WO2022002079A1 - 预编码矩阵确定方法及装置 - Google Patents

预编码矩阵确定方法及装置 Download PDF

Info

Publication number
WO2022002079A1
WO2022002079A1 PCT/CN2021/103275 CN2021103275W WO2022002079A1 WO 2022002079 A1 WO2022002079 A1 WO 2022002079A1 CN 2021103275 W CN2021103275 W CN 2021103275W WO 2022002079 A1 WO2022002079 A1 WO 2022002079A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
codebook set
value
codebook
terminal device
Prior art date
Application number
PCT/CN2021/103275
Other languages
English (en)
French (fr)
Inventor
余健
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21833956.2A priority Critical patent/EP4167497A4/en
Publication of WO2022002079A1 publication Critical patent/WO2022002079A1/zh
Priority to US18/146,519 priority patent/US20230170952A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for determining a precoding matrix.
  • communication can be classified into different types according to different types of transmitting nodes and receiving nodes.
  • sending information from a network device to a terminal device is called downlink (downlink, DL) communication
  • sending information from a terminal device to a network device is called uplink (uplink, UL) communication.
  • uplink transmission can obtain diversity through uplink precoding and multiplexing gain.
  • uplink precoding includes a codebook-based transmission mode and a non-codebook-based transmission mode.
  • the codebook-based transmission mode can be applied to frequency division duplex (FDD) and (time division duplex, TDD) systems, while non-codebook based transmission modes are commonly used in TDD systems.
  • the base station selects an appropriate codebook from a predefined uplink codebook set according to the channel state, and indicates the index of the selected codebook to the terminal through the control channel.
  • the base station selects an appropriate sounding reference signal resource index (SRI) according to the channel state, and indicates the SRI to the terminal through the control channel.
  • SRI sounding reference signal resource index
  • the uplink only supports the transmission mode based on the codebook.
  • the demand for uplink capacity is getting higher and higher.
  • the terminal needs to send back high-definition video to the base station. Therefore, it is necessary to study the scheme to improve the uplink capacity.
  • the embodiments of the present application disclose a method and a device for determining a precoding matrix, which can improve the capacity of uplink communication.
  • an embodiment of the present application provides a method for determining a precoding matrix, the method comprising: a terminal device receiving first precoding indication information from a network device; the terminal device determining the precoding matrix from a first codebook set a first precoding matrix indicated by the first precoding indication information, where the first precoding matrix is used to generate data to be sent by the antenna port of the terminal device; wherein the first codebook set includes the first A precoding matrix, a second precoding matrix and a third precoding matrix; the element at the first position in the first precoding matrix is equal to the value of the exponentiation with the base of the natural constant and the exponent of the first value, and the first The element of the first position in the second precoding matrix is equal to the value of the exponent operation with the base of the natural constant and the exponent of the second value, and the element of the first position in the third precoding matrix is equal to the base of the natural constant and The third value is the value of the exponentiation operation, the first value, the second value and the
  • the first precoding matrix, the second precoding matrix, and the third precoding matrix are matrices of the same size, for example, they are all matrices with 4 rows and 1 column.
  • the first position may be any position, for example, the second row and the first column.
  • the value of exponentiation with the base of a natural constant and the exponent of a pure imaginary number is a pure imaginary number or a complex number.
  • the elements in the currently used precoding matrix include 0, k, -k, jk, -jk, where k is equal constant. It should be understood that none of the currently used precoding matrices includes complex numbers whose real part and imaginary part are not zero.
  • the base of the natural constant is the value of the exponentiation of the first value
  • the base of the natural constant is the second value.
  • the value of the exponentiation whose value is the exponent and the value of the exponentiation whose base is a natural constant and whose third value is the exponent are different complex numbers or imaginary numbers. Since the elements in the precoding matrix in the first codebook set may be complex numbers with non-zero real and imaginary parts, and are not limited to jk and -jk, the first codebook set may include more precoding matrices .
  • the number of precoding matrices in the first codebook set is larger, the codebook precision is higher, and the capacity of uplink communication can be improved.
  • the method further includes: the terminal device determines a phase set according to codebook configuration information, where the phase set includes at least one phase value, and the codebook configuration information is the terminal device preconfigured information or received information from the network device; the terminal device generates the first codebook set according to the phase set; any phase value in the phase set corresponds to the first codebook A precoding matrix in the set.
  • the phase set includes at least one group of phase values, and a group of phase values includes at least one phase value.
  • the phase set is The phase set includes N 1 phase values, where N 1 is an integer greater than 1.
  • the phase set is The codebook configuration information may be codebook configuration information applicable to the terminal device determined by the network device according to capability information of the terminal device, such as the number of antenna ports. The terminal device can generate the first codebook set according to the codebook configuration information, the network device does not need to send the first codebook set, and the codebook configuration information carries fewer parameters and less resource overhead.
  • the codebook configuration information includes phase quantization values N1 and N2; the terminal device determining the phase set according to the codebook configuration information may be: the terminal device determines according to the N1 Determined according to the N2 According to ⁇ and The phase set is determined.
  • the phase set includes different ⁇ and combinations, such as and the combination of 0, and combination, etc.
  • the terminal device generates the first codebook set according to the codebook configuration information from the network device, and the resource overhead is low.
  • a precoding matrix in the first codebook set satisfies:
  • the values of the elements in the precoding matrix are not limited to pure imaginary numbers and real numbers, but may also be complex numbers whose real and imaginary parts are not zero.
  • the number of precoding matrices in the first codebook set is more More, the codebook accuracy is higher.
  • a precoding matrix in the first codebook set satisfies:
  • the first codebook set is the codebook set for the terminal device to transmit 1 stream
  • B D ⁇ exp(j ⁇ ) ⁇
  • p is the number of rows of the precoding matrix
  • q is the number of columns of the precoding matrix
  • both the N 1 and the N 2 are integers greater than 1.
  • the values of the elements in the precoding matrix are not limited to pure imaginary numbers and real numbers, and may also be complex numbers, and the number of precoding matrices in the first codebook set is more.
  • N 1 and N 2 may be configured according to information such as the number of antenna ports of the terminal device, and the number of precoding matrices in the first codebook set may be more than that in the currently used codebook set with 4 antenna ports The number of precoding matrices, so that the accuracy of the first codebook set can be higher than the accuracy of the codebook sets of the other four antenna ports.
  • each precoding matrix in the first codebook set adopted by the terminal device satisfies the above formula, and the codebook precision is high.
  • the first codebook set is a codebook set corresponding to four antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the second codebook set
  • the second codebook set is a codebook set corresponding to two antenna ports
  • any precoding matrix in the second codebook set is a sub-matrix of at least one precoding matrix in the first codebook set.
  • the terminal device can use the codebook set corresponding to 2 antenna ports to quickly determine the codebook set corresponding to 4 antenna ports.
  • a precoding matrix in the first codebook set satisfies:
  • the first codebook set is the codebook set for the terminal device to transmit 1 stream
  • p is the number of rows of the precoding matrix
  • q is the number of columns of the precoding matrix
  • the N 1 , the N 2 , the N 3 , and the N 4 are all integers greater than 1.
  • N 1 , N 2 , N 3 , and N 4 may be configured according to information such as the number of antenna ports of the terminal device, and the number of precoding matrices in the first codebook set may be more than the currently used 8 antennas The number of precoding matrices in the codebook set of the port, so that the accuracy of the first codebook set can be higher than the accuracy of the codebook sets of the other 8-antenna ports.
  • each precoding matrix in the first codebook set adopted by the terminal device satisfies the above formula, and the codebook precision is high.
  • the first codebook set is a codebook set corresponding to 8 antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the third codebook set
  • the third codebook set is a codebook set corresponding to four antenna ports or a codebook set corresponding to an antenna port
  • any precoding matrix in the third codebook set is at least one of the first codebook set Submatrix of the precoding matrix.
  • the terminal device can quickly determine the codebook set corresponding to 8 antenna ports by using the codebook set corresponding to 4 antenna ports.
  • the codebook configuration information includes a phase quantization value
  • the phase quantization value is used to determine the phase set
  • the phase quantization value is positively correlated with the precision of the first codebook set .
  • the precision of the first codebook set is positively related to the number of precoding matrices in the first codebook set. That is to say, the greater the number of precoding matrices in the codebook set, the higher the precision of the codebook set.
  • the codebook configuration information includes phase quantization values N1 and N2; the terminal device may determine according to the N1 Determined according to the N2 According to ⁇ and Determine the phase set; any phase value in the phase set corresponds to a set of ⁇ and value of .
  • has N1 values, There are N2 values, and the number of phase values included in the phase set is the product of N1 and N2.
  • a phase value or a group of phase values in the phase set corresponds to a precoding matrix in the first codebook set. Since the number of phase values included in the phase set is the product of N1 and N2, N1 and/or The larger N2, the higher the precision of the first codebook set.
  • phase quantization values included in the codebook configuration information are different, and the terminal device can obtain codebook sets with different precisions according to the phase quantization values. That is, the network device can configure codebooks with different precisions for the terminal device through the codebook configuration information.
  • the terminal device can generate codebooks with different precisions according to the codebook configuration information, so as to meet its requirements for the precision of the codebook.
  • an embodiment of the present application provides another method for determining a precoding matrix.
  • the method includes: a network device determines, from a first codebook set, a first precoding matrix to be used by a terminal device for uplink transmission; A precoding matrix is used to generate data to be sent by the antenna port of the terminal device, wherein the first codebook set includes the first precoding matrix, the second precoding matrix and the third precoding matrix; the The element at the first position in the first precoding matrix is equal to the value of the exponentiation with the base of the natural constant and the exponent of the first value, and the element at the first position in the second precoding matrix is equal to the natural constant as The base is the value of the exponentiation operation with the second value as the exponent, the element at the first position in the third precoding matrix is equal to the value of the exponentiation operation with the third value as the base and the exponent of the natural constant, and the first value,
  • the second value and the third value are different pure imaginary numbers, and at least one element in the
  • the number of precoding matrices in the first codebook set is larger, the codebook precision is higher, and the capacity of uplink communication can be improved.
  • the method further includes: the network device sends codebook configuration information to the terminal device; the codebook configuration information is used by the terminal device to determine a phase including at least one phase value set, the phase set is used to generate the first codebook set, and any phase value in the phase set corresponds to a precoding matrix in the first codebook set.
  • the network device sends codebook configuration information to the terminal device, so that the terminal device can generate the first codebook set according to the codebook configuration information, with low resource overhead.
  • a precoding matrix in the first codebook set satisfies:
  • the first codebook set is the codebook set for the terminal device to transmit 1 stream
  • B D ⁇ exp(j ⁇ ) ⁇
  • p is the number of rows of the precoding matrix
  • q is the number of columns of the precoding matrix
  • both the N 1 and the N 2 are integers greater than 1.
  • the first codebook set is a codebook set corresponding to four antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the second codebook set
  • the second codebook set is a codebook set corresponding to two antenna ports
  • any precoding matrix in the second codebook set is a sub-matrix of at least one precoding matrix in the first codebook set.
  • a precoding matrix in the first codebook set satisfies:
  • the first codebook set is the codebook set for the terminal device to transmit 1 stream
  • p is the number of rows of the precoding matrix
  • q is the number of columns of the precoding matrix
  • the N 1 , the N 2 , the N 3 , and the N 4 are all integers greater than 1.
  • the first codebook set is a codebook set corresponding to 8 antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the third codebook set
  • the third codebook set is a codebook set corresponding to 4 antenna ports or a codebook set corresponding to 2 antenna ports
  • any precoding matrix in the third codebook set is at least one of the first codebook set.
  • the codebook configuration information includes a phase quantization value
  • the phase quantization value is used to determine the phase set
  • the phase quantization value is positively correlated with the precision of the first codebook set .
  • the network device sends the codebook configuration information including the phase quantization value to the terminal device, so that the terminal device can generate codebooks with different precisions according to the phase quantization value, which can better satisfy the terminal device's requirement for codebook precision. need.
  • an embodiment of the present application provides a codebook generation method, the method includes: a terminal device receives codebook configuration information from a network device; the terminal device determines a phase set according to the codebook configuration information, and the The phase set includes at least one phase value; the terminal device generates the first codebook set according to the phase set; any phase value in the phase set corresponds to a precoding in the first codebook set matrix.
  • the terminal device generates the first codebook set according to the codebook configuration information from the network device, and the resource overhead is low.
  • an embodiment of the present application provides another codebook generation method, the method includes: a network device generates codebook configuration information, where the codebook configuration information is used by a terminal device to determine a phase set including at least one phase value, The phase set is used to generate a first codebook set, and any phase value in the phase set corresponds to a precoding matrix in the first codebook set; the network device sends the code to the terminal device This configuration information.
  • the network device sends the codebook configuration information to the terminal device, so that the terminal device can generate the first codebook set according to the codebook configuration information, with low resource overhead.
  • an embodiment of the present application provides a communication apparatus, the communication apparatus includes: a transceiver unit for receiving first precoding indication information from a network device; a processing unit for determining from a first codebook set a first precoding matrix indicated by the first precoding indication information, where the first precoding matrix is used to generate data to be sent by the antenna port of the terminal device; wherein the first codebook set includes the The first precoding matrix, the second precoding matrix and the third precoding matrix; the element at the first position in the first precoding matrix is equal to the value of the exponentiation with the base of the natural constant and the exponent of the first value, so The element of the first position in the second precoding matrix is equal to the value of the exponentiation operation with the natural constant as the base and the second value as the exponent, and the element of the first position in the third precoding matrix is equal to the natural constant.
  • the base is the value of the exponentiation of the third value, the first value, the second value and the third value are different pure imaginary numbers,
  • the number of precoding matrices in the first codebook set is larger, the codebook precision is higher, and the capacity of uplink communication can be improved.
  • the processing unit is further configured to determine a phase set according to codebook configuration information, where the phase set includes at least one phase value, and the codebook configuration information is preconfigured for the terminal device
  • a precoding matrix in the first codebook set satisfies:
  • the first codebook set is the codebook set for the terminal device to transmit 1 stream
  • B D ⁇ exp(j ⁇ ) ⁇
  • p is the number of rows of the precoding matrix
  • q is the number of columns of the precoding matrix
  • both the N 1 and the N 2 are integers greater than 1.
  • the first codebook set is a codebook set corresponding to four antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the second codebook set
  • the second codebook set is a codebook set corresponding to two antenna ports
  • any precoding matrix in the second codebook set is a sub-matrix of at least one precoding matrix in the first codebook set.
  • a precoding matrix in the first codebook set satisfies:
  • the first codebook set is the codebook set for the terminal device to transmit 1 stream
  • p is the number of rows of the precoding matrix
  • q is the number of columns of the precoding matrix
  • the N 1 , the N 2 , the N 3 , and the N 4 are all integers greater than 1.
  • the first codebook set is a codebook set corresponding to 8 antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the third codebook set
  • the third codebook set is a codebook set corresponding to 4 antenna ports or a codebook set corresponding to 2 antenna ports
  • any precoding matrix in the third codebook set is at least one of the first codebook set.
  • the codebook configuration information includes a phase quantization value
  • the phase quantization value is used to determine the phase set
  • the phase quantization value is positively correlated with the precision of the first codebook set .
  • an embodiment of the present application provides a communication apparatus, the communication apparatus includes: a processing unit configured to determine, from a first codebook set, a first precoding matrix to be used by a terminal device for uplink transmission; the first precoding matrix A precoding matrix is used to generate data to be sent by the antenna port of the terminal device, wherein the first codebook set includes the first precoding matrix, the second precoding matrix and the third precoding matrix; the The element at the first position in the first precoding matrix is equal to the value of the exponentiation with the base of the natural constant and the exponent of the first value, and the element at the first position in the second precoding matrix is equal to the natural constant as The base is the value of the exponentiation operation with the second value as the exponent, the element at the first position in the third precoding matrix is equal to the value of the exponentiation operation with the third value as the base and the exponent of the natural constant, and the first value,
  • the second value and the third value are different pure imaginary numbers, and at least one element in
  • the number of precoding matrices in the first codebook set is larger, the codebook precision is higher, and the capacity of uplink communication can be improved.
  • the transceiver unit is further configured to send codebook configuration information to the terminal device; the codebook configuration information is used by the terminal device to determine a phase set including at least one phase value, The phase set is used to generate the first codebook set, and any phase value in the phase set corresponds to a precoding matrix in the first codebook set.
  • a precoding matrix in the first codebook set satisfies:
  • the first codebook set is the codebook set for the terminal device to transmit 1 stream
  • B D ⁇ exp(j ⁇ ) ⁇
  • p is the number of rows of the precoding matrix
  • q is the number of columns of the precoding matrix
  • both the N 1 and the N 2 are integers greater than 1.
  • the first codebook set is a codebook set corresponding to four antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the second codebook set
  • the second codebook set is a codebook set corresponding to two antenna ports
  • any precoding matrix in the second codebook set is a sub-matrix of at least one precoding matrix in the first codebook set.
  • a precoding matrix in the first codebook set satisfies:
  • the first codebook set is the codebook set for the terminal device to transmit 1 stream
  • p is the number of rows of the precoding matrix
  • q is the number of columns of the precoding matrix
  • the N 1 , the N 2 , the N 3 , and the N 4 are all integers greater than 1.
  • the first codebook set is a codebook set corresponding to 8 antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the third codebook set
  • the third codebook set is a codebook set corresponding to 4 antenna ports or a codebook set corresponding to 2 antenna ports
  • any precoding matrix in the third codebook set is at least one of the first codebook set.
  • the codebook configuration information includes a phase quantization value
  • the phase quantization value is used to determine the phase set
  • the phase quantization value is positively correlated with the precision of the first codebook set .
  • an embodiment of the present application provides a communication device, the communication device includes: a transceiver unit, configured to receive codebook configuration information from a network device; and a processing unit, configured to determine a phase according to the codebook configuration information set, the phase set includes at least one phase value; the first codebook set is generated according to the phase set; any phase value in the phase set corresponds to a precoding matrix in the first codebook set .
  • an embodiment of the present application provides a communication apparatus, the communication apparatus includes: a processing unit configured to generate codebook configuration information, where the codebook configuration information is used by a terminal device to determine a phase set including at least one phase value , the phase set is used to generate a first codebook set, and any phase value in the phase set corresponds to a precoding matrix in the first codebook set; a transceiver unit is used to send the codebook configuration information.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, where the transceiver is used for receiving signals or sending signals; the memory is used for storing computer codes; and the processor is used for executing a computer
  • the code enables the communication apparatus to execute the method shown in the first aspect or any optional implementation manner of the first aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, where the transceiver is used to receive signals or send signals; the memory is used to store computer codes; and the processor is used to execute a computer
  • the code enables the communication apparatus to execute the method shown in the second aspect or any optional implementation manner of the second aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, where the transceiver is used to receive signals or transmit signals; the memory is used to store computer codes; and the processor is used to execute The computer code enables the communication apparatus to perform the method shown in the third aspect or any optional implementation manner of the third aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, where the transceiver is used to receive signals or transmit signals; the memory is used to store computer codes; and the processor is used to execute The computer code enables the communication apparatus to perform the method shown in the fourth aspect or any optional implementation manner of the fourth aspect.
  • the present application provides a communication device, the communication device includes a processing circuit and an interface circuit, the interface circuit is configured to receive first precoding indication information from a network device; the processing circuit is configured to receive the first precoding indication information from the first A first precoding matrix indicated by the first precoding indication information is determined in the codebook set, where the first precoding matrix is used to generate data to be sent by the antenna port of the terminal device; wherein the first code This set includes the first precoding matrix, the second precoding matrix and the third precoding matrix; the element at the first position in the first precoding matrix is equal to the power of the natural constant as the base and the first value as the exponent The value of the operation, the element of the first position in the second precoding matrix is equal to the value of the power operation based on the natural constant and the exponent of the second value, and the element of the first position in the third precoding matrix is equal to the value of the exponentiation of a natural constant as a base and a third value, the first value, the second value and the
  • the present application provides a communication apparatus, the communication apparatus includes a processing circuit and an interface circuit, the processing circuit is configured to determine, from a first codebook set, a first precoding matrix to be used by a terminal device for uplink transmission ;
  • the first precoding matrix is used to generate data to be sent by the antenna port of the terminal device, wherein the first codebook set includes the first precoding matrix, the second precoding matrix and the third precoding matrix coding matrix;
  • the element at the first position in the first precoding matrix is equal to the value of the exponentiation operation with the base of the natural constant and the exponent of the first value, and the element at the first position in the second precoding matrix is equal to Taking the natural constant as the base and the second value as the exponent operation value, the element in the first position in the third precoding matrix is equal to the natural constant as the base and the third value as the exponent operation value, the said The first value, the second value and the third value are different pure imaginary numbers; the interface circuit is configured to send the first precoding indication information
  • the present application provides a communication apparatus, the communication apparatus includes a processing circuit and an interface circuit, the interface circuit is used for receiving codebook configuration information from a network device; the processing circuit is used for receiving codebook configuration information according to the codebook configuration information, determine a phase set, where the phase set includes at least one phase value; generate the first codebook set according to the phase set; any phase value in the phase set corresponds to the first codebook set a precoding matrix of .
  • the present application provides a communication apparatus, the communication apparatus includes a processing circuit and an interface circuit, the processing circuit is configured to generate codebook configuration information, and the codebook configuration information is used by a terminal device to determine that at least one phase includes at least one phase.
  • a phase set of values, the phase set is used to generate a first codebook set, and any phase value in the phase set corresponds to a precoding matrix in the first codebook set; the interface circuit is used to send all The terminal device sends the codebook configuration information.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, which, when running on a computer, enables the first aspect or any optional optional aspect of the first aspect.
  • the methods shown in the implementation are executed.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program, which, when executed on a computer, enables the second aspect or any optional option of the second aspect The methods shown in the implementation are executed.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program, which, when running on a computer, enables the third aspect or any optional option of the third aspect The methods shown in the implementation are executed.
  • the present application provides a computer-readable storage medium for storing a computer program that, when run on a computer, enables the fourth aspect or any optional optional aspect of the fourth aspect.
  • the methods shown in the implementation are executed.
  • the present application provides a computer program product, the computer program product comprising a computer program or computer code, which, when run on a computer, enables the above-mentioned first aspect or any optional implementation manner of the first aspect The method shown is executed.
  • the present application provides a computer program product, the computer program product comprising a computer program or computer code that, when run on a computer, enables the second aspect or any optional implementation manner of the second aspect The method shown is executed.
  • the present application provides a computer program product, the computer program product comprising a computer program or computer code that, when run on a computer, enables the third aspect or any optional implementation manner of the third aspect The method shown is executed.
