WO2023186018A1 - 信息传输方法、装置、终端及可读存储介质 - Google Patents

信息传输方法、装置、终端及可读存储介质 Download PDF

Info

Publication number
WO2023186018A1
WO2023186018A1 PCT/CN2023/085115 CN2023085115W WO2023186018A1 WO 2023186018 A1 WO2023186018 A1 WO 2023186018A1 CN 2023085115 W CN2023085115 W CN 2023085115W WO 2023186018 A1 WO2023186018 A1 WO 2023186018A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptrs
port
terminal
ptrs port
transmission
Prior art date
Application number
PCT/CN2023/085115
Other languages
English (en)
French (fr)
Inventor
孙荣荣
刘昊
塔玛拉卡拉盖施
宋扬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023186018A1 publication Critical patent/WO2023186018A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application belongs to the field of communication technology, and specifically relates to an information transmission method, device, terminal and readable storage medium.
  • the terminal can use multiple antenna panels (panels) to perform uplink transmission at the same time. Multiple panels can simultaneously transmit the same or different data on the same or different frequency domain resources.
  • the terminal can be configured with multiple Phase Tracking Reference Signal (PTRS) ports for uplink transmission. In this case, how to determine the PTRS port actually used by the terminal is an urgent problem that needs to be solved.
  • PTRS Phase Tracking Reference Signal
  • Embodiments of the present application provide an information transmission method, device, terminal and readable storage medium, which can solve the problem of how to determine the PTRS port actually used by the terminal.
  • an information transmission method which method includes:
  • the terminal determines the first PTRS port and the transmission layer or demodulation reference signal (Demodulation Reference Signal, DMRS) port corresponding to the first PTRS port according to the first Transmit Precoding Matrix Indicator (TPMI) field, so
  • the first TPMI domain is a TPMI domain associated with a target object associated with the terminal's uplink transmission, and the first PTRS port is a PTRS port actually used by the terminal;
  • the terminal uses the first PTRS port and the transmission layer or DMRS port corresponding to the first PTRS port to perform uplink transmission.
  • an information transmission device applied to a terminal, including:
  • a first determination module configured to determine a first PTRS port and a transport layer or DMRS port corresponding to the first PTRS port according to a first TPMI domain, which is a target associated with the uplink transmission of the terminal
  • the TPMI domain associated with the object, and the first PTRS port is the PTRS port actually used by the terminal;
  • a transmission module configured to use the first PTRS port and the transmission layer or DMRS port corresponding to the first PTRS port to perform uplink transmission.
  • a terminal in a third aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to determine a first PTRS port and a transport layer or DMRS port corresponding to the first PTRS port according to the first TPMI domain,
  • the first TPMI domain is a TPMI domain associated with a target object associated with the terminal's uplink transmission
  • the first PTRS port is a PTRS port actually used by the terminal
  • the communication interface is used to utilize the first PTRS port and the transmission layer or DMRS port corresponding to the first PTRS port for uplink transmission.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip in a sixth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. A step of.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method described in the first aspect. Method steps.
  • the terminal can determine the first PTRS port and its corresponding transport layer or DMRS port based on the first TPMI domain associated with the target object associated with its uplink transmission, and use the first PTRS port and its corresponding The transport layer or DMRS port performs uplink transmission, and the first PTRS port is the PTRS port actually used by the terminal.
  • the terminal can determine the PTRS port actually used by the terminal, thereby effectively ensuring PTRS transmission performance.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a flow chart of an information transmission method provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an information transmission device provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • 6G 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet device
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • Vehicle user equipment VUE
  • pedestrian terminal pedestrian terminal
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment can include base stations, Wireless Local Area Network (WLAN) access points or WiFi nodes, etc.
  • WLAN Wireless Local Area Network
  • the base station can be called Node B, Evolved Node B (eNB), access point, base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, sending and receiving point ( Transmission Reception Point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the NR system is used The base station is introduced as an example, and the specific type of base station is not limited.
  • the waveform used for uplink transmission in this embodiment of the present application may be a Discrete Fourier Transform (DFT) waveform, such as Discrete Fourier Transform Spread Spectrum Orthogonal Frequency Division Multiplexing (Discrete Fourier Transform- Spreaded Orthogonal Frequency Division Multiple, DFT-S-OFDM) waveforms, etc., which are not limited.
  • DFT Discrete Fourier Transform
  • DFT-S-OFDM Discrete Fourier Transform Spread Spectrum Orthogonal Frequency Division Multiplexing
  • Figure 2 is a flow chart of an information transmission method provided by an embodiment of the present application. The method is executed by a terminal. As shown in Figure 2, the method includes the following steps:
  • Step 21 The terminal determines the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port according to the first TPMI domain.
  • the first Transmit Precoding Matrix Indicator (TPMI) field also known as the Precoding information and number of layers (Precoding information and number of layers) field, is a target associated with the uplink transmission of the terminal.
  • the TPMI domain associated with the object that is, the first TPMI domain is a target object associated with the uplink transmission of the terminal.
  • the first PTRS port is the PTRS port actually used by the terminal.
  • the association between a TPMI domain and a target object may include: multiple target objects corresponding to multiple TPMI domains, or one target object corresponding to one TPMI domain, or multiple target objects corresponding to one TPMI domain, or one target object associated with multiple TPMI domains.
  • the above-mentioned uplink transmission may include but is not limited to physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission, physical uplink control channel (Physical Uplink Control Channel, PUCCH) transmission, etc.
  • physical uplink shared channel Physical Uplink Shared Channel, PUSCH
  • physical uplink control channel Physical Uplink Control Channel, PUCCH
  • the first TPMI domain may be carried in downlink control information (DCI) and sent to the terminal by the network side device.
  • DCI downlink control information
  • the above terminal may be configured with multiple PTRS ports, and the first PTRS port is part or all of the multiple PTRS ports.
  • the first PTRS port may be a PTRS port.
  • Step 22 The terminal uses the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port to perform uplink transmission.
  • the terminal can According to the received PTRS-DMRS association indication field, select the first PTRS port from the transport layer or DMRS port corresponding to the first PTRS port.
  • the transport layer or DMRS port associated with the port (such as an associated transport layer/DMRS port), and uses the first PTRS port and the transport layer or DMRS port associated with the first PTRS port for uplink transmission.
  • the target objects involved in this embodiment are parameters related to uplink data transmission.
  • the target object may include: beam (beam), transmission and reception point (Transmission and Reception Point, TRP), antenna panel (panel), transmission configuration indicator (Transmission Configuration Indicator, TCI) status, TCI status pool, space Relationship (spatial relationship), Sounding Reference Signal (Sounding Reference Signal, SRS) resources, SRS ports configured with SRS resources, SRS resource sets, reference signals, path loss reference signals, etc., can also refer to certain specific indication fields such as SRS resources. Indicates the domain.
  • the antenna panel may also be called one of the following: antenna group, antenna port group, antenna set, antenna port set, beam set, beam sub-set, antenna array, antenna port array, antenna sub-array, antenna port sub-set Array, logical entity, entity or antenna entity, antenna panel entity, timing error group (TEG), terminal capability value, terminal capability value set, etc.
  • TAG timing error group
  • the antenna panel includes a corresponding panel identifier
  • the panel identifier may include at least one of the following: an antenna panel identifier, a reference signal resource identifier, a reference signal resource set identifier, a TCI status identifier, a quasi-co-location (Quasi) co-location, QCL) information identifier, spatial relationship identifier, terminal capability value index, terminal capability value set index, etc.
  • the beam information involved in this embodiment can also be called one of the following: beam identification information, spatial relationship information, spatial domain transmission filter information, spatial domain reception filter reception filter information, spatial filter information, transmission configuration indication status (TCI state) information, QCL information, QCL parameters, etc.
  • beam identification information can also be called one of the following: beam identification information, spatial relationship information, spatial domain transmission filter information, spatial domain reception filter reception filter information, spatial filter information, transmission configuration indication status (TCI state) information, QCL information, QCL parameters, etc.
  • TCI state transmission configuration indication status
  • QCL information QCL parameters, etc.
  • downlink beam information can usually be represented by TCI state information or QCL information
  • uplink beam information can usually be represented by TCI state information.
  • the uplink transmission of the above-mentioned terminal can be associated with multiple target objects (such as TCI status). At this time, the terminal is in a multi-panel scenario.
  • the association with the target object here can also be understood as applying the target object for transmission, or for the target. Objects are precoded and then transmitted.
  • the uplink transmission of the above terminal can be connected to a target object (such as panel) association.
  • the terminal can determine the first PTRS port and its associated transmission layer based on the first TPMI domain associated with the target object associated with its uplink transmission, and use the first PTRS port and its associated transmission layer. layer performs uplink transmission, and the first PTRS port is the PTRS port actually used by the terminal. As a result, the terminal can determine the PTRS port actually used by the terminal, thereby effectively ensuring PTRS transmission performance.
  • the first PTRS port may be the PTRS port corresponding to the uplink transmission antenna port indicated by the first TPMI domain
  • the transmission layer (layer) corresponding to the first PTRS port may be the transmission layer indicated by the first TPMI domain.
  • Part or all of the transmission layer corresponding to the uplink transmission antenna port, and the DMRS port corresponding to the first PTRS port may be part or all of the DMRS port corresponding to the uplink transmission antenna port indicated by the first TPMI field.
