI中的时域资源分配域。
  13. 一种传输模式确定方法,包括:
    网络侧设备向终端发送第一指示信息,所述第一指示信息用于指示终端进行上行数据传输的传输模式;
    其中,所述传输模式包括如下至少一项:
    空分复用SDM模式;
    频分复用FDM模式;
    单频网SFN模式;
    时分复用TDM模式。
  14. 根据权利要求13所述的方法,其中,所述传输模式关联至少一个目标对象,所述目标对象为与上行数据传输相关的参数信息。
  15. 根据权利要求14所述的方法,其中,在无线资源控制RRC信令配置有至少一个探测参考信号SRS资源集的情况下,所述至少一个SRS资源集与所述至少一个目标对象一一对应。
  16. 根据权利要求15所述的方法,其中,所述SRS资源集中关联的信道状态信息参考信号CSI-RS与共享波束不同时配置。
  17. 根据权利要求13所述的方法,其中,所述SDM模式包括第一传输模式和第二传输模式,所述第一传输模式对应传输一个码字,所述第二传输模式对应传输两个码字;
    所述FDM模式包括第三传输模式、第四传输模式和第五传输模式,所述第三传输模式对应传输一个码字的一个冗余版本,所述第四传输模式对应传输一个码字的两个冗余版本,所述第五传输模式对应传输两个码字。
  18. 根据权利要求13所述的方法,其中,所述传输模式通过如下至少一项进行指示:
    RRC信令;
    DCI;
    媒体接入控制控制元素MAC CE;
    所述第一指示信息指示的传输层数;
    所述第一指示信息指示的DMRS端口;
    所述第一指示信息使能的码字个数;
    所述第一指示信息指示的重复传输次数。
  19. 根据权利要求18所述的方法,其中,在所述传输模式通过DCI指示的情况下,所述DCI基于如下至少一项指示所述传输模式:
    所述DCI中包含的指示域;
    所述DCI中的天线端口域,所述天线端口域还用于指示DMRS端口;
    所述DCI中的时域资源分配域。
  20. 一种传输模式确定装置,包括:
    接收模块,用于接收第一指示信息;
    确定模块,用于基于所述第一指示信息确定上行数据的传输模式,其中,所述传输模式包括如下至少一项:
    空分复用SDM模式;
    频分复用FDM模式;
    单频网SFN模式;
    时分复用TDM模式。
  21. 根据权利要求20所述的装置,其中,所述传输模式关联至少两个目标对象,所述装置还包括:
    切换模块,用于切换至关联一个目标对象进行上行数据传输。
  22. 根据权利要求21所述的装置,其中,所述切换模块用于执行如下至少一项:
    接收下行控制信息DCI,并基于所述DCI切换至关联一个目标对象进行上行数据传输,所述DCI用于指示所述装置切换至关联一个目标对象进行上行数据传输;
    在所述装置只有一个传输配置指示TCI状态生效的情况下,切换至关联一个目标对象进行上行数据传输;
    在所述传输模式包括SDM模式和SFN模式中的至少一者,上行数据传输指示的解调参考信号DMRS端口属于相同的码分复用CDM组的情况下,切换至关联一个目标对象进行上行数据传输;
    在天线端口域指示所述装置切换至关联一个目标对象进行上行数据传输,基于所述天线端口域切换至关联一个目标对象进行上行数据传输;
    在所述传输模式配置有两个码字,且只有其中一个码字使能的情况下,切换至关联一个目标对象进行上行数据传输;
    在所述传输模式包括SDM模式或者SFN模式,所述装置接收到的DCI指示的传输层数满足预设条件的情况下,切换至关联一个目标对象进行上行 数据传输。
  23. 根据权利要求22所述的装置,其中,所述预设条件包括如下任意一项:
    目标SRS资源指示SRI域指示的传输层数等于第一预设值;
    目标传输预编码矩阵指示TPMI域指示的传输层数等于所述第一预设值;
    两个SRI域指示的传输层数的和大于第二预设值;
    两个TPMI域指示的传输层数的和大于所述第二预设值。
  24. 根据权利要求21所述的装置,其中,在所述装置确定切换至关联一个目标对象进行上行数据传输的情况下,所述上行传输的传输参数通过以下至少一项确定:
    第一个SRI域指示的SRS;
    当前生效的TCI状态中的第一个TCI状态,或者索引小于预设索引的TCI状态,或者DCI指示的目标TCI状态;
    第一个SRI域指示的SRS组,或者第一个TPMI域指示的TPMI;
    第一个SRI域或TPMI域指示的传输层数确定的DMRS端口;
    当前生效的TCI状态中的第一个TCI状态关联的功控参数,或者索引小于预设索引的TCI状态关联的功控参数,或者DCI指示的目标TCI状态关联的功控参数;
    第一个相位跟踪参考信号-解调参考信号PTRS-DMRS关联指示域指示的PTRS-DMRS关联关系;
    目标调制和编码方案MCS域指示的MCS,或者目标冗余版本RV域指示的RV,或者目标新数据指示NDI域指示的NDI。
  25. 一种传输模式确定装置,包括:
    发送模块,用于向终端发送第一指示信息,所述第一指示信息用于指示终端进行上行数据传输的传输模式;
    其中,所述传输模式包括如下至少一项:
    空分复用SDM模式;
    频分复用FDM模式;
    单频网SFN模式;
    时分复用TDM模式。
  26. 根据权利要求25所述的装置,其中,所述传输模式关联至少一个目标对象,所述目标对象为与上行数据传输相关的参数信息。
  27. 根据权利要求25所述的装置,其中,所述传输模式通过如下至少一项进行指示:
    RRC信令;
    DCI;
    媒体接入控制控制元素MAC CE;
    所述第一指示信息指示的传输层数;
    所述第一指示信息指示的DMRS端口;
    所述第一指示信息使能的码字个数;
    所述第一指示信息指示的重复传输次数。
  28. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-12中任一项所述的传输模式确定方法的步骤。
  29. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求13-19中任一项所述的传输模式确定方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-12中任一项所述的传输模式确定方法的步骤,或者实现如权利要求13-19中任一项所述的传输模式确定方法的步骤。
PCT/CN2023/082134 2022-03-21 2023-03-17 传输模式确定方法、装置、终端及网络侧设备 WO2023179478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210283941.5 2022-03-21
CN202210283941.5A CN116828544A (zh) 2022-03-21 2022-03-21 传输模式确定方法、装置、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2023179478A1 true WO2023179478A1 (zh) 2023-09-28

