WO2024001981A1 - 预编码矩阵的指示方法、终端及网络侧设备 - Google Patents

预编码矩阵的指示方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2024001981A1
WO2024001981A1 PCT/CN2023/102282 CN2023102282W WO2024001981A1 WO 2024001981 A1 WO2024001981 A1 WO 2024001981A1 CN 2023102282 W CN2023102282 W CN 2023102282W WO 2024001981 A1 WO2024001981 A1 WO 2024001981A1
Authority
WO
WIPO (PCT)
Prior art keywords
coherent
antenna
terminal
precoding
precoding matrix
Prior art date
Application number
PCT/CN2023/102282
Other languages
English (en)
French (fr)
Inventor
孙荣荣
刘昊
拉盖施塔玛拉卡
吴昊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024001981A1 publication Critical patent/WO2024001981A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a method for indicating a precoding matrix, a terminal and a network side device.
  • the network side device For codebook-based Physical Uplink Shared Channel (PUSCH) transmission, the network side device will configure a sounding reference signal (Sounding Reference Signal, SRS) resource set based on codebook transmission for the terminal.
  • SRS Sounding Reference Signal
  • Each SRS resource set contains At least one SRS resource enables the terminal to send SRS according to the configured at least one SRS resource.
  • the network side device obtains the uplink channel by receiving the SRS, and determines the precoding matrix for PUSCH transmission based on this. After the network side device determines the precoding matrix, it also needs to notify the terminal of the precoding matrix used by the terminal.
  • the relevant technology has not yet provided a corresponding solution, which affects the communication of the terminal.
  • Embodiments of the present application provide a method for indicating a precoding matrix, a terminal, and a network-side device, which can solve the problem of the terminal being unable to determine the precoding matrix for uplink transmission, which affects terminal communication.
  • a method for indicating a precoding matrix including: a terminal receiving downlink control information DCI, where the DCI includes a first indication field, and the first indication field is used to indicate at least one of the following: precoding matrix Generation method, selected antenna port information, effective precoding matrix information, transmission layer information of the precoding matrix, whether to use full power transmission; the terminal determines the precoding matrix for uplink transmission according to the first indication field.
  • a method for indicating a precoding matrix including: a network side device sends DCI, where the DCI includes a first indication field, and the first indication field is used by a terminal to determine a precoding matrix for uplink transmission, so The first indication field is used to indicate at least one of the following: precoding matrix generation method, selected antenna port information, effective precoding matrix information, transmission layer information of the precoding matrix, and whether to use full power transmission.
  • a precoding matrix indication device including: a receiving module, configured to receive DCI, where the DCI includes a first indication field, and the first indication field is used to indicate at least one of the following: 1: Precoding matrix generation method, selected antenna port information, effective precoding matrix information, transmission layer information of the precoding matrix, whether to use full power transmission; the sending module is used to determine according to the first indication field Precoding matrix for uplink transmission.
  • a device for indicating a precoding matrix including: a sending module, configured to send DCI, where the DCI includes a first indication field, and the first indication field is used by a terminal to determine a precoding matrix for uplink transmission.
  • the first indication field is used to indicate at least one of the following: precoding matrix generation method, selected antenna port information, effective precoding matrix information, transmission layer information of the precoding matrix, and whether to use full power transmission.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive DCI, the DCI includes a first indication field, and the first indication field is used to indicate at least one of the following : Precoding matrix generation method, selected antenna port information, effective precoding matrix information, transmission layer information of the precoding matrix, whether to use full power transmission; determine the precoding matrix for uplink transmission according to the first indication field .
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send DCI, the DCI includes a first indication field, and the first indication field is used by the terminal to determine the uplink Transmitted precoding matrix, the first indication field is used to indicate at least one of the following: precoding matrix generation method, selected antenna port information, effective precoding matrix information, transmission layer information of the precoding matrix, whether Transmit using full power.
  • a ninth aspect provides a precoding matrix indication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the method described in the first aspect
  • the network side device can be used to perform the steps of the method described in the first aspect. The steps of the method described in the second aspect.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. The steps of a method, or steps of implementing a method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to Implement the steps of the method as described in the first aspect, or implement the steps of the method as described in the second aspect.
  • the network side device indicates the precoding matrix for the terminal's uplink transmission through the first indication field in the DCI. Specifically, it may indicate at least one of the following: precoding matrix generation method, selected antenna port information, valid The information of the precoding matrix, the transmission layer information of the precoding matrix, and whether full power transmission is used. In this way, the terminal can determine the precoding matrix for uplink transmission according to the first indication field, which is beneficial to improving the performance of the communication system.
  • Figure 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a method for indicating a precoding matrix according to an embodiment of the present application
  • Figure 3 is a schematic flowchart of a method for indicating a precoding matrix according to an embodiment of the present application
  • Figure 4 is a schematic structural diagram of a precoding matrix indication device according to an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a precoding matrix indication device according to an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single-carrier frequency division multiple access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets , smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment can include base stations, Wireless Local Area Network (WLAN) access points or Wireless Fidelity (WiFi) nodes, etc.
  • WLAN Wireless Local Area Network
  • WiFi Wireless Fidelity
  • the base station can be called Node B, Evolved Node B (eNB), Access Point Entry point, Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B node, home evolution Type B node, Transmission Reception Point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in this application In the embodiment, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • this embodiment of the present application provides a method 200 for indicating a precoding matrix.
  • the method can be executed by a terminal.
  • the method can be executed by software or hardware installed on the terminal.
  • the method includes the following steps.
  • the terminal receives downlink control information (DCI).
  • DCI downlink control information
  • the DCI includes a first indication field.
  • the first indication field is used to indicate at least one of the following: precoding matrix generation method and selected antenna port information. , effective precoding matrix information, transmission layer information of the precoding matrix, whether full power transmission is used.
  • the precoding matrix generation method includes: generating a precoding matrix based on at least two precoding matrices, for example, generating a precoding matrix supporting 8-port PUSCH transmission based on two precoding matrices supporting 4-port PUSCH transmission; and For example, based on four precoding matrices that support 2-port PUSCH transmission, a precoding matrix that supports 8-port PUSCH transmission is generated.
  • the network side device can indicate the information of the 4 antenna ports used by the terminal through the first indication field; or, through the first indication field Instruct the terminal to use 8 antenna ports to send PUSCH.
  • the DCI also includes M precoding information indication fields, or transmission precoding matrix indication (Precoding information and number of layers) fields, generally referred to as TPMI fields.
  • the M precoding information indication fields are used to indicate the precoding matrix used by the terminal.
  • the network side device may further indicate effective precoding matrix information from the precoding matrix indicated by the TPMI field through the first indication field. In this way, the terminal can further determine effective precoding matrix information from the precoding matrix indicated by the TPMI field according to the first indication field.
  • two TPMI fields indicate two precoding matrices W1 and W2.
  • the terminal further determines the method of generating one precoding matrix W from these two precoding matrices according to the first indication field, such as or, or, Represents the Kronecker product of two matrices.
  • selected antenna port information for example, 8 antenna ports are divided into two groups, and the first indication field indicates which group or two groups of antenna ports are selected for transmission.
  • the DCI contains two precoding indication fields, and the first indication field indicates which indication field is valid or both indication fields are valid.
  • the terminal For the above transmission layer information of the precoding matrix, for example, the terminal generates a precoding matrix 3 based on the precoding matrix 1 and the precoding matrix 2, and the network side device can indicate through the first indication field that the transmission layer of the precoding matrix 3 is equal to the precoding matrix 3.
  • the transmission layer of coding matrix 1 is still equal to the transmission layer of precoding matrix 2; or, it is equal to the sum of the transmission layer of precoding matrix 1 and the transmission layer of precoding matrix 2.
  • the network side device may instruct the terminal to use full power transmission through the first indication field, or may instruct the terminal not to use full power transmission through the first indication field. lose.
  • the terminal can also determine the precoding matrix for full power transmission according to the generation method of the precoding matrix indicated by the first indication field, thereby achieving full power transmission. For example, when two TPMI fields indicate that both precoding matrices W1 and W2 are for each row When there is at least one non-zero element, the terminal further determines the way in which these two precoding matrices generate a precoding matrix W according to the first indication field, Then the transmission power of all antenna ports of the terminal is non-zero, reaching full power transmission.
  • S204 The terminal determines a precoding matrix for uplink transmission according to the first indication field.
  • the terminal may also send PUSCH according to the determined precoding matrix.
  • the DCI also includes M precoding information indication fields, the M precoding information indication fields are used to indicate the precoding matrix used by the terminal, and the M precoding information indication fields are related to the network side device configuration.
  • M and N are positive integers.
  • the terminal determines the precoding matrix for uplink transmission according to the first indication field, including: the terminal determines the precoding matrix for uplink transmission according to the first indication field and the M precoding information indication fields. .
  • bit length of the first indication field is related to one of the following 1), 2) and 3):
  • the number of codebook subsets configured by the network side device is N.
  • bit length of the first indication field depends on the number N of configured codebook subsets.
  • bit length of the first indication field is obtained by the following calculation formula:
  • the number of precoding information indication fields included in the DCI is M.
  • bit length of the first indication field depends on M.
  • bit length of the first indication field is obtained by the following calculation formula:
  • the length of the first indication field depends on the maximum value Q among the number N of codebook subsets and the number M of precoding information indication fields.
  • the bit length of the first indication field is obtained by the following calculation formula:
