WO2023193678A1 - 端口确定方法、装置、终端及可读存储介质 - Google Patents

端口确定方法、装置、终端及可读存储介质 Download PDF

Info

Publication number
WO2023193678A1
WO2023193678A1 PCT/CN2023/085890 CN2023085890W WO2023193678A1 WO 2023193678 A1 WO2023193678 A1 WO 2023193678A1 CN 2023085890 W CN2023085890 W CN 2023085890W WO 2023193678 A1 WO2023193678 A1 WO 2023193678A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
dmrs
port
dmrs ports
dmrs port
Prior art date
Application number
PCT/CN2023/085890
Other languages
English (en)
French (fr)
Inventor
孙荣荣
刘昊
塔玛拉卡拉盖施
宋扬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023193678A1 publication Critical patent/WO2023193678A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a port determination method, device, terminal and readable storage medium.
  • the terminal can use multiple antenna panels (panels) to perform uplink transmission at the same time. Multiple panels can transmit the same or different data simultaneously on the same or different frequency domain resources.
  • the terminal Uplink transmission can be associated with multiple Demodulation Reference Signal (DMRS) ports.
  • DMRS Demodulation Reference Signal
  • the DMRS port indication in the related art only contains one DMRS port and cannot meet the new requirements. In this case, how to interpret the DMRS port is an urgent problem that needs to be solved.
  • Embodiments of the present application provide a port determination method, device, terminal and readable storage medium, which can solve the problem of how to interpret the DMRS port.
  • the first aspect provides a port determination method, including:
  • the terminal determines the mode used for uplink transmission
  • the terminal determines the DMRS port for uplink transmission according to the mode.
  • a port determination device which is applied to a terminal and includes:
  • the first determination module is used by the terminal to determine the mode used for uplink transmission
  • the second determination module is configured to determine the DMRS port for uplink transmission according to the mode.
  • a terminal in a third aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to determine a mode used for uplink transmission, and determine a DMRS port for the uplink transmission according to the mode.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip in a sixth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. A step of.
  • a computer program/program product is provided, the computer program/program product being stored in a memory In the storage medium, the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect.
  • the terminal can determine the mode used for uplink transmission, and determine the DMRS port for uplink transmission based on the mode. Therefore, the DMRS port can be interpreted from the perspective of the terminal transmission mode, thereby meeting the DMRS port indication requirements under different transmission modes.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a flow chart of a port determination method provided by an embodiment of the present application.
  • Figure 3A is one of the schematic diagrams of uplink transmission in the embodiment of the present application.
  • Figure 3B is the second schematic diagram of uplink transmission in the embodiment of the present application.
  • Figure 3C is the third schematic diagram of uplink transmission in the embodiment of the present application.
  • Figure 3D is the fourth schematic diagram of uplink transmission in the embodiment of the present application.
  • Figure 3E is the fifth schematic diagram of uplink transmission in the embodiment of the present application.
  • Figure 3F is the sixth schematic diagram of uplink transmission in the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a port determination device provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer, TPC), a laptop computer (Laptop Computer, LP), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, Ultra-mobile personal computer (UMPC), Mobile Internet Device (MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearable devices (Wearable Device), vehicle user equipment (VUE), pedestrian terminal (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, Terminal-side devices such as personal computers (PCs), teller machines or self-service machines, wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment can include base stations, Wireless Local Area Network (WLAN) access points or WiFi nodes, etc.
  • WLAN Wireless Local Area Network
  • the base station can be called Node B, Evolved Node B (eNB), access point, base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, sending and receiving point ( Transmission Reception Point, TRP) or some other appropriate terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the NR system is used The base station in is introduced as an example, and the specific type of base station is not limited.
  • Figure 2 is a flow chart of a port determination method provided by an embodiment of the present application. The method is executed by a terminal. As shown in Figure 2, the method includes the following steps:
  • Step 21 The terminal determines the mode used for uplink transmission.
  • the mode used for uplink transmission can be understood as the mode supported by the waveform used for uplink transmission.
  • the waveforms include but are not limited to Discrete Fourier Transform (DFT) waveforms, Cyclic Prefix (CP) waveforms, etc.
  • the DFT waveform is, for example, orthogonal frequency division multiplexing of discrete Fourier transform spread spectrum ( Discrete Fourier Transform-Spreaded OFDM, DFT-S-OFDM) waveforms, etc., are not limited to this.
  • This mode includes but is not limited to Space Division Multiplexing (SDM), Frequency Division Multiplexing (Frequency Division Multiplexing (FDM), Single Frequency Network (Single Frequency Network, SFN), etc.
  • Step 22 The terminal determines the DMRS port for uplink transmission according to the mode.
  • the above-mentioned uplink transmission may include but is not limited to physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission, physical uplink control channel (Physical Uplink Control Channel, PUCCH) transmission, etc.
  • physical uplink shared channel Physical Uplink Shared Channel, PUSCH
  • physical uplink control channel Physical Uplink Control Channel, PUCCH
  • the terminal can determine the mode used for uplink transmission, and determine the DMRS port for uplink transmission based on the mode. Therefore, the DMRS port can be interpreted from the perspective of the terminal transmission mode, thereby meeting the DMRS port indication requirements under different transmission modes.
  • the mode used by the terminal for uplink transmission is SDM or SFN
  • at least one of the following may be used to determine the DMRS port for uplink transmission:
  • the terminal determines the first DMRS port for uplink transmission according to the first table of deciphering DMRS ports, the first table and multiple Sounding Reference Signal (Sounding Reference Signal, SRS) resource indication (SRS Resource Indicator, SRI) field indications
  • the first table is related to the sum of ranks, or the first table is related to the sum of ranks indicated by multiple transmission precoding matrix indicator (Transmitted Precoding Matrix Indicator, TPMI) fields. That is, the terminal may determine the number of ranks used to interpret the DMRS port based on the sum of the ranks indicated by the multiple received sounding reference signal resource indication SRI domains, or based on the sum of the ranks indicated by the multiple received transmission precoding matrix indications TPMI domain.
  • the first table and based on the first table, determines the first DMRS port for uplink transmission.
  • the terminal may receive the sum of the ranks indicated by multiple SRI domains (such as all received SRI domains), Or the first table for interpreting the DMRS port is determined based on the sum of ranks indicated by multiple received TPMI fields (eg, all received TPMI fields).
  • the terminal may receive multiple Determine the first number used to interpret the DMRS port based on the sum of the ranks indicated by the SRI fields (such as all received SRI fields), or based on the sum of the ranks indicated by multiple received TPMI fields (such as all received TPMI fields). surface.
  • the above-mentioned multiple SRI domains and/or multiple TPMI domains may be carried in downlink control information (Downlink Control Information, DCI) and sent to the terminal by the network side device.
  • DCI Downlink Control Information
  • the terminal when the terminal determines the first DMRS port for uplink transmission according to the first table, specifically according to the received antenna port indication field, the terminal selects the first DMRS port for uplink transmission from the first table, that is, the first DMRS port for uplink transmission.
  • One DMRS port is a DMRS port in the first table indicated by the antenna port indication field.
  • the first table may be, but is not limited to, as shown in Table 1 below:
  • the Value value in Table 1 is related to the antenna port indication field.
  • the antenna port indication field can take the value of the Value value in Table 1. If the value of the antenna port indication field is the first value, it can indicate DMRS ports 0 and 1 from a code division multiplexing (Code Division Multiplexing, CDM) group (group). For example, the first value corresponds to Value 0; if the antenna port If the value of the indication field is the second value, it can indicate DMRS ports 0 and 1 from two CDM groups. For example, the second value corresponds to Value 1; if the value of the antenna port indication field is the third value, it can indicate the DMRS ports 0 and 1 from two CDM groups.
  • CDM Code Division Multiplexing
  • the third value corresponds to Value 2; if the value of the antenna port indication field is the fourth value, it can indicate DMRS ports 0 and 2 from the two CDM groups, for example, the fourth value corresponds to Value 3.
  • the first table may be, but is not limited to, as shown in Table 2 below:
  • the Value value in Table 2 is related to the antenna port indication field.
  • the antenna port indication field can take the value of the Value value in Table 2. If the value of the antenna port indication field is the first value, it can indicate the DMRS ports 0-3 from the two CDM groups. For example, the first value corresponds to Value 0.
  • the terminal determines the second DMRS port for uplink transmission according to the second table of interpretation of DMRS ports, where the second table is related to the rank indicated by the target TPMI domain. That is, the terminal may determine the second table for interpreting DMRS ports according to the rank indicated by the received target TPMI domain, and determine the second DMRS port for uplink transmission according to the second table.
  • the terminal can determine the second table for interpreting the DMRS port according to the rank indicated by the received target TPMI field.
  • the terminal in mode SFN, if the terminal's transmissions associated with multiple target objects have orthogonal DMRS ports, and the network side indicates that the terminal's uplink transmission is associated with one target object, the terminal can be based on the received target TPMI.
  • the rank indicated by the field determines the second table used to interpret the DMRS port.
  • the terminal determines a second table for interpreting the DMRS port according to the rank indicated by the received target TPMI field.
  • the target TPMI domain is the first TPMI domain received by the terminal.
  • the above target TPMI domain may be carried in DCI and sent to the terminal by the network side device.
  • the terminal when the terminal determines the second DMRS port for uplink transmission according to the second table, specifically, according to the received antenna port indication field, the terminal selects the second DMRS port for uplink transmission from the second table, that is, the second DMRS port for uplink transmission.
  • the second DMRS port is the DMRS port in the second table indicated by the antenna port indication field.
  • the second table may be, but is not limited to, as shown in Table 3 below:
  • the Value value in Table 3 is related to the antenna port indication field.
  • the antenna port indication field can take the value of the Value value in Table 3. If the value of the antenna port indication field is the first value, it can indicate DMRS ports 0 and 1 from one CDM group, for example, the first value corresponds to Value 0; if the value of the antenna port indication field is the second value, it can indicate the DMRS ports 0 and 1 from two CDM groups.
  • the second value corresponds to Value 1
