WO2022227976A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2022227976A1
WO2022227976A1 PCT/CN2022/083305 CN2022083305W WO2022227976A1 WO 2022227976 A1 WO2022227976 A1 WO 2022227976A1 CN 2022083305 W CN2022083305 W CN 2022083305W WO 2022227976 A1 WO2022227976 A1 WO 2022227976A1
Authority
WO
WIPO (PCT)
Prior art keywords
weighting coefficient
weighting
layer
layers
normalization
Prior art date
Application number
PCT/CN2022/083305
Other languages
English (en)
French (fr)
Inventor
葛士斌
陈镇源
王潇涵
于弋川
庞继勇
蔡华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22794449.3A priority Critical patent/EP4325731A1/en
Publication of WO2022227976A1 publication Critical patent/WO2022227976A1/zh
Priority to US18/496,386 priority patent/US20240056139A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling

Definitions

  • the present application relates to the field of communication, and more particularly, to a communication method and a communication device.
  • Massive MIMO massive multiple-input multiple-output
  • the network device needs to know the accurate channel state information (CSI) feedback information, and reduce the interference between multiple users and/or the interference between multiple signal streams of the same user through precoding. interference between.
  • CSI channel state information
  • Massive MIMO multiple layers can be transmitted to a user through space division multiplexing.
  • FDD frequency division duplexing
  • the user needs to feed back the CSI corresponding to multiple layers and report it to the network device.
  • the uplink and downlink channels are not completely reciprocal. Therefore, in order to realize multi-stream transmission, how to obtain accurate downlink channel state information based on partial reciprocity between uplink and downlink channels is an urgent technical problem to be solved.
  • the present application provides a communication method and a communication device, which can utilize partial reciprocity between uplink and downlink channels to obtain accurate downlink channel state information, thereby realizing multi-stream transmission and improving system transmission performance.
  • a communication method is provided, and the method can be executed by a terminal device, or can also be executed by a chip or circuit used for the terminal device, which is not limited in this application.
  • the following description is given by taking the execution by a terminal device as an example.
  • the method includes: receiving first information, where the first information is used to indicate the first grouping configuration information and/or the second grouping configuration information, where the first grouping configuration information is used to indicate the distance between the P reference signal ports and the Z layers
  • the second grouping configuration information is used to indicate the correspondence between the N frequency domain basis vectors and the Z layers, wherein P, N and Z are all positive integers greater than or equal to 1;
  • a precoding matrix indicator precoding matrix indicator, PMI) corresponding to the Z layers, where the PMI is determined according to the first information.
  • the PMI is determined according to the first information, and it can be understood that the PMI is determined according to the ports and/or frequency domain vectors corresponding to the Z layers indicated by the first message.
  • the terminal device can learn the correspondence between the P reference signal ports and/or the N frequency domain base vectors and the Z layers by receiving the first grouping configuration information and/or the second grouping configuration information , so that the precoding matrix indication of each of the Z layers can be determined in a targeted manner according to the first grouping configuration information and/or the second grouping configuration information.
  • the method can not only reduce the unnecessary computational complexity caused by some layers, reduce the power consumption of the terminal device, but also obtain the accurate channel state information of the Z layers, thereby improving the transmission performance of the system.
  • a communication method is provided, and the method can be executed by a network device, or can also be executed by a chip or circuit used for the network device, which is not limited in this application.
  • the following description is given by taking the execution by a network device as an example.
  • the method includes: sending first information, where the first information is used to indicate first grouping configuration information and/or second grouping configuration information, where the first grouping configuration information is used to indicate the distance between the P reference signal ports and the Z layers
  • the second grouping configuration information is used to indicate the corresponding relationship between the N frequency domain basis vectors and the Z layers, where P, N and Z are all positive integers greater than or equal to 1;
  • the precoding matrices corresponding to the Z layers indicate the PMI, and the PMI is determined according to the first information.
  • the network device can learn the correspondence between the P reference signal ports and/or the N frequency domain base vectors and the Z layers by sending the first grouping configuration information and/or the second grouping configuration information , so that the precoding matrix indication of each of the Z layers can be determined in a targeted manner according to the first grouping configuration information and/or the second grouping configuration information.
  • the method can not only reduce the unnecessary computational complexity caused by some layers, reduce the power consumption of the terminal device, but also obtain the accurate channel state information of the Z layers, thereby improving the transmission performance of the system.
  • each of the Z layers corresponds to one or more of the P reference signal ports.
  • the implementation may take two layers as an example, and the first grouping configuration information may be used to indicate the correspondence between the 16 CSI-RS ports and the two layers, that is, the first layer corresponds to the port. 1 to port 8, the second layer corresponds to port 9 to port 16; or the first layer corresponds to port 1 to port 4, the second layer corresponds to port 9 to port 10 and so on.
  • This implementation shows that the ports corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated port grouping configuration information.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to improve the operating efficiency and transmission performance of the system.
  • the first layer corresponds to ports 1 to 10
  • the second layer corresponds to ports 5 to 16 .
  • This implementation not only indicates that the first layer and the second layer have their own dedicated port grouping configuration information, for example, ports 1 to 4 only correspond to the first layer, and ports 11 to 16 only correspond to the second layer; it also indicates that The first and second layers also have common port grouping configuration information, such as port 5 to port 10.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby reducing the power consumption of the terminal.
  • the channel state information of the two layers can be accurately acquired, thereby improving the operating efficiency and transmission performance of the system.
  • both the first and second layers correspond to ports 1 to 16 .
  • This implementation indicates that the first layer and the second layer have only common port grouping configuration information.
  • the terminal device can indiscriminately calculate the PMI indicated by the precoding matrix based on the shared ports corresponding to the first layer and the second layer, so as to improve the system transmission performance.
  • the implementation may take three layers as an example, and the first grouping configuration information is also used to indicate the correspondence between the 16 CSI-RS ports and the three layers, that is, the first layer corresponds to the port. 1 to port 5, the second layer corresponds to port 6 to port 12, the third layer corresponds to port 13 to port 16; or the first layer corresponds to port 1 to port 3, the second layer corresponds to port 6 To port 10, this third layer corresponds to port 12 to port 15 and so on.
  • This implementation shows that the ports corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated port grouping configuration information. Based on the dedicated ports corresponding to the first layer, the second layer and the third layer, the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to improve the operating efficiency and transmission performance of the system.
  • the first layer corresponds to port 1 to port 7
  • the second layer corresponds to port 5 to port 6, port 8 to port 11, and port 12
  • the third layer corresponds to port 6 to port 7, port 12 to port 16.
  • the first layer, the second layer and the third layer have their own dedicated port grouping configuration information, for example, ports 1 to 4 only correspond to the first layer, and ports 8 to 11 only correspond to the second layer.
  • layer, port 13 to port 16 only correspond to the third layer; it also indicates that the first layer, the second layer and the third layer also have common port grouping configuration information, such as port 6.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to reduce the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common ports corresponding to the first layer, the second layer and the third layer, thereby improving the operating efficiency and transmission performance of the system.
  • port 5 can also be understood as the port grouping configuration information dedicated to the first and second layers; with respect to the second layer, port 7 can also be understood as It is understood as the specific port grouping configuration information of the first layer and the third layer; compared with the first layer, the port 12 can also be understood as the specific port grouping configuration information of the second layer and the third layer.
  • the first layer, the second layer and the third layer all correspond to ports 1 to 16 .
  • This implementation indicates that the first layer, the second layer and the third layer only have common port grouping configuration information.
  • the terminal device can indiscriminately calculate the PMI indicated by the precoding matrix based on the common ports corresponding to the first layer, the second layer and the third layer, so as to improve the transmission performance of the system.
  • the ports corresponding to at least two of the Z layers are not identical.
  • this implementation may take three layers as an example, the first layer corresponds to port 1 to port 7, the second layer corresponds to port 1 to port 6, port 8 to port 11, and port 12, and the third layer corresponds to from port 6 to port 7 and port 12 to port 16.
  • This implementation shows that the ports corresponding to the three layers are not completely the same.
  • the first layer corresponds to port 1 to port 10
  • the second layer and the third layer both correspond to port 6 to port 16.
  • This implementation indicates that the ports corresponding to the first layer and the second layer, and the ports corresponding to the first layer and the third layer are not identical, and so on.
  • the terminal device can perform calculation of the PMI indicated by the precoding matrix in a targeted manner based on the dedicated ports corresponding to the three layers, thereby reducing the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common ports corresponding to the first layer, the second layer and the third layer, thereby improving the operating efficiency and transmission performance of the system.
  • each of the Z layers corresponds to one or more of the N frequency-domain basis vectors.
  • frequency domain basis vector can be:
  • the implementation may take two layers as an example, and the second grouping configuration information may be used to indicate the correspondence between the three frequency domain basis vectors and the two layers, that is, the first layer corresponds to the frequency domain. Domain basis vector 1 and frequency domain basis vector 2, the second layer corresponds to frequency domain basis vector 3; or the first layer corresponds to frequency domain basis vector 1, the second layer corresponds to frequency domain basis vector 3 and so on.
  • This implementation shows that the frequency domain basis vectors corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated frequency domain basis vector grouping configuration information. Based on the dedicated frequency domain basis vectors corresponding to the first layer and the second layer, the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby improving the operating efficiency and transmission performance of the system.
  • the first layer corresponds to frequency domain basis vector 1 and frequency domain basis vector 2
  • the second layer corresponds to frequency domain basis vector 2 and frequency domain basis vector 3.
  • This implementation not only indicates that the first layer and the second layer have their own dedicated frequency domain basis vector grouping configuration information, for example, frequency domain basis vector 1 only corresponds to the first layer, and frequency domain basis vector 3 only corresponds to the second layer. layer; it also indicates that the first layer and the second layer also share the common grouping configuration information of the frequency domain basis vector, such as frequency domain basis vector 2.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby reducing the power consumption of the terminal.
  • the channel state information of the two layers can be accurately acquired based on the common frequency domain basis vectors corresponding to the first layer and the second layer, thereby improving the operating efficiency and transmission performance of the system.
  • both the first layer and the second layer correspond to frequency domain basis vector 1 to frequency domain basis vector 3 .
  • This implementation indicates that the first layer and the second layer only have common frequency domain basis vector grouping configuration information.
  • the terminal device can perform the calculation of the precoding matrix indication PMI based on the common frequency domain base vectors corresponding to the first layer and the second layer indiscriminately, so as to improve the transmission performance of the system.
  • the implementation may take three layers as an example, and the second grouping configuration information is also used to indicate the correspondence between the eight frequency-domain basis vectors and the three layers, that is, the first layer corresponds to the frequency domain.
  • domain basis vector 1 to frequency domain basis vector 3 the second layer corresponds to frequency domain basis vector 4 to frequency domain basis vector 6
  • the third layer corresponds to frequency domain basis vector 7 and frequency domain basis vector 8
  • the third layer corresponds to frequency domain basis vector 7 and frequency domain basis vector 8
  • One layer corresponds to frequency domain basis vector 1 and frequency domain basis vector 2
  • the second layer corresponds to frequency domain basis vector 4 and frequency domain basis vector 5
  • the third layer corresponds to frequency domain basis vector 7 and frequency domain basis vector 8 and so on.
  • This implementation shows that the frequency domain basis vectors corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated frequency domain basis vector grouping configuration information. Based on the dedicated frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to improve the operating efficiency and transmission performance of the system.
  • the first layer corresponds to frequency domain basis vector 1 to frequency domain basis vector 4
  • the second layer corresponds to frequency domain basis vector 2, frequency domain basis vector 3, frequency domain basis vector 5 and frequency domain basis vector 6.
  • the third layer corresponds to frequency domain basis vector 3 to frequency domain basis vector 5, frequency domain basis vector 7 and frequency domain basis vector 8.
  • the frequency domain basis vector 7 and the frequency domain basis vector 8 only correspond to the third layer; it also indicates that the first layer, the second layer and the third layer also have common port grouping configuration information, such as the frequency domain basis vector 3.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby reducing the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, thereby improving the system operation efficiency and transmission performance.
  • the frequency domain basis vector 2 can also be understood as the dedicated frequency domain basis vector grouping configuration information of the first layer and the second layer;
  • the frequency domain basis vector 4 can also be understood as the dedicated frequency domain basis vector grouping configuration information of the first and third layers; relative to the first layer, the frequency domain basis vector 5 can also be understood as the second layer and Layer 3-specific frequency-domain basis vector grouping configuration information.
  • the first layer, the second layer and the third layer all correspond to the frequency domain basis vector 1 to the frequency domain basis vector 3 .
  • This implementation indicates that the first layer, the second layer and the third layer only have common frequency domain base vector grouping configuration information.
  • the terminal device can indiscriminately calculate the precoding matrix indication PMI based on the common frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, so as to improve the system transmission performance.
  • the frequency domain basis vectors corresponding to at least two of the Z layers are not identical.
  • this implementation may take three layers as an example, the first layer corresponds to the frequency domain basis vector 1 to the frequency domain basis vector 4, and the second layer corresponds to the frequency domain basis vector 2 and the frequency domain basis vector 3. , frequency domain basis vector 5 and frequency domain basis vector 6, the third layer corresponds to frequency domain basis vector 3 to frequency domain basis vector 5, frequency domain basis vector 7 and frequency domain basis vector 8.
  • This implementation shows that the frequency domain basis vectors corresponding to the three layers are not identical.
  • the first layer corresponds to frequency domain basis vector 1 to frequency domain basis vector 6
  • both the second layer and the third layer correspond to frequency domain basis vector 4 to frequency domain basis vector 8 .
  • This implementation shows that the frequency domain basis vectors corresponding to the first layer and the second layer, and the frequency domain basis vectors corresponding to the first layer and the third layer are not identical, and so on.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner based on the dedicated frequency domain basis vectors corresponding to the three layers, thereby reducing the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, thereby improving the system operation efficiency and transmission performance.
  • the first grouping configuration information and/or the second grouping configuration information is carried in at least one of the following signaling: radio resource control (radio resource control, RRC), media access control-control element (media access control-control element, MAC CE), downlink control information (downlink control information, DCI); or the first grouping configuration information and/or the second grouping configuration information is
  • RRC radio resource control
  • media access control-control element media access control-control element
  • MAC CE media access control-control element
  • DCI downlink control information
  • the protocol is predefined.
  • the codebook structure of the PMI feedback satisfies:
  • W 1 is the port selection matrix
  • W f is the frequency domain basis vector matrix
  • the W 1 is the port selection matrix specific to each of the Z layers
  • the W f is the frequency domain specific to each of the Z layers basis vector matrix.
  • W f is a matrix of frequency domain basis vectors, wherein the frequency domain basis vectors can be selected from the set of frequency domain vectors indicated by the base station.
  • W 1 is a port selection matrix, and the UE can select K 1 CSI-RS ports from the P CSI-RS ports through the combination number or Bitmap.
  • the UE may indicate the non-zero coefficients reported by the bitmap.
  • Mv>1 it can be expressed that the CSI information reported by the UE does not include bitmap overhead; when Mv>1, the UE uses bitmap to indicate the reported non-zero coefficients.
  • the bitmap overhead is included in the CSI information reported by the UE.
  • the CSI-RS ports corresponding to the first layer are ports 1 to 10
  • the CSI-RS ports corresponding to the second layer are ports 8 to 16
  • W 1 of the first layer is Port selection matrix corresponding to ports 1 to 10
  • W 1 of the second layer is the port selection matrix corresponding to ports 8 to 16. That is, the port selection matrices W1 corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated port grouping configuration information.
  • the CSI-RS ports corresponding to the first layer are ports 1 to 8
  • the CSI-RS ports corresponding to the second layer are ports 6 to 12
  • the CSI-RS ports corresponding to the third layer are The ports are ports 10 to 16, then W1 of the first layer is the port selection matrix corresponding to ports 1 to 8, W1 of the second layer is the port selection matrix corresponding to ports 6 to 12, and W1 of the third layer is the port selection matrix 10 to 16 correspond to the port selection matrix. That is, the port selection matrices W1 corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated port grouping configuration information.
  • W 1 indicates that one or more reference signal ports only correspond to one of the Z layers, which is completely different from the port selection matrix W 1 corresponding to other Z-1 layers. .
  • the frequency domain basis vector matrix of the first layer corresponds to frequency domain basis vectors 1 and 2
  • the frequency domain basis vector matrix of the second layer corresponds to frequency domain basis vectors 1 and 3
  • the first The W f of the first layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 1 and 2
  • the W f of the second layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 1 and 3. That is, the frequency-domain basis vector matrices W f corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated frequency-domain basis vector grouping configuration information.
  • the frequency domain basis vector matrix of the first layer corresponds to frequency domain basis vectors 1 to 3
  • the frequency domain basis vector matrix of the second layer corresponds to frequency domain basis vectors 2 to 4
  • the third layer corresponds to frequency domain basis vectors 2 to 4.
  • the frequency domain basis vector matrix of the layer corresponds to the frequency domain basis vectors 5 and 6
  • the W f of the first layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 1 to 3
  • the W f of the second layer is the frequency domain basis vector
  • the W f of the third layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 5 and 6. That is, the end frequency domain basis vector matrices W f corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated frequency domain basis vector grouping configuration information.
  • W f represents that one or more frequency domain basis vectors only correspond to a certain layer in the Z layers, and the frequency domain basis vector matrix W corresponding to other Z-1 layers f is completely different.
  • the first grouping configuration information and/or the second grouping configuration information is determined based on K angle delay pairs of uplink channel information, where K is greater than or A positive integer equal to 1.
  • each angle delay pair in the K angle delay pairs includes an angle vector and a delay vector
  • the P reference signal ports correspond to the K angle delay pairs
  • the P reference signal ports correspond to the K angle delay pairs.
  • the reference signal of each reference signal port in the signal port is obtained by precoding the reference signal based on an angle vector and a delay vector.
  • the N frequency domain base vectors correspond to the K angle delay pairs
  • the N frequency domain base vectors correspond to the K angle delay pairs.
  • the reference signal of each frequency domain base vector in the base vector is obtained by precoding the reference signal based on an angle vector and a delay vector.
  • a communication method is provided, and the method can be executed by a terminal device, or can also be executed by a chip or circuit used for the terminal device, which is not limited in this application.
  • the following description is given by taking the execution by a terminal device as an example.
  • the method includes: generating first indication information, where the first indication information is used to indicate the quantization information of the jointly normalized M weighting coefficient sets, where each weighting coefficient set in the M weighting coefficient sets is determined by a reference signal,
  • the M weighting coefficient sets are in one-to-one correspondence with the M layers, where M is a positive integer greater than or equal to 2; the first indication information is sent.
  • the terminal device can generate the first indication information for indicating the quantization information of the joint normalization of the M weighting coefficient sets corresponding to the M layers, and feed back the first indication information to the network device, so as to be able to Get the power difference between M layers. And based on the power difference between the M layers, the power between the M layers can be effectively controlled, and the system performance gain can be improved.
  • joint normalization may refer to normalizing all the weighting coefficients in the M weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set; or It can refer to normalizing the weighting coefficient with the largest modulus value in the other M-1 weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set, and then using the M-1 weighting coefficient set respectively.
  • the weighting coefficient with the largest modulus value in each weighting coefficient set is the reference, and all the weighting coefficients in the respective weighting coefficient sets are normalized.
  • joint normalization is to quantify and normalize the M weighting coefficient sets jointly with a certain weighting coefficient set as a reference.
  • the reference weighting coefficient may be the weighting coefficient with the largest modulus value in the corresponding weighting coefficient set, or may be any weighting coefficient in the corresponding weighting coefficient set.
  • the quantization information in this application may be a specific quantized value, such as a quantized value of amplitude and phase.
  • all weighting coefficients in the M layers are normalized by taking the maximum modulus weighting coefficient C12 in the first weighting coefficient set corresponding to the first layer as a reference for joint quantization.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set. Then, the terminal device can finally report the quantized values of all the weighting coefficients in the M weighting coefficient sets, including the quantized value of the maximum modulo weighting coefficient C12 in the first weighting coefficient set.
  • the terminal device may also report the quantized index of a certain weighting coefficient, such as the position information or identification information of the weighting coefficient, etc.; exemplarily, the modulus value in the first weighting coefficient set corresponding to the first layer is the largest.
  • the weighting coefficient C12 is a reference for joint quantization, and all the weighting coefficients in the M layers are normalized.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set.
  • the terminal device can finally report the position information or index of the modulo maximum weighting coefficient C12 in the first weighting coefficient set, and report the quantized values of all weighting coefficients except the modulo maximum weighting coefficient C12.
  • pre-defined by the protocol that is, the network device and the terminal device prescribe and determine to use a certain weighting coefficient in a certain weighting coefficient set as the quantization reference, for example, use the first weighting coefficient set corresponding to the first layer.
  • the weighting coefficient C11 is the benchmark for joint quantization, so after the quantization is normalized, the terminal device does not need to report the quantization information and/or index of the weighting coefficient C11 again. This implementation can reduce signaling overhead and reduce the power consumption of the terminal. consumption.
  • each weighting coefficient set in the M weighting coefficient sets includes a plurality of weighting coefficients, and all of the M weighting coefficient sets in the M weighting coefficient sets are based on the first weighting coefficient.
  • the weighting coefficients are normalized to obtain the quantization information of the jointly normalized M weighting coefficient sets, the first weighting coefficient is the weighting coefficient in the Lth weighting coefficient set, and the Lth weighting coefficient set is the M weighting coefficient set Any one of the weighting coefficient sets, L is a positive integer; send a first message, where the first message is used to indicate the first weighting coefficient.
  • the first normalization is performed on the M-1 third weighting coefficients according to the second weighting coefficient, where the second weighting coefficient is in the Uth weighting coefficient set , the U-th weighting coefficient set corresponds to the u-th layer, and the third weighting coefficient is the M-1 weighting coefficient sets in the M weighting coefficient sets except the U-th weighting coefficient set Weighting coefficients in the coefficient set, the M-1 weighting coefficient set corresponds to the M-1 layers except the u-th layer in the M layers, U and u are both positive integers, and the u-th layer belongs to the M-th layer layer layer; perform second normalization on all the weighting coefficients in the U-th weighting coefficient set according to the second weighting coefficient, and perform a third normalization on all the weighting coefficients in the corresponding weighting coefficient set according to the third weighting coefficient Normalization; according to the first normalization, the second normalization and the third normalization, obtain the quantization information of the jointly normalized set of M
  • a fourth normalization is performed on the M-1 fifth weighting coefficients according to a fourth weighting coefficient, where the fourth weighting coefficient is in the Xth weighting coefficient set
  • the weighting coefficient of the Xth weighting coefficient set corresponds to the xth layer
  • the fifth weighting coefficient is the weighting coefficient set in the M-1 weighting coefficient set except the Xth weighting coefficient set in the M weighting coefficient set.
  • Weighting coefficients in the coefficient set corresponds to the M-1 layers except the xth layer in the M layers, X and x are both positive integers, and the xth layer belongs to M layer; perform fifth normalization on all the weighting coefficients in the Xth weighting coefficient set according to the fourth weighting coefficient; according to the fourth weighting coefficient and the fifth weighting coefficient, respectively, the weighting corresponding to the fifth weighting coefficient All weighting coefficients in the coefficient set are subjected to sixth normalization and seventh normalization; according to the fourth normalization, the fifth normalization, the sixth normalization and the seventh normalization, obtain Quantization information of the jointly normalized set of M weighting coefficients; sending a third message, where the third message is used to indicate the fourth weighting coefficient and the M-1 fifth weighting coefficients.
  • a communication method is provided, and the method can be executed by a network device, or can also be executed by a chip or circuit used for the network device, which is not limited in this application.
  • the following description is given by taking the execution by a network device as an example.
  • the method includes: receiving first indication information, where the first indication information is used to indicate the quantization information of the jointly normalized M weighting coefficient sets, where each weighting coefficient set in the M weighting coefficient sets is determined by a reference signal,
  • the M weighting coefficient sets are in one-to-one correspondence with the M layers, where M is a positive integer greater than or equal to 2; the power difference between the M layers is determined according to the first indication information.
  • the network device receives the first indication information, which is used to indicate the jointly normalized quantization information corresponding to the M weighting coefficient sets of the M layers, and can determine the M weighting coefficient sets according to the first indication information.
  • the power difference between the layers can be effectively controlled, and the power between the M layers can be effectively controlled, and the system performance gain can be improved.
  • joint normalization may refer to normalizing all the weighting coefficients in the M weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set; or It can refer to normalizing the weighting coefficient with the largest modulus value in the other M-1 weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set, and then using the M-1 weighting coefficient set respectively.
  • the weighting coefficient with the largest modulus value in each weighting coefficient set is the reference, and all the weighting coefficients in the respective weighting coefficient sets are normalized.
  • joint normalization is to quantify and normalize the M weighting coefficient sets jointly with a certain weighting coefficient set as a reference.
  • the reference weighting coefficient may be the weighting coefficient with the largest modulus value in the corresponding weighting coefficient set, or may be any weighting coefficient in the corresponding weighting coefficient set.
  • the quantization information in this application may be a specific quantized value, such as a quantized value of amplitude and phase.
  • all weighting coefficients in the M layers are normalized by taking the maximum modulus weighting coefficient C12 in the first weighting coefficient set corresponding to the first layer as a reference for joint quantization.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set. Then, the terminal device can finally report the quantized values of all the weighting coefficients in the M weighting coefficient sets, including the quantized value of the maximum modulo weighting coefficient C12 in the first weighting coefficient set.
  • the terminal device may also report the quantized index of a certain weighting coefficient, such as the position information or identification information of the weighting coefficient, etc.; exemplarily, the modulus value in the first weighting coefficient set corresponding to the first layer is the largest.
  • the weighting coefficient C12 is a reference for joint quantization, and all the weighting coefficients in the M layers are normalized.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set.
  • the terminal device can finally report the position information or index of the modulo maximum weighting coefficient C12 in the first weighting coefficient set, and report the quantized values of all weighting coefficients except the modulo maximum weighting coefficient C12.
  • pre-defined by the protocol that is, the network device and the terminal device prescribe and determine to use a certain weighting coefficient in a certain weighting coefficient set as the quantization reference, for example, use the first weighting coefficient set corresponding to the first layer.
  • the weighting coefficient C11 is the benchmark for joint quantization, so after the quantization is normalized, the terminal device does not need to report the quantization information and/or index of the weighting coefficient C11 again. This implementation can reduce signaling overhead and reduce the power consumption of the terminal. consumption.
  • each of the M weighting coefficient sets includes a plurality of weighting coefficients, and a first message is received, where the first message is used to indicate the first weighting coefficient, the first weighting coefficient is used to normalize all the weighting coefficients in the M weighting coefficient sets, the first weighting coefficient is the weighting coefficient in the Lth weighting coefficient set, the Lth weighting coefficient set is any one of the M weighting coefficient sets, and L is a positive integer.
  • the first weighting coefficient is a weighting coefficient with the largest modulus value in the Lth weighting coefficient set.
  • the Lth weighting coefficient set is determined by the terminal device; or the Lth weighting coefficient set is predefined by a protocol.
  • a second message is received, where the second message is used to indicate a second weighting coefficient and M-1 third weighting coefficients, the second weighting coefficients are used for The M-1 third weighting coefficients are subjected to first normalization, the second weighting coefficient is a weighting coefficient in the Uth weighting coefficient set, the Uth weighting coefficient set corresponds to the uth layer, and the third weighting coefficient
  • the coefficients are the weighting coefficients in each weighting coefficient set in the M-1 weighting coefficient sets except the U-th weighting coefficient set in the M weighting coefficient sets, and the M-1 weighting coefficient sets are the same as those in the M layers.
  • the M-1 layers except the u-th layer are in one-to-one correspondence, U and u are both positive integers, the u-th layer belongs to the M-th layer, and the second weighting coefficient is also used for all the U-th weighting coefficient sets in the set.
  • a second normalization is performed on the weighting coefficient, and the third weighting coefficient is used to perform a third normalization on all the weighting coefficients in the corresponding weighting coefficient set, the first normalization, the second normalization and the third normalization are performed.
  • the normalization is used to obtain the quantization information of the jointly normalized set of M weighting coefficients.
  • the second weighting coefficient is the weighting coefficient with the largest modulus value in the U-th weighting coefficient set
  • the third weighting coefficient is the M weighting coefficients Among the M-1 weighting coefficient sets except the U-th weighting coefficient set in the set, the weighting coefficient with the largest modulus value in each weighting coefficient set.
  • the Uth weighting coefficient set is determined by the terminal device; or the Uth weighting coefficient set is predefined by a protocol.
  • a third message is received, where the third message is used to indicate a fourth weighting coefficient and M-1 fifth weighting coefficients, and the fourth weighting coefficient is used for
  • the M-1 fifth weighting coefficients are subjected to fourth normalization, the fourth weighting coefficient is a weighting coefficient in the Xth weighting coefficient set, the Xth weighting coefficient set corresponds to the xth layer, and the fifth weighting coefficient
  • the coefficients are the weighting coefficients in each weighting coefficient set in M-1 weighting coefficient sets except for the Xth weighting coefficient set in the M weighting coefficient sets, and the M-1 weighting coefficient sets are the same as those in the M layers.
  • the M-1 layers except the xth layer are in one-to-one correspondence, X and x are both positive integers, the xth layer belongs to the M layers, and the fourth weighting coefficient is also used for all the Xth weighting coefficient sets in the set
  • the weighting coefficient is subjected to fifth normalization, and the fourth weighting coefficient and the fifth weighting coefficient are also used to respectively perform sixth normalization and seventh normalization on all the weighting coefficients in the weighting coefficient set corresponding to the fifth weighting coefficient.
  • the fourth normalization, the fifth normalization, the sixth normalization and the seventh normalization are used to obtain the quantization information of the jointly normalized set of M weighting coefficients.
  • the fourth weighting coefficient is the weighting coefficient with the largest modulus value in the Xth weighting coefficient set
  • the fifth weighting coefficient is the M weighting coefficients Among the M-1 weighting coefficient sets except the Xth weighting coefficient set in the coefficient set, the weighting coefficient with the largest modulus value in each weighting coefficient set.
  • the Xth weighting coefficient set is determined by the terminal device; or the Xth weighting coefficient set is predefined by a protocol.
  • the M weighting coefficient sets and their corresponding K angular delay pairs are used for the network device to construct a precoding matrix, and K is a positive integer greater than or equal to 1 .
  • each angle delay pair in the K angle delay pairs includes an angle vector and a delay vector.
  • a communication device comprising: a transceiver unit configured to receive first information, where the first information is used to indicate first grouping configuration information and/or second grouping configuration information, the first grouping configuration information It is used to indicate the correspondence between the P reference signal ports and the Z layers, and the second grouping configuration information is used to indicate the correspondence between the N frequency-domain basis vectors and the Z layers, where P, N and Z is a positive integer greater than or equal to 1; the transceiver unit is further configured to send a precoding matrix indication PMI corresponding to the Z layers, where the PMI is determined according to the first information.
  • a communication device comprising: a transceiver unit configured to send first information, where the first information is used to indicate first grouping configuration information and/or second grouping configuration information, the first grouping configuration information It is used to indicate the correspondence between the P reference signal ports and the Z layers, and the second grouping configuration information is used to indicate the correspondence between the N frequency-domain basis vectors and the Z layers, where P, N and Z is a positive integer greater than or equal to 1; the processing unit is configured to receive a precoding matrix indication PMI corresponding to the Z layers, where the PMI is determined according to the first information.
  • each of the Z layers corresponds to one or more of the P reference signal ports.
  • the implementation may take two layers as an example, and the first grouping configuration information may be used to indicate the correspondence between the 16 CSI-RS ports and the two layers, that is, the first layer corresponds to the port. 1 to port 8, the second layer corresponds to port 9 to port 16; or the first layer corresponds to port 1 to port 4, the second layer corresponds to port 9 to port 10 and so on.
  • This implementation shows that the ports corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated port grouping configuration information.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to improve the operating efficiency and transmission performance of the system.
  • the first layer corresponds to ports 1 to 10
  • the second layer corresponds to ports 5 to 16 .
  • This implementation not only indicates that the first layer and the second layer have their own dedicated port grouping configuration information, for example, ports 1 to 4 only correspond to the first layer, and ports 11 to 16 only correspond to the second layer; it also indicates that The first and second layers also have common port grouping configuration information, such as port 5 to port 10.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby reducing the power consumption of the terminal.
  • the channel state information of the two layers can be accurately obtained, thereby improving the system operation efficiency and transmission performance.
  • both the first and second layers correspond to ports 1 to 16 .
  • This implementation indicates that the first layer and the second layer have only common port grouping configuration information.
  • the terminal device can indiscriminately calculate the PMI indicated by the precoding matrix based on the shared ports corresponding to the first layer and the second layer, so as to improve the system transmission performance.
  • the implementation may take three layers as an example, and the first grouping configuration information is also used to indicate the correspondence between the 16 CSI-RS ports and the three layers, that is, the first layer corresponds to the port. 1 to port 5, the second layer corresponds to port 6 to port 12, the third layer corresponds to port 13 to port 16; or the first layer corresponds to port 1 to port 3, the second layer corresponds to port 6 To port 10, this third layer corresponds to port 12 to port 15 and so on.
  • This implementation shows that the ports corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated port grouping configuration information. Based on the dedicated ports corresponding to the first layer, the second layer and the third layer, the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to improve the operating efficiency and transmission performance of the system.
  • the first layer corresponds to port 1 to port 7
  • the second layer corresponds to port 5 to port 6, port 8 to port 11, and port 12
  • the third layer corresponds to port 6 to port 7, port 12 to port 16.
  • the first layer, the second layer and the third layer have their own dedicated port grouping configuration information, for example, ports 1 to 4 only correspond to the first layer, and ports 8 to 11 only correspond to the second layer.
  • layer, port 13 to port 16 only correspond to the third layer; it also indicates that the first layer, the second layer and the third layer also have common port grouping configuration information, such as port 6.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to reduce the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common ports corresponding to the first layer, the second layer and the third layer, thereby improving the operating efficiency and transmission performance of the system.
  • port 5 can also be understood as the port grouping configuration information dedicated to the first and second layers; with respect to the second layer, port 7 can also be understood as It is understood as the specific port grouping configuration information of the first layer and the third layer; compared with the first layer, the port 12 can also be understood as the specific port grouping configuration information of the second layer and the third layer.
  • the first layer, the second layer and the third layer all correspond to ports 1 to 16 .
  • This implementation indicates that the first layer, the second layer and the third layer only have common port grouping configuration information.
  • the terminal device can indiscriminately calculate the PMI indicated by the precoding matrix based on the common ports corresponding to the first layer, the second layer and the third layer, so as to improve the transmission performance of the system.
  • ports corresponding to at least two layers in the Z layers are not identical.
  • this implementation may take three layers as an example, the first layer corresponds to port 1 to port 7, the second layer corresponds to port 1 to port 6, port 8 to port 11, and port 12, and the third layer corresponds to from port 6 to port 7 and port 12 to port 16.
  • This implementation shows that the ports corresponding to the three layers are not completely the same.
  • the first layer corresponds to port 1 to port 10
  • the second layer and the third layer both correspond to port 6 to port 16.
  • This implementation indicates that the ports corresponding to the first layer and the second layer, and the ports corresponding to the first layer and the third layer are not identical, and so on.
  • the terminal device can perform calculation of the PMI indicated by the precoding matrix in a targeted manner based on the dedicated ports corresponding to the three layers, thereby reducing the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common ports corresponding to the first layer, the second layer and the third layer, thereby improving the operating efficiency and transmission performance of the system.
  • each of the Z layers corresponds to one or more of the N frequency-domain basis vectors.
  • frequency domain basis vector can be:
  • the implementation may take two layers as an example, and the second grouping configuration information may be used to indicate the correspondence between the three frequency domain basis vectors and the two layers, that is, the first layer corresponds to the frequency domain. Domain basis vector 1 and frequency domain basis vector 2, the second layer corresponds to frequency domain basis vector 3; or the first layer corresponds to frequency domain basis vector 1, the second layer corresponds to frequency domain basis vector 3 and so on.
  • This implementation shows that the frequency domain basis vectors corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated frequency domain basis vector grouping configuration information. Based on the dedicated frequency domain basis vectors corresponding to the first layer and the second layer, the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby improving the operating efficiency and transmission performance of the system.
  • the first layer corresponds to frequency domain basis vector 1 and frequency domain basis vector 2
  • the second layer corresponds to frequency domain basis vector 2 and frequency domain basis vector 3.
  • This implementation not only indicates that the first layer and the second layer have their own dedicated frequency domain basis vector grouping configuration information, for example, frequency domain basis vector 1 only corresponds to the first layer, and frequency domain basis vector 3 only corresponds to the second layer. layer; it also indicates that the first layer and the second layer also share the common grouping configuration information of the frequency domain basis vector, such as frequency domain basis vector 2.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby reducing the power consumption of the terminal.
  • the channel state information of the two layers can be accurately acquired based on the common frequency domain basis vectors corresponding to the first layer and the second layer, thereby improving the operating efficiency and transmission performance of the system.
  • both the first layer and the second layer correspond to frequency domain basis vector 1 to frequency domain basis vector 3 .
  • This implementation indicates that the first layer and the second layer only have common frequency domain basis vector grouping configuration information.
  • the terminal device can perform the calculation of the precoding matrix indication PMI based on the common frequency domain base vectors corresponding to the first layer and the second layer indiscriminately, so as to improve the transmission performance of the system.
  • the implementation may take three layers as an example, and the second grouping configuration information is also used to indicate the correspondence between the eight frequency-domain basis vectors and the three layers, that is, the first layer corresponds to the frequency domain.
  • domain basis vector 1 to frequency domain basis vector 3 the second layer corresponds to frequency domain basis vector 4 to frequency domain basis vector 6
  • the third layer corresponds to frequency domain basis vector 7 and frequency domain basis vector 8
  • the third layer corresponds to frequency domain basis vector 7 and frequency domain basis vector 8
  • One layer corresponds to frequency domain basis vector 1 and frequency domain basis vector 2
  • the second layer corresponds to frequency domain basis vector 4 and frequency domain basis vector 5
  • the third layer corresponds to frequency domain basis vector 7 and frequency domain basis vector 8 and so on.
  • This implementation shows that the frequency domain basis vectors corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated frequency domain basis vector grouping configuration information. Based on the dedicated frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to improve the operating efficiency and transmission performance of the system.
  • the first layer corresponds to frequency domain basis vector 1 to frequency domain basis vector 4
  • the second layer corresponds to frequency domain basis vector 2, frequency domain basis vector 3, frequency domain basis vector 5 and frequency domain basis vector 6.
  • the third layer corresponds to frequency domain basis vector 3 to frequency domain basis vector 5, frequency domain basis vector 7 and frequency domain basis vector 8.
  • the frequency domain basis vector 7 and the frequency domain basis vector 8 only correspond to the third layer; it also indicates that the first layer, the second layer and the third layer also have common port grouping configuration information, such as the frequency domain basis vector 3.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby reducing the power consumption of the terminal.
  • the channel state information of the three layers can be accurately obtained, and the system operation efficiency and transmission performance can be improved.
  • the frequency domain basis vector 2 can also be understood as the dedicated frequency domain basis vector grouping configuration information of the first layer and the second layer;
  • the frequency domain basis vector 4 can also be understood as the dedicated frequency domain basis vector grouping configuration information of the first and third layers; relative to the first layer, the frequency domain basis vector 5 can also be understood as the second layer and Layer 3-specific frequency-domain basis vector grouping configuration information.
  • the first layer, the second layer and the third layer all correspond to the frequency domain basis vector 1 to the frequency domain basis vector 3 .
  • This implementation indicates that the first layer, the second layer and the third layer only have common frequency domain base vector grouping configuration information.
  • the terminal device can indiscriminately calculate the precoding matrix indication PMI based on the common frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, so as to improve the system transmission performance.
  • the frequency domain basis vectors corresponding to at least two of the Z layers are not identical.
  • this implementation may take three layers as an example, the first layer corresponds to the frequency domain basis vector 1 to the frequency domain basis vector 4, and the second layer corresponds to the frequency domain basis vector 2 and the frequency domain basis vector 3. , frequency domain basis vector 5 and frequency domain basis vector 6, the third layer corresponds to frequency domain basis vector 3 to frequency domain basis vector 5, frequency domain basis vector 7 and frequency domain basis vector 8.
  • This implementation shows that the frequency domain basis vectors corresponding to the three layers are not identical.
  • the first layer corresponds to frequency domain basis vector 1 to frequency domain basis vector 6
  • both the second layer and the third layer correspond to frequency domain basis vector 4 to frequency domain basis vector 8 .
  • This implementation shows that the frequency domain basis vectors corresponding to the first layer and the second layer, and the frequency domain basis vectors corresponding to the first layer and the third layer are not identical, and so on.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner based on the dedicated frequency domain basis vectors corresponding to the three layers, thereby reducing the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, thereby improving the system operation efficiency and transmission performance.
  • the first grouping configuration information and/or the second grouping configuration information are carried in at least one of the following signaling: radio resource control RRC, medium access The control control element MAC CE, downlink control information DCI; or the first grouping configuration information and/or the second grouping configuration information are predefined by the protocol.
  • the codebook structure fed back by the PMI satisfies:
  • W 1 is the port selection matrix
  • W f is the frequency domain basis vector matrix
  • the W 1 is the port selection matrix specific to each of the Z layers
  • the W f is the frequency domain specific to each of the Z layers basis vector matrix.
  • W f is a matrix of frequency domain basis vectors, wherein the frequency domain basis vectors can be selected from the set of frequency domain vectors indicated by the base station.
  • W 1 is a port selection matrix, and the UE can select K 1 CSI-RS ports from the P CSI-RS ports through the combination number or Bitmap.
  • the UE may indicate the non-zero coefficients reported by the bitmap.
  • Mv>1 it can be expressed that the CSI information reported by the UE does not include bitmap overhead; when Mv>1, the UE uses bitmap to indicate the reported non-zero coefficients.
  • the bitmap overhead is included in the CSI information reported by the UE.
  • the CSI-RS ports corresponding to the first layer are ports 1 to 10
  • the CSI-RS ports corresponding to the second layer are ports 8 to 16
  • W 1 of the first layer is Port selection matrix corresponding to ports 1 to 10
  • W 1 of the second layer is the port selection matrix corresponding to ports 8 to 16. That is, the port selection matrices corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated port grouping configuration information.
  • the CSI-RS ports corresponding to the first layer are ports 1 to 8
  • the CSI-RS ports corresponding to the second layer are ports 6 to 12
  • the CSI-RS ports corresponding to the third layer are The ports are ports 10 to 16, then W1 of the first layer is the port selection matrix corresponding to ports 1 to 8, W1 of the second layer is the port selection matrix corresponding to ports 6 to 12, and W1 of the third layer is the port selection matrix 10 to 16 correspond to the port selection matrix. That is, the port selection matrices W1 corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated port grouping configuration information.
  • W 1 indicates that one or more reference signal ports only correspond to one of the Z layers, which is completely different from the port selection matrix W 1 corresponding to other Z-1 layers. .
  • the frequency domain basis vector matrix of the first layer corresponds to frequency domain basis vectors 1 and 2
  • the frequency domain basis vector matrix of the second layer corresponds to frequency domain basis vectors 1 and 3
  • the first The W f of the first layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 1 and 2
  • the W f of the second layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 1 and 3. That is, the frequency-domain basis vector matrices W f corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated frequency-domain basis vector grouping configuration information.
  • the frequency domain basis vector matrix of the first layer corresponds to frequency domain basis vectors 1 to 3
  • the frequency domain basis vector matrix of the second layer corresponds to frequency domain basis vectors 2 to 4
  • the third layer corresponds to frequency domain basis vectors 2 to 4.
  • the frequency domain basis vector matrix of the layer corresponds to the frequency domain basis vectors 5 and 6
  • the W f of the first layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 1 to 3
  • the W f of the second layer is the frequency domain basis vector
  • the W f of the third layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 5 and 6. That is, the end frequency domain basis vector matrices W f corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated frequency domain basis vector grouping configuration information.
  • W f represents that one or more frequency domain basis vectors only correspond to a certain layer in the Z layers, and the frequency domain basis vector matrix W corresponding to other Z-1 layers f is completely different.
  • the first grouping configuration information and/or the second grouping configuration information is determined based on K angle delay pairs of uplink channel information, where K is greater than or A positive integer equal to 1.
  • each angle delay pair in the K angle delay pairs includes an angle vector and a delay vector
  • the P reference signal ports correspond to the K angle delay pairs
  • the P reference signal ports correspond to the K angle delay pairs.
  • the reference signal of each reference signal port in the signal port is obtained by precoding the reference signal based on an angle vector and a delay vector.
  • the N frequency domain base vectors correspond to the K angle delay pairs
  • the N frequency domain base vectors correspond to the K angle delay pairs.
  • the reference signal of each frequency domain base vector in the base vector is obtained by precoding the reference signal based on an angle vector and a delay vector.
  • a communication device comprising: a processing unit configured to generate first indication information, where the first indication information is used to indicate quantization information of a jointly normalized set of M weighting coefficients, the M weighted Each weighting coefficient set in the coefficient set is determined by the reference signal, the M weighting coefficient sets are in one-to-one correspondence with the M layers, M is a positive integer greater than or equal to 2; the transceiver unit is used for sending the first indication information.