  • the present application provides a computer program product, the computer program product comprising a computer program or computer code that, when run on a computer, enables the fourth aspect or any optional implementation manner of the fourth aspect The method shown is executed.
  • the present application provides a wireless communication system, where the wireless communication system includes a network device and a terminal device, where the network device is used for the above-mentioned first precoding indication information; or, the network device is used for sending the above-mentioned codebook Configuration information; the terminal device is used to execute the method shown in the first aspect or any possible implementation of the first aspect, or to execute the method shown in the second aspect or any possible implementation of the second aspect.
  • 1 is a schematic diagram of the architecture of a communication system provided by the application.
  • FIG. 2 is an example of a codebook set used by a terminal device to transmit 1 stream according to an embodiment of the present application
  • FIG. 3 is an example of a codebook set used by a terminal device to transmit 2 streams according to an embodiment of the present application
  • FIG. 4 is an example of a codebook set used by a terminal device to transmit 1 stream provided by an embodiment of the present application
  • FIG. 5 is a flowchart of a method for determining a precoding matrix provided by an embodiment of the present application
  • FIG. 6 is an example of a mapping relationship between a TPMI index and a precoding matrix when the number of antenna ports is 2 and the maximum flow is 1, according to an embodiment of the present application;
  • FIG. 7 is an example of a mapping relationship between a TPMI index and a precoding matrix when the number of antenna ports is 2 and the maximum flow is 2, according to an embodiment of the present application;
  • FIGS. 8A and 8B are examples of a mapping relationship between a TPMI index and a precoding matrix when the number of antenna ports is 4 and the maximum stream is 1, according to an embodiment of the present application;
  • FIG. 9 is a flowchart of another precoding determination method provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of a method for generating a codebook according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a circuit system provided by an embodiment of the present application.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (item) means two or three and three
  • “and/or” is used to describe the relationship of related objects, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and both A and B exist three A case where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items. For example, at least one (a) of a, b or c, can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ".
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G 5th generation
  • new radio new radio
  • NR new radio
  • IoT internet of things
  • NB-IoT narrow band internet of things
  • the communication system to which the technical solutions provided in this application are applicable includes at least two entities, one entity (such as a base station) can send downlink data and indication information, and another entity (such as a terminal device) can receive the indication information, and can feedback through the uplink information. It should be understood that the technical solutions provided in this application are applicable to any communication system including the above at least two entities.
  • FIG. 1 is a schematic diagram of the architecture of the communication system provided by the present application.
  • the communication system includes one or more network devices, only one network device is taken as an example in FIG. 1 ; and one or more terminal devices connected to the network device, in FIG. 1 only four terminals are used equipment as an example.
  • the network device may be a device that can communicate with the terminal device.
  • the network device can be any device with wireless transceiver function, the network device can be a base station, an access point, or a transmission reception point (TRP)
  • TRP transmission reception point
  • a device that communicates with a terminal device between multiple sectors (cells), etc., is not limited in this application.
  • the base station may be an evolved base station (evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a next generation base station (gNB) in a 5G network. It can be understood that the base station may also be a base station in a public land mobile network (public land mobile network, PLMN) that evolves in the future, or the like.
  • PLMN public land mobile network
  • the network device may also be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless local area network (wireless fidelity, WiFi) system.
  • a wireless local area network wireless fidelity, WiFi
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • cloud radio access network cloud radio access network, CRAN
  • the base station may include a centralized unit (centralized unit, CU), a distributed unit (distributed unit, DU), and the like.
  • the CU can also be divided into a CU-control plane (CP) and a CU-user plane (UP).
  • the base station may also be an open radio access network (open radio access network, ORAN) architecture, etc. This application does not limit the specific deployment mode of the base station.
  • the terminal equipment may also be referred to as user equipment (user equipment, UE).
  • the terminal device in this application may be a device with a wireless transceiver function, which may communicate with one or more access network devices (or also referred to as access devices) in a radio access network (RAN) with one or more A core network (core network, CN) device (or also referred to as a core device) communicates.
  • the terminal device may send uplink signals to and/or receive downlink signals from the network device.
  • Terminal devices can include mobile phones, cars, tablet computers, smart speakers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of terminal devices), receiving control information and downlink data from network devices, and transmitting uplink data to network devices. .
  • a terminal device may also be referred to as an access terminal, a terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a wireless network device, a user agent, or a user device, etc.
  • terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as planes, balloons, satellites, etc.).
  • the terminal device may be a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, a terminal in the Internet of Things, a terminal in the Internet of Vehicles, a 5G network, and a terminal in any form in the future network, etc. Not limited.
  • the terminal device and the terminal device can also be connected through device to device (device to device, D2D), vehicle-to-everything (V2X), or machine to device.
  • device to device device to device
  • V2X vehicle-to-everything
  • M2M Machine to machine
  • other technologies are used for communication, and this application does not limit the communication method between the terminal device and the terminal device.
  • a network device and any terminal device may be used to execute the method provided by the embodiment of the present application.
  • terminal equipment or network equipment can achieve spatial diversity and spatial multiplexing through precoding at the transmitter. Spatial diversity is conducive to improving the reliability of signal transmission, while spatial multiplexing is conducive to simultaneous transmission of multiple parallel data streams. Whether for spatial diversity or spatial multiplexing, precoding is required to match the channel well.
  • precoding is determined at the base station side. If the base station directly indicates each element in the precoding matrix, the downlink control indicator (Downlink Control Indicator, DCI) overhead will be relatively large. Therefore, the currently adopted solution is to select the precoding matrix from a limited set of codebooks.
  • DCI Downlink Control Indicator
  • a codebook-based uplink transmission scheme is as follows: a terminal device sends a sounding reference signal (SRS) to a network device; the network device determines from a limited set of codebooks that the terminal device performs uplink according to the SRS from the terminal device Transmit the index of the precoding matrix to be used, and send a transmission precoding indicator (transmit precoding matrix indicator, TPMI) indicating the index to the terminal device; the terminal device obtains the precoding matrix indicated by the index from the codebook set according to the TPMI , and use the precoding matrix for uplink transmission.
  • the network device and the terminal device store at least one identical codebook.
  • FIG. 2 is an example of a codebook set (corresponding to 2 antenna ports) used by a terminal device to transmit 1 stream (rank1) according to an embodiment of the present application.
  • TPMI represents the index of the corresponding codebook set (the indexes are sorted in ascending order from left to right), each index corresponds to a precoding matrix in the codebook set, and each precoding matrix is a matrix with 2 rows and 1 column (corresponds to 1 stream).
  • FIG. 3 is an example of a codebook set (corresponding to 2 antenna ports) used by a terminal device to transmit 2 streams (rank2) according to an embodiment of the present application.
  • TPMI represents the index of the corresponding codebook set (the indexes are sorted in ascending order from left to right), each index corresponds to a precoding matrix in the codebook set, and each precoding matrix is a matrix with 2 rows and 2 columns (corresponds to 2 streams).
  • FIG. 4 is an example of a codebook set (corresponding to 4 antenna ports) used by a terminal device to transmit 1 stream according to an embodiment of the present application.
  • TPMI represents the index of the corresponding codebook set (the indexes are sorted in ascending order from small to large), each index corresponds to a precoding matrix in the codebook set, and each precoding matrix is a matrix with 4 rows and 1 column ( corresponds to 1 stream).
  • the elements in the precoding matrix only include 0, 1, -1, j, -j.
  • the number of precoding matrices in these codebook sets (corresponding to the codebook set of 2-antenna ports and the codebook set of 4-antenna ports) is small, and the optional indexes are not enough, so that the accuracy of the codebook set is not high enough, It affects the performance of uplink MIMO transmission and is not conducive to the improvement of uplink capacity.
  • the codebook set used by the terminal device is constant throughout the communication process. That is to say, these codebook sets are fixed and cannot be adjusted according to the actual situation.
  • the base station indicates the precoding matrix to the terminal equipment
  • the base station After the base station determines the precoding matrix to be used by the terminal device for uplink transmission, it needs to send a TPMI indicating the precoding matrix to the terminal device before the terminal device performs uplink data through the physical uplink shared channel (PUSCH). , otherwise the terminal device does not know which precoding matrix should be selected.
  • the base station indicates the TPMI in the DCI.
  • the bit length of the DCI indicating TPMI is related to the uplink MIMO transmission mode, the transmitted stream (Rank) and the number of antenna ports.
  • the high-level parameter txConfig of the terminal device is configured as nonCodebook (configured by radio resource control signaling)
  • the number of transmitting antenna ports of the terminal device is 1, the network device also does not need to indicate TPMI.
  • the txConfig of the terminal device is configured as codebook, the selection of the codebook set is related to the antenna port and the transport stream, and the bit length of the TPMI is positively related to the number of elements of the codebook set.
  • the mathematical formula corresponding to the process of mapping the transmission data to each antenna port by the terminal equipment is:
  • W is the precoding matrix adopted by the terminal equipment; y ( ⁇ -1) (i) is the data before precoding, and v is the layer index; is the data after precoding, corresponding to the data on the antenna port p ⁇ -1.
  • W represents a precoding matrix with a dimension of 2 rows and 1 column. If it is a single-antenna transmission, W defaults to 1, which is equivalent to no precoding.
  • the maximum rank value is configured by maxRank in the radio resource control (Radio Resource Control, RRC) signaling IE PUSCH-Config.
  • RRC Radio Resource Control
  • the codebook set has the problem of low codebook precision, that is, the number of precoding matrices in the codebook set is small. Therefore, it is necessary to study the codebook set with higher precision, so as to improve the uplink capacity by using the codebook set with higher precision.
  • An embodiment of the present application provides a method for determining a precoding matrix, which can improve uplink capacity by using a codebook set with higher precision.
  • FIG. 5 is a flowchart of a method for determining a precoding matrix provided by an embodiment of the present application. The method can be applied to the communication system shown in FIG. 1, and as shown in FIG. 5, the method includes:
  • a terminal device receives first precoding indication information from a network device.
  • the foregoing first precoding indication information is used to indicate the first precoding matrix in the first codebook set.
  • the foregoing first precoding indication information is DCI.
  • the TPMI index carried in the first precoding indication information indicates the first precoding matrix.
  • the terminal device determines, from the first codebook set, the first precoding matrix indicated by the foregoing first precoding indication information.
  • the above-mentioned first precoding matrix is used to generate data to be sent by the antenna port of the above-mentioned terminal device.
  • the above-mentioned first codebook set includes the above-mentioned first precoding matrix, the second precoding matrix and the third precoding matrix; the element at the first position in the above-mentioned first precoding matrix is equal to a natural constant as the base and the first value as an exponent.
  • the foregoing first precoding indication information includes a TPMI index (index), where the TPMI index indicates the first precoding matrix in the first codebook set.
  • the terminal device may store the mapping relationship between the TPMI index and the precoding matrix, and the terminal device may determine the precoding matrix corresponding to any TPMI index according to the mapping relationship.
  • the base of the natural constant is the value of the exponentiation of the exponent
  • the base of the natural constant is the exponent of the second value.
  • the value of the exponentiation of , and the value of the exponentiation with the base of the natural constant and the exponent of the third value are different complex or imaginary numbers.
  • the elements in the precoding matrix in the first codebook set may be complex numbers with non-zero real and imaginary parts, and are not limited to jk and -jk
  • the first codebook set may include more precoding matrices , that is, the codebook accuracy of the first codebook set is higher.
  • the terminal device can simultaneously use two or more codebook sets with different precisions, and the ranges of TPMI indexes corresponding to different codebook sets are different.
  • the number of antenna ports of the terminal device is 4, the terminal device can use the first codebook set and the original codebook set, and the range of the TPMI index corresponding to the precoding matrix in the first codebook set is 0-31, The range of the TPMI index corresponding to the precoding matrix in the original codebook set is 32-59; when the TPMI index indicated by the first precoding indication information is in the range of 0-31, precoding is selected from the first codebook set matrix, when the TPMI index indicated by the first precoding indication information is in the range of 32-59, a precoding matrix is selected from the first codebook set.
  • the number of precoding matrices in the first codebook set is larger, the codebook precision is higher, and the capacity of uplink communication can be improved.
  • the foregoing embodiments only describe some features of the precoding matrix in the first codebook set.
  • the following describes the first codebook set and the precoding in the first codebook set in detail with reference to the example of the first codebook set. Mapping relationship between matrix and TPMI index.
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • This set; B exp(j ⁇ ), p is the number of rows of the precoding matrix, q is the number of columns of the precoding matrix, and N 1 is an integer greater than 1.
  • the value of ⁇ is a phase set, that is Can be understood as a phase set It should be understood, the ⁇ value of a into equation (2) to obtain a pre-coding matrix, comprising a first codebook set the N 1 precoding matrix.
  • Formula (2) can be regarded as a formula for generating the first codebook set.
  • the first codebook set may be obtained by the terminal device by substituting different values of ⁇ into formula (2), that is, a value of ⁇ corresponds to a precoding matrix in the first codebook set.
  • the first codebook comprising the N 1 set of precoding matrices, each precoding matrix satisfy the equation (2).
  • N 1 and/or phase ⁇ need to be indicated.
  • the value of N 1 determines the precision of the codebook. In practical applications, the precision of the codebook can be adjusted by adjusting the size of N 1 according to different application requirements.
  • FIG. 6 is an example of a mapping relationship between a TPMI index and a precoding matrix when the number of antenna ports is 2 and the maximum stream is 1, according to an embodiment of the present application.
  • the 8 precoding matrices in FIG. 6 are the precoding matrices in the first codebook set.
  • the TPMI indices corresponding to the precoding matrices in FIG. 6 are 0-7 in sequence from left to right, that is, each index corresponds to a precoding matrix matrix, e.g.
  • the corresponding TPMI index is 0,
  • the corresponding TPMI index is 7.
  • Table 1 the relationship between the precoding information indicated in the DCI (corresponding to the first precoding indication information) and the TPMI is shown in Table 1.
  • DCI bits indicate precoding information, which bits represent the index in the first column, is the round-up function.
  • the first column in Table 1 represents the precoding information indicated in the DCI (corresponding to the TPMI index), and each row represents the correspondence between the TPMI and the indicated bit value.
  • N 1 to 8 is 3 bits in DCI indicate precoding information.
  • a precoding matrix in the first codebook set satisfies:
  • Represents a precoding matrix in the first codebook set (that is, the number of antenna ports is 2, and the rank is a precoding matrix of 2), and the above-mentioned first codebook set is the codebook for the above-mentioned terminal equipment to transmit 2 streams (Rank is 2) set, B exp(j ⁇ ), p is the number of rows of the precoding matrix, q is the number of columns of the precoding matrix, and N 1 is an integer greater than 1.
  • the first codebook set may be obtained by the terminal device by substituting different values of ⁇ into formula (3), that is, a value of ⁇ corresponds to a precoding matrix in the first codebook set.
  • Formula (3) can be regarded as a formula for generating the first codebook set.
  • the value of ⁇ is When , the precoding matrix included in the first codebook set is: in, represents the kth precoding matrix in the first codebook set.
  • the value of ⁇ is When , the precoding matrix included in the first codebook set is:
  • the first codebook set may only include several of the precoding matrices.
  • the first codebook set may only include the first precoding matrix and the 2nd precoding matrix Because the third precoding matrix only changes the column order compared to the first precoding matrix, the fourth precoding matrix only changes the column order compared to the second precoding matrix.
  • FIG. 7 is an example of a mapping relationship between a TPMI index and a precoding matrix when the number of antenna ports is 2 and the maximum flow is 2, according to an embodiment of the present application.
  • the 8 precoding matrices in FIG. 7 (that is, N 1 is 8) are the precoding matrices in the first codebook set, and the TPMI indexes corresponding to the precoding matrices in FIG. 7 are 0-7 in sequence, that is, each index corresponds to a precoding matrix, e.g.
  • the corresponding TPMI index is 0,
  • the corresponding TPMI index is 7.
  • the relationship between the precoding information indicated in the DCI (corresponding to the first precoding indication information) and the TPMI is shown in Table 2.
  • DCI bits indicate precoding information (corresponding to TPMI), which bits represent the index in the first column, is the round-up function.
  • the first column in Table 2 represents the precoding information indicated in the DCI, and each row represents the correspondence between the TPMI and the indicated bit value.
  • N 1 to 8 is 4, 4 bits in DCI indicate precoding information.
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • the first codebook set may be a combination of ⁇ and The different values of , are obtained by substituting into formula (4), that is, a set of ⁇ and The value of corresponds to a precoding matrix in the first codebook set.
  • Formula (4) can be regarded as a formula for generating the first codebook set.
  • Equation (4) includes ⁇ and Two parameters, the value of ⁇ and All or some combinations of the values of , correspond to a phase set. That is, the phase set includes different ⁇ and combinations, such as and the combination of 0, and combination, etc.
  • the phase set can be Substitute any group of phase values in the phase set into formula (4) to obtain a precoding matrix in the first codebook set. It can be understood that the phase set includes (N 1 ⁇ N 2 ) sets of phase values, and the first codebook set includes (N 1 ⁇ N 2 ) precoding matrices. In practical applications, for the values of N 1 and N 2 , it is necessary to comprehensively consider the impact of codebook accuracy and signaling indication overhead on the communication system.
  • FIG. 8A and FIG. 8B are examples of a mapping relationship between a TPMI index and a precoding matrix when the number of antenna ports is 4 and the maximum stream is 1, according to an embodiment of the present application.
  • the 16 precoding matrices in FIG. 8A and the 16 precoding matrices in FIG. 8B are the precoding matrices in the first codebook set, and the TPMI indexes corresponding to the precoding matrices in FIG. 8A are 0-15 in sequence, and FIG. 8B
  • the TPMI indices corresponding to the precoding matrix in the sequence are 16-31, that is, each TPMI index corresponds to a precoding matrix, for example
  • the corresponding TPMI index is 0,
  • the corresponding TPMI index is 31.
  • the indices corresponding to the (N 1 ⁇ N 2 ) precoding matrices included in the first codebook set are 0, 1, 2, . . . , (N 1 ⁇ N 2 -1).
  • the relationship between the precoding information indicated in the DCI (corresponding to the first precoding indication information) and the TPMI is shown in Table 3.
  • DCI bits indicate precoding information (corresponding to the TPMI index), which bits represent the TPMI index in the first column,
  • (N 1 ⁇ N 2 ) represents the product of N 1 and N 2 .
  • a precoding matrix in the first codebook set satisfies:
  • the first codebook set may be a combination of ⁇ and The different values of , are obtained by substituting into formula (5), that is, a set of ⁇ and The value of corresponds to a precoding matrix in the first codebook set.
  • Formula (5) can be regarded as a formula for generating the first codebook set. Equation (5) includes ⁇ and Two parameters, the value of ⁇ and All or some combinations of the values of , correspond to a phase set. That is, the phase set includes different ⁇ and combinations, such as and the combination of 0, and combination, etc.
  • the first codebook set includes (N 1 ⁇ N 2 ) precoding matrices, and the corresponding indices are 0, 1, 2, . . . , (N 1 ⁇ N 2 -1).
  • TPMI is indicated in DCI, including the TPMI of stream 1 (rank1) and stream 2 (rank2), the number of bits occupied is
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • the first codebook set may be a combination of ⁇ and The different values of , are obtained by substituting into formula (6), that is, a set of ⁇ and The value of corresponds to a precoding matrix in the first codebook set.
  • Formula (6) can be regarded as a formula for generating the first codebook set (corresponding to rank 1).
  • Equation (6) includes ⁇ and Two parameters, the value of ⁇ and All or some combinations of the values of , correspond to a phase set. Substitute any group of phase values in the phase set into formula (6) to obtain a precoding matrix in the first codebook set.
  • the first codebook set includes (N 1 ⁇ N 2 ) precoding matrices, and the corresponding indices are 0, 1, 2, . . . , (N 1 ⁇ N 2 -1).
  • the TPMI is indicated in the DCI, including the TPMI of stream 1 (rank1), stream 2 (rank2), and stream 3 (rank3), the number of bits occupied is
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • the first codebook set may be a combination of ⁇ and The different values of , are obtained by substituting into formula (7), that is, a set of ⁇ and The value of corresponds to a precoding matrix in the first codebook set.
  • Formula (7) can be regarded as a formula for generating the first codebook set (corresponding to rank2).
  • Equation (7) includes ⁇ and Two parameters, the value of ⁇ and All or some combinations of the values of , correspond to a phase set, and any set of phase values in the phase set is substituted into formula (7) to obtain a precoding matrix in the first codebook set.
  • the first codebook set includes (N 1 ⁇ N 2 ) precoding matrices, and the corresponding indices are 0, 1, 2, . . . , (N 1 ⁇ N 2 -1).
  • TPMI is indicated in DCI, including the TPMI of stream 1 (rank1), stream 2 (rank2), stream 3 (rank3), and stream 4 (rank4), the number of bits occupied is
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • the first codebook set may be a combination of ⁇ , The different values of ⁇ and ⁇ are obtained by substituting into formula (8), that is, a set of ⁇ , The values of ⁇ and ⁇ correspond to a precoding matrix in the first codebook set.
  • Formula (8) can be regarded as a formula for generating the first codebook set.
  • Equation (8) includes ⁇ , ⁇ , ⁇ four parameters, the value of ⁇ , All or some combinations of the value of , the value of ⁇ and the value of ⁇ correspond to a phase set, and any set of phase values in the phase set can be substituted into formula (8) to obtain one of the first codebook sets. precoding matrix.
  • the number of precoding matrices in the first codebook set is (N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 ). Because there are too many elements, I will not list them all here.
  • DCI bits indicate precoding information (corresponding to TPMI).
  • the relationship between the precoding information indicated in the DCI and the TPMI is shown in Table 4 below.
  • the first column in Table 4 represents the precoding information indicated in the DCI, and each row represents the correspondence between the TPMI and the indicated bit value.
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • the first codebook set may be a combination of ⁇ , Different values of ⁇ are obtained by substituting into formula (9), that is, a set of ⁇ , The value of ⁇ corresponds to a precoding matrix in the first codebook set.
  • Formula (9) can be regarded as a formula for generating the first codebook set.
  • Formula (9) includes ⁇ , ⁇ three parameters, the value of ⁇ , All or some combinations of the value of , and the value of ⁇ correspond to a phase set. Substitute any group of phase values in the phase set into formula (9) to obtain a precoding matrix in the first codebook set.
  • the main difference between formula (9) and formula (8) is to replace phase ⁇ with phase ⁇ .
  • the codebook configuration information used by the terminal device to generate the first codebook set does not need to additionally indicate phase ⁇ , but only needs to indicate phase ⁇ , ⁇ . Meanwhile, there is no need to indicate the value of N 3.
  • the number of precoding matrices in the first codebook set is (N 1 ⁇ N 2 ⁇ N 4 ).
  • DCI bits indicate precoding information (corresponding to the TPMI index).
  • the mapping relationship between the TPMI index and the precoding matrix when the precoding matrix in the first codebook set satisfies the formula (9) and the TPMI index and the precoding matrix when the precoding matrix in the first codebook set satisfies the formula (8)
  • the mapping relationship is similar.
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • the first codebook set may be a combination of ⁇ , Different values of ⁇ are obtained by substituting into formula (10), that is, a set of ⁇ , The value of ⁇ corresponds to a precoding matrix in the first codebook set.
  • Formula (10) can be regarded as a formula for generating the first codebook set. Equation (10) includes ⁇ , ⁇ three parameters, the value of ⁇ , All or some combinations of the value of , and the value of ⁇ correspond to a phase set.
  • the number of precoding matrices in the first codebook set is (N 1 ⁇ N 2 ⁇ N 4 ).
  • DCI bits indicate precoding information (corresponding to TPMI).
  • the mapping relationship between the TPMI index and the precoding matrix when the precoding matrix in the first codebook set satisfies the formula (10) and the TPMI index and the precoding matrix when the precoding matrix in the first codebook set satisfies the formula (8) The mapping relationship is similar.
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • Formula (11) in, represents a precoding matrix in the first codebook set above, and the meanings of the parameters in formula (11) are the same as those in formula (8).
  • Formula (11) can be regarded as a formula for generating the first codebook set.
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • Formula (12) can be regarded as a formula for generating the first codebook set.
  • the mapping relationship between the TPMI index and the precoding matrix is similar to the mapping relationship between the TPMI index and the precoding matrix when the number of antenna ports is 8 and the maximum stream is 1.
  • the first codebook set includes (N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 ) precoding matrices, and the corresponding indices are 0, 1, 2, ..., ( N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 -1).
  • the TPMI (corresponding to the first precoding indication information) is indicated in the DCI
  • the TPMI of stream 1 (rank1) and stream 2 (rank2) are included, and the number of bits occupied by the TPMI is:
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • each parameter in formula (13) represents a precoding matrix in the first codebook set above,
  • the meaning of each parameter in formula (13) is the same as the meaning of each parameter in formula (8).
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • the mapping relationship between the TPMI index and the precoding matrix is similar to the mapping relationship between the TPMI index and the precoding matrix when the number of antenna ports is 8 and the maximum stream is 1.
  • the first codebook set includes (N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 ) precoding matrices, and the corresponding indices are 0, 1, 2, ..., ( N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 -1).
