WO2021146961A1 - 用于确定下行信道状态信息的方法和装置 - Google Patents

用于确定下行信道状态信息的方法和装置 Download PDF

Info

Publication number
WO2021146961A1
WO2021146961A1 PCT/CN2020/073638 CN2020073638W WO2021146961A1 WO 2021146961 A1 WO2021146961 A1 WO 2021146961A1 CN 2020073638 W CN2020073638 W CN 2020073638W WO 2021146961 A1 WO2021146961 A1 WO 2021146961A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
delay domain
path signal
strongest path
preset
Prior art date
Application number
PCT/CN2020/073638
Other languages
English (en)
French (fr)
Inventor
尚鹏
葛士斌
金黄平
范利
毕晓艳
种稚萌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/073638 priority Critical patent/WO2021146961A1/zh
Publication of WO2021146961A1 publication Critical patent/WO2021146961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for determining (channel state information, CSI).
  • the 5th Generation (5G) system needs to have higher performance and efficiency than 4G, and has higher requirements on system capacity and spectrum efficiency.
  • the massive-input multiple-output (MIMO) system is a key technology in the 5G communication system.
  • a large number of antennas are arranged on the network equipment side, so that the 5G network can double the system throughput.
  • how to learn uplink CSI and downlink CSI is an important parameter to improve the communication quality of MIMO communication.
  • TDD time division duplex
  • the uplink channel and the downlink channel have strict reciprocity, and the network equipment can learn the downlink CSI through the uplink CSI.
  • the network device can reconstruct the downlink CSI based on the prior information of the uplink channel (that is, the multipath angle and delay) and the supplementary information fed back by the terminal device. Specifically, the network device generates precoding according to the angle and time delay, and uses the precoding to encode the downlink signal.
  • the terminal device receives the coded downlink signal, and generates a weighting coefficient according to the coded downlink signal.
  • the network receives the weighting coefficient, and determines the downlink CSI according to the weighting coefficient and combining the multipath angle and time delay.
  • the present application provides a method and device for determining downlink channel state information CSI, which can obtain accurate downlink CSI, thereby helping to improve the communication quality of downlink signal transmission.
  • a method for determining downlink channel state information CSI includes: determining a weighting coefficient of a downlink channel according to a downlink channel vector and a delay domain difference, and the weighting coefficient is used by a network device to determine a downlink channel.
  • the downlink channel vector is estimated based on the precoding reference signal
  • the precoding reference signal is obtained by the network device precoding the reference signal based on the angular delay of the uplink channel
  • the delay domain difference is the terminal The delay domain difference between the delay domain position of the strongest path signal of the device and the preset delay domain position of the strongest path signal; sending the weighting coefficient to the network device.
  • the terminal equipment When determining the weighting coefficient of the downlink channel, the terminal equipment needs to consider the time delay domain where the position of the time delay domain of the strongest path signal of the terminal equipment is offset from the preset time delay domain position of the strongest path signal. In this way, the terminal device can calculate the weighting coefficient when it shifts to the time delay domain position of the preset strongest path signal, which in turn helps the network device to calculate the accurate downlink CSI according to the weighting coefficient, thereby helping to improve the downlink signal transmission. Communication quality.
  • the method before determining the weighting coefficient according to the downlink channel vector and the delay domain difference, the method further includes: receiving first indication information, where the first indication information is used to indicate the preset maximum value.
  • the delay domain position of the strong path signal determine the delay domain difference according to the first indication information and the delay domain position of the strongest path signal of the terminal device.
  • the network device can set the preset delay domain position of the strongest path signal, and inform the terminal device through the instruction information.
  • the terminal device can determine the first delay domain difference value according to the preset delay domain position of the strongest path signal indicated by the first indication information and the delay domain position of the strongest path signal of the terminal device.
  • the network device can flexibly set the delay domain position of the preset strongest path signal, and inform the terminal device through the instruction information, thereby improving the flexibility of setting the delay domain position of the preset strongest path signal .
  • the receiving the first indication information includes: receiving control signaling, where the control signaling carries the indication information.
  • the first indication information may also be carried in the control signaling and sent, which saves the signaling overhead of specifically sending the indication information.
  • the preset position of the delay domain of the strongest path signal is predefined.
  • the position of the delay domain of the preset strongest path signal may be stipulated in the agreement, or in other words, the terminal device and the network device may be agreed in advance. In this way, both the network equipment and the terminal equipment can learn the delay domain location of the preset strongest path signal, which saves the signaling overhead of mutual notification.
  • the method before determining the weighting coefficient according to the downlink channel vector and the delay domain difference, the method further includes: determining the preset strongest path signal according to the transmission port of the preset strongest path signal The delay domain position of the path signal; the delay domain difference value is determined according to the delay domain position of the preset strongest path signal and the time delay domain position of the strongest path signal of the terminal device.
  • the transmission port of the preset strongest path signal and the delay domain position of the preset strongest path signal have a mapping relationship, so that the terminal device can find the time delay of the preset strongest path signal corresponding to any transmission port according to the mapping relationship Domain location. That is to say, the terminal device can indirectly determine the time delay domain position of the preset strongest path signal, that is, the terminal device can determine the time delay domain position of the preset strongest path signal in another way. In this way, the terminal device can calculate the weighting coefficient when it shifts to the time delay domain position of the preset strongest path signal, which in turn helps the network device to calculate the accurate downlink CSI according to the weighting coefficient, thereby helping to improve the downlink signal transmission. Communication quality.
  • the transmission port of the preset strongest path signal is predefined.
  • the transmission port of the preset strongest path signal may be stipulated by the protocol, or in other words, the terminal device and the network device may be agreed in advance. In this way, both the network device and the terminal device can learn the transmission port of the preset strongest path signal, which saves the signaling overhead of mutual notification.
  • the terminal device may obtain second indication information, where the second indication information is used to indicate a preset transmission port of the strongest path signal.
  • the network device sends the second indication information to the terminal device. That is to say, the network device can indirectly indicate the preset delay domain position of the strongest path signal through the second indication information. In this way, the network device can flexibly set the transmission port of the preset strongest path signal, and inform the terminal device through the instruction information, thereby improving the flexibility of setting the transmission port of the preset strongest path signal.
  • the second indication information may be sent independently, which improves the flexibility of sending the second indication information.
  • the second indication information may also be carried in control signaling and sent, which saves the signaling overhead of specifically sending the second indication information.