  • joint normalization may refer to normalizing all the weighting coefficients in the M weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set; or It can refer to normalizing the weighting coefficient with the largest modulus value in the other M-1 weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set, and then using the M-1 weighting coefficient set respectively.
  • the weighting coefficient with the largest modulus value in each weighting coefficient set is the reference, and all the weighting coefficients in the respective weighting coefficient sets are normalized.
  • joint normalization is to quantify and normalize the M weighting coefficient sets jointly with a certain weighting coefficient set as a reference.
  • the reference weighting coefficient may be the weighting coefficient with the largest modulus value in the corresponding weighting coefficient set, or may be any weighting coefficient in the corresponding weighting coefficient set.
  • the quantization information in this application may be a specific quantized value, such as a quantized value of amplitude and phase.
  • all weighting coefficients in the M layers are normalized by taking the maximum modulus weighting coefficient C12 in the first weighting coefficient set corresponding to the first layer as a reference for joint quantization.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set. Then, the terminal device can finally report the quantized values of all the weighting coefficients in the M weighting coefficient sets, including the quantized value of the maximum modulo weighting coefficient C12 in the first weighting coefficient set.
  • the terminal device may also report the quantized index of a certain weighting coefficient, such as the position information or identification information of the weighting coefficient, etc.; exemplarily, the modulus value in the first weighting coefficient set corresponding to the first layer is the largest.
  • the weighting coefficient C12 is a reference for joint quantization, and all the weighting coefficients in the M layers are normalized.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set.
  • the terminal device can finally report the position information or index of the modulo maximum weighting coefficient C12 in the first weighting coefficient set, and report the quantized values of all weighting coefficients except the modulo maximum weighting coefficient C12.
  • pre-defined by the protocol that is, the network device and the terminal device prescribe and determine to use a certain weighting coefficient in a certain weighting coefficient set as the quantization reference, for example, use the first weighting coefficient set corresponding to the first layer.
  • the weighting coefficient C11 is the benchmark for joint quantization, so after the quantization is normalized, the terminal device does not need to report the quantization information and/or index of the weighting coefficient C11 again. This implementation can reduce signaling overhead and reduce the power consumption of the terminal. consumption.
  • the processing unit is further configured to normalize all the weighting coefficients in the M weighting coefficient sets according to the first weighting coefficient, and obtain the joint normalization
  • the quantization information of the M weighted coefficient sets the first weighting coefficient is the weighting coefficient in the Lth weighting coefficient set, the Lth weighting coefficient set is any one of the M weighting coefficient sets, and L is positive Integer;
  • the transceiver unit is further configured to send a first message, where the first message is used to indicate the first weighting coefficient.
  • the processing unit is further configured to perform a first normalization on the M-1 third weighting coefficients according to the second weighting coefficient, where the second weighting coefficient is The weighting coefficient in the U-th weighting coefficient set, the U-th weighting coefficient set corresponds to the u-th layer, and the third weighting coefficient is M-1 except the U-th weighting coefficient set in the M weighting coefficient sets
  • the weighting coefficients in each weighting coefficient set, the M-1 weighting coefficient sets are in one-to-one correspondence with the M-1 layers except the u-th layer in the M layers, and U and u are both positive integers , the uth layer belongs to the M layers
  • the processing unit is further configured to perform a second normalization on all the weighting coefficients in the Uth weighting coefficient set according to the second weighting coefficient, and perform a second normalization on all the weighting coefficients in the Uth weighting coefficient set according to the second weighting coefficient, and pair the Perform third
  • a fourth normalization is performed on the M-1 fifth weighting coefficients according to a fourth weighting coefficient, where the fourth weighting coefficient is in the Xth weighting coefficient set
  • the weighting coefficient of the Xth weighting coefficient set corresponds to the xth layer
  • the fifth weighting coefficient is the weighting coefficient set in the M-1 weighting coefficient set except the Xth weighting coefficient set in the M weighting coefficient set.
  • Weighting coefficients in the coefficient set corresponds to the M-1 layers except the xth layer in the M layers, X and x are both positive integers, and the xth layer belongs to M layer; perform fifth normalization on all the weighting coefficients in the Xth weighting coefficient set according to the fourth weighting coefficient; according to the fourth weighting coefficient and the fifth weighting coefficient, respectively, the weighting corresponding to the fifth weighting coefficient All weighting coefficients in the coefficient set are subjected to sixth normalization and seventh normalization; according to the fourth normalization, the fifth normalization, the sixth normalization and the seventh normalization, obtain Quantization information of the jointly normalized set of M weighting coefficients; sending a third message, where the third message is used to indicate the fourth weighting coefficient and the M-1 fifth weighting coefficients.
  • a communication device comprising: a transceiver unit configured to receive first indication information, where the first indication information is used to indicate quantization information of a jointly normalized set of M weighting coefficients, the M weighted Each weighting coefficient set in the coefficient set is determined by the reference signal, the M weighting coefficient sets are in one-to-one correspondence with the M layers, and M is a positive integer greater than or equal to 2; the processing unit is configured to determine according to the first indication information The power difference among the M layers.
  • joint normalization may refer to normalizing all the weighting coefficients in the M weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set; or It can refer to normalizing the weighting coefficient with the largest modulus value in the other M-1 weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set, and then using the M-1 weighting coefficient set respectively.
  • the weighting coefficient with the largest modulus value in each weighting coefficient set is the reference, and all the weighting coefficients in the respective weighting coefficient sets are normalized.
  • joint normalization is to quantify and normalize the M weighting coefficient sets jointly with a certain weighting coefficient set as a reference.
  • the reference weighting coefficient may be the weighting coefficient with the largest modulus value in the corresponding weighting coefficient set, or may be any weighting coefficient in the corresponding weighting coefficient set.
  • the quantization information in this application may be a specific quantized value, such as a quantized value of amplitude and phase.
  • all weighting coefficients in the M layers are normalized by taking the maximum modulus weighting coefficient C12 in the first weighting coefficient set corresponding to the first layer as a reference for joint quantization.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set. Then, the terminal device can finally report the quantized values of all the weighting coefficients in the M weighting coefficient sets, including the quantized value of the maximum modulo weighting coefficient C12 in the first weighting coefficient set.
  • the terminal device may also report the quantized index of a certain weighting coefficient, such as the position information or identification information of the weighting coefficient; exemplarily, the maximum weighting coefficient in the first weighting coefficient set corresponding to the first layer is used.
  • C 12 is the reference of joint quantization, and normalizes all the weighting coefficients in the M layers.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set.
  • the terminal device can finally report the position information or index of the modulo maximum weighting coefficient C12 in the first weighting coefficient set, and report the quantized values of all weighting coefficients except the modulo maximum weighting coefficient C12.
  • pre-defined by the protocol that is, the network device and the terminal device prescribe and determine to use a certain weighting coefficient in a certain weighting coefficient set as the quantization reference, for example, use the first weighting coefficient set corresponding to the first layer.
  • the weighting coefficient C11 is the benchmark for joint quantization, so after the quantization is normalized, the terminal device does not need to report the quantization information and/or index of the weighting coefficient C11 again. This implementation can reduce signaling overhead and reduce the power consumption of the terminal. consumption.
  • the transceiver unit is further configured to receive a first message, where the first message is used to indicate a first weighting coefficient, and the first weighting coefficient is used for the M All weighting coefficients in the weighting coefficient set are normalized, the first weighting coefficient is the weighting coefficient in the Lth weighting coefficient set, and the Lth weighting coefficient set is any one of the M weighting coefficient sets, L is a positive integer.
  • the first weighting coefficient is the weighting coefficient with the largest modulus value in the Lth weighting coefficient set.
  • the Lth weighting coefficient set is determined by the terminal device; or the Lth weighting coefficient set is predefined by a protocol.
  • the transceiver unit is further configured to receive a second message, where the second message is used to indicate the second weighting coefficient and M-1 third weighting coefficients, the The second weighting coefficient is used to perform the first normalization on the M-1 third weighting coefficients, and the second weighting coefficient is the weighting coefficient in the U-th weighting coefficient set, and the U-th weighting coefficient set is the same as the u-th weighting coefficient set.
  • the third weighting coefficient is the weighting coefficient in each weighting coefficient set in the M-1 weighting coefficient set except the U-th weighting coefficient set in the M weighting coefficient set, the M-1 weighting coefficient
  • the set corresponds to the M-1 layers except the u-th layer among the M layers, U and u are both positive integers, the u-th layer belongs to the M-th layer, and the second weighting coefficient is also used for the U-th layer.
  • the second normalization is performed on all the weighting coefficients in the weighting coefficient set, and the third weighting coefficient is used to perform the third normalization on all the weighting coefficients in the corresponding weighting coefficient set.
  • the first normalization, the third normalization The second normalization and the third normalization are used to obtain the quantization information of the jointly normalized set of M weighting coefficients.
  • the second weighting coefficient is the weighting coefficient with the largest modulus value in the Uth weighting coefficient set
  • the third weighting coefficient is the M weighting coefficients Among the M-1 weighting coefficient sets except the U-th weighting coefficient set in the set, the weighting coefficient with the largest modulus value in each weighting coefficient set.
  • the Uth weighting coefficient set is determined by the terminal device; or the Uth weighting coefficient set is predefined by a protocol.
  • the transceiver unit is further configured to: receive a third message, where the third message is used to indicate the fourth weighting coefficient and M-1 fifth weighting coefficients, The fourth weighting coefficient is used to perform fourth normalization on the M-1 fifth weighting coefficients, where the fourth weighting coefficient is a weighting coefficient in the Xth weighting coefficient set, and the Xth weighting coefficient set is the same as the Xth weighting coefficient set.
  • the fifth weighting coefficient is the weighting coefficients in each weighting coefficient set in the M-1 weighting coefficient sets except the Xth weighting coefficient set in the M weighting coefficient sets, the M-1 weighting coefficients
  • the coefficient set corresponds to the M-1 layers except the xth layer among the M layers, X and x are both positive integers, the xth layer belongs to the M layers, and the fourth weighting coefficient is also used for the Fifth normalization is performed on all the weighting coefficients in the X weighting coefficient sets, and the fourth weighting coefficient and the fifth weighting coefficient are further used to perform the fifth normalization on all the weighting coefficients in the weighting coefficient set corresponding to the fifth weighting coefficient respectively.
  • Six normalization and seventh normalization, the fourth normalization, the fifth normalization, the sixth normalization and the seventh normalization are used to obtain the M weights of the joint normalization Quantization information for the set of coefficients.
  • the fourth weighting coefficient is the weighting coefficient with the largest modulus value in the Xth weighting coefficient set
  • the fifth weighting coefficient is the M weighting coefficients Among the M-1 weighting coefficient sets except the Xth weighting coefficient set in the coefficient set, the weighting coefficient with the largest modulus value in each weighting coefficient set.
  • the Xth weighting coefficient set is determined by the terminal device; or the Xth weighting coefficient set is predefined by a protocol.
  • the M weighting coefficient sets and their corresponding K angle delay pairs are used for network equipment to construct a precoding matrix, and K is a positive integer greater than or equal to 1 .
  • each angle delay pair in the K angle delay pairs includes an angle vector and a delay vector.
  • a terminal device including a processor, and optionally, a memory, where the processor is used to control the transceiver to send and receive signals, the memory is used for storing a computer program, and the processor is used for calling from the memory And run the computer program, so that the terminal device executes the method in the first aspect or any possible implementation manner of the first aspect, or the method in the third aspect or any possible implementation manner of the third aspect.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the terminal device further includes a transceiver, and the transceiver may specifically be a transmitter (transmitter) and a receiver (receiver).
  • a network device including a processor, and optionally, a memory, where the processor is used to control a transceiver to send and receive signals, the memory is used for storing a computer program, and the processor is used for calling from the memory And run the computer program, so that the network device executes the method in the second aspect or any possible implementation manner of the second aspect, or the fourth aspect or any possible implementation manner of the fourth aspect.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the network device further includes a transceiver, and the transceiver may specifically be a transmitter (transmitter) and a receiver (receiver).
  • a communication apparatus comprising: various modules or units for implementing the method in the first aspect or any possible implementation manner of the first aspect, or for implementing the second aspect or the second aspect
  • a twelfth aspect provides a communication system, including: a terminal device, configured to execute the method in the first aspect or any possible implementation manner of the first aspect, or execute the third aspect or the third aspect The method in any possible implementation manner; and a network device for performing the method in the above-mentioned second aspect or any possible implementation manner of the second aspect, or for performing the above-mentioned fourth aspect or any one of the fourth aspect methods in possible implementations.
  • a thirteenth aspect provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program or code, and when the computer program or code runs on a computer, causes the computer to execute the first aspect or the first
  • the method in any possible implementation of the aspect, or the second aspect or the method in any possible implementation of the second aspect, or the third aspect or the method in any possible implementation of the third aspect, or the fourth The method in any possible implementation of the aspect or the fourth aspect.
  • a fourteenth aspect provides a chip comprising at least one processor coupled to a memory for storing a computer program, the processor for invoking and executing the computer program from the memory, so that the installation A device with the chip system executes the method in the first aspect or any possible implementation manner of the first aspect, or causes a device installed with the chip system to execute the third aspect or any possible implementation manner of the third aspect. or make the device installed with the chip system execute the method in the second aspect or any possible implementation manner of the second aspect, or cause the device installed with the chip system to execute the fourth aspect or any one of the fourth aspect method in one possible implementation.
  • the chip may include an input circuit or interface for sending information and/or data, and an output circuit or interface for receiving information and/or data.
  • a fifteenth aspect provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed by a computer, the above-mentioned first aspect or any one of the possible implementations of the first aspect is enabled.
  • the method is implemented, or the method in the above-mentioned third aspect or any possible implementation manner of the third aspect is implemented; or when the computer program code is executed by a computer, the above-mentioned second aspect or any one of the second aspects is implemented.
  • the methods in the possible implementations are implemented, or the fourth aspect or the methods in any of the possible implementations of the fourth aspect are implemented.
  • FIG. 1 is a schematic diagram of a network architecture of an example of a communication system to which the present application is applied.
  • FIG. 2 is a schematic diagram of an example of a channel state information CSI acquisition process based on FDD partial reciprocity.
  • FIG. 3 is a schematic diagram of an example of a communication method to which the present application is applied.
  • FIG. 4 is a schematic diagram of another example of the communication method to which the present application is applied.
  • FIG. 5 is a schematic diagram of another example of the communication method to which the present application is applied.
  • FIG. 6 is a schematic diagram of another example of the communication method to which the present application is applied.
  • FIG. 7 is a schematic diagram of an example of a communication method to which the present application is applied.
  • FIG. 8 is a schematic diagram of another example of the communication method to which the present application is applied.
  • FIG. 9 is a schematic diagram of another example of the communication method to which the present application is applied.
  • FIG. 10 is a schematic diagram of an example of a communication device to which the present application is applied.
  • FIG. 11 is a schematic diagram of another example of a communication device to which the present application is applied.
  • FIG. 12 is a schematic diagram of an example of a terminal device to which the present application is applied.
  • FIG. 13 is a schematic diagram of an example of a network device to which the present application is applied.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WIMAX worldwide interoperability for microwave access
  • future fifth-generation 5G systems or new Wireless (new radio, NR can also be extended to similar wireless communication systems, such as wireless fidelity (wireless-fidelity, WIFI), and the 3rd generation partnership project (3rd generation partnership project, 3GPP) related cellular systems Wait.
  • WIFI wireless fidelity
  • 3rd generation partnership project 3rd generation partnership project
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N lane network
  • SCMA sparse code multiple access
  • SCMA sparse code multiple access
  • the field may also be referred to by other names; further, the technical solutions in the embodiments of the present application may be applied to a multi-carrier transmission system using a non-orthogonal multiple access technology, for example, an orthogonal frequency using a non-orthogonal multiple access technology.
  • OFDM orthogonal frequency division multiplexing
  • filter bank multi-carrier filter bank multi-carrier
  • FBMC generalized frequency division multiplexing
  • GFDM generalized frequency division multiplexing
  • filter orthogonal frequency division multiplexing filtered -OFDM, F-OFDM
  • terminal equipment may be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication equipment, user agent or user equipment, soft terminal, etc., including various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication functions.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication equipment, user agent or user equipment, soft terminal, etc.
  • the terminal can be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (personal digital assistant, PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • MS mobile station
  • subscriber unit subscriber unit
  • cellular phone cellular phone
  • smart phone smart phone
  • wireless data card a personal digital assistant
  • PDA personal digital assistant
  • modem modem
  • handheld device handset
  • laptop computer laptop computer
  • machine type communication machine type communication
  • the terminal device in the embodiments of the present application may also be a mobile phone (mobile phone), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control (industrial) terminal device wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety Terminal, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop , WLL) station, personal digital assistant (PDA), handheld terminal, notebook computer, cordless phone (cordless phone) or wireless local loop (wireless local loop, WLL) station, terminal equipment in the future 5G network, Or the terminal equipment in the public land mobile network (Public Land Mobile Network, PLMN) that evolves in the future.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things. It should be understood that the present application does not limit the specific form of the terminal device.
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (part of terminal equipment), receiving control information and downlink data of network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • the network device may be a device deployed in a wireless access network to provide a wireless communication function for a terminal device, and may be a device used to communicate with the terminal device or a chip of the device.
  • the network equipment includes but is not limited to: radio network controller (RNC), base station controller (BSC), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (transmission and reception point) in the wireless fidelity system , TRP), etc., it can also be a gNB or transmission point (TRP or TP) in a 5G (such as NR) system, or one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or It is a network node that constitutes a gNB or a transmission point, such as a baseband unit BBU, or a
  • the network devices in the embodiments of the present application may include various forms of macro base stations, micro base stations (also referred to as small cells), relay stations, access points, etc., and may be base stations in the GSM system for global mobile communications or code division multiple access (CDMA) (base transceiver station, BTS), it can also be a base station (nodeB, NB) in the wideband code division multiple access WCDMA system, it can also be an evolved base station (evolutional nodeB, eNB or eNodeB) in the LTE system, and it can also be a cloud A wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, a wearable or vehicle-mounted device, a wearable device, and a network device in 5G or future networks Or the network equipment in the public land mobile communication network PLMN network evolved in the future.
  • CDMA code division multiple access
  • BTS base transceiver station
  • NB base station
  • network devices may include centralized units (CUs) and distributed units (DUs).
  • the network equipment may further include a radio unit (radio unit, RU) and an active antenna unit (active antenna unit, AAU).
  • the CU implements some functions of the network device, such as being responsible for processing non-real-time protocols and services, and implementing functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements some functions of network equipment, such as being responsible for processing physical layer protocols and real-time services, implementing radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer ) layer function.
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Because the information of the RRC layer will eventually become the information of the PHY layer, or, it is converted from the information of the PHY layer. Therefore, in this architecture, higher-layer signaling (eg, RRC layer signaling) can also be considered to be sent by DU, or sent by DU+AAU.
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited herein.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.), or It can belong to a base station corresponding to a small cell, and the small cell here can include: a metro cell, a micro cell, a pico cell, a femto cell, etc. These Small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • the network device and the terminal device include a radio resource control (RRC) signaling interaction module, a media access control (media access control, MAC) signaling interaction module, and a physical (PHY, PHY) interaction module. ) signaling interaction module.
  • the RRC signaling interaction module may be: a module used by the network device and the terminal device to send and receive RRC signaling.
  • the MAC signaling interaction module may be: a module used by the network device and the terminal device to send and receive media access control-control element (media access control-control element, MACCE) signaling.
  • the PHY signaling and data interaction module may be: a module used by network equipment and terminal equipment to send and receive uplink control signaling or downlink control signaling, uplink and downlink data or downlink data.
  • embodiments of the present application may be applicable to the LTE system and subsequent evolution systems such as 5G, etc., or other wireless communication systems using various wireless access technologies, such as code division multiple access, frequency division multiple access, time division multiple access , Orthogonal frequency division multiple access, single carrier frequency division multiple access and other access technology systems, especially suitable for scenarios that require channel information feedback and/or application of secondary precoding technology, such as wireless networks using Massive MIMO technology, applications Distributed antenna technology for wireless networks, etc.
  • wireless access technologies such as code division multiple access, frequency division multiple access, time division multiple access , Orthogonal frequency division multiple access, single carrier frequency division multiple access and other access technology systems, especially suitable for scenarios that require channel information feedback and/or application of secondary precoding technology, such as wireless networks using Massive MIMO technology, applications Distributed antenna technology for wireless networks, etc.
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for the method provided by this embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 in the 5G system as shown in FIG. 1 ; the communication system 100 may also include at least one terminal device, as shown in FIG. 1 .
  • Terminal devices 102 to 107 may be mobile or stationary.
  • Each of the network device 101 and one or more of the end devices 102 to 107 may communicate over a wireless link.
  • Each network device can provide communication coverage for a specific geographic area and can communicate with terminal devices located within that coverage area. For example, the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device. Therefore, the network device 101 and the terminal devices 102 to 107 in FIG. 1 constitute a communication system.
  • D2D technology can be used to realize direct communication between terminal devices.
  • D2D technology can be used for direct communication between terminal devices 105 and 106 and between terminal devices 105 and 107 .
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • the terminal devices 105 to 107 can also communicate with the network device 101, respectively. For example, it can communicate directly with the network device 101. In the figure, the terminal devices 105 and 106 can communicate directly with the network device 101; it can also communicate with the network device 101 indirectly. In the figure, the terminal device 107 communicates with the network device via the terminal device 105. 101 Communications.
  • FIG. 1 shows a network device and a plurality of terminal devices, as well as the communication links between the communication devices.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices, such as more or less terminal devices. This application does not limit this.
  • Each of the above communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain, which can be understood by those of ordinary skill in the art, all of which may include multiple components (eg, processors, modulators, multiplexers) related to signal transmission and reception. , demodulator, demultiplexer or antenna, etc.). Therefore, the network device and the terminal device can communicate through the multi-antenna technology.
  • the wireless communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the processing process of the downlink signal at the physical layer before sending may be performed by a network device, or may be performed by a chip configured in the network device.
  • network devices For convenience of description, hereinafter collectively referred to as network devices.
  • the network device can process the code word on the physical channel.
  • the codewords may be coded bits that have been coded (eg, including channel coding).
  • the codeword is scrambled to generate scrambled bits, and the scrambled bits are subjected to modulation mapping to obtain modulation symbols.
  • Modulation symbols are mapped to multiple layers, or transport layers, through layer mapping.
  • the modulation symbols after layer mapping are precoded to obtain a precoded signal.
  • the precoded signal is mapped to multiple REs after being mapped by resource elements (REs). These REs are then modulated by orthogonal frequency division multiplexing (OFDM) and then transmitted through an antenna port (antenna port).
  • OFDM orthogonal frequency division multiplexing
  • the network device may first perform uplink channel measurement based on the uplink reference signal to obtain channel information, such as angle information and delay information, and process the channel information to obtain downlink signals, such as based on The channel information precodes the downlink signal to obtain a precoding reference signal.
  • channel information such as angle information and delay information
  • MIMO technology refers to using multiple transmitting antennas and receiving antennas in the transmitting end device and the receiving end device respectively, and providing a higher data transmission rate by using the multi-layer parallel transmission transmission mode, so that the signal can pass through the transmitting end device and the receiving end device.
  • Multiple antennas transmit and receive, thereby improving communication quality. It can make full use of space resources, realize multiple transmission and multiple reception through multiple antennas, and can double the system channel capacity without increasing spectrum resources and antenna transmission power.
  • MIMO can be divided into single-user multiple input multiple output (single-user MIMO, SU-MIMO) and multi-user multiple input multiple output (multi-user MIMO, MU-MIMO).
  • Massive MIMO is based on the principle of multi-user beamforming. Hundreds of antennas are arranged at the transmitting end device, and their respective beams are modulated to dozens of target receivers. Through spatial signal isolation, dozens of signals are simultaneously transmitted on the same frequency resource. Therefore, Massive MIMO technology can make full use of the spatial freedom brought by large-scale antenna configuration to improve spectral efficiency.
  • CSI is the channel state information reported by the sender (such as terminal equipment) to the receiver (such as network equipment), which is composed of channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI) and channel matrix rank Indication (rand indication, RI) composition.
  • channel quality indicator channel quality indicator, CQI
  • precoding matrix indicator precoding matrix indicator, PMI
  • channel matrix rank Indication rand indication, RI
  • the CQI indicates the channel quality and is used by the network equipment to provide a reference for determining the modulation and coding scheme; the CQI feedback determines the coding and modulation methods, and the network equipment realizes adaptive modulation coding (AMC) by judging the size of the CQI.
  • the CQI value can be calculated from channel conditions, noise and interference estimates. E.g. When the CQI value fed back by the terminal device is large, the network device selects a higher-order modulation method, such as 64 quadrature amplitude modulation (64 quadrature amplitude modulation, 64QAM).
  • the network device chooses a low-order modulation method, such as quadrature phase shift keying (QPSK), and adopts a coding method with greater redundancy (1/4 coding), Therefore, the throughput of the system is small.
  • QPSK quadrature phase shift keying
  • the terminal device When there is only one codeword, the terminal device only needs to feed back one CQI value; when using a multiple-input multiple-output (MIMO) system with two codewords, two CQI values need to be fed back.
  • MIMO multiple-input multiple-output
  • the size of RI describes the maximum number of uncorrelated data transmission channels between the terminal device and the network device. It is used to indicate the number of data layers that the network device can transmit to the terminal at the same time. The larger the RI, the number of data layers that can be transmitted simultaneously. more.
  • the rank of the spatial channel is constantly changing, and the size of the RI determines the selection of the layer mapping method.
  • the adaptation of the spatial rank is also the adaptation of the layer mapping.
  • the rank identifier of the terminal device is fed back through uplink and downlink control information.
  • the PMI is used to indicate the precoding matrix, and the network device can select the precoding matrix for precoding data according to the PMI; the PMI determines the correspondence between the layer data stream and the antenna port.
  • the closed-loop space division multiplexing and closed-loop transmit diversity mode based on the codebook, the number of layers and the number of antenna ports are determined, and the set of optional codebooks for precoding is confirmed.
  • the network device selects the precoding matrix with the best performance according to the PMI fed back by the terminal device.
  • the selection of the PMI is often related to the channel matrix between the network device and the terminal. The higher the matching degree between the precoding matrix represented by the PMI and the channel matrix is, the network device precoding the data according to the precoding matrix selected by the PMI, which can be better. Suppress multi-user interference.
  • the terminal device can measure the reference signal sent by the network device to obtain CSI, and feed back the CSI to the network device for link adaptation of subsequent data transmission by the network device.
  • the uplink and downlink channels transmit signals on the same frequency domain resources and different time domain resources.
  • a relatively short time eg, the coherence time of channel propagation
  • the network device can measure the uplink channel according to the uplink reference signal, such as the sounding reference signal (SRS), and can estimate the downlink channel according to the uplink channel, so that it can be determined for downlink transmission.
  • the uplink reference signal such as the sounding reference signal (SRS)
  • the uplink and downlink channels do not have complete reciprocity.
  • To determine the precoding matrix for downlink transmission may not be able to adapt to the downlink channel.
  • the uplink and downlink channels in the FDD mode still have partial reciprocity, such as angle reciprocity and delay reciprocity.
  • angle reciprocity and delay reciprocity In other words, the delay and angle of the uplink and downlink channels in FDD mode are reciprocal. Therefore, angle and delay can also be called reciprocity parameters.
  • the multipath delay causes frequency selective fading, which is the change of the frequency domain channel.
  • the delay can refer to the transmission time of the wireless signal on different transmission paths, which is determined by the distance and speed, and has nothing to do with the frequency domain of the wireless signal.
  • different transmission delays exist due to different distances. Since the physical locations between the network equipment and the terminal equipment are fixed, the multipath distribution of the uplink and downlink channels is the same in time delay. Therefore, the uplink and downlink channels in the FDD mode with time delay can be considered to be the same, or reciprocal. That is, the uplink and downlink channels in the FDD mode with delay are reciprocal.
  • the angle may refer to the angle of arrival (AOA) of the signal reaching the receiving antenna via the wireless channel, or may refer to the angle of departure (AOD) of the signal transmitted through the transmitting antenna.
  • the angle may refer to the arrival angle of the uplink signal reaching the network device, or may refer to the departure angle of the network device transmitting the downlink signal. Due to the reciprocity of the transmission paths of the uplink and downlink channels on different frequencies, the arrival angle of the uplink reference signal and the departure angle of the downlink reference signal can be considered to be the same, or reciprocal. Therefore, the angle of the uplink and downlink channels in the FDD mode is reciprocal.
  • each angle may be represented by an angle vector, and one or more angle vectors may be loaded on the downlink reference signal.
  • each delay can be characterized by a delay vector, and one or more delay vectors can also be loaded on the downlink reference signal. precoding. Therefore, in this embodiment of the present application, an angle vector may represent an angle, and a delay vector may represent a delay.
  • Each angle vector can be combined with a delay vector described below to obtain an angle delay pair. In other words, an angle-delay pair may include an angle vector and a delay vector.
  • the sending device (such as network device) can process the signal to be sent with the help of a precoding matrix matching the channel state when the channel state is known, so that the precoded signal to be sent is adapted to the channel, so that the Receiving equipment (eg, terminal equipment) reduces the complexity of eliminating inter-channel effects. Therefore, through the precoding process of the signal to be transmitted, the received signal quality (eg, signal to interference plus noise ratio (SINR), etc.) is improved. Therefore, by using precoding technology, the transmitting device and multiple receiving devices can transmit on the same time-frequency resources, that is, multi-user multiple input multiple output (MU-MIMO) is realized.
  • MU-MIMO multi-user multiple input multiple output
  • the sending device may also perform precoding in other manners.
  • precoding is performed by using a preset precoding matrix or a weighting processing method.
  • the specific content will not be repeated here.
  • the network device may predict the state of the unknown channel according to the known channel, and may further process the signal to be sent by means of a precoding matrix matching the predicted channel state, so that the precoded signal to be sent is processed. adapted to the channel.
  • the reference signal may also be referred to as a pilot, a reference sequence, or the like.
  • the reference signal may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (CSI-RS), a sounding reference signal (SRS), a demodulation reference signal (DMRS), a phase tracking signal (phase tracking reference signal, PTRS), tracking reference signal (tracking reference signal, TRS), synchronous signal broadcast channel block (synchronous signal/PBCH block, SSB) and so on.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • PTRS phase tracking signal
  • TRS tracking reference signal
  • TRS synchronous signal broadcast channel block
  • SSB synchronous signal broadcast channel block
  • the precoding reference signal may be a reference signal obtained by precoding the reference signal.
  • the precoding may specifically include beam forming and/or phase rotation.
  • the beamforming can be implemented by precoding the downlink reference signal based on one or more angle vectors, for example, and the phase rotation can be implemented by precoding the downlink reference signal based on one or more delay vectors.
  • a reference signal obtained by precoding such as beamforming and/or phase rotation
  • a reference signal without precoding is referred to as a reference signal for short .
  • precoding the downlink reference signal based on one or more angle vectors may also be referred to as loading one or more angle vectors onto the downlink reference signal to implement beamforming.
  • Precoding the downlink reference signal based on one or more delay vectors may also be referred to as loading one or more delay vectors onto the downlink reference signal to implement phase rotation.
  • the reference signal resource can be used to configure the transmission properties of the reference signal, such as time-frequency resource location, port mapping relationship, power factor, and scrambling code.
  • the transmitting end device may transmit the reference signal based on the reference signal resource, and the receiving end device may receive the reference signal based on the reference signal resource.
  • a reference signal resource may include one or more resource blocks (resource blocks, RBs).
  • the reference signal resources may include CSI-RS resources (CSI-RS resources) and SRS resources (SRS resources).
  • each reference signal resource may correspond to an identifier of a reference signal resource, for example, CSI-RS resource indicator (CRI), SRS resource index (SRS resource index, SRI) .
  • CRI CSI-RS resource indicator
  • SRS resource index SRS resource index
  • the resource index of the reference signal may be a CSI-RS resource indicator (CSI-RS resource indicator, CRI) and an SSB resource indicator (SSB Resource Indicator, SSBRI).
  • CSI-RS resource indicator CRI
  • SSB Resource Indicator SSBRI
  • SSBRI can also be called SSB index (SSB index).
  • a port may also be referred to as an antenna port.
  • An antenna port can be one physical antenna or a weighted combination of multiple physical antennas.
  • the ports may include a transmit antenna port, a reference signal port, and a receive port.
  • the transmit antenna port can be understood as a virtual antenna recognized by the receiving device.
  • a port may refer to a transmit antenna port.
  • the reference signal for each transmit antenna port may be an unprecoded reference signal.
  • the transmit antenna port may refer to an actual independent transmit unit (transceiver unit, TxRU).
  • the port may also refer to a port after beamforming.
  • the reference signal of each port may be a precoded reference signal obtained by precoding the reference signal based on an angle vector. It can be understood that, if beamforming is performed on the reference signal, the number of ports may refer to the number of ports of the precoding reference signal. The number of ports of the precoding reference signal may be smaller than the number of transmit antenna ports.
  • the port may also refer to a port that has undergone phase rotation.
  • the reference signal of each port may be a precoding reference signal that is precoded based on a delay vector and sent through one transmit antenna port. .
  • This port may also be referred to as the port of the precoding reference signal.
  • the port may also refer to the port after beamforming and phase rotation.
  • the reference signal of each port may be a precoded reference signal obtained by precoding the reference signal based on an angle vector and a delay vector. This port may also be referred to as the port of the precoding reference signal.
  • the reference signal for each port can be transmitted through one or more frequency domain units.
  • transmit antenna ports when referring to transmit antenna ports, it may refer to the number of ports that are not subjected to spatial precoding. That is, the actual number of independent sending units.
  • a port when referring to a port, in different embodiments, it may refer to a transmit antenna port or a port of a precoding reference signal.
  • the specific meaning expressed by the port can be determined according to the specific embodiment.
  • the port of the precoding reference signal is referred to as a reference signal port.
  • the receiving antenna port can be understood as the receiving antenna of the receiving device.
  • the receiving port may refer to the receiving antenna of the terminal device.
  • the angle vector may also be referred to as a spatial vector, a beam vector, or the like.
  • the angle vector can be understood as a precoding vector for beamforming the reference signal.
  • the transmitted reference signal can have a certain spatial directivity. Therefore, the process of precoding the reference signal based on the angle vector can also be regarded as a process of spatial domain (or spatial domain) precoding.
  • the angle vector can be a vector of length T.
  • T may represent the number of transmit antenna ports, and T>1 and is an integer.
  • T contains T spatial weights (or weights), and the T weights can be used to weight the T transmit antenna ports, so that the T transmit antenna ports are
  • the transmitted reference signal has a certain spatial directivity, thereby realizing beamforming.
  • Precoding the reference signals based on different angle vectors is equivalent to beamforming the transmit antenna ports based on different angle vectors, so that the transmitted reference signals have different spatial directivities.
  • the angle vector is a discrete fourier transform (DFT) vector.
  • DFT vector may refer to a vector in the DFT matrix.
  • the angle vector is the conjugate transpose vector of the DFT vector.
  • the DFT conjugate transpose vector may refer to a column vector in the conjugate transpose matrix of the DFT matrix.
  • the angle vector is an oversampled DFT vector.
  • An oversampled DFT vector may refer to a vector in an oversampled DFT matrix.
  • the angle vector may be, for example, a 3rd generation partnership project (3GPP) technical specification (TS) 38.214 version 15 (release 15, R15) or type II (R15) in R16. type II) A two-dimensional (2 dimensions, 2D)-DFT vector v l,m defined in the codebook.
  • 3GPP 3rd generation partnership project
  • TS technical specification
  • R15 type II
  • the angle vector can be a 2D-DFT vector or an oversampled 2D-DFT vector.
  • the delay vector can also be taken from the DFT matrix. This application does not limit the specific form of the delay vector.
  • an angle vector is a form proposed in this application for representing an angle.
  • the angle vector is named only for the convenience of distinguishing it from the delay vector, and should not constitute any limitation to the present application. This application does not exclude the possibility of defining other names in future agreements to represent the same or similar meanings.
  • V can be represented as a matrix with dimension R ⁇ T.
  • R is the number of receiving antenna ports
  • T is the number of transmitting antenna ports
  • R and T are both positive integers.
  • the precoded reference signal obtained by precoding the reference signal based on the angle vector can be transmitted to the terminal device through the downlink channel. Therefore, the channel measured by the terminal device according to the received precoded reference signal is equivalent to Channel loaded with angle vector.
  • the angle vector ak is loaded into the downlink channel V, which can be denoted as Vak .
  • the angle vector is loaded onto the reference signal, that is, the angle vector is loaded onto the channel.
  • the delay vector can also be called a frequency domain vector.
  • the delay vector is a vector used to represent the variation law of the channel in the frequency domain. As mentioned earlier, multipath delays lead to frequency selective fading. It can be known from the Fourier transform that the time delay of the signal in the time domain can be equivalent to the phase gradient in the frequency domain.
  • the change law of the phase of the channel in each frequency domain unit can be represented by the time delay vector.
  • the delay vector can be used to represent the delay characteristics of the channel.
  • the delay vector may be a vector of length N.
  • N may represent the number of frequency domain units used to carry the reference signal, and N>1 and is an integer.
  • N may represent the number of frequency domain units used to carry the reference signal, and N>1 and is an integer.
  • N may represent the number of frequency domain units used to carry the reference signal, and N>1 and is an integer.
  • N may represent the number of frequency domain units used to carry the reference signal, and N>1 and is an integer.
  • N may represent the number of frequency domain units used to carry the reference signal, and N>1 and is an integer.
  • N may represent the number of frequency domain units used to carry the reference signal, and N>1 and is an integer.
  • N may represent the number of frequency domain units used to carry the reference signal, and N>1 and is an integer.
  • N may represent the number of frequency domain units used to carry the reference signal, and N>1 and is an integer.
  • N may represent the number of frequency domain units used to carry the reference signal, and N>1 and is an integer
  • Precoding the reference signal based on different delay vectors is equivalent to performing phase rotation on each frequency domain unit of the channel based on different delay vectors. Moreover, the angle of phase rotation of the same frequency domain unit may be different.
  • the delay vector is a DFT vector.
  • the DFT vector can be a vector in the DFT matrix.
  • the delay vector can be expressed as b k ,
  • k 1, 2, ..., K; K can represent the number of delay vectors; f 1 , f 2 , ..., f N represent the 1st, 2nd to Nth frequency domain units, respectively carrier frequency.
  • the delay vector is the conjugate transpose vector of the DFT vector.
  • the DFT conjugate transpose vector may refer to a column vector in the conjugate transpose matrix of the DFT matrix.
  • the delay vector is an oversampled DFT vector.
  • An oversampled DFT vector may refer to a vector in an oversampled DFT matrix.
  • the delay vector can also be taken from the DFT matrix. This application does not limit the specific form of the delay vector.
  • the delay vector is a form proposed in this application for representing the delay.
  • the time delay vector is named only for the convenience of being distinguished from the angle vector, and should not constitute any limitation to the present application. This application does not exclude the possibility of defining other names in future agreements to represent the same or similar meanings.
  • the precoded reference signal can be transmitted to the terminal device through the downlink channel. Therefore, the channel measured by the terminal device according to the received precoded reference signal is equivalent to Channel loaded with delay vector.
  • the delay vector is loaded onto the reference signal, that is, the delay vector is loaded onto the channel.
  • multiple weights in the delay vector are respectively loaded into multiple frequency domain units of the channel, and each weight is loaded into one frequency domain unit.
  • the N weights in the delay vector can be respectively loaded into the carrier
  • the N elements in the delay vector are respectively loaded on the N RBs.
  • precoding the reference signal based on the delay vector is similar to the processing method of spatial domain precoding, except that the spatial domain vector (or, the angle vector) is replaced by the delay vector.
  • the frequency domain precoding of the reference signal based on the delay vector may be performed before resource mapping, or may be performed after resource mapping, which is not limited in this application.
  • An angle-delay pair can be a combination of an angle vector and a delay vector.
  • Each angle-delay pair may include an angle vector and a delay vector.
  • the angle vectors and/or delay vectors contained in any two angle-delay pairs are different. In other words, each angle-delay pair can be uniquely determined by an angle vector and a delay vector.
  • angle-delay pair can be understood as a representation of the space-frequency basic unit determined by an angle vector and a time-delay vector, but it is not necessarily the only representation.
  • it can also be expressed as a space-frequency component matrix, a space-frequency component vector, and the like described below.
  • the frequency domain unit is a unit of frequency domain resources, and is used to represent different granularity of frequency domain resources.
  • the frequency domain unit may include, for example, but not limited to, a subband (subband), a resource block (RB), a resource block group (resource block group, RBG), a precoding resource block group (precoding resource block group, PRG) and the like.
  • the network device may determine a precoding matrix corresponding to each frequency domain unit based on feedback from the terminal device.
  • Pilot frequency density the ratio of the reference signal of each port, such as the precoding reference signal in this application, the occupied resource element (resource element, RE) to the total number of RBs in the occupied bandwidth. For example, if the pilot density of the reference signal of a certain port is 1, it can indicate that in the bandwidth occupied by the reference signal of this port, each RB has one RE for carrying the reference signal of this port; The pilot density of the reference signal of the port is 0.5, which can indicate that in the bandwidth occupied by the reference signal of this port, one RB in every two RBs includes the RE that carries the reference signal of this port, or is used to carry the reference signal of this port. The adjacent RBs of the reference signal of this port are separated by one RB.
  • a space-frequency component matrix can be determined by an angle-delay pair.
  • a space-frequency component matrix can be uniquely determined by an angle vector and a delay vector.
  • a space-frequency component matrix and an angle-delay pair can be converted to each other.
  • a space-frequency component matrix can be determined by the product of the conjugate transpose of an angle vector and a delay vector, such as a( ⁇ k ) ⁇ b( ⁇ l ) H , and its dimension can be T ⁇ N.
  • T may represent the number of transmit antenna ports, where T>1 and is an integer
  • N may represent the number of frequency domain units used to carry the reference signal, where N>1 and is an integer.
  • the space-frequency component matrix can be understood as another expression form of the space-frequency basic unit determined by an angle vector and a time delay vector.
  • the space-frequency basic unit can also be represented, for example, as a space-frequency component vector, which is determined, for example, by the Kronecker product of an angle vector and a delay vector.
  • the present application does not limit the specific form of the space-frequency basic unit. Based on the same idea by those skilled in the art, various possible forms determined by an angle vector and a delay vector should fall within the protection scope of the present application.
  • the operational relationship between the space-frequency component matrix and the angle vector and the delay vector, and the operational relationship between the space-frequency component vector and the angle vector and the delay vector are also possible. different. This application does not limit the operation relationship between the space-frequency component matrix, the angle vector, and the delay vector, and the operation relationship between the frequency component vector, the angle vector, and the delay vector.
  • the space-frequency matrix is an intermediate quantity used to determine the precoding matrix.
  • the space-frequency matrix can be determined based on the receiving port or based on the transport layer.
  • the space-frequency matrix can be determined by the weighted sum of one or more angular delay pairs, so the dimension of the space-frequency matrix can also be N ⁇ T.
  • the space-frequency matrix may be called a space-frequency matrix corresponding to the receiving port.
  • the space-frequency matrix corresponding to the receiving port can be used to construct the downlink channel matrix of each frequency domain unit, and then the precoding matrix corresponding to each frequency domain unit can be determined.
  • the channel matrix corresponding to a certain frequency domain unit may be, for example, the conjugate transpose of the matrix constructed from the column vectors corresponding to the same frequency domain unit in the space-frequency matrix corresponding to each receiving port.
  • the channel matrix V (n) of the nth frequency domain unit can be obtained.
  • the relationship between the channel matrix and the space-frequency matrix will be described in detail below, and the detailed description of the relationship between the two will be omitted here.
  • the space-frequency matrix may be referred to as a space-frequency matrix corresponding to the transmission layer.
  • the space-frequency matrix corresponding to the transmission layer can be directly used to determine the precoding matrix corresponding to each frequency domain unit.
  • the precoding matrix corresponding to a certain frequency domain unit may be constructed by, for example, column vectors corresponding to the same frequency domain unit in the space-frequency matrix corresponding to each transmission layer. For example, extract the nth column vector in the space-frequency matrix corresponding to each transmission layer, and arrange it from left to right in the order of the transmission layers to obtain a matrix of dimension T ⁇ Z, where Z represents the number of transmission layers, and Z ⁇ 1 and is an integer. This matrix can be used as the precoding matrix W (n) of the nth frequency domain unit.
  • the precoding matrix determined by the channel measurement method provided in this embodiment of the present application may be a precoding matrix directly used for downlink data transmission; it may also be subjected to some beamforming methods, such as zero forcing (ZF ), minimum mean-squared error (MMSE), maximum signal-to-leakage-and-noise (SLNR), etc., to obtain the final precoding matrix for downlink data transmission.
  • ZF zero forcing
  • MMSE minimum mean-squared error
  • SLNR maximum signal-to-leakage-and-noise
  • the precoding matrices involved in the following may all refer to precoding matrices determined based on the channel measurement method provided in this application.
  • the space-frequency matrix is an intermediate quantity that can be used to construct a precoding matrix based on the continuity of the frequency domain of the channel.
  • C represents an angle vector with K A coefficient matrix formed by each angle vector in and the weighting coefficient corresponding to each delay vector in the L delay vectors.
  • Each element in C can represent the weighting coefficient of a corresponding pair of angle vectors.