  • the TPMI (corresponding to the first precoding indication information) is indicated in the DCI, it includes the TPMIs of stream 1 (rank1), stream 2 (rank2), and stream 3 (rank3), and the number of bits occupied by the TPMI is:
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • Formula (15) represents a precoding matrix in the first codebook set above, Corresponding to formula (15), the meaning of each parameter in formula (15) is the same as the meaning of each parameter in formula (8).
  • Formula (15) can be regarded as a formula for generating the first codebook set (corresponding to rank 4).
  • the mapping relationship between the TPMI index and the precoding matrix is similar to the mapping relationship between the TPMI index and the precoding matrix when the number of antenna ports is 8 and the maximum stream is 1.
  • the first codebook set includes (N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 ) precoding matrices, and the corresponding indices are 0, 1, 2, ..., ( N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 -1).
  • the TPMI (corresponding to the first precoding indication information) is indicated in the DCI, it includes the TPMIs of stream 1 (rank1), stream 2 (rank2), stream 3 (rank3), and stream 4 (rank4), and the TPMI occupied by the TPMI
  • the number of bits is
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • each parameter in formula (16) represents a precoding matrix in the first codebook set above,
  • the meaning of each parameter in formula (16) is the same as the meaning of each parameter in formula (8).
  • the mapping relationship between the TPMI index and the precoding matrix is similar to the mapping relationship between the TPMI index and the precoding matrix when the number of antenna ports is 8 and the maximum stream is 1.
  • the first codebook set includes (N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 ) precoding matrices, and the corresponding indices are 0, 1, 2, ..., ( N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 -1).
  • TPMI corresponding to the first precoding indication information
  • it includes stream 1 (rank1), stream 2 (rank2), stream 3 (rank3), stream 4 (rank4), and stream 5 (rank5)
  • TPMI the number of bits occupied by TPMI is
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • equation (17) in addition to the same meaning of each parameter (8) in the meaning of the parameters of the formula A 4 outside.
  • a 4 A 4 the same formula and the formula (16) (17) in the.
  • the mapping relationship between the TPMI index and the precoding matrix is similar to the mapping relationship between the TPMI index and the precoding matrix when the number of antenna ports is 8 and the maximum stream is 1.
  • the first codebook set includes (N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 ) precoding matrices, and the corresponding indices are 0, 1, 2, ..., ( N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 -1).
  • TPMI corresponding to the first precoding indication information
  • it includes stream 1 (rank1), stream 2 (rank2), stream 3 (rank3), stream 4 (rank4), and stream 5 (rank5)
  • TPMI of stream 6 (rank6) the number of bits occupied by TPMI is
  • a precoding matrix in the first codebook set satisfies:
  • the mapping relationship between the TPMI index and the precoding matrix is similar to the mapping relationship between the TPMI index and the precoding matrix when the number of antenna ports is 8 and the maximum stream is 1.
  • the first codebook set includes (N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 ) precoding matrices, and the corresponding indices are 0, 1, 2, ..., ( N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 -1).
  • TPMI corresponding to the first precoding indication information
  • it includes stream 1 (rank1), stream 2 (rank2), stream 3 (rank3), stream 4 (rank4), and stream 5 (rank5)
  • TPMI of stream 6 (rank6) and stream 7 (rank7) the number of bits occupied by TPMI is
  • a precoding matrix in the above-mentioned first codebook set satisfies:
  • a 6 is the same as A 6 in formula (18), and the meaning of each parameter except A 6 in formula (19) is the same as the meaning of each parameter in formula (8) same.
  • the mapping relationship between the TPMI index and the precoding matrix is similar to the mapping relationship between the TPMI index and the precoding matrix when the number of antenna ports is 8 and the maximum stream is 1.
  • the first codebook set includes (N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 ) precoding matrices, and the corresponding indices are 0, 1, 2, ..., ( N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 -1).
  • TPMI corresponding to the first precoding indication information
  • it includes stream 1 (rank1), stream 2 (rank2), stream 3 (rank3), stream 4 (rank4), and stream 5 (rank5)
  • TPMI of stream 6 (rank6), stream 7 (rank7), and stream 8 (rank8) the number of bits occupied by TPMI is
  • FIG. 5 introduces a method for a terminal device to determine a precoding matrix, but does not describe the interaction flow between the network device and the terminal device.
  • the following describes the interaction flow between the network device and the terminal device in the process of determining the precoding matrix by the terminal device with reference to the accompanying drawings.
  • FIG. 9 is a flowchart of another precoding determination method provided by an embodiment of the present application. The method can be applied to the communication system shown in FIG. 1, and as shown in FIG. 9, the method includes:
  • a terminal device sends a sounding reference signal to a network device.
  • the terminal device may perform the following operations: receive codebook configuration information from the network device; determine a phase set according to the codebook configuration information, where the phase set includes at least one phase value; The above-mentioned phase set generates the above-mentioned first codebook set; any phase value in the above-mentioned phase set corresponds to a precoding matrix in the above-mentioned first codebook set.
  • the network device determines, according to the SRS from the terminal device, a first precoding matrix to be used by the terminal device for uplink transmission.
  • the first precoding matrix is a precoding matrix in the first codebook set, and the network device stores the first codebook set.
  • the network device can obtain the uplink channel information of the terminal device according to the SRS from the terminal device, and select the most suitable precoding matrix for the current channel from the first codebook set, and then determine the precoding matrix in the first codebook set.
  • index namely the TPMI index.
  • the network device traverses the precoding matrix corresponding to each TPMI index in the first codebook set to ensure that the selected precoding can maximize the capacity.
  • the power on the mth subcarrier is p k,m
  • the signal-to-interference noise ratio on the mth subcarrier is (Signal to Interference plus Noise Ratio, SINR) is ⁇ k,m
  • the channel matrix on the mth subcarrier of user k is H k,m (that is, the channel matrix from the user to the base station).
  • SINR is defined as:
  • g k,m is the weight coefficient on the base station receiving antenna
  • w k is the precoding matrix of user k
  • I k,m is the inter-cell interference covariance matrix
  • ⁇ 2 is the noise power.
  • is a codebook set
  • M is the total number of sub-carriers
  • f( ⁇ ) is a function.
  • Wideband precoding assuming the same precoding on each subcarrier, and thus w k independent scheduling resource block index.
  • M is the number of subcarriers included in a subband.
  • the precoding matrix w k can be obtained, and then the TPMI can be determined according to the numbering rule of the elements in the codebook set.
  • the network device sends the first precoding indication information to the terminal device.
  • the above-mentioned first precoding indication information is DCI
  • the above-mentioned first precoding indication information is used to indicate the above-mentioned first precoding matrix.
  • the TPMI index carried in the first precoding indication information indicates the first precoding matrix.
  • the terminal device receives the foregoing first precoding indication information.
  • the terminal device determines, from the first codebook set, the first precoding matrix indicated by the foregoing first precoding indication information.
  • step 904 may be the same as that of step 502 .
  • the terminal device applies the first precoding matrix to the data mapping, generates data to be sent on each antenna port, and sends the data through the antenna port.
  • the network device determines the precoding matrix to be used by the terminal device for uplink transmission from the codebook set with high precision, and the terminal device performs uplink transmission through the precoding matrix with high precision, which can improve the uplink capacity.
  • the foregoing describes the method flow of the terminal device using the first codebook set with higher precision to perform uplink transmission.
  • the following describes the method flow of how the terminal device generates the first codebook set.
  • FIG. 10 is a flowchart of a method for generating a codebook according to an embodiment of the present application. The method can be applied to the communication system in FIG. 1, and the method includes:
  • a terminal device receives codebook configuration information from a network device.
  • the above codebook configuration information includes at least one phase quantization value (also referred to as a phase quantization factor).
  • the terminal device may also report the number of antenna ports of the terminal device to the network device, for example, the terminal device reports the number of antenna ports when accessing the network device.
  • the network device can configure the corresponding phase quantization factor according to the number of uplink antenna ports of the terminal device.
  • configuration information of the codebook value for at least N 1 is arranged.
  • the codebook configuration information is at least used to configure the values of N 1 and N 2 .
  • the codebook configuration information is used to configure the values of N 1 , N 2 , N 3 and N 4 .
  • the uplink codebook-based transmission mode is indicated in the RRC signaling PUSCH-Config information element (Information element, IE).
  • a method for indicating the phase quantization value is to add an indication content "phaseQuantizationFactorforCodebook" in PUSCH-Config, as shown below.
  • phaseFactor1 instruction value of N 1 phaseFactor2 indication value of N 2
  • phaseFactor3 instruction value of N 3 phaseFactor4 instruction value of N 4.
  • PUSCH-Config is a UE-specific configuration, that is, each terminal device will configure this parameter.
  • the parameter values of n1, n2, n3, and n4 can be 2, 4, 6, 8, etc. or other values. In actual configuration, only one of these values will be selected. For example, when phaseFactor1 is configured as 4, it means that the value of N 1 is 4, that is, the phase between 0 and 2 ⁇ is divided into 4 equal parts.
  • phaseFactor1 ENUMERATED ⁇ n1,n2,n3,n4 ⁇
  • phaseFactor2 ENUMERATED ⁇ n1,n2,n3,n4 ⁇
  • phaseFactor3 ENUMERATED ⁇ n1,n2,n3,n4 ⁇
  • phaseFactor4 ENUMERATED ⁇ n1,n2,n3,n4 ⁇
  • the terminal device determines a phase set according to the foregoing codebook configuration information.
  • the aforementioned phase set includes at least one phase value.
  • the codebook configuration information includes the phase quantization value N 1
  • a possible implementation manner of step 1002 is as follows: the terminal device determines the phase set according to the phase quantization value N 1 corresponds to
  • the codebook configuration information includes phase quantization values N 1 and N 2
  • a possible implementation manner of step 1002 is as follows: the terminal device determines the phase set according to the phase quantization values N 1 and N 2 corresponds to and The combination.
  • the codebook configuration information includes phase quantization values N 1 , N 2 , N 3 , and N 4 .
  • a possible implementation manner of step 1002 is as follows: the terminal device determines the phase set according to the phase quantization values N 1 , N 2 , N 3 , and N 4 the phase set where ⁇ has N 1 values, There are N 2 values, ⁇ has N 3 values, ⁇ has N 4 values, the phase set has (N 1 ⁇ N 2 ⁇ N 3 ⁇ N 4 ) elements, each element is a set of phases value.
  • the codebook configuration information includes a phase quantization value N 1 .
  • a possible implementation manner of step 1002 is as follows: the terminal device determines the phase set according to the phase quantization value N 1 the phase set where ⁇ has N 1 values, There are N 1 values, ⁇ has N 1 values, ⁇ has N 1 values, the phase set has (N 1 ⁇ N 1 ⁇ N 1 ⁇ N 1 ) elements, each element is a set of phases value.
  • N 1 , N 2 , N 3 , and N 4 all take different values, the quantization of the phase is more complicated.
  • N 1 , N 2 , N 3 , and N 4 can have the same value, that is, all phases adopt the same quantization method.
  • N 1 , N 2 , N 3 , and N 4 are the same value, when the network device is configured through RRC signaling, only one parameter needs to be configured, for example, only N 1 is configured in the codebook configuration information. In this way, the parameters carried by the codebook configuration information can be reduced, and the quantization of the phase can also be simplified.
  • PUSCH-Config information element following example, indicating "phaseQuantizationFactorforCodebook" added phase in the RRC signaling PUSCH-ConfigIE quantization factor; wherein, n1, n2, n4 N3 and the value of N 1, the terminal device can select n1, n2 Any one of , n3 and n4 is used as N 1 .
  • the terminal device generates the first codebook set according to the phase set.
  • Any phase value in the above-mentioned phase set corresponds to a precoding matrix in the above-mentioned first codebook set.
  • the terminal device may generate the first codebook set according to each phase value or each group of phase values in the phase set, that is, one phase value or one group of phase values to generate a precoding matrix.
  • the terminal device may substitute each element in the foregoing phase set (corresponding to a phase value or a group of phase values) into any one of formulas (2) to (17) to generate the first codebook set.
  • the terminal equipment respectively aggregates the phases Each phase value in is substituted into formula (2) to generate the first codebook set.
  • the terminal equipment respectively collects the phases Each phase value in is substituted into formula (2) to generate the first codebook set.
  • the terminal device may also receive codebook configuration update information from the network device, and use the codebook configuration update information to generate a new codebook set; wherein, use the codebook configuration update information to generate a new codebook
  • the implementation of the set may be similar to that in FIG. 10 .
  • N 1 indicated by the codebook configuration information is 8, and N 2 is 4; N 1 indicated by the codebook configuration update information is 8, and N 2 is 6; the precision of the new codebook set is higher. It should be understood that the accuracy of the codebook set is dynamically or semi-statically adjusted by adjusting the codebook configuration information.
  • any precoding matrix in the codebook set corresponding to 2 antenna ports is a submatrix of at least one precoding matrix in the codebook set corresponding to 4 antenna ports.
  • the terminal device may generate a codebook set corresponding to 2 antenna ports according to formula (2), and then determine a codebook set corresponding to 4 antenna ports according to the codebook set corresponding to 2 antenna ports.
  • any precoding matrix in the codebook set corresponding to 4 antenna ports is a submatrix of at least one precoding matrix in the codebook set corresponding to 5 antenna ports.
  • the codebook set corresponding to the 8 antenna ports may be determined according to the codebook set corresponding to the 4 antenna ports.
  • the network device indicates the phase quantization value by sending the codebook configuration information to the terminal device, and the terminal device can dynamically generate codebook sets with different precisions.
  • the network device can also configure different phase quantization values according to the requirements and hardware capabilities of different terminal devices.
  • the terminal device can use a codebook set that matches its hardware capabilities and requirements, which can give full play to its hardware capabilities and improve uplink capacity.
  • the terminal device generates the first codebook set with higher precision according to the codebook configuration information from the network device, and the resource overhead is low.
  • Fig. 5 depicts the method flow of determining the precoding matrix by the terminal device
  • Fig. 10 depicts the method flow of generating the precoding matrix (corresponding to the first codebook set).
  • the terminal device may independently execute the method flow in FIG. 5 and the method flow in FIG. 10 , or may execute the method flow in FIG. 5 after generating the first codebook set by executing the method flow in FIG. 10 .
  • each of the above embodiments has its own emphasis, and for an implementation manner that is not described in detail in one embodiment, reference may be made to other embodiments, which will not be repeated here.
  • each of the embodiments described herein may be independent solutions, or may be combined according to internal logic, and these solutions all fall within the protection scope of the present application.
  • the various embodiments shown above can be combined with each other.
  • the methods of Figures 5 and 10 as shown above may be combined.
  • the related methods shown in FIG. 4 and FIG. 9 may be combined.
  • the methods shown in FIG. 5 and FIG. 9 may also be combined.
  • FIG. 11 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application, where the communication apparatus may be configured to perform operations performed by a terminal device in the foregoing method embodiments.
  • the communication device may be used to perform the method shown in FIG. 5 and/or FIG. 10 .
  • the communication device includes a transceiver unit 1101 and a processing unit 1102 .
  • the processing unit 1102 is configured to determine, from the first codebook set, a first precoding matrix indicated by the above-mentioned first precoding indication information, and the above-mentioned first precoding matrix is used to generate the data to be sent by the antenna port of the above-mentioned terminal device; wherein , the first codebook set includes the first precoding matrix, the second precoding matrix and the third precoding matrix; the element at the first position in the first precoding matrix is equal to the base of the natural constant and the first value
  • the value of the exponentiation operation, the element in the first position in the second precoding matrix is equal to the value of the exponentiation operation based on a natural constant and the second value is the exponent, and the element in the first position in the third precoding matrix It is equal to the value of the exponentiation operation with the natural constant as the base and the third value as the exponent, and the first value, the second value and the third value are different pure imaginary numbers.
  • the transceiver unit 1101 is further configured to receive codebook configuration information from the network device; the processing unit is further configured to determine a phase set according to the codebook configuration information, where the phase set includes at least a phase value; generate the first codebook set according to the phase set; any phase value in the phase set corresponds to a precoding matrix in the first codebook set.
  • the processing unit 1102 may also control the transceiver unit 1101 to receive codebook configuration information.
  • a precoding matrix in the first codebook set above satisfies:
  • the first codebook set is a codebook set corresponding to four antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the second codebook set
  • the second codebook set The codebook set is a codebook set corresponding to two antenna ports
  • any precoding matrix in the second codebook set is a sub-matrix of at least one precoding matrix in the first codebook set.
  • a precoding matrix in the foregoing first codebook set satisfies:
  • the above-mentioned first codebook set is the above-mentioned codebook set for the terminal equipment to transmit 1 stream;
  • B, D, E, F ⁇ exp(j ⁇ ) ⁇ p is the number of rows of the precoding matrix
  • q is the number of columns of the precoding matrix
  • the above N 1 , the above N 2 , the above N 3 , and the above N 4 are all integers greater than 1.
  • the first codebook set is a codebook set corresponding to 8 antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the third codebook set
  • the third codebook set The codebook set is a codebook set corresponding to four antenna ports
  • any precoding matrix in the third codebook set is a sub-matrix of at least one precoding matrix in the first codebook set.
  • the codebook configuration information includes a phase quantization value
  • the phase quantization value is used to determine the phase set
  • the phase quantization value is positively correlated with the precision of the first codebook set.
  • the processing unit 1102 may be one or more processors, the transceiver unit 1101 may be a transceiver, or the transceiver unit 1101 may also be a A sending unit and a receiving unit, the sending unit may be a transmitter, and the receiving unit may be a receiver, and the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processing unit 1102 may be one or more processors, and the transceiver unit 1101 may be an input/output interface, also called a communication interface, or an interface circuit, or an interface and so on.
  • the transceiver unit 1101 may also be a sending unit and a receiving unit, the sending unit may be an output interface, and the receiving unit may be an input interface, the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
  • the communication apparatus in this embodiment of the present application can perform any function performed by the terminal device in the foregoing method embodiment.
  • specific executable steps and/or functions reference may be made to the detailed description in the foregoing method embodiment. Repeat.
  • FIG. 11 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application, and the communication apparatus may be configured to perform the operations performed by the network device in the foregoing method embodiments.
  • the communication apparatus can be used to perform the method performed by the network device in FIG. 9 .
  • the communication device includes a transceiver unit 1101 and a processing unit 1102 . in,
  • the processing unit 1102 is configured to determine, from the first codebook set, a first precoding matrix to be used by the terminal equipment for uplink transmission; the above-mentioned first precoding matrix is used to generate the data to be sent by the antenna port of the above-mentioned terminal equipment, wherein,
  • the above-mentioned first codebook set includes the above-mentioned first precoding matrix, the second precoding matrix and the third precoding matrix; the element at the first position in the above-mentioned first precoding matrix is equal to a natural constant as the base and the first value as an exponent.
  • the above-mentioned first value, the above-mentioned second value and the above-mentioned third value are different pure imaginary numbers;
  • the transceiver unit 1101 is configured to send first precoding indication information to the above-mentioned terminal device; the above-mentioned first precoding indication information indicates the above-mentioned first precoding matrix in the above-mentioned first codebook set.
  • the transceiver unit 1101 is further configured to send codebook configuration information to the above-mentioned terminal equipment; the above-mentioned codebook configuration information is used for the above-mentioned terminal equipment to determine a phase set including at least one phase value, and the above-mentioned phase set uses In generating the first codebook set, any phase value in the phase set corresponds to a precoding matrix in the first codebook set.
  • a precoding matrix in the first codebook set above satisfies:
  • the first codebook set is a codebook set corresponding to four antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the second codebook set
  • the second codebook set The codebook set is a codebook set corresponding to two antenna ports
  • any precoding matrix in the second codebook set is a sub-matrix of at least one precoding matrix in the first codebook set.
  • a precoding matrix in the foregoing first codebook set satisfies:
  • the first codebook set is a codebook set corresponding to 8 antenna ports
  • the first codebook set is a codebook set determined by the terminal device according to the third codebook set
  • the third codebook set The codebook set is a codebook set corresponding to four antenna ports
  • any precoding matrix in the third codebook set is a sub-matrix of at least one precoding matrix in the first codebook set.
  • the codebook configuration information includes a phase quantization value
  • the phase quantization value is used to determine the phase set
  • the phase quantization value is positively correlated with the precision of the first codebook set.
  • the processing unit 1102 may be one or more processors, the transceiver unit 1101 may be a transceiver, or the transceiver unit 1101 may also be a A sending unit and a receiving unit, the sending unit may be a transmitter, and the receiving unit may be a receiver, and the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processing unit 1102 may be one or more processors, and the transceiver unit 1101 may be an input/output interface, also called a communication interface, or an interface circuit, or an interface and the like.
  • the transceiver unit 1101 may also be a sending unit and a receiving unit, the sending unit may be an output interface, and the receiving unit may be an input interface, the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
  • the communication apparatus in this embodiment of the present application may perform any function performed by the network device in the foregoing method embodiment.
  • the communication apparatus may be the terminal device in each of the foregoing method embodiments.
  • the above-mentioned transceiver unit 1101 may be implemented by a transceiver
  • the above-mentioned processing unit 1102 may be implemented by a processor.
  • the communication device 120 includes one or more processors 1220 and a transceiver 1210 .
  • the processor and the transceiver may be used to perform the functions or operations performed by the above-mentioned terminal equipment.
  • the communication apparatus may be the network device in each of the foregoing method embodiments.
  • the above-mentioned transceiver unit 1101 may be implemented by a transceiver
  • the above-mentioned processing unit 1102 may be implemented by a processor.
  • Multiplexing FIG. 12 as shown in FIG. 12 , the communication device 120 includes one or more processors 1220 and a transceiver 1210 .
  • the processor and transceiver may be used to perform the functions or operations performed by the above-mentioned network device, and the like.
  • a transceiver may include a receiver for performing the function (or operation) of receiving and a transmitter for performing the function (or operation) of transmitting ). And transceivers are used to communicate with other devices/devices over the transmission medium.
  • the processor 1220 uses the transceiver 1210 to send and receive data and/or signaling, and is used to implement the corresponding methods described above in FIG. 5 and FIG. 10 in the above method embodiments.
  • the communication device 120 may further include one or more memories 1230 for storing program instructions and/or data.
  • Memory 1230 and processor 1220 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1220 may cooperate with the memory 1230.
  • Processor 1220 may execute program instructions stored in memory 1230 .
  • at least one of the above-mentioned one or more memories may be included in the processor.
  • the specific connection medium between the transceiver 1210, the processor 1220, and the memory 1230 is not limited in the embodiments of the present application.
  • the memory 1230, the processor 1220, and the transceiver 1210 are connected through a bus 1240 in FIG. 12, and the bus is represented by a thick line in FIG. 12.
  • the connection between other components is only for schematic illustration. , is not limited.
  • the above-mentioned bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor, or the like.
  • the terminal device shown in FIG. 12 may also have more components than those shown in FIG. 12 .
  • the terminal device shown in FIG. 12 may also include an antenna, etc. This is not limited.
  • the network device shown in FIG. 12 is a network device
  • the network device may also have more components and the like than those shown in FIG. 12 , which is not limited in this embodiment of the present application.
  • the above-mentioned communication apparatus may be a circuit system in a terminal device.
  • the above-mentioned processing unit 1102 may be implemented by a processing circuit
  • the transceiver unit 1101 may be implemented by an interface circuit.
  • the communication device may include a processing circuit 1302 and an interface circuit 1301 .
  • the processing circuit 1302 may be a chip, a logic circuit, an integrated circuit, a processing circuit or a system on chip (SoC) chip, etc.
  • the interface circuit 1301 may be a communication interface, an input/output interface, and the like.
  • the processing circuit may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., which can realize Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the above-mentioned units is only a logical function division.
  • multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described above as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the above-mentioned integrated units are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the storage medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the foregoing methods in the various embodiments of the present application.
  • the aforementioned readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc. that can store program codes medium.
  • the present application also provides a computer program, where the computer program is used to implement the operations and/or processing performed by the terminal device in the method embodiments provided by the present application.
  • the present application further provides a computer-readable storage medium, where computer codes are stored in the computer-readable storage medium, and when the computer codes are executed on the computer, the computer executes the operations performed by the terminal device in the method embodiments provided by the present application. and/or processing.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program runs on a computer, the operations performed by the terminal device in the method embodiments provided by the present application and the / or processing is implemented.
  • the present application further provides a wireless communication system, where the wireless communication system includes the network device and the terminal device in the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种预编码矩阵确定方法及装置,该方法包括:终端设备接收来自网络设备的第一预编码指示信息;终端设备从第一码本集合中确定第一预编码指示信息指示的第一预编码矩阵;其中,所述第一码本集合包括第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,第二预编码矩阵中第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,第一值、第二值以及第三值为不同的纯虚数,第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数。通过采用精度更高的码本集合,提升上行容量。