  • determining the weighting coefficient according to the downlink channel vector and the delay domain difference includes: the downlink channel vector, the delay domain difference, and the weighting coefficient satisfy the following formula:
  • C represents the weighting coefficient
  • X.IFFT(k) represents the k-th inverse fast Fourier transform IFFT transform value in X
  • k is the delay domain index of the delay domain position of the preset strongest path signal
  • H is the downlink channel vector
  • represents the delay domain difference.
  • the channel vector h may be a channel vector composed of N channel estimation values. Performing IFFT on the channel vector h can obtain N time-domain transform values.
  • the terminal device may determine one of the N time-domain transform values as the weighting coefficient. For example, the terminal device may use the k-th time-domain transformation value among the N time-domain transformation values as the weighting coefficient. In this way, the terminal device can align the delay domain by offsetting the delay domain position of the strongest path signal relative to the preset delay domain position of the strongest path signal by compensating the phase (ie e- j2 ⁇ ), thereby It helps to improve the accuracy of the calculation of the weighting coefficient.
  • a method for determining downlink channel state information CSI includes: receiving a weighting coefficient of a downlink channel from a terminal device; according to the weighting coefficient, the angle delay pair and the time delay domain of the uplink channel The difference is to determine the downlink CSI.
  • the delay domain difference is the delay domain difference between the delay domain position of the strongest path signal of the network device and the preset delay domain position of the strongest path signal.
  • the network device When determining the downlink CSI by the network device, it is necessary to consider the time delay domain where the delay domain position of the strongest path signal of the network device is offset from the preset time delay domain position of the strongest path signal. If the weighting coefficient determined by the terminal device is a weighting coefficient shifted to the time delay domain position of the preset strongest path signal, the network device can obtain a more accurate downlink CSI. That is to say, the delay domain position of the strongest path signal of the terminal equipment and the network equipment is aligned to the preset delay domain position of the strongest path signal, which reduces the start of the delay domain due to the terminal equipment and the network equipment. The absolute delay domains of the locations are different, resulting in inaccurate weighting coefficients generated by the terminal equipment, and/or inaccurate downlink CSI calculated by the network equipment, thereby improving the communication quality of the downlink signal transmission.
  • the method before receiving the weighting coefficient of the downlink channel from the terminal device, the method further includes: sending first indication information to the terminal device, where the first indication information is used to indicate the preset strongest The position of the delay domain of the path signal.
  • the network device can set the preset delay domain position of the strongest path signal, and inform the terminal device through the instruction information.
  • the terminal device can determine the first delay domain difference value according to the preset delay domain position of the strongest path signal indicated by the first indication information and the delay domain position of the strongest path signal of the terminal device.
  • the network device can flexibly set the delay domain position of the preset strongest path signal, and inform the terminal device through the instruction information, thereby improving the flexibility of setting the delay domain position of the preset strongest path signal .
  • the sending the first indication information to the terminal device includes sending control signaling, where the control signaling includes the indication information.
  • the first indication information may also be carried in the control signaling and sent, so that the signaling overhead for sending the indication information specifically is saved.
  • the preset position of the delay domain of the strongest path signal is predefined.
  • the position of the delay domain of the preset strongest path signal may be stipulated in the agreement, or in other words, the terminal device and the network device may be agreed in advance. In this way, both the network equipment and the terminal equipment can learn the delay domain location of the preset strongest path signal, which saves the signaling overhead of mutual notification.
  • the method before receiving the weighting coefficient of the downlink channel from the terminal device, the method further includes: determining the time delay of the preset strongest path signal according to the transmission port of the preset strongest path signal Domain position; the delay domain difference is determined according to the preset maximum path signal's delay domain position and the network device's strongest path signal's delay domain position.
  • the transmission port of the preset strongest path signal and the delay domain position of the preset strongest path signal have a mapping relationship, so that the terminal device can find the time delay of the preset strongest path signal corresponding to any transmission port according to the mapping relationship Domain location. That is to say, the terminal device can indirectly determine the time delay domain position of the preset strongest path signal, that is, the terminal device can determine the time delay domain position of the preset strongest path signal in another way. In this way, the terminal device can calculate the weighting coefficient when it shifts to the time delay domain position of the preset strongest path signal, which in turn helps the network device to calculate the accurate downlink CSI according to the weighting coefficient, thereby helping to improve the transmission efficiency of the downlink signal. Communication quality.
  • the transmission port of the preset strongest path signal is predefined.
  • the transmission port of the preset strongest path signal may be stipulated by the protocol, or in other words, the terminal device and the network device may be agreed in advance. In this way, both the network device and the terminal device can learn the transmission port of the preset strongest path signal, which saves the signaling overhead of mutual notification.
  • the network device sends second indication information, where the second indication information is used to indicate a preset transmission port of the strongest path signal.
  • the network device sends the second indication information to the terminal device. That is to say, the network device can indirectly indicate the preset delay domain position of the strongest path signal through the second indication information. In this way, the network device can flexibly set the transmission port of the preset strongest path signal, and inform the terminal device through the instruction information, thereby improving the flexibility of setting the transmission port of the preset strongest path signal.
  • the second indication information may be sent independently, which improves the flexibility of sending the second indication information.
  • the second indication information may also be carried in control signaling and sent, which saves the signaling overhead of specifically sending the second indication information.
  • the downlink CSI includes a downlink channel matrix
  • determining the downlink CSI according to the weighting coefficient, the angle delay pair of the uplink channel, and the delay domain difference includes: the weighting coefficient, the angle delay pair ,
  • the delay domain difference and the downlink channel matrix satisfy the following formula:
  • H′ represents the downlink channel matrix
  • S represents the matrix constructed by the angle vector in the angle delay pair
  • F represents the matrix constructed by the delay vector in the angle delay pair
  • F H is the conjugate of the F Set the matrix
  • C is the matrix constructed by the weighting coefficient
  • represents the delay domain difference.
  • the network device can calculate the downlink channel matrix by the above formula, which realizes the time delay domain position of the signal to the preset strongest path, which reduces the absolute time due to the start position of the respective delay domain of the terminal equipment and the network equipment.
  • the difference in extension fields results in inaccurate weighting coefficients generated by the terminal device and/or inaccurate downlink CSI calculated by the network device, thereby improving the communication quality of downlink signal transmission.
  • the preset strongest path signal and the strongest path signal of the terminal device have the same time delay domain position.
  • the time delay domain position of the preset strongest path signal is the same as the time delay domain position of the strongest path signal of the terminal device, it is reduced because the preset strongest path signal and the strongest path of the terminal device are the same.
