WO2023151592A1 - 预编码的确定方法、装置、设备及可读存储介质 - Google Patents

预编码的确定方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2023151592A1
WO2023151592A1 PCT/CN2023/075009 CN2023075009W WO2023151592A1 WO 2023151592 A1 WO2023151592 A1 WO 2023151592A1 CN 2023075009 W CN2023075009 W CN 2023075009W WO 2023151592 A1 WO2023151592 A1 WO 2023151592A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
following
codebook set
codebook
rank
Prior art date
Application number
PCT/CN2023/075009
Other languages
English (en)
French (fr)
Inventor
孙荣荣
塔玛拉卡拉盖施
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023151592A1 publication Critical patent/WO2023151592A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a precoding determination method, device, equipment and readable storage medium.
  • the terminal will support 6 antennas or even 8 antennas for uplink transmission.
  • precoding is only designed for 4-antenna transmission, and cannot be applied to terminals with 6 antennas and/or 8 antennas.
  • codebook design for 4 antennas in the related art continues to be used, the signaling overhead will increase exponentially.
  • Embodiments of the present application provide a precoding determination method, device, device, and readable storage medium, capable of providing a codebook suitable for terminals with 6 antennas and/or 8 antennas.
  • a method for determining precoding comprising:
  • the terminal receives DCI
  • the first codebook set contains at least one precoding
  • the first codebook set is used for terminals with 6 antennas and/or 8 antennas;
  • the first precoding is used for transmitting PUSCH.
  • a device for determining precoding includes:
  • a receiving module configured to receive DCI
  • An execution module configured to determine a first precoding from a first codebook set based on the DCI received by the receiving module; wherein the first codebook set contains at least one precoding;
  • the first codebook set is used for terminals with 6 antennas and/or 8 antennas;
  • the first precoding is used for transmitting PUSCH.
  • a method for determining precoding includes:
  • the network side device sends DCI
  • the network side device receives PUSCH
  • the DCI is used to indicate the first precoding in the first codebook set
  • the first codebook set contains at least one precoding
  • the first precoding is one or more of the at least one precoding
  • the first codebook set is used for terminals with 6 antennas and/or 8 antennas;
  • the PUSCH is transmitted based on the first precoding.
  • an apparatus for determining precoding includes:
  • a sending module configured to send DCI
  • a receiving module configured to receive PUSCH
  • the DCI is used to indicate the first precoding in the first codebook set
  • the first codebook set contains at least one precoding
  • the first precoding is one or more of the at least one precoding
  • the first codebook set is used for terminals with 6 antennas and/or 8 antennas;
  • a terminal in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following The steps of the method in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive DCI; the processor is configured to receive the DCI from the first
  • the first precoding is determined in the codebook set; wherein, the first codebook set contains at least one precoding; the first codebook set is used for 6-antenna and/or 8-antenna terminals; the first precoding is used for to transmit PUSCH.
  • a ninth aspect provides a communication system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the method for determining precoding described in the first aspect, and the network-side device can be used to perform the steps in the method for determining precoding described in the first aspect. Steps in the method for determining precoding described in the three aspects.
  • a readable storage medium where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect or the third aspect are implemented .
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the first aspect or the third method described in the aspect.
  • a twelfth aspect provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the method described in the three aspects.
  • a codebook set suitable for 6-antenna and/or 8-antenna terminals is provided, so that the terminal only needs to select the precoding that needs to be scheduled from the codebook set when scheduling signaling for data transmission , the signaling overhead of the precoding indication can be reduced.
  • the codebook subset By flexibly designing the codebook subset, the throughput performance of the terminal can be guaranteed to a certain extent, and the signaling overhead can be reduced.
  • FIG. 1 is a schematic diagram of a system architecture of a wireless communication system provided by an embodiment of the present application
  • Fig. 3 is the second method flow chart of a precoding determination method provided by the embodiment of the present application.
  • FIG. 4 is one of the schematic diagrams of a coherent antenna port provided by an embodiment of the present application.
  • Fig. 5 is a second schematic diagram of a coherent antenna port provided by an embodiment of the present application.
  • Fig. 6 is a third schematic diagram of a coherent antenna port provided by an embodiment of the present application.
  • FIG. 7 is one of the structural schematic diagrams of a device for determining precoding provided by an embodiment of the present application.
  • Fig. 8 is the second structural schematic diagram of a device for determining precoding provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 may be a user equipment (User Equipment, UE), a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), Pocket PC, netbook, ultra-mobile personal computer (UMPC), mobile internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, robot , wearable device (Wearable Device), vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home devices with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers ( personal computer, PC), teller machines or self-service machines and other terminal-side devices.
  • UDM Equipment User Equipment
  • PDA Personal Digital
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc., and the base station may be called a node B, an evolved node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmission Reception Point (TRP) or all As long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in this embodiment of the application, only the base station in the NR system is used as an example for introduction, and The specific type of the base station is not limited.
  • the UE receives the DCI for scheduling the PUSCH, and the Precoding information and number of layers (TPMI) field in the DCI selects a precoding matrix for the scheduled PUSCH transmission from a predefined codebook.
  • the UE will precode the uplink data according to the indicated TPMI and map it to the PUSCH resource for transmission.
  • the network side device configures an SRS resource set for the UE based on non-codebook transmission, and each resource set includes at least one SRS resource.
  • the UE detects the NZP CSI-RS sent by the network side device on the Non-Zero Power CSI-RS (NZP CSI-RS) resource configured by the network side device to obtain the downlink channel state information .
  • NZP CSI-RS Non-Zero Power CSI-RS
  • the downlink channel information may be approximately equivalent to uplink channel information.
  • the UE calculates a candidate precoding matrix for uplink transmission according to the uplink channel information, precodes the SRS and sends it.
  • the network side device further determines the precoding matrix used for PUSCH transmission according to the measured precoded SRS, and notifies the UE by scheduling the DCI of the PUSCH.
  • the SRS resource indicator (SRI) field of the DCI selects a subset of the SRS resource index, that is, the SRI group, from a predefined SRI index table to notify the UE of the precoding matrix used for the precoding of the PUSCH.
  • the precoding determination method may include the following steps 201 and 202:
  • Step 201 The terminal receives DCI.
  • Step 202 The terminal determines the first precoding from the first codebook set based on the DCI.
  • the above-mentioned first codebook set includes at least one precoding; the above-mentioned first codebook set is applicable to terminals with 6 antennas and/or 8 antennas.
  • the foregoing first precoding is used for transmitting the PUSCH.
  • the above-mentioned first codebook set is stipulated by the protocol, or configured by the network side equipment, for example, the network side equipment passes Radio Resource Control (Radio Resource Control, RRC) signaling, or the media access control layer
  • Radio Resource Control Radio Resource Control, RRC
  • the (Media Access Control, MAC) control element controlelement, CE) signaling indicates to the terminal.
  • the above DCI is used to schedule the PUSCH.
  • the embodiment of the present application provides a method for determining precoding.
  • the method for determining precoding may include the following steps 301 to 304:
  • Step 301 the network side device sends DCI
  • Step 302 The terminal receives the DCI.
  • Step 303 The terminal determines the first precoding from the first codebook set based on the DCI.
  • Step 304 The network side device receives the PUSCH transmitted based on the first precoding.
  • the above-mentioned first codebook set satisfies at least one of the following constraints:
  • the Rank set of the first codebook set is the first subset
  • the Z antenna ports in the first codebook set are a group of coherent antenna ports
  • the oversampling factor corresponding to the first codebook set is 0;
  • the index of the first vector corresponding to the first codebook set is the second subset
  • the first codebook contains a maximum of X precodings
  • Y is the value of the maximum rank
  • the elements of the first subset belong to 1 to Y (that is, the Rank set of the first codebook set is a subset of ⁇ 1:Y ⁇ ); the second element belongs to 0 to Y U-1 (i.e. the subset whose index of the first vector is ⁇ 0:U-1 ⁇ ).
  • Z 1, 2, 4, 6 or 8.
  • O 1, 2, 4 or 8.
  • the Rank set of the first codebook set is restricted as the first subset.
  • the network configures the maximum rank of uplink transmission to be Y, which means that the terminal can use any precoding with a rank less than or equal to 8.
  • the precoding rank in the first codebook set it can only take a part of the value greater than or equal to 1 and less than or equal to 8, such as Greater than or equal to 1 and less than or equal to 4, this is equivalent to reducing the number of precodings that the terminal can use, and the signaling overhead for the network side device to indicate precoding for the terminal from the first codebook set is also reduced.
  • the Z antenna ports in the first codebook set are a group of coherent antenna ports.
  • the network-side device can configure the terminal precoding ensemble to be fully coherent and partially coherent. That is to say, the precoding ensemble includes coherent precoding for all antennas and coherent precoding for some antennas. Partially coherent precoding is based on coherent antennas.
  • the number of antenna ports in the group includes 4 antenna port coherent precoding and 2 antenna port coherent precoding, and the first codebook subset limits the precoding according to the number of antenna ports in the coherent antenna end group The number, such as the precoding in the first codebook subset, all satisfy that 4 antenna ports are a set of coherent ports.
  • the oversampling factor corresponding to the first codebook set is 0, the precoding of the terminal is composed of the first vector, the oversampling factor affects the number of the first vector, and the larger the oversampling factor, the more the number of the first vector The more the number of first vectors is, the more the number of precodings that can be formed.
  • the purpose of limiting the number of precodings is achieved by limiting the oversampling factor O in the first codebook subset.
  • the index of the first vector corresponding to the first codebook set is the second subset, and the precoding of the terminal is composed of the first vector, and the more the number of the first vector, the greater the number of precoding that can be formed.
  • the first codebook subset limits the number of precoding by limiting the number of the first vector.
  • the precoding in the first codebook set corresponds to a set of non-zero antenna ports, and the quantity of precoding is limited by limiting the set of non-zero antenna ports.
  • the above-mentioned set of non-zero antenna ports may be a subset of the first set of ports; wherein, the above-mentioned first set of ports is ⁇ 1000-1007 ⁇ , that is, the above-mentioned first set of ports is ⁇ 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007 ⁇ .
  • the above-mentioned first subset may be subset 1 or subset 2, the elements of subset 1 belong to (that is, the values of the elements of subset 1) 1 to A, and the elements of subset 2 belong to ( That is, the elements of subset 2 take values) A+1 to Y.
  • A is greater than 1 and less than Y.
  • U is the total number of first vectors formed based on the antenna structure of the terminal and the oversampling factor.
  • the above-mentioned first vector may be a discrete Fourier transform (Discrete Fourier Transform, DFT) vector.
  • the first vector is a vector constituting a precoding matrix.
  • the first codebook set is a set of first vectors whose indices take values at equal intervals.
  • the first vector corresponding to the first codebook set is a first vector satisfying a predetermined condition; the first vector satisfying a predetermined condition is: a first vector whose index takes values at equal intervals.
  • U is the total number of DFT vectors formed according to the antenna structure and the oversampling factor.
  • the above-mentioned first subset and/or second subset may be obtained according to certain rules.
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1002, 1006, 1003, 1007 ⁇ , ⁇ 1001, 1005 , 1002, 1006 ⁇ .
  • the above coherent antenna port combination exists when the antenna structure of the terminal is four sets of dual-polarized antennas in the first direction and one set of dual-polarized antennas in the second direction.