Family

ID=88099900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082134 WO2023179478A1 (zh) 2022-03-21 2023-03-17 传输模式确定方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116828544A (zh)
WO (1) WO2023179478A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141756A (zh) * 2006-09-08 2008-03-12 华为技术有限公司 数据传输模式设置和检测装置及方法
US20150249511A1 (en) * 2011-08-15 2015-09-03 Zte Corporation Terminal and Method for Calculating Channel Quality Indication Information
WO2021030954A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 传输模式确定方法及装置
CN112583523A (zh) * 2019-09-30 2021-03-30 大唐移动通信设备有限公司 一种传输模式的指示方法、装置、基站、终端及存储介质
WO2021062830A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 传输模式确定方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141756A (zh) * 2006-09-08 2008-03-12 华为技术有限公司 数据传输模式设置和检测装置及方法
US20150249511A1 (en) * 2011-08-15 2015-09-03 Zte Corporation Terminal and Method for Calculating Channel Quality Indication Information
WO2021030954A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 传输模式确定方法及装置
CN112583523A (zh) * 2019-09-30 2021-03-30 大唐移动通信设备有限公司 一种传输模式的指示方法、装置、基站、终端及存储介质
WO2021062830A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 传输模式确定方法及装置

Also Published As

Publication number Publication date
CN116828544A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
JP2021533616A (ja) 通信方法及び装置
KR20230122107A (ko) Pusch 전송 방법, 장치, 기기 및 저장 매체
KR20220020926A (ko) 데이터 전송 방법, 장치, 시스템 및 저장 매체
US20240154773A1 (en) Tci state determining method and apparatus, terminal, and network-side device
WO2023179478A1 (zh) 传输模式确定方法、装置、终端及网络侧设备
WO2024083101A1 (zh) 信息指示方法、装置、终端、网络侧设备及可读存储介质
WO2023193678A1 (zh) 端口确定方法、装置、终端及可读存储介质
WO2023169363A1 (zh) 上行对象发送方法、装置、通信设备、系统及存储介质
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023227021A1 (zh) 波束信息传输方法及相关设备
WO2023213277A1 (zh) 混合自动重传请求-确认harq-ack码本的确定方法、装置及终端
WO2023198045A1 (zh) Harq ack反馈方法、装置、终端及网络侧设备
WO2023179753A1 (zh) 波束信息指示方法、装置、终端及网络侧设备
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2023125953A1 (zh) 时域绑定处理方法、终端及网络侧设备
WO2023169430A1 (zh) Pusch传输方法、终端及网络侧设备
WO2024022251A1 (zh) 上行传输方法、装置、终端及介质
WO2024017193A1 (zh) Tci状态确定方法、装置、终端和网络侧设备
WO2024032605A1 (zh) 资源配置方法、装置、终端、服务基站及介质
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2023160535A1 (zh) 解调参考信号信息确定方法、指示方法及相关设备
WO2023198014A1 (zh) 混合自动重传请求应答反馈方法、终端及网络侧设备
WO2023151649A1 (zh) 信息激活方法、终端及网络侧设备
WO2023160502A1 (zh) 传输方法、终端及网络侧设备
WO2023165393A1 (zh) 传输方法、装置、终端和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773726

Country of ref document: EP

Kind code of ref document: A1