  • the inaccurate calculation of the weighting coefficient caused by the delay domain offset of the signal's delay domain position improves the communication quality of the downlink signal transmission.
  • the delay domain position of the preset strongest path signal is the same as the delay domain position of the strongest path signal of the network device.
  • the time delay domain due to the preset strongest path signal and the strongest path signal of the network equipment is reduced.
  • the inaccurate calculation of the downlink CSI caused by the delay domain offset of the position improves the communication quality of the downlink signal transmission.
  • a device for determining transmission resources may be a terminal device or a chip in the terminal device.
  • the device has the function of realizing the above-mentioned first aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a receiving module and a sending module.
  • the device further includes a processing module.
  • the receiving module and the sending module may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored by the storage module or instructions derived from other sources, so that the device executes the first aspect or any one of the methods described above.
  • the chip when the device is a chip, the chip includes a receiving module and a sending module.
  • the chip further includes a processing module.
  • the receiving module and the sending module may be input/output interfaces, pins or circuits on the chip, for example.
  • the processing module may be a processor or a processing circuit, for example.
  • the processing module can execute instructions so that the chip in the terminal device executes the above-mentioned first aspect and any possible implemented communication method.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above All aspects of communication method program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a device for determining downlink channel state information CSI is provided.
  • the device may be a network device or a chip in the network device.
  • the device has the function of realizing the above-mentioned second aspect and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a receiving module and a sending module.
  • the device further includes a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the receiving module and the transmitting module may include radio frequency circuits or antennas.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or from other instructions, so that the device executes the second aspect described above and various possible implementation modes of communication methods.
  • the device can be a network device.
  • the chip when the device is a chip, the chip includes: a receiving module and a sending module.
  • the device also includes a processing module.
  • the receiving module and the sending module may be inputs on the chip, for example. /Output interface, pin or circuit, etc.
  • the processing module may be a processor or a processing circuit, for example.
  • the processing module can execute instructions so that the chip in the terminal device executes the second aspect and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above All aspects of communication method program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the above-mentioned first aspect and any possible implementation manners thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the second aspect and any possible implementations thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the first aspect or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the second aspect described above, or any possible implementation manner thereof.
  • a communication system in a ninth aspect, includes a device capable of implementing the methods and various possible designs of the above-mentioned first aspect, and the above-mentioned device capable of implementing the various methods and various possible designs of the above-mentioned second aspect. Functional device.
  • a processor configured to be coupled with a memory and configured to execute the method in the above-mentioned first aspect or any possible implementation manner thereof.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is used to communicate with an external device or an internal device.
  • the processor is used to implement any one or any of the above-mentioned first aspects. The method in the implementation.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored in the memory or instructions derived from other sources.
  • the processor is used to implement the first aspect described above, or the method in any possible implementation manner thereof.
  • the chip can be integrated on the terminal device.
  • a chip in a twelfth aspect, includes a processor and a communication interface.
  • the communication interface is used to communicate with an external device or an internal device.
  • the processor is used to implement the second aspect or any of its possible implementations. Methods.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored in the memory or instructions derived from other sources.
  • the processor is used to implement the second aspect described above, or the method in any possible implementation manner thereof.
  • the chip can be integrated on the network device.
  • the terminal device determines the weighting coefficient of the downlink channel to consider the delay domain of the delay domain position of the strongest path signal of the terminal device that is offset relative to the preset delay domain position of the strongest path signal.
  • the network device determines the weighting coefficient of the downlink channel to consider the delay domain of the delay domain position of the strongest path signal of the terminal device that is offset relative to the preset delay domain position of the strongest path signal.
  • FIG. 1 is a schematic diagram of the architecture of a communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of precoding a reference signal based on a delay vector according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for determining downlink channel state information CSI according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of the position of the time delay domain of the strongest path signal of the terminal device of the present application.
  • FIG. 5 is a schematic diagram of the position of the time delay domain of the strongest path signal of the network device of the present application.
  • FIG. 6 is a schematic block diagram of an apparatus for determining downlink channel state information CSI according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of an apparatus for determining downlink channel state information CSI according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for determining downlink channel state information CSI according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus for determining downlink channel state information CSI according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for determining downlink channel state information CSI according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an apparatus for determining downlink channel state information CSI according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an apparatus for determining downlink channel state information CSI according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an apparatus for determining downlink channel state information CSI according to another embodiment of the present application.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD Time division duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G mobile communication system may include non-standalone (NSA) and/or standalone (SA).
  • the technical solution provided in this application can also be applied to machine type communication (MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), and device-to-device (D2D) Network, machine to machine (M2M) network, Internet of things (IoT) network or other networks.
  • MTC machine type communication
  • LTE-M inter-machine communication long-term evolution technology
  • D2D device-to-device
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • V2X vehicle to other devices
  • V2X vehicle to X
  • X can represent anything
  • the V2X may include: vehicle to vehicle (V2V) communication, and the Infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian communication (V2P) or vehicle to network (V2N) communication, etc.
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian communication
  • V2N vehicle to network
  • the network device may be any device that has a wireless transceiver function.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) , Base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BBU Base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • wireless fidelity wireless fidelity, WiFi
  • AP wireless relay node
  • TP transmission point
  • TRP transmission and reception point
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB, and DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) The function of the layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment, and the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , It can also belong to the base station corresponding to the small cell.
  • the small cell here can include: metro cell, micro cell, pico cell, femto cell, etc. These small cells have the characteristics of small coverage area and low transmit power, and are suitable for providing high-speed data transmission services.
  • terminal equipment may also be referred to as user equipment (UE), access terminal equipment, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, user Terminal equipment, terminal equipment, wireless communication equipment, user agent or user device.
  • UE user equipment
  • access terminal equipment subscriber unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal equipment
  • mobile equipment user Terminal equipment
  • terminal equipment wireless communication equipment
  • user agent user device
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some terminal devices can be: mobile phones, tablets, computers with wireless transceiver functions (such as laptops, palmtops, etc.), mobile internet devices (MID), virtual Virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving (self-driving), remote medical (remote medical) Wireless terminal equipment in the smart grid, wireless terminal equipment in the smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in the smart city, and smart home Wireless terminal equipment, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), with wireless communication functions Handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the 5G network or terminal devices in the public land mobile
  • wearable devices can also be called wearable smart devices, which are the general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things. IoT technology can achieve massive connections, deep coverage, and power saving for terminal devices through, for example, narrowband NB technology.
  • terminal devices can also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (some terminal devices), receiving control information and downlink data from network devices, and sending electromagnetic waves to transmit uplink data to network devices. .