  • the antenna port of the terminal can be any two of the 3 pairs of port combinations, such as: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1001 , 1005, 1002, 1006 ⁇ .
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1000, 1004, 1002, 1006 ⁇ , ⁇ 1002, 1006 , 1003, 1007 ⁇ , ⁇ 1001, 1005, 1003, 1007 ⁇ .
  • the above coherent antenna port combination exists when the antenna structure of the terminal is two sets of dual-polarized antennas in the first direction and two sets of dual-polarized antennas in the second direction.
  • the antenna port of the terminal can be any two of the 4 pairs of port combinations, such as: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1001 , 1005, 1002, 1006 ⁇ .
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1002, 1001, 1003 ⁇ , ⁇ 1004, 1005, 1006, 1007 ⁇ .
  • ⁇ 1000, 1002, 1001, 1003 ⁇ , ⁇ 1004, 1005, 1006, 1007 ⁇ there are 2 pairs of phase dry port combination.
  • the first direction may be a horizontal direction
  • the second direction may be a vertical direction
  • the first codebook set includes a maximum of X precodings.
  • n is a positive integer.
  • the above-mentioned first codebook set is configured by RRC, and/or, the first codebook set is indicated by MAC CE, and/or, the first codebook set is indicated by DCI.
  • DCI format 0_1 and DCI format 0_2 can be configured separately; in another example, the first codebook set is associated with the target resource,
  • the target resource includes at least one of the following: SRS resource, SRS resource set, and transmission configuration indicator (Transmission Configuration Indicator, TCI) state.
  • TCI Transmission Configuration Indicator
  • the above DCI includes the target domain.
  • the above-mentioned target domain includes at least one of the following:
  • phase-tracking reference signal Phase-tracking reference signal, PTRS
  • DMRS Demodulation Reference Signal
  • the terminal may determine the bit length of the target field indicating precoding in the DCI according to the first codebook set, and then interpret the target field, or the terminal may determine the decoding method of the target field according to the first codebook set.
  • the technical solution provided by the embodiment of the present application may further include the following content: the terminal parses the target field in the DCI based on the first rule.
  • the above-mentioned first rule includes at least one of the following:
  • the terminal only interprets the high-order data in the target field in the DCI, and the low-order bits are reserved;
  • the terminal interprets the low-order data in the target field in the DCI, and the high-order bits are reserved;
  • the terminal interprets the target data in the target field in the DCI.
  • the terminal may determine K bits that need to be interpreted in the target field according to the first codebook set, where the total length of the target field in the DCI is V bits. Further, when solving the target field, the terminal can interpret according to at least one of the following rules: 1) The terminal only interprets the high-order K bits, and the remaining bits are reserved; 2) The terminal only interprets the low-order K bits, and the high-order bits are reserved; 3) The terminal interprets the target K bits in the target field.
  • the first codebook set satisfies that the two antennas are coherent (that is, two antenna ports are a group of coherent antenna ports, which can also be understood as the maximum number of non-zero elements in each column of the precoding matrix is 2) .
  • the first codebook set includes at least one of the following:
  • the precoding with a rank of 1 (that is, Rank1) in the first codebook set includes: precoding A1;
  • the precoding of rank 2 (that is, Rank2) in the first codebook set includes: precoding A2;
  • the precoding with a rank of 3 (that is, Rank3) in the first codebook set includes: precoding A3;
  • the precoding of rank 4 (ie Rank4) in the first codebook set includes: precoding A4;
  • the precoding with a rank of 5 (that is, Rank5) in the first codebook set includes at least one of the following: precoding A51, precoding A52, precoding A53, and precoding A54;
  • the precoding of rank 6 (namely Rank6) in the first codebook set includes: precoding A6;
  • the precoding with a rank of 7 (that is, Rank7) in the first codebook set includes at least one of the following: precoding A71, precoding A72,
  • the precoding of rank 8 (that is, Rank8) in the first codebook set includes: precoding A8.
  • the precoding in the first codebook subset satisfies at least one of the following:
  • the precoding A1 of Rank1 includes at least one precoding in the following table 1:
  • the precoding A2 of Rank2 includes at least one precoding in the following table 2:
  • the precoding A3 of Rank3 includes at least one precoding in the following table 3:
  • the precoding A4 of Rank4 includes at least one precoding in the following table 4:
  • the precoding A51 of Rank5 includes at least one precoding in the following table 5:
  • the precoding A52 of Rank5 includes at least one precoding in the following table 6:
  • the precoding A53 of Rank5 includes at least one precoding in the following table 7:
  • the precoding A54 of Rank5 includes at least one precoding in the following table 8:
  • the precoding A6 of Rank6 includes at least one precoding in the following table 9:
  • the precoding A71 of Rank7 includes at least one precoding in the following table 10:
  • the precoding A72 of Rank7 includes at least one precoding in the following table 11:
  • the precoding A8 of Rank8 includes at least one precoding in the following table 12:
  • a and b respectively represent different values.
  • the values of a and b are different.
  • the first codebook set satisfies four antenna coherence (that is, four antenna ports are a group of coherent antenna ports, which can also be understood as the maximum number of non-zero elements in each column of the precoding matrix is 4) .
  • the first codebook set satisfies at least one of the following:
  • Coherent port groups ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1002, 1006, 1003, 1007 ⁇ , ⁇ 1001, 1005, 1002, 1006 ⁇ .
  • the first codebook set includes at least one of the following:
  • the precoding of rank 1 (Rank1) in the first codebook set includes at least one of the following: precoding 1, precoding 2;
  • the precoding of rank 2 (Ran2) in the first codebook set includes at least one of the following: precoding 3, precoding 4, and precoding 5;
  • the precoding of rank 3 (Ran3) in the first codebook set includes at least one of the following: precoding 6, precoding 7, precoding 8, precoding 9, and precoding 10;
  • the precoding of rank 4 (Ran4) in the first codebook set includes at least one of the following: precoding 11, precoding 12;
  • the precoding of rank 5 (Ran5) in the first codebook set includes at least one of the following: precoding 13, precoding 14, precoding 15, precoding 16, and precoding 17;
  • the precoding of rank 6 (Ran6) in the first codebook set includes at least one of the following: precoding 18, precoding 19;
  • the precoding of rank 7 (Ran7) in the first codebook set includes: precoding 20;
  • the rank-8 (Ran8) precoding in the first codebook set includes at least one of the following: precoding 21 and precoding 22 .
  • the precoding in the first codebook subset satisfies at least one of the following:
  • the precoding 1 of Ran1 includes at least one of the following:
  • the precoding 2 of Ran1 includes at least one of the following:
  • the precoding 3 of Rank2 includes at least one of the following:
  • the precoding 4 of Rank2 includes at least one of the following:
  • the precoding 6 of Rank3 includes at least one of the following:
  • the precoding 7 of Rank3 includes at least one of the following:
  • the precoding 8 of Rank3 includes at least one of the following:
  • the precoding 9 of Rank3 includes at least one of the following:
  • the precoding 10 of Rank3 includes at least one of the following:
  • the precoding 11 of Rank4 includes at least one of the following:
  • the precoding 12 of Rank4 includes at least one of the following:
  • the precoding 13 of Rank5 includes at least one of the following:
  • the precoding 15 of Rank5 includes at least one of the following:
  • the precoding 16 of Rank5 includes at least one of the following:
  • the precoding 17 of Rank5 includes at least one of the following:
  • the precoding 18 of Rank6 includes at least one of the following:
  • the precoding 20 of Rank7 includes at least one of the following:
  • the precoding 21 of Rank8 includes at least one of the following:
  • the precoding 22 of Rank8 includes at least one of the following:
  • each precoding matrix in this embodiment may be multiplied by a coefficient.
  • a coherent group of ports in each precoding matrix is multiplied by a coefficient corresponding to a column.
  • the above-mentioned first codebook set is: a codebook subset of DFT-s-OFDM waveform; the precoding with rank 1 in the above-mentioned first codebook subset is at least one of the following: precoding 1, precoding 2.
  • the precoding in the first codebook subset satisfies at least one of the following:
  • the precoding 1 of Rank1 includes at least one of the following:
  • the precoding 2 of Rank1 includes at least one of the following:
  • the first codebook set satisfies four antenna coherence.
  • the coherent port group is at least one of: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1000, 1004, 1002, 1006 ⁇ , ⁇ 1002, 1006, 1003, 1007 ⁇ , ⁇ 1001, 1005, 1003, 1007 ⁇ .
  • the first codebook set includes at least one of the following:
  • the precoding with a rank of 1 (that is, Rank1) in the first codebook set includes at least one of the following: precoding C11, precoding C12, precoding C13, and precoding C14;
  • the precoding with a rank of 2 (that is, Rank2) in the first codebook set includes at least one of the following: precoding C21, precoding C22;
  • the precoding with a rank of 3 (that is, Rank3) in the first codebook set includes at least one of the following: precoding C31, precoding C32, precoding C33, and precoding C34;
  • the precoding of rank 4 (that is, Rank4) in the first codebook set includes at least one of the following: precoding C41, precoding C42;
  • the precoding with a rank of 5 (that is, Rank5) in the first codebook set includes: precoding C5;
  • the precoding with a rank of 6 (that is, Rank6) in the first codebook set includes: precoding C6;
  • the precoding of rank 7 (that is, Rank7) in the first codebook set includes: precoding C7;
  • the precoding of rank 8 (that is, Rank8) in the first codebook set includes at least one of the following: precoding C81, precoding C82, precoded C83.
  • the precoding in the first codebook subset satisfies at least one of the following:
  • the precoding C11 of Rank1 includes at least one precoding in the following table 13:
  • the precoding C12 of Rank1 includes at least one precoding in the following table 14:
  • the precoding C13 of Rank1 includes at least one precoding in the following table 15:
  • the precoding C14 of Rank1 includes at least one precoding in the following table 16:
  • the precoding C21 of Rank2 includes at least one precoding in the following table 17:
  • the precoding C22 of Rank2 includes at least one precoding in the following table 18:
  • the precoding C31 of Rank3 includes at least one precoding in the following table 19:
  • the precoding C32 of Rank3 includes at least one precoding in the following table 20:
  • the precoding C33 of Rank3 includes at least one precoding in the following table 21:
  • the precoding C34 of Rank3 includes at least one precoding in the following table 22:
  • the precoding C41 of Rank4 includes at least one precoding in the following table 23:
  • the precoding C42 of Rank4 includes at least one precoding in the following table 24:
  • the precoding C5 of Rank5 includes at least one precoding in the following table 25:
  • the precoding C6 of Rank6 includes at least one precoding in the following table 26:
  • the precoding C7 of Rank7 includes at least one precoding in the following table 27:
  • the precoding C81 of Rank8 includes at least one precoding in the following table 28:
  • the precoding C82 of Rank8 includes at least one precoding in the following table 29:
  • the precoding C83 of Rank8 includes at least one precoding in the following table 30:
  • the first codebook set satisfies four antenna coherence.