  • the value of the antenna port indication field is the third value, it can indicate DMRS ports 2 and 3 from two CDM groups, for example, the third value Corresponds to Value 2
  • the value of the antenna port indication field is the fourth value, it can indicate DMRS ports 0 and 2 from two CDM groups.
  • the fourth value corresponds to Value 3.
  • the terminal when the first DMRS port determined in 1) above includes multiple DMRS ports from different code division multiplexing (Code Division Multiplexing, CDM) groups, the terminal can It is determined that the uplink transmission is associated with multiple target objects, and the multiple DMRS ports are used for uplink transmission for the multiple target objects.
  • CDM Code Division Multiplexing
  • the terminal may perform any of the following:
  • the terminal determines that its uplink transmission is associated with a target object, and uses the second DMRS port to perform uplink transmission for the target object;
  • the terminal determines that its uplink transmission is associated with a target object, and uses the first N DMRS ports in the first DMRS port to perform uplink transmission for the target object; wherein N is determined based on the rank indicated by the target TPMI domain received by the terminal.
  • the mode adopted by the terminal for uplink transmission is FDM
  • the uplink transmission corresponds to multiple DMRS ports from different CDM groups
  • the odd-numbered subcarriers of the frequency domain resources of the uplink transmission Different target objects are associated with even-numbered subcarriers.
  • the terminal's uplink transmission mode is FDM
  • the uplink transmission corresponds to multiple DMRS ports from the same CDM group
  • different physical resource blocks of the frequency domain resources of the uplink transmission are associated with different target objects.
  • the network side configures the FDM transmission mode for the terminal through RRC signaling
  • the DMRS port indication for PUSCH transmission is ⁇ 0, 2 ⁇
  • the odd-numbered subcarriers of the PUSCH frequency domain resources correspond to a TCI status (panel)
  • the even-numbered subcarriers correspond to a TCI state (panel).
  • the subcarrier corresponds to another TCI state (panel); if multiple DMRS ports from a CDM group are indicated for PUSCH transmission, the first PRB of the PUSCH frequency domain resource is associated with one TCI state 1 (panel), and the second PRB is associated with another A TCI status (panel).
  • the terminal’s uplink transmission mode is FDM or single frequency network SFN, And if multiple target objects are associated, at least one of the following can be used to determine the DMRS port for uplink transmission:
  • the terminal determines the third DMRS port for uplink transmission according to the third table that interprets the DMRS port, and the third table is related to the rank indicated by the target TPMI domain. That is, the terminal may determine a third table for interpreting DMRS ports according to the rank indicated by the received target TPMI domain, and determine the third DMRS port for uplink transmission according to the third table.
  • the third DMRS port includes: multiple identical DMRS ports corresponding to multiple target objects one-to-one, that is, multiple identical DMRS ports corresponding to multiple target objects respectively.
  • the terminal can determine the rank used to interpret the DMRS according to the rank indicated by the received target TPMI domain. Third table of ports.
  • the target TPMI domain is the first TPMI domain received by the terminal.
  • the above target TPMI domain may be carried in DCI and sent to the terminal by the network side device.
  • the terminal when the terminal determines the third DMRS port for uplink transmission according to the third table, specifically, according to the received antenna port indication field, the terminal selects the third DMRS port for uplink transmission from the third table, that is, the third DMRS port for uplink transmission.
  • the three DMRS ports are the DMRS ports in the third table indicated by the antenna port indication field.
  • the third table may be, but is not limited to, as shown in Table 3 above.
  • the terminal determines the fourth DMRS port for uplink transmission based on the fourth table that interprets the DMRS ports.
  • the fourth table is related to the maximum value among multiple ranks indicated by multiple TPMI fields. That is, the terminal may determine a fourth table for interpreting DMRS ports based on the maximum value among multiple ranks received from multiple TPMI domain indications, and determine the fourth DMRS port for uplink transmission based on the fourth table.
  • the fourth DMRS port includes at least one of the following: a plurality of DMRS ports corresponding to the first target object, and the first M DMRS ports of the plurality of DMRS ports corresponding to the second target object; wherein, the first The target object corresponds to the maximum value among the plurality of ranks, the second target object corresponds to any other rank among the plurality of ranks except the maximum value, and the M corresponds to the second target object based on The TPMI field indicates the rank determined.
  • the terminal can perform multiple rankings according to multiple received TPMI fields (such as all received SRI fields). The maximum value in determines the fourth table used to interpret the DMRS port.
  • the terminal when determining the fourth DMRS port for uplink transmission according to the fourth table, may select multiple DMRS ports corresponding to the first target object from the fourth table according to the received antenna port indication field, and The first M DMRS ports of the plurality of DMRS ports are determined as ports corresponding to the second target object. That is, the first target object corresponds to the DMRS ports in the fourth table indicated by the antenna port indication field, and the second target object corresponds to the first M DMRS ports in the fourth table of DMRS ports indicated by the antenna port indication field.
  • the terminal's uplink transmission is associated with two target objects, namely the first target object and the second target object, corresponding to the first TPMI domain and the second TPMI domain respectively. If the rank indicated by the first TPMI field is x, and the rank indicated by the second TPMI field is y, and x>y, then the fourth table for interpreting the DMRS port is determined based on x.
  • the target objects involved are parameters related to uplink data transmission.
  • the target object may include but is not limited to: beam, transmission and reception point (Transmission and Reception Point, TRP), antenna panel (panel), transmission configuration indicator (Transmission Configuration Indicator, TCI) status, TCI status Pool, spatial relation, Sounding Reference Signal (SRS) resource, SRS resource set, reference signal, path loss reference signal, etc.
  • TRP Transmission and Reception Point
  • TCI Transmission Configuration Indicator
  • TCI status Pool Transmission Configuration Indicator
  • SRS Sounding Reference Signal
  • SRS Sounding Reference Signal
  • the antenna panel may also be called one of the following: antenna group, antenna port group, antenna set, antenna port set, beam set, beam sub-set, antenna array, antenna port array, antenna sub-array, antenna port sub-set Array, logical entity, entity or antenna entity, antenna panel entity, timing error group (TEG), terminal capability value, terminal capability value set, etc.
  • TAG timing error group
  • the antenna panel includes a corresponding panel identifier
  • the panel identifier can be one of the following: an antenna panel identifier, a reference signal resource identifier, a reference signal resource set identifier, a TCI status identifier, a quasi co-location (Quasi co-location) , QCL) information identifier, spatial relationship identifier, terminal capability value index, terminal capability value set index, etc.
  • the beam information involved in this embodiment can also be called one of the following: beam identification information, spatial relationship information, spatial domain transmission filter information, spatial domain reception filter ( spatial domain reception filter) information, spatial filter information, transmission configuration indication status (TCI state) information, QCL information, QCL parameters, etc.
  • beam identification information can also be called one of the following: beam identification information, spatial relationship information, spatial domain transmission filter information, spatial domain reception filter ( spatial domain reception filter) information, spatial filter information, transmission configuration indication status (TCI state) information, QCL information, QCL parameters, etc.
  • TCI state transmission configuration indication status
  • QCL information QCL parameters
  • downlink beam information can usually be represented by TCI state information or QCL information
  • uplink beam information can usually be represented by TCI state information.
  • Mode 1-1 As shown in Figure 3A, the terminal's uplink transmission is associated with TRP0 and TRP1, has one CW, and the redundancy version (Redundancy Version, RV) is RV0, then:
  • the interpretation of the DMRS port is determined by the sum of the ranks indicated by the two SRI domains/TPMI domains received, and can only indicate DMRS from two CDM groups Port; if the network side indicates that a target object is associated for transmission, the interpretation of the DMRS port is determined by the rank indicated by the first TPMI field received.
  • the interpretation of the DMRS port is determined by the sum of the ranks indicated by the two SRI domains/TPMI domains received, if multiple DMRS ports from different CDM groups are indicated, it indicates MTRP transmission, and if Indicating multiple DMRS ports from the same CDM group means switching to STRP transmission and interpreting the DMRS ports according to the rank indicated by the first TPMI domain received, or taking the indicated multiple DMRS ports from the same CDM group.
  • the first N DMRS ports perform uplink transmission, where N is determined based on the rank indicated by the first TPMI field.
  • Mode 1-2 As shown in Figure 3B, the terminal's uplink transmission is associated with TRP0 and TRP1, with two CWs. The interpretation of the DMRS port at this time is the same as that in Mode 1-1, and will not be described again here.
  • Mode 2-1 As shown in Figure 3C, the terminal's uplink transmission is associated with TRP0 and TRP1, with one CW/1RV.
  • TRP0 and TRP1 correspond to different Physical Resource Block (PRB) resources, then: DMRS
  • PRB Physical Resource Block
  • DMRS DMRS
  • the interpretation of the port is determined by the rank indicated by the first TPMI domain received.
  • the two TRPs correspond to the same DMRS port group, that is, the two TRPs correspond to the same multiple DMRS ports.
  • Mode 2-2 As shown in Figure 3D, the terminal's uplink transmission is associated with TRP0 and TRP1, with one CW.
  • TRP0 and TRP1 correspond to different physical resource block (PRB) resources.
  • PRB physical resource block
  • TRP0 and TRP1 have RV0 and RV1 respectively, then: DMRS
  • the interpretation of the port is determined by the rank indicated by the first TPMI domain received.
  • the two TRPs correspond to the same DMRS port group, that is, the two TRPs correspond to the same multiple DMRS ports.
  • Mode 2-3 As shown in Figure 3E, the terminal's uplink transmission is associated with TRP0 and TRP1 and has two CWs.
  • TRP0 and TRP1 correspond to different physical resource block (PRB) resources.
  • PRB physical resource block
  • TRP0 and TRP1 have CW0 and CW1 respectively, then:
  • the interpretation of the DMRS port is determined by the larger of the ranks indicated by the two received TPMI fields.
  • the TRP corresponding to the TPMI field with the smaller rank takes the first M DMRS ports in the corresponding table indicated by the antenna port indication field, M
  • the rank is determined based on the rank indicated by the TPMI field with the smallest rank.
  • Mode 3-1 As shown in Figure 3F, the terminal's uplink transmission is associated with TRP0 and TRP1, with one CW, and TRP0 and TRP1 have the same RV0, then:
  • TRP0 and TRP1 correspond to the same DMRS port
  • the interpretation of the DMRS port is determined by the rank indicated by the first TPMI field received.
  • the two TRPs correspond to the same DMRS port group, that is, the two TRPs correspond to the same Multiple DMRS ports.
  • TRP0 and TRP1 correspond to orthogonal DMRS ports, the behavior is similar to that in mode SDM, and will not be described again here.
  • determining the DMRS port for uplink transmission in the above step 22 may include: the terminal determines the DMRS port for uplink transmission based on interpreting a fifth table of DMRS ports.