  • FIG. 1 shows a schematic diagram of a communication system 100 applicable to the method provided in the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 in the 5G system shown in FIG. 1; the communication system 100 may also include at least one terminal device, as shown in FIG. Terminal equipment 102 to 107.
  • the terminal devices 102 to 107 may be mobile or fixed.
  • the network device 101 and one or more of the terminal devices 102 to 107 can communicate through a wireless link.
  • Each network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area. For example, the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device. Therefore, the network device 101 and the terminal devices 102 to 107 in FIG. 1 constitute a communication system.
  • the terminal devices can communicate directly.
  • D2D technology can be used to realize direct communication between terminal devices.
  • D2D technology can be used for direct communication.
  • the terminal device 106 and the terminal device 107 may communicate with the terminal device 105 individually or at the same time.
  • the terminal devices 105 to 107 may also communicate with the network device 101, respectively. For example, it can directly communicate with the network device 101.
  • the terminal devices 105 and 106 in the figure can directly communicate with the network device 101; it can also communicate with the network device 101 indirectly, as the terminal device 107 in the figure communicates with the network device via the terminal device 106. 101 communication.
  • FIG. 1 exemplarily shows a network device, multiple terminal devices, and communication links between each communication device.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices, for example, more or fewer terminal devices. This application does not limit this.
  • Each of the aforementioned communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers, etc.). , Demodulator, demultiplexer or antenna, etc.). Therefore, multiple antenna technology can be used to communicate between network devices and terminal devices.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, and the embodiment of the present application is not limited thereto.
  • the processing procedure of the downlink signal at the physical layer before transmission may be executed by a network device, or may be executed by a chip configured in the network device.
  • the following are collectively referred to as network devices.
  • Network equipment can process code words on physical channels.
  • the codeword may be coded bits that have been coded (for example, including channel coding).
  • the codeword is scrambling to generate scrambled bits.
  • the scrambled bits undergo modulation mapping (modulation mapping) to obtain modulation symbols.
  • Modulation symbols are mapped to multiple layers, or transmission layers, through layer mapping.
  • the modulation symbols after the layer mapping are precoding (precoding) to obtain a precoded signal.
  • the precoded signal is mapped to multiple REs after resource element (resource element, RE) mapping. These REs are then modulated by orthogonal frequency division multiplexing (OFDM) and then transmitted through an antenna port (antenna port).
  • OFDM orthogonal frequency division multiplexing
  • Precoding technology When the channel status is known, the network equipment can process the signal to be sent with the help of a precoding matrix that matches the channel status, so that the precoded signal to be sent is adapted to the channel, thereby This reduces the complexity for the receiving device to eliminate the influence between channels. Therefore, through the precoding processing of the signal to be transmitted, the quality of the received signal (for example, the signal to interference plus noise ratio (SINR), etc.) can be improved. Therefore, the use of precoding technology can realize the transmission on the same time-frequency resource between the sending device and multiple receiving devices, that is, realizing multiple user multiple input multiple output (MU-MIMO).
  • SINR signal to interference plus noise ratio
  • the sending device can also perform precoding in other ways. For example, when channel information (such as but not limited to a channel matrix) cannot be obtained, precoding is performed using a preset precoding matrix or a weighting processing method. For the sake of brevity, its specific content will not be repeated in this article.
  • Channel reciprocity In some communication modes, such as TDD, the uplink and downlink channels transmit signals on the same frequency domain resources and different time domain resources. In a relatively short time (for example, the coherence time of channel propagation), it can be considered that the channel fading experienced by the signals on the uplink and downlink channels is the same. This is the reciprocity of the uplink and downlink channels.
  • the network equipment Based on the reciprocity of the uplink and downlink channels, the network equipment can measure the uplink channel based on the uplink reference signal, such as a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the downlink channel can be estimated according to the uplink channel, so that the precoding matrix for downlink transmission can be determined.
  • the uplink and downlink channels do not have complete reciprocity, and the uplink channel is used to determine the precoding matrix for downlink transmission. It cannot be adapted to the downlink channel.
  • the uplink and downlink channels in the FDD mode still have partial reciprocity, for example, the reciprocity of angle and the reciprocity of delay. Therefore, angle and delay can also be called reciprocity parameters.
  • Multipath time delay causes frequency selective fading, which is the change of frequency domain channel.
  • the time delay is the transmission time of the wireless signal on different transmission paths, which is determined by the distance and speed, and has nothing to do with the frequency domain of the wireless signal.
  • signals are transmitted on different transmission paths, there are different transmission delays due to different distances. Since the physical location between the network equipment and the terminal equipment is fixed, the multipath distribution of the uplink and downlink channels is the same in terms of delay. Therefore, the uplink and downlink channels in the FDD mode with delay can be considered the same, or in other words, reciprocal.
  • the angle may refer to the angle of arrival (AOA) at which the signal reaches the receiving antenna via the wireless channel, or may refer to the angle of departure (AOD) at which the signal is transmitted through the transmitting antenna.
  • AOA angle of arrival
  • AOD angle of departure
  • the angle may refer to the angle of arrival at which the uplink signal reaches the network device, and may also refer to the angle of departure at which the network device transmits the downlink signal. Due to the reciprocity of the transmission paths of the uplink and downlink channels on different frequencies, the arrival angle of the uplink reference signal and the departure angle of the downlink reference signal can be considered to be reciprocal.
  • each angle can be characterized by an angle vector.
  • Each delay can be characterized by a delay vector. Therefore, in the embodiment of the present application, an angle vector may represent an angle, and a delay vector may represent a time delay.
  • Reference signal (RS) and precoding reference signal may also be called a pilot (pilot), reference sequence, etc.
  • the reference signal may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (CSI-RS) used for downlink channel measurement, or it may be an SRS used for uplink channel measurement.
  • CSI-RS channel state information reference signal
  • SRS uplink channel measurement
  • the precoding reference signal may be a reference signal obtained by precoding the reference signal.
  • the precoding may specifically include beamforming and/or phase rotation. Wherein, beamforming may be realized by precoding the downlink reference signal based on one or more angle vectors, and phase rotation may be realized by precoding the downlink reference signal by one or more delay vectors, for example.
  • the reference signal obtained after precoding is called a precoding reference signal; the reference signal that has not been precoded is referred to as a reference signal for short .
  • precoding the downlink reference signal based on one or more angle vectors can also be referred to as loading one or more angle vectors on the downlink reference signal to achieve beamforming.