Description

预编码矩阵确定方法及装置
本申请要求于2020年6月29日提交中国专利局、申请号为202010605251.8、申请名称为“预编码矩阵确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种预编码矩阵确定方法及装置。
背景技术
在无线通信系统中,按照发送节点和接收节点种类的不同,可以将通信分为不同的类型。通常,将网络设备向终端设备发送信息称为下行(downlink,DL)通信,将终端设备向网络设备发送信息称为上行(uplink,UL)通信。在第四代(fourth generation,4G)和第五代(fifth generation,5G)无线通信系统,即新无线接入技术(new radio access technology,NR)系统中,上行传输可通过上行预编码获取分集和复用增益。在5G系统中,上行预编码包括基于码本的传输模式和基于非码本的传输模式,基于码本的传输模式可以应用于频分双工(frequency division duplex,FDD)和(time division duplex,TDD)系统,而基于非码本的传输模式通常用于TDD系统中。在基于码本的传输模式中,基站从预先定义的上行码本集合中根据信道状态选择合适的码本,并通过控制信道向终端指示所选择码本的索引。在基于非码本的传输模式中,基站根据信道状态选择合适的探测参考信号资源索引(sounding reference signal resource index,SRI),并通过控制信道向终端指示SRI。而在4G系统中,上行仅支持基于码本的传输模式。
随着移动通信的发展以及新兴业务的出现,对上行容量的需求越来越高。例如,对于一些视频监控场景,需要终端回传高清视频到基站。因此需要研究提升上行容量的方案。
发明内容
本申请实施例公开了预编码矩阵确定方法及装置,能够提升上行通信的容量。
第一方面,本申请实施例提供了一种预编码矩阵确定方法,该方法包括:终端设备接收来自网络设备的第一预编码指示信息;所述终端设备从第一码本集合中确定所述第一预编码指示信息指示的第一预编码矩阵,所述第一预编码矩阵用于生成所述终端设备的天线端口待发送的数据;其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数,所述第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数。
所述第一预编码矩阵、所述第二预编码矩阵以及所述第三预编码矩阵为大小相同的矩阵,例如均为4行1列的矩阵。所述第一位置可以是任意位置,例如第2行第1列。以自 然常数为底以纯虚数为指数的幂运算的值为纯虚数或者复数。例如,
Figure PCTCN2021103275-appb-000001
Figure PCTCN2021103275-appb-000002
当前采用的预编码矩阵中的元素包括0、k、-k、jk、-jk,其中,k为
Figure PCTCN2021103275-appb-000003
等常数。应理解,当前已采用的预编码矩阵中均不包括实部和虚部均不为零的复数。由于所述第一值、所述第二值以及所述第三值为不同的纯虚数,因此以自然常数为底以第一值为指数的幂运算的值、以自然常数为底以第二值为指数的幂运算的值以及以自然常数为底以第三值为指数的幂运算的值为不同的复数或者虚数。由于第一码本集合中的预编码矩阵中的元素可以为实部和虚部均不为零的复数,并不限于jk和-jk,因此第一码本集合可以包括更多的预编码矩阵。
本申请实施例中,第一码本集合中的预编码矩阵的数量更多,码本精度更高,能够提高上行通信的容量。
在一个可选的实现方式中,所述方法还包括:所述终端设备根据码本配置信息,确定相位集合,所述相位集合包括至少一个相位值,所述码本配置信息为所述终端设备预先配置的信息或者接收的来自所述网络设备的信息;所述终端设备根据所述相位集合,生成所述第一码本集合;所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
可选的,所述相位集合包括至少一组相位值,一组相位值至少包括一个相位值。举例来说,相位集合为
Figure PCTCN2021103275-appb-000004
相位集合包括N 1个相位值,N 1为大于1的整数。又举例来说,相位集合为
Figure PCTCN2021103275-appb-000005
Figure PCTCN2021103275-appb-000006
所述码本配置信息可以是所述网络设备根据所述终端设备的能力信息,例如天线端口数量,确定的适用于所述终端设备的码本配置信息。终端设备根据所述码本配置信息就能生成第一码本集合,网络设备不用发送第一码本集合,所述码本配置信息携带的参数较少,资源开销少。示例性的,所述码本配置信息包括相位量化值N1和N2;所述终端设备根据所述码本配置信息,确定相位集合可以是:所述终端设备根据所述N1确定
Figure PCTCN2021103275-appb-000007
根据所述N2确定
Figure PCTCN2021103275-appb-000008
根据θ和
Figure PCTCN2021103275-appb-000009
确定所述相位集合。在该示例中,相位集合包括不同θ和
Figure PCTCN2021103275-appb-000010
的组合,例如
Figure PCTCN2021103275-appb-000011
和0的组合、
Figure PCTCN2021103275-appb-000012
Figure PCTCN2021103275-appb-000013
的组合等。
在该实现方式中,终端设备根据来自网络设备的码本配置信息,生成第一码本集合,资源开销少。
在一个可选的实现方式中,所述终端设备的天线端口数量为2时,所述第一码本集合 中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000014
其中,
Figure PCTCN2021103275-appb-000015
表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合为所述终端设备传输1流(Rank为1)的码本集合;B=exp(jθ),
Figure PCTCN2021103275-appb-000016
p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1为大于1的整数。其中,p和q均为不小于1的整数。
在该实现方式中,预编码矩阵中的元素的取值不限于纯虚数和实数,还可以是实部和虚部均不为零的复数,第一码本集合中预编码矩阵的个数更多,码本精度更高。
在一个可选的实现方式中,所述终端设备的天线端口数量为4时,所述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000017
其中,
Figure PCTCN2021103275-appb-000018
表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合为所述终端设备传输1流的码本集合;B,D∈{exp(jθ)},
Figure PCTCN2021103275-appb-000019
Figure PCTCN2021103275-appb-000020
p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1和所述N 2均为大于1的整数。预编码矩阵中的元素的取值不限于纯虚数和实数,还可以是复数,第一码本集合中预编码矩阵的个数更多。在实际应用中,N 1和N 2可以是根据终端设备的天线端口数量等信息配置的,第一码本集合中的预编码矩阵的数量可以多于当前采用的4天线端口的码本集合中预编码矩阵的数量,这样该第一码本集合的精度就能高于其他4天线端口的码本集合的精度。
在该实现方式中,终端设备采用的第一码本集合中每个预编码矩阵均满足上述公式,码本精度较高。
在一个可选的实现方式中,所述第一码本集合为4天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第二码本集合确定的码本集合,所述第二码本集合为2天线端口对应的码本集合,所述第二码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
在该实现方式中,终端设备可利用2天线端口对应的码本集合快速地确定4天线端口对应的码本集合。
在一个可选的实现方式中,所述终端设备的天线端口数量为8时,所述第一码本集合 中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000021
其中,
Figure PCTCN2021103275-appb-000022
表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合为所述终端设备传输1流的码本集合;B,D,E,F∈{exp(jθ)},
Figure PCTCN2021103275-appb-000023
Figure PCTCN2021103275-appb-000024
p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1、所述N 2、所述N 3、所述N 4均为大于1的整数。在实际应用中,N 1、N 2、N 3、N 4可以是根据终端设备的天线端口数量等信息配置的,第一码本集合中的预编码矩阵的数量可以多于当前采用的8天线端口的码本集合中预编码矩阵的数量,这样该第一码本集合的精度就能高于其他8天线端口的码本集合的精度。
在该实现方式中,终端设备采用的第一码本集合中每个预编码矩阵均满足上述公式,码本精度较高。
在一个可选的实现方式中,所述第一码本集合为8天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第三码本集合确定的码本集合,所述第三码本集合为4天线端口对应的码本集合或天线端口对应的码本集合,所述第三码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
在该实现方式中,终端设备可利用4天线端口对应的码本集合快速地确定8天线端口对应的码本集合。
在一个可选的实现方式中,所述码本配置信息包括相位量化值,所述相位量化值用于确定所述相位集合,所述相位量化值与所述第一码本集合的精度正相关。所述第一码本集合的精度与所述第一码本集合中的预编码矩阵的个数正相关。也就是说,码本集合中的预编码矩阵的个数越多,码本集合的精度越高。
示例性的,所述码本配置信息包括相位量化值N1和N2;所述终端设备可根据所述N1确定
Figure PCTCN2021103275-appb-000025
根据所述N2确定
Figure PCTCN2021103275-appb-000026
根据θ和
Figure PCTCN2021103275-appb-000027
确定所述相位集合;所述相位集合中任一相位值对应一组θ和
Figure PCTCN2021103275-appb-000028
的取值。其中,θ有 N1个取值,
Figure PCTCN2021103275-appb-000029
有N2个取值,所述相位集合包括的相位值的个数为N1和N2的乘积。应理解,相位集合中一个相位值或者一组相位值对应于第一码本集合中的一个预编码矩阵,由于相位集合包括的相位值的个数为N1和N2的乘积,因此N1和/或N2越大,第一码本集合的精度越高。应理解,码本配置信息包括的相位量化值不同,终端设备根据该相位量化值可得到不同精度的码本集合。也就是说,网络设备通过码本配置信息可为终端设备配置不同精度的码本。
在该实现方式中,终端设备可根据码本配置信息生成不同精度的码本,以便满足其对码本精度的需求。
第二方面,本申请实施例提供了另一种预编码矩阵确定方法,该方法包括:网络设备从第一码本集合中确定终端设备进行上行传输待采用的第一预编码矩阵;所述第一预编码矩阵用于生成所述终端设备的天线端口待发送的数据,其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数,所述第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数;所述网络设备向所述终端设备发送第一预编码指示信息;所述第一预编码指示信息指示所述第一码本集合中的所述第一预编码矩阵。
本申请实施例中,第一码本集合中的预编码矩阵的数量更多,码本精度更高,能够提高上行通信的容量。
在一个可选的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送码本配置信息;所述码本配置信息用于所述终端设备确定包括至少一个相位值的相位集合,所述相位集合用于生成所述第一码本集合,所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
在该实现方式中,网络设备向终端设备发送码本配置信息,以便于该终端设备根据该码本配置信息,生成第一码本集合,资源开销少。
在一个可选的实现方式中,所述终端设备的天线端口数量为4时,所述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000030
其中,
Figure PCTCN2021103275-appb-000031
表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合为所述终端设备传输1流的码本集合;B,D∈{exp(jθ)},
Figure PCTCN2021103275-appb-000032
Figure PCTCN2021103275-appb-000033
p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1和所述N 2均为大于1的整数。
在一个可选的实现方式中,所述第一码本集合为4天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第二码本集合确定的码本集合,所述第二码本集合为2天线端口对应的码本集合,所述第二码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,所述终端设备的天线端口数量为8时,所述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000034
其中,
Figure PCTCN2021103275-appb-000035
表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合为所述终端设备传输1流的码本集合;B,D,E,F∈{exp(jθ)},
Figure PCTCN2021103275-appb-000036
Figure PCTCN2021103275-appb-000037
p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1、所述N 2、所述N 3、所述N 4均为大于1的整数。
在一个可选的实现方式中,所述第一码本集合为8天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第三码本集合确定的码本集合,所述第三码本集合为4天线端口对应的码本集合或2天线端口对应的码本集合,所述第三码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,所述码本配置信息包括相位量化值,所述相位量化值用于确定所述相位集合,所述相位量化值与所述第一码本集合的精度正相关。
在该实现方式中,网络设备向终端设备发送包括相位量化值的码本配置信息,以便于该终端设备根据相位量化值生成不同精度的码本,能够更好地满足终端设备对码本精度的需求。
第三方面,本申请实施例提供了一种码本生成方法,该方法包括:终端设备接收来自网络设备的码本配置信息;所述终端设备根据所述码本配置信息,确定相位集合,所述相 位集合包括至少一个相位值;所述终端设备根据所述相位集合,生成所述第一码本集合;所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
本申请实施例中,终端设备根据来自网络设备的码本配置信息,生成第一码本集合,资源开销少。
第四方面,本申请实施例提供了另一种码本生成方法,该方法包括:网络设备生成码本配置信息,所述码本配置信息用于终端设备确定包括至少一个相位值的相位集合,所述相位集合用于生成第一码本集合,所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵;所述网络设备向所述终端设备发送所述码本配置信息。
本申请实施例中,网络设备向终端设备发送码本配置信息,以便于该终端设备根据该码本配置信息,生成第一码本集合,资源开销少。
第五方面,本申请实施例提供了一种通信装置,该通信装置包括:收发单元,用于接收来自网络设备的第一预编码指示信息;处理单元,用于从第一码本集合中确定所述第一预编码指示信息指示的第一预编码矩阵,所述第一预编码矩阵用于生成所述终端设备的天线端口待发送的数据;其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数,所述第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数。
本申请实施例中,第一码本集合中的预编码矩阵的数量更多,码本精度更高,能够提高上行通信的容量。
在一个可选的实现方式中,所述处理单元,还用于根据码本配置信息,确定相位集合,所述相位集合包括至少一个相位值,所述码本配置信息为所述终端设备预先配置的信息或者接收的来自所述网络设备的信息;根据所述相位集合,生成所述第一码本集合;所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
在一个可选的实现方式中,天线端口数量为4时,所述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000038
其中,
Figure PCTCN2021103275-appb-000039
表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合为所述终端设备传输1流的码本集合;B,D∈{exp(jθ)},
Figure PCTCN2021103275-appb-000040
Figure PCTCN2021103275-appb-000041
p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1和所述N 2均为大于1的整数。
在一个可选的实现方式中,所述第一码本集合为4天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第二码本集合确定的码本集合,所述第二码本集合为2天线端口对应的码本集合,所述第二码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,天线端口数量为8时,所述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000042
其中,
Figure PCTCN2021103275-appb-000043
表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合为所述终端设备传输1流的码本集合;B,D,E,F∈{exp(jθ)},
Figure PCTCN2021103275-appb-000044
Figure PCTCN2021103275-appb-000045
p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1、所述N 2、所述N 3、所述N 4均为大于1的整数。
在一个可选的实现方式中,所述第一码本集合为8天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第三码本集合确定的码本集合,所述第三码本集合为4天线端口对应的码本集合或2天线端口对应的码本集合,所述第三码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,所述码本配置信息包括相位量化值,所述相位量化值用于确定所述相位集合,所述相位量化值与所述第一码本集合的精度正相关。
关于第五方面或各种可选的实现方式所带来的技术效果,可参考对于第一方面或相应的实现方式的技术效果的介绍。
第六方面,本申请实施例提供了一种通信装置,该通信装置包括:处理单元,用于从第一码本集合中确定终端设备进行上行传输待采用的第一预编码矩阵;所述第一预编码矩阵用于生成所述终端设备的天线端口待发送的数据,其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一 位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数,所述第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数;收发单元,用于向所述终端设备发送第一预编码指示信息;所述第一预编码指示信息指示所述第一码本集合中的所述第一预编码矩阵。
本申请实施例中,第一码本集合中的预编码矩阵的数量更多,码本精度更高,能够提高上行通信的容量。
在一个可选的实现方式中,所述收发单元,还用于向所述终端设备发送码本配置信息;所述码本配置信息用于所述终端设备确定包括至少一个相位值的相位集合,所述相位集合用于生成所述第一码本集合,所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
在一个可选的实现方式中,天线端口数量为4时,所述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000046
其中,
Figure PCTCN2021103275-appb-000047
表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合为所述终端设备传输1流的码本集合;B,D∈{exp(jθ)},
Figure PCTCN2021103275-appb-000048
Figure PCTCN2021103275-appb-000049
p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1和所述N 2均为大于1的整数。
在一个可选的实现方式中,所述第一码本集合为4天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第二码本集合确定的码本集合,所述第二码本集合为2天线端口对应的码本集合,所述第二码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,天线端口数量为8时,所述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000050
其中,
Figure PCTCN2021103275-appb-000051
表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合为所述终端设备传输1流的码本集合;B,D,E,F∈{exp(jθ)},
Figure PCTCN2021103275-appb-000052
Figure PCTCN2021103275-appb-000053
p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1、所述N 2、所述N 3、所述N 4均为大于1的整数。
在一个可选的实现方式中,所述第一码本集合为8天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第三码本集合确定的码本集合,所述第三码本集合为4天线端口对应的码本集合或2天线端口对应的码本集合,所述第三码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,所述码本配置信息包括相位量化值,所述相位量化值用于确定所述相位集合,所述相位量化值与所述第一码本集合的精度正相关。
关于第六方面或各种可选的实现方式所带来的技术效果,可参考对于第二方面或相应的实现方式的技术效果的介绍。
第七方面,本申请实施例提供了一种通信装置,该通信装置包括:收发单元,用于接收来自网络设备的码本配置信息;处理单元,用于根据所述码本配置信息,确定相位集合,所述相位集合包括至少一个相位值;根据所述相位集合,生成所述第一码本集合;所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
第八方面,本申请实施例提供了一种通信装置,该通信装置包括:处理单元,用于生成码本配置信息,所述码本配置信息用于终端设备确定包括至少一个相位值的相位集合,所述相位集合用于生成第一码本集合,所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵;收发单元,用于向所述终端设备发送所述码本配置信息。
第九方面,本申请提供一种通信装置,该通信装置包括处理器、存储器和收发器,收发器,用于接收信号或者发送信号;存储器,用于存储计算机代码;处理器,用于执行计算机代码,使通信装置执行上述第一方面或第一方面的任意可选的实现方式所示的方法。
第十方面,本申请提供一种通信装置,该通信装置包括处理器、存储器和收发器,收发器,用于接收信号或者发送信号;存储器,用于存储计算机代码;处理器,用于执行计算机代码,使通信装置执行上述第二方面或第二方面的任意可选的实现方式所示的方法。
第十一方面,本申请提供一种通信装置,该通信装置包括处理器、存储器和收发器,收发器,用于接收信号或者发送信号;存储器,用于存储计算机代码;处理器,用于执行计算机代码,使通信装置执行上述第三方面或第三方面的任意可选的实现方式所示的方法。
第十二方面,本申请提供一种通信装置,该通信装置包括处理器、存储器和收发器,收发器,用于接收信号或者发送信号;存储器,用于存储计算机代码;处理器,用于执行计算机代码,使通信装置执行上述第四方面或第四方面的任意可选的实现方式所示的方法。
第十三方面,本申请提供一种通信装置,该通信装置包括处理电路和接口电路,该接口电路,用于接收来自网络设备的第一预编码指示信息;该处理电路,用于从第一码本集 合中确定所述第一预编码指示信息指示的第一预编码矩阵,所述第一预编码矩阵用于生成所述终端设备的天线端口待发送的数据;其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数。
第十四方面,本申请提供一种通信装置,该通信装置包括处理电路和接口电路,该处理电路,用于从第一码本集合中确定终端设备进行上行传输待采用的第一预编码矩阵;所述第一预编码矩阵用于生成所述终端设备的天线端口待发送的数据,其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数;该接口电路,用于在该处理电路的控制下向所述终端设备发送第一预编码指示信息;所述第一预编码指示信息指示所述第一码本集合中的所述第一预编码矩阵。
第十五方面,本申请提供一种通信装置,该通信装置包括处理电路和接口电路,该接口电路,用于接收来自网络设备的码本配置信息;该处理电路,用于根据所述码本配置信息,确定相位集合,所述相位集合包括至少一个相位值;根据所述相位集合,生成所述第一码本集合;所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
第十六方面,本申请提供一种通信装置,该通信装置包括处理电路和接口电路,该处理电路,用于生成码本配置信息,所述码本配置信息用于终端设备确定包括至少一个相位值的相位集合,所述相位集合用于生成第一码本集合,所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵;该接口电路,用于向所述终端设备发送所述码本配置信息。
第十七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可选的实现方式所示的方法被执行。
第十八方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可选的实现方式所示的方法被执行。
第十九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第三方面或第三方面的任意可选的实现方式所示的方法被执行。
第二十方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第四方面或第四方面的任意可选的实现方式所示的方法被执行。
第二十一方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可选的实现方式所示的方法被执行。
第二十二方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面或第二方面的任意可选的实现方式所示的方法被执行。
第二十三方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第三方面或第三方面的任意可选的实现方式所示的方法被执行。
第二十四方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第四方面或第四方面的任意可选的实现方式所示的方法被执行。