  • S corresponds to airspace information, and physically corresponds to the arrival angle/departure angle of the network device.
  • S can represent a matrix constructed from one or more angle vectors.
  • F corresponds to frequency domain information, and physically corresponds to the multipath delay of the multipath signal reaching the network device.
  • F can represent a matrix constructed from one or more delay vectors.
  • C may represent weighting coefficients corresponding to an angle vector and a delay vector.
  • C UL represents the coefficient matrix corresponding to the uplink channel.
  • the superscript H represents the conjugate transpose, eg, F H represents the conjugate transpose of the matrix (or vector) F.
  • the space-frequency component matrix is defined as determined by a( ⁇ k ) ⁇ b( ⁇ l ) H , so the dimension of the space-frequency matrix HDL can be determined as: the number of transmit antenna ports ⁇ the number of frequency domain elements.
  • the dimension of the space-frequency matrix corresponding to the downlink channel is T ⁇ N.
  • the space-frequency matrices all refer to the above-mentioned matrix H DL with a dimension of T ⁇ N.
  • the dimension of the channel matrix is defined as: the number of receiving ports ⁇ the number of transmitting ports, for example, the dimension of the downlink channel is R ⁇ T.
  • the dimension of the space-frequency matrix determined by the channel matrix is N ⁇ T, which is exactly opposite to the dimension T ⁇ N of the above-mentioned space-frequency matrix HDL . Therefore, in this embodiment of the present application, the real channel may be the conjugate transpose of the channel matrix determined by the above-mentioned space-frequency matrix HDL .
  • the downlink channel matrix determined by the space-frequency matrix HDL can be the conjugate transpose of the real channel.
  • the precoding matrix can be determined by the space-frequency matrix HDL .
  • the precoding matrix of the nth frequency domain unit may be constructed by the nth column vector in the space-frequency matrix corresponding to each transmission layer.
  • the conjugate transpose of the precoding matrix can be obtained by performing SVD on the channel matrix V.
  • the channel matrix is conjugated transposed and then SVD is performed, that is, SVD is performed on V H , the precoding matrix can just be obtained. Therefore, in the embodiment of the present application, the space-frequency matrix HDL determined by the conjugate transpose of the real channel can be directly determined to obtain the precoding matrix corresponding to each frequency domain unit.
  • HDL H is the space-frequency matrix determined by the real channel
  • HDL H S is the real channel after spatial precoding.
  • Each element of C DL in the coefficient matrix can be determined by multiplying a row in (H DL H S) H by a column in F, respectively.
  • each element in the matrix coefficients C DL can be obtained by multiplying a row in H and a column in F of the conjugate transpose ( HDL H S ) H of the real channel H DL H S, or, in other words, by the real channel H DL H S .
  • the conjugate transpose of one column of channel HDL H S is multiplied by one column of F.
  • the space-frequency matrix H DL determined based on the weighting coefficients of each angle delay pair fed back by the terminal device may be obtained by the conjugate transpose of the real channel.
  • the space-frequency matrix in the embodiment of the present application may also be obtained by the conjugate transpose of the real channel V (ie, V H ).
  • the relationship between the real channel and the space-frequency matrix HDL is not fixed. Different definitions of the space-frequency matrix and the space-frequency component matrix may change the relationship between the real channel and the space-frequency matrix HDL .
  • the space-frequency matrix HDL can be obtained by the conjugate transpose of the real channel, and can also be obtained by the transpose of the real channel.
  • the operations performed by the network equipment when loading the delay and angle are also different, and the operations performed by the terminal equipment during channel measurement and feedback also change accordingly.
  • this is only the implementation behavior of the terminal device and the network device, and should not constitute any limitation to this application.
  • the embodiments of the present application are only for the convenience of understanding, and illustrate the case where the space-frequency matrix is obtained by the conjugate transpose of the real channel. This application does not limit the definition of the channel matrix, the dimension of the space-frequency matrix and its definition, and the conversion relationship between the two. Similarly, the present application also does not limit the conversion relationship between the space-frequency matrix and the precoding matrix.
  • P The number of angular delay pairs used by the network device to precode the reference signal, that is, the number of ports of the precoding reference signal sent by the network device through the transmit antenna in one polarization direction, and P is a positive integer;
  • Z the number of transmission layers, Z is a positive integer
  • N the number of frequency domain units used to carry the reference signal, N is a positive integer
  • K the number of angle-delay pairs, K>1 and an integer
  • J the number of polarization directions of the transmitting antenna, J is a positive integer
  • F frequency domain weight matrix, which can be expressed as a matrix with a dimension of N ⁇ K in this embodiment of the present application;
  • C coefficient matrix, which can be represented as a diagonal matrix with dimension K ⁇ K in this embodiment of the present application.
  • the numbering when numbering is involved, the numbering may start from 1 consecutively.
  • the N frequency domain units may include the first frequency domain unit to the Nth frequency domain unit
  • the K angle delay pairs may include the first angle delay pair to the Kth angle delay pair
  • the P reference The signal ports may include the 1st reference signal port to the Pth reference signal port, and so on.
  • the specific implementation is not limited to this. For example, it can also be numbered consecutively from 0.
  • the N frequency domain units may include the 0th frequency domain unit to the N-1th frequency domain unit
  • the K angular delay pairs may include the 0th angular delay pair to the K-1 th angular delay pair
  • the P reference signal ports may include the 0th reference signal port to the P-1th reference signal port, etc., which are not listed here for brevity.
  • transformations of matrices and vectors are designed in many places.
  • the superscript T represents the transposition, such as A T represents the transpose of the matrix (or vector) A; the superscript * represents the conjugation, for example, A * represents the conjugate of the matrix (or vector) A; the superscript H represents Conjugate transpose, eg, A H represents the conjugate transpose of matrix (or vector) A.
  • for indicating may include for direct indication and for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the information indicated by the indication information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the information to be indicated. Indicating the index of information, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, wherein there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be implemented by means of a pre-agreed (for example, a protocol stipulated) arrangement order of various information, so as to reduce the indication overhead to a certain extent.
  • a pre-agreed for example, a protocol stipulated
  • the common part of each piece of information can also be identified and indicated uniformly, so as to reduce the indication overhead caused by indicating the same information separately.
  • a precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same parts in terms of composition or other properties.
  • the specific indication manner may also be various existing indication manners, such as, but not limited to, the above indication manner and various combinations thereof.
  • the required indication mode can be selected according to specific needs.
  • the selected indication mode is not limited in this embodiment of the present application. In this way, the indication mode involved in the embodiment of the present application should be understood as covering the ability to make the indication to be indicated. Various methods for the party to learn the information to be indicated.
  • a row vector can be represented as a column vector
  • a matrix can be represented by a transposed matrix of the matrix
  • a matrix can also be represented in the form of a vector or an array.
  • the vector or array It can be formed by connecting each row vector or column vector of the matrix to each other, etc.
  • the information to be indicated can be sent together as a whole, or divided into multiple sub-information and sent separately, and the sending period and/or sending timing of these sub-information can be the same or different.
  • the application does not limit the specific sending method.
  • the sending period and/or sending timing of these sub-information may be predefined, for example, predefined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may be, for example, but not limited to, one or a combination of at least two of radio resource control signaling, media access control (media access control, MAC) layer signaling, and physical layer signaling.
  • the radio resource control signaling includes: radio resource control (radio resource control, RRC) signaling;
  • the MAC layer signaling includes: a MAC control element (control element, CE);
  • the physical layer signaling includes: downlink control information (downlink control information) information, DCI), etc.
  • pre-acquisition may include signaling or pre-definition by the network device, eg, protocol definition.
  • pre-definition can be achieved by pre-saving corresponding codes, forms or other means that can be used to indicate relevant information in the equipment (for example, terminal equipment and network equipment), and this application does not limit its specific implementation manner .
  • the "storage” involved in the embodiments of this application may refer to storage in one or more memories.
  • the one or more memories may be provided separately, or may be integrated in an encoder or a decoder, a processor, or a communication device.
  • the one or more memories may also be partially provided separately and partially integrated in the decoder, processor, or communication device.
  • the type of memory may be any form of storage medium, which is not limited in this application.
  • the "protocol” involved in the embodiments of this application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b and c can represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , b and c.
  • a, b and c can be single or multiple respectively.
  • the uplink channel and the downlink channel are reciprocal.
  • the network device can use the reciprocity of the uplink channel and the downlink channel to obtain the CSI of the downlink channel through the uplink channel, and then Perform signal precoding.
  • the network equipment can use the partial reciprocity of FDD to send the information with reciprocity to the pilot, and the terminal equipment only needs to feed back the information without reciprocity (for example, information other than angle and delay) .
  • the complete CSI of the downlink channel can be acquired by combining the reciprocal information obtained by the network device through the uplink channel and the non-reciprocal information fed back by the terminal device.
  • the network device can use the uplink channel information to estimate part of the prior information, including the angle and time delay information of the uplink channel. Then, the obtained angle or delay is loaded on the downlink CSI-RS pilot, and the terminal equipment is notified to measure and feed back the supplementary information that the network equipment needs to obtain. Wherein, each CSI-RS port is loaded with an angle-delay pair information. The terminal equipment only needs to perform full-band accumulation of the received equivalent channel (pilot signal) of each CSI-RS port, and then the complex coefficient of the corresponding angle delay pair of the downlink channel on each port can be obtained as:
  • each CSI-RS pilot port can only load one angle delay pair information, that is, when the base station side configures CSI-RS resources of P CSI-RS ports, only P CSI can be loaded -RS angle delay pair information.
  • FIG. 2 shows a schematic flowchart of the CSI acquisition scheme based on the partial mutuality of FDD by the network device. The specific implementation process has been described above, and for brevity, it will not be repeated here.
  • each column of W 1 has only one non-zero element with a value of 1, which means that 20 ports are selected from P CSI-RS ports, where L 0 is the number of ports selected for one polarization direction. number.
  • the P CSI-RS and L 0 may be configured by the base station through one or more of RRC, MAC CE, and DCI signaling, or may be directly agreed by the protocol, which is not specifically limited in this application.
  • the superposition coefficient matrix corresponding to the 2L 0 CSI-RS ports selected for the UE is the base matrix in the frequency domain, N f is the number of RB resources or subbands in the frequency domain, and W f can be indicated as a certain column or columns of the DFT matrix.
  • Massive MIMO multiple layers can be transmitted to a user through space division multiplexing.
  • the user in order to realize multi-stream transmission, the user needs to feed back channel state information CSI corresponding to multiple layers.
  • the user determines the most appropriate number of transport streams (Rank) according to the base station indication and downlink channel quality.
  • the current most suitable number of transport streams is 2 streams, which are layer 1 and layer 2 respectively; the user needs to calculate the PMI corresponding to layer 1 and layer 2 respectively, and calculate the corresponding CQI under the current PMI, etc.
  • the power difference between each layer is large.
  • the reciprocity of the complete uplink and downlink channels can be used to obtain the power difference between layers and realize the power distribution between streams.
  • the UE independently normalizes each layer and only feeds back one CQI. In other words, the UE normalizes and reports each layer according to its maximum value, and the power of each layer received by the base station is equal and indistinguishable. At this time, the base station cannot know the power difference between streams, and cannot perform power allocation between stream layers, thereby obtaining gains.
  • the maximum value of layer1 is 2 and the maximum value of layer2 is 0.2, then the normalized values of each are 1.
  • the UE reports the normalized values of layer1 and layer2 respectively. If the power value of layer 2 is the same, the exact value of each stream cannot be known, and power allocation cannot be performed.
  • the base station when the CSI acquisition scheme based on partial reciprocity is used for high-rank feedback, it is also necessary to acquire the angle and delay information corresponding to each layer, but in practice, the angle and delay information of each layer will be different. If the base station only sends the common angle and delay information of each layer to the user (layer common), the accuracy of the final PMI will be affected, and the system performance will be affected. In order to ensure that the information is not lost, the base station can combine the angle delay information of each layer and send it to the UE together. At this time, the UE cannot know which angles and delay information are unique to layer1 and layer2, and can only use layer1 Searching and calculating separately in and layer2 will inevitably increase the extra overhead of calculation.
  • the base station should send the angle and delay information of each layer to the user (layer specific).
  • the UE cannot know which angles and delay information are layer-specific. Therefore, for these specific information, the UE will search and calculate each layer like the layer common, which undoubtedly increases the computational complexity of the UE.
  • this application mainly aims at the problems encountered when the existing CSI acquisition scheme is used for high-rank feedback, the power difference between layers cannot be known, and the layer-specific angle and delay information cannot be supported.
  • Rank's CSI measurement feedback method realizes CSI reporting of power differences between layers, and supports separate processing of layer-specific angle and delay information, which can realize multi-stream transmission and improve system transmission performance.
  • the methods provided in the embodiments of the present application may be applied to a system that communicates through a multi-antenna technology, for example, the communication system 100 shown in FIG. 1 .
  • the communication system may include at least one network device and at least one terminal device. Communication between network equipment and terminal equipment is possible through multi-antenna technology.
  • the terminal device shown in the following embodiments may be replaced with components (such as circuits, chips, chip systems, or other functional modules capable of calling programs and executing programs) configured in the terminal devices, and the like.
  • the network device shown in the following embodiments can also be replaced by a component (such as a circuit, a chip, a chip system, or other functional modules capable of calling a program and executing the program) configured in the network device, and the like.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the channel measurement method provided in the embodiment of the present application is described in detail by taking the interaction between the network device and the terminal device as an example.
  • the network device may precode the downlink reference signal based on the predetermined angle vector and the delay vector, so that the terminal device can estimate and feed back multiple angle delays based on the received precoding reference signal. to the corresponding multiple weighting coefficients.
  • the network device may determine a precoding matrix adapted to the downlink channel based on multiple angle delay pairs and multiple weighting coefficients fed back by the terminal device.
  • the network device may precode the downlink reference signal based on a predetermined delay vector, so that the terminal device can estimate and feed back the corresponding antenna delay pairs based on the received precoding reference signal. multiple weighting coefficients.
  • the network device may determine a precoding matrix adapted to the downlink channel based on multiple antenna delay pairs and multiple weighting coefficients fed back by the terminal device.
  • the precoding reference signal sent by a transmit antenna in one polarization direction is used as an example to describe in detail how the terminal device performs channel measurement and feedback based on the precoding reference signal received on one receive antenna. Specific process. Then, the transmitting antenna in one polarization direction is extended to transmit antennas in multiple polarization directions, and the receiving antenna is extended to multiple receiving antennas. It is described in detail that the terminal equipment feeds back P reference signal ports and corresponding P reference signal ports to the network equipment. The specific process of weighting coefficients.
  • the feedback based on the receiving antenna is converted into the feedback based on the transmission layer, which further describes the specific process of the terminal device feeding back the P reference signal ports and the corresponding P weighting coefficients to the network device based on the transmission layer.
  • the specific process of determining the precoding matrix by the network device is described in detail for the two cases of the feedback based on the receiving antenna and the feedback of the receiving transport layer.
  • the polarization direction may be any one of one or more polarization directions of the transmit antenna configured by the network device.
  • the terminal device may perform channel measurement based on the method provided by the embodiment of the present application, and the network device may also determine the precoding reference signal based on the method provided by the embodiment of the present application. encoding matrix.
  • the receive antenna may be any one of one or more receive antennas configured by the terminal device.
  • the terminal device may perform channel measurement based on the method provided by the embodiment of the present application, and the network device may also determine the precoding matrix based on the method provided by the embodiment of the present application.
  • the present application does not limit the number of polarization directions J of the transmitting antennas configured by the network device, for example, it may be one, that is, a single polarization direction; or multiple, such as dual polarization directions.
  • This application also does not limit the number of receiving antennas configured on the terminal device. For example, there may be one or more.
  • Figures 3 to 6 below are a joint feedback quantization method between layers for high-rank feedback quantization proposed for the problem that the current network device cannot know the power difference between multi-stream layers. Firstly, the principle of joint PMI quantization feedback between layers is summarized.
  • the terminal equipment needs to feed back CSI corresponding to multiple layers.
  • the terminal device measures, calculates, quantifies, and feeds back the PMI of multiple streams, it needs to consider the power difference between layers, and perform joint PMI quantization feedback between layers.
  • the terminal device performs Rank4 quantization feedback, it is assumed that before normalization, the PMIs corresponding to layer1, layer2, layer3, and layer4 are PMI1, PMI2, PMI3, and PMI4, respectively, and their corresponding eigenvalues are A1, A2, respectively. , A3, A4.
  • the terminal device needs to multiply the eigenvalues by the corresponding PMIs to obtain A1*PMI1, A2*PMI2, A3*PMI3, A4*PMI4 respectively; and then jointly quantify the PMIs multiplied by the eigenvalues, for example:
  • PMI1 i is the largest element in the modulo value of PMI1.
  • the linear superposition coefficients corresponding to each layer are normalized according to the largest linear coefficient superposition coefficient of layer1.
  • This application does not limit which layer is selected as the normalization reference. That is, when performing joint quantization feedback between multi-stream layers, layer 2 can also be selected to normalize the linear superposition coefficients.
  • the denominator of the PMI joint quantization is the largest element PMI2 i in the PMI2 modulus value.
  • the terminal device can use the joint PMI quantization and feedback between layers to report the power difference between layers. Then, based on the power difference between layers reported by the terminal device, the network device can control the power between streams to improve system performance. Through the experimental comparison, it can be found that the power adjustment based on the power difference between layers improves the system performance gain compared with no power adjustment.
  • FIG. 3 is a schematic flowchart of a channel measurement method provided by an embodiment of the present application.
  • a joint PMI quantization feedback method 300 between layers is proposed, and the specific steps include:
  • the terminal device generates first indication information.
  • the first indication information is used to indicate the quantization information of the jointly normalized M weighting coefficient sets, each weighting coefficient set in the M weighting coefficient sets is determined by a reference signal, and the M weighting coefficient sets are the same as the M weighting coefficient sets.
  • Each layer is in one-to-one correspondence, and M is a positive integer greater than or equal to 2.
  • joint normalization may refer to normalizing all the weighting coefficients in the M weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set; or It can refer to normalizing the weighting coefficient with the largest modulus value in the other M-1 weighting coefficient sets based on the weighting coefficient with the largest modulus value in a certain weighting coefficient set, and then using the M-1 weighting coefficient set respectively.
  • the weighting coefficient with the largest modulus value in each weighting coefficient set is the reference, and all the weighting coefficients in the respective weighting coefficient sets are normalized.
  • joint normalization is to quantify and normalize the M weighting coefficient sets jointly with a certain weighting coefficient set as a reference.
  • the reference weighting coefficient may be the weighting coefficient with the largest modulus value in the corresponding weighting coefficient set, or may be any weighting coefficient in the corresponding weighting coefficient set, It may be a weighting coefficient selected according to a preset rule.
  • the quantization information in this application can be either a specific quantized value (which may be referred to as a "quantized value” or a “quantized value”), such as a quantized value of amplitude and phase, or a quantized value used to indicate a quantized value.
  • the indication information of the value (such as identification, index, etc.).
  • all weighting coefficients in the M layers are normalized by taking the maximum modulus weighting coefficient C12 in the first weighting coefficient set corresponding to the first layer as a reference for joint quantization.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set.
  • the terminal device can finally report the quantized values (or the indication information of the quantized values) of all the weighting coefficients in the M weighting coefficient sets, including the quantized value of the maximum modulo weighting coefficient C12 in the first weighting coefficient set value (or indication of a quantized value), etc.
  • the terminal device may also report the quantized index of a certain weighting coefficient, such as the position information or identification information of the weighting coefficient, etc.; exemplarily, the modulus value in the first weighting coefficient set corresponding to the first layer is the largest.
  • the weighting coefficient C12 is a reference for joint quantization, and all the weighting coefficients in the M layers are normalized.
  • the benchmark of this application may be the weighting coefficient with the largest modulus value, or may be any weighting coefficient in the weighting coefficient set.
  • the terminal device can finally report the position information or index of the maximum modulo weighting coefficient C12 in the first weighting coefficient set, and report the quantized values of all the weighting coefficients except the modulo maximum weighting coefficient C12 (or use index information indicating the quantization value) and so on.
  • pre-defined by the protocol that is, the network device and the terminal device prescribe and determine to use a certain weighting coefficient in a certain weighting coefficient set as the quantization reference, for example, use the first weighting coefficient set corresponding to the first layer.
  • the weighting coefficient C11 is the benchmark for joint quantization, so after the quantization is normalized, the terminal device does not need to report the quantization information and/or index of the weighting coefficient C11 again. This implementation can reduce signaling overhead and reduce the power consumption of the terminal. consumption.
  • each weighting coefficient set in the M weighting coefficient sets includes multiple weighting coefficients, and all weighting coefficients in the M weighting coefficient sets are normalized according to the first weighting coefficient, Obtain the quantization information of the jointly normalized set of M weighting coefficients, the first weighting coefficient is the weighting coefficient in the Lth weighting coefficient set, and the Lth weighting coefficient set is any one of the M weighting coefficient sets.
  • L is a positive integer; send a first message, where the first message is used to indicate the first weighting coefficient.
  • the first weighting coefficient is the weighting coefficient with the largest modulus value in the Lth weighting coefficient set.
  • the linear superposition coefficient corresponding to each layer is normalized according to the maximum linear superposition coefficient C 12 of the modulus value of layer 1 .
  • the Lth weighting coefficient set is determined by the terminal device; or the Lth weighting coefficient set is predefined by the protocol.
  • a first normalization is performed on the M-1 third weighting coefficients according to a second weighting coefficient, where the second weighting coefficient is a weighting coefficient in the Uth weighting coefficient set, and the second weighting coefficient is a weighting coefficient in the Uth weighting coefficient set.
  • the U weighting coefficient sets correspond to the u-th layer
  • the third weighting coefficient is the weighting coefficient in each weighting coefficient set in the M-1 weighting coefficient sets except the U-th weighting coefficient set in the M weighting coefficient sets
  • the M-1 weighting coefficient set corresponds to the M-1 layers except the u-th layer in the M layers
  • U and u are both positive integers
  • the u-th layer belongs to the M layers
  • the coefficients perform second normalization on all the weighting coefficients in the U-th weighting coefficient set, and perform third normalization on all the weighting coefficients in the corresponding weighting coefficient set according to the third weighting coefficient
  • Normalization, the second normalization, and the third normalization to obtain the quantization information of the jointly normalized set of M weighting coefficients
  • the terminal device sends a second message to the network device, correspondingly, the network device receives A second message from the terminal device, where the second message is used to indicate the second weighting coefficient and the M-1 third weighting coefficients.
  • the second weighting coefficient is the weighting coefficient with the largest modulus value in the U-th weighting coefficient set
  • the third weighting coefficient is the U-th weighting coefficient set in the M weighting coefficient sets except the U-th weighting coefficient set.
  • the weighting coefficient with the largest modulus value in each weighting coefficient set is the weighting coefficient with the largest modulus value in each weighting coefficient set.
  • the maximum linear superposition coefficient of the corresponding modulus value of each layer is normalized according to the maximum linear superposition coefficient of the modulus value of layer1; and other linear superposition coefficients of each layer are normalized according to the linear superposition coefficient of the corresponding layer with the largest modulus value.
  • the U-th weighting coefficient set is determined by the terminal device; or the U-th weighting coefficient set is predefined by the protocol.
  • fourth normalization is performed on the M-1 fifth weighting coefficients according to a fourth weighting coefficient, where the fourth weighting coefficient is a weighting coefficient in the Xth weighting coefficient set, and the fourth weighting coefficient is a weighting coefficient in the Xth weighting coefficient set.
  • the X weighting coefficient sets correspond to the xth layer
  • the fifth weighting coefficient is the weighting coefficient in each weighting coefficient set in the M-1 weighting coefficient sets except the Xth weighting coefficient set in the M weighting coefficient sets
  • the M-1 weighting coefficient sets are in one-to-one correspondence with the M-1 layers except the xth layer in the M layers, X and x are both positive integers, and the xth layer belongs to the M layers; according to the fourth layer
  • the weighting coefficient performs fifth normalization on all the weighting coefficients in the Xth weighting coefficient set; according to the fourth weighting coefficient and the fifth weighting coefficient, all the weighting coefficients in the weighting coefficient set corresponding to the fifth weighting coefficient are respectively weighted
  • the coefficients are subjected to sixth normalization and seventh normalization; according to the fourth normalization, the fifth normalization, the sixth normalization and the seventh normalization, the jointly normalized Quantization information of the M weighting coefficient sets; the terminal device sends a third message to the network device,
  • the fourth weighting coefficient is the weighting coefficient with the largest modulus value in the Xth weighting coefficient set
  • the fifth weighting coefficient is other than the Xth weighting coefficient set in the M weighting coefficient sets.
  • the weighting coefficient with the largest modulus value in each weighting coefficient set is the weighting coefficient with the largest modulus value in each weighting coefficient set.
  • the maximum linear superposition coefficient of the corresponding modulus value of each layer is normalized according to the maximum linear superposition coefficient of the modulus value of layer1; and other linear superposition coefficients of each layer are respectively normalized according to the maximum linear superposition coefficient of the modulus value corresponding to layer1 and each layer.
  • the Xth weighting coefficient set is determined by the terminal device; or the Xth weighting coefficient set is predefined by the protocol.
  • the terminal device sends the first indication information to the network device; correspondingly, the network device receives the first indication information from the terminal device.
  • the UE reports the maximum linear superposition coefficient index of the modulus value of layer1, and the quantized values of the normalized amplitude and phase of all other linear superposition coefficients.
  • the UE reports the maximum linear superposition coefficient index of the modulus value of layer1, the maximum linear superposition coefficient of the modulus value of other layers except layer1 and its corresponding index, and the quantized values of the normalized amplitude and phase of all other linear superposition coefficients.
  • the network device determines the power difference among the M layers according to the first indication information.
  • the related bearer modes such as indication information and configuration information may be, but not limited to, one of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling, or at least one of them. combination of the two.
  • the radio resource control signaling includes: radio resource control RRC signaling;
  • the MAC layer signaling includes: MAC control element CE;
  • the physical layer signaling includes: downlink control information DCI and the like.
  • the network device delivers the first message list and/or the second message list to the terminal device, and the first message list and/or the second message list can be delivered through UE-specific signaling, such as configured through RRC signaling,
  • UE-specific signaling such as configured through RRC signaling
  • the MAC-CE signaling is activated, and the first message list is indicated to the terminal device by delivering the DCI, and the specific implementation manner is not limited in this application.
  • FIG. 4 is a schematic diagram of an example of a joint PMI quantization feedback method between layers applicable to an embodiment of the present application. Exemplarily, it is assumed that the current most suitable number of transport streams is 2 streams, which are layer1 and layer2 respectively. As shown in Figure 4, the following formulas (1) and (2) represent the linear superposition coefficient matrices corresponding to layer1 and layer2, respectively,
  • the matrices C1 and C2 each have K columns.
  • the number of columns of the linear superposition coefficient matrices corresponding to layer1 and layer2 may be the same or different, which is not limited in this application.
  • the protocol stipulates that the linear superposition coefficients corresponding to layer1 and layer2 are jointly normalized and then reported; then, the UE normalizes all linear superposition coefficients corresponding to layer1 and layer2 according to the maximum linear superposition coefficient of the modulus value of layer1.
  • the UE reports the index corresponding to the maximum linear superposition coefficient C 12 of the layer1 modulus value to the base station (ie, an example of the first message);
  • the quantized values of amplitude and phase after normalization of all linear superposition coefficients in the linear superposition coefficient matrices C 1 and C 2 corresponding to layer1 and layer2 that is, an example of the first indication information, namely C 11 , . . . , C 1K , C 21 , C 22 , ..., C 2K , etc.
  • the quantization information finally reported by the UE may be a specific quantized value, such as the quantized value of the amplitude and phase of layer1 and layer2, and the base station can determine that the C12 is the quantization reference when the quantized value of C12 is 1 .
  • This implementation does not require the UE to report the index corresponding to C 12 , for example, the index may indicate that C 12 is the second linear superposition coefficient in the linear superposition coefficient matrix C 1 .
  • the UE may also report the index corresponding to the quantization of C12, for example, the port port information position and/or the frequency domain vector position information (or the position information of the space-domain vector and the frequency-domain vector, or the position information of the space-frequency vector) corresponding to C12. location information) etc.
  • the UE and the base station determine in advance that C 12 is used as the quantization benchmark through pre-defined protocols in the protocol, so the UE does not need to report the quantization information and/or index of the C 12 again, which further reduces signaling overhead and reduces the power consumption of the terminal.
  • the linear superposition coefficients corresponding to each layer are normalized according to the largest linear coefficient superposition coefficient of layer1.
  • This application does not limit which layer is selected as the normalization reference. That is, when performing joint quantization feedback between multi-stream layers, layer 2 can also be selected to normalize the linear superposition coefficients.
  • the denominator of the PMI joint quantization is the largest element matrix C 2i in the matrix C 2 .
  • the embodiment of the present application normalizes the linear superposition coefficient corresponding to each layer according to the maximum linear superposition coefficient of the modulus value of layer1.
  • the method of coefficient reporting compared with the previous maximum value of each layer, only the index is reported. In this embodiment of the present application, only the maximum value of layer1 is reported as the index, and all other coefficients need to report the quantization results of amplitude and phase.
  • this embodiment describes that by normalizing the linear superposition coefficients of each layer according to the maximum linear superposition coefficient of the modulus value of layer1, the joint PMI quantization feedback method between layers can be realized, so that the network device can know the power difference between the multi-stream layers, so that the power distribution to obtain system gain.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the linear superposition coefficients corresponding to each layer are normalized according to the maximum linear superposition coefficient of the modulus value of layer 1, so as to realize joint PMI quantization feedback between layers.
  • the maximum linear superposition coefficient of the corresponding modulus value of each layer is normalized according to the maximum linear superposition coefficient of the modulus value of layer1; and the other linear superposition coefficients of each layer are normalized according to the maximum linear superposition coefficient of the modulus value of the layer, so as to realize the joint between layers.
  • PMI quantifies feedback.
  • FIG. 5 is a schematic diagram of another example of the joint PMI quantization feedback method between layers applicable to the embodiment of the present application.
  • the current most suitable number of transport streams is 2 streams, which are layer1 and layer2 respectively.
  • the following formulas (3) and (4) represent the linear superposition coefficient matrices corresponding to layer1 and layer2, respectively,
  • the matrices C1 and C2 each have K columns.
  • the number of columns of the linear superposition coefficient matrices corresponding to layer1 and layer2 may be the same or different, which is not limited in this application.
  • the protocol stipulates that the linear superposition coefficients corresponding to layer1 and layer2 are jointly normalized and then reported; then, the UE normalizes the maximum linear superposition coefficient of the modulus value corresponding to layer1 and layer2 according to the maximum linear superposition coefficient of the modulus value of layer1.
  • determine the largest element in the matrix C 1 that is, an example of the U-th weighting coefficient set
  • C 12 that is, an example of the second weighting coefficient
  • the largest element in the corresponding matrix C 2 ie, one of the M-1 weighting coefficient sets
  • the modulus value corresponding to layer2 is divided by the maximum linear superposition coefficient C 22 .
  • C 12 is quantized (that is, an example of the first normalization); then, the other linear superposition coefficients of each layer are normalized according to the linear superposition coefficient with the largest modulus value of the corresponding layer, that is, all linear superposition coefficients in layer1 are divided by C 12 to carry out Quantization (that is, an example of the second normalization), all linear superposition coefficients in layer2 are divided by C 22 for quantization (that is, an example of the third normalization); finally, the UE reports the maximum linear superposition coefficient C of the modulus value of layer1 to the base station The index corresponding to 12 (ie, an example of the second message), and the index corresponding to the maximum linear superposition coefficient C 22 of the modulus value of other layers (ie, layer2) except layer1 (ie, layer2) (ie, an example of the second message); The normalized amplitude and phase quantized values of all linear superposition coefficients in the linear superposition coefficient matrices C 1 and C 2 corresponding to layer1 and layer 2 other than C 12 (ie, an
  • the quantization information finally reported by the UE may be a specific quantized value, such as the quantized value of the amplitude and phase of layer1 and layer2, and the base station can determine that the C12 is the quantization reference when the quantized value of C12 is 1 .
  • This implementation does not require the UE to report the index corresponding to C 12 , for example, the index may indicate that C 12 is the second linear superposition coefficient in the linear superposition coefficient matrix C 1 .
  • the UE may also report the indexes corresponding to C12 and C22 after quantization, for example, the port information position and/or the frequency domain vector position information (or the position information of the space domain vector and the frequency domain vector) corresponding to C12 and C22 . , or the position information of the space-frequency vector) and so on.
  • the UE and the base station pre-determined through the pre-defined protocol of the protocol to first use C 12 as the quantization reference, and then use C 12 and C 22 as the quantization reference, then the UE does not need to report the indices of the C 12 and C 22 again, which further reduces the Signaling overhead, reducing the power consumption of the terminal.
  • the linear superposition coefficients corresponding to each layer are normalized according to the largest linear coefficient superposition coefficient of layer1.
  • This application does not limit which layer is selected as the normalization reference. That is, when performing joint quantization feedback between multi-stream layers, layer 2 can also be selected to normalize the linear superposition coefficients.
  • the denominator of the PMI joint quantization is the largest element matrix C 2i in the matrix C 2 .
  • the embodiment of the present application normalizes the maximum linear superposition coefficient of the corresponding modulus value of each layer according to the maximum linear superposition coefficient of the modulus value of layer1.
  • the method for reporting coefficients compared with the previous maximum values of each layer, only the index is reported.
  • the maximum value of the coefficient of other streams layer2 in addition to reporting the index of the maximum coefficient of layer1, the maximum value of the coefficient of other streams layer2 also needs to be reported.
  • all other coefficients need to report the quantization results of the amplitude and phase.
  • this embodiment describes that by normalizing the maximum linear superposition coefficient of each layer according to the maximum linear superposition coefficient of the modulus value of layer1, a joint PMI quantization feedback method between layers can be realized, so that the network device can know the power difference between multi-stream layers. To achieve power distribution, and then obtain system gain.
  • FIG. 6 is a schematic diagram of another example of the joint PMI quantization feedback method between layers applicable to the embodiment of the present application.
  • the current most suitable number of transport streams is 2 streams, which are layer1 and layer2 respectively.
  • the following formulas (5) and (6) represent the linear superposition coefficient matrices corresponding to layer1 and layer2, respectively,
  • the matrices C1 and C2 each have K columns.
  • the number of columns of the linear superposition coefficient matrices corresponding to layer1 and layer2 may be the same or different, which is not limited in this application.
  • the protocol stipulates that the linear superposition coefficients corresponding to layer1 and layer2 are jointly normalized and then reported; then, the UE normalizes the maximum linear superposition coefficient of the modulus value corresponding to layer1 and layer2 according to the maximum linear superposition coefficient of the modulus value of layer1.
  • the largest element in the matrix C 1 that is, an example of the X-th weighting coefficient set corresponding to layer1 (that is, an example of the x-th layer) as C 12 (that is, an example of the fourth weighting coefficient)
  • the layer2 The largest element in the corresponding matrix C 2 (ie, one of the M-1 weighting coefficient sets) is C 22 (ie, an example of the fifth weighting coefficient), and the modulus value corresponding to layer2 is divided by the maximum linear superposition coefficient C 22 C12 is quantized (that is, an example of the fourth normalization); then, the other linear superposition coefficients of each layer are normalized according to the maximum linear superposition coefficient of the modulus value corresponding to layer1 and each layer, that is, all linear superposition coefficients in layer1 are divided by Quantization is performed with C 12 (ie, an example of the fifth normalization), and all linear superposition coefficients in layer2 are divided by C 12 and C 22 for quantization (ie, an example of the sixth normalization and the seventh normalization
  • the quantization information finally reported by the UE may be a specific quantized value, such as the quantized value of the amplitude and phase of layer1 and layer2, and the base station can determine that the C12 is the quantization reference when the quantized value of C12 is 1 .
  • This implementation does not require the UE to report the index corresponding to C 12 , for example, the index may indicate that C 12 is the second linear superposition coefficient in the linear superposition coefficient matrix C 1 .
  • the UE may also report the indexes corresponding to C12 and C22 after quantization, for example, the port information position and/or the frequency domain vector position information (or the position information of the space domain vector and the frequency domain vector) corresponding to C12 and C22 . , or the position information of the space-frequency vector) and so on.
  • the UE and the base station pre-determined through the pre-defined protocol of the protocol to first use C 12 as the quantization reference, and then use C 12 and C 22 as the quantization reference, then the UE does not need to report the indices of the C 12 and C 22 again, which further reduces the Signaling overhead, reducing the power consumption of the terminal.
  • the linear superposition coefficients corresponding to each layer are normalized according to the largest linear coefficient superposition coefficient of layer1.
  • This application does not limit which layer is selected as the normalization reference. That is, when performing joint quantization feedback between multi-stream layers, layer 2 can also be selected to normalize the linear superposition coefficients.
  • the denominator of the PMI joint quantization is the largest element matrix C 2i in the matrix C 2 .
  • the embodiment of the present application normalizes the maximum linear superposition coefficient of the corresponding modulus value of each layer according to the maximum linear superposition coefficient of the modulus value of layer1.
  • the method for reporting coefficients compared with the previous maximum values of each layer, only the index is reported.
  • the maximum value of the coefficient of other streams layer2 in addition to reporting the index of the maximum coefficient of layer1, the maximum value of the coefficient of other streams layer2 also needs to be reported.
  • all other coefficients need to report the quantization results of the amplitude and phase.
  • this embodiment describes that by normalizing the maximum linear superposition coefficient of each layer according to the maximum linear superposition coefficient of the modulus value of layer1, a joint PMI quantization feedback method between layers can be realized, so that the network device can know the power difference between multi-stream layers. To achieve power distribution, and then obtain system gain.
  • Figures 7 to 9 below are proposed methods for indicating layer-specific angle and delay information for high-rank feedback quantization, aiming at the problem that the current terminal device cannot know which angle and delay information in the multi-stream layer is layer-specific.
  • the principle of layer-specific angle and delay information indication is summarized.
  • the basic process of layer-specific angle and delay information indication is as follows:
  • Step 1 The network device groups the angle-delay of multiple streams (for example, layer1 and layer2), and divides them into layer common group and layer specific group.
  • the layer common group represents the common angle and delay information of layer1 and layer2
  • the layer specific group represents the angle and delay information unique to layer1 and layer2 respectively, which is used to further distinguish the difference in the angle delay information of the two.
  • Step 2 The network device sends explicit/implicit signaling to the terminal device to further indicate the grouping situation of the angle-delay pair of layer1 and layer2.
  • Step 3 The terminal device performs PMI calculation and reporting for different layers and different angle-delay pairs according to the explicit/implicit indication sent by the network device.
  • the network device can send the layer-specific angle and delay information to ensure the PMI accuracy of each layer; the terminal device can learn the corresponding relationship between the angle and delay information and each layer, and process these information in a targeted manner to avoid All angles and delay information of each layer are searched and calculated once, which reduces the complexity of calculating the layer angle and delay information by the terminal device and reduces the overhead.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application. As shown in FIG. 7 , specific steps 700 include:
  • the network device sends the first information to the terminal device; correspondingly, the terminal device receives the first information from the network device.
  • the first information is used to indicate the first grouping configuration information and/or the second grouping configuration information
  • the first grouping configuration information is used to indicate the mapping relationship between the P reference signal ports and the Z layers
  • the second The grouping configuration information is used to indicate the mapping relationship between the N frequency domain basis vectors and the Z layers
  • P, N and Z are all positive integers greater than or equal to 1.
  • each of the Z layers corresponds to one or more of the P reference signal ports.
  • the implementation may take two layers as an example, and the first grouping configuration information may be used to indicate the correspondence between the 16 CSI-RS ports and the two layers, that is, the first layer corresponds to the port. 1 to port 8, the second layer corresponds to port 9 to port 16; or the first layer corresponds to port 1 to port 4, the second layer corresponds to port 9 to port 10 and so on.
  • This implementation shows that the ports corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated port grouping configuration information.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to improve the operating efficiency and transmission performance of the system.
  • the first layer corresponds to ports 1 to 10
  • the second layer corresponds to ports 5 to 16 .
  • This implementation not only indicates that the first layer and the second layer have their own dedicated port grouping configuration information, for example, ports 1 to 4 only correspond to the first layer, and ports 11 to 16 only correspond to the second layer; it also indicates that The first and second layers also have common port grouping configuration information, such as port 5 to port 10.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby reducing the power consumption of the terminal.
  • the channel state information of the two layers can be accurately acquired, thereby improving the operating efficiency and transmission performance of the system.
  • both the first and second layers correspond to ports 1 to 16 .
  • This implementation indicates that the first layer and the second layer have only common port grouping configuration information.
  • the terminal device can indiscriminately calculate the PMI indicated by the precoding matrix based on the shared ports corresponding to the first layer and the second layer, so as to improve the system transmission performance.
  • the implementation may take three layers as an example, and the first grouping configuration information is also used to indicate the correspondence between the 16 CSI-RS ports and the three layers, that is, the first layer corresponds to the port. 1 to port 5, the second layer corresponds to port 6 to port 12, the third layer corresponds to port 13 to port 16; or the first layer corresponds to port 1 to port 3, the second layer corresponds to port 6 To port 10, this third layer corresponds to port 12 to port 15 and so on.
  • This implementation shows that the ports corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated port grouping configuration information. Based on the dedicated ports corresponding to the first layer, the second layer and the third layer, the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to improve the operating efficiency and transmission performance of the system.
  • the first layer corresponds to port 1 to port 7
  • the second layer corresponds to port 5 to port 6, port 8 to port 11, and port 12
  • the third layer corresponds to port 6 to port 7, port 12 to port 16.
  • the first layer, the second layer and the third layer have their own dedicated port grouping configuration information, for example, ports 1 to 4 only correspond to the first layer, and ports 8 to 11 only correspond to the second layer.
  • layer, port 13 to port 16 only correspond to the third layer; it also indicates that the first layer, the second layer and the third layer also have common port grouping configuration information, such as port 6.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, so as to reduce the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common ports corresponding to the first layer, the second layer and the third layer, thereby improving the operating efficiency and transmission performance of the system.
  • port 5 can also be understood as the port grouping configuration information dedicated to the first and second layers; with respect to the second layer, port 7 can also be understood as It is understood as the specific port grouping configuration information of the first layer and the third layer; compared with the first layer, the port 12 can also be understood as the specific port grouping configuration information of the second layer and the third layer.
  • the first layer, the second layer and the third layer all correspond to ports 1 to 16 .
  • This implementation indicates that the first layer, the second layer and the third layer only have common port grouping configuration information.
  • the terminal device can indiscriminately calculate the PMI indicated by the precoding matrix based on the common ports corresponding to the first layer, the second layer and the third layer, so as to improve the transmission performance of the system.
  • ports corresponding to at least two layers in the Z layers are not identical.
  • this implementation may take three layers as an example, the first layer corresponds to port 1 to port 7, the second layer corresponds to port 1 to port 6, port 8 to port 11, and port 12, and the third layer corresponds to from port 6 to port 7 and port 12 to port 16.
  • This implementation shows that the ports corresponding to the three layers are not completely the same.
  • the first layer corresponds to port 1 to port 10
  • the second layer and the third layer both correspond to port 6 to port 16.
  • This implementation shows that the ports corresponding to the first layer and the second layer, and the ports corresponding to the first layer and the third layer are not exactly the same, and so on.
  • the terminal device can perform calculation of the PMI indicated by the precoding matrix in a targeted manner based on the dedicated ports corresponding to the three layers, thereby reducing the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common ports corresponding to the first layer, the second layer and the third layer, thereby improving the operating efficiency and transmission performance of the system.
  • each of the Z layers corresponds to one or more of the R frequency-domain basis vectors.
  • frequency domain basis vector can be:
  • the implementation may take two layers as an example, and the second grouping configuration information may be used to indicate the correspondence between the three frequency domain basis vectors and the two layers, that is, the first layer corresponds to the frequency domain. Domain basis vector 1 and frequency domain basis vector 2, the second layer corresponds to frequency domain basis vector 3; or the first layer corresponds to frequency domain basis vector 1, the second layer corresponds to frequency domain basis vector 3 and so on.
  • This implementation shows that the frequency domain basis vectors corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated frequency domain basis vector grouping configuration information. Based on the dedicated frequency domain basis vectors corresponding to the first layer and the second layer, the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby improving the operating efficiency and transmission performance of the system.
  • the first layer corresponds to frequency domain basis vector 1 and frequency domain basis vector 2
  • the second layer corresponds to frequency domain basis vector 2 and frequency domain basis vector 3.
  • This implementation not only indicates that the first layer and the second layer have their own dedicated frequency domain basis vector grouping configuration information, for example, frequency domain basis vector 1 only corresponds to the first layer, and frequency domain basis vector 3 only corresponds to the second layer. layer; it also indicates that the first layer and the second layer also share the common grouping configuration information of the frequency domain basis vector, such as frequency domain basis vector 2.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby reducing the power consumption of the terminal.
  • the channel state information of the two layers can be accurately acquired based on the common frequency domain basis vectors corresponding to the first layer and the second layer, thereby improving the operating efficiency and transmission performance of the system.
  • both the first layer and the second layer correspond to frequency domain basis vector 1 to frequency domain basis vector 3 .
  • This implementation indicates that the first layer and the second layer have only common frequency domain basis vector grouping configuration information.