  • the network side device indicates the precoding matrix for the terminal's uplink transmission through the first indication field in the DCI. Specifically, it can indicate at least one of the following: precoding matrix generation method, selected antenna Port information, effective precoding matrix information, transmission layer information of the precoding matrix, and whether full power transmission is used. In this way, the terminal can determine the precoding matrix for uplink transmission based on the first indication field, which is beneficial to improving communication system performance.
  • the method for indicating the precoding matrix uses the first indication field in the DCI.
  • the first indication field can also indicate the precoding matrix for full power transmission.
  • the coding matrix generation method can realize 8Tx transmission without introducing a new 8-antenna port (8Tx) precoding matrix. It can realize flexible precoding matrix indication and can also support full power transmission.
  • the method before the terminal receives DCI, the method further includes: the terminal receives configuration information, and the configuration information can be carried by Radio Resource Control (RRC) signaling, so
  • RRC Radio Resource Control
  • the configuration information includes the configuration of N codebook subsets, where N is a positive integer.
  • each codebook subset includes at least one of the following information:
  • Maximum transmission rank For example, the maximum transmission rank is 1, 2, 4, etc.
  • the coherence of the antenna port may be a subset of the set ⁇ fully coherent, partially coherent, non-coherent ⁇ , for example, it may be fully partially coherent (or also called fully coherent and partially coherent); for another example, it may be fully partially incoherent.
  • the horizontal oversampling factor O1 can be 2 or 4.
  • the vertical oversampling factor O2 can be 2 or 4.
  • Antenna grouping method For example, it is divided into two groups, each group contains 4 antenna ports; another example is divided into four groups, each group contains 2 antenna ports; another example is divided into two groups, one group contains 4 antenna ports and the other The group contains 2 antenna ports.
  • Antenna polarization method For example, unipolarization or dual polarization.
  • antenna ports For example, 4-antenna port 4Tx, 2-antenna port 2Tx, 8-antenna port 8Tx.
  • Phase set between antenna groups For example, the phase between antenna groupings can be selected from the set ⁇ 1,j,-j,-1 ⁇ .
  • the configuration information also includes information for indicating a full-power transmission mode, for example, information for indicating a full-power transmission mode 1 (Full-power mode 1), including information for indicating a full-power transmission mode 2. (Full-power mode 2) information.
  • information for indicating a full-power transmission mode for example, information for indicating a full-power transmission mode 1 (Full-power mode 1), including information for indicating a full-power transmission mode 2. (Full-power mode 2) information.
  • the method further includes: the terminal reporting terminal capability information, where the terminal capability information includes at least one of the following:
  • the horizontal oversampling factor O1 can be 2 or 4.
  • the vertical oversampling factor O2 can be 2 or 4.
  • Antenna grouping method For example, it is divided into two groups, each group contains 4 antenna ports; another example is divided into four groups, each group contains 2 antenna ports; another example is divided into two groups, one group contains 4 antenna ports and the other The group contains 2 antenna ports.
  • Antenna polarization method For example, unipolarization or dual polarization.
  • antenna ports For example, 4-antenna port 4Tx, 2-antenna port 2Tx, 8-antenna port 8Tx.
  • Phase set between antenna groups For example, the phase between antenna groupings can be selected from the set ⁇ 1,j,-j,-1 ⁇ .
  • Antenna grouping for full power transmission For example, divided into two groups, each group contains a 4-port antenna.
  • the precoding information for full power transmission mentioned in 8) above may include N groups of precoding matrices, where the N groups of precoding matrices correspond to the N groups of antenna ports of the terminal.
  • the terminal reports two groups of 4Tx precoding information, and each group of precoding information is indicated by 4 bits; for another example, the terminal reports four groups of 2Tx precoding information, and each group of precoding information is indicated by 2 bits.
  • the precoding information for full power transmission mentioned in 8) above may also include a set of precoding matrices, where the information of the set of precoding matrices is consistent with the N sets of antennas of the terminal. Port correspondence.
  • the set of precoding matrices includes at least one of the following situations 1 to 5:
  • Case 1 An 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices is used; wherein the coherence of the antenna ports of the terminal is non-coherent.
  • non-coherent User Equipment non-coherent UE
  • two 4Tx precoding matrices are used to form an 8Tx precoding matrix.
  • the precoding matrix for full power transmission reported by the terminal includes the following table at least one of:
  • a terminal can report a certain row in the above table.
  • a terminal reports the precoding matrix for full power transmission in G5.
  • Case 2 An 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices is used; wherein the 4 antenna ports of the terminal are a group of coherent ports.
  • the precoding matrix for full power transmission reported by the terminal includes at least one of the following tables:
  • Case 3 An 8-antenna port precoding matrix composed of four 2-antenna port precoding matrices is used; where the 2 antenna ports of the terminal are a set of coherent ports.
  • the precoding matrix for full power transmission reported by the terminal include at least one of the following forms:
  • Case 4 An 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices; wherein the two antenna ports of the terminal are a set of coherent ports.
  • two 4Tx precoding matrices are used to form an 8Tx precoding matrix.
  • the precoding matrix for full power transmission reported by the terminal include at least one of the following tables.
  • Case 5 An 8-antenna port precoding matrix composed of a 2-antenna port and a 4-antenna port precoding matrix.
  • the coherence of the N codebook subsets included in the configuration information received by the terminal is determined based on the antenna coherence and/or the full power transmission mode reported by the terminal.
  • the antenna coherence reported by the terminal is non-coherent
  • the coherence of the N codebook subsets included in the configuration information includes: ⁇ non-coherent, non-coherent ⁇ , that is, ⁇ non-coherent, non- coherent ⁇ .
  • the antenna coherence reported by the terminal is non-coherent
  • the reported full power transmission mode is mode one
  • the coherence of the N codebook subsets included in the configuration information includes: ⁇ all parts are non-coherent, Full partial non-coherence ⁇ , that is, ⁇ full-partial-non, full-partial-non ⁇ .
  • the antenna coherence reported by the terminal is partially coherent and non-coherent
  • the coherence of the N codebook subsets included in the configuration information includes one of the following: ⁇ partially non-coherent, partially non-coherent ⁇ , That is ⁇ partial-non-coherent, partial-non-coherent ⁇ ; ⁇ non-coherent, non-coherent ⁇ , that is, ⁇ non-coherent, non-coherent ⁇ ; coherent ⁇ ; ⁇ partially coherent, non-coherent ⁇ , that is, ⁇ partial-coherent, non-coherent ⁇ .
  • the antenna coherence reported by the terminal is partially coherent and non-coherent
  • the reported full power transmission mode is mode one
  • the coherence of the N codebook subsets included in the configuration information includes: ⁇ all parts Non-coherent, full-partial-non-coherent ⁇ , that is, ⁇ full-partial-non, full-partial-non ⁇ .
  • This embodiment divides 8Tx into two groups, the antennas in each group are fully coherent, and the groups are incoherent, that is, 4+4.
  • the precoding indication in the DCI received by the terminal includes: first indication field + TPMI1 + TPMI2.
  • the network side configures TPMI1 and TPMI2 to correspond to codebook subset 1 and codebook subset 2 respectively.
  • Codebook subset 1 and codebook subset 2 meet the maximum transmission rank of 4, and the coherence characteristics are ⁇ fully-coherent ⁇ or ⁇ full- partial-non-coherent ⁇ , antenna port is 4.
  • the terminal obtains the precoding matrix for uplink transmission based on the first indication field + TPMI1 + TPMI2.
  • the 8Tx antenna is divided into two groups and associated with TPMI1 and TPMI2 respectively.
  • the first indication field is interpreted as follows:
  • Gi is the i-th group of antennas; TPMI1 and TPMI2 respectively correspond to the first coherent antenna group and the second coherent antenna group selected by the first indication domain.
  • the elements of the precoding matrix are 0 and no transmission is performed. any layer.
  • the transport layer is the sum of the layers indicated by TPMI1 and TPMI2.
  • TPMI1 and TPMI2 The interpretation of TPMI1 and TPMI2 is as follows:
  • the terminal obtains the precoding matrix for uplink transmission according to the first indication field + TPMI1 + TPMI2.
  • the codebook subset corresponding to TPMI1 and TPMI2 can be full-partial-non-coherent; or partial-non-coherent; or non-coherent, where:
  • Gi is the i-th group of coherent antennas; state 1 indicates that the transmission layer is the layer indicated by TPMI1 or TPMI2, and state 2 indicates that the transmission layer is the sum of the layers indicated by TPMI1 and TPMI2.
  • the precoding matrices indicated by the two TPMI fields are W 1 and W 2 respectively, then the 8Tx precoding matrices corresponding to different values of the first indication field can be:
  • TPMI1 and TPMI2 The interpretation of TPMI1 and TPMI2 is as follows (W1 and W2):
  • the grouping method is that 8Tx is divided into four groups, the antennas in each group are fully coherent, and the groups are incoherent, that is, 2+2+2+2.
  • Precoding indication scheme 1 Limit the maximum transmission rank to 4, then only 2 of the 4 antenna groups can be selected at most Group antenna transmission, the precoding indication in the DCI received by the terminal includes: first indication field + TPMI1 + TPMI2.
  • the network side configures TPMI1 and TPMI2 to correspond to codebook subset 1 and codebook subset 2 respectively.
  • Codebook subset 1 and codebook subset 2 meet the maximum transmission rank of 2, and the coherence characteristics are ⁇ non-coherent ⁇ or full-non.
  • the antenna port is 2; the terminal obtains the precoding matrix for uplink transmission according to the first indication field + TPMI1 + TPMI2, where the first indication field is interpreted as follows:
  • Gi is the i-th group of coherent antennas; TPMI1 and TPMI2 respectively correspond to the first coherent antenna group and the second coherent antenna group selected by the first indication domain.
  • the elements of the precoding matrix are 0.
  • the transport layer is the sum of the layers indicated by TPMI1 and TPMI2.
  • TPMI1 and TPMI2 The interpretation of TPMI1 and TPMI2 is as follows:
  • the terminal obtains the precoding matrix for uplink transmission according to the first indication field + TPMI1 + TP MI2, where the first indication field is interpreted as follows:
  • TPMI1 and TPMI2 respectively correspond to the first coherent antenna group and the second coherent antenna group selected by the first indication domain, or the first and second coherent antenna groups and the third and fourth antenna groups, that is, the The precoding corresponding to the first and second coherent antennas is indicated by TPMI1 and transmits the same layer.
  • the third and fourth antenna groups are determined by TPMI2 and transmits the same layer.
  • the elements of the precoding matrix are 0. State 1 indicates that the transport layer is the layer indicated by TPMI1 or TPMI2, and state 2 indicates that the transport layer is the sum of the layers indicated by TPMI1 and TPMI2.
  • TPMI1 and TPMI2 The interpretation of TPMI1 and TPMI2 is as follows:
  • Precoding indication scheme 2 Limit the maximum transmission rank to 8.
  • the precoding indication in the DCI received by the terminal includes: TPMI1+TPMI2+TPMI3+TPMI4:
  • the network side configures TPMI1, TPMI2, TPMI3, and TPMI4 respectively corresponding to codebook subset 1, codebook subset 2, codebook subset 3, and codebook subset 4; codebook subsets 1-4 satisfy the maximum transmission rank of 2.
  • the coherence characteristics are ⁇ non-coherent ⁇ or full-non-coherent or full-coherent, and the antenna port is 2.
  • the terminal obtains the uplink transmission precoding matrix based on TPMI 1-4 information.
  • TPMI1-4 correspond to four coherent antenna groups respectively.
  • TPMI i indicates a reserved entry, it means that the precoding element of the antenna group corresponding to TPMI i is 0, the transmission layer layer is 0; the transmission layer is valid TP The sum of the layers indicated by MI i.
  • TPMI1-4 The interpretation of TPMI1-4 is as follows:
  • the terminal obtains the uplink transmission precoding matrix according to the first indication field + TPMI1-4 information.
  • the first indication field is interpreted as follows:
  • State 1 indicates that the transport layer is the layer indicated by any valid TPMI i
  • state 2 indicates that the transport layer is the sum of the layers indicated by valid TPMI i.
  • TPMI1-4 The interpretation of TPMI1-4 is as follows:
  • the grouping method is 8Tx divided into two groups, and two of the four antenna ports in each group form a group of coherent antennas, that is, 2+2.
  • the precoding indication in the DCI received by the terminal includes: first indication field + TPMI1 + TPMI2.
  • the network side configures TPMI1 and TPMI2 to correspond to codebook subset 1 and codebook subset 2 respectively; codebook subset 1 and codebook subset 2 meet the maximum transmission rank of 4, and the coherence characteristics are ⁇ non-coherent ⁇ or partial-non.
  • the antenna port is 4; the terminal obtains the uplink transmission precoding matrix according to the first indication field + TPMI1 + TPMI2 information.
  • the 8Tx antenna is divided into two groups and are associated with TPMI1 and TPMI2 respectively. Among them, the first indication field is interpreted as follows:
  • TPMI1 and TPMI2 respectively correspond to the first coherent antenna group and the second coherent antenna group selected by the first indication field.
  • the precoding element is 0 and no layer is transmitted.
  • the transport layer is the sum of the layers indicated by TPMI1 and TPMI2.
  • TPMI1 and TPMI2 The interpretation of TPMI1 and TPMI2 is as follows:
  • the terminal obtains the uplink transmission precoding matrix according to the first indication field + TPMI1 + TPMI2, where the first indication field is interpreted as follows:
  • Gi is the i-th group of coherent antennas; state 1 indicates that the transmission layer is the layer indicated by TPMI1 or TPMI2, and the codebook subset corresponding to TPMI1 and TPMI2 satisfies full-partial-non or partial-non or non-coherent. State 2 indicates that the transmission layer It is the sum of the layers indicated by TPMI1 and TPMI2.
  • TPMI1 and TPMI2 The interpretation of TPMI1 and TPMI2 is as follows:
  • the first indication field indicates as follows:
  • the two codebook subsets can be ⁇ non-coherent, non-coherent ⁇ , or ⁇ full-partial-non, full-partial-non ⁇ .
  • the first indication field is indicated as follows:
  • the first indication field indicates as follows:
  • the TPMI field indicates antenna port selection.
  • the network side configures two codebook subsets: 2TX fully coherent and 4TX fully coherent; or 2TX fully coherent and incoherent, 4TX fully coherent and partially coherent and incoherent.
  • the first indication field indicates that the TPMI domain in the DCI changes from two
  • the precoding matrices selected in the codebook subset are all valid, an 8Tx precoding matrix can be generated.
  • the method for indicating the precoding matrix according to the embodiment of the present application is described in detail above with reference to FIG. 2 .
  • a method for indicating a precoding matrix according to another embodiment of the present application will be described in detail below with reference to FIG. 3 . It can be understood that the interaction between the network side device and the terminal described from the network side device is the same as or corresponding to the description on the terminal side in the method shown in Figure 2. To avoid duplication, the relevant description is appropriately omitted.
  • Figure 3 is a schematic flowchart of the method for indicating a precoding matrix according to an embodiment of the present application, which can be applied to network-side equipment. As shown in Figure 3, the method 300 includes the following steps.
  • the network side device sends DCI.
  • the DCI includes a first indication field.
  • the first indication field is used by the terminal to determine the precoding matrix for uplink transmission.
  • the first indication field is used to indicate at least one of the following: precoding. Matrix generation method, selected antenna port information, effective precoding matrix information, precoding matrix transmission layer information, and whether to use full power transmission.
  • the network side device indicates the precoding matrix for the terminal's uplink transmission through the first indication field in the DCI. Specifically, it can indicate at least one of the following: precoding matrix generation method, selected antenna Port information, effective precoding matrix information, transmission layer information of the precoding matrix, and whether full power transmission is used. In this way, the terminal can determine the precoding matrix for uplink transmission based on the first indication field, which is beneficial to improving communication system performance.
  • the DCI also includes M precoding information indication fields, the M precoding information indication fields are used to indicate the precoding matrix used by the terminal, and the M precoding information The indication field corresponds to the N codebook subsets configured on the network side device; M and N are positive integers.
  • the method before the network side device sends DCI, the method further includes: the network side device sends configuration information, where the configuration information includes configurations of N codebook subsets.
  • Set, N is a positive integer; wherein, the configuration of each codebook subset includes at least one of the following information: 1) maximum transmission rank; 2) coherence of the antenna port; 3) horizontal direction oversampling factor; 4) Vertical direction oversampling factor; 5) Antenna grouping method; 6) Antenna polarization method; 7) Number of antenna ports; 8) Phase set between antenna groups.
  • the method before the network side device sends the configuration information, the method further includes: the network side device receives terminal capability information reported by the terminal, and the terminal capability information includes at least one of the following: 1 )Horizontal oversampling factor; 2) Vertical oversampling factor; 3) Antenna grouping method; 4) Antenna polarization method; 5) Number of antenna ports; 6) Phase set between antenna groups; 7) Full power Antenna grouping for transmission; 8) Precoding information for full power transmission.
  • the terminal capability information includes at least one of the following: 1 )Horizontal oversampling factor; 2) Vertical oversampling factor; 3) Antenna grouping method; 4) Antenna polarization method; 5) Number of antenna ports; 6) Phase set between antenna groups; 7) Full power Antenna grouping for transmission; 8) Precoding information for full power transmission.
  • the precoding information for full power transmission includes N groups of precoding matrices, wherein the N groups of precoding matrices are related to the N groups of antennas of the terminal. Ports have a one-to-one correspondence; or, the precoding information for full power transmission includes a set of precoding matrices, where the set of precoding matrices corresponds to N sets of antenna ports of the terminal.
  • the set of precoding matrices includes at least one of the following: 1) an 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices; wherein the antenna of the terminal The coherence of the ports is non-coherent; 2) An 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices is used; wherein the 4 antenna ports of the terminal are a set of coherent ports; 3) Four antenna ports are used An 8-antenna port precoding matrix composed of a 2-antenna port precoding matrix; wherein the 2 antenna ports of the terminal are a group of coherent ports; 4) An 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices Coding matrix; wherein the two antenna ports of the terminal are a set of coherent ports; 5) an 8-antenna port precoding matrix composed of a 2-antenna port and a 4-antenna port precoding matrix.
  • the coherence of the N codebook subsets included in the configuration information is determined based on the antenna coherence and/or the full power transmission mode reported by the terminal.
  • the antenna coherence reported by the terminal is non-coherent
  • the coherence of the N codebook subsets included in the configuration information includes: ⁇ non-coherent, non-coherent ⁇ ; or, the The antenna coherence reported by the terminal is non-coherent, the reported full power transmission mode is mode one
  • the coherence of the N codebook subsets included in the configuration information includes: ⁇ all parts are non-coherent, all parts are non-coherent ⁇ ; or , the antenna coherence reported by the terminal is partially coherent and non-coherent
  • the coherence of the N codebook subsets included in the configuration information includes one of the following: ⁇ partially non-coherent, partially non-coherent ⁇ ; ⁇ non-coherent, Non-coherent ⁇ ; ⁇ Partially coherent, partially coherent ⁇ ; ⁇ Partially coherent, non-coherent ⁇ ;
  • the antenna coherence reported by the terminal is partially coherent and non-coherent
  • the execution subject may be the precoding matrix.
  • Array indicating device In the embodiment of the present application, the precoding matrix indicating device performing the precoding matrix indicating method is taken as an example to illustrate the precoding matrix indicating device provided by the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a device for indicating a precoding matrix according to an embodiment of the present application. This device may correspond to a terminal in other embodiments. As shown in Figure 4, the device 400 includes the following modules.
  • the receiving module 402 may be used to receive DCI.
  • the DCI includes a first indication field.
  • the first indication field is used to indicate at least one of the following: precoding matrix generation mode, selected antenna port information, effective precoding Matrix information, transmission layer information of the precoding matrix, and whether full power transmission is used.
  • the sending module 404 may be configured to determine a precoding matrix for uplink transmission according to the first indication field.
  • the network side device indicates the precoding matrix for uplink transmission through the first indication field in the DCI. Specifically, it can indicate at least one of the following: precoding matrix generation method, selected antenna port information, effective precoding matrix information, transmission layer information of the precoding matrix, and whether full power transmission is used. In this way, the device 400 can determine the precoding matrix for uplink transmission according to the first indication field, which is beneficial to improving communication system performance.
  • the DCI further includes M precoding information indication fields, the M precoding information indication fields are used to indicate the precoding matrix used by the device, and the M precoding information The indication field corresponds to the N codebook subsets configured by the network side device; wherein the sending module 404 is configured to determine the precoding for uplink transmission according to the first indication field and the M precoding information indication fields.
  • Matrices, M and N are positive integers.
  • the receiving module 402 is also used to receive configuration information.
  • the configuration information includes the configuration of N codebook subsets, where N is a positive integer; wherein, each of the codebook subsets
  • the configuration of the set includes at least one of the following information: 1) maximum transmission rank; 2) coherence of the antenna port; 3) horizontal oversampling factor; 4) vertical oversampling factor; 5) antenna grouping method; 6) antenna pole mode; 7) the number of antenna ports; 8) the phase set between antenna groups.
  • the sending module 404 is also configured to report capability information of the device, where the capability information includes at least one of the following: 1) horizontal oversampling factor; 2) vertical oversampling. Factor; 3) Antenna grouping method; 4) Antenna polarization method; 5) Number of antenna ports; 6) Phase set between antenna groups; 7) Antenna grouping for full power transmission; 8) Precoding for full power transmission information.
  • the precoding information for full power transmission includes N groups of precoding matrices, where the N groups of precoding matrices are related to the N groups of antennas of the device. Ports have a one-to-one correspondence; or, the precoding information for full power transmission includes a set of precoding matrices, where the set of precoding matrices corresponds to N sets of antenna ports of the device.
  • the set of precoding matrices includes at least one of the following: 1) An 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices; wherein the coherence of the antenna ports of the device is non-coherent; 2) An 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices Port precoding matrix; wherein, the 4 antenna ports of the device are a group of coherent ports; 3) an 8-antenna port precoding matrix composed of four 2-antenna port precoding matrices; wherein, the 2 antenna ports of the device The antenna ports are a set of coherent ports; 4) an 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices is used; wherein the 2 antenna ports of the device are a set of coherent ports; 5) a 2-antenna port precoding matrix is used
  • the antenna ports and a 4-antenna port precoding matrix constitute an 8-antenna port
  • the coherence of the N codebook subsets included in the configuration information is determined based on the antenna coherence and/or the full power transmission mode reported by the device.
  • the antenna coherence reported by the device is non-coherent