  • the fifth table includes at least one first entry, and the fifth table contains at least one first entry.
  • One entry is used to indicate multiple DMRS ports associated with upstream transmission of multiple target objects. That is to say, the table for interpreting DMRS ports determined in this embodiment may include at least one first entry indicating multiple DMRS ports associated with uplink transmission of multiple target objects.
  • the first entry is the entry corresponding to Value 4, indicating the two DMRS ports associated with the uplink transmission of the two target objects, that is, DMRS ports 0 and 2.
  • the above-mentioned fifth table may be, but is not limited to, as shown in Table 5 below:
  • the first entry includes entries corresponding to Value 12 and Value 13, indicating the two DMRS ports associated with the uplink transmission of the two target objects, where the entry corresponding to Value 12 indicates DMRS ports 0 and 2, The entries corresponding to Value 13 indicate DMRS ports 4 and 6.
  • the fifth table mentioned above may be, but is not limited to, as shown in Table 6 below:
  • the first entry includes the entry corresponding to Value 12, indicating the two DMRS ports associated with the uplink transmission of the two target objects.
  • the entry corresponding to Value 12 indicates DMRS ports 0 and 2, from two CDM group.
  • the DMRS port for uplink transmission may be determined based on the received antenna port indication field.
  • the above step 22 may include: the terminal, according to the mode and the received antenna port indication domain, Determine the fifth DMRS port for uplink transmission. That is to say, after determining the mode used for uplink transmission, the table for interpreting the DMRS port can be determined first according to the mode, and then the received antenna port indication field can be interpreted according to the table to determine the DMRS port for uplink transmission.
  • the fifth DMRS port may include: multiple DMRS ports indicated by the antenna port indication field, and the multiple DMRS ports are from different or the same CDM group.
  • the multiple DMRS ports are from different CDM groups.
  • the multiple DMRS ports come from different CDM groups; or when uplink transmission uses FDM, the multiple DMRS ports come from the same CDM group.
  • the bit length of the antenna port indication field may be 3 bits or 4 bits to indicate the DMRS port for uplink transmission.
  • the bit length of the antenna port indication field may be 3 bits or 4 bits to indicate the DMRS port for uplink transmission.
  • DMRS ports 0 and 2 in the entry corresponding to Value 4 can be indicated; or, when interpreting the DMRS port based on the above Table 2
  • the terminal's uplink transmission is associated with multiple target objects, it can indicate DMRS ports 0 and 2 in the entry corresponding to Value 12, or it can indicate that the entry corresponding to Value 13 indicates DMRS ports 4 and 6.
  • the terminal can determine multiple DMRS ports for the uplink transmission according to the protocol agreement.
  • the DMRS port group i.e., multiple DMRS ports
  • the protocol such as ⁇ 0, 2 ⁇
  • the DMRS port associated with PUSCH transmission of one target object is indicated by the antenna port indication field
  • the DMRS ports for PUSCH transmission may be determined to be 0 and 2, and the antenna port indication field indicating the DMRS port may be ignored.
  • the terminal can determine multiple DMRS ports including the one DMRS port for the uplink transmission based on a DMRS port indicated by the received antenna port indication field.
  • PUSCH transmission is associated with multiple target objects, and multiple DMRS port groups are preset, such as (0,2), (1,3), (4,6) and (5,7). If the received antenna port If the indication field indicates DMRS port 0, it can be determined that the DMRS ports for PUSCH transmission include DMRS ports 0 and 2; and if the received antenna port indication field indicates DMRS port 4, it can be determined that the DMRS ports for PUSCH transmission include DMRS port 4. and 6.
  • the terminal can determine the uplink transmission DMRS port according to the CDM group to which it belongs.
  • the target object associated with the upstream transmission is not limited to CDM groups.
  • the first CDM group is associated with the first target object
  • the second CDM group is associated with the second target object
  • this transmission method can be enabled through at least one of the following:
  • Radio Resource Control RRC configuration that is, the RRC configuration indicates that the terminal's uplink transmission is associated with multiple target objects
  • the TCI status corresponding to multiple target objects takes effect; that is, when the TCI status corresponding to multiple target objects currently takes effect, uplink transmission associated with multiple target objects is enabled;
  • the DCI indication for scheduling the uplink transmission that is, the DCI for scheduling the uplink transmission indicates that the uplink transmission is associated with multiple target objects;
  • the network side indicates DMRS ports from different CDM groups; that is, by indicating DMRS ports from different CDM groups, it indicates that the corresponding uplink transmission is associated with multiple target objects.
  • the execution subject may be a port determination device.
  • the port determination method performed by the port determination device is used as an example to illustrate the port determination device provided by the embodiment of this application.
  • Figure 4 is a schematic structural diagram of a port determination device provided by an embodiment of the present application. The device is applied to a terminal. As shown in Figure 4, the port determination device 40 includes:
  • the first determination module 41 is used by the terminal to determine the mode used for uplink transmission
  • the second determination module 42 is configured to determine the DMRS port for uplink transmission according to the mode.
  • the mode is space division multiplexing SDM or single frequency network SFN;
  • the second determination module 42 is specifically used for at least one of the following:
  • the first table is related to the sum of the ranks of multiple SRI domain indications, or the first table is related to multiple TPMI domain indications. The sum of ranks is related;
  • the second DMRS port for the uplink transmission is determined according to the second table of interpreting the DMRS ports, and the second table is related to the rank indicated by the target TPMI domain.
  • the port determining device 40 further includes:
  • the first transmission module is configured to determine that the uplink transmission is associated with multiple target objects, and use the multiple DMRS ports to perform uplink transmission for the multiple target objects.
  • the port determination device 40 further includes: a second transmission module, and the second transmission module is specifically used for any of the following:
  • the uplink transmission is associated with a target object, and for the one target object, use the first N DMRS ports of the first DMRS port to perform uplink transmission; wherein, the N is based on the target TPMI domain received by the terminal
  • the indicated rank is determined.
  • the mode is frequency division multiplexing FDM or single frequency network SFN;
  • the second determination module 42 is specifically used for any of the following:
  • the fourth DMRS port for uplink transmission is determined according to the fourth table of interpreting DMRS ports, and the fourth table is related to the maximum value among multiple ranks indicated by multiple TPMI fields.
  • the uplink transmission is associated with multiple target objects
  • the third DMRS port includes: the same multiple DMRS ports corresponding to the multiple target objects one-to-one;
  • the uplink transmission is associated with multiple target objects
  • the fourth DMRS port includes at least one of the following: multiple DMRS ports corresponding to the first target object, and the first M of the multiple DMRS ports corresponding to the second target object.
  • DMRS ports wherein the first target object corresponds to the maximum value among the plurality of ranks, and the second target object corresponds to any other rank among the plurality of ranks except the maximum value, so The M is determined based on the rank indicated by the TPMI domain corresponding to the second target object.
  • the second determination module 42 is specifically used to:
  • the fifth table is related to the mode, and the fifth table includes at least one first entry, and the first entry Used to indicate multiple DMRS ports associated with uplink transmission of multiple target objects.
  • the second determination module 42 is specifically used to:
  • the fifth DMRS port for the uplink transmission is determined.
  • the fifth DMRS port includes: multiple DMRS ports indicated by the antenna port indication field, and the multiple DMRS ports are from different or the same CDM group. .
  • the transmission method is enabled by at least one of the following:
  • the TCI status corresponding to multiple target objects takes effect
  • the network side indicates DMRS ports from different CDM groups.
  • the port determining device 30 in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the port determination device 40 provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 50, which includes a processor 51 and a memory 52.
  • the memory 52 stores programs or instructions that can be run on the processor 51.
  • the program or instruction is executed by the processor 51, each step of the above port determination method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the processor is used to determine the mode used for uplink transmission; and determine the demodulation reference signal DMRS port for the uplink transmission according to the mode.
  • the terminal is The embodiment corresponds to the above-mentioned terminal side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 6 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, a processor 610, etc. At least some parts.
  • the terminal 600 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 610 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 604 may include a graphics processing unit (Graphics Processing Unit, GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 606 may include a display panel 6061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes a touch panel 6071 and at least one of other input devices 6072 .
  • Touch panel 6071 also called touch screen.
  • the touch panel 6071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 6072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 601 after receiving downlink data from the network side device, can transmit it to the processor 610 for processing; in addition, the radio frequency unit 601 can send uplink data to the network side device.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 609 may be used to store software programs or instructions as well as various data.
  • the memory 609 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 609 may include volatile memory or non-volatile memory, or memory 609 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 610 may include one or more processing units; optionally, the processor 610 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 610.
  • the processor 610 is used to determine the mode used for uplink transmission; and determine the demodulation reference signal DMRS port for the uplink transmission according to the mode.
  • the terminal 600 provided by the embodiment of this application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above port determination method embodiment is implemented, and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above port determination method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above port determination method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • Embodiments of the present application also provide a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the port determination method as described above.
  • the network side device can configure relevant parameters and/or Send relevant parameters.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • Another point shown or discussed The mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the relevant technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several The instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the embodiments of each of the above methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种端口确定方法、装置、终端及可读存储介质,属于通信技术领域,本申请实施例的端口确定方法包括:终端确定上行传输所采用的模式;根据所述模式,确定所述上行传输的解调参考信号DMRS端口。