  • Precoding the downlink reference signal based on one or more delay vectors can also be referred to as loading one or more delay vectors on the downlink reference signal to achieve phase rotation.
  • Port It can include a transmitting port and a receiving port.
  • the transmitting port can be understood as a virtual antenna recognized by the receiving device.
  • the port may refer to the transmitting antenna port.
  • the reference signal of each transmit antenna port may be a reference signal that has not been precoded.
  • the transmitting antenna port may refer to an actual independent transmitting unit (transceiver unit, TxRU).
  • the port may also refer to a port after beamforming.
  • the reference signal of each port may be a precoding reference signal obtained by precoding the reference signal based on an angle vector. It is understandable that if beamforming is performed on the reference signal, the number of ports may refer to the number of ports of the precoding reference signal. The number of ports of the precoding reference signal may be less than the number of transmitting antenna ports.
  • a port may also refer to a port after phase rotation.
  • the reference signal of each port may be a precoding reference signal that is precoded based on a delay vector and sent through a transmit antenna port. This port may also be referred to as the port of the precoding reference signal.
  • the port may also refer to the port after beamforming and phase rotation.
  • the reference signal of each port may be a precoding reference signal obtained by precoding the reference signal based on an angle vector and a delay vector. This port may also be referred to as the port of the precoding reference signal.
  • the reference signal of each port can be transmitted through one or more frequency domain units.
  • the transmitting antenna port when the transmitting antenna port is involved, it may refer to the number of ports that have not been spatially precoded. That is, it is the actual number of independent transmission units.
  • a port in different embodiments, it may refer to a transmitting antenna port, or it may refer to a port of a precoding reference signal.
  • the specific meaning expressed by the port can be determined according to specific embodiments.
  • the port of the precoding reference signal is referred to as the reference signal port.
  • the receiving port can be understood as the receiving antenna of the receiving device.
  • the receiving port may refer to the receiving antenna of the terminal device.
  • Angle vector it can be understood as a precoding vector for beamforming the reference signal.
  • the reference signal emitted by the transmitting device can have a certain spatial directivity. Therefore, the process of precoding the reference signal based on the angle vector can also be regarded as the process of spatial domain (or simply, spatial domain) precoding. Therefore, the angle vector can also be called a spatial vector, a beam vector, and so on.
  • the number of ports of the precoding reference signal obtained after precoding the reference signal based on one or more angle vectors is the same as the number of angle vectors.
  • the antenna port dimension can be reduced by spatial precoding, thereby reducing pilot overhead.
  • the angle vector can be a vector of length T.
  • the angle vector is a Discrete Fourier Transform (DFT) vector.
  • the DFT vector may refer to the vector in the DFT matrix.
  • the angle vector is the conjugate transpose vector of the DFT vector.
  • the DFT conjugate transpose vector may refer to the column vector in the conjugate transpose matrix of the DFT matrix.
  • the angle vector is an oversampled DFT vector.
  • the oversampled DFT vector may refer to the vector in the oversampled DFT matrix.
  • the angle vector may be, for example, the two-dimensional (2 dimensions, 2D)-DFT vector v defined in the type II (type II) codebook in the NR protocol TS 38.214 version 15 (release 15, R15). l,m .
  • the angle vector can be a 2D-DFT vector Or oversampled 2D-DFT vector
  • I 1 is the number of antenna ports in the same polarization direction included in each column (or row) of the antenna array
  • I 2 is the number of antenna ports in the same polarization direction included in each row (or column) of the antenna array.
  • T I 1 ⁇ I 2 .
  • O 1 and O 2 are oversampling factors. i 1 and i 2 satisfy 0 ⁇ i 1 ⁇ (O 1 ⁇ I 1 -1), and 0 ⁇ i 2 ⁇ (O 2 ⁇ I 2 -1). Among them, when O 1 and O 2 are both 1, Is a 2D-DFT vector, when at least one of O 1 and O 2 is greater than 1, Is an oversampled 2D-DFT vector.
  • the angle vector is the steering vector a( ⁇ k ) of a uniform linear array (ULA).
  • ⁇ k is an angle
  • k 1, 2, ..., K.
  • K represents the number of angle vectors
  • is the wavelength
  • d is the antenna spacing.
  • the steering vector can represent the phase difference between the response of different antennas for the angle of arrival of a path.
  • the angle vector is a steering vector of a uniform plane array (UPA).
  • the steering vector can be, for example, a steering vector containing information about the horizontal angle and the pitch angle.
  • ⁇ k is the horizontal angle, Is the elevation angle
  • u k is the unit sphere basis vector corresponding to the k-th angle:
  • the steering vector may also be referred to as an angle vector.
  • the steering vector and the angle vector are not distinguished, and the following embodiments take the angle vector as an example for description.
  • the angle vector is denoted as a( ⁇ k ).
  • the channel measured by the terminal device according to the received precoding reference signal is equivalent to the channel loaded with the angle vector.
  • loading the angle vector a( ⁇ k ) to the downlink channel V can be expressed as Va( ⁇ k ).
  • the transmitting device is configured with a single-polarized antenna
  • the number of transmitting antenna ports is T; the number of frequency domain units is N, N ⁇ 1, and N is an integer.
  • the channel estimated based on the received reference signal may be a matrix with a dimension of N ⁇ T. If the reference signal is spatially pre-coded based on an angle vector, the angle vector can be loaded onto the reference signal respectively. Since the dimension of the angle vector is T ⁇ 1, for one receiving port of the receiving device, the dimension of the channel estimated based on the precoding reference signal may be N ⁇ 1. And on each receiving port and each frequency domain unit, the dimension of the channel estimated by the terminal device based on the received precoding reference signal may be 1 ⁇ 1.
  • angle vector is a form for representing the angle proposed in this application.
  • the angle vector is only named for the convenience of distinguishing from the time delay, and should not constitute any limitation in this application. This application does not exclude the possibility of defining other names in future agreements to represent the same or similar meanings.
  • Time delay vector It can also be called a frequency domain vector.
  • the delay vector can be used as a vector that represents the changing law of the channel in the frequency domain.
  • multipath delay causes frequency selective fading.
  • the time delay of the signal in the time domain can be equivalent to the phase gradual change in the frequency domain.
  • the Fourier transform can transform the signal into the frequency domain:
  • the signal can be transformed into the frequency domain by Fourier transform: Among them, ⁇ is a frequency variable, and different frequencies correspond to different phase rotations; ⁇ is a time variable, and ⁇ 0 represents a time delay.
  • the change law of the phase of the channel in each frequency domain unit can be represented by a time delay vector.