  • the terminal is configured with PTRS port 0 and PTRS port 1
  • PUSCH antenna ports 1000 and 1002 are associated/shared PTRS port 1
  • PUSCH antenna ports 1001 and 1002 are associated/shared PTRS port 1
  • the transport layer transmitted by PUSCH antenna ports 1000 and 1002 Associated with PTRS port 0, the transport layer transmitted by PUSCH antenna ports 1001 and 1002 is associated with PTRS port 1, then: if the first TPMI domain associated with the target object associated with PUSCH transmission indicates PUSCH antenna ports 1001 and 1002, then it can be determined that the One PTRS port (that is, the PTRS port actually used by the terminal) is PTRS port 1.
  • the layer corresponding to the first PTRS port is multiple layers transmitted by PUSCH antenna ports 1001 and 1002, that is, all layers corresponding to PUSCH antenna ports 1001 and 1002; And if the first TPMI domain associated with the target object associated with PUSCH transmission indicates PUSCH antenna ports 1000 and 1002, it can be determined that the first PTRS port (that is, the PTRS port actually used by the terminal) is PTRS port 0, and the first PTRS port corresponds to The layers are multiple layers transmitted by PUSCH antenna ports 1000 and 1002, that is, all layers corresponding to PUSCH antenna ports 1001 and 1002.
  • the terminal is configured with PTRS port 0 and PTRS port 1.
  • the PUSCH antenna ports are divided into two groups, namely the first group of ports and the second group of ports.
  • the first group of ports Corresponding to multiple layers, the first group of ports is associated with PTRS port 0, and PTRS port 0 only corresponds to the first two layer transmissions of the first group of ports, the second group of ports corresponds to multiple layers, and the second group of ports is associated with PTRS port 1, and PTRS port 1 only corresponds to the first 2 layers of the second group of ports transmission, then: if the first TPMI domain associated with the target object associated with PUSCH transmission indicates the first group of ports, it can be determined that the first PTRS port (that is, the PTRS port actually used by the terminal) is PTRS port 0, and the first PTRS port
  • the corresponding layers are the first two layers of the first group of ports, that is, the partial layers corresponding to the first group of ports; or, if the first TPMI domain associated with the target object associated with PUSCH transmission indicates the second group of ports, it can be determined
  • the first PTRS port (that is, the PTRS port actually used by the terminal) is PT
  • the first PTRS port (that is, the PTRS port actually used by the terminal) is PTRS port 0 and 1, respectively, and the corresponding layer It is the partial layer corresponding to the first group of ports and the partial layer corresponding to the second group of ports.
  • the received PTRS-DMRS association indication field contains 3 bits and PTRS port 0 corresponds to 8 transport layer/DMRS ports, you can select from the 8 transport layer/DMRS ports based on the PTRS-DMRS association indication field.
  • One transport/DMRS port serves as the associated transport/DMRS port of PTRS port 0.
  • the PTRS-DMRS association indication field can be obtained from the 8 transport layer/DMRS ports.
  • One of the first four transport layer/DMRS ports is selected as the associated transport layer/DMRS port of PTRS port 0.
  • the received PTRS-DMRS association indication field contains 4 bits
  • the first 2 bits indicate that one transport layer/DMRS port is selected from the 4 transport layers/DMRS ports corresponding to PTRS port 0 as the associated transmission of PTRS port 0 Layer/DMRS port
  • the last 2 bits indicate that one transport layer/DMRS port is selected from the 4 transport layer/DMRS ports corresponding to PTRS port 1 as the associated transport layer/DMRS port of PTRS port 0.
  • the first 1 bit indicates to select a transport layer/DMRS port from the first 2 transport layers/DMRS ports among the 4 transport layers/DMRS ports corresponding to PTRS port 0.
  • the DMRS port serves as the associated transport layer/DMRS port of PTRS port 0.
  • the last 1 bit indicates that a transport layer/DMRS port is selected from the first 2 transport layers/DMRS ports among the 4 transport layers/DMRS ports corresponding to PTRS port 1.
  • the terminal's uplink transmission is associated with multiple target objects, at least one of the following may be used to determine the first PTRS port and the transport layer associated with the first PTRS port:
  • the terminal determines the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port according to the first TPMI domain associated with the target object. In this way, in a multi-target object (such as panel) scenario, per-panel PTRS port determination can be achieved without introducing a new PTRS port.
  • the terminal's PUSCH transmission is associated with two target objects, such as a first target object and a second target object
  • the PTRS actually used by the terminal is determined based on the first TPMI domain associated with the first target object.
  • port and associated transport layer and, for the second target object, determine the PTRS port actually used by the terminal and the associated transport layer according to the first TPMI domain associated with the second target object.
  • the terminal determines the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port according to the first TPMI domain associated with any one of the multiple target objects. In this way, in a multi-target object (such as panel) scenario, per-panel PTRS port determination can be achieved without introducing a new PTRS port.
  • the PTRS port actually used by the terminal can be determined based on the first TPMI domain associated with the first target object or the second target object. and the corresponding transport layer.
  • the determined PTRS port and the associated transport layer are applicable to the first target object and the second target object.
  • the first TPMI domain associated with the first target object or the second target object may also be described as a first TPMI domain and a second TPMI domain.
  • the terminal determines the first PTRS port and the transport layer associated with the first PTRS port according to the first TPMI domain associated with the target object, thereby determining the PTRS actually used by the terminal. Port and associated transport layer.
  • the terminal is configured with multiple PTRS ports and the terminal's uplink transmission is associated with multiple target objects
  • the multiple PTRS ports correspond to multiple target objects one-to-one
  • each PTRS port is associated with its corresponding target object.
  • the first transport layer is associated, and the first transport layer includes at least one transport layer.
  • PTRS port 0 and PTRS port 1 correspond to the first target object and the second target object one-to-one, and each PTRS port corresponds to its corresponding target object.
  • the associated first transport layer is associated, and the first transport layer includes at least one transport layer.
  • PTRS port 0 corresponds to the first target object
  • PTRS port 1 corresponds to the second target object
  • the first target object is associated with the first transport layer
  • the second target object is associated with the second transport layer
  • PTRS port 0 is associated with the first target object.
  • the first transport layer associated with the object is associated
  • the PTRS port 1 is associated with the second transport layer associated with the second target object, where the first transport layer and the second transport layer each include at least one transport layer.
  • the terminal can determine the preset PTRS port or the default PTRS port among the multiple PTRS ports. The first PTRS port, thereby determining the PTRS port actually used by the terminal and the associated transport layer.
  • the PTRS port actually used by the terminal can be the preset PTRS port 0 or PTRS port 1, or the default PTRS port 0. Or PTRS port 1; the PTRS port actually used by the terminal is associated with all transport layers indicated by the TPMI domain associated with this one target object.
  • the terminal determines the first PTRS port and the transport layer associated with the first PTRS port according to the first TPMI domain associated with the target object, thereby determining the PTRS actually used by the terminal. Port and associated transport layer.
  • the terminal can determine the power scaling factor of the first PTRS port (that is, the actually used PTRS port) based on the first information,
  • the first information includes at least one of the following:
  • the above coherent characteristic information is determined from multiple TPMI domains and/or SRI domains received by the terminal.
  • the above-mentioned coherent characteristic information is determined by a preset TPMI domain and/or SRI domain among multiple TPMI domains and/or SRI domains, such as determined by the first TPMI domain/SRI domain.
  • the number of PTRS ports in this 2) includes at least one of the following: associated with multiple target objects The total number of PTRS ports scheduled for uplink transmission and the number of PTRS ports associated with uplink transmission associated with multiple target objects.
  • the number of transport layers in 3) includes at least one of the following:
  • the number of transmission layers corresponding to each target object where the number of transmission layers can be determined by the TPMI domain and/or the sounding reference signal resource indicator (SRS Resource Indicator, SRI) field associated with each target object; for example, each target
  • SRS Resource Indicator, SRI sounding reference signal resource indicator
  • the number of transport layers corresponding to the object is: the number of transport layers indicated by the TPMI domain/SRI domain associated with the target object;
  • the total number of transmission layers corresponding to multiple target objects wherein, the total number of transmission layers can be determined by the TPMI domain and/or SRI domain associated with multiple target objects; for example, the total number of transmission layers is: multiple targets The sum of the number of transport layers indicated by multiple TPMI domains/SRI domains associated with the object.
  • PUSCH transmission is associated with two TCI states, then for PUSCH transmission in each TCI state, the power scaling factor of the actually used PTRS port is determined by the number of transmission layers, coherence characteristics, and the TCI indicated by the TPMI field corresponding to the TCI state. The actual number of PTRS ports corresponding to the status is determined.
  • PUSCH transmission is associated with two TCI states, then for PUSCH transmission in each TCI state, the power scaling factor of the actually used PTRS port is determined by the number of transmission layers, coherence characteristics, and the number of transmission layers indicated by the TPMI field corresponding to the TCI state. The total actual number of PTRS ports corresponding to the two TCI states is determined.
  • PUSCH transmission is associated with two TCI states. If for PUSCH transmission in a certain TCI state, the number of transmission layers indicated by the TPMI field corresponding to the TCI state is 2, and the coherence characteristics are fully coherent, then refer to Table 1 to determine the corresponding PTRS The power scaling factor of the port is 3; or, if for PUSCH transmission in a certain TCI state, the number of transmission layers indicated by the TPMI field corresponding to the TCI state is 3, and the coherence characteristics are partially coherent/non-coherent/non-codebook transmission, the actual The number of scheduled PTRS ports is Qp. Refer to Table 1.
  • the power scaling factor of the corresponding PTRS port is 3Qp-3; or, if for PUSCH transmission in a certain TCI state, the transmission layer indicated by the TPMI field corresponding to the TCI state The number is 4, the coherence characteristic is partial coherence, and the number of actually scheduled PTRS ports is Qp. Referring to Table 1, it can be determined that the power scaling factor of the corresponding PTRS port is 3Qp.