  • the terminal device can perform the calculation of the precoding matrix indication PMI based on the common frequency domain base vectors corresponding to the first layer and the second layer indiscriminately, so as to improve the transmission performance of the system.
  • this implementation may take three layers as an example, and the first grouping configuration information is also used to indicate the correspondence between the eight frequency-domain basis vectors and the three layers, that is, the first layer corresponds to the frequency domain.
  • domain basis vector 1 to frequency domain basis vector 3 the second layer corresponds to frequency domain basis vector 4 to frequency domain basis vector 6
  • the third layer corresponds to frequency domain basis vector 7 and frequency domain basis vector 8
  • the third layer corresponds to frequency domain basis vector 7 and frequency domain basis vector 8
  • One layer corresponds to frequency domain basis vector 1 and frequency domain basis vector 2
  • the second layer corresponds to frequency domain basis vector 4 and frequency domain basis vector 5
  • the third layer corresponds to frequency domain basis vector 7 and frequency domain basis vector 8 and so on.
  • This implementation shows that the frequency domain basis vectors corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated frequency domain basis vector grouping configuration information. Based on the dedicated frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, the terminal device can perform the calculation of the precoding matrix indicating PMI in a targeted manner, so as to improve the operating efficiency and transmission performance of the system.
  • the first layer corresponds to frequency domain basis vector 1 to frequency domain basis vector 4
  • the second layer corresponds to frequency domain basis vector 2, frequency domain basis vector 3, frequency domain basis vector 5 and frequency domain basis vector 6.
  • the third layer corresponds to frequency domain basis vector 3 to frequency domain basis vector 5, frequency domain basis vector 7 and frequency domain basis vector 8.
  • the frequency domain basis vector 7 and the frequency domain basis vector 8 only correspond to the third layer; it also indicates that the first layer, the second layer and the third layer also have common port grouping configuration information, such as the frequency domain basis vector 3.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner, thereby reducing the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, thereby improving the system operation efficiency and transmission performance.
  • the frequency domain basis vector 2 can also be understood as the dedicated frequency domain basis vector grouping configuration information of the first layer and the second layer;
  • the frequency domain basis vector 4 can also be understood as the dedicated frequency domain basis vector grouping configuration information of the first and third layers; relative to the first layer, the frequency domain basis vector 5 can also be understood as the second layer and Layer 3-specific frequency-domain basis vector grouping configuration information.
  • the first layer, the second layer and the third layer all correspond to the frequency domain basis vector 1 to the frequency domain basis vector 3 .
  • This implementation indicates that the first layer, the second layer and the third layer only have common frequency domain base vector grouping configuration information.
  • the terminal device can indiscriminately calculate the precoding matrix indication PMI based on the common frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, so as to improve the system transmission performance.
  • the frequency domain basis vectors corresponding to at least two layers in the Z layers are not identical.
  • this implementation may take three layers as an example, the first layer corresponds to the frequency domain basis vector 1 to the frequency domain basis vector 4, and the second layer corresponds to the frequency domain basis vector 2 and the frequency domain basis vector 3. , frequency domain basis vector 5 and frequency domain basis vector 6, the third layer corresponds to frequency domain basis vector 3 to frequency domain basis vector 5, frequency domain basis vector 7 and frequency domain basis vector 8.
  • This implementation shows that the frequency domain basis vectors corresponding to the three layers are not identical.
  • the first layer corresponds to frequency domain basis vector 1 to frequency domain basis vector 6
  • both the second layer and the third layer correspond to frequency domain basis vector 4 to frequency domain basis vector 8 .
  • This implementation shows that the frequency domain basis vectors corresponding to the first layer and the second layer, and the frequency domain basis vectors corresponding to the first layer and the third layer are not identical, and so on.
  • the terminal device can perform the calculation of the PMI indicated by the precoding matrix in a targeted manner based on the dedicated frequency domain basis vectors corresponding to the three layers, thereby reducing the power consumption of the terminal.
  • the channel state information of the three layers can be accurately acquired based on the common frequency domain basis vectors corresponding to the first layer, the second layer and the third layer, thereby improving the system operation efficiency and transmission performance.
  • the first grouping configuration information and/or the second grouping configuration information is carried in at least one of the following signaling: radio resource control RRC, medium access control control element MAC CE, downlink control information DCI.
  • the first grouping configuration information and/or the second grouping configuration information is predefined by a protocol.
  • the codebook structure fed back by the PMI satisfies:
  • W 1 is the port selection matrix
  • W f is the frequency domain basis vector matrix
  • the W 1 is the port selection matrix specific to each of the Z layers
  • the W f is the frequency domain specific to each of the Z layers basis vector matrix.
  • W f is a matrix of frequency domain basis vectors, wherein the frequency domain basis vectors can be selected from the set of frequency domain vectors indicated by the base station.
  • W 1 is a port selection matrix, and the UE can select K 1 CSI-RS ports from the P CSI-RS ports through the combination number or Bitmap.
  • the UE may indicate the non-zero coefficients reported by the bitmap.
  • Mv>1 it can be expressed that the CSI information reported by the UE does not include bitmap overhead; when Mv>1, the UE uses bitmap to indicate the reported non-zero coefficients.
  • the bitmap overhead is included in the CSI information reported by the UE.
  • the CSI-RS ports corresponding to the first layer are ports 1 to 10
  • the CSI-RS ports corresponding to the second layer are ports 8 to 16
  • W 1 of the first layer is Port selection matrix corresponding to ports 1 to 10
  • W 1 of the second layer is the port selection matrix corresponding to ports 8 to 16. That is, the port selection matrices W1 corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated port grouping configuration information.
  • the CSI-RS ports corresponding to the first layer are ports 1 to 8
  • the CSI-RS ports corresponding to the second layer are ports 6 to 12
  • the CSI-RS ports corresponding to the third layer are The ports are ports 10 to 16, then W1 of the first layer is the port selection matrix corresponding to ports 1 to 8, W1 of the second layer is the port selection matrix corresponding to ports 6 to 12, and W1 of the third layer is the port selection matrix 10 to 16 correspond to the port selection matrix. That is, the port selection matrices W1 corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated port grouping configuration information.
  • W 1 indicates that one or more reference signal ports only correspond to one of the Z layers, which is completely different from the port selection matrix W 1 corresponding to other Z-1 layers. .
  • the frequency domain basis vector matrix of the first layer corresponds to frequency domain basis vectors 1 and 2
  • the frequency domain basis vector matrix of the second layer corresponds to frequency domain basis vectors 1 and 3
  • the first The W f of the first layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 1 and 2
  • the W f of the second layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 1 and 3. That is, the frequency-domain basis vector matrices W f corresponding to the first layer and the second layer are completely different, and the two layers have their own dedicated frequency-domain basis vector grouping configuration information.
  • the frequency domain basis vector matrix of the first layer corresponds to frequency domain basis vectors 1 to 3
  • the frequency domain basis vector matrix of the second layer corresponds to frequency domain basis vectors 2 to 4
  • the third layer corresponds to frequency domain basis vectors 2 to 4.
  • the frequency domain basis vector matrix of the layer corresponds to the frequency domain basis vectors 5 and 6
  • the W f of the first layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 1 to 3
  • the W f of the second layer is the frequency domain basis vector
  • the W f of the third layer is the frequency domain basis vector matrix corresponding to the frequency domain basis vectors 5 and 6. That is, the end frequency domain basis vector matrices W f corresponding to the first layer, the second layer and the third layer are completely different, and the three layers have their own dedicated frequency domain basis vector grouping configuration information.
  • W f represents that one or more frequency domain basis vectors only correspond to a certain layer in the Z layers, and the frequency domain basis vector matrix W corresponding to other Z-1 layers f is completely different.
  • first grouping configuration information and/or the second grouping configuration information is determined based on K angle delay pairs of uplink channel information, where K is a positive integer greater than or equal to 1.
  • each angle delay pair in the K angle delay pairs includes an angle vector and a delay vector
  • the P reference signal ports correspond to the K angle delay pairs
  • the P reference signal ports The reference signal of each reference signal port is obtained by precoding the reference signal based on an angle vector and a delay vector
  • the N frequency domain base vectors correspond to the K angle delay pairs
  • the N frequency domain base vectors The reference signal of each frequency domain base vector is obtained by precoding the reference signal based on an angle vector and a delay vector.
  • the terminal device sends the precoding matrix indication PMI corresponding to the Z layers to the network device; correspondingly, the network device receives the precoding matrix indication PMI corresponding to the Z layers from the terminal device.
  • the precoding matrix indicates that the PMI is determined according to the first information.
  • the related bearer modes such as indication information and configuration information may be, but not limited to, one of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling, or at least one of them. combination of the two.
  • the radio resource control signaling includes: radio resource control RRC signaling;
  • the MAC layer signaling includes: MAC control element CE;
  • the physical layer signaling includes: downlink control information DCI and the like.
  • the network device delivers the first message list and/or the second message list to the terminal device, and the first message list and/or the second message list can be delivered through UE-specific signaling, such as configured through RRC signaling,
  • UE-specific signaling such as configured through RRC signaling
  • the MAC-CE signaling is activated, and the first message list is indicated to the terminal device by delivering the DCI, and the specific implementation manner is not limited in this application.
  • FIG. 8 is a schematic flowchart of a channel measurement method provided by an embodiment of the present application, and a method 800 for indicating layer-specific angle and delay information based on CSI-RS port grouping is proposed. Specific steps include:
  • the network device generates a first list (ie, an example of the first grouping configuration information).
  • the first list includes at least one piece of grouping configuration information, and each grouping configuration information is used to indicate a mapping relationship between a channel state information reference signal CSI-RS antenna port port and a plurality of layer data streams layers.
  • the first list is determined by the network device according to the uplink channel.
  • the first list can also be defined by a protocol, that is, a table corresponding to a CSI-RS port grouping rule and a layer is added by the protocol.
  • the network device may configure the grouping configuration information shown in Table 1 and Table 2 below, that is, configure the grouping information of the corresponding multiple flows according to the port information port.
  • Table 1 shows a single-polarized 16-port antenna as an example to illustrate the mapping relationship between port ports and multi-stream layers. It should be noted that, in an antenna multi-polarization 32 port, the relationship between ports 17-32 and the stream layer may be the same as the relationship between ports 1-16 and the stream layer.
  • configuration 1 indicates that ports 1-12 correspond to layer1, ports 5-16 correspond to layer2, and ports 5-12 correspond to layer1 and layer2 at the same time; correspondingly, in the antenna multi-polarization 32port, configuration 1 also indicates the port 17-28 correspond to layer1, ports 21-32 correspond to layer2, of which ports 21-28 correspond to both layer1 and layer2; configuration 2 means that ports 1-16 correspond to layer1 and layer2 at the same time; correspondingly, in the antenna multi-polarization 32port, configuration 2 Also means that ports 17-32 correspond to both layer1 and layer2.
  • Configuration 3 means that ports 1-8 correspond to layer1, and ports 9-16 correspond to layer2; correspondingly, in an antenna multi-polarization 32port, configuration 3 also means that ports 17-24 correspond to layer1, ports 25-32 correspond to layer2, and so on.
  • a port may correspond to a port set (or a port group).
  • ports 1-4 may correspond to one port set
  • ports 5-12 correspond to another port set
  • ports 13-16 correspond to yet another port. gather.
  • the correspondence between layers and ports can also be viewed as the correspondence between layers and port sets.
  • ports 1-16 and ports 17-32 are in a corresponding relationship, and correspond to the same layer. It can be understood that the ports 1-16 corresponding to layer1 correspond to the 45-degree direction of the antenna, then the ports 17-32 corresponding to layer1 correspond to the negative antenna. 45 degree orientation.
  • ports 1-32 ports may be directly configured to correspond to different layers, wherein the correspondence between ports 1-16 and stream layers and the correspondence between ports 17-32 and stream layers may be inconsistent.
  • configuration 1 indicates that ports 1-12 and 21-32 correspond to layer1, ports 5-28 correspond to layer2, and ports 5-12 and 21-28 correspond to both layer1 and layer2;
  • configuration 2 indicates that ports 1-32 correspond to layer2, ports 1-16 correspond to layer1, where ports 1-16 correspond to both layer1 and layer2;
  • configuration 3 means that ports 1-8 and 25-32 correspond to layer1, ports 9-32 correspond to layer2, and ports 25-32 correspond to both layer1 and layer2 layer2, etc.
  • the network device may determine, according to the uplink channel information, some of the ports (for example, only select ports 1-12 in configuration 1) for quantization feedback of the layer data streams layer1 and layer2.
  • mapping relationship between Z layers and P ports can be configured through signaling, where Z and P are both positive integers greater than or equal to 1. That is, each layer can be configured with one or more different ports.
  • the specific configuration is as follows:
  • the network device may configure the grouping configuration information shown in Table 3 and Table 4, that is, configure the grouping information of corresponding ports according to multiple flows.
  • Table 3 shows a single-polarized 16-port antenna as an example to illustrate the mapping relationship between multi-stream layers and port ports. It should be noted that, in an antenna multi-polarization 32 port, the relationship between the stream layer and ports 17-32 may be the same as the relationship between the stream layer and ports 1-16.
  • configuration 1 indicates the configuration information corresponding to ports 1-12 of layer1, and configuration information corresponding to ports 5-16 of layer2, wherein the common grouping configuration information of layer1 and layer2 corresponds to ports 5-12; correspondingly, In the antenna multi-polarization 32port, configuration 1 also indicates the configuration information of layer1 corresponding to ports 17-28, and layer2 corresponds to the configuration information of ports 21-32, wherein the common grouping configuration information of layer1 and layer2 corresponds to ports 21-28; Configuration 2 indicates that layer1 and layer2 correspond to the grouping configuration information of ports 1-16 at the same time; correspondingly, in the antenna multi-polarization 32 port, configuration 2 also indicates that layer1 and layer2 correspond to the configuration information of ports 17-32 at the same time; configuration 3 indicates Layer1 corresponds to the configuration information of ports 1-8, and layer2 corresponds to the configuration information of ports 9-16; correspondingly, in the antenna multi-polarization 32port, configuration 3 also indicates the configuration information of layer1 corresponding to ports 17-24, and layer2 corresponds to ports
  • port port group 1 and port port group 2 shown in Table 3 are in a corresponding relationship, and correspond to the same layer, that is, the two polarization directions are the same, it can be understood that the port port group 1 corresponding to layer 1 corresponds to the antenna 45 degrees direction, then the direction of the antenna corresponding to port group 2 corresponding to layer1 is minus 45 degrees.
  • different layers may be directly configured to correspond to ports 1-32 ports, wherein the correspondence between the stream layers and ports 1-16 and the correspondence between the stream layers and ports 17-32 may be inconsistent.
  • configuration 1 indicates that layer1 corresponds to ports 1-12 and 20-28, and layer2 corresponds to ports 5-14 and 18-32, where layer1 and layer2 correspond to ports 5-12 and 20-28 at the same time;
  • configuration 2 indicates layer1 And layer2 corresponds to ports 1-32 at the same time;
  • configuration 3 means that layer1 corresponds to ports 1-18, layer2 corresponds to ports 9-32, and layer1 and layer2 correspond to ports 9-18 at the same time.
  • the above Tables 1 to 4 may notify the terminal device through one or a combination of at least two of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling.
  • Tables 1 to 4 are only exemplary descriptions, and should not constitute any limitation to the present application. Meanwhile, the present application does not specifically limit the number of grouping configuration information in Tables 1 to 4.
  • the network device sends the first list to the terminal device; correspondingly, the terminal device receives the first list from the network device.
  • the network device and the terminal device predict the first list in advance, and the above steps S810 and S820 may be omitted.
  • the network device sends indication information (that is, an example of the first information) to the terminal device; correspondingly, the terminal device receives the indication information from the network device.
  • indication information that is, an example of the first information
  • the indication information is used to indicate one of at least one grouping configuration information in the first list.
  • the network device selects configuration 1 (configure1) to determine the mapping relationship between the port group and layer1 and/or layer2.
  • the configuration 1 may be the configuration 1 in any list in Table 1 to Table 4, or may be the configuration 1 in any combination of Table 1 to Table 4, which is not limited in this application.
  • the network device determines that the grouping configuration information is determined according to the uplink channel, that is, the network device selects the configuration of the port port grouping and the layer grouping according to the uplink channel, and sends the configuration indication information to the terminal device.
  • the present application does not specifically limit the sending method of the indication information.
  • the sending period and/or sending timing of these information may be predefined, for example, predefined according to a protocol, or may be configured by the network device by sending configuration information to the terminal device.
  • the configuration information may be, but not limited to, one or a combination of at least two of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling.
  • the radio resource control signaling includes: radio resource control RRC signaling; the MAC layer signaling includes: MAC control element (control element, CE); the physical layer signaling includes: downlink control information (downlink control information, DCI) and the like.
  • the terminal device performs PMI quantization feedback according to the indication information.
  • the terminal device needs to perform PMI calculation and reporting for layer1 and layer2 according to the rules in configuration 1 corresponding to the received indication information.
  • the terminal device when the network device determines to select configuration 1 to represent the corresponding relationship between the angle and the delay between the port group and the layer group, the terminal device only needs to Search and calculate the PMI of layer1 in ports 1-12; similarly, the terminal device only needs to search and calculate the PMI of layer2 in ports 5-16.
  • the network device can process the angular delay pair information of layer1 and layer2 in a targeted manner, and the terminal device can perform PMI calculation and reporting on layer1 and layer2 in a targeted manner, which avoids the terminal device performing PMI calculations on all ports of layer1 and layer2. Searches and calculations can reduce overhead. At the same time, it is beneficial for the network device to obtain accurate channel state information.
  • the method for calculating and reporting the PMI by the terminal device according to the first list may follow the current technical means, or may use the PMI quantification feedback method provided in the above-mentioned Embodiment 1 and Embodiment 2, which is not specified in this application. limited.
  • the current most suitable number of transport streams is 3 streams, which are Layer 1, Layer 2, and Layer 3, respectively.
  • the network device sends the first grouping configuration information, which is used to indicate the correspondence between the 16 CSI-RS ports and the three layers.
  • the correspondence between the CSI-RS ports and the layers is configured as follows: layer 1 corresponds to ports 1 to 5, layer corresponds to ports 4 to 8, and layer 3 corresponds to ports 7 to 16.
  • the codebook structure for the terminal device to perform PMI calculation according to the grouping configuration information is as follows:
  • the mapping relationship between the CSI-RS port and the layer is added through the protocol, and the signaling of the network device to notify the terminal device of the mapping relationship can be one or more of RRC, MAC CE, and DCI.
  • PMI feedback requires a fixed codebook structure in, Feedback the corresponding port selection matrix for the terminal device, The superposition coefficient matrix corresponding to the CSI-RS port selected for the terminal device, is the frequency domain basis vector matrix. The specific meaning has been described above, and is not repeated here for brevity.
  • W 1 dimension and element value of W 1 are unique in this embodiment of the present application, that is, layer specific.
  • this embodiment describes the realization of layer-specific angle and delay information indication through CSI-RS Port grouping, thereby reducing the processing complexity of the terminal device on the premise of ensuring the accuracy of each layer.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 9 is a schematic flowchart of a channel measurement method provided by an embodiment of the present application, and a method 900 for indicating layer specific angle and delay information based on different components of W f is proposed.
  • the difference from the third embodiment is that the third embodiment is based on the mapping relationship between the CSI-RS port grouping and the layer to realize the indication of the layer specific angle and delay information.
  • the fourth embodiment is based on the mapping relationship between different components of the frequency-domain basis vector matrix and the layer, so as to realize the indication of the layer-specific angle and delay information.
  • Embodiment 4 when there is more than one frequency domain component in W f , the implementation manner provided in Embodiment 4 may be adopted; when the frequency domain component in W f is equal to one, the implementation manner provided in Embodiment 3 may be adopted.
  • Specific steps include:
  • the network device generates a second list (ie, an example of the second grouping configuration information).
  • the first list includes at least one piece of grouping configuration information, and each grouping configuration information is used to represent the mapping relationship between the frequency domain basis matrix W f component and the multiple layer data streams.
  • the second list is determined by the network device according to the uplink channel.
  • the second list may also be defined by a protocol, that is, a table corresponding to each component of W f and a layer is added by a protocol specification. Then the network device and the terminal device predict the second list in advance, and the above step S810 can be omitted.
  • the network device may configure the grouping configuration information shown in Table 5, that is, configure the grouping information of the corresponding multiple streams according to the frequency-domain basis vector.
  • Table 5 shows the mapping relationship between the frequency-domain basis vector matrix W f components and the multi-stream layers.
  • the frequency domain basis vector matrix W f is divided into three components, configuration 1 means that the frequency domain basis vector matrix component is 1st vector and 2nd vector corresponds to layer1 , and the frequency domain basis vector matrix component is 1st vector And the 3rd vector corresponds to layer2, in which the frequency domain basis vector matrix component is 1st vector and corresponds to layer1 and layer2 at the same time; configuration 2 means that the frequency domain basis vector matrix components are 1st vector, 2nd vector and 3rd vector correspond to layer1 and layer2 at the same time layer2; configuration 3 means that the frequency domain basis vector matrix components are 1st vector and 2nd vector only corresponding to layer1 , the frequency domain basis vector matrix component is 3rd vector only corresponding to layer2 and so on.
  • the above Table 5 may notify the terminal device through one or a combination of at least two of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling.
  • the network device may determine some of the ports (for example, select only the 1st vector and the 2nd vector in configuration 1) to be used for quantization feedback of the layer data streams layer and layer2 according to the uplink channel information.
  • mapping relationship between the Z layers and the N frequency-domain basis vectors can be configured through signaling, where Z and N are both positive integers greater than or equal to 1. That is, each layer can be configured with one or more different frequency-domain basis vector components.
  • the specific configuration is as follows:
  • the network device may configure the grouping configuration information shown in Table 6, that is, configure the grouping information of the corresponding frequency-domain basis vectors according to multiple flows.
  • configuration 1 indicates that the matrix components of the frequency domain basis vector corresponding to layer1 are 1 st vector and 2 nd vector, and the corresponding frequency domain basis vector matrix components of layer2 are 2 nd vector and 3 rd vector;
  • configuration 2 indicates that layer1 and layer2 are at the same time Corresponding to the frequency domain basis vector matrix components are 1st vector, 2nd vector and 3rd vector;
  • configuration 3 means that layer1 corresponds to frequency domain basis vector matrix components are 1st and 2nd vectors, and layer2 corresponds to frequency domain basis vector matrix components are 3 rd vector.
  • Table 5 and Table 6 are only exemplary descriptions, and should not constitute any limitation to the present application. Meanwhile, the present application does not specifically limit the number of grouping configuration information in Table 5 and Table 6.
  • the network device sends the second list to the terminal device; correspondingly, the terminal device receives the second list from the network device.
  • the network device and the terminal device predict the second list in advance, and the above steps S910 and S920 may be omitted.
  • the network device sends indication information (ie, an example of the first information) to the terminal device; correspondingly, the terminal device receives the indication information from the network device.
  • indication information ie, an example of the first information
  • the indication information is used to indicate one of at least one grouping configuration information in the second list.
  • the network device selects configuration 1 (configure1), the mapping relationship between the frequency domain basis vector matrix W f and the grouping of layer1 and/or layer2.
  • the configuration 1 may be the configuration 1 in any list in Table 5 and Table 6, or may be the configuration 1 in any combination of Table 1 and Table 6, which is not limited in this application.
  • the network device determines that the grouping configuration information is determined according to the uplink channel, that is, the network device selects the frequency domain basis vector matrix Wf grouping and layer grouping configuration according to the uplink channel, and sends the configuration indication information to the terminal device.
  • the present application does not specifically limit the sending method of the indication information.
  • the sending period and/or sending timing of these information may be predefined, for example, predefined according to a protocol, or may be configured by the network device by sending configuration information to the terminal device.
  • the configuration information may be, but not limited to, one or a combination of at least two of radio resource control signaling, medium access control MAC layer signaling, and physical layer PHY signaling.
  • the radio resource control signaling includes: radio resource control RRC signaling; the MAC layer signaling includes: MAC control element (control element, CE); the physical layer signaling includes: downlink control information (downlink control information, DCI) and the like.
  • the terminal device performs PMI quantization feedback according to the indication information.
  • the terminal device needs to perform PMI calculation and reporting for layer1 and layer2 according to the rules in configuration 1 corresponding to the received indication information.
  • the terminal device when the network device determines to select the configuration 1 in Table 6 to represent the corresponding relationship between the angle and the delay between the frequency-domain basis vector matrix W f and the layer group, the terminal device only needs to select the frequency-domain basis vector 1 st
  • the PMI of layer1 is searched and calculated in the vector and 2nd vector matrix; similarly, the terminal device only needs to search and calculate the PMI of layer2 in the 2nd vector and 3rd vector matrix of the base vector in the frequency domain.
  • the network device can process the angular delay pair information in a targeted manner, and the terminal device can perform PMI calculation and reporting on layer1 and layer2 in a targeted manner, which avoids the terminal device performing PMI calculations on layer1 and layer2 in all frequency domain basis vector matrices. Searches and calculations can reduce overhead. At the same time, it is beneficial for the network device to obtain accurate channel state information.
  • the method for calculating and reporting the PMI by the terminal device according to the first list may follow the current technical means, or may use the PMI quantification feedback method provided in the above-mentioned Embodiment 1 and Embodiment 2, which is not specified in this application. limited.
  • the network device sends the second grouping configuration information, which is used to indicate the correspondence between the 5-frequency domain base vector and the three layers.
  • the corresponding relationship between the frequency domain base vectors and the layers is specifically configured as follows: layer1 corresponds to the frequency domain base vectors 1 to 3, layer corresponds to the frequency domain base vectors 2 to 4, and layer3 corresponds to the frequency domain base vectors 3 to 5.
  • the codebook structure for the terminal device to perform PMI calculation according to the grouping configuration information is as follows:
  • the mapping relationship between the CSI-RS port and the layer is added through the protocol, and the signaling of the network device to notify the terminal device of the mapping relationship can be one or more of RRC, MAC CE, and DCI.
  • PMI feedback requires a fixed codebook structure in, Feedback the corresponding port selection matrix for the terminal device, The superposition coefficient matrix corresponding to the CSI-RS port selected for the terminal device, is the frequency domain basis vector matrix. The specific meaning has been described above, and is not repeated here for brevity.
  • W 1 dimension and element value of W 1 are unique in this embodiment of the present application, that is, layer specific.
  • this embodiment describes the realization of layer-specific angle and delay information indication through different components of W f , thereby reducing the processing complexity of the terminal device on the premise of ensuring the accuracy of each layer.
  • the layer-specific angle and delay information indication methods provided in the third and fourth embodiments may be used alone or in combination. That is, the grouping based on the CSI-RS port and/or the mapping relationship between the grouping of different components of the frequency-domain basis vector matrix and the layer can be combined arbitrarily.
  • the network device selects the configuration 1 (configure1) in Table 1 and Table 2 above, then the angle and delay information of layer1 can be searched and calculated in the frequency domain basis vector 1st vector and 2nd vector matrix, and/ Or the angle and delay information of layer1 can be searched and calculated in ports 1-12; similarly, the angle and delay information of layer2 can be searched and calculated in ports 5-16, and/or the angle and delay of layer2 Information can be searched and computed by searching and computing in the frequency domain basis vector 1st vector and 3rd vector matrix.
  • the network device may indicate through the first grouping configuration information that layer1 corresponds to CSI-RS ports 1 to 4 and CSI-RS ports 5 to 12, and layer2 corresponds to CSI-RS ports 5 to 12 and CSI-RS ports 13 to 12. 16; and the second grouping configuration information indicates that layer1 corresponds to frequency domain base vector 1 and frequency domain base vector 2, and layer2 corresponds to frequency domain base vector 1 and frequency domain base vector 3.
  • ports 1 to 4 and frequency domain basis vector 2 are layer1-specific grouping configuration information
  • ports 13 to 26 and frequency domain basis vector 3 are layer2-specific grouping configuration information
  • ports 5 to 12 and frequency domain Ji Xingliang 1 are The grouping configuration information common to layer1 and layer2.
  • the terminal device can use only ports 1 to 4 and 5 to 12 for PMI calculation, or can use frequency domain basis vector 1 and frequency domain basis vector 2 for PMI calculation, or can use ports 1 to 4 and frequency domain Basis vector 1 is used for PMI calculation, or ports 5 to 12 and frequency domain basis vector 2 can be used for PMI calculation.
  • the terminal device can use only ports 13 to 16 and 5 to 12 for PMI calculation, or can use frequency domain basis vector 1 and frequency domain basis vector 3 for PMI calculation, or can use ports 13 to 16 PMI calculation with frequency domain basis vector 1, or ports 5 to 12 and frequency domain basis vector 3 can be used for PMI calculation.
  • the combined codebook structure for the terminal device to perform PMI calculation according to the above grouping configuration information may be as follows:
  • W 1 and W f can also be selected to use current technical means or a combination of technical means provided in this application, and be used for PMI quantification and reporting.
  • the above solutions may be used in any combination, and there may also be more possible implementation manners, which are not specifically limited in this application.
  • the precoding matrix determined by the channel measurement method provided by the above embodiments of the present application may be a precoding matrix directly used for downlink data transmission; it may also be subjected to some beamforming methods, such as zero forcing (zero forcing, ZF), minimum mean-squared error (minimum mean-squared error, MMSE), maximized signal-to-leakage-and-noise (signal-to-leakage-and-noise, SLNR), etc., to obtain the final precoding matrix for downlink data transmission.
  • ZF zero forcing
  • MMSE minimum mean-squared error
  • MMSE minimum mean-squared error
  • maximized signal-to-leakage-and-noise signal-to-leakage-and-noise
  • SLNR signal-to-leakage-and-noise
  • each embodiment may be an independent solution, or may be combined according to internal logic, and these solutions all fall within the protection scope of the present application.
  • the terminal device and/or the network device may perform some or all of the steps in each embodiment. These steps or operations are only examples, and the application may also perform other operations or variations of various operations. In addition, various steps may be performed in different orders presented in various embodiments, and may not be required to perform all operations in the embodiments of the present application. And the size of the sequence number of each step does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • each network element such as a transmitter device or a receiver device
  • each network element includes hardware structures and/or software modules corresponding to performing each function in order to implement the above functions.
  • Those skilled in the art should realize that the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by taking as an example that each function module is divided corresponding to each function.
  • FIG. 10 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1000 may include a processing unit 1100 and a transceiver unit 1200 .
  • the communication apparatus 1000 may correspond to the terminal device in the above method embodiments, for example, may be a terminal device, or a component (such as a circuit, a chip or a chip system, etc.) configured in the terminal device.
  • the transceiver unit 1200 is configured to receive first information, where the first information is used to indicate the first grouping configuration information and/or the second grouping configuration information, where the first grouping configuration information is used to indicate that the P reference signal ports are The correspondence between the Z layers, the second grouping configuration information is used to indicate the correspondence between the N frequency domain basis vectors and the Z layers, wherein P, N and Z are all positive values greater than or equal to 1 Integer.
  • the transceiver unit 1200 is further configured to send a precoding matrix indication PMI corresponding to the Z layers, where the PMI is determined according to the first information.
  • the processing unit 1100 is configured to generate first indication information, where the first indication information is used to indicate the quantization information of the jointly normalized M weighting coefficient sets, each weighting coefficient set in the M weighting coefficient sets Determined by the reference signal, the M weighting coefficient sets are in one-to-one correspondence with the M layers, where M is a positive integer greater than or equal to 2.
  • the transceiver unit 1200 is configured to send the first indication information.
  • the communication apparatus 1000 may correspond to the terminal device in the method 300 or the method 700 or the method 800 or the method 900 according to the embodiment of the present application, and the communication apparatus 1000 may include a method for executing the method 300 in FIG. 3 or the method in FIG. 7 .
  • each unit in the communication device 1000 and the above-mentioned other operations and/or functions are respectively to implement the corresponding method of the method 300 in FIG. 3 or the method 700 in FIG. 7 or the method 800 in FIG. 8 or the method 900 in FIG. 9 . process.
  • the processing unit 1100 can be used to execute the step S310 of the method 300
  • the transceiver unit 1200 can be used to execute the step S320 of the method 300 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 can be used to execute the step S740 of the method 700
  • the transceiver unit 1200 can be used to execute the steps S720 and S730 of the method 700 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 can be used to execute the step S840 of the method 800
  • the transceiver unit 1200 can be used to execute the steps S820 and S830 of the method 800 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 can be used to execute steps S910 and S920 in the method 900 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented by a transceiver, for example, may correspond to the transceiver 2020 in the communication apparatus 2000 shown in FIG. 10 or the transceiver 2020 in FIG. 11 .
  • the transceiver 3020 in the shown terminal device 3000, the processing unit 1100 in the communication apparatus 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the communication apparatus 2000 shown in FIG. 10 or FIG. 11
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented through input/output interfaces, circuits, etc., and the processing unit 1100 in the communication apparatus 1000 It can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • the communication apparatus 1000 may correspond to the network device in the above method embodiments, for example, may be a network device, or a component (such as a circuit, a chip, or a chip system, etc.) configured in the network device.
  • a component such as a circuit, a chip, or a chip system, etc.
  • the transceiver unit 1200 is configured to send first information, where the first information is used to indicate the first grouping configuration information and/or the second grouping configuration information, where the first grouping configuration information is used to indicate that the P reference signal ports are The correspondence between the Z layers, the second grouping configuration information is used to indicate the correspondence between the N frequency domain basis vectors and the Z layers, wherein P, N and Z are all positive values greater than or equal to 1 Integer.
  • the transceiver unit 1200 is further configured to receive a precoding matrix indication PMI corresponding to the Z layers, where the PMI is determined according to the first information.
  • the transceiver unit 1200 is configured to receive first indication information, where the first indication information is used to indicate the quantization information of the M weighting coefficient sets jointly normalized, and each weighting coefficient in the M weighting coefficient sets The set is determined by the reference signal, the M weighting coefficient sets are in one-to-one correspondence with the M layers, and M is a positive integer greater than or equal to 2;
  • the processing unit 1100 is configured to determine the power difference among the M layers according to the first indication information.
  • the communication apparatus 1000 may correspond to the network device in the method 300 or the method 700 or the method 800 or the method 900 according to the embodiment of the present application, and the communication apparatus 1000 may include a method for executing the method 300 in FIG. 3 or the method in FIG. 7 .
  • each unit in the communication device 1000 and the above-mentioned other operations and/or functions are respectively to implement the corresponding method of the method 300 in FIG. 3 or the method 700 in FIG. 7 or the method 800 in FIG. 8 or the method 900 in FIG. 9 . process.
  • the processing unit 1100 can be used to execute the step S330 of the method 300
  • the transceiver unit 1200 can be used to execute the step S320 of the method 300 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 can be used to execute the step S710 of the method 700
  • the transceiver unit 1200 can be used to execute the steps S720 and S730 of the method 700 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the processing unit 1100 can be used to execute the step S810 of the method 800
  • the transceiver unit 1200 can be used to execute the steps S820 and S830 of the method 800 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and is not repeated here for brevity.
  • the transceiver unit 1200 can be used to execute steps S910 and S920 in the method 900 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the communication apparatus 2000 shown in FIG. 11 or the transceiver 2020 in FIG. 13 .
  • the shown radio remote unit (RRU) 4100 in the network device 4000, the processing unit 1100 in the communication device 1000 may be implemented by at least one processor, for example, may correspond to the communication device shown in FIG. 11
  • the processor 2010 in 2000 or the processing unit 4200 or the processor 4202 in the network device 4000 shown in FIG. 13 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the communication apparatus 2000 shown in FIG. 11 or the transceiver 2020 in FIG. 13 .
  • the shown radio remote unit (RRU) 4100 in the network device 4000, the processing unit 1100 in the communication device 1000 may be implemented by at least one processor, for example, may correspond to the communication device shown in FIG. 11
  • the transceiver unit 1200 in the communication device 1000 can be implemented through input/output interfaces, circuits, etc., and the processing unit 1100 in the communication device 1000 It can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • FIG. 11 is another schematic block diagram of a communication apparatus 2000 provided by an embodiment of the present application.
  • the communication apparatus 2000 includes a processor 2010 , a transceiver 2020 and a memory 2030 .
  • the processor 2010, the transceiver 2020 and the memory 2030 communicate with each other through an internal connection path, the memory 2030 is used to store instructions, and the processor 2010 is used to execute the instructions stored in the memory 2030 to control the transceiver 2020 to send signals and / or receive signals.
  • the communication apparatus 2000 may correspond to the network device in the foregoing method embodiments, and may be used to execute various steps and/or processes performed by the network device in the foregoing method embodiments.
  • the transceiver 2020 is configured to send first information, where the first information is used to indicate the first grouping configuration information and/or the second grouping configuration information, where the first grouping configuration information is used to indicate the P references
  • first information is used to indicate the first grouping configuration information and/or the second grouping configuration information, where the first grouping configuration information is used to indicate the P references
  • second grouping configuration information is used to indicate the correspondence between the N frequency-domain basis vectors and the Z layers, where P, N, and Z are all greater than or equal to A positive integer of 1.
  • the transceiver 2020 is further configured to receive a precoding matrix indication PMI corresponding to the Z layers, where the PMI is determined according to the first information.
  • the transceiver 2020 is configured to receive first indication information, where the first indication information is used to indicate the quantization information of the jointly normalized M weighting coefficient sets, each of the M weighting coefficient sets The weighting coefficient set is determined by the reference signal, the M weighting coefficient sets are in one-to-one correspondence with the M layers, and M is a positive integer greater than or equal to 2.
  • the processor 2010 is further configured to determine the power difference among the M layers according to the first indication information.
  • the memory 2030 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 2030 may be a separate device or may be integrated in the processor 2010 .
  • the processor 2010 may be configured to execute the instructions stored in the memory 2030, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is configured to execute each of the foregoing method embodiments corresponding to the network device or the terminal device steps and/or processes.
  • the communication apparatus 2000 is a network device in the embodiment provided by the method 300 in FIG. 3 or the method 700 in FIG. 7 or the method 800 in FIG. 8 or the method 900 in FIG. 9 .
  • the transceiver 2020 may include a transmitter and a receiver.
  • the transceiver 2020 may further include antennas, and the number of the antennas may be one or more.
  • the processor 2010, the memory 2030 and the transceiver 2020 may be devices integrated on different chips.
  • the processor 2010 and the memory 2030 may be integrated in a baseband chip, and the transceiver 2020 may be integrated in a radio frequency chip.
  • the processor 2010, the memory 2030 and the transceiver 2020 may also be devices integrated on the same chip. This application does not limit this.
  • the communication apparatus 2000 is a component configured in a network device, such as a circuit, a chip, a chip system, and the like.
  • the transceiver 2020 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 2020, the processor 2010 and the memory 2020 can be integrated in the same chip, such as integrated in a baseband chip.
  • the apparatus 2000 may also correspond to a terminal device (eg, UE) in the foregoing method embodiments, and may be used to execute various steps and/or processes performed by the terminal device in the foregoing method embodiments.
  • a terminal device eg, UE
  • the transceiver 2020 is configured to receive first information, where the first information is used to indicate the first grouping configuration information and/or the second grouping configuration information, where the first grouping configuration information is used to indicate the P references
  • first information is used to indicate the first grouping configuration information and/or the second grouping configuration information
  • first grouping configuration information is used to indicate the P references
  • the second grouping configuration information is used to indicate the correspondence between the N frequency-domain basis vectors and the Z layers, where P, N, and Z are all greater than or equal to A positive integer of 1.
  • the transceiver 2020 is further configured to send a precoding matrix indication PMI corresponding to the Z layers, where the PMI is determined according to the first information.
  • the processor 2010 is configured to generate first indication information, where the first indication information is used to indicate the quantization information of the M weighting coefficient sets jointly normalized, each of the M weighting coefficient sets The weighting coefficient set is determined by the reference signal, the M weighting coefficient sets are in one-to-one correspondence with the M layers, and M is a positive integer greater than or equal to 2.
  • the transceiver 2020 is further configured to send the first indication information.
  • the memory 2030 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 2030 may be a separate device or may be integrated in the processor 2010 .
  • the processor 2010 may be configured to execute the instructions stored in the memory 2030, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is configured to execute various steps and/or steps of the above-mentioned method embodiments corresponding to the terminal device or process.
  • the communication apparatus 2000 is a terminal device in the method 300 or the method 700 or the method 800 or the method 900 in the foregoing embodiment.
  • the transceiver 2020 may include a transmitter and a receiver.
  • the transceiver 2020 may further include antennas, and the number of the antennas may be one or more.
  • the processor 2010, the memory 2030 and the transceiver 2020 may be devices integrated on different chips.
  • the processor 2010 and the memory 2030 may be integrated in a baseband chip, and the transceiver 2020 may be integrated in a radio frequency chip.
  • the processor 2010, the memory 2030 and the transceiver 2020 may also be devices integrated on the same chip. This application does not limit this.
  • the apparatus 2000 is a component configured in a terminal device, such as a circuit, a chip, a chip system, and the like.
  • the transceiver 2020 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 2020, the processor 2010 and the memory 2020 can be integrated in the same chip, such as integrated in a baseband chip.
  • FIG. 12 is a schematic structural diagram of a terminal device 3000 provided by an embodiment of the present application.
  • the terminal device 3000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 3000 includes a processor 3010 and a transceiver 3020 .
  • the terminal device 3000 further includes a memory 3030 .
  • the processor 3010, the transceiver 3020 and the memory 3030 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the computer program is invoked and executed to control the transceiver 3020 to send and receive signals.
  • the terminal device 3000 may further include an antenna 3040 for sending the uplink data or uplink control signaling output by the transceiver 3020 through wireless signals.
  • the above-mentioned processor 3010 and the memory 3030 can be combined into a processing device, and the processor 3010 is configured to execute the program codes stored in the memory 3030 to realize the above-mentioned functions.
  • the memory 3030 may also be integrated in the processor 3010 or independent of the processor 3010 .
  • the processor 3010 may correspond to the processing unit 1100 in FIG. 10 or the processor 2010 in FIG. 11 .
  • the transceiver 3020 described above may correspond to the transceiver unit 1200 in FIG. 10 or the transceiver 2020 in FIG. 11 .
  • the transceiver 3020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the transceiver 3020 is configured to receive first information, where the first information is used to indicate first grouping configuration information and/or second grouping configuration information, where the first grouping configuration information is used to indicate P references
  • first information is used to indicate first grouping configuration information and/or second grouping configuration information
  • first grouping configuration information is used to indicate P references
  • second grouping configuration information is used to indicate the correspondence between the N frequency-domain basis vectors and the Z layers, where P, N, and Z are all greater than or equal to A positive integer of 1.
  • the transceiver 3020 is further configured to send a precoding matrix indication PMI corresponding to the Z layers, where the PMI is determined according to the first information.
  • the processor 3010 is configured to generate first indication information, where the first indication information is used to indicate the quantization information of the jointly normalized M weighting coefficient sets, each of the M weighting coefficient sets The weighting coefficient set is determined by the reference signal, the M weighting coefficient sets are in one-to-one correspondence with the M layers, and M is a positive integer greater than or equal to 2.
  • the transceiver 3020 is further configured to send the first indication information.
  • the terminal device 3000 shown in FIG. 12 can implement various processes involving the terminal device in the method embodiment shown in FIG. 3 or FIG. 7 or FIG. 8 or FIG. 9 .
  • the operations and/or functions of each module in the terminal device 3000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 3010 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the terminal device, and the transceiver 3020 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 3020 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the above-mentioned terminal device 3000 may further include a power supply 3050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 3000 may further include one or more of an input unit 3060, a display unit 3070, an audio circuit 3080, a camera 3090, a sensor 3100, etc.
  • the audio circuit also A speaker 3082, a microphone 3084, etc. may be included.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application, which may be, for example, a schematic structural diagram of a base station.
  • the base station 4000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the base station 4000 may include one or more radio frequency units, such as a remote radio unit (RRU) 4100 and one or more baseband units (BBU) (also referred to as distributed units ( DU)) 4200.
  • RRU 4100 may be called a transceiver unit, and may correspond to the transceiver unit 1200 in FIG. 10 or the transceiver 2020 in FIG. 11 .
  • the RRU 4100 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4101 and a radio frequency unit 4102.
  • the RRU 4100 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called a receiver, a receiving circuit), and the sending unit may correspond to a transmitter (or called a transmitter, a sending circuit).
  • the RRU 4100 part is mainly used for sending and receiving radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the BBU 4200 part is mainly used for baseband processing and control of the base station.
  • the RRU 4100 and the BBU 4200 may be physically set together, or may be physically set apart, that is, a distributed base station.
  • the BBU 4200 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing unit 1100 in FIG. 10 or the processor 2010 in FIG. 11 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, etc.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to generate the foregoing indication information and the like.
  • the BBU 4200 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may separately support wireless access systems of different access standards. Access network (such as LTE network, 5G network or other network).
  • the BBU 4200 also includes a memory 4201 and a processor 4202.
  • the memory 4201 is used to store necessary instructions and data.
  • the processor 4202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiments.
  • the memory 4201 and processor 4202 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the transceiver 4100 is configured to send first information, where the first information is used to indicate first grouping configuration information and/or second grouping configuration information, where the first grouping configuration information is used to indicate P references
  • first information is used to indicate first grouping configuration information and/or second grouping configuration information
  • first grouping configuration information is used to indicate P references
  • second grouping configuration information is used to indicate the correspondence between the N frequency-domain basis vectors and the Z layers, where P, N, and Z are all greater than or equal to A positive integer of 1.