  • the coherence of the N codebook subsets included in the configuration information includes: ⁇ non-coherent, non-coherent ⁇ ; or, the The antenna coherence reported by the device is non-coherent, the reported full power transmission mode is mode one
  • the coherence of the N codebook subsets included in the configuration information includes: ⁇ all parts are non-coherent, all parts are non-coherent ⁇ ; or , the antenna coherence reported by the device is partially coherent and non-coherent.
  • the coherence of the N codebook subsets included in the configuration information includes one of the following: ⁇ partially non-coherent, partially non-coherent ⁇ ; ⁇ non-coherent, Non-coherent ⁇ ; ⁇ Partially coherent, partially coherent ⁇ ; ⁇ Partially coherent, non-coherent ⁇ ; Alternatively, the antenna coherence reported by the device is partially coherent and non-coherent, and the reported full power transmission mode is mode one, and the configuration
  • the coherence of the N codebook subsets included in the information includes: ⁇ all parts are incoherent, all parts are incoherent ⁇ .
  • the device 400 according to the embodiment of the present application can refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the device 400 are respectively to implement the corresponding process in the method 200, And can achieve the same or equivalent technical effects. For the sake of simplicity, they will not be described again here.
  • the indicating device of the precoding matrix in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • Figure 5 is a schematic structural diagram of a device for indicating a precoding matrix according to an embodiment of the present application. This device may correspond to network-side equipment in other embodiments. As shown in Figure 5, the device 500 includes the following modules.
  • the sending module 502 is configured to send DCI.
  • the DCI includes a first indication field.
  • the first indication field is used by the terminal to determine the precoding matrix for uplink transmission.
  • the first indication field is used to indicate the following: The least one: the precoding matrix generation method, the information of the selected antenna port, the information of the effective precoding matrix, the transmission layer information of the precoding matrix, and whether to use full power transmission.
  • the apparatus 500 may further include a processing module.
  • the precoding matrix indication device indicates the precoding matrix for uplink transmission of the terminal through the first indication field in the DCI. Specifically, it can indicate at least one of the following: precoding matrix generation method, selected antenna port information , effective precoding matrix information, transmission layer information of the precoding matrix, and whether full power transmission is used. In this way, the terminal can determine the precoding matrix for uplink transmission according to the first indication field, which is beneficial to improving communication system performance.
  • the DCI also includes M precoding information indication fields, the M precoding information indication fields are used to indicate the precoding matrix used by the terminal, and the M precoding information The indication field corresponds to N codebook subsets configured by the device; M and N are positive integers.
  • the sending module 502 is also used to send configuration information, where the configuration information includes the configuration of N codebook subsets, where N is a positive integer; wherein, each of the codebook subsets
  • the configuration of the set includes at least one of the following information: 1) maximum transmission rank; 2) coherence of the antenna port; 3) horizontal oversampling factor; 4) vertical oversampling factor; 5) antenna grouping method; 6) antenna pole mode; 7) the number of antenna ports; 8) the phase set between antenna groups.
  • the device further includes a receiving module for receiving terminal capability information reported by the terminal, where the terminal capability information includes at least one of the following: 1) Horizontal direction oversampling factor; 2) Vertical direction Oversampling factor; 3) Antenna grouping method; 4) Antenna polarization method; 5) Number of antenna ports; 6) Phase set between antenna groups; 7) Antenna grouping for full power transmission; 8) Full power transmission Precoded information.
  • the terminal capability information includes at least one of the following: 1) Horizontal direction oversampling factor; 2) Vertical direction Oversampling factor; 3) Antenna grouping method; 4) Antenna polarization method; 5) Number of antenna ports; 6) Phase set between antenna groups; 7) Antenna grouping for full power transmission; 8) Full power transmission Precoded information.
  • the precoding information for full power transmission includes N groups of precoding matrices, wherein the N groups of precoding matrices are related to the N groups of antennas of the terminal. Ports have a one-to-one correspondence; or, the precoding information for full power transmission includes a set of precoding matrices, where the set of precoding matrices corresponds to N sets of antenna ports of the terminal.
  • the set of precoding matrices includes at least one of the following: 1) an 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices; wherein the antenna of the terminal The coherence of the ports is non-coherent; 2) An 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices is used; wherein the 4 antenna ports of the terminal are a set of coherent ports; 3) Four antenna ports are used An 8-antenna port precoding matrix composed of a 2-antenna port precoding matrix; wherein the 2 antenna ports of the terminal are a group of coherent ports; 4) An 8-antenna port precoding matrix composed of two 4-antenna port precoding matrices Coding matrix; wherein the two antenna ports of the terminal are a set of coherent ports; 5) an 8-antenna port precoding matrix composed of a 2-antenna port and a 4-antenna port precoding matrix.
  • the coherence of the N codebook subsets included in the configuration information is determined based on the antenna coherence and/or the full power transmission mode reported by the terminal.
  • the antenna coherence reported by the terminal is non-coherent
  • the coherence of the N codebook subsets included in the configuration information includes: ⁇ non-coherent, non-coherent ⁇ ; or, the The antenna coherence reported by the terminal is non-coherent, the reported full power transmission mode is mode one
  • the coherence of the N codebook subsets included in the configuration information includes: ⁇ all parts are non-coherent, all parts are non-coherent ⁇ ; or , the antenna coherence reported by the terminal is partially coherent and non-coherent
  • the coherence of the N codebook subsets included in the configuration information includes one of the following: ⁇ partially non-coherent, partially non-coherent ⁇ ; ⁇ non-coherent, Non-coherent ⁇ ; ⁇ Partially coherent, partially coherent ⁇ ; ⁇ Partially coherent, non-coherent ⁇ ;
  • the antenna coherence reported by the terminal is partially coherent and non-coherent
  • the device 500 according to the embodiment of the present application can refer to the process corresponding to the method 300 of the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the device 500 are respectively intended to implement the corresponding process in the method 300. And can achieve the same or equivalent technical effects. For the sake of simplicity, they will not be described again here.
  • the precoding matrix indication device provided by the embodiments of the present application can implement each process implemented by the method embodiments of Figures 2 to 3, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 600, which includes a processor 601 and a memory 602.
  • the memory 602 stores programs or instructions that can be run on the processor 601, for example.
  • the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each step of the above-mentioned precoding matrix indication method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, each step of the above-mentioned precoding matrix indication method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, it will not be described again here. .
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the communication interface is used to receive DCI.
  • the DCI includes a first indication field, and the first indication field is used to indicate at least one of the following: precoding matrix Generation method, selected antenna port information, effective precoding matrix information, transmission layer information of the precoding matrix, whether to use full power transmission; determine the precoding matrix for uplink transmission according to the first indication field.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 7 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 700 includes but is not limited to: radio frequency unit 701, network module 702, audio output unit 703, at least some components of the input unit 704, the sensor 705, the display unit 706, the user input unit 707, the interface unit 708, the memory 709, the processor 710, and the like.
  • the terminal 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and at least one of other input devices 7072 .
  • Touch panel 7071 also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 701 after receiving downlink data from the network side device, can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and Direct Rambus RAM (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM Direct Rambus RAM
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • the radio frequency unit 701 may be used to receive DCI.
  • the DCI includes a first indication field.
  • the first indication field is used to indicate at least one of the following: precoding matrix generation mode, selected antenna port information, valid Precoding matrix information, transmission layer information of the precoding matrix, whether full power transmission is used; determining the precoding matrix for uplink transmission according to the first indication field.
  • the network side device indicates the precoding matrix for the terminal's uplink transmission through the first indication field in the DCI. Specifically, it can indicate at least one of the following: precoding matrix generation method, selected antenna port information, valid The information of the precoding matrix, the transmission layer information of the precoding matrix, and whether full power transmission is used. In this way, the terminal can determine the precoding matrix for uplink transmission according to the first indication field, which is beneficial to improving the performance of the communication system.
  • the terminal 700 provided by the embodiment of the present application can also implement each process of the above-mentioned precoding matrix indication method embodiment, and can achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Embodiments of the present application also provide a network side device, including a processor and a communication interface.
  • the communication interface is used to send DCI.
  • the DCI includes a first indication field.
  • the first indication field is used by the terminal to determine the precoding for uplink transmission.
  • Matrix the first indication field is used to indicate at least one of the following: precoding matrix generation method, selected antenna port information, effective precoding matrix information, transmission layer information of the precoding matrix, whether to use full power transmission .
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82.
  • the radio frequency device 82 processes the received information and then sends it out through the antenna 81.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 83, which includes a baseband processor.
  • the baseband device 83 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to execute the network device shown in the above method embodiment Prepare for operation.
  • the network side device may also include a network interface 86, which is, for example, a common public radio interface (CPRI).
  • a network interface 86 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 800 in the embodiment of the present application also includes: instructions or programs stored in the memory 85 and executable on the processor 84.
  • the processor 84 calls the instructions or programs in the memory 85 to execute the various operations shown in Figure 5. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium, which stores a program or instructions.
  • a program or instructions When the program or instructions are executed by a processor, each process of the above-mentioned precoding matrix indication method embodiment is implemented, and can achieve the same technical effect, so to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above precoding matrix indication method.
  • Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above instructions of the precoding matrix.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a system for indicating a precoding matrix, including: a terminal and a network side device.
  • the terminal may be configured to perform the steps of the method for indicating a precoding matrix as described above.
  • the network side device may be configured to The steps of the method for indicating the precoding matrix as described above are performed.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了一种预编码矩阵的指示方法、终端及网络侧设备,属于通信技术领域,本申请实施例的预编码矩阵的指示方法包括:终端接收DCI,所述DCI包括第一指示域,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输;所述终端根据所述第一指示域确定上行传输的预编码矩阵。