第二十五方面,本申请提供一种无线通信系统,该无线通信系统包括网络设备和终端设备,该网络设备用于上述第一预编码指示信息;或者,该网络设备用于发送上述码本配置信息;终端设备用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,或者用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请提供的通信系统的架构示意图;
图2为本申请实施例提供的终端设备传输1流采用的码本集合的示例;
图3为本申请实施例提供的终端设备传输2流采用的码本集合的示例;
图4为本申请实施例提供的终端设备传输1流采用的码本集合的示例;
图5是本申请实施例提供的一种预编码矩阵确定方法流程图;
图6为本申请实施例提供的一种天线端口数量为2且最大流为1时TPMI索引与预编码矩阵的映射关系的示例;
图7为本申请实施例提供的一种天线端口数量为2且最大流为2时TPMI索引与预编码矩阵的映射关系的示例;
图8A和图8B为本申请实施例提供的一种天线端口数量为4且最大流为1时TPMI索引与预编码矩阵的映射关系的示例;
图9为本申请实施例提供的另一种预编码确定方法流程图;
图10为本申请实施例提供的一种码本生成方法流程图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的一种通信装置的结构示意图;
图13是本申请实施例提供的一种电路系统的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
以下将详细介绍本申请涉及的网络架构。
本申请提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统或新无线(new radio,NR)以及未来的其他通信系统如6G等。可选的,本申请所提供的技术方案还可以应用于物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统等。本申请所提供的技术方案适用的通信系统包括至少两个实体,一个实体(例如基站)能够发送下行数据以及指示信息,另一个实体(例如终端设备)能够接收该指示信息,并能通过上行反馈信息。应理解,本申请所提供的技术方案适用于任何包括上述至少两个实体的通信系统。
参见图1,图1是本申请提供的通信系统的架构示意图。如图1所示,该通信系统包括一个或多个网络设备,图1中仅以一个网络设备为例;以及与该网络设备连接的一个或多个终端设备,图1中仅以四个终端设备为例。
其中,网络设备可以是能和终端设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备,该网络设备可以是基站、接入点或传输接收点(transmission reception point,TRP)或者可以是接入网中,在空中接口上通过一个或多个扇区(cell)与终端设备通信的设备等,本申请对此不作限定。例如,基站可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的下一代基站(next generation, gNB)等。可理解,该基站还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站等。
可选的,该网络设备还可以是无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。
可选的,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。
为便于描述,下文将以基站为例来说明本申请所涉及的网络设备等。可选的,在基站的一些部署中,基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)等。在基站的另一些部署中,CU还可以划分为CU-控制面(control plane,CP)和CU-用户面(user plan,UP)等。在基站的另一些部署中,基站还可以是开放的无线接入网(openradioaccessnetwork,ORAN)架构等,本申请对于基站的具体部署方式不作限定。
其中,终端设备也可以称为用户设备(user equipment,UE)。本申请中的终端设备可以是一种具有无线收发功能的设备,可以经无线接入网(radioaccess network,RAN)中的接入网设备(或者也可以称为接入设备)与一个或多个核心网(core network,CN)设备(或者也可以称为核心设备)进行通信。终端设备可向网络设备发送上行信号和/或从网络设备接收下行信号。终端设备可以包括手机、车、平板电脑以及智能音箱、火车探测器、加油站等,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并向网络设备传输上行数据。可选的,终端设备也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置等。可选的,终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。可选的,终端设备可以是具有无线通信功能的手持设备、车载设备、可穿戴设备或物联网、车联网中的终端、5G网络以及未来网络中的任意形态的终端等,本申请对此并不限定。
可选的,图1所示的通信系统中,终端设备与终端设备之间还可以通过设备到设备(device to device,D2D)、车与任何事物(vehicle-to-everything,V2X)或机器到机器(machine to machine,M2M)等技术进行通信,本申请对于终端设备与终端设备之间的通信方法不作限定。
图1所示的通信系统中,网络设备与任一终端设备可用于执行本申请实施例所提供的方法。
以下将详细介绍本申请涉及的一些背景。
基于码本的上行传输方案
在多输入多输出(multiple input multiple output,MIMO)传输中,终端设备或网络设备通过发送端预编码可以实现空间分集和空间复用。空间分集有利于信号传输的可靠性的提高,而空间复用有利于同时传输多个并行的数据流。无论是对于空间分集还是空间复用,都需要预编码才能很好地匹配信道。在上行基于码本的传输中,预编码的确定是在基站侧完成。如果基站直接指示预编码矩阵里的每个元素,则下行控制指示(Downlink Control Indicator,DCI)开销会比较大。因此,当前采用的方案是在一个有限的码本集合里来选择 预编码矩阵。一种基于码本的上行传输方案如下:终端设备向网络设备发送探测参考信号(sounding reference signal,SRS);网络设备根据来自终端设备的SRS,从一个有限的码本集合中确定终端设备进行上行传输待采用的预编码矩阵的索引,并向终端设备发送指示该索引的传输预编码指示(transmit precoding matrix indicator,TPMI);终端设备根据该TPMI从码本集合中获取该索引指示的预编码矩阵,并使用该预编码矩阵进行上行传输。在该方案中,网络设备和终端设备存储有至少一个相同的码本。下面介绍一些码本集合。
码本集合
图2为本申请实施例提供的终端设备传输1流(rank1)采用的码本集合(对应于2天线端口)的示例。图2中,TPMI表示对应码本集合的索引(索引按从左到右升序排序),每个索引对应码本集合中的一个预编码矩阵,每个预编码矩阵为一个2行1列的矩阵(对应于1流)。图3为本申请实施例提供的终端设备传输2流(rank2)采用的码本集合(对应于2天线端口)的示例。图3中,TPMI表示对应码本集合的索引(索引按从左到右升序排序),每个索引对应码本集合中的一个预编码矩阵,每个预编码矩阵为一个2行2列的矩阵(对应于2流)。
图4为本申请实施例提供的终端设备传输1流采用的码本集合(对应于4天线端口)的示例。图4中,TPMI表示对应码本集合的索引(索引按从小到大升序排序),每个索引对应码本集合中的一个预编码矩阵,每个预编码矩阵为一个4行1列的矩阵(对应于1流)。
从图2至图4可以看出,预编码矩阵中的元素仅包括0、1、-1、j、-j。这些码本集合(对应于2天线端口的码本集合和4天线端口的码本集合)中预编码矩阵的个数较少,可选的索引不够多,这样导致码本集合的精度不够高,影响上行MIMO传输的性能,不利于上行容量的提升。另外,在终端设备的天线端口的数量不变的情况下,在整个通信过程中,终端设备采用的码本集合都是不变的。也就是说,这些码本集合是固定不变的,不能根据实际情况进行调整。
基站向终端设备指示预编码矩阵
当基站确定终端设备进行上行传输待采用的预编码矩阵后,需要在该终端设备通过物理上行共享信道(physical uplink shared channel,PUSCH)进行上行数据之前向该终端设备发送指示该预编码矩阵的TPMI,否则该终端设备不知道应该选择哪一个预编码矩阵。在一些可能的方案中,基站在DCI中指示TPMI。DCI指示TPMI的比特长度与上行MIMO传输模式、传输的流(Rank)以及天线端口数相关。例如,终端设备的高层参数txConfig配置为nonCodebook(由无线资源控制信令配置)时,则表示终端设备采用非码本的传输模式,不需要指示TPMI,此时比特长度为0。当终端设备的发送天线端口数为1时,网络设备也不需要指示TPMI。当终端设备的txConfig配置为codebook时,码本集合的选择与天线端口,传输流相关,TPMI的比特长度与码本集合的元素个数正相关。
数据映射
当终端设备收到基站指示的预编码矩阵后,终端设备将传输数据映射到每个天线端口上的过程对应的数学公式为:
Figure PCTCN2021103275-appb-000054
其中,W为终端设备采用的预编码矩阵;y (υ-1)(i)为预编码之前的数据,v为层索引;
Figure PCTCN2021103275-appb-000055
为经过预编码之后的数据,对应天线端口p ρ-1上的数据。例如,对于两天线端口的单流(Rank为1)传输,
Figure PCTCN2021103275-appb-000056
其中W表示维度为2行1列的预编码矩阵。如果是单天线传输,则W默认为1,相当于不做预编码。
最大流(rank)值的配置
最大rank值通过无线资源控制(Radio Resource Control,RRC)信令IE PUSCH-Config中的maxRank配置。
从上可以看出,码本集合存在码本精度较低的问题,即码本集合中预编码矩阵的个数较少。因此需要研究精度更高的码本集合,以便于通过采用精度更高的码本集合来提升上行容量。本申请实施例提供一种预编码矩阵确定方法,通过采用精度更高的码本集合,能够提升上行容量。
参见图5,图5是本申请实施例提供的一种预编码矩阵确定方法流程图。该方法可应用于图1所示的通信系统,如图5所示,该方法包括:
501、终端设备接收来自网络设备的第一预编码指示信息。
上述第一预编码指示信息用于指示第一码本集合中的第一预编码矩阵。可选的,上述第一预编码指示信息为DCI。可选的,上述第一预编码指示信息携带的TPMI索引指示上述第一预编码矩阵。
502、终端设备从第一码本集合中确定上述第一预编码指示信息指示的第一预编码矩阵。
上述第一预编码矩阵用于生成上述终端设备的天线端口待发送的数据。上述第一码本集合包括上述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;上述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,上述第二预编码矩阵中上述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中上述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,上述第一值、上述第二值以及上述第三值为不同的纯虚数,所述第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数。
可选的,上述第一预编码指示信息包括一个TPMI索引(index),该TPMI索引指示第一码本集合中的第一预编码矩阵。终端设备可存储有TPMI索引与预编码矩阵的映射关系,上述终端设备根据该映射关系可确定任意TPMI索引对应的预编码矩阵。
由于上述第一值、上述第二值以及上述第三值为不同的纯虚数,因此以自然常数为底以第一值为指数的幂运算的值、以自然常数为底以第二值为指数的幂运算的值以及以自然常数为底以第三值为指数的幂运算的值为不同的复数或者虚数。由于第一码本集合中的预编码矩阵中的元素可以为实部和虚部均不为零的复数,并不限于jk和-jk,因此第一码本集 合可以包括更多的预编码矩阵,即第一码本集合的码本精度更高。
在一些实施例中,终端设备可同时使用两个或两个以上精度不同的码本集合,不同的码本集合对应的TPMI索引的范围不同。举例来说,终端设备的天线端口数为4,终端设备可使用第一码本集合和原始码本集合,该第一码本集合中的预编码矩阵对应的TPMI索引的范围为0-31,该原始码本集合中的预编码矩阵对应的TPMI索引的范围为32-59;当第一预编码指示信息指示的TPMI索引位于0-31的范围时从该第一码本集合中选择预编码矩阵,当第一预编码指示信息指示的TPMI索引位于32-59的范围时从该第一码本集合中选择预编码矩阵。
本申请实施例中,第一码本集合中的预编码矩阵的数量更多,码本精度更高,能够提高上行通信的容量。
前述实施例仅描述了第一码本集合中的预编码矩阵所具备的一些特征,下面结合第一码本集合的示例来详述第一码本集合以及上述第一码本集合中的预编码矩阵和TPMI索引的映射关系。
示例性的,终端设备的天线端口数量为2且上述终端设备传输1流(rank1)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000057
其中,
Figure PCTCN2021103275-appb-000058
表示上述第一码本集合中的一个预编码矩阵(即天线端口数量为2,rank为1的预编码矩阵),上述第一码本集合为上述终端设备传输1流(Rank为1)的码本集合;B=exp(jθ),
Figure PCTCN2021103275-appb-000059
p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1为大于1的整数。θ的取值为一个相位集合,即
Figure PCTCN2021103275-appb-000060
可理解为相位集合
Figure PCTCN2021103275-appb-000061
应理解,将θ的一个取值代入公式(2)可得到一个预编码矩阵,第一码本集合包括N 1个预编码矩阵。公式(2)可视为生成第一码本集合的公式。第一码本集合可以是终端设备将θ的不同取值代入公式(2)得到的,即一个θ的取值对应于第一码本集合中的一个预编码矩阵。应理解,第一码本集合包括N 1个预编码矩阵,每个预编码矩阵均满足公式(2)。例如N 1=4时,θ的取值为
Figure PCTCN2021103275-appb-000062
化简后即为
Figure PCTCN2021103275-appb-000063
又例如N 1=8时,θ的取值为
Figure PCTCN2021103275-appb-000064
化简后即为
Figure PCTCN2021103275-appb-000065
在这种码本结构中,需要指示N 1和/或相位θ。N 1的取值大小,决定了码本的精度。在实际应用中,可根据不同的应用需求,可以调整N 1的大小来调整码本的精度。
图6为本申请实施例提供的一种天线端口数量为2且最大流为1时TPMI索引与预编码矩阵的映射关系的示例。图6中的8个预编码矩阵为第一码本集合中的预编码矩阵,图 6中的预编码矩阵从左到右对应的TPMI索引依次为0-7,即每个索引对应一个预编码矩阵,例如
Figure PCTCN2021103275-appb-000066
对应的TPMI索引为0,
Figure PCTCN2021103275-appb-000067
对应的TPMI索引为7。在一些实施例中,DCI中指示的预编码信息(对应于第一预编码指示信息)与TPMI的关系如表1所示。示例性的,DCI中的
Figure PCTCN2021103275-appb-000068
个比特位指示预编码信息,该
Figure PCTCN2021103275-appb-000069
个比特位表示第一列中的索引,
Figure PCTCN2021103275-appb-000070
为向上取整函数。表1中第一列表示DCI中指示的预编码信息(对应于TPMI索引),每一行表示TPMI与所指示比特值之间的对应关系。举例来说,N 1为8,
Figure PCTCN2021103275-appb-000071
为3,DCI中的3个比特位指示预编码信息。例如,000表示TPMI=0,001表示TPMI=1,010表示TPMI=2。
表1
Figure PCTCN2021103275-appb-000072
示例性的,上述终端设备的天线端口数量为2且上述终端设备传输2流(rank2)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000073
其中,
Figure PCTCN2021103275-appb-000074
表示第一码本集合中的一个预编码矩阵(即天线端口数量为2,rank为2的预编码矩阵),上述第一码本集合为上述终端设备传输2流(Rank为2)的码本集合,B=exp(jθ),
Figure PCTCN2021103275-appb-000075
p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1为大于1的整数。
第一码本集合可以是终端设备将θ的不同取值代入公式(3)得到的,即一个θ的取值对应于第一码本集合中的一个预编码矩阵。公式(3)可视为生成第一码本集合的公式。例如,θ的取值为
Figure PCTCN2021103275-appb-000076
时,第一码本集合包括的预编码矩阵为:
Figure PCTCN2021103275-appb-000077
Figure PCTCN2021103275-appb-000078
其中,
Figure PCTCN2021103275-appb-000079
表示第一码本集合中第k个预编码矩阵。又例如,θ的取值为
Figure PCTCN2021103275-appb-000080
时,第一码本集合包括的预编码矩阵为:
Figure PCTCN2021103275-appb-000081
Figure PCTCN2021103275-appb-000082
Figure PCTCN2021103275-appb-000083
需要注意,有些时候为了简化,第一码本集合可能只包括其中几个预编码矩阵。例如可能第一码本集合只包括第1个预编码矩阵
Figure PCTCN2021103275-appb-000084
和第2个预编码矩阵
Figure PCTCN2021103275-appb-000085
因为第3个预编码矩阵与第1个预编码矩阵相比仅改变了列的顺序,第4个预编码矩阵与第2个预编码矩阵相比仅改变了列的顺序。
图7为本申请实施例提供的一种天线端口数量为2且最大流为2时TPMI索引与预编码矩阵的映射关系的示例。图7中的8个预编码矩阵(即N 1为8)为第一码本集合中的预编码矩阵,图7中的预编码矩阵对应的TPMI索引依次为0-7,即每个索引对应一个预编码矩阵,例如
Figure PCTCN2021103275-appb-000086
对应的TPMI索引为0,
Figure PCTCN2021103275-appb-000087
对应的TPMI索引为7。在一些实施例中,DCI中指示的预编码信息(对应于第一预编码指示信息)与TPMI的关系如表2所示。示例性的,DCI中的
Figure PCTCN2021103275-appb-000088
个比特位指示预编码信息(对应于TPMI),该
Figure PCTCN2021103275-appb-000089
个比特位表示第一列中的索引,
Figure PCTCN2021103275-appb-000090
为向上取整函数。表2中第一列表示DCI中指示的预编码信息,每一行表示TPMI与所指示比特值之间的对应关系。举例来说,N 1为8,
Figure PCTCN2021103275-appb-000091
为4,DCI中的4个比特位指示预编码信息。例如,0000表示TPMI=0,0010表示TPMI=2,1111表示TPMI=2*N1-1,其中,“*”表示乘号。
表2
Figure PCTCN2021103275-appb-000092
示例性的,上述终端设备的天线端口数量为4且上述终端设备传输1流(rank1)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000093
其中,
Figure PCTCN2021103275-appb-000094
表示上述第一码本集合中的一个预编码矩阵,上述第一码本集合为上述终端设备传输1流的码本集合;B,D∈{exp(jθ)},
Figure PCTCN2021103275-appb-000095
Figure PCTCN2021103275-appb-000096
p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1和上述N 2均为大于1的整数。第一码本集合可以是终端设备将θ和
Figure PCTCN2021103275-appb-000097
的不同取值代入公式(4)得到的,即一组θ和
Figure PCTCN2021103275-appb-000098
的取值对应于第一码本集合中的一个预编码矩阵。公式(4)可视为生成第一码本集合的公式。公式(4)中包括θ和
Figure PCTCN2021103275-appb-000099
两个参数,θ的取值和
Figure PCTCN2021103275-appb-000100
的取值的全部组合或者一些组合对应一个相位集合。也就是说,该相位集合包括不同θ和
Figure PCTCN2021103275-appb-000101
的组合,例如
Figure PCTCN2021103275-appb-000102
和0的组合、
Figure PCTCN2021103275-appb-000103
Figure PCTCN2021103275-appb-000104
的组合等。该相位集合可以为
Figure PCTCN2021103275-appb-000105
Figure PCTCN2021103275-appb-000106
将该相位集合中的任一组相位值代入公式(4)可得到第一码本集合中的一个预编码矩阵。可以理解,该相位集合包括(N 1×N 2)组相位值,第一码本集合包括(N 1×N 2)个预编码矩阵。在实际应用中,对于N 1和N 2的取值,需要综合考虑码本精度和信令指示开销对通信系统的影响。
图8A和图8B为本申请实施例提供的一种天线端口数量为4且最大流为1时TPMI索 引与预编码矩阵的映射关系的示例。图8A中的16个预编码矩阵和图8B中的16个预编码矩阵为第一码本集合中的预编码矩阵,图8A中的预编码矩阵对应的TPMI索引依次为0-15,图8B中的预编码矩阵对应的TPMI索引依次为16-31,即每个TPMI索引对应一个预编码矩阵,例如
Figure PCTCN2021103275-appb-000107
对应的TPMI索引为0,
Figure PCTCN2021103275-appb-000108
对应的TPMI索引为31。图8A和图8B中的预编码矩阵为以N 1=8,N 2=4为例生成的预编码矩阵,即
Figure PCTCN2021103275-appb-000109
第一码本集合中包括的(N 1×N 2)个预编码矩阵对应的索引为0,1,2,…,(N 1×N 2-1)。在一些实施例中,DCI中指示的预编码信息(对应于第一预编码指示信息)与TPMI的关系如表3所示。示例性的,DCI中的
Figure PCTCN2021103275-appb-000110
个比特位指示预编码信息(对应于TPMI索引),该
Figure PCTCN2021103275-appb-000111
个比特位表示第一列中的TPMI索引,
Figure PCTCN2021103275-appb-000112
为向上取整函数,(N 1·N 2)表示N 1和N 2的乘积。表3中第一列表示DCI中指示的预编码信息(即TPMI索引),每一行表示TPMI与所指示比特值之间的对应关系。举例来说,N 1为8,N 2为4时,
Figure PCTCN2021103275-appb-000113
为5,DCI中的5个比特位指示预编码信息。例如,00000表示TPMI=0,00010表示TPMI=2,11111表示TPMI=N1*N2-1,其中,“*”表示乘号。
表3
Figure PCTCN2021103275-appb-000114
示例性的,上述终端设备的天线端口数量为4且上述终端设备传输2流(rank2)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000115
其中,
Figure PCTCN2021103275-appb-000116
表示上述第一码本集合中的一个预编码矩阵,上述第一码本集合为上述终端设备传输2流的码本集合;B,D∈{exp(jθ)},
Figure PCTCN2021103275-appb-000117
Figure PCTCN2021103275-appb-000118
中不同的列向量正交,p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1和上述N 2均为大于1的整数。第一码本集合可以是终端设备将θ和
Figure PCTCN2021103275-appb-000119
的不同取值代入公式(5)得到的,即一组θ和
Figure PCTCN2021103275-appb-000120
的取值对应于第一码本集合中的一个预编码矩阵。公式(5)可视为生成第一码本集合的公式。公式(5)中包括θ和
Figure PCTCN2021103275-appb-000121
两个参数,θ的取值和
Figure PCTCN2021103275-appb-000122
的取值的全部组合或者一些组合对应一个相位集合。也就是说,该相位集合包括不同θ和
Figure PCTCN2021103275-appb-000123
的组合,例如
Figure PCTCN2021103275-appb-000124
和0的组合、
Figure PCTCN2021103275-appb-000125
Figure PCTCN2021103275-appb-000126
的组合等。
天线端口数量为4且最大流为2时TPMI索引与预编码矩阵的映射关系与天线端口数量为4且最大流为1时TPMI索引与预编码矩阵的映射关系类似。第一码本集合中包括(N 1×N 2)个预编码矩阵,对应的索引为0,1,2,…,(N 1×N 2-1)。在DCI中指示TPMI时,包括流1(rank1)和流2(rank2)的TPMI,占用的比特数为
Figure PCTCN2021103275-appb-000127
示例性的,上述终端设备的天线端口数量为4且上述终端设备传输3流(rank3)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000128
其中,
Figure PCTCN2021103275-appb-000129
表示上述第一码本集合中的一个预编码矩阵,上述第一码本集合为上述终端设备传输3流的码本集合;B,D∈{exp(jθ)},
Figure PCTCN2021103275-appb-000130
Figure PCTCN2021103275-appb-000131
中不同的列向量正交,p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1和上述N 2均为大于1的整数。第一码本集合可以是终端设备将θ和
Figure PCTCN2021103275-appb-000132
的不同取值代入公式(6)得到的,即一组θ和
Figure PCTCN2021103275-appb-000133
的取值对应于第一码本集合中的一个预编码矩阵。公式(6)可视为生成第一码本集合(对应rank 1)的公式。公式(6) 中包括θ和
Figure PCTCN2021103275-appb-000134
两个参数,θ的取值和
Figure PCTCN2021103275-appb-000135
的取值的全部组合或者一些组合对应一个相位集合,将该相位集合中的任一组相位值代入公式(6)可得到第一码本集合中的一个预编码矩阵。
天线端口数量为4且最大流为3时TPMI索引与预编码矩阵的映射关系与天线端口的数量为4且最大流为1时TPMI索引与预编码矩阵的映射关系类似。第一码本集合中包括(N 1×N 2)个预编码矩阵,对应的索引为0,1,2,…,(N 1×N 2-1)。在DCI中指示TPMI时,包括流1(rank1)、流2(rank2)、流3(rank3)的TPMI,占用的比特数为
Figure PCTCN2021103275-appb-000136
示例性的,终端设备的天线端口数量为4且上述终端设备传输4流(rank4)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000137
其中,
Figure PCTCN2021103275-appb-000138
表示上述第一码本集合中的一个预编码矩阵,上述第一码本集合为上述终端设备传输4流的码本集合;公式(7)中各参数的含义与公式(6)中各参数的含义相同。第一码本集合可以是终端设备将θ和
Figure PCTCN2021103275-appb-000139
的不同取值代入公式(7)得到的,即一组θ和
Figure PCTCN2021103275-appb-000140
的取值对应于第一码本集合中的一个预编码矩阵。公式(7)可视为生成第一码本集合(对应rank2)的公式。公式(7)中包括θ和