  • the execution subject may be an information transmission device.
  • an information transmission device performing an information transmission method is used as an example to illustrate the information transmission device provided by the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an information transmission device provided by an embodiment of the present application. The device is applied to a terminal. As shown in Figure 3, the information transmission device 30 includes:
  • the first determination module 31 is configured to determine the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port according to the first TPMI domain, which is a target object associated with the uplink transmission of the terminal.
  • the associated TPMI domain, the first PTRS port is the PTRS port actually used by the terminal;
  • the transmission module 32 is configured to use the first PTRS port and the transmission layer or DMRS port corresponding to the first PTRS port to perform uplink transmission.
  • the first determination module 31 is configured to perform at least one of the following:
  • For each target object determine the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port according to the first TPMI domain associated with the target object;
  • the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port are determined according to the first TPMI domain associated with any one of the plurality of target objects.
  • the first determination module 31 is specifically configured to:
  • the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port are determined according to the first TPMI domain associated with the one target object.
  • the first PTRS port is the PTRS port corresponding to the uplink transmission antenna port indicated by the first TPMI domain
  • the transmission layer corresponding to the first PTRS port is the uplink transmission antenna indicated by the first TPMI domain.
  • Part or all of the transmission layer corresponding to the port, or the DMRS port corresponding to the first PTRS port is part or all of the DMRS port corresponding to the uplink transmission antenna port indicated by the first TPMI field.
  • the transmission module 32 is specifically configured to: select the transmission associated with the first PTRS port from the transmission layer or DMRS port corresponding to the first PTRS port according to the received PTRS-DMRS association indication field. layer or DMRS port, and use the first PTRS port and the transmission layer or DMRS port associated with the first PTRS port to perform uplink transmission.
  • the terminal is configured with multiple PTRS ports, and the terminal's uplink transmission is associated with multiple target objects, then the multiple PTRS ports correspond to the multiple target objects one-to-one, and each PTRS port corresponds to its
  • the first transport layer associated with the corresponding target object corresponds to the first transport layer, and the first transport layer includes at least one transport layer.
  • the first determination module 31 is also used to:
  • a preset PTRS port or a default PTRS port among the plurality of PTRS ports is determined as the first PTRS port.
  • the information transmission device 30 also includes:
  • a second determination module configured to determine the power scaling factor of the first PTRS port according to the first information when the terminal's uplink transmission is associated with multiple target objects;
  • the first information includes at least one of the following:
  • the number of transmission layers for uplink transmission is the number of transmission layers for uplink transmission.
  • the coherent characteristic information is obtained from multiple TPMI domains and/or SRIs received by the terminal. domain determined;
  • the number of PTRS ports includes at least one of the following: the total number of PTRS ports scheduled for the uplink transmission, the number of PTRS ports respectively associated with the multiple target objects;
  • the number of transmission layers includes at least one of the following: the number of transmission layers corresponding to each of the target objects, and the total number of transmission layers corresponding to the plurality of target objects.
  • the information transmission device 30 in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the information transmission device 30 provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 40, which includes a processor 41 and a memory 42.
  • the memory 42 stores programs or instructions that can be run on the processor 41.
  • the program or instruction is executed by the processor 41, each step of the above information transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the processor is configured to determine a first PTRS port and a transport layer or DMRS port corresponding to the first PTRS port according to the first TPMI domain.
  • the first The TPMI domain is a TPMI domain associated with the target object associated with the terminal's uplink transmission
  • the first PTRS port is the PTRS port actually used by the terminal
  • the communication interface is used to utilize the first PTRS port and the first PTRS
  • the transport layer or DMRS port corresponding to the port performs uplink transmission.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 5 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 500 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, a processor 510, etc. At least some parts.
  • the terminal 500 may also include a power supply for powering various components. (such as a battery), the power supply can be logically connected to the processor 510 through the power management system, so that functions such as charging, discharging, and power consumption management can be implemented through the power management system.
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 504 may include a graphics processing unit (Graphics Processing Unit, GPU) 5041 and a microphone 5042.
  • the graphics processor 5041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 506 may include a display panel 5061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes a touch panel 5071 and at least one of other input devices 5072 . Touch panel 5071, also called touch screen.
  • the touch panel 5071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 501 after receiving downlink data from the network side device, the radio frequency unit 501 can transmit it to the processor 510 for processing; in addition, the radio frequency unit 501 can send uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 509 may be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 509 may include volatile memory or non-volatile memory, or memory 509 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), Double Data Rate Synchronous Dynamic Random Access Memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Double Data Rate Synchronous Dynamic Random Access Memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM, SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 510 may include one or more processing units; optionally, the processor 510 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 510.
  • the processor 510 is configured to determine the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port according to the first TPMI domain, which is a target associated with the uplink transmission of the terminal 500
  • the TPMI domain associated with the object, and the first PTRS port is the PTRS port actually used by the terminal 500;
  • the radio frequency unit 501 is configured to use the first PTRS port and the transmission layer or DMRS port corresponding to the first PTRS port to perform uplink transmission.
  • the processor 510 may be configured to perform at least one of the following:
  • For each target object determine the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port according to the first TPMI domain associated with the target object;
  • the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port are determined according to the first TPMI domain associated with any one of the plurality of target objects.
  • the processor 510 is specifically configured to:
  • the first PTRS port and the transport layer or DMRS port corresponding to the first PTRS port are determined according to the first TPMI domain associated with the one target object.
  • the first PTRS port is the PTRS port corresponding to the uplink transmission antenna port indicated by the first TPMI domain
  • the transmission layer corresponding to the first PTRS port is the uplink transmission antenna indicated by the first TPMI domain.
  • Part or all of the transmission layer corresponding to the port, or the DMRS port corresponding to the first PTRS port is part or all of the DMRS port corresponding to the uplink transmission antenna port indicated by the first TPMI field.
  • the terminal 500 is configured with multiple PTRS ports, and the uplink transmission of the terminal 500 is associated with multiple target objects, then the multiple PTRS ports correspond to the multiple target objects one-to-one, and each PTRS port corresponds to its
  • the first transport layer associated with the corresponding target object corresponds to the first transport layer, and the first transport layer includes at least one transport layer.
  • the uplink transmission of the terminal 500 is associated with a target object, and the processor 510 is also used to:
  • a preset PTRS port or a default PTRS port among the plurality of PTRS ports is determined as the first PTRS port.
  • the processor 510 is also configured to determine the power scaling factor of the first PTRS port according to the first information when the uplink transmission of the terminal 500 is associated with multiple target objects;
  • the first information includes at least one of the following:
  • the number of transmission layers for uplink transmission is the number of transmission layers for uplink transmission.
  • the coherent characteristic information is determined from multiple TPMI domains and/or SRI domains received by the terminal 500;
  • the number of PTRS ports includes at least one of the following: the total number of PTRS ports scheduled for the uplink transmission, the number of PTRS ports respectively associated with the multiple target objects;
  • the number of transmission layers includes at least one of the following: the number of transmission layers corresponding to each of the target objects, and the total number of transmission layers corresponding to the plurality of target objects.
  • the terminal 500 provided by the embodiment of this application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, details will not be described here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above information transmission method embodiment is implemented, and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface.
  • the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement each process of the above information transmission method embodiment, and can achieve the same technical effect. To avoid duplication, the details will not be described here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above information transmission method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure can be integrated into one processing unit, Each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the embodiments of each of the above methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the essence of the technical solution or the part that contributes to the existing technology can be embodied in the form of a computer software product.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) and includes a number of instructions. It is used to cause a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息传输方法、装置、终端及可读存储介质,属于通信技术领域,本申请实施例的信息传输方法包括:终端根据第一TPMI域,确定第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,所述第一TPMI域为与所述终端的上行传输关联的目标对象关联的TPMI域,所述第一PTRS端口为所述终端实际使用的PTRS端口;利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输。