  • the first codebook set satisfies at least one of the following:
  • the first codebook set includes at least one of the following:
  • the precoding with a rank of 1 (that is, Rank1) in the first codebook set includes: precoding D1;
  • the precoding with a rank of 2 (that is, Rank2) in the first codebook set includes: precoding D2;
  • the precoding with a rank of 3 (that is, Rank3) in the first codebook set includes at least one of the following: precoding D31, precoding D32;
  • the precoding of rank 4 (ie Rank4) in the first codebook set includes: precoding D4;
  • the precoding with a rank of 5 (that is, Rank5) in the first codebook set includes: precoding D5;
  • the precoding with a rank of 6 (that is, Rank6) in the first codebook set includes: precoding D6;
  • the precoding with a rank of 7 (that is, Rank7) in the first codebook set includes: precoding D7;
  • the precoding of rank 8 (that is, Rank8) in the first codebook set includes: precoding D8.
  • the precoding in the first codebook subset satisfies at least one of the following:
  • the precoding D1 of Rank1 includes at least one precoding in the following table 31:
  • the precoding D2 of Rank2 includes at least one precoding in the following table 32:
  • the precoding D31 of Rank3 includes at least one precoding in the following table 33:
  • the precoding D32 of Rank3 includes at least one precoding in the following table 34:
  • the precoding D4 of Rank4 includes at least one precoding in the following table 35:
  • the precoding D5 of Rank5 includes at least one precoding in the following table 36:
  • the precoding D6 of Rank6 includes at least one precoding in the following table 37:
  • the precoding D7 of Rank7 includes at least one precoding in the following table 38:
  • the precoding D8 of Rank8 includes at least one precoding in the following table 39:
  • the first codebook set satisfies four antenna coherence.
  • the first codebook set satisfies at least one of the following:
  • the first codebook set includes at least one of the following:
  • the precoding with a rank of 1 (that is, Rank1) in the first codebook set includes: precoding E1;
  • the precoding of rank 2 (namely Rank2) in the first codebook set includes: precoding E2;
  • the precoding with a rank of 3 (that is, Rank3) in the first codebook set includes: precoding E3;
  • the precoding with a rank of 4 (namely Rank4) in the first codebook set includes: precoding E4;
  • the precoding with a rank of 5 (that is, Rank5) in the first codebook set includes: precoding E5;
  • the precoding of rank 6 (namely Rank6) in the first codebook set includes: precoding E6;
  • the precoding of rank 7 (ie Rank7) in the first codebook set includes: precoding E7;
  • the precoding of rank 8 (that is, Rank8) in the first codebook set includes: precoding E8.
  • the precoding in the first codebook subset satisfies at least one of the following:
  • the precoding E1 of Rank1 includes at least one precoding in the following table 40:
  • the precoding E2 of Rank2 includes at least one precoding in the following table 41:
  • the precoding E3 of Rank3 includes at least one precoding in the following table 42:
  • the precoding E4 of Rank4 includes at least one precoding in the following table 43:
  • the precoding E5 of Rank5 includes at least one precoding in the following table 44:
  • the precoding E7 of Rank7 includes at least one precoding in the following table 46:
  • the precoding E8 of Rank8 includes at least one precoding in the following table 47:
  • the first codebook set is limited to precoding including only 4 antenna ports with transmit power.
  • the first codebook subset includes at least the following precoding matrix:
  • the field indicating precoding is 2 bits; if the maximum Rank is limited to 4, the field indicating precoding is 4 bits.
  • any precoding matrix in the first codebook set in the embodiment of the present application may be multiplied by a normalized coefficient.
  • a codebook set suitable for 6-antenna and/or 8-antenna terminals is provided, so that the terminal only needs to use the codebook when scheduling signaling for data transmission
  • Centrally selecting the precoding that needs to be scheduled can reduce the signaling overhead of the precoding indication. In this way, by flexibly designing the codebook subset, the throughput performance of the terminal can be guaranteed to a certain extent, and the signaling overhead can be reduced.
  • the embodiment of the present application provides a device for determining precoding.
  • the device includes a receiving module 401 and an executing module 402, wherein:
  • a receiving module 401 configured to receive DCI
  • An executing module 402 configured to determine a first precoding from a first codebook set based on the DCI received by the receiving module 401;
  • the first codebook set contains at least one precoding
  • the first codebook set is used for terminals with 6 antennas and/or 8 antennas;
  • the first precoding is used for transmitting PUSCH.
  • the first codebook set satisfies at least one of the following constraints:
  • the rank set of the first codebook set is a first subset
  • the Z antenna ports in the first codebook set are a group of coherent antenna ports
  • the oversampling factor corresponding to the first codebook set is 0;
  • the index of the first vector corresponding to the first codebook set is the second subset
  • the precoding in the first codebook set corresponds to a set of non-zero antenna ports
  • the first codebook set contains a maximum of X precodings
  • the elements of the first subset belong to 1 to Y; the elements of the second subset belong to 0 to U-1;
  • the elements of the first subset belong to 1 to A, or the elements of the first subset belong to A+1 to Y, where A is greater than 1 and less than Y.
  • the U is the total number of first vectors formed based on the antenna structure of the terminal and the oversampling factor; and/or,
  • the first codebook set is a set of first vectors whose indexes take values at equal intervals.
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1002, 1006, 1003, 1007 ⁇ , ⁇ 1001, 1005 , 1002, 1006 ⁇ .
  • the coherent antenna port combination in the antenna structure of the terminal is a first direction 4 It exists when there is one set of dual-polarized antennas and one set of dual-polarized antennas in the second direction.
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1000, 1004, 1002, 1006 ⁇ , ⁇ 1002, 1006 , 1003, 1007 ⁇ , ⁇ 1001, 1005, 1003, 1007 ⁇ .
  • the coherent antenna port combination exists when the antenna structure of the terminal is two sets of dual-polarized antennas in the first direction and two sets of dual-polarized antennas in the second direction.
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1002, 1001, 1003 ⁇ , ⁇ 1004, 1005, 1006, 1007 ⁇ .
  • the first codebook set is configured by RRC, and/or, the first codebook set is indicated by MAC CE, and/or, the first codebook set is indicated by DCI.
  • the DCI includes a target domain
  • the target domain includes at least one of the following:
  • SRI domain SRI domain
  • TPMI domain antenna port domain
  • PTRS-DMRS related domain SRI domain, TPMI domain, antenna port domain, PTRS-DMRS related domain
  • the executing module is further configured to:
  • the first rule includes at least one of the following:
  • a codebook set suitable for terminals with 6 antennas and/or 8 antennas is provided, so that the terminal only needs to use the codebook when scheduling signaling for data transmission
  • Centrally selecting the precoding that needs to be scheduled can reduce the signaling overhead of the precoding indication. In this way, by flexibly designing the codebook subset, the throughput performance of the terminal can be guaranteed to a certain extent, and the signaling overhead can be reduced.
  • An embodiment of the present application provides a device for determining precoding. As shown in FIG. 8 , the device includes a sending module 501 and a receiving module 502, wherein:
  • a sending module 501 for sending DCI; a receiving module 502, for receiving PUSCH;
  • the DCI is used to indicate the first precoding in the first codebook set
  • the first codebook set contains at least one precoding
  • the first precoding is one or more of the at least one precoding
  • the PUSCH is transmitted based on the first precoding.
  • the first codebook set satisfies at least one of the following constraints:
  • the rank set of the first codebook set is a first subset
  • the oversampling factor corresponding to the first codebook set is 0;
  • the index of the first vector corresponding to the first codebook set is the second subset
  • the precoding in the first codebook set corresponds to a set of non-zero antenna ports
  • the first codebook set contains a maximum of X precodings
  • the elements of the first subset belong to 1 to Y; the elements of the second subset belong to 0 to U-1;
  • the set of non-zero antenna ports is a subset of the first set of ports; wherein, the first set of ports is ⁇ 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007 ⁇ .
  • the elements of the first subset belong to 1 to A, or the elements of the first subset belong to A+1 to Y, where A is greater than 1 and less than Y.
  • the U is the total number of first vectors formed based on the antenna structure of the terminal and the oversampling factor; and/or,
  • the first codebook set is a set of first vectors whose indexes take values at equal intervals.
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1002, 1006, 1003, 1007 ⁇ , ⁇ 1001, 1005 , 1002, 1006 ⁇ .
  • the coherent antenna port combination exists when the antenna structure of the terminal is four sets of dual-polarized antennas in the first direction and one set of dual-polarized antennas in the second direction.
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1000, 1004, 1002, 1006 ⁇ , ⁇ 1002, 1006 , 1003, 1007 ⁇ , ⁇ 1001, 1005, 1003, 1007 ⁇ .
  • the coherent antenna port combination exists when the antenna structure of the terminal is two sets of dual-polarized antennas in the first direction and two sets of dual-polarized antennas in the second direction.
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1002, 1001, 1003 ⁇ , ⁇ 1004, 1005, 1006, 1007 ⁇ .
  • the first codebook set is configured by RRC, and/or, the first codebook set is indicated by MAC CE, and/or, the first codebook set is indicated by DCI.
  • a codebook set suitable for terminals with 6 antennas and/or 8 antennas is provided, and the network side device selects an appropriate precoding from the codebook set by instructing the terminal , so that the terminal only needs to select the precoding that needs to be scheduled from the codebook set when scheduling the signaling of data transmission, so as to reduce the signaling overhead of the precoding indication.
  • the codebook subset By flexibly designing the codebook subset, the throughput performance of the terminal can be guaranteed to a certain extent, and the signaling overhead can be reduced.
  • the apparatus for determining precoding in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the device for determining the precoding provided by the embodiment of the present application can implement the various processes implemented in the above method embodiments and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device 600, including a processor 601 and a memory 602, and the memory 602 stores programs or instructions that can run on the processor 601, for example
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • the various steps performed by the terminal in the method embodiment of the method for determining the precoding described above can be implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device
  • the program or instruction is executed by the processor 601
  • the various steps performed by the network-side device in the method embodiment of the method for determining the precoding described above can be achieved, and the same technical effect can be achieved .
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the communication interface is used to receive DCI; the processor is used to determine the first precoding from the first codebook set based on the DCI; wherein the first code This set contains at least one precoding; the first codebook set is used for terminals with 6 antennas and/or 8 antennas; and the first precoding is used for transmitting PUSCH.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes, but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used by the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes at least one of a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be described in detail here.
  • the radio frequency unit 701 may transmit the downlink data from the network side device to the processor 710 for processing after receiving the downlink data; in addition, the radio frequency unit 701 may send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 can be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 709 may include volatile memory or nonvolatile memory, or, memory 709 may include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electronically programmable Erase Programmable Read-Only Memory
  • Flash Flash
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and direct memory bus random access storage Device (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, wherein the application processor mainly handles operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 710 .
  • the radio frequency unit 701 is configured to receive DCI; the processor 710 is configured to determine the first precoding from the first codebook set based on the DCI received by the radio frequency unit 701;
  • the first codebook set contains at least one precoding
  • the first codebook set is used for terminals with 6 antennas and/or 8 antennas;
  • the first precoding is used for transmitting PUSCH.
  • the first codebook set satisfies at least one of the following constraints:
  • the rank set of the first codebook set is a first subset
  • the Z antenna ports in the first codebook set are a group of coherent antenna ports
  • the oversampling factor corresponding to the first codebook set is 0;
  • the index of the first vector corresponding to the first codebook set is the second subset
  • the precoding in the first codebook set corresponds to a set of non-zero antenna ports
  • the first codebook set contains a maximum of X precodings
  • the elements of the first subset belong to 1 to Y; the elements of the second subset belong to 0 to U-1;
  • the set of non-zero antenna ports is a subset of a first set of ports; wherein, the set of first ports is ⁇ 1000-1007 ⁇ .