Figure PCTCN2021103275-appb-000141
两个参数,θ的取值和
Figure PCTCN2021103275-appb-000142
的取值的全部组合或者一些组合对应一个相位集合,将该相位集合中的任一组相位值代入公式(7)可得到第一码本集合中的一个预编码矩阵。
天线端口的数量为4且最大流为4时TPMI索引与预编码矩阵的映射关系与天线端口的数量为4且最大流为1时TPMI索引与预编码矩阵的映射关系类似。第一码本集合中包括(N 1×N 2)个预编码矩阵,对应的索引为0,1,2,…,(N 1×N 2-1)。在DCI中指示TPMI时,包括流1(rank1)、流2(rank2)、流3(rank3)、流4(rank4)的TPMI,占用的比特数为
Figure PCTCN2021103275-appb-000143
示例性的,上述终端设备的天线端口数量为8且上述终端设备传输1流(rank1)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000144
其中,
Figure PCTCN2021103275-appb-000145
表示上述第一码本集合中的一个预编码矩阵,上述第一码本集合为上述终端设备传输1流的码本集合;B,D,E,F∈{exp(jθ)},
Figure PCTCN2021103275-appb-000146
Figure PCTCN2021103275-appb-000147
p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1、上述N 2、上述N 3、上述N 4均为大于1的整数。第一码本集合可以是终端设备将θ、
Figure PCTCN2021103275-appb-000148
ε、δ的不同取值代入公式(8)得到的,即一组θ、
Figure PCTCN2021103275-appb-000149
ε、δ的取值对应于第一码本集合中的一个预编码矩阵。公式(8)可视为生成第一码本集合的公式。公式(8)中包括θ、
Figure PCTCN2021103275-appb-000150
ε、δ四个参数,θ的取值、
Figure PCTCN2021103275-appb-000151
的取值、ε的取值以及δ的取值的全部组合或者一些组合对应一个相位集合,将该相位集合中的任一组相位值代入公式(8)可得到第一码本集合中的一个预编码矩阵。
上述终端设备的天线端口数量为8且上述终端设备传输1流(rank1)时,第一码本集合中的预编码矩阵的个数为(N 1·N 2·N 3·N 4)。由于元素太多,不在此一一列举。示例性的,DCI中的
Figure PCTCN2021103275-appb-000152
个比特位指示预编码信息(对应于TPMI)。DCI中指示的预编码信息与TPMI的关系如下表4所示。表4中第一列表示DCI中指示的预编码信息,每一行表示TPMI与所指示比特值之间的对应关系。
表4
Figure PCTCN2021103275-appb-000153
Figure PCTCN2021103275-appb-000154
示例性的,上述终端设备的天线端口数量为8且上述终端设备传输1流(rank1)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000155
其中,
Figure PCTCN2021103275-appb-000156
表示上述第一码本集合中的一个预编码矩阵,公式(9)各参数的含义与公式(8)中各参数的含义相同。第一码本集合可以是终端设备将θ、
Figure PCTCN2021103275-appb-000157
δ的不同取值代入公式(9)得到的,即一组θ、
Figure PCTCN2021103275-appb-000158
δ的取值对应于第一码本集合中的一个预编码矩阵。公式(9)可视为生成第一码本集合的公式。公式(9)中包括θ、
Figure PCTCN2021103275-appb-000159
δ三个参数,θ的取值、
Figure PCTCN2021103275-appb-000160
的取值以及δ的取值的全部组合或者一些组合对应一个相位集合,将该相位集合中的任一组相位值代入公式(9)可得到第一码本集合中的一个预编码矩阵。公式(9)和公式(8)的主要区别点是将相位ε替换成相位θ,终端设备生成第一码本集合所用的码本配置信息没必要额外指示相位ε,只需指示相位θ、
Figure PCTCN2021103275-appb-000161
δ。同时,也没必要指示N 3的值。
上述终端设备的天线端口数量为8且上述终端设备传输1流(rank1)时,第一码本集合中的预编码矩阵的个数为(N 1·N 2·N 4)。示例性的,DCI中的
Figure PCTCN2021103275-appb-000162
个比特位指示预编码信息(对应于TPMI索引)。第一码本集合中的预编码矩阵满足公式(9)时的TPMI索引与预编码矩阵的映射关系与第一码本集合中的预编码矩阵满足公式(8)时的TPMI索引与预编码矩阵的映射关系类似。
示例性的,上述终端设备的天线端口数量为8且上述终端设备传输1流(rank1)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000163
其中,
Figure PCTCN2021103275-appb-000164
表示上述第一码本集合中的一个预编码矩阵,公式(10)各参数的含义与公式(8)中各参数的含义相同。第一码本集合可以是终端设备将θ、
Figure PCTCN2021103275-appb-000165
δ的不同取值代入公式(10)得到的,即一组θ、
Figure PCTCN2021103275-appb-000166
δ的取值对应于第一码本集合中的一个预编码矩阵。公式(10)可视为生成第一码本集合的公式。公式(10)中包括θ、
Figure PCTCN2021103275-appb-000167
δ三个参数,θ的取值、
Figure PCTCN2021103275-appb-000168
的取值以及δ的取值的全部组合或者一些组合对应一个相位集合,将该相位集合中的任一组相位值代入公式(10)可得到第一码本集合中的一个预编码矩阵。公式(10)和公式(8)的主要区别点是将相位ε替换成相位
Figure PCTCN2021103275-appb-000169
终端设备生成第一码本集合所用的码本配置信息没必要额外指示相位ε,只需指示相位θ、
Figure PCTCN2021103275-appb-000170
δ。同时,也没必要指示N 3的值。
上述终端设备的天线端口数量为8且上述终端设备传输1流(rank1)时,第一码本集合中的预编码矩阵的个数为(N 1·N 2·N 4)。示例性的,DCI中的
Figure PCTCN2021103275-appb-000171
个比特位指示预编码信息(对应于TPMI)。第一码本集合中的预编码矩阵满足公式(10)时的TPMI索引与预编码矩阵的映射关系与第一码本集合中的预编码矩阵满足公式(8)时的TPMI索引与预编码矩阵的映射关系类似。
示例性的,终端设备的天线端口数量为8且上述终端设备传输2流(rank2)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000172
其中,
Figure PCTCN2021103275-appb-000173
表示上述第一码本集合中的一个预编码矩阵,公式(11)各参数的含义与公式(8)中各参数的含义相同。公式(11)可视为生成第一码本集合的公式。
示例性的,终端设备的天线端口数量为8且上述终端设备传输2流(rank2)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000174
其中,
Figure PCTCN2021103275-appb-000175
表示上述第一码本集合中的一个预编码矩阵,公式(12)各参数的含义与公式(8)中各参数的含义相同。公式(12)可视为生成第一码本集合的公式。
天线端口数量为8且最大流为2时TPMI索引与预编码矩阵的映射关系与天线端口的数量为8且最大流为1时TPMI索引与预编码矩阵的映射关系类似。天线端口数量为8且最大流为2时,第一码本集合中包括(N 1·N 2·N 3·N 4)个预编码矩阵,对应的索引为0,1,2,…,(N 1·N 2·N 3·N 4-1)。示例性的,DCI中指示TPMI(对应于第一预编码指示信息)时,包括流1(rank1)和流2(rank2)的TPMI,TPMI占用的比特数为
Figure PCTCN2021103275-appb-000176
示例性的,上述终端设备的天线端口数量为8且上述终端设备传输3流(rank3)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000177
其中,
Figure PCTCN2021103275-appb-000178
表示上述第一码本集合中的一个预编码矩阵,
Figure PCTCN2021103275-appb-000179
公式(13)中各参数的含义与公式(8)中各参数的含义相同。
示例性的,上述终端设备的天线端口数量为8且上述终端设备传输3流(rank3)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000180
其中,
Figure PCTCN2021103275-appb-000181
表示上述第一码本集合中的一个预编码矩阵,公式(14)中各参数的含义与公式(13)中各参数的含义相同。
天线端口数量为8且最大流为3时TPMI索引与预编码矩阵的映射关系与天线端口数量为8且最大流为1时TPMI索引与预编码矩阵的映射关系类似。天线端口数量为8且最大流为3时,第一码本集合中包括(N 1·N 2·N 3·N 4)个预编码矩阵,对应的索引为0,1,2,…,(N 1·N 2·N 3·N 4-1)。示例性的,DCI中指示TPMI(对应于第一预编码指示信息)时,包括流1(rank1)、流2(rank2)、流3(rank3)的TPMI,TPMI占用的比特数为
Figure PCTCN2021103275-appb-000182
示例性的,终端设备的天线端口数量为8且上述终端设备传输4流(rank4)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000183
其中,
Figure PCTCN2021103275-appb-000184
表示上述第一码本集合中的一个预编码矩阵,
Figure PCTCN2021103275-appb-000185
对应公式(15),公式(15)中各参数的含义与公式(8)中各参数的含义相同。公式(15)可视为生成第一码本集合(对应rank 4)的公式。
天线端口数量为8且最大流为4时TPMI索引与预编码矩阵的映射关系与天线端口数量为8且最大流为1时TPMI索引与预编码矩阵的映射关系类似。天线端口数量为8且最大流为4时,第一码本集合中包括(N 1·N 2·N 3·N 4)个预编码矩阵,对应的索引为0,1,2,…,(N 1·N 2·N 3·N 4-1)。示例性的,DCI中指示TPMI(对应于第一预编码指示信息)时,包括流1(rank1)、流2(rank2)、流3(rank3)、流4(rank4)的TPMI,TPMI占用的比特数为
Figure PCTCN2021103275-appb-000186
示例性的,终端设备的天线端口数量为8且上述终端设备传输5流(rank5)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000187
其中,
Figure PCTCN2021103275-appb-000188
表示上述第一码本集合中的一个预编码矩阵,
Figure PCTCN2021103275-appb-000189
公式(16)中各参数的含义与公式(8)中各参数的含义相同。
天线端口数量为8且最大流为5时TPMI索引与预编码矩阵的映射关系与天线端口数量为8且最大流为1时TPMI索引与预编码矩阵的映射关系类似。天线端口数量为8且最大流为5时,第一码本集合中包括(N 1·N 2·N 3·N 4)个预编码矩阵,对应的索引为0,1,2,…,(N 1·N 2·N 3·N 4-1)。示例性的,DCI中指示TPMI(对应于第一预编码指示信息)时, 包括流1(rank1)、流2(rank2)、流3(rank3)、流4(rank4)、流5(rank5)的TPMI,TPMI占用的比特数为
Figure PCTCN2021103275-appb-000190
示例性的,终端设备的天线端口数量为8且上述终端设备传输6流(rank6)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000191
其中,
Figure PCTCN2021103275-appb-000192
表示上述第一码本集合中的一个预编码矩阵,
Figure PCTCN2021103275-appb-000193
对应公式(17),公式(17)中除A 4外各参数的含义与公式(8)中各参数的含义相同。公式(17)中的A 4与公式(16)中的A 4相同。
天线端口数量为8且最大流为6时TPMI索引与预编码矩阵的映射关系与天线端口数量为8且最大流为1时TPMI索引与预编码矩阵的映射关系类似。天线端口数量为8且最大流为6时,第一码本集合中包括(N 1·N 2·N 3·N 4)个预编码矩阵,对应的索引为0,1,2,…,(N 1·N 2·N 3·N 4-1)。示例性的,DCI中指示TPMI(对应于第一预编码指示信息)时,包括流1(rank1)、流2(rank2)、流3(rank3)、流4(rank4)、流5(rank5)、流6(rank6)的TPMI,TPMI占用的比特数为
Figure PCTCN2021103275-appb-000194
示例性的,上述终端设备的天线端口数量为8且上述终端设备传输7流(rank7)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000195
其中,
Figure PCTCN2021103275-appb-000196
表示上述第一码本集合中的一个预编码矩阵,
Figure PCTCN2021103275-appb-000197
公式(18)中除A 6外各参数的含义与公式(8)中各参数的含义相同。
天线端口数量为8且最大流为7时TPMI索引与预编码矩阵的映射关系与天线端口数量为8且最大流为1时TPMI索引与预编码矩阵的映射关系类似。天线端口数量为8且最大流为7时,第一码本集合中包括(N 1·N 2·N 3·N 4)个预编码矩阵,对应的索引为0,1,2,…,(N 1·N 2·N 3·N 4-1)。示例性的,DCI中指示TPMI(对应于第一预编码指示信息)时,包括流1(rank1)、流2(rank2)、流3(rank3)、流4(rank4)、流5(rank5)、流6(rank6)、流7(rank7)的TPMI,TPMI占用的比特数为
Figure PCTCN2021103275-appb-000198
示例性的,终端设备的天线端口数量为8且上述终端设备传输8流(rank8)时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000199
其中,
Figure PCTCN2021103275-appb-000200
表示上述第一码本集合中的一个预编码矩阵,A 6与公式(18)中的A 6相同,公式(19)中除A 6外各参数的含义与公式(8)中各参数的含义相同。
天线端口数量为8且最大流为8时TPMI索引与预编码矩阵的映射关系与天线端口数量为8且最大流为1时TPMI索引与预编码矩阵的映射关系类似。天线端口数量为8且最大流为8时,第一码本集合中包括(N 1·N 2·N 3·N 4)个预编码矩阵,对应的索引为0,1,2,…,(N 1·N 2·N 3·N 4-1)。示例性的,DCI中指示TPMI(对应于第一预编码指示信息)时,包括流1(rank1)、流2(rank2)、流3(rank3)、流4(rank4)、流5(rank5)、流6(rank6)、流7(rank7)、流8(rank8)的TPMI,TPMI占用的比特数为
Figure PCTCN2021103275-appb-000201
图5介绍了终端设备确定预编码矩阵的方法,未描述网络设备与终端设备之间的交互流程。下面结合附图来介绍终端设备确定预编码矩阵的过程中,网络设备与终端设备之间的交互流程。
图9为本申请实施例提供的另一种预编码确定方法流程图。该方法可应用于图1所示的通信系统,如图9所示,该方法包括:
901、终端设备向网络设备发送探测参考信号。
在一些实施例中,终端设备在执行步骤901之前,可执行如下操作:接收来自网络设备的码本配置信息;根据上述码本配置信息,确定相位集合,上述相位集合包括至少一个相位值;根据上述相位集合,生成上述第一码本集合;上述相位集合中任一相位值对应上述第一码本集合中的一个预编码矩阵。
902、网络设备根据来自终端设备的SRS,确定终端设备进行上行传输待采用的第一预编码矩阵。
上述第一预编码矩阵为第一码本集合中的预编码矩阵,上述网络设备存储有上述第一码本集合。网络设备根据来自终端设备的SRS,可获取终端设备的上行信道信息,并从第一码本集合中选择出最适合当前信道的预编码矩阵,然后确定预编码矩阵在第一码本集合中的索引,即TPMI索引。例如,网络设备通过遍历第一码本集合中每一个TPMI索引所对应的预编码矩阵,以保证选择的预编码可以实现容量最大化。
以传输一层(rank=1)的码本选择为例,假定用户k(对应于终端设备),在第m个子载波上的功率为p k,m,第m个子载波上的信干噪比(Signal to Interference plus Noise Ratio,SINR)为γ k,m。用户k的第m个子载波上的信道矩阵为H k,m(即用户到基站的信道矩阵)。SINR定义为:
Figure PCTCN2021103275-appb-000202
其中,g k,m为基站接收天线上的权重系数,w k为用户k的预编码矩阵,I k,m为小区间的干扰协方差矩阵,σ 2为噪声功率。例如,采用匹配滤波的方法来求解g k,m,可得g k,m=(H k,mw k) H。当然,也可采用最小均方误差的方法来求解g k,m。举例来说,通过容量最大化准则求预编码矩阵:
Figure PCTCN2021103275-appb-000203
其中,Φ为码本集合,M为总的子载波数,f(·)为函数。例如,一种实现方式可以表示为f(γ k,m)=log 2(1+γ k,m)。对于宽带的预编码,假定每个子载波上采用相同的预编码,因此w k与调度资源块索引无关。对于子带的预编码,在一个子带内的每个子载波上的预编码相同,此时M即为一个子带内包含的子载波数。通过公式(21),可求出预编码矩阵w k,进而根据码本集合中元素的编号规则,可确定TPMI。
903、网络设备向终端设备发送第一预编码指示信息。
示例性的,上述第一预编码指示信息为DCI,上述第一预编码指示信息用于指示上述 第一预编码矩阵。可选的,上述第一预编码指示信息携带的TPMI索引指示上述第一预编码矩阵。对应于网络设备发送第一预编码指示信息的操作,终端设备接收上述第一预编码指示信息。
904、终端设备从第一码本集合中确定上述第一预编码指示信息指示的第一预编码矩阵。
步骤904的实现方式可与步骤502的实现方式相同。
905、终端设备将第一预编码矩阵应用于数据映射中,生成每个天线端口上将要发送的数据,并通过天线端口发送数据。
本申请实施例中,网络设备从精度较高的码本集合中确定终端设备进行上行传输待采用的预编码矩阵,终端设备通过精度较高的预编码矩阵进行上行传输,可提升上行容量。
前面描述了终端设备采用精度较高的第一码本集合进行上行传输的方法流程。下面介绍终端设备如何生成第一码本集合的方法流程。
图10为本申请实施例提供的一种码本生成方法流程图。该方法可应用于图1中的通信系统,该方法包括:
1001、终端设备接收来自网络设备的码本配置信息。
上述码本配置信息包括至少一个相位量化值(也可称为相位量化因子)。可选的,终端设备还可以向网络设备上报终端设备的天线端口数,例如终端设备在接入网络设备时上报天线端口数。网络设备可根据终端设备的上行天线端口数,配置相应的相位量化因子。当终端设备的天线端口数为2时,码本配置信息至少用于配置N 1的值。当终端设备的发送天线端口数为4时,码本配置信息至少用于配置N 1和N 2的值。当终端设备发送天线端口数为8时,码本配置信息用于配置N 1、N 2,N 3和N 4的值。
在一些实施例中,上行基于码本的传输模式是在RRC信令PUSCH-Config信息单元(Information element,IE)中指示。一种指示相位量化值的方法是,在PUSCH-Config中新增一项指示内容“phaseQuantizationFactorforCodebook”,如下所示。其中phaseFactor1指示N 1的值,phaseFactor2指示N 2的值,phaseFactor3指示N 3的值,phaseFactor4指示N 4的值。注意PUSCH-Config是UE-specific的配置,即每个终端设备均会配置该参数。其中,n1,n2,n3,n4的参数取值可以为2,4,6,8等值或其它值。在实际配置时,只会选择其中一种取值。例如phaseFactor1配置为4时,表示N 1的取值为4,即将0到2π之间的相位进行4等分。
PUSCH-Config信息单元
--ASN1START
--TAG-PUSCH-CONFIG-START
PUSCH-Config::=SEQUENCE{
dataScramblingIdentityPUSCH INTEGER(0..1023)OPTIONAL,--Need S
txConfig ENUMERATED{codebook,nonCodebook}OPTIONAL,--Need S
phaseQuantizationFactorforCodebook SEQUENCE{
phaseFactor1 ENUMERATED{n1,n2,n3,n4}
phaseFactor2 ENUMERATED{n1,n2,n3,n4}
phaseFactor3 ENUMERATED{n1,n2,n3,n4}
phaseFactor4 ENUMERATED{n1,n2,n3,n4}
}
1002、终端设备根据上述码本配置信息,确定相位集合。
上述相位集合包括至少一个相位值。可选的,码本配置信息包括相位量化值N 1,步骤1002一种可能的实现方式如下:终端设备根据相位量化值N 1,确定相位集合
Figure PCTCN2021103275-appb-000204
Figure PCTCN2021103275-appb-000205
对应于
Figure PCTCN2021103275-appb-000206
可选的,码本配置信息包括相位量化值N 1和N 2,步骤1002一种可能的实现方式如下:终端设备根据相位量化值N 1和N 2,确定相位集合
Figure PCTCN2021103275-appb-000207
Figure PCTCN2021103275-appb-000208
对应于
Figure PCTCN2021103275-appb-000209
Figure PCTCN2021103275-appb-000210
的组合。可选的,码本配置信息包括相位量化值N 1、N 2、N 3、N 4
Figure PCTCN2021103275-appb-000211
Figure PCTCN2021103275-appb-000212
步骤1002一种可能的实现方式如下:终端设备根据相位量化值N 1、N 2、N 3、N 4,确定相位集合
Figure PCTCN2021103275-appb-000213
该相位集合
Figure PCTCN2021103275-appb-000214
中θ有N 1个取值,
Figure PCTCN2021103275-appb-000215
有N 2个取值,ε有N 3个取值,δ有N 4个取值,该相位集合有(N 1·N 2·N 3·N 4)个元素,每个元素为一组相位值。可选的,码本配置信息包括相位量化值N 1
Figure PCTCN2021103275-appb-000216
Figure PCTCN2021103275-appb-000217
步骤1002一种可能的实现方式如下:终端设备根据相位量化值N 1,确定相位集合
Figure PCTCN2021103275-appb-000218
该相位集合
Figure PCTCN2021103275-appb-000219
中θ有N 1个取值,
Figure PCTCN2021103275-appb-000220
有N 1个取值,ε有N 1个取值,δ有N 1个取值,该相位集合有(N 1·N 1·N 1·N 1)个元素,每个元素为一组相位值。当N 1、N 2、N 3、N 4都取不同值时,相位的量化比较复杂。在一些实施例中,N 1、N 2、N 3、N 4可取相同的值,即所有相位采用相同的量化方式。由于N 1、N 2、N 3、N 4为相同的值,网络设备通过RRC信令配置时,只需配置一个参数,例如码本配置信息仅配置N 1。这样可以减少码本配置信息携带的参数,也能简化相位的量化。PUSCH-Config信息单元的举例如下,在RRC信令PUSCH-ConfigIE中加入相位量化因子 的指示“phaseQuantizationFactorforCodebook”;其中,n1、n2、n3以及n4为N 1的取值,终端设备可选择n1、n2、n3以及n4中的任一个作为N 1
PUSCH-Config信息单元
ASN1START
--TAG-PUSCH-CONFIG-START
PUSCH-Config::=SEQUENCE{
dataScramblingIdentityPUSCH INTEGER(0..1023)OPTIONAL,--Need S
txConfig ENUMERATED{codebook,nonCodebook}OPTIONAL,--Need S
phaseQuantizationFactorforCodebookENUMERATED{n1,n2,n3,n4}
1003、终端设备根据上述相位集合,生成上述第一码本集合。
上述相位集合中任一相位值对应上述第一码本集合中的一个预编码矩阵。终端设备可根据相位集合中各相位值或者各组相位值,生成第一码本集合,即一个相位值或一组相位值生成一个预编码矩阵。可选的,终端设备可将上述相位集合中的各元素(对应一个相位值或一组相位值)代入公式(2)至公式(17)中的任一个,生成第一码本集合。举例来说,终端设备分别将相位集合
Figure PCTCN2021103275-appb-000221
中的各相位值代入公式(2),生成第一码本集合。又举例来说,终端设备分别将相位集合
Figure PCTCN2021103275-appb-000222
Figure PCTCN2021103275-appb-000223
中的各相位值代入公式(2),生成第一码本集合。
在一些实施例中,终端设备还可以接收来自网络设备的码本配置更新信息,并利用上述码本配置更新信息生成新的码本集合;其中,利用上述码本配置更新信息生成新的码本集合的实现方式可与图10中的实现方式类似。举例来说,码本配置信息指示的N 1为8,N 2为4;码本配置更新信息指示的N 1为8,N 2为6;新的码本集合的精度更高。应理解,通过调整码本配置信息来动态或半静态调整码本集合的精度。
对比公式(2)和公式(4)可知,2天线端口对应的码本集合中的任一预编码矩阵为4天线端口对应的码本集合中至少一个预编码矩阵的子矩阵。在一些实施例中,终端设备可根据公式(2)生成2天线端口对应的码本集合,然后,根据2天线端口对应的码本集合确定4天线端口对应的码本集合。
在对比公式(4)和公式(8)可知,4天线端口对应的码本集合中的任一预编码矩阵为5天线端口对应的码本集合中至少一个预编码矩阵的子矩阵。一些实施例中,终端设备在生成4天线端口对应的码本集合,可根据4天线端口对应的码本集合确定8天线端口对应的码本集合。
网络设备通过向终端设备发送码本配置信息来指示相位量化值,终端设备可动态地生 成不同精度的码本集合。此外,网络设备还可根据不同终端设备的需求和硬件能力,配置不同的相位量化值。对于终端设备来说,终端设备可采用与其硬件能力和需求向匹配的码本集合,可充分发挥其硬件能力,又能提升上行容量。
本申请实施例中,终端设备根据来自网络设备的码本配置信息,生成精度较高的第一码本集合,资源开销少。
图5描述了终端设备确定预编码矩阵的方法流程,图10描述了生成预编码矩阵(对应于第一码本集合)的方法流程。应理解,终端设备可以单独的执行图5中的方法流程以及图10中的方法流程,也可以在执行图10的方法流程生成第一码本集合之后再执行图5中的方法流程。
可理解,以上各个实施例各有侧重,其中一个实施例中未详细描述的实现方式可参考其他实施例,这里不再一一赘述。进一步的,本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。换句话说,以上所示的各个实施例,相互之间可以结合。例如,如以上所示图5和图10的方法可以结合。又例如,图4和图9所示的相关方法可以结合。又例如,图5和图9所示的方法也可以结合。
以下将介绍本申请实施例提供的通信装置。
图11是本申请实施例提供的一种通信装置的结构示意图,该通信装置可用于执行上述方法实施例中由终端设备执行的操作。例如,该通信装置可用于执行图5和/或图10所示的方法。如图11所示,该通信装置包括收发单元1101和处理单元1102。
收发单元1101,用于接收来自网络设备的第一预编码指示信息;