Description

信息传输方法、装置、终端及可读存储介质
相关申请的交叉引用
本申请主张在2022年4月2日在中国提交的中国专利申请No.202210351237.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信息传输方法、装置、终端及可读存储介质。
背景技术
为了提高上行数据传输的吞吐量与可靠性,终端可以采用多个天线面板(panel)同时进行上行传输,多个panel可以在相同或不同的频域资源上同时传输相同或不同的数据。在多个panel的场景中,终端可以被配置多个相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)端口来进行上行传输。这种情况下,如何确定终端实际使用的PTRS端口是目前急需解决的问题。
发明内容
本申请实施例提供一种信息传输方法、装置、终端及可读存储介质,能够解决如何确定终端实际使用的PTRS端口的问题。
第一方面,提供了一种信息传输方法,该方法包括:
终端根据第一传输预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI)域,确定第一PTRS端口以及所述第一PTRS端口对应的传输层或解调参考信号(Demodulation Reference Signal,DMRS)端口,所述第一TPMI域为与所述终端的上行传输关联的目标对象关联的TPMI域,所述第一PTRS端口为所述终端实际使用的PTRS端口;
所述终端利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输。
第二方面,提供了一种信息传输装置,应用于终端,包括:
第一确定模块,用于根据第一TPMI域,确定第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,所述第一TPMI域为与所述终端的上行传输关联的目标对象关联的TPMI域,所述第一PTRS端口为所述终端实际使用的PTRS端口;
传输模块,用于利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于根据第一TPMI域,确定第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,所述第一TPMI域为与终端的上行传输关联的目标对象关联的TPMI域,所述第一PTRS端口为所述终端实际使用的PTRS端口,所述通信接口用于利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,终端可以根据与其上行传输关联的目标对象关联的第一TPMI域,确定第一PTRS端口以及其对应的传输层或DMRS端口,并利用该第一PTRS端口以及其对应的传输层或DMRS端口进行上行传输,该第一PTRS端口为终端实际使用的PTRS端口。由此,可以实现终端确定其实际使用的PTRS端口,从而有效保证PTRS传输性能。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种信息传输方法的流程图;
图3是本申请实施例提供的一种信息传输装置的结构示意图;
图4是本申请实施例提供的一种通信设备的结构示意图;
图5是本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术 语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
可选的,本申请实施例中上行传输采用的波形可以为离散傅里叶变换(Discrete Fourier Transform,DFT)波形,比如离散傅里叶变换扩频的正交频分复用(Discrete Fourier Transform-Spreaded Orthogonal Frequency Division  Multiple,DFT-S-OFDM)波形等,对此不作限定。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信息传输方法、装置、终端及可读存储介质进行详细地说明。
请参见图2,图2是本申请实施例提供的一种信息传输方法的流程图,该方法由终端执行,如图2所示,该方法包括如下步骤:
步骤21:终端根据第一TPMI域,确定第一PTRS端口以及第一PTRS端口对应的传输层或DMRS端口。
本实施例中,第一传输预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI)域,又称为预编码信息和层数(Precoding information and number of layers)域,为与终端的上行传输关联的目标对象关联的TPMI域,即第一TPMI域是与终端的上行传输关联的目标对象关联。第一PTRS端口为终端实际使用的PTRS端口。
TPMI域与目标对象关联可以包含:多个目标对象分别对应多个TPMI域,或者一个目标对象对应一个TPMI域,或者多个目标对象对应一个TPMI域,或者一个目标对象关联多个TPMI域。
可选的,上述上行传输可包括但不限于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输、物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输等。
一些实施例中,第一TPMI域可以携带在下行控制信息(Downlink Control Information,DCI)中,由网络侧设备发送给终端。
一些实施例中,上述终端可被配置了多个PTRS端口,第一PTRS端口为该多个PTRS端口中的部分或全部PTRS端口。比如,第一PTRS端口可以为一个PTRS端口。
步骤22:终端利用第一PTRS端口以及第一PTRS端口对应的传输层或DMRS端口,进行上行传输。
本实施例中,由于可能存在终端实际使用的PTRS端口(即第一PTRS端口)对应多个传输层或DMRS端口的情况,因此在确定第一PTRS端口对应的传输层或DMRS端口之后,终端可以根据接收到的PTRS-DMRS关联指示域,从第一PTRS端口对应的传输层或DMRS端口中,选择第一PTRS端 口关联的传输层或DMRS端口(如关联的一个传输层/DMRS端口),并利用第一PTRS端口以及第一PTRS端口关联的传输层或DMRS端口,进行上行传输。
需指出的,本实施例中所涉及的目标对象为与上行数据传输相关的参数。例如,所述目标对象可以是包括:波束(beam)、发射接收点(Transmission and Reception Point,TRP)、天线面板(panel)、传输配置指示(Transmission Configuration Indicator,TCI)状态、TCI状态池、空间关系(spatial relation)、探测参考信号(Sounding Reference Signal,SRS)资源、SRS资源配置的SRS端口,SRS资源集、参考信号、路损参考信号等,也可指某些特定的指示域如SRS资源指示域。
其中,所述天线面板,也可以称为以下之一:天线组、天线端口组、天线集合、天线端口集合、波束集合、波束子集合、天线阵列、天线端口阵列、天线子阵列、天线端口子阵列、逻辑实体、实体或天线实体、天线面板实体(panel entity)、定时误差组(timing error group,TEG)、终端能力值、终端能力值集合等。
可选的,所述天线面板包括对应的panel标识,所述panel标识可以包括以下至少一项:天线面板的标识、参考信号资源标识、参考信号资源集标识、TCI状态标识、准共址(Quasi co-location,QCL)信息标识、空间关系标识、终端能力值索引、终端能力值集合索引等。
本实施例中所涉及的波束信息,也可以称为以下之一:波束的标识信息、空间关系(spatial relation)信息、空域发送滤波器(spatial domain transmission filter)信息、空域接收滤波器(spatial domain reception filter)信息、空域滤波器(spatial filter)信息、传输配置指示状态(TCI state)信息、QCL信息、QCL参数等。其中,下行波束信息通常可使用TCI state信息或QCL信息表示,上行波束信息通常可使用TCI state信息表示。
一些实施例中,上述终端的上行传输可以与多个目标对象(如TCI状态)关联,此时终端处于多panel场景中,这里与目标对象关联也可以理解为应用目标对象进行传输,或者对目标对象进行预编码后传输。
另一些实施例中,上述终端的上行传输可以与一个目标对象(如panel) 关联。
本申请实施例的信息传输方法,终端可以根据与其上行传输关联的目标对象关联的第一TPMI域,确定第一PTRS端口以及其关联的传输层,并利用该第一PTRS端口以及其关联的传输层进行上行传输,该第一PTRS端口为终端实际使用的PTRS端口。由此,可以实现终端确定其实际使用的PTRS端口,从而有效保证PTRS传输性能。
可选的,在本申请实施例中,第一PTRS端口可以为第一TPMI域指示的上行传输天线端口对应的PTRS端口,第一PTRS端口对应的传输层(layer)可以为第一TPMI域指示的上行传输天线端口对应的部分或全部传输层,第一PTRS端口对应的DMRS端口可以为第一TPMI域指示的上行传输天线端口对应的部分或全部DMRS端口。