  • the elements of the first subset belong to 1 to A, or the elements of the first subset belong to A+1 to Y, where A is greater than 1 and less than Y.
  • the U is the total number of first vectors formed based on the antenna structure of the terminal and the oversampling factor; and/or,
  • the first codebook set is a set of first vectors whose indexes take values at equal intervals.
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1002, 1006, 1003, 1007 ⁇ , ⁇ 1001, 1005 , 1002, 1006 ⁇ .
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1004, 1001, 1005 ⁇ , ⁇ 1000, 1004, 1002, 1006 ⁇ , ⁇ 1002, 1006 , 1003, 1007 ⁇ , ⁇ 1001, 1005, 1003, 1007 ⁇ .
  • the coherent antenna port combination exists when the antenna structure of the terminal is two sets of dual-polarized antennas in the first direction and two sets of dual-polarized antennas in the second direction.
  • the coherent antenna port combinations in the first codebook set include at least one of the following groups: ⁇ 1000, 1002, 1001, 1003 ⁇ , ⁇ 1004, 1005, 1006, 1007 ⁇ .
  • the first codebook set is configured by RRC, and/or, the first codebook set is indicated by MAC CE, and/or, the first codebook set is indicated by DCI.
  • the DCI includes a target domain
  • the target domain includes at least one of the following:
  • SRI domain SRI domain
  • TPMI domain antenna port domain
  • PTRS-DMRS related domain SRI domain, TPMI domain, antenna port domain, PTRS-DMRS related domain
  • the processor 710 is further configured to:
  • the first rule includes at least one of the following:
  • the terminal only interprets the high-order data in the target field, and the low-order bits are reserved;
  • the terminal interprets the low-order data in the target field, and the high-order bits are reserved;
  • the terminal interprets the target data in the target field.
  • a codebook set suitable for 6-antenna and/or 8-antenna terminals is provided, so that the terminal only needs to select the required scheduling from the codebook set when scheduling signaling for data transmission.
  • the precoding of the precoding can reduce the signaling overhead of the precoding indication. In this way, by flexibly designing the codebook subset, the throughput performance of the terminal can be guaranteed to a certain extent, and the signaling overhead can be reduced.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, and the communication interface is used to send DCI; and is also used to receive PUSCH; wherein, the DCI is used to indicate the first precoding in the first codebook set ;
  • the first codebook set contains at least one precoding; the first precoding is one or more of the at least one precoding; the first codebook set is used for 6 antennas and/or 8-antenna terminal; the PUSCH is transmitted based on the first precoding of.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 83, where the baseband device 83 includes a baseband processor.
  • the baseband device 83 can include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 86 such as a common public radio interface (common public radio interface, CPRI).
  • the network side device 800 in the embodiment of the present application further includes: instructions or programs stored in the memory 85 and executable on the processor 84, and the processor 84 calls the instructions or programs in the memory 85 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by the processor, each process of the method embodiment of the above-mentioned precoding determination method is implemented, And can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned precoding determination method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above-mentioned precoding determination method
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • An embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above-mentioned precoding determination method
  • the various processes of the embodiment can achieve the same technical effect, so in order to avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication system, including: a terminal and a network side device, the terminal can be configured to execute the steps of the method for determining the precoding as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种预编码的确定方法、装置、设备及可读存储介质,本申请实施例的预编码的确定方法包括:终端接收DCI;终端基于该DCI,从第一码本集中确定第一预编码;其中,第一码本集中包含至少一个预编码;第一码本集用于6天线和/或8天线的终端;第一预编码用于传输PUSCH。

Description

预编码的确定方法、装置、设备及可读存储介质
本申请要求于2022年2月9日提交国家知识产权局、申请号为202210122945.5、申请名称为“预编码的确定方法、装置、设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种预编码的确定方法、装置、设备及可读存储介质。
背景技术
随着通信技术发展,终端将支持6天线甚至8天线进行上行传输。
然而,大部分相关技术中只针对4天线传输设计了预编码,并不能适用6天线和/或8天线的终端。此外,如果继续沿用相关技术中针对4天线的码本设计,则会导致信令开销将成倍增加。
发明内容
本申请实施例提供一种预编码的确定方法、装置、设备及可读存储介质,能够提供适用于6天线和/或8天线的终端的码本。
第一方面,提供了一种预编码的确定方法,所述方法包括:
终端接收DCI;
所述终端基于所述DCI,从第一码本集中确定第一预编码;
其中,所述第一码本集中包含至少一个预编码;
所述第一码本集用于6天线和/或8天线的终端;
所述第一预编码用于传输PUSCH。
第二方面,提供了一种预编码的确定装置,所述装置包括:
接收模块,用于接收DCI;
执行模块,用于基于所述接收模块接收到的所述DCI,从第一码本集中确定第一预编码;其中,所述第一码本集中包含至少一个预编码;
所述第一码本集用于6天线和/或8天线的终端;
所述第一预编码用于传输PUSCH。
第三方面,提供了一种预编码的确定方法,所述方法包括:
网络侧设备发送DCI;
所述网络侧设备接收PUSCH;
其中,所述DCI用于指示第一码本集中的第一预编码;
其中,所述第一码本集中包含至少一个预编码;
所述第一预编码为所述至少一个预编码中的一个或多个;
所述第一码本集用于6天线和/或8天线的终端;
所述PUSCH是基于所述第一预编码传输的。
第四方面,提供了一种预编码的确定装置,所述装置包括:
发送模块,用于发送DCI;
接收模块,用于接收PUSCH;
其中,所述DCI用于指示第一码本集中的第一预编码;
其中,所述第一码本集中包含至少一个预编码;
所述第一预编码为所述至少一个预编码中的一个或多个;
所述第一码本集用于6天线和/或8天线的终端;
所述PUSCH是基于所述第一预编码传输的。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收DCI;所述处理器,用于基于所述通信接口接收到的所述DCI,从第一码本集中确定第一预编码;其中,所述第一码本集中包含至少一个预编码;所述第一码本集用于6天线和/或8天线的终端;所述第一预编码用于传输PUSCH。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用 于发送DCI;还用于接收PUSCH;其中,所述DCI用于指示第一码本集中的第一预编码;其中,所述第一码本集中包含至少一个预编码;所述第一预编码为所述至少一个预编码中的一个或多个;所述第一码本集用于6天线和/或8天线的终端;所述PUSCH是基于所述第一预编码传输的。
第九方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的预编码的确定方法的步骤,所述网络侧设备可用于执行如第三方面所述的预编码的确定方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第三方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第三方面所述的方法的步骤。
在本申请实施例中,提供了一种适用于6天线和/或8天线的终端的码本集,使得终端在调度数据传输的信令时只需要从该码本集中选择需要调度的预编码,便可降低预编码指示的信令开销。如此,通过灵活设计码本子集,一定程度上能保证终端吞吐量性能,降低了信令开销。
附图说明
图1是本申请实施例提供的一种无线通信系统的系统架构示意图;
图2是本申请实施例提供的一种预编码的确定方法的方法流程图之一;
图3是本申请实施例提供的一种预编码的确定方法的方法流程图之二;