Description

端口确定方法、装置、终端及可读存储介质
相关申请的交叉引用
本申请主张在2022年4月6日在中国提交的中国专利申请No.202210358723.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种端口确定方法、装置、终端及可读存储介质。
背景技术
为了提高上行数据传输的吞吐量与可靠性,终端可以采用多个天线面板(panel)同时进行上行传输,多个panel可以在相同或不同的频域资源上同时传输相同或不同的数据,终端的上行传输可以关联多个解调参考信号(Demodulation Reference Signal,DMRS)端口。然而,相关技术中的DMRS端口指示只包含一个DMRS端口,无法满足新的要求。这种情况下,如何解读DMRS端口是目前急需解决的问题。
发明内容
本申请实施例提供一种端口确定方法、装置、终端及可读存储介质,能够解决如何解读DMRS端口的问题。
第一方面,提供了一种端口确定方法,包括:
终端确定上行传输所采用的模式;
所述终端根据所述模式,确定所述上行传输的DMRS端口。
第二方面,提供了一种端口确定装置,应用于终端,包括:
第一确定模块,用于终端确定上行传输所采用的模式;
第二确定模块,用于根据所述模式,确定所述上行传输的DMRS端口。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于确定上行传输所采用的模式,根据所述模式,确定所述上行传输的DMRS端口。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存 储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,终端可以确定上行传输所采用的模式,并根据该模式,确定上行传输的DMRS端口。由此,可以从终端传输模式的角度来解读DMRS端口,从而满足不同传输模式下的DMRS端口指示需求。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种端口确定方法的流程图;
图3A是本申请实施例中上行传输的示意图之一;
图3B是本申请实施例中上行传输的示意图之二;
图3C是本申请实施例中上行传输的示意图之三;
图3D是本申请实施例中上行传输的示意图之四;
图3E是本申请实施例中上行传输的示意图之五;
图3F是本申请实施例中上行传输的示意图之六;
图4是本申请实施例提供的一种端口确定装置的结构示意图;
图5是本申请实施例提供的一种通信设备的结构示意图;
图6是本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网 络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer,TPC)、膝上型电脑(Laptop Computer,LP)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point、,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的端口确定方法、装置、终端及可读存储介质进行详细地说明。
请参见图2,图2是本申请实施例提供的一种端口确定方法的流程图,该方法由终端执行,如图2所示,该方法包括如下步骤:
步骤21:终端确定上行传输所采用的模式。
本实施例中,上行传输所采用的模式可理解为上行传输所采用的波形支持的模式。该波形包括但不限于离散傅里叶变换(Discrete Fourier Transform,DFT)波形、循环前缀(Cyclic Prefix,CP)波形等,DFT波形比如为离散傅里叶变换扩频的正交频分复用(Discrete Fourier Transform-Spreaded OFDM,DFT-S-OFDM)波形等,对此不作限定。该模式包括但不限于空分复用(Space Division Multiplexing,SDM)、频分复用(Frequency  Division Multiplexing,FDM)、单频网(Single Frequency Network,SFN)等。
步骤22:终端根据所述模式,确定上行传输的DMRS端口。
本实施例中,上述上行传输可以包括但不限于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输、物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输等。
本申请实施例的端口确定方法,终端可以确定上行传输所采用的模式,并根据该模式,确定上行传输的DMRS端口。由此,可以从终端传输模式的角度来解读DMRS端口,从而满足不同传输模式下的DMRS端口指示需求。
可选的,在本申请实施例中,若终端的上行传输所采用的模式为SDM或SFN,可以采用以下至少一项来确定上行传输的DMRS端口(port):
1)终端根据解读DMRS端口的第一表,确定上行传输的第一DMRS端口,所述第一表与多个探测参考信号(Sounding Reference Signal,SRS)资源指示(SRS Resource Indicator,SRI)域指示的秩之和相关,或者,所述第一表与多个传输预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)域指示的秩之和相关。即,终端可以根据接收到的多个探测参考信号资源指示SRI域指示的秩之和,或者根据接收到的多个传输预编码矩阵指示TPMI域指示的秩之和,确定用于解读DMRS端口的第一表,并根据第一表,确定上行传输的第一DMRS端口。
一些实施例中,在模式SDM下,如果网络侧指示了终端的上行传输关联多个目标对象,则终端可根据接收到多个SRI域(如接收到的所有SRI域)指示的秩之和,或者根据接收到的多个TPMI域(如接收到的所有TPMI域)指示的秩之和,确定用于解读DMRS端口的第一表。
一些实施例中,在模式SFN下,如果终端的关联多个目标对象的传输具有正交的DMRS端口,且网络侧指示了终端的上行传输关联多个目标对象,则终端可根据接收到多个SRI域(如接收到的所有SRI域)指示的秩之和,或者根据接收到的多个TPMI域(如接收到的所有TPMI域)指示的秩之和,确定用于解读DMRS端口的第一表。
一些实施例中,上述多个SRI域和/或多个TPMI域可以携带在下行控制信息(Downlink Control Information,DCI)中,由网络侧设备发送给终端。
一些实施例中,终端在根据第一表,确定上行传输的第一DMRS端口时,具体为根据接收到的天线端口指示域,从第一表中选取上行传输的第一DMRS端口,即,第一DMRS端口为天线端口指示域指示的第一表中的DMRS端口。
例如,若多个TPMI/SRI域指示的秩之和为2,则第一表可以但不限于如下表1所示:
表1