Description

预编码矩阵的指示方法、终端及网络侧设备
交叉引用
本申请要求在2022年06月30日提交中国专利局、申请号为202210760643.0、发明名称为“预编码矩阵的指示方法、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种预编码矩阵的指示方法、终端及网络侧设备。
背景技术
对于基于码本的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输,网络侧设备会为终端配置基于码本传输的探测参考信号(Sounding Reference Signal,SRS)资源集,每个SRS资源集包含至少一个SRS资源,使得终端根据配置的至少一个SRS资源发送SRS。网络侧设备通过接收SRS来获得上行信道,并基于此来确定PUSCH传输的预编码矩阵等。网络侧设备在确定出预编码矩阵之后,还需要向终端通知终端使用的预编码矩阵,然而,相关技术中还未提供相应的方案,影响终端的通信。
发明内容
本申请实施例提供一种预编码矩阵的指示方法、终端及网络侧设备,能够解决因终端无法确定上行传输的预编码矩阵,影响终端通信的问题。
第一方面,提供了一种预编码矩阵的指示方法,包括:终端接收下行控制信息DCI,所述DCI包括第一指示域,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输;所述终端根据所述第一指示域确定上行传输的预编码矩阵。
第二方面,提供了一种预编码矩阵的指示方法,包括:网络侧设备发送DCI,所述DCI包括第一指示域,所述第一指示域用于终端确定上行传输的预编码矩阵,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。
第三方面,提供了一种预编码矩阵的指示装置,包括:接收模块,用于接收DCI,所述DCI包括第一指示域,所述第一指示域用于指示如下至少之 一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输;发送模块,用于根据所述第一指示域确定上行传输的预编码矩阵。
第四方面,提供了一种预编码矩阵的指示装置,包括:发送模块,用于发送DCI,所述DCI包括第一指示域,所述第一指示域用于终端确定上行传输的预编码矩阵,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收DCI,所述DCI包括第一指示域,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输;根据所述第一指示域确定上行传输的预编码矩阵。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于发送DCI,所述DCI包括第一指示域,所述第一指示域用于终端确定上行传输的预编码矩阵,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。
第九方面,提供了一种预编码矩阵的指示系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,所述网络侧设备可用于执行如第二方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以 实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,网络侧设备通过DCI中的第一指示域指示终端上行传输的预编码矩阵,具体可以指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输,这样,终端可以根据第一指示域确定上行传输的预编码矩阵,有利于提升通信系统性能。
附图说明
图1是根据本申请实施例的无线通信系统的示意图;
图2是根据本申请实施例的预编码矩阵的指示方法的示意性流程图;
图3是根据本申请实施例的预编码矩阵的指示方法的示意性流程图;
图4是根据本申请实施例的预编码矩阵的指示装置的结构示意图;
图5是根据本申请实施例的预编码矩阵的指示装置的结构示意图;
图6是根据本申请实施例的通信设备的结构示意图;
图7是根据本申请实施例的终端的结构示意图;
图8是根据本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carri er Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VehicleUser Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的预编码矩阵的指示方法进行详细地说明。
如图2所示,本申请实施例提供一种预编码矩阵的指示方法200,该方法可以由终端执行,换言之,该方法可以由安装在终端的软件或硬件来执行, 该方法包括如下步骤。
S202:终端接收下行控制信息(Downlink Control Information,DCI),所述DCI包括第一指示域,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。
所述预编码矩阵生成方式包括:根据至少两个预编码矩阵生成一个预编码矩阵,例如,根据两个支持4端口PUSCH传输的预编码矩阵,生成一个支持8端口PUSCH传输的预编码矩阵;又例如,根据四个支持2端口PUSCH传输的预编码矩阵,生成一个支持8端口PUSCH传输的预编码矩阵。
对于上述选择的天线端口的信息,例如,所述终端配置了8个天线端口的传输,网络侧设备可以通过第一指示域指示终端使用的4个天线端口的信息;或者,通过第一指示域指示终端使用8个天线端口发送PUSCH。
对于上述有效的预编码矩阵的信息,可选地,所述DCI还包括M个预编码信息指示域,或称作传输预编码矩阵指示(Precoding information and number of layers)域,一般简称为TPMI域,所述M个预编码信息指示域用于指示终端使用的预编码矩阵。该例子中,网络侧设备可以通过第一指示域,从TPMI域指示的预编码矩阵中,进一步地指示出有效的预编码矩阵的信息。这样,终端可以根据第一指示域,从TPMI域指示的预编码矩阵中,进一步地确定出有效的预编码矩阵的信息。
对于上述预编码矩阵的生成方式,例如两个TPMI域指示两个预编码矩阵W1和W2,终端根据第一指示域,进一步确定这两个预编码矩阵生成一个预编码矩阵W的方式,如或者,或者,表示两个矩阵的克罗内克积。
对于上述选择的天线端口的信息,例如将8个天线端口分成两组,第一指示域指示选择哪一组或者两组天线端口进行传输。
对于上述有效的预编码矩阵的信息,例如DCI中包含两个预编码指示域,第一指示域指示那个指示域有效或者两个指示域都有效。
对于上述预编码矩阵的传输层信息,例如,终端根据预编码矩阵1和预编码矩阵2生成一个预编码矩阵3,网络侧设备可以通过第一指示域指示预编码矩阵3的传输层是等于预编码矩阵1的传输层,还是等于预编码矩阵2的传输层;或者,等于预编码矩阵1的传输层与预编码矩阵2的传输层之和。
对于上述是否使用满功率传输,例如,网络侧设备可以通过第一指示域指示终端使用满功率传输,还可以通过第一指示域指示终端不使用满功率传 输。
终端还可以根据第一指示域指示的预编码矩阵的生成方式确定满功率传输的预编码矩阵,进而达到满功率传输,例如当两个TPMI域指示两个预编码矩阵W1和W2都为每一行至少一个非零元素时,终端根据第一指示域,进一步确定这两个预编码矩阵生成一个预编码矩阵W的方式,则终端的所有天线端口的传输功率非零,达到了满功率传输。
S204:所述终端根据所述第一指示域确定上行传输的预编码矩阵。
在S204之后,终端还可以根据确定出的预编码矩阵发送PUSCH。
可选地,所述DCI还包括M个预编码信息指示域,所述M个预编码信息指示域用于指示终端使用的预编码矩阵,所述M个预编码信息指示域与网络侧设备配置的N个码本子集相对应,M和N是正整数。例如,M=2,N=2,2个预编码信息指示域与网络侧设备配置的2个码本子集一一对应;又例如,M=4,N=4,4个预编码信息指示域与网络侧设备配置的4个码本子集一一对应;再例如,M=2,N=4,每个预编码信息指示域与网络侧设备配置的2个码本子集对应。
该步骤中,所述终端根据所述第一指示域确定上行传输的预编码矩阵包括:所述终端根据所述第一指示域以及所述M个预编码信息指示域确定上行传输的预编码矩阵。
可选地,所述第一指示域的比特长度与如下1),2)和3)之一相关:
1)网络侧设备配置的码本子集的个数N。
该实施例中,第一指示域的比特长度取决于配置的码本子集的个数N,例如,第一指示域的比特长度通过如下计算式得到:
或者,或者,
2)所述DCI包括的预编码信息指示域的个数M。
该实施例中,第一指示域的比特长度取决于M,例如,第一指示域的比特长度通过如下计算式得到:
或者,或者,
3)第一指示域的长度取决于码本子集的个数N和预编码信息指示域的个数M中的最大值Q,例如,第一指示域的比特长度通过如下计算式得到:
或者,或者,
本申请实施例提供的预编码矩阵的指示方法,网络侧设备通过DCI中的第一指示域指示终端上行传输的预编码矩阵,具体可以指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输,这样,终端可以根据第一指示域确定上行传输的预编码矩阵,有利于提升通信系统性能。
本申请实施例提供的预编码矩阵的指示方法,通过DCI中的第一指示域,第一指示域除了指示天线分组的信息、有效的预编码矩阵的信息外,还能指示满功率传输的预编码矩阵生成方式,不需要引入新的8天线端口(8Tx)预编码矩阵就能实现8Tx传输,能实现灵活的预编码矩阵指示的同时,还可以支持满功率传输。
本申请以上各个实施例的基础上,所述终端接收DCI之前,所述方法还包括:所述终端接收配置信息,该配置信息可以由无线资源控制(Radio Resource Control,RRC)信令承载,所述配置信息包括N个码本子集的配置,N为正整数。
可选地,所述终端配置了8个天线端口的传输;其中,N=1,2或4。
可选地,每个所述码本子集的配置包括以下至少一种信息:
1)最大传输秩。例如,最大传输秩为1,2,4等。
2)天线端口的相干性。天线端口的相干性可以为集合{全相干,部分相干,非相干}的子集,例如,可以为全部分相干(或称作全相干以及部分相干);又例如,可以为全部分非相干。
3)水平方向过采样因子。水平方向过采样因子O1可以为2或4。
4)垂直方向过采样因子。垂直方向过采样因子O2可以为2或4。
5)天线分组方式。例如,分为两组,每组内包含4个天线端口;又例如,分为四组,每组内包含2天线端口;再例如,分为两组,一组内包含4个天线端口另一组内包含2个天线端口。
6)天线极化方式。例如,单极化方式或双极化方式。
7)天线端口的个数。例如,4天线端口4Tx,2天线端口2Tx,8天线端口8Tx。
8)天线分组之间的相位集合。例如,天线分组之间的相位可以从集合{1,j,-j,-1}中选择。
可选地,所述配置信息还包括有用于指示满功率传输模式的信息,例如,包括有用于指示满功率传输模式1(Full-power mode 1)的信息,包括有用于指示满功率传输模式2(Full-power mode 2)的信息。
可选地,所述终端接收配置信息之前,所述方法还包括:所述终端上报终端能力信息,所述终端能力信息包括如下至少之一:
1)水平方向过采样因子。水平方向过采样因子O1可以为2或4。
2)垂直方向过采样因子。垂直方向过采样因子O2可以为2或4。
3)天线分组方式。例如,分为两组,每组内包含4个天线端口;又例如,分为四组,每组内包含2天线端口;再例如,分为两组,一组内包含4个天线端口另一组内包含2个天线端口。
4)天线极化方式。例如,单极化方式或双极化方式。
5)天线端口的个数。例如,4天线端口4Tx,2天线端口2Tx,8天线端口8Tx。
6)天线分组之间的相位集合。例如,天线分组之间的相位可以从集合{1,j,-j,-1}中选择。
7)满功率传输的天线分组。例如,分为两组,每组内一个4端口天线。
8)满功率传输的预编码信息。
在N大于1的情况下,上述8)中提到的满功率传输的预编码信息可以包括N组预编码矩阵,其中,所述N组预编码矩阵与所述终端的N组天线端口一一对应,例如,终端上报两组4Tx预编码信息,每组预编码信息由4比特指示;又例如,终端上报四组2Tx预编码信息,每组预编码信息由2比特指示。
在N大于1的情况下,上述8)中提到的满功率传输的预编码信息还可以包括一组预编码矩阵,其中,所述一组预编码矩阵的信息与所述终端的N组天线端口对应。
对于N组天线上报一组预编码信息的实施例,所述一组预编码矩阵包括如下情况一至情况五中的至少之一:
情况一:采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的天线端口的相干性为非相干(non-coherent)。
该实施例中,对于非相干终端(non-coherent User Equipment,non-coherent UE),采用两个4Tx预编码矩阵构成一个8Tx预编码矩阵,终端上报的满功率传输的预编码矩阵包括以下表格中的至少一种:

需要说明的是,针对一个终端而言,一个终端可以上报上述表格中的某一行,例如,某一个终端上报G5中的满功率传输的预编码矩阵。
情况二:采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的4个天线端口为一组相干端口。
该实施例中,对于4个天线为一组相干端口的终端,采用两个4Tx预编码矩阵构成一个8Tx预编码矩阵,终端上报的满功率传输的预编码矩阵包括以下表格中的至少一种:
情况三:采用四个2天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口。
该实施例中,对于两个天线为一组相干端口的UE(2+2+2+2),采用2个4TX预编码矩阵构成一个8Tx预编码矩阵,终端上报的满功率传输的预编码矩阵包括以下表格中的至少一种:
情况四:采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口。
该实施例中,对于两个天线为一组相干端口的UE(2+2+2+2),采用两个4Tx预编码矩阵构成一个8Tx预编码矩阵,终端上报的满功率传输的预编码矩阵包括以下表格中的至少一种。

情况五:采用一个2天线端口和一个4天线端口的预编码矩阵构成的一个8天线端口的预编码矩阵。
可选地,终端接收的配置信息包括的N个码本子集的相干性,是根据所述终端上报的天线相干性和/或满功率传输模式确定的。
在一个例子中,所述终端上报的天线相干性为非相干,所述配置信息包括的N个码本子集的相干性包括:{非相干,非相干},即{non-coherent,non-coherent}。
在一个例子中,所述终端上报的天线相干性为非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干},即{full-partial-non,full-partial-non}。
在一个例子中,所述终端上报的天线相干性为部分相干以及非相干,所述配置信息包括的N个码本子集的相干性包括如下之一:{部分非相干,部分非相干},即{partial-non-coherent,partial-non-coherent};{非相干,非相干},即{non-coherent,non-coherent};{部分相干,部分相干},即{partial-coherent,partial-coherent};{部分相干,非相干},即{partial-coherent,non-coherent}。
在一个例子中,所述终端上报的天线相干性为部分相干以及非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干},即{full-partial-non,full-partial-non}。
为详细说明本申请实施例提供的预编码矩阵的指示方法,以下将结合几个具体的实施例进行说明,后续实施例均以配置了8个天线端口(简称8Tx)的终端为例进行说明,然本申请实施例中天线端口的数目并不以此为限。
实施例一
该实施例将8Tx分成两组,每组内天线全相干,组与组之间不相干,即4+4。
终端接收到的DCI中的预编码指示包含:第一指示域+TPMI1+TPMI2。
网络侧配置TPMI1和TPMI2分别对应码本子集1和码本子集2,码本子集1和码本子集2满足最大传输秩为4,相干特性为{fully-coherent}或者{full-partial-non-coherent},天线端口为4。
终端根据第一指示域+TPMI1+TPMI2获得上行传输的预编码矩阵,8Tx天线分成两组分别与TPMI1和TPMI2关联,其中,第一指示域解读如下:
其中,Gi为第i组天线;TPMI1和TPMI2分别对应第一指示域选择的第一相干天线组和第二相干天线组,对于未被选择的天线组,预编码矩阵的元素为0,不传输任何层。传输层为TPMI1和TPMI2指示的层(layer)之和。
TPMI1和TPMI2的解读如下:

如果网络侧配置满功率传输模式1,则终端根据第一指示域+TPMI1+TPMI2获得上行传输的预编码矩阵。TPMI1和TPMI2对应的码本子集可以为full-partial-non-coherent;或者partial-non-coherent;或者non-coherent,其中:
第一指示域解读如下:
其中Gi为第i组相干天线;状态1表示传输层为TPMI1或TPMI2指示的layer,状态2表示传输层为TPMI1和TPMI2指示的layer之和。例如,两个TPMI域指示的预编码矩阵分别为W1和W2,则不同第一指示域取值对应的8Tx预编码矩阵可以为:
TPMI1和TPMI2的解读如下(W1和W2):

实施例二
该实施例中,对于码本子集,分组方式为8Tx分成四组,每组内天线全相干,组与组之间不相干,即2+2+2+2。
预编码指示方案一:限制最大传输秩为4,则4组天线中最多只能选择2 组天线传输,终端接收到的DCI中的预编码指示包含:第一指示域+TPMI1+TPMI2。
网络侧配置TPMI1和TPMI2分别对应码本子集1和码本子集2,码本子集1和码本子集2满足最大传输秩为2,相干特性为{non-coherent}或者full-non-coherent,天线端口为2;终端根据第一指示域+TPMI1+TPMI2获得上行传输的预编码矩阵,其中,第一指示域解读如下:
其中,Gi为第i组相干天线;TPMI1和TPMI2分别对应第一指示域选择的第一相干天线组和第二相干天线组,对于未被选择的天线组,预编码矩阵的元素为0。传输层为TPMI1和TPMI2指示的layer之和。
TPMI1和TPMI2的解读如下:
如果网络侧配置满功率传输模式1,则终端根据第一指示域+TPMI1+TP MI2获得上行传输的预编码矩阵,其中,第一指示域解读如下:

其中Gi为第i组相干天线;TPMI1和TPMI2分别对应第一指示域选择的第一相干天线组和第二相干天线组,或者第一第二相干天线组和第三第四天线组,即第一和第二相干天线对应的预编码由TPMI1指示,传输相同的l ayer,第三和第四天线组由TPMI2确定传输相同的layer。对于未被选择的天线组,预编码矩阵的元素为0。状态1表示传输层为TPMI1或TPMI2指示的layer,状态2表示传输层为TPMI1和TPMI2指示的layer之和。
TPMI1和TPMI2的解读如下:
预编码指示方案二:限制最大传输秩为8,终端接收到的DCI中的预编码指示包含:TPMI1+TPMI2+TPMI3+TPMI4:
网络侧配置TPMI1,TPMI2,TPMI3,TPMI4分别对应码本子集1,码本子集2,码本子集3,码本子集4;码本子集1-4满足最大传输秩为2,相干特性为{non-coherent}或者full-non-coherent或者full-coherent,天线端口为2。终端根据TPMI 1-4信息获得上行传输预编码矩阵。其中,TPMI1-4分别对应4个相干天线组,当TPMI i指示了保留(reserved)条目,表示该TPMI i对应的天线组的预编码元素为0,传输层layer为0;传输层为有效的TP MI i指示的layer之和。
TPMI1-4的解读如下:
如果网络侧配置满功率传输模式1,则终端根据第一指示域+TPMI1-4信息获得上行传输预编码矩阵。其中,第一指示域解读如下:
状态1表示传输层为任意有效的TPMI指示的layer,状态2表示传输层为有效的TPMI i指示示的layer之和。
TPMI1-4的解读如下:


实施例三
该实施例中,对于码本子集,分组方式为8Tx分成两组,每组内4个天线端口两个为一组相干天线,即2+2。
终端接收到的DCI中的预编码指示包含:第一指示域+TPMI1+TPMI2。
网络侧配置TPMI1和TPMI2分别对应码本子集1和码本子集2;码本子集1和码本子集2满足最大传输秩为4,相干特性为{non-coherent}或者partial-non-coherent,天线端口为4;终端根据第一指示域+TPMI1+TPMI2信息获得上行传输预编码矩阵。8Tx天线分成两组分别与TPMI1和TPMI2关联,其中,第一指示域解读入职:
其中Gi为第i组天线;TPMI1和TPMI2分别对应第一指示域选择的第一相干天线组和第二相干天线组,对于未被选择的天线组,预编码元素为0,不传输任何层。传输层为TPMI1和TPMI2指示的layer之和。
TPMI1和TPMI2的解读如下:

如果网络侧配置满功率传输模式1,则终端根据第一指示域+TPMI1+TPMI2获得上行传输预编码矩阵,其中,第一指示域解读如下:
其中Gi为第i组相干天线;状态1表示传输层为TPMI1或TPMI2指示的layer,TPMI1和TPMI2对应的码本子集满足full-partial-non或者partial-non或者non-coherent状态2表示传输层为TPMI1和TPMI2指示的layer之和。
TPMI1和TPMI2的解读如下:

实施例四
该实施例中,8Tx全部不相干,网络侧配置两组码本子集分别对应{non-coherent,non-coherent},第一指示域指示如下:
当配置了满功率传输模式1,两个码本子集可以是{non-coherent,non-coherent},或者{full-partial-non,full-partial-non},第一指示域指示如下:

实施例五
该实施例中,8Tx全部不相干,8个天线端口看成8组,第一指示域指示如下:
TPMI域指示天线端口选择。
实施例六
网络侧配置两个码本子集分别为2TX全相干,4TX全相干;或者2TX全相干及不相干,4TX全相干部分相干以及不相干,当第一指示域指示DCI中的TPMI域从两个码本子集中选择的预编码矩阵都有效时,可以生成一个8Tx预编码矩阵。
以上结合图2详细描述了根据本申请实施例的预编码矩阵的指示方法。下面将结合图3详细描述根据本申请另一实施例的预编码矩阵的指示方法。可以理解的是,从网络侧设备描述的网络侧设备与终端的交互与图2所示的方法中的终端侧的描述相同或相对应,为避免重复,适当省略相关描述。
图3是本申请实施例的预编码矩阵的指示方法实现流程示意图,可以应用在网络侧设备。如图3所示,该方法300包括如下步骤。
S302:网络侧设备发送DCI,所述DCI包括第一指示域,所述第一指示域用于终端确定上行传输的预编码矩阵,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。
本申请实施例提供的预编码矩阵的指示方法,网络侧设备通过DCI中的第一指示域指示终端上行传输的预编码矩阵,具体可以指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输,这样,终端可以根据第一指示域确定上行传输的预编码矩阵,有利于提升通信系统性能。
可选地,作为一个实施例,所述DCI还包括M个预编码信息指示域,所述M个预编码信息指示域用于指示所述终端使用的预编码矩阵,所述M个预编码信息指示域与网络侧设备配置的N个码本子集相对应;M和N是正整数。
可选地,作为一个实施例,所述网络侧设备发送DCI之前,所述方法还包括:所述网络侧设备发送配置信息,所述配置信息包括N个码本子集的配 置,N为正整数;其中,每个所述码本子集的配置包括以下至少一种信息:1)最大传输秩;2)天线端口的相干性;3)水平方向过采样因子;4)垂直方向过采样因子;5)天线分组方式;6)天线极化方式;7)天线端口的个数;8)天线分组之间的相位集合。
可选地,作为一个实施例,所述网络侧设备发送配置信息之前,所述方法还包括:所述网络侧设备接收终端上报的终端能力信息,所述终端能力信息包括如下至少之一:1)水平方向过采样因子;2)垂直方向过采样因子;3)天线分组方式;4)天线极化方式;5)天线端口的个数;6)天线分组之间的相位集合;7)满功率传输的天线分组;8)满功率传输的预编码信息。
可选地,作为一个实施例,在N大于1的情况下,所述满功率传输的预编码信息包括N组预编码矩阵,其中,所述N组预编码矩阵与所述终端的N组天线端口一一对应;或者,所述满功率传输的预编码信息包括一组预编码矩阵,其中,所述一组预编码矩阵与所述终端的N组天线端口对应。
可选地,作为一个实施例,所述一组预编码矩阵包括如下至少之一:1)采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的天线端口的相干性为非相干;2)采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的4个天线端口为一组相干端口;3)采用四个2天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;4)采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;5)采用一个2天线端口和一个4天线端口的预编码矩阵构成的一个8天线端口的预编码矩阵。
可选地,作为一个实施例,所述配置信息包括的N个码本子集的相干性是根据所述终端上报的天线相干性和/或满功率传输模式确定的。
可选地,作为一个实施例,所述终端上报的天线相干性为非相干,所述配置信息包括的N个码本子集的相干性包括:{非相干,非相干};或者,所述终端上报的天线相干性为非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干};或者,所述终端上报的天线相干性为部分相干以及非相干,所述配置信息包括的N个码本子集的相干性包括如下之一:{部分非相干,部分非相干};{非相干,非相干};{部分相干,部分相干};{部分相干,非相干};或者,所述终端上报的天线相干性为部分相干以及非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干}。
本申请实施例提供的预编码矩阵的指示方法,执行主体可以为预编码矩 阵的指示装置。本申请实施例中以预编码矩阵的指示装置执行预编码矩阵的指示方法为例,说明本申请实施例提供的预编码矩阵的指示装置。
图4是根据本申请实施例的预编码矩阵的指示装置的结构示意图,该装置可以对应于其他实施例中的终端。如图4所示,装置400包括如下模块。
接收模块402,可以用于接收DCI,所述DCI包括第一指示域,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。
发送模块404,可以用于根据所述第一指示域确定上行传输的预编码矩阵。
本申请实施例提供的预编码矩阵的指示装置,网络侧设备通过DCI中的第一指示域指示上行传输的预编码矩阵,具体可以指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输,这样,装置400可以根据第一指示域确定上行传输的预编码矩阵,有利于提升通信系统性能。
可选地,作为一个实施例,所述DCI还包括M个预编码信息指示域,所述M个预编码信息指示域用于指示所述装置使用的预编码矩阵,所述M个预编码信息指示域与网络侧设备配置的N个码本子集相对应;其中,所述发送模块404,用于根据所述第一指示域以及所述M个预编码信息指示域确定上行传输的预编码矩阵,M和N是正整数。
可选地,作为一个实施例,所述接收模块402,还用于接收配置信息,所述配置信息包括N个码本子集的配置,N为正整数;其中,每个所述码本子集的配置包括以下至少一种信息:1)最大传输秩;2)天线端口的相干性;3)水平方向过采样因子;4)垂直方向过采样因子;5)天线分组方式;6)天线极化方式;7)天线端口的个数;8)天线分组之间的相位集合。
可选地,作为一个实施例,所述发送模块404,还用于上报所述装置的能力信息,所述能力信息包括如下至少之一:1)水平方向过采样因子;2)垂直方向过采样因子;3)天线分组方式;4)天线极化方式;5)天线端口的个数;6)天线分组之间的相位集合;7)满功率传输的天线分组;8)满功率传输的预编码信息。
可选地,作为一个实施例,在N大于1的情况下,所述满功率传输的预编码信息包括N组预编码矩阵,其中,所述N组预编码矩阵与所述装置的N组天线端口一一对应;或者,所述满功率传输的预编码信息包括一组预编码矩阵,其中,所述一组预编码矩阵与所述装置的N组天线端口对应。
可选地,作为一个实施例,所述一组预编码矩阵包括如下至少之一:1) 采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述装置的天线端口的相干性为非相干;2)采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述装置的4个天线端口为一组相干端口;3)采用四个2天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述装置的2个天线端口为一组相干端口;4)采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述装置的2个天线端口为一组相干端口;5)采用一个2天线端口和一个4天线端口的预编码矩阵构成的一个8天线端口的预编码矩阵。
可选地,作为一个实施例,所述配置信息包括的N个码本子集的相干性是根据所述装置上报的天线相干性和/或满功率传输模式确定的。
可选地,作为一个实施例,所述装置上报的天线相干性为非相干,所述配置信息包括的N个码本子集的相干性包括:{非相干,非相干};或者,所述装置上报的天线相干性为非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干};或者,所述装置上报的天线相干性为部分相干以及非相干,所述配置信息包括的N个码本子集的相干性包括如下之一:{部分非相干,部分非相干};{非相干,非相干};{部分相干,部分相干};{部分相干,非相干};或者,所述装置上报的天线相干性为部分相干以及非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干}。
根据本申请实施例的装置400可以参照对应本申请实施例的方法200的流程,并且,该装置400中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的预编码矩阵的指示装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
图5是根据本申请实施例的预编码矩阵的指示装置的结构示意图,该装置可以对应于其他实施例中的网络侧设备。如图5所示,装置500包括如下模块。
发送模块502,用于发送DCI,所述DCI包括第一指示域,所述第一指示域用于终端确定上行传输的预编码矩阵,所述第一指示域用于指示如下至 少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。
可选地,装置500还可以包括处理模块。
本申请实施例提供的预编码矩阵的指示装置,通过DCI中的第一指示域指示终端上行传输的预编码矩阵,具体可以指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输,这样,终端可以根据第一指示域确定上行传输的预编码矩阵,有利于提升通信系统性能。
可选地,作为一个实施例,所述DCI还包括M个预编码信息指示域,所述M个预编码信息指示域用于指示所述终端使用的预编码矩阵,所述M个预编码信息指示域与所述装置配置的N个码本子集相对应;M和N是正整数。
可选地,作为一个实施例,所述发送模块502,还用于发送配置信息,所述配置信息包括N个码本子集的配置,N为正整数;其中,每个所述码本子集的配置包括以下至少一种信息:1)最大传输秩;2)天线端口的相干性;3)水平方向过采样因子;4)垂直方向过采样因子;5)天线分组方式;6)天线极化方式;7)天线端口的个数;8)天线分组之间的相位集合。
可选地,作为一个实施例,所述装置还包括接收模块,用于接收终端上报的终端能力信息,所述终端能力信息包括如下至少之一:1)水平方向过采样因子;2)垂直方向过采样因子;3)天线分组方式;4)天线极化方式;5)天线端口的个数;6)天线分组之间的相位集合;7)满功率传输的天线分组;8)满功率传输的预编码信息。
可选地,作为一个实施例,在N大于1的情况下,所述满功率传输的预编码信息包括N组预编码矩阵,其中,所述N组预编码矩阵与所述终端的N组天线端口一一对应;或者,所述满功率传输的预编码信息包括一组预编码矩阵,其中,所述一组预编码矩阵与所述终端的N组天线端口对应。
可选地,作为一个实施例,所述一组预编码矩阵包括如下至少之一:1)采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的天线端口的相干性为非相干;2)采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的4个天线端口为一组相干端口;3)采用四个2天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;4)采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;5)采用一个2天线端口和一个4天线端口的预编码矩阵构成的一个8天线端口的预编码矩阵。
可选地,作为一个实施例,所述配置信息包括的N个码本子集的相干性是根据所述终端上报的天线相干性和/或满功率传输模式确定的。
可选地,作为一个实施例,所述终端上报的天线相干性为非相干,所述配置信息包括的N个码本子集的相干性包括:{非相干,非相干};或者,所述终端上报的天线相干性为非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干};或者,所述终端上报的天线相干性为部分相干以及非相干,所述配置信息包括的N个码本子集的相干性包括如下之一:{部分非相干,部分非相干};{非相干,非相干};{部分相干,部分相干};{部分相干,非相干};或者,所述终端上报的天线相干性为部分相干以及非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干}。
根据本申请实施例的装置500可以参照对应本申请实施例的方法300的流程,并且,该装置500中的各个单元/模块和上述其他操作和/或功能分别为了实现方法300中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例提供的预编码矩阵的指示装置能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述预编码矩阵的指示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述预编码矩阵的指示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收DCI,所述DCI包括第一指示域,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输;根据所述第一指示域确定上行传输的预编码矩阵。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元 703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM, DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,可以用于接收DCI,所述DCI包括第一指示域,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输;根据所述第一指示域确定上行传输的预编码矩阵。
本申请实施例提供的终端,网络侧设备通过DCI中的第一指示域指示终端上行传输的预编码矩阵,具体可以指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输,这样,终端可以根据第一指示域确定上行传输的预编码矩阵,有利于提升通信系统性能。
本申请实施例提供的终端700还可以实现上述预编码矩阵的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于发送DCI,所述DCI包括第一指示域,所述第一指示域用于终端确定上行传输的预编码矩阵,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设 备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述预编码矩阵的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述预编码矩阵的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述预编码矩阵的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种预编码矩阵的指示系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的预编码矩阵的指示方法的步骤,所述网络侧设备可用于执行如上所述的预编码矩阵的指示方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省 去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (39)