  • the delay vector can be used to represent the delay characteristics of the channel.
  • Precoding the reference signal based on the delay vector can essentially refer to the phase rotation of each frequency domain unit in the frequency domain based on the elements in the delay vector, so as to pre-encode the reference signal to pre-encode the frequency caused by the multipath delay.
  • Precoding the reference signal based on different delay vectors is equivalent to performing phase rotation on each frequency domain unit of the channel based on different delay vectors.
  • different resources for example, resource elements (resource elements, RE)
  • RE resource elements
  • the network device may separately precode the reference signal based on each of the L time delay vectors.
  • the length of the delay vector is N, and N may refer to the number of frequency domain units used to carry the reference signal (for example, a reference signal that has not been precoded or a reference signal that has been precoded), N ⁇ 1, and N is an integer.
  • the delay vector is taken from the DFT matrix.
  • Each vector in the DFT matrix can be referred to as a DFT vector.
  • O f is the oversampling factor, O f ⁇ 1; k is the index of the DFT vector, and satisfies 0 ⁇ k ⁇ O f ⁇ N-1 or 1-O f ⁇ N ⁇ k ⁇ 0.
  • the delay vector is denoted as b( ⁇ l ).
  • a resource block is taken as an example of a frequency domain unit to illustrate a specific process of frequency domain precoding on a reference signal.
  • each frequency domain unit includes only one RB for carrying a reference signal.
  • each frequency domain unit may include one or more RBs for carrying reference signals.
  • the network device may load the delay vector on the multiple RBs for carrying reference signals in each frequency domain unit.
  • the reference signal loaded with the delay vector can be transmitted to the terminal device through the downlink channel, the channel measured by the terminal device according to the received precoding reference signal is equivalent to the channel loaded with the delay vector.
  • the reference signal is pre-coded in the frequency domain based on a delay vector of length N, the N elements in the delay vector can be loaded on the reference signal carried on the N RBs. Loading the nth element in the delay vector onto the channel V (n) on the nth RB can be expressed as
  • the frequency domain precoding of the reference signal based on the delay vector may be performed before or after the resource mapping, which is not limited in this application.
  • Fig. 2 shows an example of frequency-domain precoding of reference signals carried on N RBs based on the delay vector b( ⁇ 1 ).
  • the N RBs may include RB#0, RB#1 to RB#N-1.
  • Each of the N RBs includes one or more REs for carrying the reference signal.
  • the RE used to carry the reference signal may be the RE on the first time domain symbol and the first subcarrier in each RB.
  • the time domain vector b( ⁇ 1 ) can be loaded on the first time domain symbol in each RB and the RE on the first subcarrier.
  • the first time domain symbol in each of the N RBs and the reference signal carried on the RE on the first subcarrier may be reference signals corresponding to the same port.
  • the N frequency domain units can be phase rotated.
  • the N elements in the delay vector may correspond to the N frequency domain units one-to-one.
  • the 0th element in the frequency domain vector b( ⁇ 1) Can be loaded on RB#0
  • the first element in the frequency domain vector b( ⁇ 1) Can be loaded on RB#1
  • N-1 elements in the delay vector b( ⁇ 1) Can be loaded on RB#N-1.
  • the nth element in the delay vector b( ⁇ 1) Can be loaded on RB#n.
  • the RB is only an example of a frequency domain unit, and should not constitute any limitation to this application. This application does not limit the specific definition of the frequency domain unit.
  • the delay vector is a form of time delay proposed in this application.
  • the delay vector is only named for the convenience of distinguishing from the angle, and should not constitute any limitation in this application. This application does not exclude the possibility of defining other names in future agreements to represent the same or similar meanings.
  • the channel estimated based on the received reference signal can be expressed as a matrix with a dimension of N ⁇ T. If the reference signal is precoded in the frequency domain based on L delay vectors, for a receiving port of the terminal device, the channel estimated based on the received precoding reference signal can be expressed as a matrix with a dimension of N ⁇ L . And on each receiving port and each frequency domain unit, the dimension of the channel estimated by the terminal device based on the received precoding reference signal may be 1 ⁇ L.
  • Frequency domain unit A unit of frequency domain resources, which can represent different granularity of frequency domain resources.
  • the frequency domain unit may include, but is not limited to, for example, subband (subband), resource block (RB), resource block group (RBG), precoding resource block group (PRG), and the like.
  • the network device may determine the precoding matrix corresponding to each frequency domain unit based on the feedback of the terminal device.
  • Angle delay pair It can also be called a space-frequency vector pair.
  • An angle delay pair can be a combination of an angle vector and a delay vector.
  • Each angle delay pair may include an angle vector and a delay vector. At least one of the angle vector and the delay vector included in any two angle delay pairs is different. In other words, each angle delay pair can be uniquely determined by an angle vector and a delay vector.
  • the precoding matrix used to precode the reference signal when the reference signal is precoded based on an angle vector a( ⁇ k ) and a delay vector b( ⁇ l ), the precoding matrix used to precode the reference signal can be expressed as a The product of the conjugate transpose of an angle vector and a time delay vector, for example, can be expressed as a( ⁇ k ) ⁇ b( ⁇ l ) H , and its dimension may be T ⁇ N.
  • the precoding matrix used to precode the reference signal can also be expressed as the Kronecker product of an angle vector and a delay vector, for example, it can be expressed as Its dimension can be T ⁇ N.
  • the precoding matrix used for precoding the reference signal can also be expressed as the product of the conjugate transpose of a delay vector and an angle vector, or the Kronecker of a delay vector and an angle vector. Product, its dimension can be N ⁇ T.
  • the precoding matrix used for precoding the reference signal may also be expressed as a mathematical transformation of various expressions above. For the sake of brevity, I will not list them all here.
  • the weighted sum of one or more angle delay pairs may be used to determine the space-frequency matrix.
  • a matrix with a dimension T ⁇ N determined based on an angular delay pair can be referred to as a component of the space-frequency matrix, or simply referred to as a space-frequency component matrix.
  • a matrix with a dimension T ⁇ N determined by an angle delay pair is obtained by a( ⁇ k ) ⁇ b( ⁇ l ) H.
  • Space-frequency matrix In this embodiment of the application, the space-frequency matrix is an intermediate quantity used to determine the precoding matrix.
  • the space-frequency matrix may be determined based on the receiving port, and may also be determined based on the transmission layer.
  • the space-frequency matrix can be determined by the weighted sum of one or more angle delay pairs, so the dimension of the space-frequency matrix can also be N ⁇ T.