参见表1,表1中的Value值与天线端口指示域相关,比如,天线端口指示域可以取值为表1中的Value值。若天线端口指示域取值为第一值,可以指示来自一个码分复用(Code Division Multiplexing,CDM)组(group)的DMRS端口0和1,例如该第一值对应Value 0;若天线端口指示域取值为第二值,可以指示来自两个CDM group的DMRS端口0和1,例如该第二值对应Value 1;若天线端口指示域取值为第三值,可以指示来自两个CDM group的DMRS端口2和3,例如该第三值对应Value 2;若天线端口指示域取值为第四值,可以指示来自两个CDM group的DMRS端口0和2,例如该第四值对应Value 3。
又例如,若多个TPMI域指示的秩之和为4,则第一表可以但不限于如下表2所示:
表2
参见表2,表2中的Value值与天线端口指示域相关,比如,天线端口指示域可以取值为表2中的Value值。若天线端口指示域取值为第一值可以指示来自两个CDM group的DMRS端口0-3,例如该第一值对应Value 0。
2)终端根据解读DMRS端口的第二表,确定上行传输的第二DMRS端口,所述第二表与目标TPMI域指示的秩相关。即,终端可以根据接收到的目标TPMI域指示的秩,确定用于解读DMRS端口的第二表,并根据第二表,确定上行传输的第二DMRS端口。
一些实施例中,在模式SDM下,如果网络侧指示了终端的上行传输关联一个目标对象,则终端可根据接收到的目标TPMI域指示的秩,确定用于解读DMRS端口的第二表。
一些实施例中,在模式SFN下,如果终端的关联多个目标对象的传输具有正交的DMRS端口,且网络侧指示了终端的上行传输关联一个目标对象,则终端可以根据接收到的目标TPMI域指示的秩,确定用于解读DMRS端口的第二表。
一些实施例中,在模式SFN下,如果终端的关联多个目标对象的传输具有相同的DMRS端口,则终端根据接收到的目标TPMI域指示的秩,确定用于解读DMRS端口的第二表。
一些实施例中,上述目标TPMI域为终端接收到的第一个TPMI域。
一些实施例中,上述目标TPMI域可以携带在DCI中,由网络侧设备发送给终端。
一些实施例中,终端在根据第二表,确定上行传输的第二DMRS端口时,具体为根据接收到的天线端口指示域,从第二表中选取上行传输的第二DMRS端口,即,第二DMRS端口为天线端口指示域指示的第二表中的DMRS端口。
例如,若目标TPMI域指示的秩为2,则第二表可以但不限于如下表3所示:
表3
参见表3,表3中的Value值与天线端口指示域相关,比如,天线端口指示域可以取值为表3中的Value值。若天线端口指示域取值为第一值,可以指示来自一个CDM group的DMRS端口0和1,例如该第一值对应Value 0;若天线端口指示域取值为第二值,可以指示来自两个CDM group的DMRS端口0和1,例如该第二值对应Value 1;若天线端口指示域取值为第三值,可以指示来自两个CDM group的DMRS端口2和3,例如该第三值对应Value 2;若天线端口指示域取值为第四值,可以指示来自两个CDM group的DMRS端口0和2,例如该第四值对应Value 3。
可选的,在本申请实施例中,当上述1)中确定的第一DMRS端口包括:来自不同码分复用(Code Division Multiplexing,CDM)组(group)的多个DMRS端口时,终端可以确定其上行传输关联多个目标对象,并针对该多个目标对象,利用该多个DMRS端口进行上行传输。
可选的,在本申请实施例中,当上述1)中确定的第一DMRS端口包括:来自一个CDM组的多个DMRS端口时,则终端可以执行以下任意一项:
终端确定其上行传输关联一个目标对象,并针对该一个目标对象,利用第二DMRS端口进行上行传输;
终端确定其上行传输关联一个目标对象,并针对该一个目标对象,利用第一DMRS端口中的前N个DMRS端口进行上行传输;其中,N基于终端接收到的目标TPMI域指示的秩确定。
可选的,在本申请实施例中,当终端的上行传输所采用的模式为FDM,且该上行传输对应来自不同CDM组的多个DMRS端口时,该上行传输的频域资源的奇数子载波和偶数子载波关联不同的目标对象。和/或,当终端的上行传输所采用的模式为FDM,且该上行传输对应来自相同CDM组的多个DMRS端口时,该上行传输的频域资源的不同物理资源块关联不同的目标对象。
例如,如果网络侧通过RRC信令为终端配置了FDM的传输模式,当PUSCH传输的DMRS端口指示为{0,2}时,PUSCH频域资源的奇数子载波对应一个TCI状态(panel),偶数子载波对应另一个TCI状态(panel);如果为PUSCH传输指示了来自一个CDM group的多个DMRS端口,则PUSCH频域资源的第一PRB关联一个TCI状态1(panel),第二PRB关联另一个TCI状态(panel)。
可选的,在本申请实施例中,若终端的上行传输所采用的模式为FDM或单频网SFN, 且关联多个目标对象,可以采用以下至少一项来确定上行传输的DMRS端口:
3)终端根据解读DMRS端口的第三表,确定上行传输的第三DMRS端口,所述第三表与目标TPMI域指示的秩相关。即,终端可以根据接收到的目标TPMI域指示的秩,确定用于解读DMRS端口的第三表,并根据第三表,确定上行传输的第三DMRS端口。
可选的,第三DMRS端口包括:多个目标对象一一对应的相同的多个DMRS端口,即多个目标对象分别对应的相同的多个DMRS端口。
一些实施例中,在模式FDM下,如果终端的关联多个目标对象的传输具有一个码字(Code Word,CW),则终端可根据接收到的目标TPMI域指示的秩,确定用于解读DMRS端口的第三表。
一些实施例中,上述目标TPMI域为终端接收到的第一个TPMI域。
一些实施例中,上述目标TPMI域可以携带在DCI中,由网络侧设备发送给终端。
一些实施例中,终端在根据第三表,确定上行传输的第三DMRS端口时,具体为根据接收到的天线端口指示域,从第三表中选取上行传输的第三DMRS端口,即,第三DMRS端口为天线端口指示域指示的第三表中的DMRS端口。
例如,若目标TPMI域指示的秩为2,则第三表可以但不限于如上表3所示。
4)终端根据解读DMRS端口的第四表,确定上行传输的第四DMRS端口,所述第四表与多个TPMI域指示的多个秩中的最大值相关。即,终端可以根据接收到的多个TPMI域指示的多个秩中的最大值,确定用于解读DMRS端口的第四表,并根据第四表,确定上行传输的第四DMRS端口。
可选的,第四DMRS端口包括以下至少一项:第一目标对象对应的多个DMRS端口、第二目标对象对应的所述多个DMRS端口的前M个DMRS端口;其中,所述第一目标对象与所述多个秩中的最大值对应,所述第二目标对象与所述多个秩中除最大值之外的其他任一秩对应,所述M基于所述第二目标对象对应的TPMI域指示的秩确定。
一些实施例中,在模式FDM下,如果终端的关联多个目标对象的传输具有多个CW,则终端可根据接收到的多个TPMI域(如接收到的所有SRI域)指示的多个秩中的最大值,确定用于解读DMRS端口的第四表。
一些实施例中,终端在根据第四表,确定上行传输的第四DMRS端口时,可以根据接收到的天线端口指示域,从第四表中选取第一目标对象对应的多个DMRS端口,并将该多个DMRS端口的前M个DMRS端口确定为第二目标对象对应的端口。即,第一目标对象对应的是天线端口指示域指示的第四表中的DMRS端口,第二目标对象对应的是天线端口指示域指示的第四表中DMRS端口的前M个DMRS端口。
例如,终端的上行传输关联两个目标对象,即第1目标对象和第2目标对象,分别对应的第一个TPMI域和第二个TPMI域。如果第一个TPMI域指示的秩为x,第二个TPMI域指示的秩为y,x>y,则根据x确定用于解读DMRS端口的第四表。
需指出的,在本申请实施例中,所涉及的目标对象为与上行数据传输相关的参数。例 如,所述目标对象可以是包括但不限于:波束(beam)、发射接收点(Transmission and Reception Point,TRP)、天线面板(panel)、传输配置指示(Transmission Configuration Indicator,TCI)状态、TCI状态池、空间关系(spatial relation)、探测参考信号(Sounding Reference Signal,SRS)资源、SRS资源集、参考信号、路损参考信号等。
其中,所述天线面板,也可以称为以下之一:天线组、天线端口组、天线集合、天线端口集合、波束集合、波束子集合、天线阵列、天线端口阵列、天线子阵列、天线端口子阵列、逻辑实体、实体或天线实体、天线面板实体(panel entity)、定时误差组(timing error group,TEG)、终端能力值、终端能力值集合等。
其中,所述天线面板包括对应的panel标识,所述panel标识可以为以下之一:天线面板的标识、参考信号资源标识、参考信号资源集标识、TCI状态标识、准共址(Quasi co-location,QCL)信息标识、空间关系标识、终端能力值索引、终端能力值集合索引等。
其中,本实施例中所涉及的波束信息,也可以称为以下之一:波束的标识信息、空间关系(spatial relation)信息、空域发送滤波器(spatial domain transmission filter)信息、空域接收滤波器(spatial domain reception filter)信息、空域滤波器(spatial filter)信息、传输配置指示状态(TCI state)信息、QCL信息、QCL参数等。其中,下行波束信息通常可使用TCI state信息或QCL信息表示,上行波束信息通常可使用TCI state信息表示。
下面以终端的上行传输关联两个TRP为例对本申请进行说明。
模式1:SDM
模式1-1:如图3A所示,终端的上行传输关联TRP0和TRP1,具有一个CW,冗余版本(Redundancy Version,RV)为RV0,则:
(1)如果网络侧指示了关联两个目标对象传输,则DMRS端口的解读由接收到的两个SRI域/TPMI域指示的秩rank之和决定,且只能指示来自两个CDM group的DMRS端口;如果网络侧指示了关联一个目标对象传输,则DMRS端口的解读由接收到的第一个TPMI域指示的rank决定。
(2)在DMRS端口的解读由接收到的两个SRI域/TPMI域指示的rank之和决定的情况下,如果指示了来自不同CDM group的多个DMRS端口,则表明为MTRP传输,而如果指示来自相同的CDM group的多个DMRS端口,则表示切换到STRP传输,并根据接收到的第一个TPMI域指示的rank解读DMRS端口,或取已指示的来自相同CDM group的多个DMRS端口的前N个DMRS端口进行上行传输,其中N基于第一个TPMI域指示的rank确定。
模式1-2:如图3B所示,终端的上行传输关联TRP0和TRP1,具有两个CW,此时对DMRS端口的解读与模式1-1相同,在此不再赘述。
模式2:FDM
模式2-1:如图3C所示,终端的上行传输关联TRP0和TRP1,具有一个CW/1RV,TRP0和TRP1对应不同的物理资源块(Physical Resource Block,PRB)资源,则:DMRS 端口的解读由接收到的第一个TPMI域指示的rank决定,两个TRP对应相同的DMRS端口组,即两个TRP分别对应相同的多个DMRS端口。
模式2-2:如图3D所示,终端的上行传输关联TRP0和TRP1,具有一个CW,TRP0和TRP1对应不同的物理资源块(PRB)资源,TRP0和TRP1分别具有RV0和RV1,则:DMRS端口的解读由接收到的第一个TPMI域指示的rank决定,两个TRP对应相同的DMRS端口组,即两个TRP分别对应相同的多个DMRS端口。
模式2-3:如图3E所示,终端的上行传输关联TRP0和TRP1,具有两个CW,TRP0和TRP1对应不同的物理资源块(PRB)资源,TRP0和TRP1分别具有CW0和CW1,则:DMRS端口的解读由接收到的两个TPMI域指示的rank中的较大者决定,rank小的TPMI域对应的TRP取天线端口指示域指示的相应表中DMRS端口的前M个DMRS端口,M基于此rank小的TPMI域指示的rank确定。
模式3:SFN
模式3-1:如图3F所示,终端的上行传输关联TRP0和TRP1,具有一个CW,TRP0和TRP1具有相同的RV0,则:
(1)如果TRP0和TRP1对应相同的DMRS端口,则DMRS端口的解读由接收到的第一个TPMI域指示的rank决定,两个TRP对应相同的DMRS端口组,即两个TRP分别对应相同的多个DMRS端口。
(2)如果TRP0和TRP1对应正交的DMRS端口,则与模式SDM下的行为类似,在此不再赘述。
可选的,上述步骤22中的确定上行传输的DMRS端口可以包括:终端根据解读DMRS端口第五表,确定上行传输的DMRS端口,所述第五表包含至少一个第一条目,所述第一条目用于指示关联多个目标对象的上行传输的多个DMRS端口。也就是说,本实施例中确定的用于解读DMRS端口的表可以包含至少一个第一条目,此第一条目指示关联多个目标对象的上行传输的多个DMRS端口。
例如,上述的第五表可以如下但不限于表4所示:
表4
在表4中,第一条目为Value 4对应的条目,指示了关联两个目标对象的上行传输的两个DMRS端口,即指示了DMRS端口0和2。
又例如,上述的第五表可以但不限于如下表5所示:
表5
在表5中,第一条目包括Value 12和Value 13对应的条目,指示了关联两个目标对象的上行传输的两个DMRS端口,其中,Value 12对应的条目指示了DMRS端口0和2,Value 13对应的条目指示了DMRS端口4和6。
又例如,上述的第五表可以但不限于如下表6所示:
表6
在表6中,第一条目包括Value 12对应的条目,指示了关联两个目标对象的上行传输的两个DMRS端口,其中,Value 12对应的条目指示了DMRS端口0和2,来自两个CDM group。
可选的,在本申请实施例中,可以基于接收到的天线端口指示域,确定上行传输的DMRS端口。上述步骤22可以包括:终端根据所述模式,以及接收到的天线端口指示域, 确定上行传输的第五DMRS端口。也就是说,在确定上行传输所采用的模式之后,可以先根据该模式,确定用于解读DMRS端口的表,然后根据该表来解读接收到的天线端口指示域,确定上行传输的DMRS端口。
可选的,当终端的上行传输关联多个目标对象时,上述的第五DMRS端口可包括:天线端口指示域指示的多个DMRS端口,该多个DMRS端口来自不同或相同的CDM组。比如,在上行传输采用SDM的情况下,该多个DMRS端口来自不同的CDM组;或者,在上行传输采用FDM的情况下,该多个DMRS端口来自相同的CDM组。
例如,天线端口指示域的比特长度可以为3比特或4比特,以指示上行传输的DMRS端口。比如,在基于上述表1解读DMRS端口的情况下,若终端的上行传输关联多个目标对象,可以指示Value 4对应的条目中的DMRS端口0和2;或者,在基于上述表2解读DMRS端口的情况下,若终端的上行传输关联多个目标对象,可以指示Value 12对应的条目中的DMRS端口0和2,也可以指示Value 13对应的条目指示了DMRS端口4和6。
可选的,若终端的上行传输关联多个目标对象,终端可以根据协议约定,确定该上行传输的多个DMRS端口。例如,关联多个目标对象的PUSCH传输的DMRS端口组(即多个DMRS端口)由协议约定,如{0,2},关联一个目标对象的PUSCH传输的DMRS端口由天线端口指示域指示,则当PUSCH被调度为关联多个目标对象传输时,可确定PUSCH传输的DMRS端口为0和2,而忽略指示DMRS端口的天线端口指示域。
可选的,若终端的上行传输关联多个目标对象,终端可以根据接收到的天线端口指示域指示的一个DMRS端口,确定该上行传输的包含该一个DMRS端口的多个DMRS端口。例如,PUSCH传输关联多个目标对象,预设了多个DMRS端口组,比如(0,2)、(1,3)、(4,6)和(5,7),若接收到的天线端口指示域指示了DMRS端口0,则可以确定PUSCH传输的DMRS端口包括DMRS端口0和2;而若接收到的天线端口指示域指示了DMRS端口4,则可以确定PUSCH传输的DMRS端口包括DMRS端口4和6。
可选的,在多个目标对象一一与多个CDM组关联,即多个目标对象分别与多个CDM group关联的情况下,终端可以根据其上行传输的DMRS端口所属的CDM组,确定该上行传输关联的目标对象。例如,第一CDM group与第1目标对象关联,第二CDM group与第2目标对象关联,则:若仅指示了第一CDM group的DMRS端口,即终端的PUSCH传输的DMRS端口属于第一CDM group,则PUSCH传输关联第1目标对象;或者,若仅指示了第二CDM group的DMRS端口,即终端的PUSCH传输的DMRS端口属于第二CDM group,则PUSCH传输关联第2目标对象;或者,若同时指示了第一CDM group和第二CDM group的DMRS端口,即终端的PUSCH传输的多个DMRS端口来自不同的两个CDM group,则PUSCH传输关联第1目标对象和第2目标对象。
可选的,若终端的上行传输采用关联多个目标对象的传输方式,该传输方式可以通过以下至少一项使能:
无线资源控制RRC配置;即,通过RRC配置指示终端的上行传输关联多个目标对象;
对应多个目标对象的TCI状态生效;即,在当前有对应多个目标对象的TCI状态生效时,使能关联多个目标对象的上行传输;
调度上行传输的DCI指示;即,通过调度上行传输的DCI指示该上行传输关联多个目标对象;
网络侧指示了来自不同CDM组的DMRS端口;即,通过指示来自不同CDM组的DMRS端口,指示相应上行传输关联多个目标对象。
本申请实施例提供的端口确定方法,执行主体可以为端口确定装置。本申请实施例中以端口确定装置执行端口确定方法为例,说明本申请实施例提供的端口确定装置。
请参见图4,图4是本申请实施例提供的一种端口确定装置的结构示意图,该装置应用于终端,如图4所示,端口确定装置40包括:
第一确定模块41,用于终端确定上行传输所采用的模式;
第二确定模块42,用于根据所述模式,确定所述上行传输的DMRS端口。
可选的,所述模式为空分复用SDM或单频网SFN;所述第二确定模块42具体用于以下至少一项:
根据解读DMRS端口的第一表,确定所述上行传输的第一DMRS端口,所述第一表与多个SRI域指示的秩之和相关,或者,所述第一表与多个TPMI域指示的秩之和相关;
根据解读DMRS端口的第二表,确定所述上行传输的第二DMRS端口,所述第二表与目标TPMI域指示的秩相关。
可选的,当所述第一DMRS端口包括来自不同码分复用CDM组的多个DMRS端口时,端口确定装置40还包括:
第一传输模块,用于确定所述上行传输关联多个目标对象,并针对所述多个目标对象,利用所述多个DMRS端口进行上行传输。
可选的,当所述第一DMRS端口包括来自一个CDM组的多个DMRS端口时,端口确定装置40还包括:第二传输模块,所述第二传输模块具体用于以下任意一项:
确定所述上行传输关联一个目标对象,并针对所述一个目标对象,利用所述第二DMRS端口进行上行传输;
确定所述上行传输关联一个目标对象,并针对所述一个目标对象,利用所述第一DMRS端口的前N个DMRS端口进行上行传输;其中,所述N基于所述终端接收到的目标TPMI域指示的秩确定。
可选的,所述模式为频分复用FDM或单频网SFN;所述第二确定模块42具体用于以下任意一项:
根据解读DMRS端口的第三表,确定所述上行传输的第三DMRS端口,所述第三表与目标TPMI域指示的秩相关;
根据解读DMRS端口的第四表,确定所述上行传输的第四DMRS端口,所述第四表与多个TPMI域指示的多个秩中的最大值相关。
可选的,所述上行传输关联多个目标对象,所述第三DMRS端口包括:所述多个目标对象一一对应的相同的多个DMRS端口;
或者,所述上行传输关联多个目标对象,所述第四DMRS端口包括以下至少一项:第一目标对象对应的多个DMRS端口、第二目标对象对应的所述多个DMRS端口的前M个DMRS端口;其中,所述第一目标对象与所述多个秩中的最大值对应,所述第二目标对象与所述多个秩中除最大值之外的其他任一秩对应,所述M基于所述第二目标对象对应的TPMI域指示的秩确定。
可选的,所述第二确定模块42具体用于:
根据解读DMRS端口的第五表,确定所述上行传输的DMRS端口;其中,所述第五表与所述模式相关,所述第五表包含至少一个第一条目,所述第一条目用于指示关联多个目标对象的上行传输的多个DMRS端口。
可选的,所述第二确定模块42具体用于:
根据所述模式,以及接收到的天线端口指示域,确定所述上行传输的第五DMRS端口。
可选的,当所述上行传输关联多个目标对象时,所述第五DMRS端口包括:所述天线端口指示域指示的多个DMRS端口,所述多个DMRS端口来自不同或相同的CDM组。
可选的,若所述上行传输采用关联多个目标对象的传输方式,所述传输方式通过以下至少一项使能:
RRC配置;
对应多个目标对象的TCI状态生效;
调度所述上行传输的DCI指示;
网络侧指示了来自不同CDM组的DMRS端口。
本申请实施例中的端口确定装置30可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的端口确定装置40能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图5所示,本申请实施例还提供一种通信设备50,包括处理器51和存储器52,存储器52上存储有可在所述处理器51上运行的程序或指令,该程序或指令被处理器51执行时实现上述端口确定方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于确定上行传输所采用的模式;根据所述模式,确定所述上行传输的解调参考信号DMRS端口。该终端实 施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
具体地,图6为实现本申请实施例的一种终端的硬件结构示意图。
该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609以及处理器610等中的至少部分部件。
本领域技术人员可以理解,终端600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理单元(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072中的至少一种。触控面板6071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601接收来自网络侧设备的下行数据后,可以传输给处理器610进行处理;另外,射频单元601可以向网络侧设备发送上行数据。通常,射频单元601包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括易失性存储器或非易失性存储器,或者,存储器609可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器609包括但不限于这些和任意其它适合类型的存储器。
处理器610可包括一个或多个处理单元;可选的,处理器610集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,处理器610,用于确定上行传输所采用的模式;根据所述模式,确定所述上行传输的解调参考信号DMRS端口。
本申请实施例提供的终端600能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述端口确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,该处理器为上述实施例中所述的终端中的处理器。该可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述端口确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述端口确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的端口确定方法的步骤,所述网络侧设备可以为终端配置相关参数和/或发送相关参数。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的 相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施 方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (23)