  • the transceiver 4100 is further configured to receive a precoding matrix indication PMI corresponding to the Z layers, where the PMI is determined according to the first information.
  • the transceiver 4100 is configured to receive first indication information, where the first indication information is used to indicate the quantization information of the jointly normalized M weighting coefficient sets, each of the M weighting coefficient sets The weighting coefficient set is determined by the reference signal, the M weighting coefficient sets are in one-to-one correspondence with the M layers, and M is a positive integer greater than or equal to 2.
  • the processor 4202 is configured to determine the power difference among the M layers according to the first indication information.
  • the base station 4000 shown in FIG. 13 can implement various processes involving network devices in the method embodiment shown in FIG. 3 or FIG. 7 or FIG. 8 or FIG. 9 .
  • the operations and/or functions of each module in the base station 4000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 4200 may be used to perform the actions described in the foregoing method embodiments that are implemented internally by the network device, while the RRU 4100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 4100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the base station 4000 shown in FIG. 13 is only a possible form of network equipment, and should not constitute any limitation to the present application.
  • the method provided in this application can be applied to other forms of network equipment.
  • it includes AAU, may also include CU and/or DU, or includes BBU and adaptive radio unit (ARU), or BBU; may also be customer terminal equipment (customer premises equipment, CPE), may also be
  • AAU adaptive radio unit
  • BBU adaptive radio unit
  • CPE customer premises equipment
  • the CU and/or DU may be used to perform the actions implemented by the network device described in the foregoing method embodiments, and the AAU may be used to execute the network device described in the foregoing method embodiments to send or receive from the terminal device. Actions. For details, please refer to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • the present application further provides a processing apparatus, including at least one processor, where the at least one processor is configured to execute a computer program stored in a memory, so that the processing apparatus executes the execution of the terminal device or the network device in any of the foregoing method embodiments.
  • the above-mentioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the embodiment of the present application also provides a processing apparatus, which includes a processor and a communication interface.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing apparatus executes the method executed by the terminal device or the network device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a processing apparatus, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing apparatus executes the method performed by the terminal device or the network device in any of the above method embodiments.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute FIG. 3 or FIG. 7 or The method performed by the terminal device or the method performed by the network device in the embodiment shown in FIG. 8 or FIG. 9 .
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute FIG. 3 or FIG. 7 or the method performed by the terminal device or the method performed by the network device in the embodiment shown in FIG. 8 or FIG. 9 .
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • the terminal device may be used as an example of a receiving device
  • the network device may be used as an example of a sending device.
  • the sending device and the receiving device may both be terminal devices or the like. This application does not limit the specific types of the sending device and the receiving device.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM Double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like containing a set of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the unit is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, removable hard disk, read only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit CPU, memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer-readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile disks (DVDs), etc.), smart cards and flash memory devices (eg, Erasable Programmable Read Only Memory EPROMs, cards, stick or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,该通信方法包括:接收第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系;发送与该Z个层对应的预编码矩阵指示PMI,该PMI是根据所述第一信息确定的。该通信方法能够基于部分互易性,指示端口和/或频域基向量与多个层之间的分组配置关系,以获得准确的下行信道状态信息,从而实现多流传输,提高系统的频谱效率以及系统的传输性能。

Description

通信方法和通信装置
本申请要求于2021年04月30日提交中国专利局、申请号为202110482373.7、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
目前,大规模多输入多输出(massive multiple-input multiple-output,Massive MIMO)技术的广泛应用对于提高系统的频谱效率有着至关重要的作用。当采用MIMO技术发送数据时,网络设备需要知道准确的信道状态信息(channel state information,CSI)反馈信息,并通过预编码减小多用户之间的干扰和/或同一用户的多个信号流之间的干扰。
在Massive MIMO中,可以通过空分复用对某个用户进行多流(layer)传输。频分双工(frequency division duplexing,FDD)系统中,为了实现多流传输,需要用户反馈多个layer对应的CSI,并将其上报给网络设备。然而,在FDD系统中,上下行信道之间并不是完全互易的。因此,为了实现多流传输,网络设备如何基于上下行信道间的部分互易性,获得准确的下行信道状态信息是亟待解决的技术问题。
发明内容
本申请提供一种通信方法和通信装置,能够利用上下行信道间的部分互易性,获得准确的下行信道状态信息,从而实现多流传输,提升系统传输性能。
第一方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法包括:接收第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数;发送与该Z个层对应的预编码矩阵指示(precoding matrix indicator,PMI),该PMI是根据该第一信息确定的。
应理解,该PMI是根据该第一信息确定的,可以理解为该PMI是根据第一消息所指示的Z个层对应的端口和/或频域向量确定的。
根据本申请提供的方案,终端设备通过接收第一分组配置信息和/或第二分组配置信息,能够获知P个参考信号端口和/或N个频域基向量与Z个层之间的对应关系,从而可以有针对性地根据第一分组配置信息和/或第二分组配置信息确定Z个层中的每个层的预 编码矩阵指示。该方法既可以减少针对某些层造成的不必要的计算复杂度,降低终端设备的功耗,又可以获取该Z个层准确的信道状态信息,从而提升系统的传输性能。
第二方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由用于网络设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。
该方法包括:发送第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数;接收与该Z个层对应的预编码矩阵指示PMI,该PMI是根据该第一信息确定的。
根据本申请提供的方案,网络设备通过发送第一分组配置信息和/或第二分组配置信息,能够获知P个参考信号端口和/或N个频域基向量与Z个层之间的对应关系,从而可以有针对性地根据第一分组配置信息和/或第二分组配置信息确定Z个层中的每个层的预编码矩阵指示。该方法既可以减少针对某些层造成的不必要的计算复杂度,降低终端设备的功耗,又可以获取该Z个层准确的信道状态信息,从而提升系统的传输性能。
结合第一方面或第二方面,在某些实现方式中,该Z个层中的每个层对应于该P个参考信号端口中的一个或多个。
示例性的,该实现方式可以以两个层为例,该第一分组配置信息可以用于指示16个CSI-RS端口与该两个层之间的对应关系,即该第一层对应于端口1至端口8,该第二层对应于端口9至端口16;或者该第一层对应于端口1至端口4,该第二层对应于端口9至端口10等等。该实现方式表明第一层和第二层对应的端口是完全不同的,两个层具有各自专有的端口分组配置信息。终端设备基于第一层和第二层对应的专有端口可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于端口1至端口10,该第二层对应于端口5至端口16。该实现方式既表明该第一层和第二层有各自专有的端口分组配置信息,如端口1至端口4仅对应于第一层,端口11至端口16仅对应于第二层;也表明该第一层和第二层也有共同的端口分组配置信息,如端口5至端口10。终端设备基于第一层和第二层对应的专有端口,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层和第二层对应的共有端口可以准确的获取该两个层的信道状态信息,提高系统运行效率和传输性能。
可选地,该第一层和第二层均对应于端口1至端口16。该实现方式表明该第一层和第二层仅有共同的端口分组配置信息。终端设备可以无差别地基于第一层和第二层对应的共有端口进行预编码矩阵指示PMI的计算,提高系统传输性能。
示例性的,该实现方式可以以三个层为例,该第一分组配置信息还用于指示16个CSI-RS端口与该三个层之间的对应关系,即该第一层对应于端口1至端口5,该第二层对应于端口6至端口12,该第三层对应于端口13至端口16;或者该第一层对应于端口1至端口3,该第二层对应于端口6至端口10,该第三层对应于端口12至端口15等等。该实现方式表明第一层、第二层和第三层对应的端口是完全不同的,三个层具有各自专有的端口分组配置信息。终端设备基于第一层、第二层和第三层对应的专有端口可以有针对性地 进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于端口1至端口7,该第二层对应于端口5至端口6、端口8至端口11、端口12,该第三层对应于端口6至端口7、端口12至端口16。该实现方式既表明该第一层、第二层和第三层有各自专有的端口分组配置信息,如端口1至端口4仅对应于第一层,端口8至端口11仅对应于第二层,端口13至端口16仅对应于第三层;也表明该第一层、第二层和第三层也有共同的端口分组配置信息,如端口6。终端设备基于第一层、第二层和第三层对应的专有端口,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有端口可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
特别地,在该实现方式中,相对于第三层来说,端口5也可以理解为第一层和第二层专有的端口分组配置信息;相对于第二层来说,端口7也可以理解为第一层和第三层专有的端口分组配置信息;相对于第一层来说,端口12也可以理解为第二层和第三层专有的端口分组配置信息。
可选地,该第一层、第二层和第三层均对应于端口1至端口16。该实现方式表明该第一层、第二层和第三层仅有共同的端口分组配置信息。终端设备可以无差别地基于第一层、第二层和第三层对应的共有端口进行预编码矩阵指示PMI的计算,提高系统传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的端口数量不作限定。
结合第一方面或第二方面,在某些实现方式中,该Z个层中的至少两个层对应的端口不完全相同。
示例性的,该实现方式可以以三个层为例,第一层对应于端口1至端口7,第二层对应于端口1至端口6、端口8至端口11、端口12,第三层对应于端口6至端口7、端口12至端口16。该实现方式表明该三个层对应的端口不完全相同。
可选地,第一层对应于端口1至端口10,第二层和第三层均对应于端口6至端口16。该实现方式表明该第一层和第二层对应的端口,以及第一层和第三层对应的端口不完全相同,等等。
基于上述实现方式,终端设备基于该三个层对应的专有端口,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有端口可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的端口数量不作限定。
结合第一方面或第二方面,在某些实现方式中,该Z个层中的每个层对应于该N个频域基向量中的一个或多个。
需要说明的是,频域基向量的具体形式可以为:
Figure PCTCN2022083305-appb-000001
其中,i为大于等于0的整数;N3为大于0的整数。
示例性的,该实现方式可以以两个层为例,该第二分组配置信息可以用于指示3个频域基向量与该两个层之间的对应关系,即该第一层对应于频域基向量1和频域基向量2,该第二层对应于频域基向量3;或者该第一层对应于频域基向量1,该第二层对应于频域 基向量3等等。该实现方式表明第一层和第二层对应的频域基向量是完全不同的,两个层具有各自专有的频域基向量分组配置信息。终端设备基于第一层和第二层对应的专有频域基向量可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于频域基向量1和频域基向量2,该第二层对应于频域基向量2和频域基向量3。该实现方式既表明该第一层和第二层有各自专有的频域基向量的分组配置信息,如频域基向量1仅对应于第一层,频域基向量3仅对应于第二层;也表明该第一层和第二层也有共同的频域基向量的分组配置信息,如频域基向量2。终端设备基于第一层和第二层对应的专有频域基向量,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层和第二层对应的共有频域基向量可以准确的获取该两个层的信道状态信息,提高系统运行效率和传输性能。
可选地,该第一层和第二层均对应于频域基向量1至频域基向量3。该实现方式表明该第一层和第二层仅有共同的频域基向量分组配置信息。终端设备可以无差别地基于第一层和第二层对应的共有频域基向量进行预编码矩阵指示PMI的计算,提高系统传输性能。
示例性的,该实现方式可以以三个层为例,该第二分组配置信息还用于指示8个频域基向量与该三个层之间的对应关系,即该第一层对应于频域基向量1至频域基向量3,该第二层对应于频域基向量4至频域基向量6,该第三层对应于频域基向量7和频域基向量8;或者该第一层对应于频域基向量1和频域基向量2,该第二层对应于频域基向量4和频域基向量5,该第三层对应于频域基向量7和频域基向量8等等。该实现方式表明第一层、第二层和第三层对应的频域基向量是完全不同的,三个层具有各自专有的频域基向量分组配置信息。终端设备基于第一层、第二层和第三层对应的专有频域基向量可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于频域基向量1至频域基向量4,该第二层对应于频域基向量2、频域基向量3、频域基向量5和频域基向量6,该第三层对应于频域基向量3至频域基向量5、频域基向量7和频域基向量8。该实现方式既表明该第一层、第二层和第三层有各自专有的频域基向量分组配置信息,如频域基向量1仅对应于第一层,频域基向量6仅对应于第二层,频域基向量7和频域基向量8仅对应于第三层;也表明该第一层、第二层和第三层也有共同的端口分组配置信息,如频域基向量3。终端设备基于第一层、第二层和第三层对应的专有频域基向量,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有频域基向量可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
特别地,在该实现方式中,相对于第三层来说,频域基向量2也可以理解为第一层和第二层专有的频域基向量分组配置信息;相对于第二层来说,频域基向量4也可以理解为第一层和第三层专有的频域基向量分组配置信息;相对于第一层来说,频域基向量5也可以理解为第二层和第三层专有的频域基向量分组配置信息。
可选地,该第一层、第二层和第三层均对应于频域基向量1至频域基向量3。该实现方式表明该第一层、第二层和第三层仅有共同的频域基向量分组配置信息。终端设备可以无差别地基于第一层、第二层和第三层对应的共有频域基向量进行预编码矩阵指示PMI的计算,提高系统传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的频域基向量的数量不 作限定。
结合第一方面或第二方面,在某些实现方式中,该Z个层中的至少两个层对应的频域基向量不完全相同。
示例性的,该实现方式可以以三个层为例,该第一层对应于频域基向量1至频域基向量4,该第二层对应于频域基向量2、频域基向量3、频域基向量5和频域基向量6,该第三层对应于频域基向量3至频域基向量5、频域基向量7和频域基向量8。该实现方式表明该三个层对应的频域基向量不完全相同。
可选地,第一层对应于频域基向量1至频域基向量6,第二层和第三层均对应于频域基向量4至频域基向量8。该实现方式表明该第一层和第二层对应的频域基向量,以及第一层和第三层对应的频域基向量不完全相同,等等。
基于上述实现方式,终端设备基于该三个层对应的专有频域基向量,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有频域基向量可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的频域基向量的数量不作限定。
结合第一方面或第二方面,在某些实现方式中,该第一分组配置信息和/或该第二分组配置信息承载于以下信令中的至少一种:无线资源控制(radio resource control,RRC)、媒体接入控制-控制元素(media access control-control element,MAC CE)、下行控制信息(downlink control information,DCI);或者该第一分组配置信息和/或该第二分组配置信息是协议预定义的。
结合第一方面或第二方面,在某些实现方式中,该PMI反馈的码本结构满足:
Figure PCTCN2022083305-appb-000002
其中,W 1为端口选择矩阵,
Figure PCTCN2022083305-appb-000003
为叠加系数矩阵,W f为频域基向量矩阵,该W 1是该Z个层中的每个层特有的端口选择矩阵,该W f是该Z个层中的每个层特有的频域基向量矩阵。
其中,W f为频域基向量矩阵,其中的频域基向量可以从基站指示的频域向量集合中选择。示例的,基站指示/配置N个频域向量给用户,例如N=2,4,8。用户设备(user equipment,UE)从基站指示的N个频域向量中选择Mv个,例如Mv=1,2,4。一般的,N≥Mv。示例的,当Mv=1时,N=Mv=1;当Mv∈[a,b](a,b是正整数),N≥Mv,例如当Mv=2时,N≥Mv;当Mv∈[c,d](c,d是正整数),N=Mv。另外,W f可以被关掉,即码本结构变为
Figure PCTCN2022083305-appb-000004
例如当Mv=1时,W f可以被关掉,码本结构变为
Figure PCTCN2022083305-appb-000005
其中,W 1为端口选择矩阵,UE可以通过组合数或Bitmap从P个CSI-RS ports中选择K 1个CSI-RS ports。示例的,当W f中的Mv=1,UE用bitmap选择K 1个ports;当Mv>1,UE用组合数选择K 1个ports。
其中,
Figure PCTCN2022083305-appb-000006
为叠加系数矩阵,UE可以用bitmap指示其上报的非零系数。示例的,Mv=1,用于指示上报非零系数的bitmap缺失,例如,可以表现为UE上报CSI信息中不包含bitmap开销;当Mv>1,UE用bitmap指示其上报的非零系数。UE上报CSI信息中包含bitmap开销。
示例性的,以两个层为例,假设第一层对应的CSI-RS端口为端口1至10,第二层对应的CSI-RS端口为端口8至16,那么第一层的W 1是端口1至10对应的端口选择矩阵,第二层的W 1是端口8至16对应的端口选择矩阵。即第一层和第二层对应的端口选择矩阵W 1完全不相同,两个层具有各自专有的端口分组配置信息。
示例性的,以三个层为例,假设第一层对应的CSI-RS端口为端口1至8,第二层对应的CSI-RS端口为端口6至12,第三层对应的CSI-RS端口为端口10至16,那么第一层的W 1是端口1至8对应的端口选择矩阵,第二层的W 1是端口6至12对应的端口选择矩阵,第三层的W 1是端口10至16对应的端口选择矩阵。即第一层、第二层和第三层对应的端口选择矩阵W 1完全不相同,三个层具有各自专有的端口分组配置信息。
同样地,对于Z个层来说,W 1表示某一个或多个参考信号端口只对应于该Z个层中的某一层,与其他Z-1个层对应的端口选择矩阵W 1完全不同。
示例性的,以两个层为例,假设第一层的频域基向量矩阵对应频域基向量1和2,第二层的频域基向量矩阵对应频域基向量1和3,那么第一层的W f是频域基向量1和2对应的频域基向量矩阵,第二层的W f是频域基向量1和3对应的频域基向量矩阵。即第一层和第二层对应的频域基向量矩阵W f完全不相同,两个层具有各自专有的频域基向量分组配置信息。
示例性的,以三个层为例,假设第一层的频域基向量矩阵对应频域基向量1至3,第二层的频域基向量矩阵对应频域基向量2至4,第三层的频域基向量矩阵对应频域基向量5和6,那么第一层的W f是频域基向量1至3对应的频域基向量矩阵,第二层的W f是频域基向量2至4对应的频域基向量矩阵,第三层的W f是频域基向量5和6对应的频域基向量矩阵。即第一层、第二层和第三层对应的端频域基向量矩阵W f完全不相同,三个层具有各自专有的频域基向量分组配置信息。
同样地,对于Z个层来说,W f表示某一个或多个频域基向量只对应于该Z个层中的某一层,与其他Z-1个层对应的频域基向量矩阵W f完全不同。
结合第一方面或第二方面,在某些实现方式中,该第一分组配置信息和/或该第二分组配置信息是基于上行信道信息的K个角度时延对确定的,K为大于或等于1的正整数。
需要说明的是,该K个角度时延对中的每个角度时延对包括一个角度向量和一个时延向量,该P个参考信号端口与该K个角度时延对对应,该P个参考信号端口中每个参考信号端口的参考信号基于一个角度向量和一个时延向量对参考信号进行预编码得到,该N个频域基向量与该K个角度时延对对应,该N个频域基向量中每个频域基向量的参考信号基于一个角度向量和一个时延向量对参考信号进行预编码得到。
第三方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法包括:生成第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数;发送该第一指示信息。
根据本申请提供的方案,终端设备通过生成第一指示信息,用于指示对应于M个层 的M个加权系数集合联合归一化的量化信息,并向网络设备反馈该第一指示信息,能够获取M个层之间的功率差异。并且基于该M个层间的功率差异能够有效控制该M个层之间的功率,提升系统性能增益。
应理解,在上述实现方式中,联合归一化可以是指以某一加权系数集合中模值最大的加权系数为基准,对该M个加权系数集合中的所有加权系数归一化;或者也可以是指以某一加权系数集合中模值最大的加权系数为基准,对其他M-1个加权系数集合中,各加权系数集合的模值最大的加权系数归一化,再分别以该M个加权系数集合中模值最大的加权系数为基准,对各自加权系数集合中的所有加权系数归一化。简言之,联合归一化就是将该M个加权系数集合联合以其中某一个加权系数集合为基准进行量化归一。
需要说明的是,本申请实施例的联合归一化中,基准加权系数可以是其对应的加权系数集合中模值最大的加权系数,也可以是其对应的加权系数集合中任一加权系数。
还应理解,本申请的量化信息既可以是具体的量化后的数值,例如幅度、相位的量化值。示例性的,以第一层对应的第一加权系数集合中的模值最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报该M个加权系数集合中所有的加权系数的量化的值,包括第一加权系数集合中的模值最大加权系数C 12的量化值等。
可选地,终端设备也可以上报某一加权系数量化后的索引,例如该加权系数的位置信息或标识信息等;示例性的,以第一层对应的第一加权系数集合中的模值最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报第一加权系数集合中的模值最大加权系数C 12的位置信息或索引,并上报除该模值最大加权系数C 12外的所有加权系数的量化的值等。
可选地,通过协议预定义,即网络设备与终端设备提前规定确定以其中某一加权系数集合中的某一加权系数为量化基准,例如,以第一层对应的第一加权系数集合中的加权系数C 11为联合量化的基准,那么在量化归一后,终端设备无需再一次上报该加权系数C 11的量化信息和/或索引等,该实现方式可以降低信令开销,减少终端的功耗。
需要说明的是,本申请对终端设备上报的量化信息的数量和上报不作具体限定,可以是该M个层中的一个或多个。
结合第三方面,在第三方面的某些实现方式中,该M个加权系数集合中的每个加权系数集合包括多个加权系数,根据第一加权系数对该M个加权系数集合中的所有加权系数进行归一化,获取该联合归一化的M个加权系数集合的量化信息,该第一加权系数是第L个加权系数集合中的加权系数,该第L个加权系数集合是该M个加权系数集合中的任意一个,L为正整数;发送第一消息,该第一消息用于指示该第一加权系数。
结合第三方面,在第三方面的某些实现方式中,根据第二加权系数对M-1个第三加权系数进行第一归一化,该第二加权系数是第U个加权系数集合中的加权系数,该第U个加权系数集合与第u层对应,该第三加权系数是该M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第u层外的M-1个层一一对应,U和u均为正整数,第u层属于M 个层;根据该第二加权系数对该第U个加权系数集合中的所有加权系数进行第二归一化,以及根据该第三加权系数对其对应的加权系数集合中的所有加权系数进行第三归一化;根据该第一归一化、该第二归一化和该第三归一化,获取该联合归一化的M个加权系数集合的量化信息;发送第二消息,该第二消息用于指示该第二加权系数和该M-1个第三加权系数。
结合第三方面,在第三方面的某些实现方式中,根据第四加权系数对M-1个第五加权系数进行第四归一化,该第四加权系数是第X个加权系数集合中的加权系数,该第X个加权系数集合与第x层对应,该第五加权系数是该M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第x层外的M-1个层一一对应,X和x均为正整数,第x层属于M个层;根据该第四加权系数对该第X个加权系数集合中的所有加权系数进行第五归一化;根据该第四加权系数和该第五加权系数分别对该第五加权系数对应的加权系数集合中的所有加权系数进行第六归一化和第七归一化;根据该第四归一化、该第五归一化、该第六归一化和该第七归一化,获取该联合归一化的M个加权系数集合的量化信息;发送第三消息,该第三消息用于指示该第四加权系数和该M-1个第五加权系数。
第四方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由用于网络设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。
该方法包括:接收第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数;根据该第一指示信息确定该M个层间的功率差异。
根据本申请提供的方案,网络设备通过接收第一指示信息,用于指示对应于M个层的M个加权系数集合联合归一化的量化信息,并根据该第一指示信息能够确定该M个层间的功率差异,进而可以有效控制该M个层之间的功率,提升系统性能增益。
应理解,在上述实现方式中,联合归一化可以是指以某一加权系数集合中模值最大的加权系数为基准,对该M个加权系数集合中的所有加权系数归一化;或者也可以是指以某一加权系数集合中模值最大的加权系数为基准,对其他M-1个加权系数集合中,各加权系数集合的模值最大的加权系数归一化,再分别以该M个加权系数集合中模值最大的加权系数为基准,对各自加权系数集合中的所有加权系数归一化。简言之,联合归一化就是将该M个加权系数集合联合以其中某一个加权系数集合为基准进行量化归一。
需要说明的是,本申请实施例的联合归一化中,基准加权系数可以是其对应的加权系数集合中模值最大的加权系数,也可以是其对应的加权系数集合中任一加权系数。
还应理解,本申请的量化信息既可以是具体的量化后的数值,例如幅度、相位的量化值。示例性的,以第一层对应的第一加权系数集合中的模值最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报该M个加权系数集合中所有的加权系数的量化的值,包括第一加权系数集合中的模值最大加权系数C 12的量化值等。
可选地,终端设备也可以上报某一加权系数量化后的索引,例如该加权系数的位置信息或标识信息等;示例性的,以第一层对应的第一加权系数集合中的模值最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报第一加权系数集合中的模值最大加权系数C 12的位置信息或索引,并上报除该模值最大加权系数C 12外的所有加权系数的量化的值等。
可选地,通过协议预定义,即网络设备与终端设备提前规定确定以其中某一加权系数集合中的某一加权系数为量化基准,例如,以第一层对应的第一加权系数集合中的加权系数C 11为联合量化的基准,那么在量化归一后,终端设备无需再一次上报该加权系数C 11的量化信息和/或索引等,该实现方式可以降低信令开销,减少终端的功耗。
需要说明的是,本申请对终端设备上报的量化信息的数量和上报不作具体限定,可以是该M个层中的一个或多个。
结合第四方面,在第四方面的某些实现方式中,该M个加权系数集合中的每个加权系数集合包括多个加权系数,接收第一消息,该第一消息用于指示第一加权系数,该第一加权系数用于对该M个加权系数集合中的所有加权系数进行归一化,该第一加权系数是第L个加权系数集合中的加权系数,该第L个加权系数集合是该M个加权系数集合中的任意一个,L为正整数。
结合第三方面或第四方面,在某些实现方式中,该第一加权系数是该第L个加权系数集合中模值最大的加权系数。
结合第三方面或第四方面,在第四方面的某些实现方式中,该第L个加权系数集合是终端设备确定的;或者该第L个加权系数集合是协议预定义的。
结合第四方面,在第四方面的某些实现方式中,接收第二消息,该第二消息用于指示第二加权系数和M-1个第三加权系数,该第二加权系数用于对该M-1个第三加权系数进行第一归一化,该第二加权系数是第U个加权系数集合中的加权系数,该第U个加权系数集合与第u层对应,该第三加权系数是该M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第u层外的M-1个层一一对应,U和u均为正整数,第u层属于M个层,该第二加权系数还用于对该第U个加权系数集合中的所有加权系数进行第二归一化,该第三加权系数用于对其对应的加权系数集合中的所有加权系数进行第三归一化,该第一归一化、第二归一化和第三归一化用于获取该联合归一化的M个加权系数集合的量化信息。
结合第三方面或第四方面,在某些实现方式中,第二加权系数是该第U个加权系数集合中模值最大的加权系数,和/或该第三加权系数是该M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
结合第三方面或第四方面,在某些实现方式中,该第U个加权系数集合是终端设备确定的;或者该第U个加权系数集合是协议预定义的。
结合第四方面,在第四方面的某些实现方式中,接收第三消息,该第三消息用于指示第四加权系数和M-1个第五加权系数,该第四加权系数用于对该M-1个第五加权系数进行第四归一化,该第四加权系数是第X个加权系数集合中的加权系数,该第X个加权系数集合与第x层对应,该第五加权系数是该M个加权系数集合中除第X个加权系数集合 外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第x层外的M-1个层一一对应,X和x均为正整数,第x层属于M个层,该第四加权系数还用于对该第X个加权系数集合中的所有加权系数进行第五归一化,该第四加权系数和该第五加权系数还用于分别对该第五加权系数对应的加权系数集合中的所有加权系数进行第六归一化和第七归一化,该第四归一化、该第五归一化、该第六归一化和该第七归一化用于获取该联合归一化的M个加权系数集合的量化信息。
结合第三方面或第四方面,在某些实现方式中,该第四加权系数是该第X个加权系数集合中模值最大的加权系数,和/或该第五加权系数是该M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
结合第三方面或第四方面,在某些实现方式中,该第X个加权系数集合是终端设备确定的;或者该第X个加权系数集合是协议预定义的。
结合第三方面或第四方面,在某些实现方式中,该M个加权系数集合及其对应的K个角度时延对用于网络设备构建预编码矩阵,K为大于或等于1的正整数。
需要说明的是,该K个角度时延对中的每个角度时延对包括一个角度向量和一个时延向量。
第五方面,提供了一种通信装置,包括:收发单元,用于接收第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数;该收发单元,还用于发送与该Z个层对应的预编码矩阵指示PMI,该PMI是根据该第一信息确定的。
第六方面,提供了一种通信装置,包括:收发单元,用于发送第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数;处理单元,用于接收与该Z个层对应的预编码矩阵指示PMI,该PMI是根据该第一信息确定的。
结合第五方面或第六方面,在某些实现方式中,该Z个层中的每个层对应于该P个参考信号端口中的一个或多个。
示例性的,该实现方式可以以两个层为例,该第一分组配置信息可以用于指示16个CSI-RS端口与该两个层之间的对应关系,即该第一层对应于端口1至端口8,该第二层对应于端口9至端口16;或者该第一层对应于端口1至端口4,该第二层对应于端口9至端口10等等。该实现方式表明第一层和第二层对应的端口是完全不同的,两个层具有各自专有的端口分组配置信息。终端设备基于第一层和第二层对应的专有端口可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于端口1至端口10,该第二层对应于端口5至端口16。该实现方式既表明该第一层和第二层有各自专有的端口分组配置信息,如端口1至端口4仅对应于第一层,端口11至端口16仅对应于第二层;也表明该第一层和第二层也有共同的端口分组配置信息,如端口5至端口10。终端设备基于第一层和第二层对应的专有端口,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层和第二层对应的共有端口可以准确的获取该两个层的信道状态信息,提高系统运行效率和 传输性能。
可选地,该第一层和第二层均对应于端口1至端口16。该实现方式表明该第一层和第二层仅有共同的端口分组配置信息。终端设备可以无差别地基于第一层和第二层对应的共有端口进行预编码矩阵指示PMI的计算,提高系统传输性能。
示例性的,该实现方式可以以三个层为例,该第一分组配置信息还用于指示16个CSI-RS端口与该三个层之间的对应关系,即该第一层对应于端口1至端口5,该第二层对应于端口6至端口12,该第三层对应于端口13至端口16;或者该第一层对应于端口1至端口3,该第二层对应于端口6至端口10,该第三层对应于端口12至端口15等等。该实现方式表明第一层、第二层和第三层对应的端口是完全不同的,三个层具有各自专有的端口分组配置信息。终端设备基于第一层、第二层和第三层对应的专有端口可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于端口1至端口7,该第二层对应于端口5至端口6、端口8至端口11、端口12,该第三层对应于端口6至端口7、端口12至端口16。该实现方式既表明该第一层、第二层和第三层有各自专有的端口分组配置信息,如端口1至端口4仅对应于第一层,端口8至端口11仅对应于第二层,端口13至端口16仅对应于第三层;也表明该第一层、第二层和第三层也有共同的端口分组配置信息,如端口6。终端设备基于第一层、第二层和第三层对应的专有端口,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有端口可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
特别地,在该实现方式中,相对于第三层来说,端口5也可以理解为第一层和第二层专有的端口分组配置信息;相对于第二层来说,端口7也可以理解为第一层和第三层专有的端口分组配置信息;相对于第一层来说,端口12也可以理解为第二层和第三层专有的端口分组配置信息。
可选地,该第一层、第二层和第三层均对应于端口1至端口16。该实现方式表明该第一层、第二层和第三层仅有共同的端口分组配置信息。终端设备可以无差别地基于第一层、第二层和第三层对应的共有端口进行预编码矩阵指示PMI的计算,提高系统传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的端口数量不作限定。
结合第六方面,在第六方面的某些实现方式中,该Z个层中的至少两个层对应的端口不完全相同。
示例性的,该实现方式可以以三个层为例,第一层对应于端口1至端口7,第二层对应于端口1至端口6、端口8至端口11、端口12,第三层对应于端口6至端口7、端口12至端口16。该实现方式表明该三个层对应的端口不完全相同。
可选地,第一层对应于端口1至端口10,第二层和第三层均对应于端口6至端口16。该实现方式表明该第一层和第二层对应的端口,以及第一层和第三层对应的端口不完全相同,等等。
基于上述实现方式,终端设备基于该三个层对应的专有端口,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有端口可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的端口数量不作限定。
结合第五方面或第六方面,在些实现方式中,该Z个层中的每个层对应于该N个频域基向量中的一个或多个。
需要说明的是,频域基向量的具体形式可以为:
Figure PCTCN2022083305-appb-000007
其中,i为大于等于0的整数;N3为大于0的整数。
示例性的,该实现方式可以以两个层为例,该第二分组配置信息可以用于指示3个频域基向量与该两个层之间的对应关系,即该第一层对应于频域基向量1和频域基向量2,该第二层对应于频域基向量3;或者该第一层对应于频域基向量1,该第二层对应于频域基向量3等等。该实现方式表明第一层和第二层对应的频域基向量是完全不同的,两个层具有各自专有的频域基向量分组配置信息。终端设备基于第一层和第二层对应的专有频域基向量可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于频域基向量1和频域基向量2,该第二层对应于频域基向量2和频域基向量3。该实现方式既表明该第一层和第二层有各自专有的频域基向量的分组配置信息,如频域基向量1仅对应于第一层,频域基向量3仅对应于第二层;也表明该第一层和第二层也有共同的频域基向量的分组配置信息,如频域基向量2。终端设备基于第一层和第二层对应的专有频域基向量,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层和第二层对应的共有频域基向量可以准确的获取该两个层的信道状态信息,提高系统运行效率和传输性能。
可选地,该第一层和第二层均对应于频域基向量1至频域基向量3。该实现方式表明该第一层和第二层仅有共同的频域基向量分组配置信息。终端设备可以无差别地基于第一层和第二层对应的共有频域基向量进行预编码矩阵指示PMI的计算,提高系统传输性能。
示例性的,该实现方式可以以三个层为例,该第二分组配置信息还用于指示8个频域基向量与该三个层之间的对应关系,即该第一层对应于频域基向量1至频域基向量3,该第二层对应于频域基向量4至频域基向量6,该第三层对应于频域基向量7和频域基向量8;或者该第一层对应于频域基向量1和频域基向量2,该第二层对应于频域基向量4和频域基向量5,该第三层对应于频域基向量7和频域基向量8等等。该实现方式表明第一层、第二层和第三层对应的频域基向量是完全不同的,三个层具有各自专有的频域基向量分组配置信息。终端设备基于第一层、第二层和第三层对应的专有频域基向量可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于频域基向量1至频域基向量4,该第二层对应于频域基向量2、频域基向量3、频域基向量5和频域基向量6,该第三层对应于频域基向量3至频域基向量5、频域基向量7和频域基向量8。该实现方式既表明该第一层、第二层和第三层有各自专有的频域基向量分组配置信息,如频域基向量1仅对应于第一层,频域基向量6仅对应于第二层,频域基向量7和频域基向量8仅对应于第三层;也表明该第一层、第二层和第三层也有共同的端口分组配置信息,如频域基向量3。终端设备基于第一层、第二层和第三层对应的专有频域基向量,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有频域基向量可以准确的获 取该三个层的信道状态信息,提高系统运行效率和传输性能。
特别地,在该实现方式中,相对于第三层来说,频域基向量2也可以理解为第一层和第二层专有的频域基向量分组配置信息;相对于第二层来说,频域基向量4也可以理解为第一层和第三层专有的频域基向量分组配置信息;相对于第一层来说,频域基向量5也可以理解为第二层和第三层专有的频域基向量分组配置信息。
可选地,该第一层、第二层和第三层均对应于频域基向量1至频域基向量3。该实现方式表明该第一层、第二层和第三层仅有共同的频域基向量分组配置信息。终端设备可以无差别地基于第一层、第二层和第三层对应的共有频域基向量进行预编码矩阵指示PMI的计算,提高系统传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的频域基向量的数量不作限定。
结合第五方面或第六方面,在某些实现方式中,该Z个层中的至少两个层对应的频域基向量不完全相同。
示例性的,该实现方式可以以三个层为例,该第一层对应于频域基向量1至频域基向量4,该第二层对应于频域基向量2、频域基向量3、频域基向量5和频域基向量6,该第三层对应于频域基向量3至频域基向量5、频域基向量7和频域基向量8。该实现方式表明该三个层对应的频域基向量不完全相同。
可选地,第一层对应于频域基向量1至频域基向量6,第二层和第三层均对应于频域基向量4至频域基向量8。该实现方式表明该第一层和第二层对应的频域基向量,以及第一层和第三层对应的频域基向量不完全相同,等等。
基于上述实现方式,终端设备基于该三个层对应的专有频域基向量,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有频域基向量可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的频域基向量的数量不作限定。
结合第五方面或第六方面,在某些实现方式中,该第一分组配置信息和/或该第二分组配置信息承载于以下信令中的至少一种:无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI;或者该第一分组配置信息和/或该第二分组配置信息是协议预定义的。
结合第五方面或第六方面,在某些实现方式中,该PMI反馈的码本结构满足:
Figure PCTCN2022083305-appb-000008
其中,W 1为端口选择矩阵,
Figure PCTCN2022083305-appb-000009
为叠加系数矩阵,W f为频域基向量矩阵,该W 1是该Z个层中的每个层特有的端口选择矩阵,该W f是该Z个层中的每个层特有的频域基向量矩阵。
其中,W f为频域基向量矩阵,其中的频域基向量可以从基站指示的频域向量集合中选择。示例的,基站指示/配置N个频域向量给用户,例如N=2,4,8。UE从基站指示的N个频域向量中选择Mv个,例如Mv=1,2,4。一般的,N≥Mv。示例的,当Mv=1时,N=Mv=1;当Mv∈[a,b](a,b是正整数),N≥Mv,例如当Mv=2时,N≥Mv;当Mv∈[c,d](c,d 是正整数),N=Mv。另外,W f可以被关掉,即码本结构变为
Figure PCTCN2022083305-appb-000010
例如当Mv=1时,W f可以被关掉,码本结构变为
Figure PCTCN2022083305-appb-000011
其中,W 1为端口选择矩阵,UE可以通过组合数或Bitmap从P个CSI-RS ports中选择K 1个CSI-RS ports。示例的,当W f中的Mv=1,UE用bitmap选择K 1个ports;当Mv>1,UE用组合数选择K 1个ports。
其中,
Figure PCTCN2022083305-appb-000012
为叠加系数矩阵,UE可以用bitmap指示其上报的非零系数。示例的,Mv=1,用于指示上报非零系数的bitmap缺失,例如,可以表现为UE上报CSI信息中不包含bitmap开销;当Mv>1,UE用bitmap指示其上报的非零系数。UE上报CSI信息中包含bitmap开销。
示例性的,以两个层为例,假设第一层对应的CSI-RS端口为端口1至10,第二层对应的CSI-RS端口为端口8至16,那么第一层的W 1是端口1至10对应的端口选择矩阵,第二层的W 1是端口8至16对应的端口选择矩阵。即第一层和第二层对应的端口选择矩阵完全不相同,两个层具有各自专有的端口分组配置信息。
示例性的,以三个层为例,假设第一层对应的CSI-RS端口为端口1至8,第二层对应的CSI-RS端口为端口6至12,第三层对应的CSI-RS端口为端口10至16,那么第一层的W 1是端口1至8对应的端口选择矩阵,第二层的W 1是端口6至12对应的端口选择矩阵,第三层的W 1是端口10至16对应的端口选择矩阵。即第一层、第二层和第三层对应的端口选择矩阵W 1完全不相同,三个层具有各自专有的端口分组配置信息。
同样地,对于Z个层来说,W 1表示某一个或多个参考信号端口只对应于该Z个层中的某一层,与其他Z-1个层对应的端口选择矩阵W 1完全不同。
示例性的,以两个层为例,假设第一层的频域基向量矩阵对应频域基向量1和2,第二层的频域基向量矩阵对应频域基向量1和3,那么第一层的W f是频域基向量1和2对应的频域基向量矩阵,第二层的W f是频域基向量1和3对应的频域基向量矩阵。即第一层和第二层对应的频域基向量矩阵W f完全不相同,两个层具有各自专有的频域基向量分组配置信息。
示例性的,以三个层为例,假设第一层的频域基向量矩阵对应频域基向量1至3,第二层的频域基向量矩阵对应频域基向量2至4,第三层的频域基向量矩阵对应频域基向量5和6,那么第一层的W f是频域基向量1至3对应的频域基向量矩阵,第二层的W f是频域基向量2至4对应的频域基向量矩阵,第三层的W f是频域基向量5和6对应的频域基向量矩阵。即第一层、第二层和第三层对应的端频域基向量矩阵W f完全不相同,三个层具有各自专有的频域基向量分组配置信息。
同样地,对于Z个层来说,W f表示某一个或多个频域基向量只对应于该Z个层中的某一层,与其他Z-1个层对应的频域基向量矩阵W f完全不同。
结合第五方面或第六方面,在某些实现方式中,该第一分组配置信息和/或该第二分组配置信息是基于上行信道信息的K个角度时延对确定的,K为大于或等于1的正整数。
需要说明的是,该K个角度时延对中的每个角度时延对包括一个角度向量和一个时延向量,该P个参考信号端口与该K个角度时延对对应,该P个参考信号端口中每个参考信号端口的参考信号基于一个角度向量和一个时延向量对参考信号进行预编码得到,该N个频域基向量与该K个角度时延对对应,该N个频域基向量中每个频域基向量的参考信 号基于一个角度向量和一个时延向量对参考信号进行预编码得到。
第七方面,提供了一种通信装置,包括:处理单元,用于生成第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数;收发单元,用于发送该第一指示信息。
应理解,在上述实现方式中,联合归一化可以是指以某一加权系数集合中模值最大的加权系数为基准,对该M个加权系数集合中的所有加权系数归一化;或者也可以是指以某一加权系数集合中模值最大的加权系数为基准,对其他M-1个加权系数集合中,各加权系数集合的模值最大的加权系数归一化,再分别以该M个加权系数集合中模值最大的加权系数为基准,对各自加权系数集合中的所有加权系数归一化。简言之,联合归一化就是将该M个加权系数集合联合以其中某一个加权系数集合为基准进行量化归一。
需要说明的是,本申请实施例的联合归一化中,基准加权系数可以是其对应的加权系数集合中模值最大的加权系数,也可以是其对应的加权系数集合中任一加权系数。
还应理解,本申请的量化信息既可以是具体的量化后的数值,例如幅度、相位的量化值。示例性的,以第一层对应的第一加权系数集合中的模值最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报该M个加权系数集合中所有的加权系数的量化的值,包括第一加权系数集合中的模值最大加权系数C 12的量化值等。
可选地,终端设备也可以上报某一加权系数量化后的索引,例如该加权系数的位置信息或标识信息等;示例性的,以第一层对应的第一加权系数集合中的模值最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报第一加权系数集合中的模值最大加权系数C 12的位置信息或索引,并上报除该模值最大加权系数C 12外的所有加权系数的量化的值等。
可选地,通过协议预定义,即网络设备与终端设备提前规定确定以其中某一加权系数集合中的某一加权系数为量化基准,例如,以第一层对应的第一加权系数集合中的加权系数C 11为联合量化的基准,那么在量化归一后,终端设备无需再一次上报该加权系数C 11的量化信息和/或索引等,该实现方式可以降低信令开销,减少终端的功耗。
需要说明的是,本申请对终端设备上报的量化信息的数量和上报不作具体限定,可以是该M个层中的一个或多个。
结合第七方面,在第七方面的某些实现方式中,该处理单元,还用于根据第一加权系数对该M个加权系数集合中的所有加权系数进行归一化,获取该联合归一化的M个加权系数集合的量化信息,该第一加权系数是第L个加权系数集合中的加权系数,该第L个加权系数集合是该M个加权系数集合中的任意一个,L为正整数;该收发单元,还用于发送第一消息,该第一消息用于指示该第一加权系数。