图4是本申请实施例提供的一种相干天线端口示意图之一;
图5是本申请实施例提供的一种相干天线端口示意图之二;
图6是本申请实施例提供的一种相干天线端口示意图之三;
图7是本申请实施例提供的一种预编码的确定装置的结构示意图之一;
图8是本申请实施例提供的一种预编码的确定装置的结构示意图之二;
图9是本申请实施例提供的一种通信设备的结构示意图;
图10是本申请实施例提供的一种终端的硬件结构示意图;
图11是本申请实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是用户设备(User Equipment,UE)、手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer, PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
以下将对本申请实施例提供的技术方案所涉及的技术术语进行解释说明:
1)基于码本的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输模式:
网络侧设备为UE配置用于基于码本传输的探测参考信号(Sounding Reference Signal,SRS)资源集,每个资源集包含至少一个SRS资源。UE根据配置的至少一个SRS资源发送SRS,网络侧设备通过接收SRS来获得上行信道,并基于此来确定UE上行数据承载信道PUSCH传输的波束,预编码矩阵,调制和编码方案(Modulation and coding scheme,MCS)等,并通过下行控制信息(Downlink Control Information,DCI)来通知UE。
UE接收调度PUSCH的DCI,DCI中的预编码矩阵指示(Precoding information and number of layers,TPMI)域从一个预定义的码本中选择一个用于所调度PUSCH传输的预编码矩阵。UE会根据所指示的TPMI对上行数据进行预编码后映射到PUSCH资源上进行传输。
2)基于非码本的PUSCH传输模式:
网络侧设备为UE配置用于基于非码本传输的SRS资源集,每个资源集包含至少一个SRS资源。首先,UE在网络侧设备配置的非零功率信道状态信息参考信号(Non-Zero Power CSI-RS,NZP CSI-RS)资源上检测网络侧设备发送的NZP CSI-RS,来获得下行信道状态信息。根据信道互易性,该下行信道信息可以近似等效为上行信道信息。然后,UE根据上行信道信息来计算候选的用于上行传输的预编码矩阵对SRS进行预编码并发送。最后,网络侧设备根据测量预编码后的SRS来进一步确定PUSCH传输所使用的预编码矩阵,并通过调度PUSCH的DCI来通知UE。例如,DCI的SRS资源指示(SRS resource indicator,SRI)域从一个预定义SRI索引表中选择一个SRS资源索引的一个子集即SRI组来通知UE PUSCH的预编码采用的预编码矩阵。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的预编码的确定方法、装置、终端及可读存储介质进行详细地说明。
本申请实施例提供一种预编码的确定方法,如图2所示,该预编码的确定方法可以包括如下步骤201和步骤202:
步骤201:终端接收DCI。
步骤202:终端基于DCI,从第一码本集中确定第一预编码。
在本申请实施例中,上述第一码本集中包含至少一个预编码;上述第一码本集适用于6天线和/或8天线的终端。
在本申请实施例中,上述第一预编码用于传输PUSCH。
在本申请实施例中,上述第一码本集是协议约定的,或,网络侧设备配置的,例如网络侧设备通过无线资源控制(Radio Resource Control,RRC)信令,或者媒体接入控制层(Media Access Control,MAC)控制单元(controlelement,CE)信令指示给终端。
在本申请实施例中,上述DCI用于调度PUSCH。
本申请实施例提供一种预编码的确定方法,如图3所示,该预编码的确定方法可以包括如下步骤301至步骤304:
步骤301:网络侧设备发送DCI;
步骤302:终端接收DCI。
步骤303:终端基于DCI,从第一码本集中确定第一预编码。
步骤304:网络侧设备接收基于第一预编码传输的PUSCH。
在本申请实施例中,上述DCI用于指示第一码本集中的第一预编码。或者说,上述DCI用于指示终端从第一码本集中选择第一预编码。
在一些可能的实施例中,上述第一码本集满足以下至少一个限制条件:
第一码本集的秩Rank集合为第一子集;
第一码本集中的Z个天线端口为一组相干天线端口;
第一码本集对应的过采样因子为O;
第一码本集对应的第一向量的索引为第二子集;
第一码本集中预编码对应的非零天线端口集合;
第一码本集中最大包含X个预编码;
示例性地,Y为最大秩的取值;第一子集的元素属于1至Y(即第一码本集的秩Rank集合为{1:Y}的子集);第二元素属于0至U-1(即第一向量的索引为{0:U-1}的子集)。
示例性地,第一码本集中存在最大Z个天线端口相干。
示例性地,Z=1,2,4,6或8。
示例性地,O=1,2,4或8。
示例性地,上述限制第一码本集的秩Rank集合为第一子集。例如,网络配置了上行传输地最大秩为Y,表示终端可以使用秩小于等于8地任何预编码,通过限制第一码本集中预编码的秩只能取大于等于1小于等于8的一部分值,如大于等于1小于等于4,这样就相当于减少了终端可以使用的预编码的数量,网络侧设备从第一码本集中为终端指示预编码的信令开销也得到降低。
示例性地,第一码本集中的Z个天线端口为一组相干天线端口。网络侧设备可以配置终端预编码全集为全相干和部分相干,也就是说预编码全集中包含所有天线均相干地预编码,也包含部分天线相干的预编码,部分相干的预编码中根据相干天线组中天线端口的个数,又包含4个天线端口相干的预编码和2个天线端口相干的预编码,所述第一码本子集根据相干天线端组中天线端口数量来限制预编码的数量,如第一码本子集中的预编码均满足4个天线端口为一组相干端口。
示例性地,第一码本集对应的过采样因子为O,终端的预编码由第一向量构成,过采样因子影响第一向量的个数,过采样因子越大第一向量的个数越多,第一向量的个数越多可以形成的预编码的个数也越多。第一码本子集通过限制过采样因子O来达到限制预编码个数的目的。
示例性地,第一码本集对应的第一向量的索引为第二子集,终端的预编码由第一向量构成,第一向量的个数越多可以形成的预编码的个数也越多,第一码本子集通过限制第一向量的个数来限制预编码数量。
示例性地,第一码本集中预编码对应的非零天线端口集合,通过限制非零天线端口集合,来限制预编码的数量。
在一些可能的实施例中,上述非零天线端口集合可以为第一端口集合的子集;其中,上述第一端口集合为{1000-1007},即上述第一端口集合为{1000,1001,1002,1003,1004,1005,1006,1007}。示例性地,若上述非零端口{x}中包含4个元素,例如,{x}={1000,1001,1002,1003},则使用4Tx码本。
在一些可能的实施例中,上述第一子集可以为子集1或子集2,子集1的元素属于(即子集1的元素取值)1至A,子集2的元素属于(即子集2的元素取值)A+1至Y。其中,A大于1、且小于Y。
在一些可能的实施例中,U为基于终端的天线结构及过采样因子所形成的第一向量的总数。示例性地,上述第一向量可以为离散傅里叶变换(Discrete Fourier Transform,DFT)向量。所述第一向量是组成预编码矩阵的向量。
在一些可能的实施例中,第一码本集为索引为等间隔取值的第一向量的集合。
可以理解的是,第一码本集对应的第一向量为满足预定条件的第一向量;所述满足预定条件的第一向量为:索引为等间隔取值的第一向量。
示例性地,以第一向量可以为DFT为例,U为根据天线结构及过采样因子形成的DFT向量的总数。第一向量的索引可以为满足ai或ai+1的DFT向量。例如,假设a=2,i=1,则间隔2取值。
示例性地,上述第一子集和/或第二子集可以按照一定规则来获得。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1002,1006,1003,1007},{1001,1005,1002,1006}。
示例性地,上述相干天线端口组合在所述终端的天线结构为第一方向4组双极化天线、第二方向1组双极化天线时存在。例如,如图4所示,存在3对相干的端口组合,可选地,终端的天线端口可以为3对端口组合中的任意两个,如:{1000,1004,1001,1005},{1001,1005,1002,1006}。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1000,1004,1002,1006},{1002,1006,1003,1007},{1001,1005,1003,1007}。
示例性地,上述相干天线端口组合在所述终端的天线结构为第一方向2组双极化天线,第二方向2组双极化天线时存在。例如,如图5所示,存在4对相干的端口组合,可选地,终端的天线端口可以为4对端口组合中的任意两个,如:{1000,1004,1001,1005},{1001,1005,1002,1006}。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1002,1001,1003},{1004,1005,1006,1007}。例如,如图6所示,存在2对相 干的端口组合。
一种示例中,上述第一方向可以为水平方向,上述第二方向可以为垂直方向。
另一种示例中,第一方向即N1=4,第二方向即N2=1。
在一些可能的实施例中,所述第一码本集最大包含X个预编码。示例性地,X由RRC配置,X=2n。n为正整数。
示例性地,X=64;
在一些可能的实施例中,上述第一码本集由RRC配置,和/或,所述第一码本集由MAC CE指示,和/或,所述第一码本集由DCI指示。
示例性地,针对第一码本集由RRC配置的场景,一种示例中,可以对DCI format 0_1和DCI format 0_2分别进行配置;另一种示例中,第一码本集与目标资源关联,该目标资源包括以下至少之一:SRS资源,SRS资源集,传输配置指示(Transmission Configuration Indicator,TCI)状态。
在一些可能的实施例中,上述DCI中包含目标域。
其中,上述目标域包括以下至少之一:
SRI域,TPMI域,天线端口域,相位跟踪参考信号(Phase-tracking reference signal,PTRS)-解调参考信号(Demodulation Reference Signal,DMRS)相关域。
示例性地,终端可以根据第一码本集确定DCI中指示预编码的目标域的比特长度,进而解读目标域,或者,终端可以根据第一码本集确定目标域的解读方法。
一种示例中,本申请实施例提供的技术方案还可以包括如下内容:终端基于第一规则,解析该DCI中的目标域。
其中,上述第一规则包括以下至少之一:
终端仅解读该DCI中的目标域中高位数据,低位比特保留;
终端解读该DCI中的目标域中低位数据,高位比特保留;
终端解读该DCI中的目标域中的目标数据。
举例说明,终端可以根据第一码本集确定目标域需要解读的K比特,其中,该DCI中的目标域总长度为V比特。进一步的,终端在解决目标域时可以按照以下至少之一的规则进行解读:1)终端只解读高位的K比特,余下比特保留;2)终端只解读低位的K比特,高位比特保留;3)终端解读目标域中的目标K比特。
以下将以6个实施例来对本申请实施例中的第一码本集进行示例性说明。
第一实施例:
在本实施例中,第一码本集满足两个天线相干(即两个天线端口为一组相干天线端口,也可以理解为,预编码矩阵中每一列非零元素地最大个数为2)。
示例性地,第一码本集包含以下至少之一:
第一码本集中的秩为1(即Rank1)的预编码包括:预编码A1;
第一码本集中的秩为2(即Rank2)的预编码包括:预编码A2;
第一码本集中的秩为3(即Rank3)的预编码包括:预编码A3;
第一码本集中的秩为4(即Rank4)的预编码包括:预编码A4;
第一码本集中的秩为5(即Rank5)的预编码包括以下至少之一:预编码A51,预编码A52,预编码A53,预编码A54;
第一码本集中的秩为6(即Rank6)的预编码包括:预编码A6;
第一码本集中的秩为7(即Rank7)的预编码包括以下至少之一:预编码A71,预编码A72,
第一码本集中的秩为8(即Rank8)的预编码包括:预编码A8。
第一码本子集中的预编码满足以下至少一项:
示例性地,Rank1的预编码A1包括下表1中的至少一个预编码:
表1
示例性地,Rank2的预编码A2包括下表2中的至少一个预编码:
表2
示例性地,Rank3的预编码A3包括下表3中的至少一个预编码:
表3
示例性地,Rank4的预编码A4包括下表4中的至少一个预编码:
表4
示例性地,Rank5的预编码A51包括下表5中的至少一个预编码:
表5
示例性地,Rank5的预编码A52包括下表6中的至少一个预编码:
表6
示例性地,Rank5的预编码A53包括下表7中的至少一个预编码:
表7
示例性地,Rank5的预编码A54包括下表8中的至少一个预编码:
表8
示例性地,Rank6的预编码A6包括下表9中的至少一个预编码:
表9
示例性地,Rank7的预编码A71包括下表10中的至少一个预编码:
表10
示例性地,Rank7的预编码A72包括下表11中的至少一个预编码:
表11
示例性地,Rank8的预编码A8包括下表12中的至少一个预编码:
表12
应注意的是,一种示例中,上述a与b分别表示不同的值。此外,对于不同的预编码矩阵来说,a和b的取值不同。
第二实施例:
在本实施例中,第一码本集满足四个天线相干(即四个天线端口为一组相干天线端口,也可以理解为,预编码矩阵中每一列非零元素地最大个数为4)。
示例性地,第一码本集满足以下至少之一:
天线结构N1=4,N2=1;
基于上行4端口full-coherent码本设计;
Layer间功率平衡;
端口间功率平衡;
相干端口组:{1000,1004,1001,1005},{1002,1006,1003,1007},{1001,1005,1002,1006}。
示例性地,第一码本集包含以下至少之一:
第一码本集中的秩为1(Rank1)的预编码包括以下至少之一:预编码1,预编码2;