处理单元1102,用于从第一码本集合中确定上述第一预编码指示信息指示的第一预编码矩阵,上述第一预编码矩阵用于生成上述终端设备的天线端口待发送的数据;其中,上述第一码本集合包括上述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;上述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,上述第二预编码矩阵中上述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中上述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,上述第一值、上述第二值以及上述第三值为不同的纯虚数。
在一个可选的实现方式中,收发单元1101,还用于接收来自上述网络设备的码本配置信息;上述处理单元,还用于根据上述码本配置信息,确定相位集合,上述相位集合包括至少一个相位值;根据上述相位集合,生成上述第一码本集合;上述相位集合中任一相位值对应上述第一码本集合中的一个预编码矩阵。可选的,处理单元1102还可以控制收发单元1101接收码本配置信息。
在一个可选的实现方式中,天线端口数量为4时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000224
其中,
Figure PCTCN2021103275-appb-000225
表示上述第一码本集合中的一个预编码矩阵,上述第一码本集合为上述终端设备传输1流的码本集合;B,D∈{exp(jθ)},
Figure PCTCN2021103275-appb-000226
Figure PCTCN2021103275-appb-000227
p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1和上述N 2均为大于1的整数。
在一个可选的实现方式中,上述第一码本集合为4天线端口对应的码本集合,上述第一码本集合为上述终端设备根据第二码本集合确定的码本集合,上述第二码本集合为2天线端口对应的码本集合,上述第二码本集合中的任一预编码矩阵为上述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,天线端口数量为8时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000228
其中,
Figure PCTCN2021103275-appb-000229
表示上述第一码本集合中的一个预编码矩阵,上述第一码本集合为上述终端设备传输1流的码本集合;B,D,E,F∈{exp(jθ)},
Figure PCTCN2021103275-appb-000230
Figure PCTCN2021103275-appb-000231
p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1、上述N 2、上述N 3、上述N 4均为大于1的整数。
在一个可选的实现方式中,上述第一码本集合为8天线端口对应的码本集合,上述第一码本集合为上述终端设备根据第三码本集合确定的码本集合,上述第三码本集合为4天线端口对应的码本集合,上述第三码本集合中的任一预编码矩阵为上述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,上述码本配置信息包括相位量化值,上述相位量化值用于确定上述相位集合,上述相位量化值与上述第一码本集合的精度正相关。
可理解,以上所示的各个单元所执行的方法仅为示例,对于该各个单元具体所执行的 步骤可参照上文介绍的方法。
需要理解的是,当上述通信装置是终端设备或终端设备中实现上述功能的部件时,处理单元1102可以是一个或多个处理器,收发单元1101可以是收发器,或者收发单元1101还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。
当上述通信装置是电路系统如芯片时,处理单元1102可以是一个或多个处理器,收发单元1101可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元1101还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。
本申请实施例的通信装置可执行上述方法实施例中由终端设备所执行的任意功能,具体可执行的步骤和/或功能可以参考上述方法实施例中的详细描述,此处仅简要概述,不再赘述。
复用图11,图11是本申请实施例提供的一种通信装置的结构示意图,该通信装置可用于执行上述方法实施例中由网络设备执行的操作。例如,该通信装置可用于执行图9中网络设备执行的方法。如图11所示,该通信装置包括收发单元1101和处理单元1102。其中,
处理单元1102,用于从第一码本集合中确定终端设备进行上行传输待采用的第一预编码矩阵;上述第一预编码矩阵用于生成上述终端设备的天线端口待发送的数据,其中,上述第一码本集合包括上述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;上述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,上述第二预编码矩阵中上述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中上述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,上述第一值、上述第二值以及上述第三值为不同的纯虚数;
收发单元1101,用于向上述终端设备发送第一预编码指示信息;上述第一预编码指示信息指示上述第一码本集合中的上述第一预编码矩阵。
在一个可选的实现方式中,收发单元1101,还用于向上述终端设备发送码本配置信息;上述码本配置信息用于上述终端设备确定包括至少一个相位值的相位集合,上述相位集合用于生成上述第一码本集合,上述相位集合中任一相位值对应上述第一码本集合中的一个预编码矩阵。
在一个可选的实现方式中,天线端口数量为4时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000232
其中,
Figure PCTCN2021103275-appb-000233
表示上述第一码本集合中的一个预编码矩阵,上述第一码本集合为上述终端设备传输1流的码本集合;B,D∈{exp(jθ)},
Figure PCTCN2021103275-appb-000234
Figure PCTCN2021103275-appb-000235
p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1和上述N 2均为大于1的整数。
在一个可选的实现方式中,上述第一码本集合为4天线端口对应的码本集合,上述第一码本集合为上述终端设备根据第二码本集合确定的码本集合,上述第二码本集合为2天线端口对应的码本集合,上述第二码本集合中的任一预编码矩阵为上述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,天线端口数量为8时,上述第一码本集合中的一个预编码矩阵满足:
Figure PCTCN2021103275-appb-000236
其中,
Figure PCTCN2021103275-appb-000237
表示上述第一码本集合中的一个预编码矩阵,上述第一码本集合为上述终端设备传输1流的码本集合;B,D,E,F∈{exp(jθ)},
Figure PCTCN2021103275-appb-000238
Figure PCTCN2021103275-appb-000239
p为上述预编码矩阵的行数,q为上述预编码矩阵的列数,上述N 1、上述N 2、上述N 3、上述N 4均为大于1的整数。
在一个可选的实现方式中,上述第一码本集合为8天线端口对应的码本集合,上述第一码本集合为上述终端设备根据第三码本集合确定的码本集合,上述第三码本集合为4天线端口对应的码本集合,上述第三码本集合中的任一预编码矩阵为上述第一码本集合中至少一个预编码矩阵的子矩阵。
在一个可选的实现方式中,上述码本配置信息包括相位量化值,上述相位量化值用于确定上述相位集合,上述相位量化值与上述第一码本集合的精度正相关。
需要理解的是,当上述通信装置是网络设备或网络设备中实现上述功能的部件时,处理单元1102可以是一个或多个处理器,收发单元1101可以是收发器,或者收发单元1101还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。
当上述通信装置是电路系统如芯片时,处理单元1102可以是一个或多个处理器,收发 单元1101可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元1101还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。
本申请实施例的通信装置可执行上述方法实施例中由网络设备所执行的任意功能,具体可执行的步骤和/或功能可以参考上述方法实施例中的详细描述,此处仅简要概述,不再赘述。
在一种可能的实现方式中,通信装置可以为上述各个方法实施例中的终端设备。该情况下,上述收发单元1101可以用收发器实现,上述处理单元1102可以用处理器实现。如图12所示,该通信装置120包括一个或多个处理器1220和收发器1210。该处理器和收发器可以用于执行上述终端设备所执行的功能或操作等。
在一种可能的实现方式中,通信装置可以为上述各个方法实施例中的网络设备。该情况下,上述收发单元1101可以用收发器实现,上述处理单元1102可以用处理器实现。复用图12,如图12所示,该通信装置120包括一个或多个处理器1220和收发器1210。该处理器和收发器可以用于执行上述网络设备所执行的功能或操作等。
在图12所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。处理器1220利用收发器1210收发数据和/或信令,并用于实现上述方法实施例中图5和图10上述的相应的方法。
可选的,通信装置120还可以包括一个或多个存储器1230,用于存储程序指令和/或数据。存储器1230和处理器1220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1220可能和存储器1230协同操作。处理器1220可能执行存储器1230中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1210、处理器1220以及存储器1230之间的具体连接介质。本申请实施例在图12中以存储器1230、处理器1220以及收发器1210之间通过总线1240连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。上述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
可理解,在图12所示的通信装置为终端设备时,终端设备还可以具有比图12更多的元器件,例如,图12所示的终端设备还可以包括天线等,本申请实施例对此不作限定。
可理解,在图12所示的通信装置为网络设备时,网络设备还可以具有比图12更多的元器件等,本申请实施例对此不作限定。
可理解,以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,上述通信装置可以为终端设备中的电路系统。在该情况下,上述处理单元1102可以用处理电路实现,收发单元1101用接口电路实现。如图13所示,通信装置可以包括处理电路1302和接口电路1301。该处理电路1302可以为芯片、逻辑电路、集成电路、处理电路或片上系统(system on chip,SoC)芯片等,接口电路1301可以为通信接口、输入输出接口等。
在本申请实施例中,处理电路可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
可理解,以上所示的接口电路和处理电路所执行的方法仅为示例,对于该接口电路和处理电路具体所执行的步骤可参照上文介绍的方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法实施例中由终端设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法实施例中由终端设备 执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法实施例中由终端设备执行的操作和/或处理被实现。
本申请还提供一种无线通信系统,该无线通信系统包括本申请实施例中的网络设备和终端设备。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种预编码矩阵确定方法,其特征在于,包括:
    终端设备接收来自网络设备的第一预编码指示信息;
    所述终端设备从第一码本集合中确定所述第一预编码指示信息指示的第一预编码矩阵,所述第一预编码矩阵用于生成所述终端设备的天线端口上待发送的数据;
    其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数,所述第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据码本配置信息,确定相位集合,所述相位集合包括至少一个相位值,所述码本配置信息为所述终端设备预先配置的信息或者接收的来自所述网络设备的信息;
    所述终端设备根据所述相位集合,生成所述第一码本集合;所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备的天线端口数量为4时,所述第一码本集合中的一个预编码矩阵满足:
    Figure PCTCN2021103275-appb-100001
    其中,
    Figure PCTCN2021103275-appb-100002
    表示所述第一码本集合中的一个预编码矩阵,B,D∈{exp(jθ)},
    Figure PCTCN2021103275-appb-100003
    p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1和所述N 2均为大于1的整数。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一码本集合为4天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第二码本集合确定的码本集合,所述第二码本集合为2天线端口对应的码本集合,所述第二码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
  5. 根据权利要求1或2所述的方法,其特征在于,所述终端设备的天线端口数量为8时,所述第一码本集合中的一个预编码矩阵满足:
    Figure PCTCN2021103275-appb-100004
    其中,
    Figure PCTCN2021103275-appb-100005
    表示所述第一码本集合中的一个预编码矩阵,B,D,E,F∈{exp(jθ)},
    Figure PCTCN2021103275-appb-100006
    Figure PCTCN2021103275-appb-100007
    p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1、所述N 2、所述N 3、所述N 4均为大于1的整数。
  6. 根据权利要求1、2或5所述的方法,其特征在于,所述第一码本集合为8天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第三码本集合确定的码本集合,所述第三码本集合为4天线端口对应的码本集合或者2天线端口对应的码本集合,所述第三码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
  7. 根据权利要求2至6任一项所述的方法,其特征在于,所述码本配置信息包括相位量化值,所述相位量化值用于确定所述相位集合,所述相位量化值与所述第一码本集合的精度正相关。
  8. 一种预编码矩阵确定方法,其特征在于,包括:
    网络设备从第一码本集合中确定终端设备进行上行传输待采用的第一预编码矩阵;所述第一预编码矩阵用于生成所述终端设备的天线端口上待发送的数据,其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数,所述第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数;
    所述网络设备向所述终端设备发送第一预编码指示信息;所述第一预编码指示信息指示所述第一码本集合中的所述第一预编码矩阵。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送码本配置信息;所述码本配置信息用于所述终端设备确定包括至少一个相位值的相位集合,所述相位集合用于生成所述第一码本集合,所述 相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
  10. 根据权利要求8或9所述的方法,其特征在于,所述终端设备的天线端口数量为4时,所述第一码本集合中的一个预编码矩阵满足:
    Figure PCTCN2021103275-appb-100008
    其中,
    Figure PCTCN2021103275-appb-100009
    表示所述第一码本集合中的一个预编码矩阵,B,D∈{exp(jθ)},
    Figure PCTCN2021103275-appb-100010
    p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1和所述N 2均为大于1的整数。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述第一码本集合为4天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第二码本集合确定的码本集合,所述第二码本集合为2天线端口对应的码本集合,所述第二码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
  12. 根据权利要求8或9所述的方法,其特征在于,所述终端设备的天线端口数量为8时,所述第一码本集合中的一个预编码矩阵满足:
    Figure PCTCN2021103275-appb-100011
    其中,
    Figure PCTCN2021103275-appb-100012
    表示所述第一码本集合中的一个预编码矩阵,B,D,E,F∈{exp(jθ)},
    Figure PCTCN2021103275-appb-100013
    Figure PCTCN2021103275-appb-100014
    p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1、所述N 2、所述N 3、所述N 4均为大于1的整数。
  13. 根据权利要求8、9或12所述的方法,其特征在于,所述第一码本集合为8天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第三码本集合确定的码本集合,所述第三码本集合为4天线端口对应的码本集合或2天线端口对应的码本集合,所述第三 码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
  14. 根据权利要求9至13任一项所述的方法,其特征在于,所述码本配置信息包括相位量化值,所述相位量化值用于确定所述相位集合,所述相位量化值与所述第一码本集合的精度正相关。
  15. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一预编码指示信息;
    处理单元,用于从第一码本集合中确定所述第一预编码指示信息指示的第一预编码矩阵,所述第一预编码矩阵用于生成所述终端设备的天线端口待发送的数据;
    其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数,所述第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数。
  16. 根据权利要求15所述的通信装置,其特征在于,
    所述处理单元,还用于根据码本配置信息,确定相位集合,所述相位集合包括至少一个相位值,所述码本配置信息为所述终端设备预先配置的信息或者接收的来自所述网络设备的信息;根据所述相位集合,生成所述第一码本集合;所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
  17. 根据权利要求15或16所述的通信装置,其特征在于,天线端口数量为4时,所述第一码本集合中的一个预编码矩阵满足:
    Figure PCTCN2021103275-appb-100015
    其中,
    Figure PCTCN2021103275-appb-100016
    表示所述第一码本集合中的一个预编码矩阵,所述第一码本集合的秩为1;
    Figure PCTCN2021103275-appb-100017
    p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1和所述N 2均为大于1的整数。
  18. 根据权利要求15至17任一项所述的通信装置,其特征在于,所述第一码本集合为4天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第二码本集合确定的码本集合,所述第二码本集合为2天线端口对应的码本集合,所述第二码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
  19. 根据权利要求15或16所述的通信装置,其特征在于,天线端口数量为8时,所述第一码本集合中的一个预编码矩阵满足:
    Figure PCTCN2021103275-appb-100018
    其中,
    Figure PCTCN2021103275-appb-100019
    表示所述第一码本集合中的一个预编码矩阵,B,D,E,F∈{exp(jθ)},
    Figure PCTCN2021103275-appb-100020
    Figure PCTCN2021103275-appb-100021
    p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1、所述N 2、所述N 3、所述N 4均为大于1的整数。
  20. 根据权利要求15、16或19所述的通信装置,其特征在于,所述第一码本集合为8天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第三码本集合确定的码本集合,所述第三码本集合为4天线端口对应的码本集合或2天线端口对应的码本集合,所述第三码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
  21. 根据权利要求15至20任一项所述的通信装置,其特征在于,所述码本配置信息包括相位量化值,所述相位量化值用于确定所述相位集合,所述相位量化值与所述第一码本集合的精度正相关。
  22. 一种通信装置,其特征在于,包括:
    处理单元,用于从第一码本集合中确定终端设备进行上行传输待采用的第一预编码矩阵;所述第一预编码矩阵用于生成所述终端设备的天线端口待发送的数据,其中,所述第一码本集合包括所述第一预编码矩阵,第二预编码矩阵和第三预编码矩阵;所述第一预编码矩阵中第一位置的元素等于以自然常数为底以第一值为指数的幂运算的值,所述第二预编码矩阵中所述第一位置的元素等于以自然常数为底以第二值为指数的幂运算的值,第三预编码矩阵中所述第一位置的元素等于以自然常数为底以第三值为指数的幂运算的值,所述第一值、所述第二值以及所述第三值为不同的纯虚数,所述第一预编码矩阵中的至少一个元素为实部和虚部均不为零的复数;
    收发单元,用于向所述终端设备发送第一预编码指示信息;所述第一预编码指示信息指示所述第一码本集合中的所述第一预编码矩阵。
  23. 根据权利要求22所述的通信装置,其特征在于,
    所述收发单元,还用于向所述终端设备发送码本配置信息;所述码本配置信息用于所 述终端设备确定包括至少一个相位值的相位集合,所述相位集合用于生成所述第一码本集合,所述相位集合中任一相位值对应所述第一码本集合中的一个预编码矩阵。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述终端设备的天线端口数量为4时,所述第一码本集合中的一个预编码矩阵满足:
    Figure PCTCN2021103275-appb-100022
    其中,
    Figure PCTCN2021103275-appb-100023
    表示所述第一码本集合中的一个预编码矩阵,B,D∈{exp(jθ)},
    Figure PCTCN2021103275-appb-100024
    p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1和所述N 2均为大于1的整数。
  25. 根据权利要求22至24任一项所述的通信装置,其特征在于,所述第一码本集合为4天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第二码本集合确定的码本集合,所述第二码本集合为2天线端口对应的码本集合,所述第二码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
  26. 根据权利要求22或23所述的通信装置,其特征在于,所述终端设备的天线端口数量为8时,所述第一码本集合中的一个预编码矩阵满足:
    Figure PCTCN2021103275-appb-100025
    其中,
    Figure PCTCN2021103275-appb-100026
    表示所述第一码本集合中的一个预编码矩阵,B,D,E,F∈{exp(jθ)},
    Figure PCTCN2021103275-appb-100027
    Figure PCTCN2021103275-appb-100028
    p为所述预编码矩阵的行数,q为所述预编码矩阵的列数,所述N 1、所述N 2、所述N 3、所述N 4均为大于1的整数。
  27. 根据权利要求22、23或26所述的通信装置,其特征在于,所述第一码本集合为8天线端口对应的码本集合,所述第一码本集合为所述终端设备根据第三码本集合确定的码 本集合,所述第三码本集合为4天线端口对应的码本集合或2天线端口对应的码本集合,所述第三码本集合中的任一预编码矩阵为所述第一码本集合中至少一个预编码矩阵的子矩阵。
  28. 根据权利要求22至27任一项所述的通信装置,其特征在于,所述码本配置信息包括相位量化值,所述相位量化值用于确定所述相位集合,所述相位量化值与所述第一码本集合的精度正相关。
  29. 一种通信装置,其特征在于,包括:处理器,用于执行存储器中存储的程序,当所述程序被执行时,使得所述通信装置执行如权利要求1-7任一项所述的方法。
  30. 一种通信装置,其特征在于,包括:处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的程序,当所述程序被运行时,使得所述通信装置执行如权利要求8-14任一项所述的方法。
  31. 一种计算机可读存储介质,存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1-7任意一项所述的方法。
  32. 一种计算机可读存储介质,存储有指令,当其在计算机上运行时,使得计算机执行如权利要求8-14任意一项所述的方法。
PCT/CN2021/103275 2020-06-29 2021-06-29 预编码矩阵确定方法及装置 WO2022002079A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21833956.2A EP4167497A4 (en) 2020-06-29 2021-06-29 METHOD AND APPARATUS FOR DETERMINING PRECODING MATRIX
US18/146,519 US20230170952A1 (en) 2020-06-29 2022-12-27 Precoding matrix determining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010605251.8 2020-06-29
CN202010605251.8A CN113938169B (zh) 2020-06-29 2020-06-29 预编码矩阵确定方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/146,519 Continuation US20230170952A1 (en) 2020-06-29 2022-12-27 Precoding matrix determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2022002079A1 true WO2022002079A1 (zh) 2022-01-06