例如,终端配置了PTRS端口0和PTRS端口1,PUSCH天线端口1000和1002关联/共享PTRS端口0,PUSCH天线端口1001和1002关联/共享PTRS端口1,由PUSCH天线端口1000和1002传输的传输层关联PTRS端口0,由PUSCH天线端口1001和1002传输的传输层关联PTRS端口1,则:如果与PUSCH传输关联的目标对象关联的第一TPMI域指示了PUSCH天线端口1001和1002,则可以确定第一PTRS端口(即终端实际使用的PTRS端口)为PTRS端口1,第一PTRS端口对应的layer为由PUSCH天线端口1001和1002传输的多个layer,即PUSCH天线端口1001和1002对应的全部layer;而如果与PUSCH传输关联的目标对象关联的第一TPMI域指示了PUSCH天线端口1000和1002,则可以确定第一PTRS端口(即终端实际使用的PTRS端口)为PTRS端口0,第一PTRS端口对应的layer为由PUSCH天线端口1000和1002传输的多个layer,即PUSCH天线端口1001和1002对应的全部layer。
又例如,假设在8天线(8Transport,8Tx)的情况下,终端配置了PTRS端口0和PTRS端口1,PUSCH天线端口分为两组,即第一组端口和第二组端口,第一组端口对应多个layer,第一组端口关联PTRS端口0,且PTRS端口0仅对应第一组端口的前2个layer传输,第二组端口对应多个layer,第二组端口关联PTRS端口1,且PTRS端口1仅对应第二组端口的前2个layer 传输,则:如果与PUSCH传输关联的目标对象关联的第一TPMI域指示了第一组端口,则可以确定第一PTRS端口(即终端实际使用的PTRS端口)为PTRS端口0,第一PTRS端口对应的layer为第一组端口的前2个layer,即第一组端口对应的部分layer;或者,如果与PUSCH传输关联的目标对象关联的第一TPMI域指示了第二组端口,则可以确定第一PTRS端口(即终端实际使用的PTRS端口)为PTRS端口1,第一PTRS端口对应的layer为第二组端口的前2个layer,即第二组端口对应的部分layer;或者,如果与PUSCH传输关联的目标对象关联的第一TPMI域指示了第一组端口和第二组端口,则可以分别确定第一PTRS端口(即终端实际使用的PTRS端口)为PTRS端口0和1,相应layer为第一组端口对应的部分layer和第二组端口对应的部分layer。
例如,若收到的PTRS-DMRS关联指示域包含3bit,PTRS端口0对应8个传输层/DMRS端口,则可以基于该PTRS-DMRS关联指示域,从该8个传输层/DMRS端口中选出一个传输层/DMRS端口作为PTRS端口0的关联传输层/DMRS端口。
又例如,若收到的PTRS-DMRS关联指示域包含2bit,PTRS端口0对应8个传输层/DMRS端口,则可以基于该PTRS-DMRS关联指示域,从该8个传输层/DMRS端口中的前4个传输层/DMRS端口选出一个传输层/DMRS端口作为PTRS端口0的关联传输层/DMRS端口。
又例如,若收到的PTRS-DMRS关联指示域包含4bit,其中前2比特指示从对应PTRS port 0的4个传输层/DMRS端口中选出一个传输层/DMRS端口作为PTRS端口0的关联传输层/DMRS端口,后2比特指示从对应PTRS port 1的4个传输层/DMRS端口中选出一个传输层/DMRS端口作为PTRS端口0的关联传输层/DMRS端口。
又例如,若收到的PTRS-DMRS关联指示域包含2bit,其中前1比特指示从对应PTRS port 0的4个传输层/DMRS端口中的前2个传输层/DMRS端口选出一个传输层/DMRS端口作为PTRS端口0的关联传输层/DMRS端口,后1比特指示从对应PTRS port 1的4个传输层/DMRS端口中的前2个传输层/DMRS端口选出一个传输层/DMRS端口作为PTRS端口0的关联传输层 /DMRS端口。
可选的,若终端的上行传输关联多个目标对象,可以采用以下至少一项来确定第一PTRS端口以及第一PTRS端口关联的传输层:
1)终端针对每个目标对象,根据关联该目标对象的第一TPMI域,确定第一PTRS端口以及第一PTRS端口对应的传输层或DMRS端口。这样在多目标对象(比如panel)场景下,可以在不引入新的PTRS端口的情况下,实现per-panel的PTRS端口确定。
例如,若终端的PUSCH传输关联两个目标对象,比如第一目标对象和第二目标对象,则对于第一目标对象,根据关联该第一目标对象的第一TPMI域,确定终端实际使用的PTRS端口以及关联的传输层,和,对于第二目标对象,根据关联该第二目标对象的第一TPMI域,确定终端实际使用的PTRS端口以及关联的传输层。
2)终端根据关联多个目标对象中的任一者的第一TPMI域,确定第一PTRS端口以及第一PTRS端口对应的传输层或DMRS端口。这样在多目标对象(比如panel)场景下,可以在不引入新的PTRS端口的情况下,实现per-panel的PTRS端口确定。
例如,若终端的PUSCH传输关联两个目标对象,比如第一目标对象和第二目标对象,则可以根据关联第一目标对象或第二目标对象的第一TPMI域,确定终端实际使用的PTRS端口以及对应的传输层,此确定的PTRS端口以及关联的传输层适用于第一目标对象和第二目标对象。这里关联第一目标对象或第二目标对象的第一TPMI域也可以描述为第一个TPMI域和第二个TPMI域。
可选的,若终端的上行传输关联一个目标对象,则终端根据关联该一个目标对象的第一TPMI域,确定第一PTRS端口以及第一PTRS端口关联的传输层,从而确定终端实际使用的PTRS端口以及关联的传输层。
可选的,若终端配置了多个PTRS端口,终端的上行传输关联多个目标对象,则该多个PTRS端口与多个目标对象一一对应,每个PTRS端口与其对应的目标对象所关联的第一传输层关联,第一传输层包含至少一个传输层。
例如,若终端配置了PTRS端口0和PTRS端口1,终端的PUSCH传输 关联两个目标对象,比如第一目标对象和第二目标对象,则:PTRS端口0和PTRS端口1与第一目标对象和第二目标对象一一对应,每个PTRS端口与其对应的目标对象所关联的第一传输层关联,第一传输层包含至少一个传输层。比如,PTRS端口0与第一目标对象对应,PTRS端口1与第二目标对象对应,第一目标对象关联第1传输层,第二目标对象关联第2传输层,则PTRS端口0与第一目标对象关联的第1传输层关联,PTRS端口1与第二目标对象关联的第2传输层关联,其中,第1传输层和第2传输层分别包含至少一个传输层。
可选的,若终端配置了多个PTRS端口,且终端的上行传输关联多个目标对象中的一个目标对象,则终端可以将该多个PTRS端口中的预设PTRS端口或默认PTRS端口确定为第一PTRS端口,从而确定终端实际使用的PTRS端口及关联的传输层。
例如,若终端配置了PTRS端口0和PTRS端口1,终端的PUSCH传输关联一个目标对象,则终端实际使用的PTRS端口可以为预设的PTRS端口0或PTRS端口1,或者为默认的PTRS端口0或PTRS端口1;终端实际使用的PTRS端口关联与该一个目标对象关联的TPMI域指示的所有传输层。
可选的,若终端的上行传输关联一个目标对象,则终端根据关联该一个目标对象的第一TPMI域,确定第一PTRS端口以及第一PTRS端口关联的传输层,从而确定终端实际使用的PTRS端口以及关联的传输层。
本申请实施例中,为了有效保证PTRS传输性能,当终端的上行传输关联多个目标对象时,终端可以根据第一信息,确定第一PTRS端口(即实际使用的PTRS端口)的功率缩放因子,所述第一信息包括以下至少一项:
1)关联多个目标对象的上行传输采用的多个预编码矩阵的相干特性信息。
可选的,上述相干特性信息由终端接收到的多个TPMI域和/或SRI域确定。
可选的,上述相干特性信息由多个TPMI域和/或SRI域中的预设TPMI域和/或SRI域确定,如由第一个TPMI域/SRI域确定。
2)关联多个目标对象的上行传输的PTRS端口数。
可选的,此2)中的PTRS端口数包括以下至少一者:关联多个目标对象 的上行传输调度的总的PTRS端口数、关联多个目标对象的上行传输分别关联的PTRS端口数。
3)关联多个目标对象的上行传输的传输层数。
可选的,此3)中的传输层数包括以下至少一者:
每个目标对象对应的传输层数;其中,此传输层数可以分别由每个目标对象关联的TPMI域和/或探测参考信号资源指示(SRS Resource Indicator,SRI)域确定;比如,每个目标对象对应的传输层数为:该目标对象关联的TPMI域/SRI域指示的传输层数;
多个目标对象对应的总的传输层数;其中,此总的传输层数可以由多个目标对象关联的TPMI域和/或SRI域确定;比如,该总的传输层数为:多个目标对象关联的多个TPMI域/SRI域指示的传输层数之和。
例如,PUSCH传输关联两个TCI状态,则对于每个TCI状态的PUSCH传输,实际使用的PTRS端口的功率缩放因子由所述TCI状态对应的TPMI域指示的传输层数、相干特性以及所述TCI状态对应的实际的PTRS端口数确定。
又例如,PUSCH传输关联两个TCI状态,则对于每个TCI状态的PUSCH传输,实际使用的PTRS端口的功率缩放因子由所述TCI状态对应的TPMI域指示的传输层数、相干特性、所述两个TCI状态对应的总的实际的PTRS端口数确定。
例如,以PUSCH传输为例,有关PTRS端口的功率缩放因子的解读可以如下表1所示:
表1