结合第七方面,在第七方面的某些实现方式中,该处理单元,还用于根据第二加权系数对M-1个第三加权系数进行第一归一化,该第二加权系数是第U个加权系数集合中的加权系数,该第U个加权系数集合与第u层对应,该第三加权系数是该M个加权系数集 合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第u层外的M-1个层一一对应,U和u均为正整数,第u层属于M个层;该处理单元,还用于根据该第二加权系数对该第U个加权系数集合中的所有加权系数进行第二归一化,以及根据该第三加权系数对其对应的加权系数集合中的所有加权系数进行第三归一化;该处理单元,还用于根据该第一归一化、该第二归一化和该第三归一化,获取该联合归一化的M个加权系数集合的量化信息;该收发单元,用于发送第二消息,该第二消息用于指示该第二加权系数和该M-1个第三加权系数。
结合第七方面,在第七方面的某些实现方式中,根据第四加权系数对M-1个第五加权系数进行第四归一化,该第四加权系数是第X个加权系数集合中的加权系数,该第X个加权系数集合与第x层对应,该第五加权系数是该M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第x层外的M-1个层一一对应,X和x均为正整数,第x层属于M个层;根据该第四加权系数对该第X个加权系数集合中的所有加权系数进行第五归一化;根据该第四加权系数和该第五加权系数分别对该第五加权系数对应的加权系数集合中的所有加权系数进行第六归一化和第七归一化;根据该第四归一化、该第五归一化、该第六归一化和该第七归一化,获取该联合归一化的M个加权系数集合的量化信息;发送第三消息,该第三消息用于指示该第四加权系数和该M-1个第五加权系数。
第八方面,提供了一种通信装置,包括:收发单元,用于接收第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数;处理单元,用于根据该第一指示信息确定该M个层间的功率差异。
应理解,在上述实现方式中,联合归一化可以是指以某一加权系数集合中模值最大的加权系数为基准,对该M个加权系数集合中的所有加权系数归一化;或者也可以是指以某一加权系数集合中模值最大的加权系数为基准,对其他M-1个加权系数集合中,各加权系数集合的模值最大的加权系数归一化,再分别以该M个加权系数集合中模值最大的加权系数为基准,对各自加权系数集合中的所有加权系数归一化。简言之,联合归一化就是将该M个加权系数集合联合以其中某一个加权系数集合为基准进行量化归一。
需要说明的是,本申请实施例的联合归一化中,基准加权系数可以是其对应的加权系数集合中模值最大的加权系数,也可以是其对应的加权系数集合中任一加权系数。
还应理解,本申请的量化信息既可以是具体的量化后的数值,例如幅度、相位的量化值。示例性的,以第一层对应的第一加权系数集合中的模值最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报该M个加权系数集合中所有的加权系数的量化的值,包括第一加权系数集合中的模值最大加权系数C 12的量化值等。
可选地,终端设备也可以上报某一加权系数量化后的索引,例如该加权系数的位置信息或标识信息等;示例性的,以第一层对应的第一加权系数集合中的最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报 第一加权系数集合中的模值最大加权系数C 12的位置信息或索引,并上报除该模值最大加权系数C 12外的所有加权系数的量化的值等。
可选地,通过协议预定义,即网络设备与终端设备提前规定确定以其中某一加权系数集合中的某一加权系数为量化基准,例如,以第一层对应的第一加权系数集合中的加权系数C 11为联合量化的基准,那么在量化归一后,终端设备无需再一次上报该加权系数C 11的量化信息和/或索引等,该实现方式可以降低信令开销,减少终端的功耗。
需要说明的是,本申请对终端设备上报的量化信息的数量和上报不作具体限定,可以是该M个层中的一个或多个。
结合第八方面,在第八方面的某些实现方式中,该收发单元,还用于接收第一消息,该第一消息用于指示第一加权系数,该第一加权系数用于对该M个加权系数集合中的所有加权系数进行归一化,该第一加权系数是第L个加权系数集合中的加权系数,该第L个加权系数集合是该M个加权系数集合中的任意一个,L为正整数。
结合第七方面或第八方面,在某些实现方式中,该第一加权系数是该第L个加权系数集合中模值最大的加权系数。
结合第七方面或第八方面,在某些实现方式中,该第L个加权系数集合是终端设备确定的;或者该第L个加权系数集合是协议预定义的。
结合第八方面,在第八方面的某些实现方式中,该收发单元,还用于接收第二消息,该第二消息用于指示第二加权系数和M-1个第三加权系数,该第二加权系数用于对该M-1个第三加权系数进行第一归一化,该第二加权系数是第U个加权系数集合中的加权系数,该第U个加权系数集合与第u层对应,该第三加权系数是该M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第u层外的M-1个层一一对应,U和u均为正整数,第u层属于M个层,该第二加权系数还用于对该第U个加权系数集合中的所有加权系数进行第二归一化,该第三加权系数用于对其对应的加权系数集合中的所有加权系数进行第三归一化,该第一归一化、第二归一化和第三归一化用于获取该联合归一化的M个加权系数集合的量化信息。
结合第七方面或第八方面,在某些实现方式中,第二加权系数是该第U个加权系数集合中模值最大的加权系数,和/或该第三加权系数是该M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
结合第七方面或第八方面,在某些实现方式中,该第U个加权系数集合是终端设备确定的;或者该第U个加权系数集合是协议预定义的。
结合第八方面,在第八方面的某些实现方式中,该收发单元,还用于:接收第三消息,该第三消息用于指示第四加权系数和M-1个第五加权系数,该第四加权系数用于对该M-1个第五加权系数进行第四归一化,该第四加权系数是第X个加权系数集合中的加权系数,该第X个加权系数集合与第x层对应,该第五加权系数是该M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第x层外的M-1个层一一对应,X和x均为正整数,第x层属于M个层,该第四加权系数还用于对该第X个加权系数集合中的所有加权系数进行第五归一化,该第四加权系数和该第五加权系数还用于分别对该第五加权系数对应的加权 系数集合中的所有加权系数进行第六归一化和第七归一化,该第四归一化、该第五归一化、该第六归一化和该第七归一化用于获取该联合归一化的M个加权系数集合的量化信息。
结合第七方面或第八方面,在某些实现方式中,该第四加权系数是该第X个加权系数集合中模值最大的加权系数,和/或该第五加权系数是该M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
结合第七方面或第八方面,在某些实现方式中,该第X个加权系数集合是终端设备确定的;或者该第X个加权系数集合是协议预定义的。
结合第七方面或第八方面,在某些实现方式中,该M个加权系数集合及其对应的K个角度时延对用于网络设备构建预编码矩阵,K为大于或等于1的正整数。
需要说明的是,该K个角度时延对中的每个角度时延对包括一个角度向量和一个时延向量。
第九方面,提供了一种终端设备,包括,处理器,可选地,还包括存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第一方面或第一方面中任一种可能实现方式中的方法,或者第三方面或第三方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
可选地,该终端设备还包括收发器,收发器具体可以为发射机(发射器)和接收机(接收器)。
第十方面,提供了一种网络设备,包括,处理器,可选地,还包括存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行上述第二方面或第二方面中任一种可能实现方式中的方法,或者第四方面或第四方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
可选地,该网络设备还包括收发器,收发器具体可以为发射机(发射器)和接收机(接收器)。
第十一方面,提供了一种通信装置,包括:用于实现第一方面或第一方面任一种可能实现方式中的方法的各个模块或单元,或者用于实现第二方面或第二方面任一种可能实现方式中的方法的各个模块或单元,或者用于实现第三方面或第三方面任一种可能实现方式中的方法的各个模块或单元,或者用于实现第四方面或第四方面任一种可能实现方式中的方法的各个模块或单元。
第十二方面,提供了一种通信系统,包括:终端设备,用于执行上述第一方面或第一方面任一种可能实现方式中的方法,或者用于执行上述第三方面或第三方面任一种可能实现方式中的方法;以及网络设备,用于执行上述第二方面或第二方面任一种可能实现方式中的方法,或者用于执行上述第四方面或第四方面任一种可能实现方式中的方法。
第十三方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或代码,该计算机程序或代码在计算机上运行时,使得该计算机执行上述第一方面或第一方面任一种可能实现方式中的方法,或者第二方面或第二方面任一种可能实现方式中 的方法,或者第三方面或第三方面任一种可能实现方式中的方法,或者第四方面或第四方面任一种可能实现方式中的方法。
第十四方面,提供了一种芯片,包括至少一个处理器,该至少一个处理器与存储器耦合,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的设备执行上述第一方面或第一方面任一种可能实现方式中的方法,或者使得安装有该芯片系统的设备执行上述第三方面或第三方面任一种可能实现方式中的方法;又或者使得安装有该芯片系统的设备执行第二方面或第二方面任一种可能实现方式中的方法,或者使得安装有该芯片系统的设备执行第四方面或第四方面任一种可能实现方式中的方法。
其中,该芯片可以包括用于发送信息和/或数据的输入电路或者接口,以及用于接收信息和/或数据的输出电路或者接口。
第十五方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被计算机运行时,使得上述第一方面或第一方面任一种可能实现方式中的方法被实现,或者使得上述第三方面或第三方面任一种可能实现方式中的方法被实现;又或者当该计算机程序代码被计算机运行时,使得上述第二方面或第二方面任一种可能实现方式中的方法被实现,或者使得第四方面或第四方面任一种可能实现方式中的方法被实现。
附图说明
图1是适用本申请的通信系统的一例网络架构示意图。
图2是基于FDD部分互易性的信道状态信息CSI获取流程的一例示意图。
图3是适用本申请的通信方法的一例示意图。
图4是适用本申请的通信方法的另一例示意图。
图5是适用本申请的通信方法的又一例示意图。
图6是适用本申请的通信方法的又一例示意图。
图7是适用本申请的通信方法的一例示意图。
图8是适用本申请的通信方法的另一例示意图。
图9是适用本申请的通信方法的又一例示意图。
图10是适用本申请的通信装置的一例示意图。
图11是适用本申请的通信装置的另一例示意图。
图12是适用本申请的终端设备的一例示意图。
图13是适用本申请的网络设备的一例示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution, LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、未来的第五代5G系统或新无线(new radio,NR),也可以扩展到类似的无线通信系统中,如无线保真(wireless-fidelity,WIFI),以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现。然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),车联网(vehicle to everything,V2X)通信,例如,车到车(vehicle to vehicle,V2V)通信、车到基础设施(vehicle to infrastructure,V2I)通信,车到行人(vehicle to pedestrian,V2P)通信,车道网络(vehicle to network,V2N)通信。
应理解,本申请实施例的技术方案还可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(sparse code multiple access,SCMA)系统,当然SCMA在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(orthogonal frequency division multiplexing,OFDM)、滤波器组多载波(filter bank multi-carrier,FBMC)、通用频分复用(generalized frequency division multiplexing,GFDM)、滤波正交频分复用(filtered-OFDM,F-OFDM)系统等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
在本申请实施例中,终端设备可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、软终端等,包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动站(mobile station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
本申请实施例中的终端设备也可以是手机(mobile phone)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、手持终端、笔记本电脑、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、未来5G网络中的终端设备,或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。应理解,本申请对于终端设备的具体形式不作限定。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
在本申请实施例中,网络设备可以是一种部署在无线接入网中为终端设备提供无线通信功能的装置,可以是用于与终端设备通信的设备或者该设备的芯片。该网络设备包括但不限于:无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如NR)系统中的gNB或传输点(TRP或TP),或者5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者还可以为构成gNB或传输点的网络节点,如基带单元BBU,或分布式单元(distributed unit,DU)等。
本申请实施例中的网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等,可以是全球移动通讯GSM系统或码分多址CDMA中的基站(base transceiver station,BTS),也可以是宽带码分多址WCDMA系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、可穿戴设备或车载设备、可穿戴设备以及5G或未来网络中的网络设备或者未来演进的公用陆地移动通信网络PLMN网络中的网络设备等。
在一些网络部署中,网络设备可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。网络设备还可以包括射频单元(radio unit,RU)、有源天线单元(active antenna unit,AAU)。CU实现网络设备的部分功能,比如负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU实现网络设备的部分功能,比如负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因而在这种架构下,高层信令(例如,RRC层信令)也可以认为是由DU发送的,或者由DU+AAU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、 微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,网络设备和终端设备包括无线资源控制(radio resource control,RRC)信令交互模块、媒体接入控制(media access control,MAC)信令交互模块、以及物理(physical,PHY)信令交互模块。其中,RRC信令交互模块可以为:网络设备和终端设备用于发送及接收RRC信令的模块。MAC信令交互模块可以为:网络设备和终端设备用于发送及接收媒体接入控制-控制元素(media access control-control element,MACCE)信令的模块。PHY信令及数据交互模块可以为:网络设备和终端设备用于发送及接收上行控制信令或下行控制信令、上下行数据或下行数据的模块。
应理解,本申请实施例可以适用于LTE系统以及后续的演进系统如5G等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于需要信道信息反馈和/或应用二级预编码技术的场景,例如应用Massive MIMO技术的无线网络、应用分布式天线技术的无线网络等。
为了便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的方法的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,如图1中所示的5G系统中的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。因此,图1中的网络设备101和终端设备102至107构成一个通信系统。
可选地,终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信。如图中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备105与网络设备101通信。
应理解,图1示出了一个网络设备和多个终端设备,以及各通信设备之间的通信链路。可选地,该通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,例如更多或更少的终端设备。本申请对此不做限定。
上述各个通信设备,如图1中的网络设备101和终端设备102至107,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了便于理解本申请实施例,下面简单说明下行信号在发送之前在物理层的处理过程。应理解,下文所描述的对下行信号的处理过程可以由网络设备执行,也可以由配置于网络设备中的芯片执行。为了方便说明,下文统称为网络设备。
网络设备在物理信道可对码字(code word)进行处理。其中,码字可以是经过编码(例如包括信道编码)的编码比特。码字经过加扰(scrambling),生成加扰比特,加扰比特经过调制映射(modulation mapping),得到调制符号。调制符号经过层映射(layer mapping),被映射到多个层(layer),或者称传输层。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发射出去。
应理解,上文所描述的对下行信号的处理过程仅为示例性描述,不应对本申请构成任何限定。对下行信号的处理过程具体可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
还应理解,在本申请实施例中,网络设备可以先基于上行参考信号进行上行信道测量,得到信道信息,例如角度信息和时延信息,并对该信道信息进行处理以得到下行信号,例如基于该信道信息对下行信号进行预编码以得到预编码参考信号。
为便于理解本申请实施例,首先对本申请中涉及的几个术语做简单说明。
1、多输入多输出MIMO技术
MIMO技术是指在发送端设备和接收端设备分别使用多个发射天线和接收天线,通过采用多层并行传输的传输模式提供较高的数据传输速率,使信号通过发送端设备与接收端设备的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍地提高系统信道容量。
MIMO可以分为单用户多输入多输出(single-user MIMO,SU-MIMO)和多用户多输入多输出(multi-user MIMO,MU-MIMO)。Massive MIMO基于多用户波束成形的原理,在发送端设备布置几百根天线,对几十个目标接收机调制各自的波束,通过空间信号隔离,在同一频率资源上同时传输几十条信号。因此,Massive MIMO技术能够充分利用大规模天线配置带来的空间自由度,提升频谱效率。
2、信道状态信息CSI
CSI是发送端(例如终端设备)上报给接收端(例如网络设备)的信道状态信息,由信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)和信道矩阵秩指示(rand indication,RI)组成。
CQI指示信道质量,用于网络设备对确定调制编码方案提供参考;CQI反馈决定了编码和调制的方式,网络设备通过判断CQI的大小来实现自适应调制编码(adaptive modulation coding,AMC)。CQI值可以由信道条件、噪声和干扰估计计算得到。例如。 终端设备反馈的CQI值大了,网络设备选择高阶的调制方式,例如64正交幅度调制(64quadrature amplitude modulation,64QAM)。相反,反馈的CQI值小了,网络设备选择低阶的调制方式,例如正交相移键控(quadrature phase shift keying,QPSK),采用冗余度较大的编码方式(1/4编码),因此系统的吞吐量就小了。当只有一个码字的时候,终端设备只需要反馈一个CQI值;当采用2个码字的多输入多输出系统(multiple-input multiple-output,MIMO)系统,则需要反馈两个CQI值。
RI的大小描述了终端设备和网络设备之间空间信道的最大不相关的数据传送通道数目,用于指示网络设备可以同时对终端传输的数据层数,RI越大,表示同时传送的数据层数越多。空间信道的秩是不断变化的,RI的大小决定了层映射方式的选择空间秩的自适应也就是层映射的自适应。终端设备的秩标识是通过上行下行链路的控制信息来反馈的。
PMI用于指示预编码矩阵,网络设备可以根据PMI选择用于对数据进行预编码的预编码矩阵;PMI决定了层数据流与天线端口的对应关系。在基于码本的闭环空分复用和闭环发射分集模式下,层数目和天线端口数确定了,预编码的可选码本的集合就确认了。网络设备根据终端设备反馈的PMI,选择性能最优的预编码矩阵。PMI的选择往往与网络设备和终端之间的信道矩阵相关,PMI代表的预编矩阵与信道矩阵的匹配程度越高,网络设备根据该PMI选择预编码矩阵对数据进行预编码,能更好的抑制多用户干扰。
一般情况下,终端设备可以对网络设备发送的参考信号进行测量,获得CSI,并将CSI反馈给该网络设备,用于网络设备进行后续数据传输的链路自适应。
3、信道互易性
在某些通信模式中,如时分双工TDD模式下,上下行信道在相同的频域资源上不同的时域资源上传输信号。在相对较短的时间(如,信道传播的相干时间)之内,可以认为上、下行信道上的信号所经历的信道衰落是相同的。这就是上下行信道的互易性。基于上下行信道的互易性,网络设备可以根据上行参考信号,如探测参考信号(sounding reference signal,SRS),测量上行信道,并可以根据上行信道来估计下行信道,从而可以确定用于下行传输的预编码矩阵。
然而,在另一些通信模式中,如频分双工(frequency division duplexing,FDD)模式下,由于上下行信道的频带间隔远大于相干带宽,上下行信道不具有完整的互易性,利用上行信道来确定用于下行传输的预编码矩阵可能并不能够与下行信道相适配。但是,FDD模式下的上下行信道仍然具有部分的互易性,例如,角度的互易性和时延的互易性。换句话说,时延和角度在FDD模式下的上下行信道具有互易性。因此,角度和时延也可以称为互易性参数。
由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。时延可以是指无线信号在不同传输路径上的传输时间,由距离和速度决定,与无线信号的频域没有关系。信号在不同的传输路径上传输时,由于距离不同存在不同的传输时延。由于网络设备与终端设备之间的物理位置是固定的,因而上下行信道的多径分布在时延上是相同的。因此,时延在FDD模式下的上下行信道可以认为是相同的,或者说是互易的。即时延在FDD模式下的上下行信道具有互易性。
此外,角度可以是指信号经由无线信道到达接收天线的到达角(angle of arrival,AOA), 也可以是指通过发射天线发射信号的离开角(angle of departure,AOD)。在本申请实施例中,该角度可以是指上行信号到达网络设备的到达角,也可以是指网络设备发射下行信号的离开角。由于上下行信道在不同频率上的传输路径的互易,该上行参考信号的到达角和下行参考信号的离开角可以认为是相同的,或者说是互易的。因此,角度在FDD模式下的上下行信道具有互易性。
在本申请实施例中,每个角度可以通过一个角度向量来表征,可以将一个或多个角度向量加载到下行参考信号上,可以理解为,基于一个或多个角度向量对下行参考信号进行预编码。同样地,每个时延可通过一个时延向量来表征,也可以将一个或多个时延向量加载到下行参考信号上,可以理解为,基于一个或多个时延向量对下行参考信号进行预编码。因此,在本申请实施例中,一个角度向量可以表示一个角度,一个时延向量可以表示一个时延。每个角度向量可以与下文所述的一个时延向量组合得到一个角度时延对。换言之,一个角度时延对可以包括一个角度向量和一个时延向量。
4、预编码技术
发送设备(如网络设备)可以在已知信道状态的情况下,借助与信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备(如终端设备)消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如,信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
应理解,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如,信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
在本申请实施例中,网络设备可以根据已知信道预测未知信道的状态,进一步地可以借助与预测的信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配。
5、参考信号(reference signal,RS)和参考信号资源
参考信号也可以称为导频(pilot)、参考序列等。在本申请实施例中,参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS),探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS),相位跟踪信号(phase tracking reference signal,PTRS)、跟踪参考信号(tracking reference signal,TRS),同步信号广播信道块(synchronous signal/PBCH block,SSB)等。应理解,上文列举的参考信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
预编码参考信号可以是对参考信号进行预编码后得到的参考信号。其中,预编码具体可以包括波束赋形(beam forming)和/或相位旋转。其中,波束赋形例如可以通过基于一个或多个角度向量对下行参考信号进行预编码来实现,相位旋转例如可以通过将一个或多 个时延向量对下行参考信号进行预编码来实现。
在本申请实施例中,为方便区分和说明,将经过预编码,如波束赋形和/或相位旋转,得到的参考信号称为预编码参考信号;未经过预编码的参考信号简称为参考信号。
在本申请实施例中,基于一个或多个角度向量对下行参考信号进行预编码,也可以称为,将一个或多个角度向量加载到下行参考信号上,以实现波束赋形。基于一个或多个时延向量对下行参考信号进行预编码,也可以称为将一个或多个时延向量加载到下行参考信号上,以实现相位旋转。
参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等。发送端设备可基于参考信号资源发送参考信号,接收端设备可基于参考信号资源接收参考信号。一个参考信号资源可以包括一个或多个资源块(resource block,RB)。参考信号资源可以包括CSI-RS资源(CSI-RS resource)、SRS资源(SRS resource)。为了区分不同的参考信号资源,每个参考信号资源可对应于一个参考信号资源的标识,例如,CSI-RS资源标识(CSI-RS resource indicator,CRI)、SRS资源索引(SRS resource index,SRI)。
参考信号的资源索引可以为CSI-RS资源标识(CSI-RS resource indicator,CRI),SSB资源指示(SSB Resource Indicator,SSBRI)。SSBRI也可以称为SSB索引(SSB index)。应理解,上文列举仅为示例,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
应理解,上文中列举的参考信号以及相应的参考信号资源仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号来实现相同或相似功能的可能。
6、端口(port)
端口也可以称为天线端口(antenna port)。一个天线端口可以是一个物理天线,也可以是多个物理天线的加权组合。在本申请实施例中,端口可以包括发射天线端口、参考信号端口和接收端口。
发射天线端口可以理解为被接收设备所识别的虚拟天线。
可选地,端口可以是指发射天线端口。例如,每个发射天线端口的参考信号可以是未经过预编码的参考信号。其中,发射天线端口,可以是指实际的独立发送单元(transceiver unit,TxRU)。
可选地,端口也可以是指经过波束赋形后的端口。例如,每个端口的参考信号可以是基于一个角度向量对参考信号进行预编码后得到的预编码参考信号。可以理解的是,若对参考信号做了波束赋形,则端口数可以是指预编码参考信号的端口数。该预编码参考信号的端口数可以小于发射天线端口数。
可选地,端口也可以是指经过相位旋转后的端口,例如,每个端口的参考信号可以是基于一个时延向量对参考信号进行预编码,且通过一个发射天线端口发送的预编码参考信号。该端口也可以称为预编码参考信号的端口。
可选地,端口也可以是指经过波束赋形和相位旋转后的端口。例如,每个端口的参考信号可以是基于一个角度向量和一个时延向量对参考信号进行预编码后得到的预编码参考信号。该端口也可以称为预编码参考信号的端口。
每个端口的参考信号可以通过一个或者多个频域单元传输。
在下文示出的实施例中,在涉及发射天线端口时,可以是指未进行空域预编码的端口数。即实际的独立发送单元数。在涉及端口时,在不同的实施例中,可以是指发射天线端口,也可以是指预编码参考信号的端口。端口所表达的具体含义可以根据具体实施例来确定。下文中为方便区分,将预编码参考信号的端口称为参考信号端口。
接收天线端口可以理解为接收设备的接收天线。例如在下行传输中,接收端口可以是指终端设备的接收天线。
7、角度向量
角度向量也可以称为空域向量、波束(beam)向量等。角度向量可以理解为用于对参考信号进行波束赋形(beam forming)的预编码向量。通过波束赋形,可以使得发射出来的参考信号具有一定的空间指向性。因此,基于角度向量对参考信号进行预编码的过程也可以视为是空间域(或空域)预编码的过程。
角度向量可以是长度为T的向量。其中,T可以表示发射天线端口数,T>1且为整数。对于一个长度为T的角度向量来说,它包含了T个空域权值(或权值),该T个权值可用于对T个发射天线端口进行加权,以使得该T个发射天线端口所发射出来的参考信号具有一定的空间指向性,从而实现波束赋形。
基于不同的角度向量对参考信号进行预编码,就相当于基于不同的角度向量对发射天线端口进行波束赋形,以使得所发射出来的参考信号具有不同的空间指向性。
可选地,角度向量是离散傅里叶变换(discrete fourier transform,DFT)向量。DFT向量可以是指DFT矩阵中的向量。
可选地,角度向量是DFT向量的共轭转置向量。DFT共轭转置向量可以是指DFT矩阵的共轭转置矩阵中的列向量。
可选地,角度向量是过采样DFT向量。过采样DFT向量可以是指过采样DFT矩阵中的向量。
在一种可能的设计中,该角度向量例如可以是第三代合作伙伴(3rd generation partnership project,3GPP)技术规范(technical specification,TS)38.214版本15(release 15,R15)或R16中类型II(type II)码本中定义的二维(2 dimensions,2D)-DFT向量v l,m。换句话说,角度向量可以是2D-DFT向量或过采样2D-DFT向量。
应理解,上文对角度向量的具体形式的举例仅为示例,不应对本申请构成任何限定。例如,时延向量也可以取自DFT矩阵。本申请对于时延向量的具体形式不作限定。
还应理解,角度向量是本申请提出的用于表示角度的一种形式。角度向量仅为便于与时延向量区分而命名,而不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。
若将真实的下行信道记作V,则V可以表示为维度为R×T的矩阵。其中R为接收天线端口数,T为发射天线端口数;R、T均为正整数。在下行传输中,基于角度向量对参考信号进行预编码后得到的预编码后的参考信号可以通过下行信道传输至终端设备,因此,终端设备根据接收到的预编码参考信号测量的信道等效于加载了角度向量的信道。例如,将角度向量a k加载到下行信道V,可以表示为Va k。换言之,将角度向量加载到参考信号上,也即,将角度向量加载到信道上。
8、时延向量
时延向量也可以称为频域向量。时延向量是用于表示信道在频域的变化规律的向量。如前所述,多径时延导致频率选择性衰落。由傅里叶变换可知,信号在时域上的时间延迟,可以等效到频域的相位渐变。
由于信道在各频域单元的相位变化与时延相关,故可将信道在各频域单元的相位的变化规律通过时延向量来表示。换句话说,该时延向量可用于表示信道的时延特性。
时延向量可以是长度为N的向量。其中,N可以表示用于承载参考信号的频域单元数,N>1且为整数。对于一个长度为N的时延向量来说,它包含了N个频域权值(或简称,权值),该N个权值可分别用于对N个频域单元进行相位旋转。通过对该N个频域单元上承载的参考信号进行预编码,可以对多径时延造成的频选特性进行预补偿。因此,基于时延向量对参考信号进行预编码的过程可以视为频域预编码的过程。
基于不同的时延向量对参考信号进行预编码,就相当于基于不同的时延向量对信道各个频域单元进行相位旋转。且,同一个频域单元相位旋转的角度可以不同。
可选地,时延向量是DFT向量。DFT向量可以是DFT矩阵中的向量。例如,时延向量可以表示为b k
Figure PCTCN2022083305-appb-000013
其中,k=1,2,……,K;K可以表示时延向量的个数;f 1,f 2,……,f N分别表示第1个、第2个至第N个频域单元的载波频率。
可选地,时延向量是DFT向量的共轭转置向量。DFT共轭转置向量可以是指DFT矩阵的共轭转置矩阵中的列向量。
可选地,时延向量是过采样DFT向量。过采样DFT向量可以是指过采样DFT矩阵中的向量。
应理解,上文对时延向量的具体形式的举例仅为示例,不应对本申请构成任何限定。例如,时延向量也可以取自DFT矩阵。本申请对于时延向量的具体形式不作限定。
还应理解,时延向量是本申请提出的用于表示时延的一种形式。时延向量仅为便于与角度向量区分而命名,而不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。
在下行传输中,基于时延向量对参考信号进行预编码后,预编码后的参考信号可以通过下行信道传输至终端设备,因此,终端设备根据接收到的预编码参考信号测量的信道等效于加载了时延向量的信道。换言之,将时延向量加载到参考信号上,也即,将时延向量加载到信道上。具体来说,该时延向量中的多个权值分别加载到信道的多个频域单元上,每个权值加载到一个频域单元。
以频域单元为资源块(resource block,RB)为例,若基于长度为N的时延向量对参考信号进行预编码,则可以将该时延向量中的N个权值分别加载到承载于N个RB的参考信号上,也就是将时延向量中的N个元素分别加载到N个RB上。将时延向量b k中的第n个元素加载到第n个RB上的信道V n上,例如可以表示为
Figure PCTCN2022083305-appb-000014
应理解,基于时延向量对参考信号进行预编码,与空域预编码的处理方式相似,只是将空域向量(或者说,角度向量)换成了时延向量。
需要说明的是,基于时延向量对参考信号进行频域预编码可以是在资源映射之前执行,也可以是在资源映射之后执行,本申请对此不作限定。
9、角度时延对
角度时延对可以是一个角度向量和一个时延向量的组合。每个角度时延对可以包括一个角度向量和一个时延向量。任意两个角度时延对中所包含的角度向量和/或时延向量不同。换句话说,每个角度时延对可以由一个角度向量和一个时延向量唯一确定。
应理解,角度时延对可以理解为由一个角度向量和一个时延向量确定的空频基本单位的表现形式,但它并不一定是唯一的表现形式。例如,还可以表现为下文所述的空频分量矩阵、空频分量向量等。
10、频域单元
频域单元是频域资源的单位,用于表示不同的频域资源粒度。频域单元例如可以包括但不限于,子带(subband)、资源块(RB)、资源块组(resource block group,RBG)、预编码资源块组(precoding resource block group,PRG)等。
在本申请实施例中,网络设备可以基于终端设备的反馈确定与各频域单元对应的预编码矩阵。
11、导频密度:每个端口的参考信号,如本申请中的预编码参考信号,占用的资源粒子(resource element,RE)与所占带宽的总RB数的比值。例如,某一端口的参考信号的导频密度为1,可以表示,这个端口的参考信号所占的带宽中,每个RB都有一个RE用于承载这个端口的参考信号;又例如,某一端口的参考信号的导频密度为0.5,可以表示,这个端口的参考信号所占的带宽中,每两个RB中有一个RB中包括承载这个端口的参考信号的RE,或者说,用于承载这个端口的参考信号的相邻RB之间隔了一个RB。
12、空频分量矩阵
通过一个角度时延对可以确定一个空频分量矩阵。或者说,通过一个角度向量和一个时延向量可唯一地确定一个空频分量矩阵。一个空频分量矩阵和一个角度时延对之间可以相互转换。
一个空频分量矩阵例如可以由一个角度向量和一个时延向量的共轭转置的乘积确定,如为a(θ k)×b(τ l) H,其维度可以是T×N。其中,T可以表示发射天线端口数,T>1且为整数;N可以表示用于承载参考信号的频域单元数,N>1且为整数。
应理解,空频分量矩阵可以理解为由一个角度向量和一个时延向量确定的空频基本单位的另一种表现形式。空频基本单位例如还可以表现为空频分量向量,该空频分量向量例如由一个角度向量和一个时延向量的克罗内克(Kronecker)积确定。
还应理解,本申请对于空频基本单位的具体形式不作限定。本领域的技术人员基于相同的构思,由一个角度向量和一个时延向量确定的各种可能的形式均应落入本申请保护的范围内。此外,如果对角度向量和时延向量定义与上文列举不同的形式,空频分量矩阵与角度向量、时延向量的运算关系、空频分量向量与角度向量、时延向量的运算关系也可能不同。本申请对于空频分量矩阵与角度向量、时延向量间的运算关系,以及频分量向量与角度向量、时延向量间的运算关系不作限定。
13、空频矩阵
在本申请实施例中,空频矩阵是用于确定预编码矩阵的一个中间量。空频矩阵可以基于接收端口确定,也可以基于传输层确定。如前所述,空频矩阵可以由一个或多个角度时延对的加权和确定,故空频矩阵的维度也可以是N×T。
若空频矩阵基于接收端口确定,则该空频矩阵可以称为与接收端口对应的空频矩阵。与接收端口对应的空频矩阵可用于构建各频域单元的下行信道矩阵,进而可确定与各频域单元对应的预编码矩阵。与某一频域单元对应的信道矩阵例如可以是由各个接收端口对应的空频矩阵中对应于同一频域单元的列向量构造而成的矩阵的共轭转置。如,将各接收端口对应的空频矩阵中的第n个列向量抽取出来,按照接收端口的顺序由左向右排布可得到维度为T×R的矩阵,R表示接收端口数,R≥1且为整数。该矩阵经过共轭转置后可以得到第n个频域单元的信道矩阵V (n)。下文中会详细说明信道矩阵与空频矩阵的关系,这里暂且省略对二者关系的详细说明。
若空频矩阵基于传输层确定,则该空频矩阵可以称为与与传输层对应的空频矩阵。与传输层对应的空频矩阵可直接用于确定与各频域单元对应的预编码矩阵。与某一频域单元对应的预编码矩阵例如可以是由各个传输层对应的空频矩阵中对应于同一频域单元的列向量构造而成。如,将各传输层对应的空频矩阵中的第n个列向量抽取出来,按照传输层的顺序由左到右排布可得到维度为T×Z的矩阵,Z表示传输层数,Z≥1且为整数。该矩阵可以作为第n个频域单元的预编码矩阵W (n)
需要说明的是,由本申请实施例提供的信道测量方法所确定的预编码矩阵可以是直接用于下行数据传输的预编码矩阵;也可以经过一些波束成形方法,例如包括迫零(zero forcing,ZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。下文中所涉及的预编码矩阵均可以是指基于本申请提供的信道测量方法确定的预编码矩阵。
对空频矩阵与下行信道矩阵、预编码矩阵的关系做简单说明。
空频矩阵是基于信道的频域连续性而提出的一种可用于构建预编码矩阵的中间量。空频矩阵H可满足:H=SCF H。其中,S表示一个或多个(例如,K个,K为正整数)角度向量构造的矩阵,例如S=[a(θ 1) a(θ 2)…a(θ K)],F表示一个或多个(例如,L个,L为正整数)时延向量构造的矩阵,例如F=[b(τ 1) b(τ 2)…b(τ L)],C表示与K个角度向量中的每个角度向量和L个时延向量中的每个时延向量对应的加权系数所构成的系数矩阵。C中的每一个元素可以表示所对应的一个角度向量对的加权系数。
在FDD模式下,由于时延和角度的上下行信道互易性,由上行信道测量得到的空频矩阵H UL可以表示为H UL=SC ULF H,由下行信道测量得到的空频矩阵H DL可以表示为H DL=SC DLF H。因此,在本申请实施例中,通过下行信道测量来确定和反馈下行信道对应的系数矩阵C DL,便可以确定与下行信道相适配的预编码矩阵。
其中,S对应空域信息,物理上对应网络设备的到达角/出发角。S可以表示一个或多个角度向量构造的矩阵。F对应频域信息,物理上对应到达网络设备的多径信号的多径时延。F可以表示一个或多个时延向量构造的矩阵。C可以表示对应于一个角度向量和一个时延向量的加权系数。C UL表示上行信道对应的系数矩阵。上角标H表示共轭转置,如, F H表示矩阵(或向量)F的共轭转置。
如前所述,空频分量矩阵被定义为由a(θ k)×b(τ l) H确定,由此可确定空频矩阵H DL的维度为:发射天线端口数×频域单元数。如,下行信道对应的空频矩阵的维度为T×N。在下文实施例中,在没有特别说明的情况下,空频矩阵均是指上文所述的维度为T×N的矩阵H DL
然而这并不一定是由真实的信道确定的空频矩阵。在通常情况下,信道矩阵的维度被定义为:接收端口数×发射端口数,如,下行信道的维度为R×T。由信道矩阵确定的空频矩阵的维度为N×T,与上述空频矩阵H DL的维度T×N正好相反。因此,本申请实施例中,真实的信道可以是由上述空频矩阵H DL确定的信道矩阵的共轭转置。换言之,由空频矩阵H DL确定的下行信道矩阵可以是真实的信道的共轭转置。
进一步地,由空频矩阵H DL可以确定预编码矩阵。其中,第n个频域单元的预编码矩阵可以是各传输层对应的空频矩阵中的第n个列向量构建。
以对信道矩阵做奇异值分解(singular value decomposition,SVD)为例,由信道矩阵V做SVD可以得到预编码矩阵的共轭转置。而若将信道矩阵做共轭转置后再进行SVD,即,对V H做SVD,则正好可以得到预编码矩阵。因此,本申请实施例中由真实信道的共轭转置所确定的空频矩阵H DL可以直接确定得到与各频域单元对应的预编码矩阵。
再结合上文公式H UL=SC ULF H来理解空频矩阵与下行信道矩阵的关系。
对H DL=SC DLF H变形可以得到S HH DL=C DLF H,进一步变形可以得到(H DL HS) H=C DLF H,由此可得到系数矩阵C DL=(H DL HS) HF。其中,H DL H是由真实信道确定的空频矩阵;H DL HS是经过空域预编码后的真实信道。该系数矩阵中C DL的各元素可以分别由(H DL HS) H中的一行与F中的一列相乘确定。换句话说,矩阵系数C DL中的各元素可以由真实信道H DL HS的共轭转置(H DL HS )H中的一行与F中的一列相乘得到,或者说,是由真实信道H DL HS的一列的共轭转置与F的一列相乘得到。
因此,在本申请实施例中,基于终端设备反馈的各角度时延对的加权系数而确定的空频矩阵H DL可以是由真实信道的共轭转置得到。反之,本申请实施例中的空频矩阵也可以是由真实的信道V的共轭转置(即,V H)得到。
应理解,真实的信道与空频矩阵H DL的关系并不是固定不变的。对空频矩阵以及空频分量矩阵的不同定义,可能会使得真实的信道与空频矩阵H DL之间的关系发生变化。例如,空频矩阵H DL可以由真实的信道的共轭转置得到,也可以由真实的信道的转置得到。
当对空频矩阵以及空频分量矩阵的定义不同时,在加载时延和角度时网络设备所执行的操作也有所不同,终端设备在进行信道测量并反馈时所执行的操作也相应地发生变化。但这只是终端设备和网络设备的实现行为,不应对本申请构成任何限定。本申请实施例仅为便于理解,示出了空频矩阵由真实的信道的共轭转置得到的情况。本申请对于信道矩阵的定义、空频矩阵的维度及其定义以及二者间的转换关系不作限定。同理,本申请对于空频矩阵与预编码矩阵间的转换关系也不作限定。
为了便于理解本申请实施例,做出以下几点说明。
1、为方便理解,下面对本申请中涉及到的主要参数做简单说明:
P:网络设备对参考信号做预编码所使用的角度时延对的数量,也就是网络设备通过一个极化方向的发射天线发送的预编码参考信号的端口数,P为正整数;
Z:传输层数,Z为正整数;
N:用于承载参考信号的频域单元数,N为正整数;
K:角度时延对的数量,K>1且为整数;
J:发射天线的极化方向数,J为正整数;
F:频域权值矩阵,在本申请实施例中可以表示为维度为N×K的矩阵;
S:空域权值矩阵,在本申请实施例中可以表示为维度为T×K的矩阵;
C:系数矩阵,在本申请实施例中可以表示为维度为K×K的对角阵。
2、在本申请实施例中,为便于描述,在涉及编号时,可以从1开始连续编号。例如,N个频域单元可以包括第1个频域单元至第N个频域单元,K个角度时延对可以包括第1个角度时延对至第K个角度时延对,P个参考信号端口可以包括第1个参考信号端口至第P个参考信号端口等。当然,具体实现时不限于此。比如也可以从0始连续编号。例如,N个频域单元可以包括第0个频域单元至第N-1个频域单元,K个角度时延对可以包括第0个角度时延对至第K-1角度时延对,P个参考信号端口可以包括第0个参考信号端口至第P-1参考信号端口等,为了简洁,这里不一一列举。
应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
3、在本申请中,多处设计矩阵和向量的变换。为便于理解,这里做同一说明。上角标T表示转置,如A T表示矩阵(或向量)A的转置;上角标*表示共轭,如,A *表示矩阵(或向量)A的共轭;上角标H表示共轭转置,如,A H表示矩阵(或向量)A的共轭转置。后文中为了简洁,省略对相同或相似情况的说明。
4、在下文示出的实施例中,以角度向量和时延向量均为列向量为例来说明本申请提供的实施例,但这不应对本申请构成任何限定。基于相同的构思,本领域的技术人员还可以想到其他更多可能的表现方式。
5、在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中,该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例 对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如行向量可以表现为列向量,一个矩阵可以通过该矩阵的转置矩阵来表示,一个矩阵也可以表现为向量或者数组的形式,该向量或者数组可以由该矩阵的各个行向量或者列向量相互连接而成等。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同,本申请对具体的发送方法不作限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于:无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制(radio resource control,RRC)信令;MAC层信令包括:MAC控制元素(control element,CE);物理层信令包括:下行控制信息(downlink control information,DCI)等。
6、本申请对很多特性(例如,哈达马(Hadamard)积、克罗内克(Kronecker)积、信道状态信息CSI、RB、角度以及时延等)所列出的定义仅仅用于以举例方式来解释该特性的功能,其详细内容可以参考现有技术。
7、在下文示出的实施例中第一、第二以及各种数字编号指示为了描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息等。
8、在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
9、本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。该一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。该一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
10、本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
11、“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
12、在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定 时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
在5G通信系统中,大规模多天线技术对系统的频谱效率起到至关重要的作用。采用MIMO技术时,网络设备向终端设备发送数据时,需要进行调制编码及信号预编码。网络设备向终端设备如何发送数据,需要依靠终端设备向网络设备反馈的信道状态信息CSI,其对系统的性能作用巨大。
在TDD系统中,由于上行信道和下行信道使用相同的带宽,上行信道和下行信道具有互易性,网络设备可以利用上行信道和下行信道的互易性,通过上行信道获取下行信道的CSI,进而进行信号预编码。
在FDD系统中,网络设备可以利用FDD部分互易性,将具有互易性的信息发送到导频,终端设备只需要反馈没有互易性的信息(如,除了角度和时延以外的信息)。网络设备通过上行信道获取的具有互易性的信息,结合终端设备反馈的没有互易性的信息,就能够获取下行信道的完整CSI。
网络设备可以利用上行信道信息估计部分先验信息,包括上行信道的角度和时延信息。然后将得到的角度或者时延加载到下行CSI-RS导频上,并通知终端设备去测量并反馈网络设备需要获取的补充信息。其中每个CSI-RS端口加载一个角度时延对信息。终端设备只需将接收到的各CSI-RS端口的等效信道(导频信号)进行全带累加,即可获得下行信道在各端口上的对应角度时延对的复系数为:
Figure PCTCN2022083305-appb-000015
其中,
Figure PCTCN2022083305-appb-000016
为端口p在子带s上的信道估计结果。然后,终端设备将计算得到的各端口的复系数矩阵上报至网络设备,网络设备可以根据通过上行导频测得的角度和时延信息,以及终端设备反馈的补充信息来重构下行信道或者预编码。即,基站根据互易的空域信息矩阵S和频域信息矩阵F完成下行信道的重构。其中,在上述CSI获取方案中,每个CSI-RS导频端口只能加载一个角度时延对信息,即当基站侧配置P CSI-RS个端口的CSI-RS资源时,仅可加载P CSI-RS个角度时延对信息。图2示出了网络设备基于FDD部分互异性的CSI获取方案是流程示意图,具体实现过程已经在上述阐述,为了简洁,此处不再过多赘述。
应理解,上述基于FDD部分互易性的CSI获取方案的码本可表示为:
Figure PCTCN2022083305-appb-000017
其中,
Figure PCTCN2022083305-appb-000018
为端口选择矩阵,W 1的每一列仅有一个值为1的非零元素,其表示从P CSI-RS个端口中选择2  0个端口,其中L 0为一个极化方向选择的端口的个数。P CSI-RS和L 0可以由基站通过RRC、MAC CE、DCI信令中的一种或几种进行配置,也可以由协议直接约定好,本申请对此不作具体限定。
Figure PCTCN2022083305-appb-000019
为UE选择的2L 0个CSI-RS端口对应的叠加系数矩阵,
Figure PCTCN2022083305-appb-000020
为频域基底矩阵,N f为频域RB资源数或者子带数,W f可指示为DFT矩阵的某一列或某几列。
在Massive MIMO中,可以通过空分复用对某个用户进行多流(layer)传输。FDD系统中,为了实现多流传输,需要用户反馈多个layer对应的信道状态信息CSI。示例性的,用户根据基站指示和下行信道质量,确定最合适的传输流数(Rank)。例如,当前最合适传输流数为2流,分别为layer 1和layer 2;用户需要分别计算layer 1和layer 2对应的 PMI,并计算当前PMI下对应的CQI等。
通过实测发现,利用空分复用对某个用户实现多layer传输时,各个layer之间功率差异大。在TDD系统中,可以利用完全上下行信道的互易性,获得layer间功率差异,实现流间功率的分配。然而在FDD系统中,只有角度和时延互易,且基于目前CSI测量、反馈方法,UE对各个layer独立归一化,并只反馈一个CQI。换句话说,UE将每个layer按照各自最大值做归一化并上报,基站收到的各个layer的功率就是相等且无差异的。此时,基站无法获知流间功率差异,不能进行流layer间的功率分配,进而获得增益。
示例性的,layer1的最大值是2,layer2的最大值是0.2,那么各自进行归一化后的值均为1,UE分别将layer1和layer2归一化的值上报,基站收到的layer1和layer2的功率值一样,就无法得知各个流准确的值,也就无法进行功率分配。
另外,基于部分互易性的CSI获取方案在用于高Rank反馈时,还需要获取各个layer对应的角度、时延信息,而实际中各个layer的角度和时延信息会有差异。若基站只发送各个layer公共的角度、时延信息给用户(layer common),则会影响最终PMI的精度,进而影响系统性能。如果为了保证信息的全面不损失,基站可以将各个layer的角度时延信息合并,一起发送给UE,此时,UE因为无法获知哪些角度、时延信息是layer1和layer2特有的,只能在layer1和layer2中分别搜索并计算,不可避免地会增加计算的额外开销。因此,为了保证各layer的PMI精度以及减少计算复杂度,基站应该发送layer各自具有的角度、时延信息给用户(layer specific)。然而,目前的技术中,UE无法获知哪些角度、时延信息是layer specific的。因此,对于这些特定的信息,UE也会像layer common那样,每个layer都搜索、计算一遍,这无疑增加了UE计算的复杂度。
有鉴于此,本申请主要针对现有CSI获取方案用于高Rank反馈时,遇到的无法获知layer间功率差异,以及无法支持layer specific角度、时延信息的问题,提供了一种可用于高Rank的CSI测量反馈方法,以实现layer间功率差异的CSI上报,且支持layer specific角度、时延信息的分别处理,能够从而实现多流传输,提升系统传输性能。
下面将结合附图详细说明本申请实施例提供的通信方法。
应理解,本申请实施例提供的方法可以应用于通过多天线技术通信的系统,例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备。网络设备和终端设备之间可通过多天线技术通信。
应理解,下文仅为便于理解和说明,以终端设备与网络设备之间的交互为例详细说明本申请实施例提供的方法。但这不应对本申请提供的方法的执行主体构成任何限定。例如,下文实施例示出的终端设备可以替换为配置于终端设备中的部件(如电路、芯片、芯片系统或其他能够调用程序并执行程序的功能模块)等。下文实施例示出的网络设备也可以替换为配置于网络设备中的部件(如电路、芯片、芯片系统或其他能够调用程序并执行程序的功能模块)等。只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法实现信道测量即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的信道测量方法。