  • the space-frequency matrix can be referred to as the space-frequency matrix corresponding to the receiving port.
  • the space-frequency matrix corresponding to the receiving port can be used to construct the downlink channel matrix of each frequency domain unit, and then the precoding matrix corresponding to each frequency domain unit can be determined.
  • the channel matrix corresponding to a certain frequency domain unit may be, for example, a conjugate transpose of a matrix constructed from column vectors corresponding to the same frequency domain unit in the space frequency matrix corresponding to each receiving port.
  • a matrix of dimension T ⁇ R can be obtained, where R represents the number of receiving ports, and R ⁇ 1 and is an integer.
  • the channel matrix V (n) of the nth frequency domain unit can be obtained.
  • the space-frequency matrix can be referred to as the space-frequency matrix corresponding to the transmission layer.
  • the space-frequency matrix corresponding to the transmission layer can be directly used to determine the precoding matrix corresponding to each frequency domain unit.
  • the precoding matrix corresponding to a certain frequency domain unit may be constructed by, for example, column vectors corresponding to the same frequency domain unit in the space-frequency matrix corresponding to each transmission layer. For example, extract the nth column vector in the space-frequency matrix corresponding to each transmission layer, and arrange it from left to right according to the order of the transmission layer to obtain a matrix of dimension T ⁇ Z.
  • Z represents the number of transmission layers, Z ⁇ 1 and is an integer. This matrix can be used as the precoding matrix W (n) of the nth frequency domain unit.
  • the precoding matrix determined by the channel measurement method provided in the embodiments of the present application may be a precoding matrix directly used for downlink data transmission; it may also undergo some beamforming methods, such as zero forcing (ZF). ), minimum mean-squared error (MMSE), maximum signal-to-leakage-and-noise (SLNR), etc., to obtain the final precoding matrix for downlink data transmission.
  • ZF zero forcing
  • MMSE minimum mean-squared error
  • SLNR maximum signal-to-leakage-and-noise
  • the precoding matrix involved in the following may all refer to a precoding matrix determined based on the channel measurement method provided in this application.
  • the space-frequency matrix is an intermediate quantity proposed based on the frequency domain continuity of the channel that can be used to construct the precoding matrix.
  • F H is the conjugate of F
  • the transposed matrix, C represents a coefficient matrix formed by weighting coefficients corresponding to each of the K angle vectors and each of the L delay vectors. Each element in C can represent the weighting coefficient of a corresponding angle vector pair.
  • the space-frequency component matrix is defined as determined by a( ⁇ k ) ⁇ b( ⁇ l ) H. From this, the dimension of the space-frequency matrix H DL can be determined as: the number of transmitting antenna ports ⁇ the number of frequency domain units. For example, the dimension of the space-frequency matrix corresponding to the downlink channel is T ⁇ N. In the following embodiments, unless otherwise specified, the space-frequency matrix refers to the aforementioned matrix H DL with a dimension of T ⁇ N.
  • the dimension of the channel matrix is defined as: the number of receiving ports ⁇ the number of transmitting ports, for example, the dimension of the downlink channel is R ⁇ T.
  • the dimension of the space-frequency matrix determined by the channel matrix is N ⁇ T, which is exactly the opposite of the dimension T ⁇ N of the aforementioned space-frequency matrix H DL. Therefore, in the embodiment of the present application, the real channel may be the conjugate transpose of the channel matrix determined by the above-mentioned space-frequency matrix H DL.
  • the downlink channel matrix determined by the space-frequency matrix H DL may be the conjugate transpose of the real channel.
  • the precoding matrix can be determined by the space frequency matrix H DL.
  • the precoding matrix of the nth frequency domain unit may be constructed by the nth column vector in the space frequency matrix corresponding to each transmission layer.
  • the conjugate transpose of the precoding matrix can be obtained by performing the SVD of the channel matrix V.
  • V H is SVD
  • the precoding matrix can just be obtained. Therefore, the space-frequency matrix H DL determined by the conjugate transpose of the real channel in the embodiment of the present application can be directly determined to obtain the precoding matrix corresponding to each frequency domain unit.
  • H DL SC DL F H deformation
  • H H DL C DL F H
  • H C DL F H
  • C DL F H C DL F H
  • C DL (H DL H S) H F.
  • H DL H is the space-frequency matrix determined by the real channel
  • H DL H S is the real channel after spatial precoding.
  • Each element of C DL in the coefficient matrix can be determined by multiplying a row in (H DL H S) H and a column in F, respectively.
  • each element in the matrix coefficient C DL may be conjugated by a real channel H DL H S transpose (H DL H S) H and a row F is multiplied, or that is true
  • the conjugate transpose of a column of channel H DL H S is multiplied by a column of F.
  • the space-frequency matrix H DL determined based on the weighting coefficients of the angle delay pairs fed back by the terminal device may be obtained by the conjugate transpose of the real channel.
  • the space-frequency matrix in the embodiment of the present application may also be obtained by the conjugate transpose of the real channel V (that is, V H ).
  • the relationship between the real channel and the space-frequency matrix H DL is not fixed. Different definitions of the space-frequency matrix and the space-frequency component matrix may change the relationship between the real channel and the space-frequency matrix H DL.
  • the space-frequency matrix H DL can be obtained by the conjugate transpose of the real channel, or can be obtained by the transposition of the real channel.
  • the operations performed by the network equipment when loading the delay and angle are also different, and the operations performed by the terminal equipment during channel measurement and feedback also change accordingly .
  • this is only the implementation behavior of terminal equipment and network equipment, and should not constitute any limitation to this application.
  • the embodiments of the present application are only for ease of understanding, and show a situation where the space-frequency matrix is obtained by the conjugate transpose of the real channel.
  • This application does not limit the definition of the channel matrix, the dimension and definition of the space-frequency matrix, and the conversion relationship between the two. Similarly, this application does not limit the conversion relationship between the space-frequency matrix and the precoding matrix.
  • Antenna delay pair It can be a combination of a transmitting antenna port and a delay vector.
  • Each antenna delay pair may include a transmitting antenna port and a delay vector.
  • the transmit antenna ports and/or delay vectors included in any two antenna delay pairs are different.
  • each antenna delay pair can be uniquely determined by a transmitting antenna port and a delay vector.
  • the antenna delay pair can be understood as the expression form of the space-frequency basic unit determined by a transmitting antenna port and a delay vector, but it is not necessarily the only expression form. This application deals with the relationship between the transmitting antenna port and the delay vector.
  • the form of expression of the combination is not limited.