例如,PUSCH传输关联两个TCI状态,如果对于某TCI状态的PUSCH传输,由该TCI状态对应的TPMI域指示的传输层数为2,相干特性为全相干,则参见表1,可以确定相应PTRS端口的功率缩放因子为3;或者,如果对于某TCI状态的PUSCH传输,由该TCI状态对应的TPMI域指示的传输层数为3,相干特性为部分相干/非相干/非码本传输,实际调度的PTRS端口数为Qp,则参见表1,可以确定相应PTRS端口的功率缩放因子为3Qp-3;或者,如果对于某TCI状态的PUSCH传输,由该TCI状态对应的TPMI域指示的传输层数为4,相干特性为部分相干,实际调度的PTRS端口数为Qp,则参见表1,可以确定相应PTRS端口的功率缩放因子为3Qp。
本申请实施例提供的信息传输方法,执行主体可以为信息传输装置。本申请实施例中以信息传输装置执行信息传输方法为例,说明本申请实施例提供的信息传输装置。
请参见图3,图3是本申请实施例提供的一种信息传输装置的结构示意图,该装置应用于终端,如图3所示,信息传输装置30包括:
第一确定模块31,用于根据第一TPMI域,确定第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,所述第一TPMI域为与终端的上行传输关联的目标对象关联的TPMI域,所述第一PTRS端口为所述终端实际使用的PTRS端口;
传输模块32,用于利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输。
可选的,若终端的上行传输关联多个目标对象,所述第一确定模块31用于执行以下至少一项:
针对每个所述目标对象,根据关联所述目标对象的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口;
根据关联所述多个目标对象中的任一者的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口。
可选的,若终端的上行传输关联多个目标对象中的一个目标对象,所述第一确定模块31具体用于:
根据关联所述一个目标对象的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口。
可选的,所述第一PTRS端口为所述第一TPMI域指示的上行传输天线端口对应的PTRS端口,所述第一PTRS端口对应的传输层为所述第一TPMI域指示的上行传输天线端口对应的部分或全部传输层,或,所述第一PTRS端口对应的DMRS端口为所述第一TPMI域指示的上行传输天线端口对应的部分或全部DMRS端口。
可选的,所述传输模块32具体用于:根据接收到的PTRS-DMRS关联指示域,从所述第一PTRS端口对应的传输层或DMRS端口中,选择所述第一PTRS端口关联的传输层或DMRS端口,并利用所述第一PTRS端口以及所述第一PTRS端口关联的传输层或DMRS端口,进行上行传输。
可选的,若终端配置了多个PTRS端口,所述终端的上行传输关联多个目标对象,则所述多个PTRS端口与所述多个目标对象一一对应,每个所述PTRS端口与其对应的目标对象所关联的第一传输层对应,所述第一传输层包含至少一个传输层。
可选的,若终端配置了多个PTRS端口,所述终端的上行传输关联多个目标对象中的一个目标对象,所述第一确定模块31还用于:
将所述多个PTRS端口中的预设PTRS端口或默认PTRS端口确定为所述第一PTRS端口。
可选的,信息传输装置30还包括:
第二确定模块,用于当终端的上行传输关联多个目标对象时,根据第一信息,确定所述第一PTRS端口的功率缩放因子;
其中,所述第一信息包括以下至少一项:
所述上行传输采用的多个预编码矩阵的相干特性信息;
所述上行传输的PTRS端口数;
所述上行传输的传输层数。
可选的,所述相干特性信息由所述终端接收到的多个TPMI域和/或SRI 域确定;
和/或,所述PTRS端口数包括以下至少一者:所述上行传输调度的总的PTRS端口数、所述多个目标对象分别关联的PTRS端口数;
和/或,所述传输层数包括以下至少一者:每个所述目标对象分别对应的传输层数、所述多个目标对象对应的总的传输层数。
本申请实施例中的信息传输装置30可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信息传输装置30能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图4所示,本申请实施例还提供一种通信设备40,包括处理器41和存储器42,存储器42上存储有可在所述处理器41上运行的程序或指令,该程序或指令被处理器41执行时实现上述信息传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于根据第一TPMI域,确定第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,所述第一TPMI域为与终端的上行传输关联的目标对象关联的TPMI域,所述第一PTRS端口为所述终端实际使用的PTRS端口,通信接口用于利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
具体地,图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509以及处理器510等中的至少部分部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源 (比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理单元(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072中的至少一种。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501接收来自网络侧设备的下行数据后,可以传输给处理器510进行处理;另外,射频单元501可以向网络侧设备发送上行数据。通常,射频单元501包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括易失性存储器或非易失性存储器,或者,存储器509可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate  SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器509包括但不限于这些和任意其它适合类型的存储器。
处理器510可包括一个或多个处理单元;可选的,处理器510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510,用于根据第一TPMI域,确定第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,所述第一TPMI域为与终端500的上行传输关联的目标对象关联的TPMI域,所述第一PTRS端口为终端500实际使用的PTRS端口;
射频单元501,用于利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输。
可选的,若终端500的上行传输关联多个目标对象,处理器510可用于执行以下至少一项:
针对每个所述目标对象,根据关联所述目标对象的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口;
根据关联所述多个目标对象中的任一者的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口。
可选的,若终端500的上行传输关联多个目标对象中的一个目标对象,处理器510具体用于:
根据关联所述一个目标对象的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口。
可选的,所述第一PTRS端口为所述第一TPMI域指示的上行传输天线端口对应的PTRS端口,所述第一PTRS端口对应的传输层为所述第一TPMI域指示的上行传输天线端口对应的部分或全部传输层,或,所述第一PTRS端口对应的DMRS端口为所述第一TPMI域指示的上行传输天线端口对应的部分或全部DMRS端口。
可选的,若终端500配置了多个PTRS端口,终端500的上行传输关联多个目标对象,则所述多个PTRS端口与所述多个目标对象一一对应,每个所述PTRS端口与其对应的目标对象所关联的第一传输层对应,所述第一传输层包含至少一个传输层。
可选的,若终端500配置了多个PTRS端口,终端500的上行传输关联一个目标对象,处理器510还用于:
将所述多个PTRS端口中的预设PTRS端口或默认PTRS端口确定为所述第一PTRS端口。
可选的,处理器510还用于当终端500的上行传输关联多个目标对象时,根据第一信息,确定所述第一PTRS端口的功率缩放因子;
其中,所述第一信息包括以下至少一项:
所述上行传输采用的多个预编码矩阵的相干特性信息;
所述上行传输的PTRS端口数;
所述上行传输的传输层数。
可选的,所述相干特性信息由终端500接收到的多个TPMI域和/或SRI域确定;
和/或,所述PTRS端口数包括以下至少一者:所述上行传输调度的总的PTRS端口数、所述多个目标对象分别关联的PTRS端口数;
和/或,所述传输层数包括以下至少一者:每个所述目标对象分别对应的传输层数、所述多个目标对象对应的总的传输层数。
本申请实施例提供的终端500能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,该处理器为上述实施例中所述的终端中的处理器。该可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所 述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的 技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (19)