  1. 一种端口确定方法,包括:
    终端确定上行传输所采用的模式;
    所述终端根据所述模式,确定所述上行传输的解调参考信号DMRS端口。
  2. 根据权利要求1所述的方法,其中,所述模式为空分复用SDM或单频网SFN;所述确定所述上行传输的解调参考信号DMRS端口,包括以下至少一项:
    所述终端根据解读DMRS端口的第一表,确定所述上行传输的第一DMRS端口,所述第一表与多个探测参考信号资源指示SRI域指示的秩之和相关,或者,所述第一表与多个传输预编码矩阵指示TPMI域指示的秩之和相关;
    所述终端根据解读DMRS端口的第二表,确定所述上行传输的第二DMRS端口,所述第二表与目标TPMI域指示的秩相关。
  3. 根据权利要求2所述的方法,其中,当所述第一DMRS端口包括来自不同码分复用CDM组的多个DMRS端口时,所述方法还包括:
    所述终端确定所述上行传输关联多个目标对象,并针对所述多个目标对象,利用所述多个DMRS端口进行上行传输;
    或者,
    当所述第一DMRS端口包括来自一个CDM组的多个DMRS端口时,所述方法还包括以下任意一项:
    所述终端确定所述上行传输关联一个目标对象,并针对所述一个目标对象,利用所述第二DMRS端口进行上行传输;
    所述终端确定所述上行传输关联一个目标对象,并针对所述一个目标对象,利用所述第一DMRS端口的前N个DMRS端口进行上行传输;其中,所述N基于所述终端接收到的目标TPMI域指示的秩确定。
  4. 根据权利要求1所述的方法,其中,所述模式为频分复用FDM或单频网SFN;所述确定所述上行传输的解调参考信号DMRS端口,包括以下任意一项:
    所述终端根据解读DMRS端口的第三表,确定所述上行传输的第三DMRS端口,所述第三表与目标TPMI域指示的秩相关;
    所述终端根据解读DMRS端口的第四表,确定所述上行传输的第四DMRS端口,所述第四表与多个TPMI域指示的多个秩中的最大值相关。
  5. 根据权利要求4所述的方法,其中,所述上行传输关联多个目标对象,所述第三DMRS端口包括:所述多个目标对象一一对应的相同的多个DMRS端口;
    或者,
    所述上行传输关联多个目标对象,所述第四DMRS端口包括以下至少一项:第一目标对象对应多个DMRS端口、第二目标对象对应的所述多个DMRS端口的前M个DMRS 端口;其中,所述第一目标对象与所述多个秩中的最大值对应,所述第二目标对象与所述多个秩中除最大值之外的其他任一秩对应,所述M基于所述第二目标对象对应的TPMI域指示的秩确定。
  6. 根据权利要求1所述的方法,其中,所述根据所述模式,确定所述上行传输的解调参考信号DMRS端口,包括:
    所述终端根据解读DMRS端口的第五表,确定所述上行传输的DMRS端口,所述第五表与所述模式相关,所述第五表包含至少一个第一条目,所述第一条目用于指示关联多个目标对象的上行传输的多个DMRS端口。
  7. 根据权利要求1所述的方法,其中,所述根据所述模式,确定所述上行传输的解调参考信号DMRS端口,包括:
    所述终端根据所述模式,以及接收到的天线端口指示域,确定所述上行传输的第五DMRS端口。
  8. 根据权利要求7所述的方法,其中,当所述上行传输关联多个目标对象时,所述第五DMRS端口包括:所述天线端口指示域指示的多个DMRS端口,所述多个DMRS端口来自不同或相同的CDM组。
  9. 根据权利要求1所述的方法,其中,若所述上行传输关联多个目标对象,所述方法还包括:
    所述终端根据协议约定,确定所述上行传输的多个DMRS端口;
    或者,
    所述终端根据接收到的天线端口指示域指示的一个DMRS端口,确定所述上行传输的包含所述一个DMRS端口的多个DMRS端口。
  10. 根据权利要求1所述的方法,其中,在多个目标对象一一与多个CDM组关联的情况下,所述方法还包括:
    所述终端根据所述上行传输的DMRS端口所属的CDM组,确定所述上行传输关联的目标对象。
  11. 根据权利要求1所述的方法,其中,若所述上行传输采用关联多个目标对象的传输方式,所述传输方式通过以下至少一项使能:
    无线资源控制RRC配置;
    对应多个目标对象的传输配置指示TCI状态生效;
    调度所述上行传输的下行控制信息DCI指示;
    网络侧指示了来自不同CDM组的DMRS端口。
  12. 根据权利要求1所述的方法,其中,当所述模式为FDM,且所述上行传输对应来自不同CDM组的多个DMRS端口时,所述上行传输的频域资源的奇数子载波和偶数子载波关联不同的目标对象;
    和/或,
    当所述模式为FDM,且所述上行传输对应来自相同CDM组的多个DMRS端口时,所述上行传输的频域资源的不同物理资源块关联不同的目标对象。
  13. 一种端口确定装置,包括:
    第一确定模块,用于终端确定上行传输所采用的模式;
    第二确定模块,用于根据所述模式,确定所述上行传输的DMRS端口。
  14. 根据权利要求13所述的装置,其中,所述模式为空分复用SDM或单频网SFN;所述第二确定模块具体用于以下至少一项:
    根据解读DMRS端口的第一表,确定所述上行传输的第一DMRS端口,所述第一表与多个SRI域指示的秩之和相关,或者,所述第一表与多个TPMI域指示的秩之和相关;
    根据解读DMRS端口的第二表,确定所述上行传输的第二DMRS端口,所述第二表与目标TPMI域指示的秩相关。
  15. 根据权利要求14所述的装置,其中,当所述第一DMRS端口包括来自不同码分复用CDM组的多个DMRS端口时,所述装置还包括:
    第一传输模块,用于确定所述上行传输关联多个目标对象,并针对所述多个目标对象,利用所述多个DMRS端口进行上行传输;
    或者,
    当所述第一DMRS端口包括来自一个CDM组的多个DMRS端口时,所述装置还包括:第二传输模块,所述第二传输模块具体用于以下任意一项:
    确定所述上行传输关联一个目标对象,并针对所述一个目标对象,利用所述第二DMRS端口进行上行传输;
    确定所述上行传输关联一个目标对象,并针对所述一个目标对象,利用所述第一DMRS端口的前N个DMRS端口进行上行传输;其中,所述N基于所述终端接收到的目标TPMI域指示的秩确定。
  16. 根据权利要求13所述的装置,其中,所述模式为频分复用FDM或单频网SFN;所述第二确定模块具体用于以下任意一项:
    根据解读DMRS端口的第三表,确定所述上行传输的第三DMRS端口,所述第三表与目标TPMI域指示的秩相关;
    根据解读DMRS端口的第四表,确定所述上行传输的第四DMRS端口,所述第四表与多个TPMI域指示的多个秩中的最大值相关。
  17. 根据权利要求16所述的装置,其中,所述上行传输关联多个目标对象,所述第三DMRS端口包括:所述多个目标对象一一对应的相同的多个DMRS端口;
    或者,
    所述上行传输关联多个目标对象,所述第四DMRS端口包括以下至少一项:第一目标对象对应的多个DMRS端口、第二目标对象对应的所述多个DMRS端口的前M个DMRS端口;其中,所述第一目标对象与所述多个秩中的最大值对应,所述第二目标对象 与所述多个秩中除最大值之外的其他任一秩对应,所述M基于所述第二目标对象对应的TPMI域指示的秩确定。
  18. 根据权利要求13所述的装置,其中,所述第二确定模块具体用于:
    根据解读DMRS端口的第五表,确定所述上行传输的DMRS端口,所述第五表与所述模式相关,所述第五表包含至少一个第一条目,所述第一条目用于指示关联多个目标对象的上行传输的多个DMRS端口。
  19. 根据权利要求13所述的装置,其中,所述第二确定模块具体用于:
    根据所述模式,以及接收到的天线端口指示域,确定所述上行传输的第五DMRS端口。
  20. 根据权利要求19所述的装置,其中,当所述上行传输关联多个目标对象时,所述第五DMRS端口包括:所述天线端口指示域指示的多个DMRS端口,所述多个DMRS端口来自不同或相同的CDM组。
  21. 根据权利要求13所述的装置,其中,若所述上行传输采用关联多个目标对象的传输方式,所述传输方式通过以下至少一项使能:
    RRC配置;
    对应多个目标对象的TCI状态生效;
    调度所述上行传输的DCI指示;
    网络侧指示了来自不同CDM组的DMRS端口。
  22. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的端口确定方法的步骤。
  23. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至12任一项所述的端口确定方法的步骤。
PCT/CN2023/085890 2022-04-06 2023-04-03 端口确定方法、装置、终端及可读存储介质 WO2023193678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210358723.3 2022-04-06
CN202210358723.3A CN116938413A (zh) 2022-04-06 2022-04-06 端口确定方法、装置、终端及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023193678A1 true WO2023193678A1 (zh) 2023-10-12