在一种实现方式中,网络设备可以基于预先确定的角度向量和时延向量,对下行参考信号进行预编码,以便于终端设备基于接收到的预编码参考信号估计并反馈与多个角度时延对对应的多个加权系数。网络设备可以基于多个角度时延对以及终端设备反馈的多个加权系数,确定与下行信道相适配的预编码矩阵。
在另一种实现方式中,网络设备可以基于预先确定的时延向量,对下行参考信号进行预编码,以便于终端设备基于接收到的预编码参考信号估计并反馈与多个天线时延对对应的多个加权系数。网络设备可以基于多个天线时延对以及终端设备反馈的多个加权系数,确定与下行信道相适配的预编码矩阵。
为便于理解,下文示出的实施例首先从一个极化方向的发射天线发送的预编码参考信号为例,详细说明终端设备基于一个接收天线上接收到的预编码参考信号进行信道测量和反馈的具体过程。然后,由一个极化方向的发射天线扩展到多个极化方向的发射天线,由一个接收天线扩展到多个接收天线,详细说明了终端设备向网络设备反馈P个参考信号端口以及对应的P个加权系数的具体过程。然后,将基于接收天线的反馈转换为基于传输层的反馈,进一步说明了终端设备基于传输层向网络设备反馈P个参考信号端口以及对应的P个加权系数的具体过程。最后,分别针对基于接收天线的反馈和接收传输层的反馈这两种情况,详细说明网络设备确定预编码矩阵的具体过程。
应理解,当终端设备基于一个极化方向来说明本申请实施例时,该极化方向可以是网络设备所配置的发射天线的一个或多个极化方向中的任意一个极化方向。换句话说,对于任意一个极化方向的发射天线所发射的预编码参考信号,终端设备可以基于本申请实施例提供的方法进行信道测量,网络设备也可以基于本申请实施例提供的方法确定预编码矩阵。
还应理解,当终端设备基于一个接收天线来说明本申请实施例时,该接收天线可以是终端设备所配置的一个或多个接收天线中的任意一个接收天线。换句话说,对于任意一个接收天线所接收到的预编码参考信号,终端设备可以基于本申请实施例提供的方法进行信道测量,网络设备也可以基于本申请实施例提供的方法确定预编码矩阵。
还应理解,本申请对于网络设备所配置的发射天线的极化方向数J并不作限定,例如可以为一个,即单极化方向;也可以为多个,如双极化方向。本申请对于终端设备所配置的接收天线数也不做限定。例如可以为一个或多个。
下面图3至图6是针对目前网络设备无法获知多流layer间功率差异的问题,提出的用于高Rank反馈量化的layer间联合反馈量化方法。首先对Layer间联合PMI量化反馈的原理进行概述。
为了实现多流传输,需要终端设备反馈多个layer对应的CSI。换句话说,终端设备在测量、计算、量化、反馈多流的PMI时,需要考虑layer间功率差异,并进行layer间联合PMI量化反馈。示例性的,终端设备在进行Rank4量化反馈时,假设在归一化前,layer1、layer2、layer3、layer4对应的PMI分别为PMI1、PMI2、PMI3、PMI4,其对应的特征值分别为A1、A2、A3、A4。那么,终端设备需要先将特征值乘到相应的PMI上,分别得到A1*PMI1、A2*PMI2、A3*PMI3、A4*PMI4;然后将乘以特征值之后的PMI做联合量化,例如:
Figure PCTCN2022083305-appb-000021
其中,PMI1 i为PMI1模值中最大的元素。需要说明的是,这里各个layer对应的线性叠加系数是按照layer1最大的线性系数叠加系数进行归一的。对于选择哪个layer作为归一化的基准,本申请对此不作限定。即在进行多流layer间联合量化反馈时,同样可以选择layer2进行线性叠加系数的归一,此时PMI联合量化的分母就是PMI2模值中最大的元素PMI2 i
通过上述流程,终端设备利用layer间联合PMI量化和反馈,可以实现layer间功率差异上报。然后,基于终端设备上报的layer间功率差异,网络设备可以对流间功率进行控制,以提升系统性能。通过实验对比可以发现,基于layer间功率差异进行功率调整,相比较不进行功率调整,系统性能增益有所提升。
图3是本申请实施例提供的一种信道测量方法的示意性流程图,提出一种Layer间联合PMI量化反馈方法300,具体步骤包括:
S310,终端设备生成第一指示信息。
其中,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数。
应理解,在上述实现方式中,联合归一化可以是指以某一加权系数集合中模值最大的加权系数为基准,对该M个加权系数集合中的所有加权系数归一化;或者也可以是指以某一加权系数集合中模值最大的加权系数为基准,对其他M-1个加权系数集合中,各加权系数集合的模值最大的加权系数归一化,再分别以该M个加权系数集合中模值最大的加权系数为基准,对各自加权系数集合中的所有加权系数归一化。简言之,联合归一化就是将该M个加权系数集合联合以其中某一个加权系数集合为基准进行量化归一。
需要说明的是,本申请实施例的联合归一化中,基准加权系数可以是其对应的加权系数集合中模值最大的加权系数,也可以是其对应的加权系数集合中任一加权系数,可以是根据预设规则选取出来的加权系数。
还应理解,本申请的量化信息既可以是具体的量化后的数值(可称为“量化的值”或者“量化值”),例如幅度、相位的量化值,也可以是用于指示量化后的数值的指示信息(如标识、索引等)。
示例性的,以第一层对应的第一加权系数集合中的模值最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报该M个加权系数集合中所有的加权系数的量化的值(或量化的值的指示信息),包括第一加权系数集合中的模值最大加权系数C 12的量化的值(或量化的值的指示信息)等。
可选地,终端设备也可以上报某一加权系数量化后的索引,例如该加权系数的位置信息或标识信息等;示例性的,以第一层对应的第一加权系数集合中的模值最大加权系数C 12为联合量化的基准,对该M个层中所有的加权系数进行归一化。本申请的基准可以是模值最大的加权系数,也可以是加权系数集合中任一加权系数。那么,终端设备最后可以上报第一加权系数集合中的模值最大加权系数C 12的位置信息或索引,并上报除该模值最大加权系数C 12外的所有加权系数的量化的值(或者用于指示量化值的索引信息)等。
可选地,通过协议预定义,即网络设备与终端设备提前规定确定以其中某一加权系数 集合中的某一加权系数为量化基准,例如,以第一层对应的第一加权系数集合中的加权系数C 11为联合量化的基准,那么在量化归一后,终端设备无需再一次上报该加权系数C 11的量化信息和/或索引等,该实现方式可以降低信令开销,减少终端的功耗。
需要说明的是,本申请对终端设备上报的量化信息的数量和上报不作具体限定,可以是该M个层中的一个或多个。
在一种可能的实现方式中,该M个加权系数集合中的每个加权系数集合包括多个加权系数,根据第一加权系数对该M个加权系数集合中的所有加权系数进行归一化,获取该联合归一化的M个加权系数集合的量化信息,该第一加权系数是第L个加权系数集合中的加权系数,该第L个加权系数集合是该M个加权系数集合中的任意一个,L为正整数;发送第一消息,该第一消息用于指示该第一加权系数。
可选地,该第一加权系数是该第L个加权系数集合中模值最大的加权系数。
示例性的,各layer对应线性叠加系数按照layer1模值最大线性叠加系数C 12归一化。
需要说明的是,该第L个加权系数集合是终端设备确定的;或者该第L个加权系数集合是协议预定义的。
在另一种可能的实现方式中,根据第二加权系数对M-1个第三加权系数进行第一归一化,该第二加权系数是第U个加权系数集合中的加权系数,该第U个加权系数集合与第u层对应,该第三加权系数是该M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第u层外的M-1个层一一对应,U和u均为正整数,第u层属于M个层;根据第二加权系数对该第U个加权系数集合中的所有加权系数进行第二归一化,以及根据第三加权系数对其对应的加权系数集合中的所有加权系数进行第三归一化;根据该第一归一化、该第二归一化和该第三归一化,获取该联合归一化的M个加权系数集合的量化信息;终端设备向网络设备发送第二消息,对应的,网络设备接收来自终端设备的第二消息,该第二消息用于指示该第二加权系数和该M-1个第三加权系数。
可选地,该第二加权系数是该第U个加权系数集合中模值最大的加权系数,和/或该第三加权系数是该M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
示例性的,各layer对应模值最大线性叠加系数按照layer1模值最大线性叠加系数归一化;且各layer其他线性叠加系数按照对应layer模值最大的线性叠加系数归一化。
需要说明的是,第U个加权系数集合是终端设备确定的;或者该第U个加权系数集合是协议预定义的。
在又一种可能的实现方式中,根据第四加权系数对M-1个第五加权系数进行第四归一化,该第四加权系数是第X个加权系数集合中的加权系数,该第X个加权系数集合与第x层对应,该第五加权系数是该M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,该M-1个加权系数集合与该M个层中除第x层外的M-1个层一一对应,X和x均为正整数,第x层属于M个层;根据该第四加权系数对该第X个加权系数集合中的所有加权系数进行第五归一化;根据该第四加权系数和该第五加权系数分别对该第五加权系数对应的加权系数集合中的所有加权系数进行第六归一化和第七归一化;根据该第四归一化、该第五归一化、该第六归一化和该第七归一 化,获取该联合归一化的M个加权系数集合的量化信息;终端设备向网络设备发送第三消息,对应的,网络设备接收来自终端设备的第三消息,该第三消息用于指示该第四加权系数和该M-1个第五加权系数。
可选地,该第四加权系数是该第X个加权系数集合中模值最大的加权系数,和/或该第五加权系数是该M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
示例性的,各layer对应模值最大线性叠加系数按照layer1模值最大线性叠加系数归一化;且各layer其他线性叠加系数分别按照layer1和各layer对应的模值最大线性叠加系数归一化。
需要说明的是,第X个加权系数集合是终端设备确定的;或者该第X个加权系数集合是协议预定义的。
S320,终端设备向网络设备发送该第一指示信息;对应的,网络设备接收来自终端设备的第一指示信息。
示例性的,UE上报layer1模值最大线性叠加系数index,以及其他所有线性叠加系数归一化后幅度、相位的量化值。
示例性的,UE上报layer1模值最大线性叠加系数index,除layer1外其他layer模值最大线性叠加系数及其对应index,以及其他所有线性叠加系数归一化后幅度、相位的量化值。
S330,网络设备根据该第一指示信息确定该M个层间的功率差异。
在本申请实施例中,所涉及的指示信息、配置信息等承载方式可以是但不限于:无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制RRC信令;MAC层信令包括:MAC控制元素CE;物理层信令包括:下行控制信息DCI等。
例如,网络设备向终端设备下发第一消息列表和/或第二消息列表,该第一消息列表和/或第二消息列表可以通过UE-specific信令下发,例如通过RRC信令配置,MAC-CE信令激活,并通过下发DCI向终端设备指示该第一消息列表,具体实现方式本申请对此不作限定。
实施例一:
图4是适用于本申请实施例的layer间联合PMI量化反馈方法的一例示意图,示例性的,假设当前最合适的传输流数为2流,分别为layer1和layer2。如图4所示,下述公式(1)、(2)分别表示layer1和layer2对应的线性叠加系数矩阵,
C 1=[c 11c 12...c 1K];  (1)
C 2=[c 21c 22...c 2K];  (2)
其中,该矩阵C 1和C 2各有K列。
需要说明的是,layer1和layer2对应的线性叠加系数矩阵的列的数量可以相同,或者不相同,本申请对此不作限定。
示例性的,协议规定layer1和layer2对应的线性叠加系数联合归一化后再上报;然后,UE将layer1和layer2对应的所有线性叠加系数按照layer1的模值最大线性叠加系数归一化。例如,确定layer1对应的矩阵C 1(即,第L个加权系数的一例)中模值最大的元素 为C 12(即,第一加权系数的一例),将layer1和layer2对应的线性叠加系数矩阵C 1和C 2中的所有系数除以C 12进行量化;最后,UE向基站上报layer1模值最大线性叠加系数C 12对应的index(即,第一消息的一例);以及除C 12以外的layer1和layer2对应的线性叠加系数矩阵C 1和C 2中所有线性叠加系数归一化后的幅度、相位的量化值(即,第一指示信息的一例),即C 11,…,C 1K,C 21,C 22,…,C 2K等。
可选地,UE最终上报的量化信息可以是具体的量化后的数值,例如layer1和layer2的幅度、相位的量化值,基站在获取C 12量化后的值为1可以确定该C 12为量化基准。该实现方式无需UE上报C 12对应的index,例如,该index可以表示C 12是线性叠加系数矩阵C 1中第2个线性叠加系数。
可选地,UE也可以上报C 12量化后对应的索引,例如C 12对应的端口port信息位置和/或频域向量位置信息(或空域向量和频域向量的位置信息,或空频向量的位置信息)等。
或者,UE与基站通过协议预定义提前规定确定以C 12为量化基准,那么UE无需再一次上报该C 12的量化信息和/或索引等,进一步地降低信令开销,减少终端的功耗。
需要说明的是,这里各个layer对应的线性叠加系数是按照layer1最大的线性系数叠加系数进行归一的。对于选择哪个layer作为归一化的基准,本申请对此不作限定。即在进行多流layer间联合量化反馈时,同样可以选择layer2进行线性叠加系数的归一,此时PMI联合量化的分母就是矩阵C 2中最大的元素矩阵C 2i
综上所述,通过PMI系数量化方案,相比之前各个layer独立做归一化,本申请实施例将各layer对应线性叠加系数按照layer1模值最大线性叠加系数归一化。另外,关于系数上报的方法,相比之前各个layer的最大值都仅上报index,本申请实施例中,仅layer1的最大值上报index,其他所有的系数需要上报幅度和相位的量化结果即可。
总之,本实施例描述了通过各Layer线性叠加系数按照layer1模值最大线性叠加系数归一化,能够实现Layer间联合PMI量化反馈方法,保证网络设备获知多流layer间的功率差异,做到功率分配,进而获得系统增益。
实施例二:
与实施例一的不同之处在于,实施例一是各Layer对应线性叠加系数按照layer1模值最大线性叠加系数归一化,实现layer间联合PMI量化反馈。实施例二则是各Layer对应模值最大线性叠加系数按照layer1模值最大线性叠加系数归一化;且各layer其他线性叠加系数按照该Layer模值最大线性叠加系数归一化,实现layer间联合PMI量化反馈。
图5是适用于本申请实施例的Layer间联合PMI量化反馈方法的另一例示意图,示例性的,假设当前最合适的传输流数为2个流,分别为layer1和layer2。如图5所示,下述公式(3)、(4)分别表示layer1和layer2对应的线性叠加系数矩阵,
C 1=[c 11c 12...c 1K];  (3)
C 2=[c 21c 22...c 2K];  (4)
其中,该矩阵C 1和C 2各有K列。
需要说明的是,layer1和layer2对应的线性叠加系数矩阵的列的数量可以相同,或者不相同,本申请对此不作限定。
示例性的,协议规定layer1和layer2对应的线性叠加系数联合归一化后再上报;然后,UE将layer1和layer2对应的模值最大线性叠加系数按照layer1的模值最大线性叠加系数 归一化。例如,确定layer1(即,第u层的一例)对应的矩阵C 1(即,第U个加权系数集合的一例)中最大的元素为C 12(即,第二加权系数的一例),确定layer2对应的矩阵C 2(即,M-1个加权系数集合中的一个)中最大的元素为C 22(即,第三加权系数的一例)将layer2对应的模值最大线性叠加系数C 22除以C 12进行量化(即,第一归一化的一例);然后,各layer其他线性叠加系数按照对应layer模值最大的线性叠加系数归一化,即layer1中所有线性叠加系数除以C 12进行量化(即,第二归一化的一例),layer2中所有线性叠加系数除以C 22进行量化(即,第三归一化的一例);最后UE向基站上报layer1模值最大线性叠加系数C 12对应的index(即,第二消息的一例),;以及除layer1外其他layer(即,layer2)的模值最大线性叠加系数C 22对应的index(即,第二消息的一例);以及除C 12以外的layer1和layer2对应的线性叠加系数矩阵C 1和C 2中所有线性叠加系数归一化后的幅度、相位的量化值(即,第一指示信息的一例),即C 11。。。C 1K,C 21,C 22,…,C 2K等。
可选地,UE最终上报的量化信息可以是具体的量化后的数值,例如layer1和layer2的幅度、相位的量化值,基站在获取C 12量化后的值为1可以确定该C 12为量化基准。该实现方式无需UE上报C 12对应的index,例如,该index可以表示C 12是线性叠加系数矩阵C 1中第2个线性叠加系数。
可选地,UE也可以上报C 12和C 22量化后对应的索引,例如C 12和C 22对应的端口port信息位置和/或频域向量位置信息(或空域向量和频域向量的位置信息,或空频向量的位置信息)等。
或者,UE与基站通过协议预定义提前规定确定先以C 12为量化基准,再以C 12和C 22为量化基准,那么UE无需再一次上报该C 12和C 22的索引等,进一步地降低信令开销,减少终端的功耗。
需要说明的是,这里各个layer对应的线性叠加系数是按照layer1最大的线性系数叠加系数进行归一的。对于选择哪个layer作为归一化的基准,本申请对此不作限定。即在进行多流layer间联合量化反馈时,同样可以选择layer2进行线性叠加系数的归一,此时PMI联合量化的分母就是矩阵C 2中最大的元素矩阵C 2i
综上所述,通过PMI系数量化方案,相比之前各个layer独立做归一化,本申请实施例将各layer对应模值最大线性叠加系数按照layer1模值最大线性叠加系数归一化。另外,关于系数上报的方法,相比之前各个layer的最大值都仅上报index,本申请实施例中,除layer1的系数最大值上报index外,其他流layer2的系数最大值也需要上报index。另外,除了layer1的系数最大值,其他所有的系数需要上报幅度和相位的量化结果即可。
总之,本实施例描述了通过各layer线性叠加系数的最大值按照layer1模值最大线性叠加系数归一化,能够实现layer间联合PMI量化反馈方法,保证网络设备获知多流layer间的功率差异,做到功率分配,进而获得系统增益。
图6是适用于本申请实施例的layer间联合PMI量化反馈方法的又一例示意图,示例性的,假设当前最合适的传输流数为2个流,分别为layer1和layer2。如图6所示,下述公式(5)、(6)分别表示layer1和layer2对应的线性叠加系数矩阵,
C 1=[c 11c 12...c 1K];  (5)
C 2=[c 21c 22...c 2K];  (6)
其中,该矩阵C 1和C 2各有K列。
需要说明的是,layer1和layer2对应的线性叠加系数矩阵的列的数量可以相同,或者不相同,本申请对此不作限定。
示例性的,协议规定layer1和layer2对应的线性叠加系数联合归一化后再上报;然后,UE将layer1和layer2对应的模值最大线性叠加系数按照layer1的模值最大线性叠加系数归一化。例如,确定layer1(即,第x层的一例)对应的矩阵C 1(即,第X个加权系数集合的一例)中最大的元素为C 12(即,第四加权系数的一例),确定layer2对应的矩阵C 2(即,M-1个加权系数集合中的一个)中最大的元素为C 22(即,第五加权系数的一例)将layer2对应的模值最大线性叠加系数C 22除以C 12进行量化(即,第四归一化的一例);然后,各Layer其他线性叠加系数分别按照layer1和各layer对应的模值最大线性叠加系数归一化,即layer1中所有线性叠加系数除以C 12进行量化(即,第五归一化的一例),layer2中所有线性叠加系数分别除以C 12和C 22进行量化(即,第六归一化和第七归一化的一例);最后UE向基站上报layer1模值最大线性叠加系数C 12对应的index(即,第二消息的一例),以及除layer1外其他layer(即,layer2)的模值最大线性叠加系数C 22对应的index(即,第二消息的一例);以及除C 12以外的layer1和layer2对应的线性叠加系数矩阵C 1和C 2中所有线性叠加系数归一化后的幅度、相位的量化值(即,第一指示信息的一例),即C 11,…,C 1K,C 21,C 22,…,C 2K等。
可选地,UE最终上报的量化信息可以是具体的量化后的数值,例如layer1和layer2的幅度、相位的量化值,基站在获取C 12量化后的值为1可以确定该C 12为量化基准。该实现方式无需UE上报C 12对应的index,例如,该index可以表示C 12是线性叠加系数矩阵C 1中第2个线性叠加系数。
可选地,UE也可以上报C 12和C 22量化后对应的索引,例如C 12和C 22对应的端口port信息位置和/或频域向量位置信息(或空域向量和频域向量的位置信息,或空频向量的位置信息)等。
或者,UE与基站通过协议预定义提前规定确定先以C 12为量化基准,再以C 12和C 22为量化基准,那么UE无需再一次上报该C 12和C 22的索引等,进一步地降低信令开销,减少终端的功耗。
需要说明的是,这里各个layer对应的线性叠加系数是按照layer1最大的线性系数叠加系数进行归一的。对于选择哪个layer作为归一化的基准,本申请对此不作限定。即在进行多流layer间联合量化反馈时,同样可以选择layer2进行线性叠加系数的归一,此时PMI联合量化的分母就是矩阵C 2中最大的元素矩阵C 2i
综上所述,通过PMI系数量化方案,相比之前各个layer独立做归一化,本申请实施例将各layer对应模值最大线性叠加系数按照layer1模值最大线性叠加系数归一化。另外,关于系数上报的方法,相比之前各个layer的最大值都仅上报index,本申请实施例中,除layer1的系数最大值上报index外,其他流layer2的系数最大值也需要上报index。另外,除了layer1的系数最大值,其他所有的系数需要上报幅度和相位的量化结果即可。
总之,本实施例描述了通过各layer线性叠加系数的最大值按照layer1模值最大线性叠加系数归一化,能够实现layer间联合PMI量化反馈方法,保证网络设备获知多流layer间的功率差异,做到功率分配,进而获得系统增益。
应理解,上述图4至图6提供的三种联合归一化的实现方案,仅是示例性说明,不应对本申请构成任何限定。另外上述具体实现方式均以两层layer为例进行阐述,本申请的方案同样适用于更多层layer的联合量化和传输,本申请对此不作具体限定。
下面图7至图9是针对目前终端设备无法获知多流layer中哪些角度和时延信息是layer specific的问题,提出的用于高Rank反馈量化的layer specific的角度和时延信息指示方法。首先对layer specific的角度和时延信息指示的原理进行概述。
通过layer specific的角度和时延信息的指示,既可以实现Layer specific的角度时延信息的发送,又可以避免终端设备对layer搜索、计算的复杂度增加。其中,layer specific的角度、时延信息指示基本流程如下:
步骤一:网络设备对多流(例如:layer1和layer2)的角度-时延进行分组,分为layer common group和layer specific group。
示例性的,layer common group表示layer1和layer2共同的角度、时延信息,layer specific group表示layer1和layer2分别特有的角度和时延信息,用于进一步区分二者的角时延信息的不同。
步骤二:网络设备向终端设备发送显性/隐性信令,进一步指示关于layer1和layer2角度-时延对的分组情况。
步骤三:终端设备根据网络设备发送的显性/隐性指示,对不同layer,按照不同的角度-时延对进行PMI计算和上报。
通过上述流程,网络设备可以发送Layer specific的角度、时延信息,进而保证各个layer的PMI精度;终端设备可以获知角度、时延信息与各个layer的对应关系,并且针对性地处理这些信息,避免对各个layer的所有角度和时延信息都搜索、计算一遍,降低了终端设备计算layer角度和时延信息的复杂度,减少开销。
图7是本申请实施例提供的一种通信方法的示意性流程图,如图7所述,具体步骤700包括:
S710,网络设备向终端设备发送第一信息;对应的,终端设备接收来自网络设备的第一信息。
其中,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的映射关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的映射关系,P、N和Z均为大于或等于1的正整数。
一种可能的实现方式,该Z个层中的每个层对应于该P个参考信号端口中的一个或多个。
示例性的,该实现方式可以以两个层为例,该第一分组配置信息可以用于指示16个CSI-RS端口与该两个层之间的对应关系,即该第一层对应于端口1至端口8,该第二层对应于端口9至端口16;或者该第一层对应于端口1至端口4,该第二层对应于端口9至端口10等等。该实现方式表明第一层和第二层对应的端口是完全不同的,两个层具有各自专有的端口分组配置信息。终端设备基于第一层和第二层对应的专有端口可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于端口1至端口10,该第二层对应于端口5至端口16。该实现方式既表明该第一层和第二层有各自专有的端口分组配置信息,如端口1至端口4仅对 应于第一层,端口11至端口16仅对应于第二层;也表明该第一层和第二层也有共同的端口分组配置信息,如端口5至端口10。终端设备基于第一层和第二层对应的专有端口,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层和第二层对应的共有端口可以准确的获取该两个层的信道状态信息,提高系统运行效率和传输性能。
可选地,该第一层和第二层均对应于端口1至端口16。该实现方式表明该第一层和第二层仅有共同的端口分组配置信息。终端设备可以无差别地基于第一层和第二层对应的共有端口进行预编码矩阵指示PMI的计算,提高系统传输性能。
示例性的,该实现方式可以以三个层为例,该第一分组配置信息还用于指示16个CSI-RS端口与该三个层之间的对应关系,即该第一层对应于端口1至端口5,该第二层对应于端口6至端口12,该第三层对应于端口13至端口16;或者该第一层对应于端口1至端口3,该第二层对应于端口6至端口10,该第三层对应于端口12至端口15等等。该实现方式表明第一层、第二层和第三层对应的端口是完全不同的,三个层具有各自专有的端口分组配置信息。终端设备基于第一层、第二层和第三层对应的专有端口可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于端口1至端口7,该第二层对应于端口5至端口6、端口8至端口11、端口12,该第三层对应于端口6至端口7、端口12至端口16。该实现方式既表明该第一层、第二层和第三层有各自专有的端口分组配置信息,如端口1至端口4仅对应于第一层,端口8至端口11仅对应于第二层,端口13至端口16仅对应于第三层;也表明该第一层、第二层和第三层也有共同的端口分组配置信息,如端口6。终端设备基于第一层、第二层和第三层对应的专有端口,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有端口可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
特别地,在该实现方式中,相对于第三层来说,端口5也可以理解为第一层和第二层专有的端口分组配置信息;相对于第二层来说,端口7也可以理解为第一层和第三层专有的端口分组配置信息;相对于第一层来说,端口12也可以理解为第二层和第三层专有的端口分组配置信息。
可选地,该第一层、第二层和第三层均对应于端口1至端口16。该实现方式表明该第一层、第二层和第三层仅有共同的端口分组配置信息。终端设备可以无差别地基于第一层、第二层和第三层对应的共有端口进行预编码矩阵指示PMI的计算,提高系统传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的端口数量不作限定。
作为示例而非限定,在上述实现方式中,该Z个层中的至少两个层对应的端口不完全相同。
示例性的,该实现方式可以以三个层为例,第一层对应于端口1至端口7,第二层对应于端口1至端口6、端口8至端口11、端口12,第三层对应于端口6至端口7、端口12至端口16。该实现方式表明该三个层对应的端口不完全相同。
可选地,第一层对应于端口1至端口10,第二层和第三层均对应于端口6至端口16。该实现方式表明该第一层和第二层对应的端口,以及第一层和第三层对应的端口不完全相 同,等等。
基于上述实现方式,终端设备基于该三个层对应的专有端口,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有端口可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的端口数量不作限定。
另一种可能的实现方式,该Z个层中的每个层对应于该R个频域基向量中的一个或多个。
需要说明的是,频域基向量的具体形式可以为:
Figure PCTCN2022083305-appb-000022
其中,i为大于等于0的整数;N3为大于0的整数。
示例性的,该实现方式可以以两个层为例,该第二分组配置信息可以用于指示3个频域基向量与该两个层之间的对应关系,即该第一层对应于频域基向量1和频域基向量2,该第二层对应于频域基向量3;或者该第一层对应于频域基向量1,该第二层对应于频域基向量3等等。该实现方式表明第一层和第二层对应的频域基向量是完全不同的,两个层具有各自专有的频域基向量分组配置信息。终端设备基于第一层和第二层对应的专有频域基向量可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于频域基向量1和频域基向量2,该第二层对应于频域基向量2和频域基向量3。该实现方式既表明该第一层和第二层有各自专有的频域基向量的分组配置信息,如频域基向量1仅对应于第一层,频域基向量3仅对应于第二层;也表明该第一层和第二层也有共同的频域基向量的分组配置信息,如频域基向量2。终端设备基于第一层和第二层对应的专有频域基向量,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层和第二层对应的共有频域基向量可以准确的获取该两个层的信道状态信息,提高系统运行效率和传输性能。
可选地,该第一层和第二层均对应于频域基向量1至频域基向量3。该实现方式表明该第一层和第二层仅有共同的频域基向量分组配置信息。终端设备可以无差别地基于第一层和第二层对应的共有频域基向量进行预编码矩阵指示PMI的计算,提高系统传输性能。
示例性的,该实现方式可以以三个层为例,该第一分组配置信息还用于指示8个频域基向量与该三个层之间的对应关系,即该第一层对应于频域基向量1至频域基向量3,该第二层对应于频域基向量4至频域基向量6,该第三层对应于频域基向量7和频域基向量8;或者该第一层对应于频域基向量1和频域基向量2,该第二层对应于频域基向量4和频域基向量5,该第三层对应于频域基向量7和频域基向量8等等。该实现方式表明第一层、第二层和第三层对应的频域基向量是完全不同的,三个层具有各自专有的频域基向量分组配置信息。终端设备基于第一层、第二层和第三层对应的专有频域基向量可以有针对性地进行预编码矩阵指示PMI的计算,提高系统运行效率和传输性能。
可选地,该第一层对应于频域基向量1至频域基向量4,该第二层对应于频域基向量2、频域基向量3、频域基向量5和频域基向量6,该第三层对应于频域基向量3至频域基向量5、频域基向量7和频域基向量8。该实现方式既表明该第一层、第二层和第三层有各自专有的频域基向量分组配置信息,如频域基向量1仅对应于第一层,频域基向量6仅 对应于第二层,频域基向量7和频域基向量8仅对应于第三层;也表明该第一层、第二层和第三层也有共同的端口分组配置信息,如频域基向量3。终端设备基于第一层、第二层和第三层对应的专有频域基向量,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有频域基向量可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
特别地,在该实现方式中,相对于第三层来说,频域基向量2也可以理解为第一层和第二层专有的频域基向量分组配置信息;相对于第二层来说,频域基向量4也可以理解为第一层和第三层专有的频域基向量分组配置信息;相对于第一层来说,频域基向量5也可以理解为第二层和第三层专有的频域基向量分组配置信息。
可选地,该第一层、第二层和第三层均对应于频域基向量1至频域基向量3。该实现方式表明该第一层、第二层和第三层仅有共同的频域基向量分组配置信息。终端设备可以无差别地基于第一层、第二层和第三层对应的共有频域基向量进行预编码矩阵指示PMI的计算,提高系统传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的频域基向量的数量不作限定。
作为示例而非限定,在上述实现方式中,该Z个层中的至少两个层对应的频域基向量不完全相同。
示例性的,该实现方式可以以三个层为例,该第一层对应于频域基向量1至频域基向量4,该第二层对应于频域基向量2、频域基向量3、频域基向量5和频域基向量6,该第三层对应于频域基向量3至频域基向量5、频域基向量7和频域基向量8。该实现方式表明该三个层对应的频域基向量不完全相同。
可选地,第一层对应于频域基向量1至频域基向量6,第二层和第三层均对应于频域基向量4至频域基向量8。该实现方式表明该第一层和第二层对应的频域基向量,以及第一层和第三层对应的频域基向量不完全相同,等等。
基于上述实现方式,终端设备基于该三个层对应的专有频域基向量,可以有针对性地进行预编码矩阵指示PMI的计算,减少终端的功耗。同时,基于第一层、第二层和第三层对应的共有频域基向量可以准确的获取该三个层的信道状态信息,提高系统运行效率和传输性能。
需要说明的是,上述具体实现方式对传输层数以及每一层对应的频域基向量的数量不作限定。
示例性的,该第一分组配置信息和/或该第二分组配置信息承载于以下信令中的至少一种:无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI。
示例性的,该第一分组配置信息和/或该第二分组配置信息是协议预定义的。
在本申请实施例中,该PMI反馈的码本结构满足:
Figure PCTCN2022083305-appb-000023
其中,W 1为端口选择矩阵,
Figure PCTCN2022083305-appb-000024
为叠加系数矩阵,W f为频域基向量矩阵,该W 1是该Z个层中的每个层特有的端口选择矩阵,该W f是该Z个层中的每个层特有的频域基向量矩阵。
其中,W f为频域基向量矩阵,其中的频域基向量可以从基站指示的频域向量集合中 选择。示例的,基站指示/配置N个频域向量给用户,例如N=2,4,8。UE从基站指示的N个频域向量中选择Mv个,例如Mv=1,2,4。一般的,N≥Mv。示例的,当Mv=1时,N=Mv=1;当Mv∈[a,b](a,b是正整数),N≥Mv,例如当Mv=2时,N≥Mv;当Mv∈[c,d](c,d是正整数),N=Mv。另外,W f可以被关掉,即码本结构变为
Figure PCTCN2022083305-appb-000025
例如当Mv=1时,W f可以被关掉,码本结构变为
Figure PCTCN2022083305-appb-000026
其中,W 1为端口选择矩阵,UE可以通过组合数或Bitmap从P个CSI-RS ports中选择K 1个CSI-RS ports。示例的,当W f中的Mv=1,UE用bitmap选择K 1个ports;当Mv>1,UE用组合数选择K 1个ports。
其中,
Figure PCTCN2022083305-appb-000027
为叠加系数矩阵,UE可以用bitmap指示其上报的非零系数。示例的,Mv=1,用于指示上报非零系数的bitmap缺失,例如,可以表现为UE上报CSI信息中不包含bitmap开销;当Mv>1,UE用bitmap指示其上报的非零系数。UE上报CSI信息中包含bitmap开销。
示例性的,以两个层为例,假设第一层对应的CSI-RS端口为端口1至10,第二层对应的CSI-RS端口为端口8至16,那么第一层的W 1是端口1至10对应的端口选择矩阵,第二层的W 1是端口8至16对应的端口选择矩阵。即第一层和第二层对应的端口选择矩阵W 1完全不相同,两个层具有各自专有的端口分组配置信息。
示例性的,以三个层为例,假设第一层对应的CSI-RS端口为端口1至8,第二层对应的CSI-RS端口为端口6至12,第三层对应的CSI-RS端口为端口10至16,那么第一层的W 1是端口1至8对应的端口选择矩阵,第二层的W 1是端口6至12对应的端口选择矩阵,第三层的W 1是端口10至16对应的端口选择矩阵。即第一层、第二层和第三层对应的端口选择矩阵W 1完全不相同,三个层具有各自专有的端口分组配置信息。
同样地,对于Z个层来说,W 1表示某一个或多个参考信号端口只对应于该Z个层中的某一层,与其他Z-1个层对应的端口选择矩阵W 1完全不同。
示例性的,以两个层为例,假设第一层的频域基向量矩阵对应频域基向量1和2,第二层的频域基向量矩阵对应频域基向量1和3,那么第一层的W f是频域基向量1和2对应的频域基向量矩阵,第二层的W f是频域基向量1和3对应的频域基向量矩阵。即第一层和第二层对应的频域基向量矩阵W f完全不相同,两个层具有各自专有的频域基向量分组配置信息。
示例性的,以三个层为例,假设第一层的频域基向量矩阵对应频域基向量1至3,第二层的频域基向量矩阵对应频域基向量2至4,第三层的频域基向量矩阵对应频域基向量5和6,那么第一层的W f是频域基向量1至3对应的频域基向量矩阵,第二层的W f是频域基向量2至4对应的频域基向量矩阵,第三层的W f是频域基向量5和6对应的频域基向量矩阵。即第一层、第二层和第三层对应的端频域基向量矩阵W f完全不相同,三个层具有各自专有的频域基向量分组配置信息。
同样地,对于Z个层来说,W f表示某一个或多个频域基向量只对应于该Z个层中的某一层,与其他Z-1个层对应的频域基向量矩阵W f完全不同。
需要说明的是,该第一分组配置信息和/或该第二分组配置信息是基于上行信道信息的K个角度时延对确定的,K为大于或等于1的正整数。
具体的,该K个角度时延对中的每个角度时延对包括一个角度向量和一个时延向量, 该P个参考信号端口与该K个角度时延对对应,该P个参考信号端口中每个参考信号端口的参考信号基于一个角度向量和一个时延向量对参考信号进行预编码得到,该N个频域基向量与该K个角度时延对对应,该N个频域基向量中每个频域基向量的参考信号基于一个角度向量和一个时延向量对参考信号进行预编码得到。
S720,终端设备向网络设备发送与该Z个层对应的预编码矩阵指示PMI;对应的,网络设备接收来自终端设备的与该Z个层对应的预编码矩阵指示PMI。
其中,该预编码矩阵指示PMI是根据该第一信息确定的。
在本申请实施例中,所涉及的指示信息、配置信息等承载方式可以是但不限于:无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制RRC信令;MAC层信令包括:MAC控制元素CE;物理层信令包括:下行控制信息DCI等。
例如,网络设备向终端设备下发第一消息列表和/或第二消息列表,该第一消息列表和/或第二消息列表可以通过UE-specific信令下发,例如通过RRC信令配置,MAC-CE信令激活,并通过下发DCI向终端设备指示该第一消息列表,具体实现方式本申请对此不作限定。
实施例三:
图8是本申请实施例提供的一种信道测量方法的示意性流程图,提出一种基于CSI-RS port分组的layer specific的角度、时延信息指示方法800。具体步骤包括:
S810,网络设备生成第一列表(即,第一分组配置信息的一例)。
其中,该第一列表包括至少一个分组配置信息,每个分组配置信息用于表示信道状态信息参考信号CSI-RS天线端口port与多个层数据流layer之间的映射关系。
应理解,该第一列表是网络设备根据上行信道进行确定的。
需要说明的是,该第一列表还可以通过协议定义,即通过协议规定添加CSI-RS port分组规则与layer的对应表格。
一种可能的实现方式,网络设备可以配置如下列表1和表2所示的分组配置信息,即根据端口信息port配置对应的多个流的分组信息。表1示出了以天线单极化16port为例,说明端口port与多流layer之间的映射关系。需要说明的是,在天线多极化32port中,端口17-32与流layer之间的关系和端口1-16与流layer之间的关系可以相同。如表1所示,配置1表示端口1-12对应layer1,端口5-16对应layer2,其中端口5-12同时对应layer1和layer2;对应的,在天线多极化32port中,配置1也表示端口17-28对应layer1,端口21-32对应layer2,其中端口21-28同时对应layer1和layer2;配置2表示端口1-16同时对应layer1和layer2;对应的,在天线多极化32port中,配置2也表示端口17-32同时对应layer1和layer2。配置3表示端口1-8对应layer1,端口9-16对应layer2;对应的,在天线多极化32port中,配置3也表示端口17-24对应layer1,端口25-32对应layer2等。可选的,端口可以对应端口集合(或称端口组),例如,对于配置1,端口1-4可以对应一个端口集合,端口5-12对应另外一个端口集合,端口13-16对应又一个端口集合。layer与端口的对应关系也可以看作layer和端口集合之间的对应关系。
表1
Figure PCTCN2022083305-appb-000028
Figure PCTCN2022083305-appb-000029
应理解,端口1-16和端口17-32是对应的关系,且对应相同的layer,可以理解成layer1对应的端口1-16对应天线45度方向,那么layer1对应的端口17-32对应天线负45度的方向。
可选地,可以直接配置端口1-32port对应不同的layer,其中端口1-16与流layer的对应关系和端口17-32与流layer的对应关系可以不一致。如表2所示,配置1表示端口1-12和21-32对应layer1,端口5-28对应layer2,其中端口5-12和21-28同时对应layer1和layer2;配置2表示端口1-32对应layer2,端口1-16对应layer1,其中端口1-16同时对应layer1和layer2;配置3表示端口1-8和25-32对应layer1,端口9-32对应layer2,其中端口25-32同时对应layer1和layer2等。
表2
Figure PCTCN2022083305-appb-000030
可选地,网络设备可以根据上行信道信息确定其中部分端口(例如,仅选择配置1中的端口1-12)用于层数据流layer1和layer2的量化反馈。
另一种可能的实现方式,可以通过信令配置Z个layer与P个port之间的映射关系,Z和P均为大于或等于1的正整数。即每个layer可以配置一个或多个不同的port。例如,具体配置如下所示:
layer 1 port x1,port x2….port xn;
layer 2 port y1,port y2….port yn;
………
layer Z port z1,port z2…port zn。
示例性的,网络设备可以配置如表3和表4所示的分组配置信息,即根据多个流配置对应的端口的分组信息。表3示出了以天线单极化16port为例,说明多流layer与端口port之间的映射关系。需要说明的是,在天线多极化32port中,流layer与端口17-32之间的 关系和流layer与端口1-16之间的关系可以相同。如表3所示,配置1表示layer1对应端口为1-12的配置信息,layer2对应端口为5-16的配置信息,其中layer1和layer2共同的分组配置信息对应于端口5-12;对应的,在天线多极化32port中,配置1也表示layer1对应端口为17-28的配置信息,layer2对应端口为21-32的配置信息,其中layer1和layer2共同的分组配置信息对应于端口21-28;配置2表示layer1和layer2同时对应于端口1-16的分组配置信息;对应的,在天线多极化32port中,配置2也表示layer1和layer2同时对应于端口17-32的配置信息;配置3表示layer1对应端口1-8的配置信息,layer2对应端口9-16的配置信息;对应的,在天线多极化32port中,配置3也表示layer1对应端口17-24的配置信息,layer2对应端口25-32的配置信息等。
表3
Figure PCTCN2022083305-appb-000031
应理解,表3所示的端口port组1和端口port组2是对应的关系,且对应相同的layer,即两个极化方向一致,可以理解成layer1对应的端口port组1对应天线45度方向,那么layer1对应的端口port组2对应的天线负45度的方向。
可选地,可以直接配置不同的layer对应端口1-32port,其中流layer与端口1-16的对应关系和流layer与端口17-32的对应关系可以不一致。如表4所示,配置1表示layer1对应端口1-12和20-28,layer2对应端口5-14和18-32,其中layer1和layer2同时对应端口5-12和20-28;配置2表示layer1和layer2同时对应端口1-32;配置3表示layer1对应端口1-18,layer2对应端口9-32,其中layer1和layer2同时对应端口9-18等。
表4
Figure PCTCN2022083305-appb-000032
需要说明的是,上述表1至表4可以通过无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合通知终端设备。
应理解,表1至表4仅是示例性说明,不应对本申请构成任何限定。同时,本申请对表1至表4中的分组配置信息的个数不作具体限定。
S820,网络设备向终端设备发送第一列表;对应的,终端设备接收来自网络设备的第一列表。
需要说明的是,当该第一列表是通过协议定义时,那么网络设备和终端设备是提前预知该第一列表,上述步骤S810和S820可以省略。
S830,网络设备向终端设备发送指示信息(即,第一信息的一例);对应的,终端设 备接收来自网络设备的指示信息。
其中,该指示信息用于指示第一列表中的至少一个分组配置信息中的一个。
示例性的,网络设备选择配置1(configure1),用来确定端口port分组与layer1和/或layer2之间的映射关系。该配置1可以是表1至表4中任一列表中的配置1,也可以是表1至表4任何组合中的配置1,本申请对此不作限定。
应理解,网络设备确定分组配置信息是根据上行信道确定的,即网络设备根据上行信道进行端口port分组与layer分组配置的选择,并向终端设备发送配置指示信息。
需要说明的是,本申请对指示信息的发送方法不作具体限定。其中,这些信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是网络设备通过向终端设备发送配置信息来配置的。
其中,该配置信息可以是但不限于:无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制RRC信令;MAC层信令包括:MAC控制元素(control element,CE);物理层信令包括:下行控制信息(downlink control information,DCI)等。
S840,终端设备根据指示信息进行PMI量化反馈。
此时,终端设备需要根据接收的指示信息所对应的配置1中的规则,对layer1和layer2进行PMI计算和上报。
示例性的,假设两个极化方向一致,以单极化16port为例,当网络设备确定选择配置1来表示端口port分组与layer组之间角度、时延的对应关系时,终端设备只需要在端口1-12中搜索和计算layer1的PMI;同样地,终端设备只需要在端口5-16中搜索和计算layer2的PMI。
应理解,这样网络设备有针对性地处理layer1和layer2的角度时延对信息,终端设备有针对性地对layer1和layer2进行PMI计算和上报,避免了终端设备对layer1和layer2在所有端口都进行搜索和计算,能够减少开销。同时,有利于网络设备获得准确的信道状态信息。
需要说明的是,终端设备根据第一列表进行PMI的计算和上报方法可以沿用目前的技术手段,也可以利用上述实施例一和实施例二中提供的PMI量化反馈方法,本申请对此不作具体限定。
示例性的,如下所示:
layer1:
Figure PCTCN2022083305-appb-000033
Figure PCTCN2022083305-appb-000034
layer2:
Figure PCTCN2022083305-appb-000035
Figure PCTCN2022083305-appb-000036
示例性的,假设当前最合适的传输流数为3个流,分别为Layer 1、Layer2和Layer 3。其中,网络设备发送第一分组配置信息,用于指示16个CSI-RS端口与该三个层之间的对应关系。具体配置CSI-RS端口与Layer之间的对应关系为:layer1与端口1至5对应,layer与端口4-8对应,layer3与端口7至16对应。那么,终端设备根据该分组配置信息进行PMI计算的码本结构如下所示:
layer1:
Figure PCTCN2022083305-appb-000037
Figure PCTCN2022083305-appb-000038
layer2:
Figure PCTCN2022083305-appb-000039
Figure PCTCN2022083305-appb-000040
layer3:
Figure PCTCN2022083305-appb-000041
Figure PCTCN2022083305-appb-000042
综上所述,通过协议添加CSI-RS port与layer的映射关系,以及增加网络设备向终端设备通知该映射关系的信令,可以为RRC、MAC CE、DCI中的一种或几种。另外,在本申请实施例中,PMI反馈需要固定的码本结构
Figure PCTCN2022083305-appb-000043
其中,
Figure PCTCN2022083305-appb-000044
为终端设备反馈相应的端口选择矩阵,
Figure PCTCN2022083305-appb-000045
为终端设备选择的CSI-RS端口对应的叠加系数矩阵,
Figure PCTCN2022083305-appb-000046
为频域基向量矩阵。具体含义已经在上述说明,为了简洁,此处不再赘述。
需要说明的是,W 1的维度和元素值在本申请实施例中是特有的,即layer specific的。
总之,本实施例描述了通过CSI-RS Port分组,实现Layer specific的角度、时延信息指示,进而在保证各个layer精度的前提下,降低终端设备的处理复杂度。
实施例四:
图9是本申请实施例提供的一种信道测量方法的示意性流程图,提出一种基于W f不同分量的Layer specific的角度、时延信息指示方法900。与实施例三的不同之处在于,实施例三是基于CSI-RS端口分组与layer的映射关系,实现layer specific的角度、时延信息的指示。实施例四则是基于频域基向量矩阵不同分量与layer的映射关系,实现layer specific的角度、时延信息的指示。也就是说,当W f中频域分量大于1个时,可以采用实施例四提供的实现方式;当W f中频域分量等于1个时,可以采用实施例三提供的实现方式。具体步骤包括:
S910,网络设备生成第二列表(即,第二分组配置信息的一例)。
其中,该第一列表包括至少一个分组配置信息,每个分组配置信息用于表示频域基底矩阵W f分量与多个层数据流之间的映射关系。
应理解,该第二列表是网络设备根据上行信道进行确定的。
需要说明的是,该第二列表还可以通过协议定义,即通过协议规定添加W f各个分量与layer的对应表格。那么网络设备和终端设备是提前预知该第二列表,上述步骤S810可以省略。
一种可能的实现方式,网络设备可以配置如表5所示的分组配置信息,即根据频域基向量配置对应的多个流的分组信息。表5示出了频域基向量矩阵W f分量与多流layer之间的映射关系。如表5所示,将频域基向量矩阵W f分成三个分量,配置1表示频域基向量矩阵分量为1 st向量和2 nd向量对应于layer1,频域基向量矩阵分量为1 st向量和3 rd向量对应layer2,其中频域基向量矩阵分量为1 st向量同时对应layer1和layer2;配置2表示频域基向量矩阵分量为1 st向量、2 nd向量和3 rd向量同时对应于layer1和layer2;配置3表示频域基向量矩阵分量为1 st向量和2 nd向量仅对应layer1,频域基向量矩阵分量为3 rd向量仅对应layer2等。
表5
Figure PCTCN2022083305-appb-000047
Figure PCTCN2022083305-appb-000048
需要说明的是,上述表5可以通过无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合通知终端设备。
可选地,网络设备可以根据上行信道信息确定其中部分端口(例如,仅选择配置1中的1 st向量和2 nd向量)用于层数据流layer和layer2的量化反馈。
另一种可能的实现方式,可以通过信令配置Z个layer与N个频域基向量之间的映射关系,Z和N均为大于或等于1的正整数。即每个layer可以配置一个或多个不同的频域基向量分量。例如,具体配置如下所示:
layer 1 Frequency x1,Frequency x2…Frequency xn;
layer 2 Frequency y1,Frequency y2…Frequency yn;
………
layer Z Frequency z1,Frequency z2…Frequency zn。
示例性的,网络设备可以配置如表6所示的分组配置信息,即根据多个流配置对应的频域基向量的分组信息。如表6所示,配置1表示layer1对应频域基向量矩阵分量为1 st向量和2 nd向量,layer2对应频域基向量矩阵分量为2 nd向量和3 rd向量;配置2表示layer1和layer2同时对应于频域基向量矩阵分量为1 st向量、2 nd向量和3 rd向量;配置3表示layer1对应频域基向量矩阵分量为1 st和2 nd向量,layer2对应频域基向量矩阵分量为3 rd向量。
表6
Figure PCTCN2022083305-appb-000049
应理解,表5和表6仅是示例性说明,不应对本申请构成任何限定。同时,本申请对表5和表6中的分组配置信息的个数不作具体限定。
S920,网络设备向终端设备发送第二列表;对应的,终端设备接收来自网络设备的第二列表。
需要说明的是,当该第二列表是通过协议定义时,那么网络设备和终端设备是提前预知该第二列表,上述步骤S910和S920可以省略。
S930,网络设备向终端设备发送指示信息(即,第一信息的一例);对应的,终端设备接收来自网络设备的指示信息。
其中,该指示信息用于指示第二列表中的至少一个分组配置信息中的一个。
示例性的,网络设备选择配置1(configure1),频域基向量矩阵W f分组和layer1和 /或layer2之间的映射关系。该配置1可以是表5和表6中任一列表中的配置1,也可以是表1和表6任何组合中的配置1,本申请对此不作限定。
应理解,网络设备确定分组配置信息是根据上行信道确定的,即网络设备根据上行信道进行频域基向量矩阵W f分组与layer分组配置的选择,并向终端设备发送配置指示信息。
需要说明的是,本申请对指示信息的发送方法不作具体限定。其中,这些信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是网络设备通过向终端设备发送配置信息来配置的。
其中,该配置信息可以是但不限于:无线资源控制信令、媒体接入控制MAC层信令和物理层PHY信令中的一种或者至少两种的组合。其中,无线资源控制信令包括:无线资源控制RRC信令;MAC层信令包括:MAC控制元素(control element,CE);物理层信令包括:下行控制信息(downlink control information,DCI)等。
S940,终端设备根据指示信息进行PMI量化反馈。
此时,终端设备需要根据接收的指示信息所对应的配置1中的规则,对layer1和layer2进行PMI计算和上报。
示例性的,当网络设备确定选择表6中的配置1来表示频域基向量矩阵W f分组和layer组之间角度和时延的对应关系时,终端设备只需要在频域基向量1 st向量和2 nd向量矩阵中搜索和计算layer1的PMI;同样地,终端设备只需要在频域基向量2 nd向量和3 rd向量矩阵中搜索和计算layer2的PMI。