第一码本集中的秩为2(Ran2)的预编码包括以下至少之一:预编码3,预编码4,预编码5;
第一码本集中的秩为3(Ran3)的预编码包括以下至少之一:预编码6,预编码7,预编码8,预编码9,预编码10;
第一码本集中的秩为4(Ran4)的预编码包括以下至少之一:预编码11,预编码12;
第一码本集中的秩为5(Ran5)的预编码包括以下至少之一:预编码13,预编码14,预编码15,预编码16,预编码17;
第一码本集中的秩为6(Ran6)的预编码包括以下至少之一:预编码18,预编码19;
第一码本集中的秩为7(Ran7)的预编码包括:预编码20;
第一码本集中的秩为8(Ran8)的预编码包括以下至少之一:预编码21,预编码22。
第一码本子集中的预编码满足以下至少一项:
示例性地,Ran1的预编码1包括以下至少之一:
示例性地,Ran1的预编码2包括以下至少之一:
示例性地,Rank2的预编码3包括以下至少之一:
示例性地,Rank2的预编码4包括以下至少之一:
示例性地,Rank2的预编码5包括以下至少之一:
示例性地,Rank3的预编码6包括以下至少之一:
示例性地,Rank3的预编码7包括以下至少之一:
示例性地,Rank3的预编码8包括以下至少之一:
示例性地,Rank3的预编码9包括以下至少之一:
示例性地,Rank3的预编码10包括以下至少之一:
示例性地,Rank4的预编码11包括以下至少之一:
示例性地,Rank4的预编码12包括以下至少之一:
示例性地,Rank5的预编码13包括以下至少之一:
示例性地,Rank5的14包括以下至少之一:
示例性地,Rank5的预编码15包括以下至少之一:
示例性地,Rank5的预编码16包括以下至少之一:
示例性地,Rank5的预编码17包括以下至少之一:
示例性地,Rank6的预编码18包括以下至少之一:
示例性地,Rank6的预编码19包括以下至少之一:
示例性地,Rank7的预编码20包括以下至少之一:
示例性地,Rank8的预编码21包括以下至少之一:
示例性地,Rank8的预编码22包括以下至少之一:
一种示例中,本实施例中的每个预编码矩阵前可以乘以一个系数。
一种示例中,本实施例中,每个预编码矩阵中相干地一组端口对应地列乘以一个系数。
第三实施例:
在本实施例中,上述第一码本集为:DFT-s-OFDM波形的码本子集;上述第一码本子集中秩为1的预编码为以下至少之一:预编码1,预编码2。
第一码本子集中的预编码满足以下至少一项:
示例性地,Rank1的预编码1包括以下至少之一:
示例性地,Rank1的预编码2包括以下至少之一:
第四实施例:
在本实施例中,第一码本集满足四个天线相干。
示例性地,第一码本集满足以下至少之一:
天线结构N1=4,N2=2;
基于上行4端口full-coherent码本设计;
Layer间功率平衡;
端口间功率平衡;
相干端口组为以下至少之一:{1000,1004,1001,1005},{1000,1004,1002,1006},{1002,1006,1003,1007},{1001,1005,1003,1007}。
示例性地,第一码本集包含以下至少之一:
第一码本集中的秩为1(即Rank1)的预编码包括以下至少之一:预编码C11,预编码C12,预编码C13,预编码C14;
第一码本集中的秩为2(即Rank2)的预编码包括以下至少之一:预编码C21,预编码C22;
第一码本集中的秩为3(即Rank3)的预编码包括以下至少之一:预编码C31,预编码C32,预编码C33,预编码C34;
第一码本集中的秩为4(即Rank4)的预编码包括以下至少之一:预编码C41,预编码C42;
第一码本集中的秩为5(即Rank5)的预编码包括:预编码C5;
第一码本集中的秩为6(即Rank6)的预编码包括:预编码C6;
第一码本集中的秩为7(即Rank7)的预编码包括:预编码C7;
第一码本集中的秩为8(即Rank8)的预编码包括以下至少之一:预编码C81,预编码 C82,预编码C83。
第一码本子集中的预编码满足以下至少一项:
示例性地,Rank1的预编码C11包括下表13中的至少一个预编码:
表13
示例性地,Rank1的预编码C12包括下表14中的至少一个预编码:
表14
示例性地,Rank1的预编码C13包括下表15中的至少一个预编码:
表15
示例性地,Rank1的预编码C14包括下表16中的至少一个预编码:
表16
示例性地,Rank2的预编码C21包括下表17中的至少一个预编码:
表17
示例性地,Rank2的预编码C22包括下表18中的至少一个预编码:
表18
示例性地,Rank3的预编码C31包括下表19中的至少一个预编码:
表19
示例性地,Rank3的预编码C32包括下表20中的至少一个预编码:
表20
示例性地,Rank3的预编码C33包括下表21中的至少一个预编码:
表21
示例性地,Rank3的预编码C34包括下表22中的至少一个预编码:
表22
示例性地,Rank4的预编码C41包括下表23中的至少一个预编码:
表23
示例性地,Rank4的预编码C42包括下表24中的至少一个预编码:
表24
示例性地,Rank5的预编码C5包括下表25中的至少一个预编码:
表25
示例性地,Rank6的预编码C6包括下表26中的至少一个预编码:
表26
示例性地,Rank7的预编码C7包括下表27中的至少一个预编码:
表27
示例性地,Rank8的预编码C81包括下表28中的至少一个预编码:
表28
示例性地,Rank8的预编码C82包括下表29中的至少一个预编码:
表29
示例性地,Rank8的预编码C83包括下表30中的至少一个预编码:
表30
第五实施例:
在本实施例中,假设相干的天线端口数为8,O1=1。
示例性地,第一码本集满足四个天线相干。
示例性地,第一码本集满足以下至少之一:
maxRank=8总共44个precoder;
max rank=4总共有36个precoder;
maxRank=1总共有16个precoder;
天线结构N1=4,N2=2。
示例性地,第一码本集包含以下至少之一:
第一码本集中的秩为1(即Rank1)的预编码包括:预编码D1;
第一码本集中的秩为2(即Rank2)的预编码包括:预编码D2;
第一码本集中的秩为3(即Rank3)的预编码包括以下至少之一:预编码D31,预编码D32;
第一码本集中的秩为4(即Rank4)的预编码包括:预编码D4;
第一码本集中的秩为5(即Rank5)的预编码包括:预编码D5;
第一码本集中的秩为6(即Rank6)的预编码包括:预编码D6;
第一码本集中的秩为7(即Rank7)的预编码包括:预编码D7;
第一码本集中的秩为8(即Rank8)的预编码包括:预编码D8。
第一码本子集中的预编码满足以下至少一项:
示例性地,Rank1的预编码D1包括下表31中的至少一个预编码:
表31
示例性地,Rank2的预编码D2包括下表32中的至少一个预编码:
表32
示例性地,Rank3的预编码D31包括下表33中的至少一个预编码:
表33
示例性地,Rank3的预编码D32包括下表34中的至少一个预编码:
表34
示例性地,Rank4的预编码D4包括下表35中的至少一个预编码:
表35
示例性地,Rank5的预编码D5包括下表36中的至少一个预编码:
表36
示例性地,Rank6的预编码D6包括下表37中的至少一个预编码:
表37
示例性地,Rank7的预编码D7包括下表38中的至少一个预编码:
表38
示例性地,Rank8的预编码D8包括下表39中的至少一个预编码:
表39
第六实施例:
在本实施例中,假设相干的天线端口数为8,O1=1。
示例性地,第一码本集满足四个天线相干。
示例性地,第一码本集满足以下至少之一:
天线结构N1=2,N2=2。
示例性地,第一码本集包含以下至少之一:
第一码本集中的秩为1(即Rank1)的预编码包括:预编码E1;
第一码本集中的秩为2(即Rank2)的预编码包括:预编码E2;
第一码本集中的秩为3(即Rank3)的预编码包括:预编码E3;
第一码本集中的秩为4(即Rank4)的预编码包括:预编码E4;
第一码本集中的秩为5(即Rank5)的预编码包括:预编码E5;
第一码本集中的秩为6(即Rank6)的预编码包括:预编码E6;
第一码本集中的秩为7(即Rank7)的预编码包括:预编码E7;
第一码本集中的秩为8(即Rank8)的预编码包括:预编码E8。
第一码本子集中的预编码满足以下至少一项:
示例性地,Rank1的预编码E1包括下表40中的至少一个预编码:
表40
示例性地,Rank2的预编码E2包括下表41中的至少一个预编码:
表41
示例性地,Rank3的预编码E3包括下表42中的至少一个预编码:
表42
示例性地,Rank4的预编码E4包括下表43中的至少一个预编码:
表43
示例性地,Rank5的预编码E5包括下表44中的至少一个预编码:
表44
示例性地,Rank6的预编码E6包括下表45中的至少一个预编码:
表45
示例性地,Rank7的预编码E7包括下表46中的至少一个预编码:
表46
示例性地,Rank8的预编码E8包括下表47中的至少一个预编码:
表47
第七实施例:
在本实施例中,第一码本集限定包含只有4个天线端口有发射功率的预编码。
举例说明,假设只有端口1000至1003包含非零功率,且天线端口之间非相干(相干的天线数为1),则第一码本子集至少包含如下预编码矩阵:
Rank i:从上述矩阵任选i列为一个预编码,组成一组码本。
表48
示例性地,参照上表48可知,如果限制最大Rank为1则指示预编码的域为2bit;如果限制最大Rank为4则指示预编码的域为4bit。
需要说明的是,本申请实施例中的第一码本集中的任一预编码矩阵可以乘以一个归一化的系数。
在本申请实施例提供的预编码的确定方法中,提供了一种适用于6天线和/或8天线的终端的码本集,使得终端在调度数据传输的信令时只需要从该码本集中选择需要调度的预编码,便可降低预编码指示的信令开销。如此,通过灵活设计码本子集,一定程度上能保证终端吞吐量性能,降低了信令开销。
本申请实施例提供的预编码的确定方法,执行主体可以为预编码的确定装置。本申请实施例中以预编码的确定装置执行预编码的确定方法为例,说明本申请实施例提供的预编码的确定装置。
本申请实施例提供一种预编码的确定装置,如图7所示,该装置包括接收模块401和执行模块402,其中:
接收模块401,用于接收DCI;
执行模块402,用于基于所述接收模块401接收到的所述DCI,从第一码本集中确定第一预编码;
其中,所述第一码本集中包含至少一个预编码;
所述第一码本集用于6天线和/或8天线的终端;
所述第一预编码用于传输PUSCH。
在一些可能的实施例中,所述第一码本集满足以下至少一个限制条件:
所述第一码本集的秩集合为第一子集;
所述第一码本集中的Z个天线端口为一组相干天线端口;
所述第一码本集对应的过采样因子为O;
所述第一码本集对应的第一向量的索引为第二子集;
所述第一码本集中预编码对应非零天线端口集合;
所述第一码本集中最大包含X个预编码;
其中,第一子集的元素属于1至Y;所述第二子集的元素属于0至U-1;
Z=1,2,4,6或8;O=1,2,4或8;Y为最大秩的取值。
在一些可能的实施例中,所述非零天线端口集合为第一端口集合的子集;其中,所述第一端口集合为{1000-1007}。
在一些可能的实施例中,所述第一子集的元素属于1至A,或者,所述第一子集的元素属于A+1至Y,其中,A大于1、且小于Y。
在一些可能的实施例中,所述U为基于所述终端的天线结构及所述过采样因子所形成的第一向量的总数;和/或,
第一码本集为索引为等间隔取值的第一向量的集合。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1002,1006,1003,1007},{1001,1005,1002,1006}。
在一些可能的实施例中,所述相干天线端口组合在所述终端的天线结构为第一方向4 组双极化天线、第二方向1组双极化天线时存在。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1000,1004,1002,1006},{1002,1006,1003,1007},{1001,1005,1003,1007}。
在一些可能的实施例中,所述相干天线端口组合在所述终端的天线结构为第一方向2组双极化天线,第二方向2组双极化天线时存在。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1002,1001,1003},{1004,1005,1006,1007}。
在一些可能的实施例中,所述第一码本集由RRC配置,和/或,所述第一码本集由MAC CE指示,和/或,所述第一码本集由DCI指示。
在一些可能的实施例中,所述DCI包括目标域;
其中,所述目标域包括以下至少之一:
SRI域,TPMI域,天线端口域,PTRS-DMRS相关域;
在一些可能的实施例中,所述执行模块,还用于:
基于第一规则,解析所述DCI中的目标域;
其中,所述第一规则包括以下至少之一:
仅解读所述目标域中高位数据,低位比特保留;
解读所述目标域中低位数据,高位比特保留;
解读所述目标域中的目标数据。
应注意的是,本申请实施例中的第一码本集中所包含的预编码可以参照上文中的示例,此处不再赘述。
在本申请实施例提供的预编码的确定装置中,提供了一种适用于6天线和/或8天线的终端的码本集,使得终端在调度数据传输的信令时只需要从该码本集中选择需要调度的预编码,便可降低预编码指示的信令开销。如此,通过灵活设计码本子集,一定程度上能保证终端吞吐量性能,降低了信令开销。
本申请实施例提供一种预编码的确定装置,如图8所示,该装置包括发送模块501和接收模块502,其中:
发送模块501,发送DCI;接收模块502,用于接收PUSCH;
其中,所述DCI用于指示第一码本集中的第一预编码;
其中,所述第一码本集中包含至少一个预编码;
所述第一预编码为所述至少一个预编码中的一个或多个;
所述第一码本集用于6天线和/或8天线的终端;
所述PUSCH是基于所述第一预编码传输的。
在一些可能的实施例中,所述第一码本集满足以下至少一个限制条件:
所述第一码本集的秩集合为第一子集;
所述第一码本集中的Z个天线端口为一组相干天线端口;
所述第一码本集对应的过采样因子为O;
所述第一码本集对应的第一向量的索引为第二子集;
所述第一码本集中预编码对应非零天线端口集合;
所述第一码本集中最大包含X个预编码;