  1. 一种信息传输方法,包括:
    终端根据第一传输预编码矩阵指示TPMI域,确定第一相位跟踪参考信号PTRS端口以及第一PTRS端口对应的传输层或解调参考信号DMRS端口,第一TPMI域为与所述终端的上行传输关联的目标对象关联的TPMI域,所述第一PTRS端口为所述终端实际使用的PTRS端口;
    所述终端利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输。
  2. 根据权利要求1所述的方法,其中,若所述终端的上行传输关联多个目标对象,所述根据第一TPMI域,确定第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,包括以下至少一项:
    所述终端针对每个所述目标对象,根据关联所述目标对象的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层;
    所述终端根据关联所述多个目标对象中的任一者的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口。
  3. 根据权利要求1所述的方法,其中,若所述终端的上行传输关联多个目标对象中的一个目标对象,所述根据第一TPMI域,确定第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,包括:
    所述终端根据关联所述一个目标对象的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口。
  4. 根据权利要求1至3任一项所述的方法,其中,所述第一PTRS端口为所述第一TPMI域指示的上行传输天线端口对应的PTRS端口,所述第一PTRS端口对应的传输层为所述第一TPMI域指示的上行传输天线端口对应的部分或全部传输层,或,所述第一PTRS端口对应的DMRS端口为所述第一TPMI域指示的上行传输天线端口对应的部分或全部DMRS端口。
  5. 根据权利要求1所述的方法,其中,所述利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输,包括:
    所述终端根据接收到的PTRS-DMRS关联指示域,从所述第一PTRS端 口对应的传输层或DMRS端口中,选择所述第一PTRS端口关联的传输层或DMRS端口,并利用所述第一PTRS端口以及所述第一PTRS端口关联的传输层或DMRS端口,进行上行传输。
  6. 根据权利要求1所述的方法,其中,若所述终端配置了多个PTRS端口,所述终端的上行传输关联多个目标对象,则所述多个PTRS端口与所述多个目标对象一一对应,每个所述PTRS端口与其对应的目标对象所关联的第一传输层对应,所述第一传输层包含至少一个传输层;
    或者,
    若所述终端配置了多个PTRS端口,所述终端的上行传输关联多个目标对象中的一个目标对象,所述方法还包括:
    所述终端将所述多个PTRS端口中的预设PTRS端口或默认PTRS端口确定为所述第一PTRS端口。
  7. 根据权利要求1至5任一项所述的方法,其中,若所述终端的上行传输关联多个目标对象,所述方法还包括:
    所述终端根据第一信息,确定所述第一PTRS端口的功率缩放因子;
    其中,所述第一信息包括以下至少一项:
    所述上行传输采用的多个预编码矩阵的相干特性信息;
    所述上行传输的PTRS端口数;
    所述上行传输的传输层数。
  8. 根据权利要求7所述的方法,其中,所述相干特性信息由所述终端接收到的多个TPMI域和/或SRI域确定;
    和/或,
    所述PTRS端口数包括以下至少一者:所述上行传输调度的总的PTRS端口数、所述多个目标对象分别关联的PTRS端口数;
    和/或,
    所述传输层数包括以下至少一者:每个所述目标对象对应的传输层数、所述多个目标对象对应的总的传输层数。
  9. 一种信息传输装置,包括:
    第一确定模块,用于根据第一TPMI域,确定第一PTRS端口以及所述 第一PTRS端口对应的传输层或DMRS端口,所述第一TPMI域为与终端的上行传输关联的目标对象关联的TPMI域,所述第一PTRS端口为所述终端实际使用的PTRS端口;
    传输模块,用于利用所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口,进行上行传输。
  10. 根据权利要求9所述的装置,其中,若所述终端的上行传输关联多个目标对象,所述第一确定模块用于执行以下至少一项:
    针对每个所述目标对象,根据关联所述目标对象的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口;
    根据关联所述多个目标对象中的任一者的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口。
  11. 根据权利要求9所述的装置,其中,若所述终端的上行传输关联多个目标对象中的一个目标对象,所述第一确定模块具体用于:
    根据关联所述一个目标对象的第一TPMI域,确定所述第一PTRS端口以及所述第一PTRS端口对应的传输层或DMRS端口。
  12. 根据权利要求9至11任一项所述的装置,其中,所述第一PTRS端口为所述第一TPMI域指示的上行传输天线端口对应的PTRS端口,所述第一PTRS端口对应的传输层为所述第一TPMI域指示的上行传输天线端口对应的部分或全部传输层,或,所述第一PTRS端口对应的DMRS端口为所述第一TPMI域指示的上行传输天线端口对应的部分或全部DMRS端口。
  13. 根据权利要求9所述的装置,其中,若所述终端配置了多个PTRS端口,所述终端的上行传输关联多个目标对象,则所述多个PTRS端口与所述多个目标对象一一对应,每个所述PTRS端口与其对应的目标对象所关联的第一传输层对应,所述第一传输层包含至少一个传输层;
    或者,
    若所述终端配置了多个PTRS端口,所述终端的上行传输关联多个目标对象中的一个目标对象,所述第一确定模块还用于:
    将所述多个PTRS端口中的预设PTRS端口或默认PTRS端口确定为所述第一PTRS端口。
  14. 根据权利要求9至13任一项所述的装置,其中,所述装置还包括:
    第二确定模块,用于当所述终端的上行传输关联多个目标对象时,根据第一信息,确定所述第一PTRS端口的功率缩放因子;
    其中,所述第一信息包括以下至少一项:
    所述上行传输采用的多个预编码矩阵的相干特性信息;
    所述上行传输的PTRS端口数;
    所述上行传输的传输层数。
  15. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至8任一项所述的信息传输方法的步骤。
  16. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至8任一项所述的信息传输方法的步骤。
  17. 一种芯片,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-8中任一项所述的信息传输方法的步骤。
  18. 一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如权利要求1-8中任一项所述的信息传输方法的步骤。
  19. 一种终端,被配置为执行如权利要求1至8中任一项所述的信息传输方法的步骤。
PCT/CN2023/085115 2022-04-02 2023-03-30 信息传输方法、装置、终端及可读存储介质 WO2023186018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210351237.9 2022-04-02
CN202210351237.9A CN116939847A (zh) 2022-04-02 2022-04-02 信息传输方法、装置、终端及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023186018A1 true WO2023186018A1 (zh) 2023-10-05