应理解,这样网络设备有针对性地处理角度时延对信息,终端设备有针对性地对layer1和layer2进行PMI计算和上报,避免了终端设备对layer1和layer2在所有频域基向量矩阵中进行搜索和计算,能够减少开销。同时,有利于网络设备获得准确的信道状态信息。
需要说明的是,终端设备根据第一列表进行PMI的计算和上报方法可以沿用目前的技术手段,也可以利用上述实施例一和实施例二中提供的PMI量化反馈方法,本申请对此不作具体限定。
示例性的,如下所示:
layer1:
Figure PCTCN2022083305-appb-000050
Figure PCTCN2022083305-appb-000051
layer2:
Figure PCTCN2022083305-appb-000052
Figure PCTCN2022083305-appb-000053
示例性的,假设当前最合适的传输流数为3个流,分别为layer 1、layer2和layer 3。其中,网络设备发送第二分组配置信息,用于指示5频域基向量与该三个层之间的对应关系。具体配置频域基向量与layer之间的对应关系为:layer1与频域基向量1至3对应,layer与频域基向量2至4对应,layer3与频域基向量3至5对应。那么,终端设备根据该分组配置信息进行PMI计算的码本结构如下所示:
layer1:
Figure PCTCN2022083305-appb-000054
Figure PCTCN2022083305-appb-000055
layer2:
Figure PCTCN2022083305-appb-000056
Figure PCTCN2022083305-appb-000057
layer3:
Figure PCTCN2022083305-appb-000058
Figure PCTCN2022083305-appb-000059
综上所述,通过协议添加CSI-RS port与layer的映射关系,以及增加网络设备向终端设备通知该映射关系的信令,可以为RRC、MAC CE、DCI中的一种或几种。另外,在本申请实施例中,PMI反馈需要固定的码本结构
Figure PCTCN2022083305-appb-000060
其中,
Figure PCTCN2022083305-appb-000061
为终端设备反馈相应的端口选择矩阵,
Figure PCTCN2022083305-appb-000062
为终端设备选择的CSI-RS端口对应的叠加系数矩阵,
Figure PCTCN2022083305-appb-000063
为频域基向量矩阵。具体含义已经在上述说明,为了简洁,此处不再赘述。
需要说明的是,W 1的维度和元素值在本申请实施例中是特有的,即layer specific的。
总之,本实施例描述了通过W f不同分量,实现layer specific的角度、时延信息指示,进而在保证各个layer精度的前提下,降低终端设备的处理复杂度。
应理解,上述实施例三和实施例四提供的layer specific的角度、时延信息指示方法可以单独使用,也可以组合适用。也就是说,基于CSI-RS端口的分组和/或频域基向量矩阵不同分量的分组与layer之间的映射关系可以任意组合。
示例性的,网络设备选择上述表1和表2的配置1(configure1),那么layer1的角度和时延信息可以通过在频域基向量1 st向量和2 nd向量矩阵中搜索和计算,和/或layer1的角度和时延信息可以在端口1-12中搜索和计算;同样地,layer2的角度和时延信息可以通过在端口5-16中搜索和计算,和/或layer2的角度、时延信息可以通过在频域基向量1 st向量和3 rd向量矩阵中搜索和计算。
可选地,网络设备可以通过第一分组配置信息指示layer1对应于CSI-RS端口1至4和CSI-RS端口5至12,layer2对应于CSI-RS端口5至12和CSI-RS端口13至16;以及通过第二分组配置信息指示layer1对应于频域基向量1和频域基向量2,layer2对应于频域基向量1和频域基向量3。那么,端口1至4和频域基向量2是layer1专有的分组配置信息,端口13至26和频域基向量3是layer2专有的分组配置信息,端口5至12和频域纪兴亮1是layer1和layer2共同的分组配置信息。对于layer1来说,终端设备可以仅使用端口1至4和5至12进行PMI计算,或者可以使用频域基向量1和频域基向量2进行PMI计算,或者可以使用端口1至4和频域基向量1进行PMI计算,或者可以使用端口5至12和频域基向量2进行PMI计算。同样地,对于layer2来说,终端设备可以仅使用端口13至16和5至12进行PMI计算,或者可以使用频域基向量1和频域基向量3进行PMI计算,或者可以使用端口13至16和频域基向量1进行PMI计算,或者可以使用端口5至12和频域基向量3进行PMI计算。
因此,终端设备根据上述分组配置信息进行PMI计算的组合码本结构可以如下所示:
layer1:
Figure PCTCN2022083305-appb-000064
Figure PCTCN2022083305-appb-000065
或者,
Figure PCTCN2022083305-appb-000066
Figure PCTCN2022083305-appb-000067
layer2:
Figure PCTCN2022083305-appb-000068
Figure PCTCN2022083305-appb-000069
或者,
Figure PCTCN2022083305-appb-000070
Figure PCTCN2022083305-appb-000071
另外,在
Figure PCTCN2022083305-appb-000072
中,W 1和W f也可以选择使用目前技术手段或者本申请提供的技术手段结合,并用于PMI量化和上报。上述方案可以任意组合使用,也可以有更多可能的实现方式,本申请对此不作具体限定。
应理解,上述图7至图9提供的基于参考信号端口和/或频域基向量矩阵与多个层之间的对应关系的实现方案,仅是示例性说明,不应对本申请构成任何限定。另外上述具体实现方式均以两层layer为例进行阐述,本申请的方案同样适用于更多层的分组配置指示,本申请对此不作具体限定。
应理解,本申请实施例不仅适用于FDD系统,还适用于在完全互易性不成立的情况下的TDD系统。
需要说明的是,上述本申请实施例提供的信道测量方法所确定的预编码矩阵可以是直接用于下行数据传输的预编码矩阵;也可以经过一些波束成形方法,例如包括迫零(zero forcing,ZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。本申请实施例中所涉及的预编码矩阵均可以是指基于本申请提供的信道测量方法确定的预编码矩阵。
应理解,在上文各实施例中,各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。终端设备和/或网络设备可以执行各实施例中的部分或全部步骤。这些步骤或操作仅是示例,本申请还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照各实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。且各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文结合图3至图9,详细描述了本申请实施例提供的通信方法侧实施例,下面将结合图10至图13,详细描述本申请的装置侧实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图10是本申请实施例提供的通信装置的示意性框图。如图10所示,该通信装置1000 可以包括处理单元1100和收发单元1200。
可选地,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如电路、芯片或芯片系统等)。
示例地,该收发单元1200用于接收第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数。
该收发单元1200还用于发送与该Z个层对应的预编码矩阵指示PMI,该PMI是根据该第一信息确定的。
示例地,该处理单元1100用于生成第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数。
该收发单元1200用于发送该第一指示信息。
应理解,该通信装置1000可对应于根据本申请实施例的方法300或方法700或方法800或方法900中的终端设备,该通信装置1000可以包括用于执行图3中的方法300或图7中的方法700或图8中的方法800或图9中的方法900中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300或图7中的方法700或图8中的方法800或图9中的方法900的相应流程。
其中,当该通信装置1000用于执行图3中的方法300时,处理单元1100可用于执行方法300中的步骤S310,收发单元1200可用于执行方法300中的步骤S320。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
其中,当该通信装置1000用于执行图7中的方法700时,处理单元1100可用于执行方法700中的步骤S740,收发单元1200可用于执行方法700中的步骤S720和步骤S730。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图8中的方法800时,处理单元1100可用于执行方法800中的步骤S840,收发单元1200可用于执行方法800中的步骤S820和步骤S830。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
其中,当该通信装置1000用于执行图9中的方法900时,收发单元1200可用于执行方法900中的步骤S910和步骤S920。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图10中示出的通信装置2000中的收发器2020或图11中示出的终端设备3000中的收发器3020,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图10中示出的通信装置2000中的处理器2010或图11中示出的终端设备3000中的处理器3010。
还应理解,该通信装置1000为配置于终端设备中的芯片或芯片系统时,该通信装置 1000中的收发单元1200可以通过输入/输出接口、电路等实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
可选地,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如电路、芯片或芯片系统等)。
示例地,该收发单元1200用于发送第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数。
该收发单元1200还用于接收与该Z个层对应的预编码矩阵指示PMI,该PMI是根据该第一信息确定的。
示例性的,该收发单元1200用于接收第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数;
该处理单元1100用于根据该第一指示信息确定该M个层间的功率差异。
应理解,该通信装置1000可对应于根据本申请实施例的方法300或方法700或方法800或方法900中的网络设备,该通信装置1000可以包括用于执行图3中的方法300或图7中的方法700或图8中的方法800或图9中的方法900中网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300或图7中的方法700或图8中的方法800或图9中的方法900的相应流程。
其中,当该通信装置1000用于执行图3中的方法300时,处理单元1100可用于执行方法300中的步骤S330,收发单元1200可用于执行方法300中的步骤S320。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
其中,当该通信装置1000用于执行图7中的方法700时,处理单元1100可用于执行方法700中的步骤S710,收发单元1200可用于执行方法700中的步骤S720和步骤S730。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图8中的方法800时,处理单元1100可用于执行方法800中的步骤S810,收发单元1200可用于执行方法800中的步骤S820和步骤S830。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
其中,当该通信装置1000用于执行图9中的方法900时,收发单元1200可用于执行方法900中的步骤S910和步骤S920。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图11中示出的通信装置2000中的收发器2020或图13中示出的网络设备4000中的射频拉远单元(radio remote unit,RRU)4100,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图11中示出的通信装置2000中的处理器2010或图13中示出的网络设备4000中的处理单元4200或处理器 4202。
还应理解,该通信装置1000为配置于网络设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图11是本申请实施例提供的通信装置2000的另一示意性框图。如图11所示,该通信装置2000包括处理器2010、收发器2020和存储器2030。其中,处理器2010、收发器2020和存储器2030通过内部连接通路互相通信,该存储器2030用于存储指令,该处理器2010用于执行该存储器2030存储的指令,以控制该收发器2020发送信号和/或接收信号。
应理解,该通信装置2000可以对应于上述方法实施例中的网络设备,并且可以用于执行上述方法实施例中网络设备执行的各个步骤和/或流程。
作为示例而非限定,该收发器2020用于发送第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数。
该收发器2020还用于接收与该Z个层对应的预编码矩阵指示PMI,该PMI是根据该第一信息确定的。
作为示例而非限定,该收发器2020用于接收第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数。
该处理器2010还用于根据该第一指示信息确定该M个层间的功率差异。
可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器2030可以是一个单独的器件,也可以集成在处理器2010中。该处理器2010可以用于执行存储器2030中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与网络设备或终端设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置2000是图3中的方法300或图7中的方法700或图8中的方法800或图9中的方法900提供的实施例中的网络设备。
其中,收发器2020可以包括发射机和接收机。收发器2020还可以进一步包括天线,天线的数量可以为一个或多个。该处理器2010和存储器2030与收发器2020可以是集成在不同芯片上的器件。如,处理器2010和存储器2030可以集成在基带芯片中,收发器2020可以集成在射频芯片中。该处理器2010和存储器2030与收发器2020也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置2000是配置在网络设备中的部件,如电路、芯片、芯片系统等。
其中,收发器2020也可以是通信接口,如输入/输出接口、电路等。该收发器2020与处理器2010和存储器2020都可以集成在同一个芯片中,如集成在基带芯片中。
应理解,该装置2000还可以对应于上述方法实施例中的终端设备(例如,UE),并且可以用于执行上述方法实施例中终端设备执行的各个步骤和/或流程。
作为示例而非限定,该收发器2020用于接收第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数。
该收发器2020还用于发送与该Z个层对应的预编码矩阵指示PMI,该PMI是根据该第一信息确定的。
作为示例而非限定,该处理器2010用于生成第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数。
该收发器2020还用于发送该第一指示信息。
可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器2030可以是一个单独的器件,也可以集成在处理器2010中。该处理器2010可以用于执行存储器2030中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与终端设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置2000是上述实施例中方法300或方法700或方法800或方法900中的终端设备。
其中,收发器2020可以包括发射机和接收机。收发器2020还可以进一步包括天线,天线的数量可以为一个或多个。该处理器2010和存储器2030与收发器2020可以是集成在不同芯片上的器件。如,处理器2010和存储器2030可以集成在基带芯片中,收发器2020可以集成在射频芯片中。该处理器2010和存储器2030与收发器2020也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该装置2000是配置在终端设备中的部件,如电路、芯片、芯片系统等。
其中,收发器2020也可以是通信接口,如输入/输出接口、电路等。该收发器2020与处理器2010和存储器2020都可以集成在同一个芯片中,如集成在基带芯片中。
图12是本申请实施例提供的终端设备3000的结构示意图。该终端设备3000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图12所示,该终端设备3000包括处理器3010和收发器3020。可选地,该终端设备3000还包括存储器3030。其中,处理器3010、收发器3020和存储器3030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器3030用于存储计算机程序,该处理器3010用于从该存储器3030中调用并运行该计算机程序,以控制该收发器3020收发信号。可选地,终端设备3000还可以包括天线3040,用于将收发器3020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器3010可以和存储器3030可以合成一个处理装置,处理器3010用于执行存储器3030中存储的程序代码来实现上述功能。具体实现时,该存储器3030也可以集成在处理器3010中,或者独立于处理器3010。该处理器3010可以与图10中的处理单元1100或图11中的处理器2010对应。
上述收发器3020可以与图10中的收发单元1200或图11中的收发器2020对应。收 发器3020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
作为示例而非限定,该收发器3020用于接收第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数。
该收发器3020还用于发送与该Z个层对应的预编码矩阵指示PMI,该PMI是根据该第一信息确定的。
作为示例而非限定,该处理器3010用于生成第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数。
该收发器3020还用于发送该第一指示信息。
应理解,图12所示的终端设备3000能够实现图3或图7或图8或图9所示方法实施例中涉及终端设备的各个过程。终端设备3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器3010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器3020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备3000还可以包括电源3050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备3000还可以包括输入单元3060、显示单元3070、音频电路3080、摄像头3090和传感器3100等中的一个或多个,该音频电路还可以包括扬声器3082、麦克风3084等。
图13是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站4000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图13所示,该基站4000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)4100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))4200。该RRU4100可以称为收发单元,可以与图10中的收发单元1200或图11中的收发器2020对应。
可选地,该RRU 4100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线4101和射频单元4102。可选地,RRU 4100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。该RRU 4100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。该BBU 4200部分主要用于进行基带处理,对基站进行控制等。该RRU 4100与BBU 4200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
该BBU 4200为基站的控制中心,也可以称为处理单元,可以与图10中的处理单元1100或图11中的处理器2010对应,主要用于完成基带处理功能,如信道编码、复用、 调制、扩频等等。例如,该BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,该BBU 4200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。该BBU 4200还包括存储器4201和处理器4202。该存储器4201用以存储必要的指令和数据。该处理器4202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。该存储器4201和处理器4202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
作为示例而非限定,该收发器4100用于发送第一信息,该第一信息用于指示第一分组配置信息和/或第二分组配置信息,该第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,该第二分组配置信息用于指示N个频域基向量与该Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数。
该收发器4100还用于接收与该Z个层对应的预编码矩阵指示PMI,该PMI是根据该第一信息确定的。
作为示例而非限定,该收发器4100用于接收第一指示信息,该第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,该M个加权系数集合中的每个加权系数集合由参考信号确定,该M个加权系数集合与M个层一一对应,M为大于或等于2的正整数。
该处理器4202用于根据该第一指示信息确定该M个层间的功率差异。
应理解,图13所示的基站4000能够实现图3或图7或图8或图9所示方法实施例中涉及网络设备的各个过程。基站4000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 4200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 4100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图13所示出的基站4000仅为网络设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括AAU,还可以包括CU和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请对于网络设备的具体形态不做限定。
其中,CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请还提供了一种处理装置,包括至少一个处理器,该至少一个处理器用于执行存储器中存储的计算机程序,以使得该处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程 门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例还提供了一种处理装置,包括处理器和通信接口。该通信接口与该处理器耦合。该通信接口用于输入和/或输出信息。该信息包括指令和数据中的至少一项。该处理器用于执行计算机程序,以使得该处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于从该存储器调用并运行该计算机程序,以使得该处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3或图7或图8或图9所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3或图7或图8或图9所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
上述实施例中,终端设备可以作为接收设备的一例,网络设备可以作为发送设备的一例。但这不应对本申请构成任何限定。例如,发送设备和接收设备也可以均为终端设备等。本申请对于发送设备和接收设备的具体类型不作限定。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例公开的方法可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 分立硬件组件等。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行该计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的两个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器CPU、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器EPROM、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (63)

  1. 一种通信方法,其特征在于,包括:
    接收第一信息,所述第一信息用于指示第一分组配置信息和/或第二分组配置信息,所述第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,所述第二分组配置信息用于指示N个频域基向量与所述Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数;
    发送与所述Z个层对应的预编码矩阵指示PMI,所述PMI是根据所述第一信息确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述Z个层中的每个层对应于所述P个参考信号端口中的一个或多个。
  3. 根据权利要求1或2所述的方法,其特征在于,所述Z个层中的至少两个层对应的端口不完全相同。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述Z个层中的每个层对应于所述N个频域基向量中的一个或多个。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述Z个层中的至少两个层对应的频域基向量不完全相同。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一分组配置信息和/或所述第二分组配置信息承载于以下信令中的至少一种:无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI;或者
    所述第一分组配置信息和/或所述第二分组配置信息是协议预定义的。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一分组配置信息和/或所述第二分组配置信息是基于上行信道信息的K个角度时延对确定的,K为大于或等于1的正整数。
  8. 一种通信方法,其特征在于,包括:
    发送第一信息,所述第一信息用于指示第一分组配置信息和/或第二分组配置信息,所述第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,所述第二分组配置信息用于指示N个频域基向量与所述Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数;
    接收与所述Z个层对应的预编码矩阵指示PMI,所述PMI是根据所述第一信息确定的。
  9. 根据权利要求8所述的方法,其特征在于,所述Z个层中的每个层对应于所述P个参考信号端口中的一个或多个。
  10. 根据权利要求8或9所述的方法,其特征在于,所述Z个层中的至少两个层对应的端口不完全相同。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述Z个层中的每个层对应于所述N个频域基向量中的一个或多个。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述Z个层中的至少 两个层对应的频域基向量不完全相同。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述第一分组配置信息和/或所述第二分组配置信息承载于以下信令中的至少一种:无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI;或者
    所述第一分组配置信息和/或所述第二分组配置信息是协议预定义的。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述第一分组配置信息和/或所述第二分组配置信息是基于上行信道信息的K个角度时延对确定的,K为大于或等于1的正整数。
  15. 一种通信方法,其特征在于,包括:
    生成第一指示信息,所述第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,所述M个加权系数集合中的每个加权系数集合由参考信号确定,所述M个加权系数集合与M个层一一对应,M为大于或等于2的正整数;
    发送所述第一指示信息。
  16. 根据权利要求15所述的方法,其特征在于,所述M个加权系数集合中的每个加权系数集合包括多个加权系数,所述方法还包括:
    根据第一加权系数对所述M个加权系数集合中的所有加权系数进行归一化,获取所述联合归一化的M个加权系数集合的量化信息,所述第一加权系数是第L个加权系数集合中的加权系数,所述第L个加权系数集合是所述M个加权系数集合中的任意一个,L为正整数;
    发送第一消息,所述第一消息用于指示所述第一加权系数。
  17. 根据权利要求16所述的方法,其特征在于,所述第一加权系数是所述第L个加权系数集合中模值最大的加权系数。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第L个加权系数集合是终端设备确定的;或者所述第L个加权系数集合是协议预定义的。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述方法还包括:
    根据第二加权系数对M-1个第三加权系数进行第一归一化,所述第二加权系数是第U个加权系数集合中的加权系数,所述第U个加权系数集合与第u层对应,所述第三加权系数是所述M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,所述M-1个加权系数集合与所述M个层中除第u层外的M-1个层一一对应,U和u均为正整数,所述第u层属于所述M个层;
    根据所述第二加权系数对所述第U个加权系数集合中的所有加权系数进行第二归一化,以及根据所述第三加权系数对其对应的加权系数集合中的所有加权系数进行第三归一化;
    根据所述第一归一化、所述第二归一化和所述第三归一化,获取所述联合归一化的M个加权系数集合的量化信息;
    发送第二消息,所述第二消息用于指示所述第二加权系数和所述M-1个第三加权系数。
  20. 根据权利要求19所述的方法,其特征在于,所述第二加权系数是所述第U个加权系数集合中模值最大的加权系数,和/或所述第三加权系数是所述M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权 系数。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,所述方法还包括:
    根据第四加权系数对M-1个第五加权系数进行第四归一化,所述第四加权系数是第X个加权系数集合中的加权系数,所述第X个加权系数集合与第x层对应,所述第五加权系数是所述M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,所述M-1个加权系数集合与所述M个层中除第x层外的M-1个层一一对应,X和x均为正整数,所述第x层属于所述M个层;
    根据所述第四加权系数对所述第X个加权系数集合中的所有加权系数进行第五归一化;
    根据所述第四加权系数和所述第五加权系数分别对所述第五加权系数对应的加权系数集合中的所有加权系数进行第六归一化和第七归一化;
    根据所述第四归一化、所述第五归一化、所述第六归一化和所述第七归一化,获取所述联合归一化的M个加权系数集合的量化信息;
    发送第三消息,所述第三消息用于指示所述第四加权系数和所述M-1个第五加权系数。
  22. 根据权利要求21所述的方法,其特征在于,所述第四加权系数是所述第X个加权系数集合中模值最大的加权系数,和/或所述第五加权系数是所述M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
  23. 一种通信方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,所述M个加权系数集合中的每个加权系数集合由参考信号确定,所述M个加权系数集合与M个层一一对应,M为大于或等于2的正整数。
  24. 根据权利要求23所述的方法,其特征在于,所述M个加权系数集合中的每个加权系数集合包括多个加权系数,所述方法还包括:
    接收第一消息,所述第一消息用于指示第一加权系数,所述第一加权系数用于对所述M个加权系数集合中的所有加权系数进行归一化,所述第一加权系数是第N个加权系数集合中的加权系数,所述第N个加权系数集合是所述M个加权系数集合中的任意一个,N为正整数。
  25. 根据权利要求24所述的方法,其特征在于,所述第一加权系数是所述第L个加权系数集合中模值最大的加权系数。
  26. 根据权利要求24或25所述的方法,其特征在于,所述第N个加权系数集合是终端设备确定的;或者所述第N个加权系数集合是协议预定义的。
  27. 根据权利要求23至26中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二消息,所述第二消息用于指示第二加权系数和M-1个第三加权系数,所述第二加权系数用于对所述M-1个第三加权系数进行第一归一化,所述第二加权系数是第U个加权系数集合中的加权系数,所述第U个加权系数集合与第u层对应,所述第三加权系数是所述M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,所述M-1个加权系数集合与所述M个层中除第u层外的M-1个层一一对应,U和u均为正整数,所述第u层属于所述M个层,所述第二加权系数还 用于对所述第U个加权系数集合中的所有加权系数进行第二归一化,所述第三加权系数用于对其对应的加权系数集合中的所有加权系数进行第三归一化,所述第一归一化、所述第二归一化和所述第三归一化用于获取所述联合归一化的M个加权系数集合的量化信息。
  28. 根据权利要求27所述的方法,其特征在于,所述第二加权系数是所述第U个加权系数集合中模值最大的加权系数,和/或所述第三加权系数是所述M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
  29. 根据权利要求23至28中任一项所述的方法,其特征在于,所述方法还包括:
    接收第三消息,所述第三消息用于指示第四加权系数和M-1个第五加权系数,所述第四加权系数用于对所述M-1个第五加权系数进行第四归一化,所述第四加权系数是第X个加权系数集合中的加权系数,所述第X个加权系数集合与第x层对应,所述第五加权系数是所述M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,所述M-1个加权系数集合与所述M个层中除第x层外的M-1个层一一对应,X和x均为正整数,所述第x层属于所述M个层,所述第四加权系数还用于对所述第X个加权系数集合中的所有加权系数进行第五归一化,所述第四加权系数和所述第五加权系数还用于分别对所述第五加权系数对应的加权系数集合中的所有加权系数进行第六归一化和第七归一化,所述第四归一化、所述第五归一化、所述第六归一化和所述第七归一化用于获取所述联合归一化的M个加权系数集合的量化信息。
  30. 根据权利要求29所述的方法,其特征在于,所述第四加权系数是所述第X个加权系数集合中模值最大的加权系数,和/或所述第五加权系数是所述M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
  31. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一信息,所述第一信息用于指示第一分组配置信息和/或第二分组配置信息,所述第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,所述第二分组配置信息用于指示N个频域基向量与所述Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数;
    所述收发单元,还用于发送与所述Z个层对应的预编码矩阵指示PMI,所述PMI是根据所述第一信息确定的。
  32. 根据权利要求31所述的装置,其特征在于,所述Z个层中的每个层对应于所述P个参考信号端口中的一个或多个。
  33. 根据权利要求31或32所述的装置,其特征在于,所述Z个层中的至少两个层对应的端口不完全相同。
  34. 根据权利要求31至33中任一项所述的装置,其特征在于,所述Z个层中的每个层对应于所述N个频域基向量中的一个或多个。
  35. 根据权利要求31至34中任一项所述的装置,其特征在于,所述Z个层中的至少两个层对应的频域基向量不完全相同。
  36. 根据权利要求31至35中任一项所述的装置,其特征在于,所述第一分组配置信息和/或所述第二分组配置信息承载于以下信令中的至少一种:无线资源控制RRC、媒体 接入控制控制元素MAC CE、下行控制信息DCI;或者
    所述第一分组配置信息和/或所述第二分组配置信息是协议预定义的。
  37. 根据权利要求31至36中任一项所述的装置,其特征在于,所述第一分组配置信息和/或所述第二分组配置信息是基于上行信道信息的K个角度时延对确定的,K为大于或等于1的正整数。
  38. 一种通信装置,其特征在于,包括:
    收发单元,用于发送第一信息,所述第一信息用于指示第一分组配置信息和/或第二分组配置信息,所述第一分组配置信息用于指示P个参考信号端口与Z个层之间的对应关系,所述第二分组配置信息用于指示N个频域基向量与所述Z个层之间的对应关系,其中,P、N和Z均为大于或等于1的正整数;
    所述收发单元,还用于接收与所述Z个层对应的预编码矩阵指示PMI,所述PMI是根据所述第一信息确定的。
  39. 根据权利要求38所述的装置,其特征在于,所述Z个层中的每个层对应于所述P个参考信号端口中的一个或多个。
  40. 根据权利要求38或39所述的装置,其特征在于,所述Z个层中的至少两个层对应的端口不完全相同。
  41. 根据权利要求38至40中任一项所述的装置,其特征在于,所述Z个层中的每个层对应于所述N个频域基向量中的一个或多个。
  42. 根据权利要求38至41中任一项所述的装置,其特征在于,所述Z个层中的至少两个层对应的频域基向量不完全相同。
  43. 根据权利要求38至42中任一项所述的装置,其特征在于,所述第一分组配置信息和/或所述第二分组配置信息承载于以下信令中的至少一种:无线资源控制RRC、媒体接入控制控制元素MAC CE、下行控制信息DCI;或者
    所述第一分组配置信息和/或所述第二分组配置信息是协议预定义的。
  44. 根据权利要求38至43中任一项所述的装置,其特征在于,所述第一分组配置信息和/或所述第二分组配置信息是基于上行信道信息的K个角度时延对确定的,K为大于或等于1的正整数。
  45. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一指示信息,所述第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,所述M个加权系数集合中的每个加权系数集合由参考信号确定,所述M个加权系数集合与M个层一一对应,M为大于或等于2的正整数;
    收发单元,用于发送所述第一指示信息。
  46. 根据权利要求45所述的装置,其特征在于,
    所述处理单元,还用于根据第一加权系数对所述M个加权系数集合中的所有加权系数进行归一化,获取所述联合归一化的M个加权系数集合的量化信息,所述第一加权系数是第L个加权系数集合中的加权系数,所述第L个加权系数集合是所述M个加权系数集合中的任意一个,L为正整数;
    所述收发单元,还用于发送第一消息,所述第一消息用于指示所述第一加权系数。
  47. 根据权利要求46所述的装置,其特征在于,所述第一加权系数是所述第L个加 权系数集合中模值最大的加权系数。
  48. 根据权利要求46或47所述的装置,其特征在于,所述第L个加权系数集合是终端设备确定的;或者所述第L个加权系数集合是协议预定义的。
  49. 根据权利要求45至48中任一项所述的装置,其特征在于,所述处理单元,还用于:
    根据第二加权系数对M-1个第三加权系数进行第一归一化,所述第二加权系数是第U个加权系数集合中的加权系数,所述第U个加权系数集合与第u层对应,所述第三加权系数是所述M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,所述M-1个加权系数集合与所述M个层中除第u层外的M-1个层一一对应,U和u均为正整数,所述第u层属于所述M个层;
    根据所述第二加权系数对所述第U个加权系数集合中的所有加权系数进行第二归一化,以及根据所述第三加权系数对其对应的加权系数集合中的所有加权系数进行第三归一化;
    根据所述第一归一化、所述第二归一化和所述第三归一化,获取所述联合归一化的M个加权系数集合的量化信息;
    所述收发单元,还用于发送第二消息,所述第二消息用于指示所述第二加权系数和所述M-1个第三加权系数。
  50. 根据权利要求49所述的装置,其特征在于,所述第二加权系数是所述第U个加权系数集合中模值最大的加权系数,和/或所述第三加权系数是所述M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
  51. 根据权利要求45至50中任一项所述的装置,其特征在于,所述处理单元,还用于:
    根据第四加权系数对M-1个第五加权系数进行第四归一化,所述第四加权系数是第X个加权系数集合中的加权系数,所述第X个加权系数集合与第x层对应,所述第五加权系数是所述M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,所述M-1个加权系数集合与所述M个层中除第x层外的M-1个层一一对应,X和x均为正整数,所述第x层属于所述M个层;
    根据所述第四加权系数对所述第X个加权系数集合中的所有加权系数进行第五归一化;
    根据所述第四加权系数和所述第五加权系数分别对所述第五加权系数对应的加权系数集合中的所有加权系数进行第六归一化和第七归一化;
    根据所述第四归一化、所述第五归一化、所述第六归一化和所述第七归一化,获取所述联合归一化的M个加权系数集合的量化信息;
    所述收发单元,还用于发送第三消息,所述第三消息用于指示所述第四加权系数和所述M-1个第五加权系数。
  52. 根据权利要求51所述的装置,其特征在于,所述第四加权系数是所述第X个加权系数集合中模值最大的加权系数,和/或所述第五加权系数是所述M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权 系数。
  53. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一指示信息,所述第一指示信息用于指示联合归一化的M个加权系数集合的量化信息,所述M个加权系数集合中的每个加权系数集合由参考信号确定,所述M个加权系数集合与M个层一一对应,M为大于或等于2的正整数。
  54. 根据权利要求53所述的装置,其特征在于,所述收发单元,还用于:
    接收第一消息,所述第一消息用于指示第一加权系数,所述第一加权系数用于对所述M个加权系数集合中的所有加权系数进行归一化,所述第一加权系数是第N个加权系数集合中的加权系数,所述第N个加权系数集合是所述M个加权系数集合中的任意一个,N为正整数。
  55. 根据权利要求54所述的装置,其特征在于,所述第一加权系数是所述第L个加权系数集合中模值最大的加权系数。
  56. 根据权利要求54或55所述的装置,其特征在于,所述第N个加权系数集合是终端设备确定的;或者所述第N个加权系数集合是协议预定义的。
  57. 根据权利要求53至56中任一项所述的装置,其特征在于,所述收发单元,还用于:
    接收第二消息,所述第二消息用于指示第二加权系数和M-1个第三加权系数,所述第二加权系数用于对所述M-1个第三加权系数进行第一归一化,所述第二加权系数是第U个加权系数集合中的加权系数,所述第U个加权系数集合与第u层对应,所述第三加权系数是所述M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,所述M-1个加权系数集合与所述M个层中除第u层外的M-1个层一一对应,U和u均为正整数,所述第u层属于所述M个层,所述第二加权系数还用于对所述第U个加权系数集合中的所有加权系数进行第二归一化,所述第三加权系数用于对其对应的加权系数集合中的所有加权系数进行第三归一化,所述第一归一化、所述第二归一化和所述第三归一化用于获取所述联合归一化的M个加权系数集合的量化信息。
  58. 根据权利要求57所述的装置,其特征在于,所述第二加权系数是所述第U个加权系数集合中模值最大的加权系数,和/或所述第三加权系数是所述M个加权系数集合中除第U个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
  59. 根据权利要求53至58中任一项所述的装置,其特征在于,所述收发单元,还用于:
    接收第三消息,所述第三消息用于指示第四加权系数和M-1个第五加权系数,所述第四加权系数用于对所述M-1个第五加权系数进行第四归一化,所述第四加权系数是第X个加权系数集合中的加权系数,所述第X个加权系数集合与第x层对应,所述第五加权系数是所述M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中的加权系数,所述M-1个加权系数集合与所述M个层中除第x层外的M-1个层一一对应,X和x均为正整数,所述第x层属于所述M个层,所述第四加权系数还用于对所述第X个加权系数集合中的所有加权系数进行第五归一化,所述第四加权系数和所述第五加权系数还用于分别对所述第五加权系数对应的加权系数集合中的所有加权系 数进行第六归一化和第七归一化,所述第四归一化、所述第五归一化、所述第六归一化和所述第七归一化用于获取所述联合归一化的M个加权系数集合的量化信息。
  60. 根据权利要求59所述的装置,其特征在于,所述第四加权系数是所述第X个加权系数集合中模值最大的加权系数,和/或所述第五加权系数是所述M个加权系数集合中除第X个加权系数集合外的M-1个加权系数集合中,各加权系数集合中模值最大的加权系数。
  61. 一种通信装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,所述处理器与存储器耦合;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至7、15至22中任一项所述的方法;或者,以使得所述装置执行如权利要求8至14、23至30中任一项所述的方法。
  62. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上执行时,
    使得所述计算机执行如权利要求1至7、15至22中任一项所述的方法;或者
    使得所述计算机执行如权利要求8至14、23至30中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质上存储有计算机程序,当所述计算机程序运行时,
    使得所述计算机执行如权利要求1至7、15至22中任一项所述的方法;或者
    使得所述计算机执行如权利要求8至14、23至30中任一项所述的方法。
PCT/CN2022/083305 2021-04-30 2022-03-28 通信方法和通信装置 WO2022227976A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22794449.3A EP4325731A1 (en) 2021-04-30 2022-03-28 Communication method and communication device
US18/496,386 US20240056139A1 (en) 2021-04-30 2023-10-27 Communication method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110482373.7A CN115276733A (zh) 2021-04-30 2021-04-30 通信方法和通信装置
CN202110482373.7 2021-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/496,386 Continuation US20240056139A1 (en) 2021-04-30 2023-10-27 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022227976A1 true WO2022227976A1 (zh) 2022-11-03

Family

ID=83745172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083305 WO2022227976A1 (zh) 2021-04-30 2022-03-28 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20240056139A1 (zh)
EP (1) EP4325731A1 (zh)
CN (1) CN115276733A (zh)
WO (1) WO2022227976A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190058517A1 (en) * 2017-07-21 2019-02-21 Lg Electronics Inc. Method and apparatus for transmitting and receiving channel state information - reference signal (csi-rs)
CN110855336A (zh) * 2018-08-20 2020-02-28 华为技术有限公司 指示和确定预编码向量的方法以及通信装置
CN111510189A (zh) * 2019-01-30 2020-08-07 华为技术有限公司 信息反馈方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190058517A1 (en) * 2017-07-21 2019-02-21 Lg Electronics Inc. Method and apparatus for transmitting and receiving channel state information - reference signal (csi-rs)
CN110855336A (zh) * 2018-08-20 2020-02-28 华为技术有限公司 指示和确定预编码向量的方法以及通信装置
CN111510189A (zh) * 2019-01-30 2020-08-07 华为技术有限公司 信息反馈方法及装置

Also Published As

Publication number Publication date
CN115276733A (zh) 2022-11-01
US20240056139A1 (en) 2024-02-15
EP4325731A1 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
CN111342912B (zh) 一种信道测量方法和通信装置
CN111342873B (zh) 一种信道测量方法和通信装置
CN112751592B (zh) 上报信道状态信息的方法和通信装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
CN112583501B (zh) 信道测量方法和通信装置
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
CN114600384B (zh) 一种信道测量方法和通信装置
US11943014B2 (en) Channel measurement method and communications apparatus
CN112312464A (zh) 上报信道状态信息的方法和通信装置
CN115315906B (zh) 一种信道测量方法和通信装置
WO2016119255A1 (zh) 一种获取下行信道信息的方法、装置以及网络侧设备
WO2021159309A1 (zh) 一种信道测量方法和通信装置
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
US20230019630A1 (en) Update Method and Communications Apparatus
WO2022262545A1 (zh) 一种信道状态信息的反馈方法及装置
WO2022227976A1 (zh) 通信方法和通信装置
WO2021081964A1 (zh) 一种下行参考信号的发送端口的配置方法和通信装置
CN112398516A (zh) 一种码本子集限制的方法和通信装置
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置
WO2021146961A1 (zh) 用于确定下行信道状态信息的方法和装置
WO2024001744A1 (zh) 一种信道状态信息的上报方法及通信装置
WO2021146938A1 (zh) 用于确定下行信道状态信息的方法和装置
WO2022083307A1 (zh) 信道测量的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794449

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022794449

Country of ref document: EP

Effective date: 20231113

NENP Non-entry into the national phase

Ref country code: DE