Family

ID=88244050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085890 WO2023193678A1 (zh) 2022-04-06 2023-04-03 端口确定方法、装置、终端及可读存储介质

Country Status (2)

Country Link
CN (1) CN116938413A (zh)
WO (1) WO2023193678A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584508A (zh) * 2019-09-30 2021-03-30 大唐移动通信设备有限公司 解调参考信号端口的分配指示方法、装置、基站及终端
WO2021063044A1 (zh) * 2019-09-30 2021-04-08 大唐移动通信设备有限公司 一种传输模式的指示方法、装置、基站、终端及存储介质
US20210259000A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Signaling for non-transparent single frequency network schemes for pdsch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584508A (zh) * 2019-09-30 2021-03-30 大唐移动通信设备有限公司 解调参考信号端口的分配指示方法、装置、基站及终端
WO2021063044A1 (zh) * 2019-09-30 2021-04-08 大唐移动通信设备有限公司 一种传输模式的指示方法、装置、基站、终端及存储介质
US20210259000A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Signaling for non-transparent single frequency network schemes for pdsch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Summary #1 of email discussion [102-e-NR-feMIMO-02]", 3GPP DRAFT; R1-2007180, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 27 August 2020 (2020-08-27), XP051922605 *

Also Published As

Publication number Publication date
CN116938413A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US20240154773A1 (en) Tci state determining method and apparatus, terminal, and network-side device
WO2023116591A1 (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2023193678A1 (zh) 端口确定方法、装置、终端及可读存储介质
WO2023179478A1 (zh) 传输模式确定方法、装置、终端及网络侧设备
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2023169430A1 (zh) Pusch传输方法、终端及网络侧设备
WO2023213277A1 (zh) 混合自动重传请求-确认harq-ack码本的确定方法、装置及终端
WO2023104025A1 (zh) Srs资源配置方法、装置、终端及网络侧设备
WO2024083101A1 (zh) 信息指示方法、装置、终端、网络侧设备及可读存储介质
WO2023193766A1 (zh) 控制信息的接收和发送方法、终端及网络侧设备
WO2023179753A1 (zh) 波束信息指示方法、装置、终端及网络侧设备
WO2024022251A1 (zh) 上行传输方法、装置、终端及介质
WO2024067379A1 (zh) Dci解析方法、动态波形切换确定方法、上行接收确定方法、装置、终端及网络侧设备
WO2023151649A1 (zh) 信息激活方法、终端及网络侧设备
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023125909A1 (zh) 寻呼指示方法、终端及网络侧设备
WO2023125420A1 (zh) 参考信号端口指示方法、终端及网络侧设备
WO2024032605A1 (zh) 资源配置方法、装置、终端、服务基站及介质
WO2023231920A1 (zh) 反向散射通信方法及设备
WO2023185819A1 (zh) Pdcch监听方法、终端、网络侧设备及介质
WO2023236994A1 (zh) 信息确定方法、装置及终端
WO2023208042A1 (zh) 预失真处理方法、装置及设备
WO2023125304A1 (zh) 通信操作执行方法、装置、终端和存储介质
WO2023198106A1 (zh) 终端能力指示、调度方法、装置、终端及通信设备
WO2023151519A1 (zh) 功率控制pc参数的确定方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784241

Country of ref document: EP

Kind code of ref document: A1