Family

ID=88199387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085115 WO2023186018A1 (zh) 2022-04-02 2023-03-30 信息传输方法、装置、终端及可读存储介质

Country Status (2)

Country Link
CN (1) CN116939847A (zh)
WO (1) WO2023186018A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111283A (zh) * 2017-11-03 2018-06-01 中兴通讯股份有限公司 一种参考信号的传输方法及设备
CN109379172A (zh) * 2017-08-11 2019-02-22 展讯通信(上海)有限公司 相位跟踪参考信号端口配置方法及基站、可读存储介质
US20190182001A1 (en) * 2017-12-07 2019-06-13 Lg Electronics Inc. Method of transmitting uplink phase tracking reference signal by user equipment in wireless communication system and apparatus supporting same
CN110034904A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 相位跟踪参考信号关联指示及发送方法、网络设备和终端
WO2021184336A1 (en) * 2020-03-20 2021-09-23 Qualcomm Incorporated Configuration for phase tracking reference signal ports to enable uplink transmission with multiple codewords

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109379172A (zh) * 2017-08-11 2019-02-22 展讯通信(上海)有限公司 相位跟踪参考信号端口配置方法及基站、可读存储介质
CN108111283A (zh) * 2017-11-03 2018-06-01 中兴通讯股份有限公司 一种参考信号的传输方法及设备
US20190182001A1 (en) * 2017-12-07 2019-06-13 Lg Electronics Inc. Method of transmitting uplink phase tracking reference signal by user equipment in wireless communication system and apparatus supporting same
CN110034904A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 相位跟踪参考信号关联指示及发送方法、网络设备和终端
WO2021184336A1 (en) * 2020-03-20 2021-09-23 Qualcomm Incorporated Configuration for phase tracking reference signal ports to enable uplink transmission with multiple codewords

Also Published As

Publication number Publication date
CN116939847A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
WO2023011352A1 (zh) 下行控制信息指示方法、上行信道传输秩确定方法及装置
WO2023236962A1 (zh) 资源分配方法、装置、通信设备、系统及存储介质
WO2023231920A1 (zh) 反向散射通信方法及设备
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2023169430A1 (zh) Pusch传输方法、终端及网络侧设备
WO2023193678A1 (zh) 端口确定方法、装置、终端及可读存储介质
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2024083101A1 (zh) 信息指示方法、装置、终端、网络侧设备及可读存储介质
WO2023179478A1 (zh) 传输模式确定方法、装置、终端及网络侧设备
WO2024007918A1 (zh) 预编码矩阵指示、确定方法、装置、网络侧设备及终端
WO2023208042A1 (zh) 预失真处理方法、装置及设备
WO2023109759A1 (zh) Prach传输方法、装置及终端
WO2023109763A1 (zh) Prach传输方法、装置及终端
WO2024061111A1 (zh) 资源处理方法、装置及通信设备
WO2023151593A1 (zh) 预编码指示方法、装置、通信设备、系统及存储介质
WO2023246919A1 (zh) 信道估计方法、装置、通信设备、系统及存储介质
WO2024061287A1 (zh) 人工智能ai模型传输方法、装置、终端及介质
WO2023198094A1 (zh) 模型输入的确定方法及通信设备
WO2023241448A1 (zh) 测量处理方法、终端及网络侧设备
WO2023213277A1 (zh) 混合自动重传请求-确认harq-ack码本的确定方法、装置及终端
WO2023207842A1 (zh) 波束信息确定方法、终端及网络侧设备
WO2023198125A1 (zh) 副链路发现传输处理方法、装置及终端
WO2023179651A1 (zh) 波束处理方法、装置及设备
WO2023151649A1 (zh) 信息激活方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778383

Country of ref document: EP

Kind code of ref document: A1