其中,第一子集的元素属于1至Y;所述第二子集的元素属于0至U-1;
Z=1,2,4,6或8;O=1,2,4或8;Y为最大秩的取值。
在一些可能的实施例中,所述非零天线端口集合为第一端口集合的子集;其中,所述第一端口集合为{1000,1001,1002,1003,1004,1005,1006,1007}。
在一些可能的实施例中,所述第一子集的元素属于1至A,或者,所述第一子集的元素属于A+1至Y,其中,A大于1、且小于Y。
在一些可能的实施例中,所述U为基于所述终端的天线结构及所述过采样因子所形成的第一向量的总数;和/或,
第一码本集为索引为等间隔取值的第一向量的集合。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1002,1006,1003,1007},{1001,1005,1002,1006}。
在一些可能的实施例中,所述相干天线端口组合在所述终端的天线结构为第一方向4组双极化天线、第二方向1组双极化天线时存在。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1000,1004,1002,1006},{1002,1006,1003,1007},{1001,1005,1003,1007}。
在一些可能的实施例中,所述相干天线端口组合在所述终端的天线结构为第一方向2组双极化天线,第二方向2组双极化天线时存在。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组: {1000,1002,1001,1003},{1004,1005,1006,1007}。
在一些可能的实施例中,所述第一码本集由RRC配置,和/或,所述第一码本集由MAC CE指示,和/或,所述第一码本集由DCI指示。
应注意的是,本申请实施例中的第一码本集中所包含的预编码可以参照上文中的示例,此处不再赘述。
在本申请实施例提供的预编码的确定装置中,提供了一种适用于6天线和/或8天线的终端的码本集,网络侧设备通过指示终端从该码本集中选择合适的预编码,使得终端在调度数据传输的信令时只需要从该码本集中选择需要调度的预编码,便可降低预编码指示的信令开销。如此,通过灵活设计码本子集,一定程度上能保证终端吞吐量性能,降低了信令开销。
本申请实施例中的预编码的确定装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性地,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的预编码的确定装置能够实现上文方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图9所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述预编码的确定方法的方法实施例中终端所执行的各个步骤,且能达到相同的技术效果。例如,该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述预编码的确定方法的方法实施例中网络侧设备所执行的各个步骤,且能达到相同的技术效果。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收DCI;处理器用于基于该DCI,从第一码本集中确定第一预编码;其中,所述第一码本集中包含至少一个预编码;所述第一码本集用于6天线和/或8天线的终端;所述第一预编码用于传输PUSCH。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储 器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选地,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,用于接收DCI;处理器710,用于基于射频单元701接收到的DCI,从第一码本集中确定第一预编码;
其中,所述第一码本集中包含至少一个预编码;
所述第一码本集用于6天线和/或8天线的终端;
所述第一预编码用于传输PUSCH。
在一些可能的实施例中,所述第一码本集满足以下至少一个限制条件:
所述第一码本集的秩集合为第一子集;
所述第一码本集中的Z个天线端口为一组相干天线端口;
所述第一码本集对应的过采样因子为O;
所述第一码本集对应的第一向量的索引为第二子集;
所述第一码本集中预编码对应非零天线端口集合;
所述第一码本集中最大包含X个预编码;
其中,第一子集的元素属于1至Y;所述第二子集的元素属于0至U-1;
Z=1,2,4,6或8;O=1,2,4或8;Y为最大秩的取值。
在一些可能的实施例中,所述非零天线端口集合为第一端口集合的子集;其中,所述第一端口集合为{1000-1007}。
在一些可能的实施例中,所述第一子集的元素属于1至A,或者,所述第一子集的元素属于A+1至Y,其中,A大于1、且小于Y。
在一些可能的实施例中,所述U为基于所述终端的天线结构及所述过采样因子所形成的第一向量的总数;和/或,
第一码本集为索引为等间隔取值的第一向量的集合。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1002,1006,1003,1007},{1001,1005,1002,1006}。
在一些可能的实施例中,所述相干天线端口组合在所述终端的天线结构为第一方向4组双极化天线、第二方向1组双极化天线时存在。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1000,1004,1002,1006},{1002,1006,1003,1007},{1001,1005,1003,1007}。
在一些可能的实施例中,所述相干天线端口组合在所述终端的天线结构为第一方向2组双极化天线,第二方向2组双极化天线时存在。
在一些可能的实施例中,所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1002,1001,1003},{1004,1005,1006,1007}。
在一些可能的实施例中,所述第一码本集由RRC配置,和/或,所述第一码本集由MAC CE指示,和/或,所述第一码本集由DCI指示。
在一些可能的实施例中,所述DCI包含目标域;
其中,所述目标域包括以下至少之一:
SRI域,TPMI域,天线端口域,PTRS-DMRS相关域;
在一些可能的实施例中,所述处理器710,还用于:
基于第一规则,解析所述DCI中的目标域;
其中,所述第一规则包括以下至少之一:
终端仅解读所述目标域中高位数据,低位比特保留;
终端解读所述目标域中低位数据,高位比特保留;
终端解读所述目标域中的目标数据。
应注意的是,本申请实施例中的第一码本集中所包含的预编码可以参照上文中的示例,此处不再赘述。
在本申请实施例提供的终端中,提供了一种适用于6天线和/或8天线的终端的码本集,使得终端在调度数据传输的信令时只需要从该码本集中选择需要调度的预编码,便可降低预编码指示的信令开销。如此,通过灵活设计码本子集,一定程度上能保证终端吞吐量性能,降低了信令开销。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于发送DCI;还用于接收PUSCH;其中,所述DCI用于指示第一码本集中的第一预编码;其中,所述第一码本集中包含至少一个预编码;所述第一预编码为所述至少一个预编码中的一个或多个;所述第一码本集用于6天线和/或8天线的终端;所述PUSCH是基于所述第一预编码传输 的。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述预编码的确定方法的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述预编码的确定方法的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述预编码的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的预编码的确定方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (37)

  1. 一种预编码的确定方法,其中,所述方法包括:
    终端接收下行控制信息DCI;
    所述终端基于所述DCI,从第一码本集中确定第一预编码;
    其中,所述第一码本集中包含至少一个预编码;
    所述第一码本集用于6天线和/或8天线的终端;
    所述第一预编码用于传输物理上行共享信道PUSCH。
  2. 根据权利要求1所述的方法,其中,所述第一码本集满足以下至少一个限制条件:
    所述第一码本集的秩集合为第一子集;
    所述第一码本集中的Z个天线端口为一组相干天线端口;
    所述第一码本集对应的过采样因子为O;
    所述第一码本集对应的第一向量的索引为第二子集;
    所述第一码本集中预编码对应非零天线端口集合;
    所述第一码本集中最大包含X个预编码;
    其中,第一子集的元素属于1至Y;所述第二子集的元素属于0至U-1;
    Z=1,2,4,6或8;O=1,2,4或8;Y为最大秩的取值。
  3. 根据权利要求2所述的方法,其中,
    所述非零天线端口集合为第一端口集合的子集;其中,所述第一端口集合为{1000,1001,1002,1003,1004,1005,1006,1007}。
  4. 根据权利要求2所述的方法,其中,所述第一子集的元素属于1至A,或者,所述第一子集的元素属于A+1至Y,其中,A大于1、且小于Y。
  5. 根据权利要求2所述的方法,其中,所述U为基于所述终端的天线结构及所述过采样因子所形成的第一向量的总数;和/或,
    所述第一码本集为索引为等间隔取值的第一向量的集合。
  6. 根据权利要求3所述的方法,其中,
    所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1002,1006,1003,1007},{1001,1005,1002,1006}。
  7. 根据权利要求6所述的方法,其中,所述相干天线端口组合在所述终端的天线结构为第一方向4组双极化天线、第二方向1组双极化天线时存在。
  8. 根据权利要求3所述的方法,其中,
    所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1000,1004,1002,1006},{1002,1006,1003,1007},{1001,1005,1003,1007}。
  9. 根据权利要求8所述的方法,其中,所述相干天线端口组合在所述终端的天线结构为第一方向2组双极化天线,第二方向2组双极化天线时存在。
  10. 根据权利要求3所述的方法,其中,
    所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1002,1001,1003},{1004,1005,1006,1007}。
  11. 根据权利要求1所述的方法,其中,所述第一码本集由无线资源控制RRC配置,和/或,所述第一码本集由媒体接入控制层控制单元MAC CE指示,和/或,所述第一码本集由下行控制信息DCI指示。
  12. 根据权利要求1所述的方法,其中,所述DCI包括目标域,所述目标域包括以下至少之一:
    探测参考信号SRS资源指示域,预编码矩阵指示TPMI域,天线端口域,相位跟踪参考信号PTRS-解调参考信号DMRS相关域。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:
    所述终端基于第一规则,解析所述DCI中的目标域;
    其中,所述第一规则包括以下至少之一:
    所述终端仅解读所述目标域中高位数据,低位比特保留;
    所述终端解读所述目标域中低位数据,高位比特保留;
    所述终端解读所述目标域中的目标数据。
  14. 根据权利要求1至13任一项所述的方法,其中,所述第一码本集用于8天线的终端;
    在所述第一码本集满足四个天线端口为一组相干天线端口的情况下,
    所述第一码本集包括以下至少之一:
    所述第一码本集中的秩为1的预编码包括以下至少之一:预编码1,预编码2;
    所述第一码本集中的秩为2的预编码包括以下至少之一:预编码3,预编码4,预编码5;
    所述第一码本集中的秩为3的预编码包括以下至少之一:预编码6,预编码7,预编码 8,预编码9,预编码10;
    所述第一码本集中的秩为4的预编码包括以下至少之一:预编码11,预编码12;
    所述第一码本集中的秩为5的预编码包括以下至少之一:预编码13,预编码14,预编码15,预编码16,预编码17;
    所述第一码本集中的秩为6的预编码包括以下至少之一:预编码18,预编码19;
    所述第一码本集中的秩为7的预编码包括:预编码20;
    所述第一码本集中的秩为8的预编码包括以下至少之一:预编码21,预编码22。
  15. 根据权利要求1至13任一项所述的方法,其中,所述第一码本集为:DFT-s-OFDM波形的码本子集;
    所述第一码本子集中秩为1的预编码包括下至少之一:预编码1,预编码2。
  16. 根据权利要求15所述的方法,其中,所述第一码本子集中的预编码满足以下至少一项:
    所述预编码1包括以下至少之一:
    所述预编码2包括以下至少之一:
  17. 根据权利要求14所述的方法,其中,所述第一码本子集中的预编码满足以下至少一项:
    所述预编码1包括以下至少之一:
    所述预编码2包括以下至少之一:
    所述预编码3包括以下至少之一:
    所述预编码4包括以下至少之一:

    所述预编码5包括以下至少之一:
    所述预编码6包括以下至少之一:
    所述预编码7包括以下至少之一:
    所述预编码8包括以下至少之一:

    所述预编码9包括以下至少之一:
    所述预编码10包括以下至少之一:
    所述预编码11包括以下至少之一:
    所述预编码12包括以下至少之一:
    所述预编码13包括以下至少之一:
    所述预编码14包括以下至少之一:
    所述预编码15包括以下至少之一:
    所述预编码16包括以下至少之一:
    所述预编码17包括以下至少之一:
    所述预编码18包括以下至少之一:
    所述预编码19包括以下至少之一:
    所述预编码20包括以下至少之一:
    所述预编码21包括以下至少之一:
    所述预编码22包括以下至少之一:
  18. 一种预编码的确定方法,其中,所述方法包括:
    网络侧设备发送DCI;
    所述网络侧设备接收PUSCH;
    其中,所述DCI用于指示第一码本集中的第一预编码;
    其中,所述第一码本集中包含至少一个预编码;
    所述第一预编码为所述至少一个预编码中的一个或多个;
    所述第一码本集用于6天线和/或8天线的终端;
    所述PUSCH是基于所述第一预编码传输的。
  19. 根据权利要求18所述的方法,其中,所述第一码本集满足以下至少一个限制条件:
    所述第一码本集的秩集合为第一子集;
    所述第一码本集中的Z个天线端口为一组相干天线端口;
    所述第一码本集对应的过采样因子为O;
    所述第一码本集对应的第一向量的索引为第二子集;
    所述第一码本集中预编码对应非零天线端口集合;
    所述第一码本集中最大包含X个预编码;
    其中,第一子集的元素属于1至Y;所述第二子集的元素属于0至U-1;
    Z=1,2,4,6或8;O=1,2,4或8;Y为最大秩的取值。
  20. 根据权利要求19所述的方法,其中,所述非零天线端口集合为第一端口集合的子集;其中,所述第一端口集合为{1000,1001,1002,1003,1004,1005,1006,1007}。
  21. 根据权利要求19所述的方法,其中,所述第一子集的元素属于1至A,或者,所 述第一子集的元素属于A+1至Y,其中,A大于1、且小于Y。
  22. 根据权利要求19所述的方法,其中,所述U为基于所述终端的天线结构及所述过采样因子所形成的第一向量的总数;和/或,
    所述第一码本集为索引为等间隔取值的第一向量的集合。
  23. 根据权利要求20所述的方法,其中,
    所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1002,1006,1003,1007},{1001,1005,1002,1006}。
  24. 根据权利要23所述的方法,其中,所述相干天线端口组合在所述终端的天线结构为第一方向4组双极化天线、第二方向1组双极化天线时存在。
  25. 根据权利要求20所述的方法,其中,
    所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1004,1001,1005},{1000,1004,1002,1006},{1002,1006,1003,1007},{1001,1005,1003,1007}。
  26. 根据权利要求25所述的方法,其中,所述相干天线端口组合在所述终端的天线结构为第一方向2组双极化天线,第二方向2组双极化天线时存在。
  27. 根据权利要求20所述的方法,其中,
    所述第一码本集中的相干天线端口组合包括以下至少一组:{1000,1002,1001,1003},{1004,1005,1006,1007}。
  28. 根据权利要求18所述的方法,其中,所述第一码本集由RRC配置,和/或,所述第一码本集由MACCE指示,和/或,所述第一码本集由DCI指示。
  29. 根据权利要求18至28任一项所述的方法,其中,所述第一码本集用于8天线的终端;
    在所述第一码本集满足四个天线端口为一组相干天线端口的情况下,
    所述第一码本集包括以下至少之一:
    所述第一码本集中的秩为1的预编码包括以下至少之一:预编码1,预编码2;
    所述第一码本集中的秩为2的预编码包括以下至少之一:预编码3,预编码4,预编码5;
    所述第一码本集中的秩为3的预编码包括以下至少之一:预编码6,预编码7,预编码8,预编码9,预编码10;
    所述第一码本集中的秩为4的预编码包括以下至少之一:预编码11,预编码12;
    所述第一码本集中的秩为5的预编码包括以下至少之一:预编码13,预编码14,预编码15,预编码16,预编码17;
    所述第一码本集中的秩为6的预编码包括以下至少之一:预编码18,预编码19;
    所述第一码本集中的秩为7的预编码包括:预编码20;
    所述第一码本集中的秩为8的预编码包括以下至少之一:预编码21,预编码22。
  30. 根据权利要求18至28任一项所述的方法,其中,所述第一码本集为:DFT-s-OFDM波形的码本子集;
    所述第一码本子集中秩为1的预编码为以下至少之一:预编码1,预编码2。
  31. 根据权利要求30所述的方法,其中,所述第一码本子集中的预编码满足以下至少一项:
    所述预编码1包括以下至少之一:
    所述预编码2包括以下至少之一:
  32. 根据权利要求29所述的方法,其中,所述第一码本子集中的预编码满足以下至少一项:
    所述预编码1包括以下至少之一:
    所述预编码2包括以下至少之一:
    所述预编码3包括以下至少之一:
    所述预编码4包括以下至少之一:

    所述预编码5包括以下至少之一:
    所述预编码6包括以下至少之一:
    所述预编码7包括以下至少之一:
    所述预编码8包括以下至少之一:

    所述预编码9包括以下至少之一:
    所述预编码10包括以下至少之一:
    所述预编码11包括以下至少之一:
    所述预编码12包括以下至少之一:
    所述预编码13包括以下至少之一:
    所述预编码14包括以下至少之一:
    所述预编码15包括以下至少之一:
    所述预编码16包括以下至少之一:
    所述预编码17包括以下至少之一:
    所述预编码18包括以下至少之一:
    所述预编码19包括以下至少之一:
    所述预编码20包括以下至少之一:
    所述预编码21包括以下至少之一:
    所述预编码22包括以下至少之一:
  33. 一种预编码的确定装置,其中,所述装置包括:
    接收模块,用于接收DCI;
    执行模块,用于基于所述接收模块接收到的所述DCI,从第一码本集中确定第一预编码;
    其中,所述第一码本集中包含至少一个预编码;
    所述第一码本集用于6天线和/或8天线的终端;
    所述第一预编码用于传输PUSCH。
  34. 一种预编码的确定装置,其中,所述装置包括:
    发送模块,用于发送DCI;
    接收模块,用于接收PUSCH;
    其中,所述DCI用于指示第一码本集中的第一预编码;
    其中,所述第一码本集中包含至少一个预编码;
    所述第一预编码为所述至少一个预编码中的一个或多个;
    所述第一码本集用于6天线和/或8天线的终端;
    所述PUSCH是基于所述第一预编码传输的。
  35. 一种终端,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至17任一项所述的预编码的确定方法的步骤。
  36. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求18至32任一项所述的预编码的确定方法的步骤。
  37. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时,实现如权利要求1至17任一项所述的预编码的确定方法的步骤,或者,实现如权利要求18至32任一项所述的预编码的确定方法的步骤。
PCT/CN2023/075009 2022-02-09 2023-02-08 预编码的确定方法、装置、设备及可读存储介质 WO2023151592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210122945.5 2022-02-09
CN202210122945.5A CN116614163A (zh) 2022-02-09 2022-02-09 预编码的确定方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023151592A1 true WO2023151592A1 (zh) 2023-08-17

Family

ID=87563641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075009 WO2023151592A1 (zh) 2022-02-09 2023-02-08 预编码的确定方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN116614163A (zh)
WO (1) WO2023151592A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174398A (ja) * 2011-04-05 2016-09-29 サムスン エレクトロニクス カンパニー リミテッド 各レポーティングモードに対応するコードブックを用いる多重入出力通信システム
CN108604915A (zh) * 2015-10-23 2018-09-28 三星电子株式会社 用于高级无线通信系统的预编码器码本
CN109417442A (zh) * 2017-04-25 2019-03-01 华为技术有限公司 上行多天线信号传输方法、相关设备及系统
US20200382180A1 (en) * 2019-08-15 2020-12-03 Intel Corporation Full-power uplink transmissions for new radio systems
WO2022002079A1 (zh) * 2020-06-29 2022-01-06 华为技术有限公司 预编码矩阵确定方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174398A (ja) * 2011-04-05 2016-09-29 サムスン エレクトロニクス カンパニー リミテッド 各レポーティングモードに対応するコードブックを用いる多重入出力通信システム
CN108604915A (zh) * 2015-10-23 2018-09-28 三星电子株式会社 用于高级无线通信系统的预编码器码本
CN109417442A (zh) * 2017-04-25 2019-03-01 华为技术有限公司 上行多天线信号传输方法、相关设备及系统
US20200382180A1 (en) * 2019-08-15 2020-12-03 Intel Corporation Full-power uplink transmissions for new radio systems
WO2022002079A1 (zh) * 2020-06-29 2022-01-06 华为技术有限公司 预编码矩阵确定方法及装置

Also Published As

Publication number Publication date
CN116614163A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
TWI688230B (zh) 基於碼書之上行鏈路傳輸方法及使用者設備
TWI771412B (zh) 上行預編碼方法、設備及系統
WO2022152271A1 (zh) Pusch传输方法、装置、设备及存储介质
KR20220087547A (ko) Pmi 보고 및 사용을 위한 조합 인디케이터에 대한 윈도우 fd 기반의 매핑
WO2023151592A1 (zh) 预编码的确定方法、装置、设备及可读存储介质
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2023151593A1 (zh) 预编码指示方法、装置、通信设备、系统及存储介质
CN115882909A (zh) 预编码方式的指示方法、装置、终端及网络侧设备
WO2023169430A1 (zh) Pusch传输方法、终端及网络侧设备
WO2023143361A1 (zh) 能力信息上报方法、装置及终端
WO2023011352A1 (zh) 下行控制信息指示方法、上行信道传输秩确定方法及装置
WO2024083101A1 (zh) 信息指示方法、装置、终端、网络侧设备及可读存储介质
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2024007918A1 (zh) 预编码矩阵指示、确定方法、装置、网络侧设备及终端
WO2023125420A1 (zh) 参考信号端口指示方法、终端及网络侧设备
WO2023160456A1 (zh) 信道信息上报方法、装置、网络侧设备、终端及介质
WO2023160442A1 (zh) Csi上报方法、信道预测方法、终端和网络侧设备
WO2023241643A1 (zh) 联合传输的pmi参数反馈方法、终端及网络侧设备
WO2023207898A1 (zh) 多trp传输的pmi的反馈方法、设备、终端及网络侧设备
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2024007949A1 (zh) Ai模型处理方法、装置、终端及网络侧设备
US20230087859A1 (en) Method and apparatus for enhanced uplink transmission for 8 tx operation
WO2023179478A1 (zh) 传输模式确定方法、装置、终端及网络侧设备
WO2023051539A1 (zh) 上行预编码信息确定方法、终端及网络侧设备
WO2023185995A1 (zh) 信道特征信息传输方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752372

Country of ref document: EP

Kind code of ref document: A1