Family

ID=79272909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103275 WO2022002079A1 (zh) 2020-06-29 2021-06-29 预编码矩阵确定方法及装置

Country Status (4)

Country Link
US (1) US20230170952A1 (zh)
EP (1) EP4167497A4 (zh)
CN (1) CN113938169B (zh)
WO (1) WO2022002079A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151592A1 (zh) * 2022-02-09 2023-08-17 维沃移动通信有限公司 预编码的确定方法、装置、设备及可读存储介质
WO2023184434A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 基于码本的上行信道发送方法及装置
WO2024045804A1 (zh) * 2022-08-30 2024-03-07 华为技术有限公司 通信方法、装置、系统、存储介质及计算机程序产品
WO2024073917A1 (en) * 2022-11-06 2024-04-11 Lenovo (Beijing) Ltd. Robust codebook for fully coherent ue with eight antenna ports

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667893A (zh) * 2022-02-17 2023-08-29 北京紫光展锐通信技术有限公司 上行预编码矩阵确定方法及通信装置
WO2023168604A1 (zh) * 2022-03-08 2023-09-14 Oppo广东移动通信有限公司 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2024077448A1 (zh) * 2022-10-10 2024-04-18 华为技术有限公司 通信方法、装置、芯片系统、存储介质及计算机程序产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107646173A (zh) * 2015-05-22 2018-01-30 摩托罗拉移动有限责任公司 利用耦合天线优化天线预编码器选择的方法和装置
CN109787668A (zh) * 2017-11-15 2019-05-21 华为技术有限公司 通信方法、通信装置和系统
CN109803419A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种通信方法、终端及基站
US20200044700A1 (en) * 2013-04-15 2020-02-06 Huawei Technologies Co.,Ltd. Method for reporting channel state information, user equipment, and base station
US10680686B2 (en) * 2013-11-27 2020-06-09 Lg Electronics Inc. Operation for 3D beam forming in a wireless communication system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070113967A (ko) * 2006-05-26 2007-11-29 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
CN103795450B (zh) * 2012-10-29 2017-10-31 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
EP3340715A4 (en) * 2015-09-24 2018-08-22 Huawei Technologies Co., Ltd. Downlink control signaling transmission method and device
CN108282196B (zh) * 2017-01-05 2020-11-03 华为技术有限公司 指示、确定预编码矩阵的方法以及接收、发射端设备
WO2018143667A1 (ko) * 2017-01-31 2018-08-09 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보를 주기적으로 송신하는 방법 및 이를 위한 장치
CN107911151A (zh) * 2017-05-25 2018-04-13 北京邮电大学 一种多天线编码调制方法和装置
CN114448477A (zh) * 2017-06-16 2022-05-06 华为技术有限公司 通信方法、通信装置和系统
CN109936396B (zh) * 2017-12-15 2022-05-06 华为技术有限公司 多天线系统中预编码的方法及装置
CN111713054B (zh) * 2018-02-14 2021-12-03 华为技术有限公司 通信方法、通信装置和系统
CN110601733B (zh) * 2018-06-12 2021-01-15 华为技术有限公司 预编码矩阵的配置方法、装置及计算机可读存储介质
US10651905B1 (en) * 2018-11-21 2020-05-12 Samsung Electronics Co., Ltd Eigenvalue decomposition precoding matrix index selection
CN110166087B (zh) * 2019-05-13 2020-10-27 东南大学 Iq失衡下导频复用大规模mimo-ofdm无线通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200044700A1 (en) * 2013-04-15 2020-02-06 Huawei Technologies Co.,Ltd. Method for reporting channel state information, user equipment, and base station
US10680686B2 (en) * 2013-11-27 2020-06-09 Lg Electronics Inc. Operation for 3D beam forming in a wireless communication system
CN107646173A (zh) * 2015-05-22 2018-01-30 摩托罗拉移动有限责任公司 利用耦合天线优化天线预编码器选择的方法和装置
CN109787668A (zh) * 2017-11-15 2019-05-21 华为技术有限公司 通信方法、通信装置和系统
CN109803419A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种通信方法、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167497A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151592A1 (zh) * 2022-02-09 2023-08-17 维沃移动通信有限公司 预编码的确定方法、装置、设备及可读存储介质
WO2023184434A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 基于码本的上行信道发送方法及装置
WO2024045804A1 (zh) * 2022-08-30 2024-03-07 华为技术有限公司 通信方法、装置、系统、存储介质及计算机程序产品
WO2024073917A1 (en) * 2022-11-06 2024-04-11 Lenovo (Beijing) Ltd. Robust codebook for fully coherent ue with eight antenna ports

Also Published As

Publication number Publication date
EP4167497A4 (en) 2023-12-06
CN113938169A (zh) 2022-01-14
EP4167497A1 (en) 2023-04-19
CN113938169B (zh) 2023-09-22
US20230170952A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2022002079A1 (zh) 预编码矩阵确定方法及装置
US11671154B2 (en) Methods and devices for determining precoder parameters in a wireless communication network
US20200014455A1 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
EP3504854B1 (en) System and method for transmitting a sub-space selection
CN110036570B (zh) 基于码本的上行链路传输方法及用户设备
WO2019096071A1 (zh) 通信方法、通信装置和系统
CN112039566B (zh) 确定预编码矩阵指示的方法、用户设备和基站
CN108616299B (zh) 确定预编码矩阵指示的方法、用户设备和基站
CN113746573B (zh) 一种信道测量方法及装置
US20140254517A1 (en) Method for multi-input multi-output communication in large-scale antenna system
CN111342873A (zh) 一种信道测量方法和通信装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
CN111342913A (zh) 一种信道测量方法和通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2023160247A1 (zh) 下行传输的方法及装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2023175025A2 (en) Csi reporting for 5g nr systems
EP4274112A1 (en) Channel state information feedback method and communication apparatus
EP4106246A1 (en) Channel state information feedback method and communication apparatus
EP4311121A1 (en) Information transmission method and apparatus
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置
WO2023011436A1 (zh) 通信处理方法和通信处理装置
WO2022227976A1 (zh) 通信方法和通信装置
WO2024109633A1 (zh) 信道状态信息发送方法、信道状态信息接收方法和装置
WO2020164387A1 (zh) 指示和确定预编码向量的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021833956

Country of ref document: EP

Effective date: 20230116

NENP Non-entry into the national phase

Ref country code: DE