  1. 一种预编码矩阵的指示方法,包括:
    终端接收下行控制信息DCI,所述DCI包括第一指示域,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输;
    所述终端根据所述第一指示域确定上行传输的预编码矩阵。
  2. 根据权利要求1所述的方法,其中,所述DCI还包括M个预编码信息指示域,所述M个预编码信息指示域用于指示所述终端使用的预编码矩阵,所述M个预编码信息指示域与网络侧设备配置的N个码本子集相对应;
    其中,所述终端根据所述第一指示域确定上行传输的预编码矩阵包括:所述终端根据所述第一指示域以及所述M个预编码信息指示域确定上行传输的预编码矩阵,M和N是正整数。
  3. 根据权利要求2所述的方法,其中,所述第一指示域的比特长度与如下至少一个相关:网络侧设备配置的码本子集的个数N;所述DCI包括的预编码信息指示域的个数M。
  4. 根据权利要求1所述的方法,其中,所述预编码矩阵生成方式包括:根据至少两个预编码矩阵生成一个预编码矩阵。
  5. 根据权利要求1至4任一项所述的方法,其中,所述终端接收DCI之前,所述方法还包括:
    所述终端接收配置信息,所述配置信息包括N个码本子集的配置,N为正整数;其中,每个所述码本子集的配置包括以下至少一种信息:
    最大传输秩;
    天线端口的相干性;
    水平方向过采样因子;
    垂直方向过采样因子;
    天线分组方式;
    天线极化方式;
    天线端口的个数;
    天线分组之间的相位集合。
  6. 根据权利要求5所述的方法,其中,所述终端配置了8个天线端口的传输;其中,N=1,2或4。
  7. 根据权利要求5所述的方法,其中,所述配置信息还包括用于指示满功率传输模式的信息。
  8. 根据权利要求5所述的方法,其中,所述终端接收配置信息之前,所述方法还包括:所述终端上报终端能力信息,所述终端能力信息包括如下至 少之一:
    水平方向过采样因子;
    垂直方向过采样因子;
    天线分组方式;
    天线极化方式;
    天线端口的个数;
    天线分组之间的相位集合;
    满功率传输的天线分组;
    满功率传输的预编码信息。
  9. 根据权利要求8所述的方法,其中,在N大于1的情况下,
    所述满功率传输的预编码信息包括N组预编码矩阵,其中,所述N组预编码矩阵与所述终端的N组天线端口一一对应;或者,
    所述满功率传输的预编码信息包括一组预编码矩阵,其中,所述一组预编码矩阵与所述终端的N组天线端口对应。
  10. 根据权利要求9所述的方法,其中,所述一组预编码矩阵包括如下至少之一:
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的天线端口的相干性为非相干;
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的4个天线端口为一组相干端口;
    采用四个2天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;
    采用一个2天线端口和一个4天线端口的预编码矩阵构成的一个8天线端口的预编码矩阵。
  11. 根据权利要求5所述的方法,其中,所述N个码本子集的相干性是根据所述终端上报的天线相干性和/或满功率传输模式确定的。
  12. 根据权利要求11所述的方法,其中,
    所述终端上报的天线相干性为非相干,所述配置信息包括的N个码本子集的相干性包括:{非相干,非相干};或者,
    所述终端上报的天线相干性为非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干};或者,
    所述终端上报的天线相干性为部分相干以及非相干,所述配置信息包括 的N个码本子集的相干性包括如下之一:{部分非相干,部分非相干};{非相干,非相干};{部分相干,部分相干};{部分相干,非相干};或者,
    所述终端上报的天线相干性为部分相干以及非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干}。
  13. 一种预编码矩阵的指示方法,包括:
    网络侧设备发送DCI,所述DCI包括第一指示域,所述第一指示域用于终端确定上行传输的预编码矩阵,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。
  14. 根据权利要求13所述的方法,其中,所述DCI还包括M个预编码信息指示域,所述M个预编码信息指示域用于指示所述终端使用的预编码矩阵,所述M个预编码信息指示域与网络侧设备配置的N个码本子集相对应;M和N是正整数。
  15. 根据权利要求13或14所述的方法,其中,所述网络侧设备发送DCI之前,所述方法还包括:所述网络侧设备发送配置信息,所述配置信息包括N个码本子集的配置,N为正整数;其中,每个所述码本子集的配置包括以下至少一种信息:
    最大传输秩;
    天线端口的相干性;
    水平方向过采样因子;
    垂直方向过采样因子;
    天线分组方式;
    天线极化方式;
    天线端口的个数;
    天线分组之间的相位集合。
  16. 根据权利要求15所述的方法,其中,所述网络侧设备发送配置信息之前,所述方法还包括:所述网络侧设备接收终端上报的终端能力信息,所述终端能力信息包括如下至少之一:
    水平方向过采样因子;
    垂直方向过采样因子;
    天线分组方式;
    天线极化方式;
    天线端口的个数;
    天线分组之间的相位集合;
    满功率传输的天线分组;
    满功率传输的预编码信息。
  17. 根据权利要求16所述的方法,其中,在N大于1的情况下,
    所述满功率传输的预编码信息包括N组预编码矩阵,其中,所述N组预编码矩阵与所述终端的N组天线端口一一对应;或者,
    所述满功率传输的预编码信息包括一组预编码矩阵,其中,所述一组预编码矩阵与所述终端的N组天线端口对应。
  18. 根据权利要求17所述的方法,其中,所述一组预编码矩阵包括如下至少之一:
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的天线端口的相干性为非相干;
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的4个天线端口为一组相干端口;
    采用四个2天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;
    采用一个2天线端口和一个4天线端口的预编码矩阵构成的一个8天线端口的预编码矩阵。
  19. 根据权利要求15所述的方法,其中,所述配置信息包括的N个码本子集的相干性是根据所述终端上报的天线相干性和/或满功率传输模式确定的。
  20. 根据权利要求19所述的方法,其中,
    所述终端上报的天线相干性为非相干,所述配置信息包括的N个码本子集的相干性包括:{非相干,非相干};或者,
    所述终端上报的天线相干性为非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干};或者,
    所述终端上报的天线相干性为部分相干以及非相干,所述配置信息包括的N个码本子集的相干性包括如下之一:{部分非相干,部分非相干};{非相干,非相干};{部分相干,部分相干};{部分相干,非相干};或者,
    所述终端上报的天线相干性为部分相干以及非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干}。
  21. 一种预编码矩阵的指示装置,包括:
    接收模块,用于接收DCI,所述DCI包括第一指示域,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输;
    发送模块,用于根据所述第一指示域确定上行传输的预编码矩阵。
  22. 根据权利要求21所述的装置,其中,所述DCI还包括M个预编码信息指示域,所述M个预编码信息指示域用于指示所述装置使用的预编码矩阵,所述M个预编码信息指示域与网络侧设备配置的N个码本子集相对应;
    其中,所述发送模块,用于根据所述第一指示域以及所述M个预编码信息指示域确定上行传输的预编码矩阵,M和N是正整数。
  23. 根据权利要求21或22所述的装置,其中,所述接收模块,还用于接收配置信息,所述配置信息包括N个码本子集的配置,N为正整数;其中,每个所述码本子集的配置包括以下至少一种信息:
    最大传输秩;
    天线端口的相干性;
    水平方向过采样因子;
    垂直方向过采样因子;
    天线分组方式;
    天线极化方式;
    天线端口的个数;
    天线分组之间的相位集合。
  24. 根据权利要求23所述的装置,其中,所述发送模块,还用于上报所述装置的能力信息,所述能力信息包括如下至少之一:
    水平方向过采样因子;
    垂直方向过采样因子;
    天线分组方式;
    天线极化方式;
    天线端口的个数;
    天线分组之间的相位集合;
    满功率传输的天线分组;
    满功率传输的预编码信息。
  25. 根据权利要求24所述的装置,其中,在N大于1的情况下,
    所述满功率传输的预编码信息包括N组预编码矩阵,其中,所述N组预编码矩阵与所述装置的N组天线端口一一对应;或者,
    所述满功率传输的预编码信息包括一组预编码矩阵,其中,所述一组预编码矩阵与所述装置的N组天线端口对应。
  26. 根据权利要求25所述的装置,其中,所述一组预编码矩阵包括如下至少之一:
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述装置的天线端口的相干性为非相干;
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述装置的4个天线端口为一组相干端口;
    采用四个2天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述装置的2个天线端口为一组相干端口;
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述装置的2个天线端口为一组相干端口;
    采用一个2天线端口和一个4天线端口的预编码矩阵构成的一个8天线端口的预编码矩阵。
  27. 根据权利要求23所述的装置,其中,所述配置信息包括的N个码本子集的相干性是根据所述装置上报的天线相干性和/或满功率传输模式确定的。
  28. 根据权利要求27所述的装置,其中,
    所述装置上报的天线相干性为非相干,所述配置信息包括的N个码本子集的相干性包括:{非相干,非相干};或者,
    所述装置上报的天线相干性为非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干};或者,
    所述装置上报的天线相干性为部分相干以及非相干,所述配置信息包括的N个码本子集的相干性包括如下之一:{部分非相干,部分非相干};{非相干,非相干};{部分相干,部分相干};{部分相干,非相干};或者,
    所述装置上报的天线相干性为部分相干以及非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干}。
  29. 一种预编码矩阵的指示装置,包括:
    发送模块,用于发送DCI,所述DCI包括第一指示域,所述第一指示域用于终端确定上行传输的预编码矩阵,所述第一指示域用于指示如下至少之一:预编码矩阵生成方式,选择的天线端口的信息,有效的预编码矩阵的信息,预编码矩阵的传输层信息,是否使用满功率传输。
  30. 根据权利要求29所述的装置,其中,所述DCI还包括M个预编码信息指示域,所述M个预编码信息指示域用于指示所述终端使用的预编码矩阵,所述M个预编码信息指示域与所述装置配置的N个码本子集相对应;M 和N是正整数。
  31. 根据权利要求29或30所述的装置,其中,所述发送模块,还用于发送配置信息,所述配置信息包括N个码本子集的配置,N为正整数;其中,每个所述码本子集的配置包括以下至少一种信息:
    最大传输秩;
    天线端口的相干性;
    水平方向过采样因子;
    垂直方向过采样因子;
    天线分组方式;
    天线极化方式;
    天线端口的个数;
    天线分组之间的相位集合。
  32. 根据权利要求31所述的装置,其中,所述装置还包括接收模块,用于接收终端上报的终端能力信息,所述终端能力信息包括如下至少之一:
    水平方向过采样因子;
    垂直方向过采样因子;
    天线分组方式;
    天线极化方式;
    天线端口的个数;
    天线分组之间的相位集合;
    满功率传输的天线分组;
    满功率传输的预编码信息。
  33. 根据权利要求32所述的装置,其中,在N大于1的情况下,
    所述满功率传输的预编码信息包括N组预编码矩阵,其中,所述N组预编码矩阵与所述终端的N组天线端口一一对应;或者,
    所述满功率传输的预编码信息包括一组预编码矩阵,其中,所述一组预编码矩阵与所述终端的N组天线端口对应。
  34. 根据权利要求33所述的装置,其中,所述一组预编码矩阵包括如下至少之一:
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的天线端口的相干性为非相干;
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的4个天线端口为一组相干端口;
    采用四个2天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;
    采用两个4天线端口预编码矩阵构成的一个8天线端口预编码矩阵;其中,所述终端的2个天线端口为一组相干端口;
    采用一个2天线端口和一个4天线端口的预编码矩阵构成的一个8天线端口的预编码矩阵。
  35. 根据权利要求31所述的装置,其中,所述配置信息包括的N个码本子集的相干性是根据所述终端上报的天线相干性和/或满功率传输模式确定的。
  36. 根据权利要求35所述的装置,其中,
    所述终端上报的天线相干性为非相干,所述配置信息包括的N个码本子集的相干性包括:{非相干,非相干};或者,
    所述终端上报的天线相干性为非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干};或者,
    所述终端上报的天线相干性为部分相干以及非相干,所述配置信息包括的N个码本子集的相干性包括如下之一:{部分非相干,部分非相干};{非相干,非相干};{部分相干,部分相干};{部分相干,非相干};或者,
    所述终端上报的天线相干性为部分相干以及非相干,上报的满功率传输模式为模式一,所述配置信息包括的N个码本子集的相干性包括:{全部分非相干,全部分非相干}。
  37. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的方法的步骤。
  38. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求13至20任一项所述的方法的步骤。
  39. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至20任一项所述的方法的步骤。
PCT/CN2023/102282 2022-06-30 2023-06-26 预编码矩阵的指示方法、终端及网络侧设备 WO2024001981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210760643.0A CN117394887A (zh) 2022-06-30 2022-06-30 预编码矩阵的指示方法、终端及网络侧设备
CN202210760643.0 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024001981A1 true WO2024001981A1 (zh) 2024-01-04

Family

ID=89383262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102282 WO2024001981A1 (zh) 2022-06-30 2023-06-26 预编码矩阵的指示方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117394887A (zh)
WO (1) WO2024001981A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803419A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种通信方法、终端及基站
CN112468270A (zh) * 2019-09-06 2021-03-09 维沃移动通信有限公司 信息指示方法和通信设备
CN113260056A (zh) * 2020-02-13 2021-08-13 北京紫光展锐通信技术有限公司 上行数据传输方法、用户设备及可读存储介质
WO2022104665A1 (zh) * 2020-11-19 2022-05-27 华为技术有限公司 一种通信方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803419A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种通信方法、终端及基站
CN112468270A (zh) * 2019-09-06 2021-03-09 维沃移动通信有限公司 信息指示方法和通信设备
CN113260056A (zh) * 2020-02-13 2021-08-13 北京紫光展锐通信技术有限公司 上行数据传输方法、用户设备及可读存储介质
WO2022104665A1 (zh) * 2020-11-19 2022-05-27 华为技术有限公司 一种通信方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "Details on Full Power Uplink Transmission", 3GPP DRAFT; R1-1910415 DETAILS ON FULL POWER UPLINK TRANSMISSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789220 *

Also Published As

Publication number Publication date
CN117394887A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
EP4231693A1 (en) Configuration method for ai network parameter and device
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2023169430A1 (zh) Pusch传输方法、终端及网络侧设备
WO2024007918A1 (zh) 预编码矩阵指示、确定方法、装置、网络侧设备及终端
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2023151593A1 (zh) 预编码指示方法、装置、通信设备、系统及存储介质
WO2023143361A1 (zh) 能力信息上报方法、装置及终端
WO2024083101A1 (zh) 信息指示方法、装置、终端、网络侧设备及可读存储介质
WO2024093999A1 (zh) 信道信息的上报和接收方法、终端及网络侧设备
WO2023241643A1 (zh) 联合传输的pmi参数反馈方法、终端及网络侧设备
WO2023051539A1 (zh) 上行预编码信息确定方法、终端及网络侧设备
WO2023179651A1 (zh) 波束处理方法、装置及设备
WO2023207898A1 (zh) 多trp传输的pmi的反馈方法、设备、终端及网络侧设备
WO2024007949A1 (zh) Ai模型处理方法、装置、终端及网络侧设备
WO2023151592A1 (zh) 预编码的确定方法、装置、设备及可读存储介质
WO2024000179A1 (zh) 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
WO2023179478A1 (zh) 传输模式确定方法、装置、终端及网络侧设备
WO2023011352A1 (zh) 下行控制信息指示方法、上行信道传输秩确定方法及装置
WO2024021129A1 (zh) 上行mimo传输8天线端口多天线面板的码字确定方法及其装置
WO2023160535A1 (zh) 解调参考信号信息确定方法、指示方法及相关设备
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023125420A1 (zh) 参考信号端口指示方法、终端及网络侧设备
WO2023227021A1 (zh) 波束信息传输方法及相关设备
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830159

Country of ref document: EP

Kind code of ref document: A1