  • T the number of transmitting antenna ports in a polarization direction, T is a positive integer
  • P The number of transmit ports in a polarization direction, P is a positive integer
  • R the number of receiving ports, R is a positive integer
  • Z the number of transmission layers, Z is a positive integer
  • N the number of frequency domain units used to carry the reference signal, N is a positive integer
  • K angle vector number, K is a positive integer
  • L the number of delay vectors, L is a positive integer
  • J the number of polarization directions of the transmitting antenna, J is a positive integer
  • serial numbers can be started from 0.
  • the K angle vectors may include the 0th angle vector to the K-1th angle vector
  • the L delay vectors may include the 0th delay vector to the L-1th delay vector, etc., for brevity, here Not to list them all.
  • the specific implementation is not limited to this.
  • it can also be numbered consecutively starting from 1.
  • the K angle vectors may include the first angle vector to the Kth angle vector
  • the L delay vectors may include the first delay vector to the Lth delay vector, and so on.
  • the superscript T means transpose, such as AT means the transpose of matrix (or vector) A;
  • superscript * means conjugate, for example, A * means the conjugate of matrix (or vector) A;
  • superscript H means Conjugate transpose, for example, A H represents the conjugate transpose of matrix (or vector) A.
  • the angle vector and the delay vector are both column vectors as an example to illustrate the embodiments provided in the present application, but this should not constitute any limitation to the present application. Based on the same concept, those skilled in the art can also think of other more possible expressions.
  • used to indicate can include both used for direct indication and used for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the information indicated by the indication information can also be referred to as the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated or The index of the information to be indicated, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of a pre-arranged order (for example, stipulated in an agreement) of various information, so as to reduce the indication overhead to a certain extent.
  • the precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same parts in terms of composition or other attributes.
  • the specific instruction manner may also be various existing instruction manners, such as but not limited to the foregoing instruction manners and various combinations thereof.
  • the required instruction method can be selected according to specific needs.
  • the embodiment of the application does not limit the selected instruction method.
  • the instruction method involved in the embodiment of the application should be understood as covering that can make the instruction to be instructed Various methods for obtaining information to be indicated.
  • a row vector can be expressed as a column vector
  • a matrix can be expressed by the transpose matrix of the matrix
  • a matrix can also be expressed in the form of a vector or an array. It can be formed by connecting each row vector or column vector of the matrix to each other, and so on.
  • the information to be instructed can be sent together as a whole, or divided into multiple sub-information to be sent separately, and the sending period and/or sending timing of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be pre-defined, for example, pre-defined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example, but not limited to, one or a combination of at least two of radio resource control signaling, media access control (MAC) layer signaling, and physical layer signaling.
  • radio resource control signaling such as packet radio resource control (RRC) signaling
  • MAC layer signaling for example, includes MAC control element (CE);
  • physical layer signaling for example, includes downlink control information (downlink control). information, DCI).
  • “pre-defined” or “pre-configured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the equipment (for example, including terminal equipment and network equipment).
  • the specific implementation method is not limited.
  • "saving” may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B, and c.
  • a, b, and c can be single or multiple.
  • the transmitting port may refer to a port for transmitting a reference signal (such as a precoding reference signal).
  • the receiving port may refer to a port that receives a reference signal (such as a precoding reference signal, etc.).
  • the transmitting port may be a port on the network device side, and the receiving port may be a port on the terminal device side.
  • the base station can reconstruct the downlink CSI based on the a priori information of the uplink channel (i.e., the multipath angle and delay) and the supplementary information fed back by the terminal equipment.
  • the network device generates precoding according to the angle and time delay, and uses the precoding to encode the downlink signal.
  • the terminal device receives the coded downlink signal, and generates a weighting coefficient according to the coded downlink signal.
  • the network receives the weighting coefficient, and determines the downlink CSI according to the weighting coefficient and combining the multipath angle and time delay.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program can be run and recorded with the code of the method provided in the embodiments of the application to provide the method according to the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • FIG. 3 shows a schematic flowchart of a method for determining downlink CSI according to an embodiment of the present application.
  • the terminal device determines the weighting coefficient of the downlink channel according to the downlink channel vector and the first delay domain difference.
  • the weighting coefficient is used by the network device to determine the downlink CSI.
  • the downlink channel vector is estimated based on the precoding reference signal.
  • the precoding reference signal is obtained by the network device precoding the reference signal based on the angle delay.
  • a delay domain difference is the delay domain difference between the delay domain position of the strongest path signal of the terminal device and the preset delay domain position of the strongest path signal.
  • the network device pre-encodes the reference signal according to the angular delay of the uplink channel to obtain the pre-encoded reference signal, and sends the pre-encoded reference signal to the terminal device.
  • the terminal equipment estimates the downlink channel vector according to the precoding reference signal, and determines the weighting coefficient of the downlink channel according to the difference between the downlink channel vector and the first delay domain. That is to say, the terminal equipment determines the weighting coefficient of the downlink channel to consider the time delay domain where the position of the time delay domain of the strongest path signal of the terminal equipment is offset from the preset time delay domain position of the strongest path signal.
  • the terminal device can calculate the weighting coefficient when it shifts to the time delay domain position of the preset strongest path signal, which in turn helps the network device to calculate the accurate downlink CSI according to the weighting coefficient, thereby helping to improve the transmission efficiency of the downlink signal. Communication quality.
  • the position of the delay domain of the strongest path signal may be the position of the delay domain where the energy of the signal is the largest.
  • the energy of the signal corresponding to the position with the coordinate position (1, 8) is the maximum value.
  • the first delay domain difference may be calculated by the terminal device itself, or may be directly obtained, which is not limited in this application.
  • step 301 may specifically be that the downlink channel vector, the delay domain difference, and the weighting coefficient satisfy the following formula:
  • C represents the weighting coefficient
  • X.IFFT(k) represents the k-th inverse fast Fourier transform IFFT transform value in X
  • h is the downlink channel vector
  • represents the first delay domain difference
  • j is The imaginary unit in a complex number.
  • the channel vector h may be a channel vector composed of N channel estimation values. Performing IFFT on the channel vector h can obtain N time-domain transform values.
  • the terminal device may determine one of the N time-domain transform values as the weighting coefficient. For example, the terminal device may use the k-th time-domain transformation value among the N time-domain transformation values as the weighting coefficient. In this way, the terminal device can align the time delay domain by offsetting the time delay domain position of the strongest path signal relative to the preset time delay domain position of the strongest path signal by compensating the phase (ie e- j2 ⁇ ), thereby It helps to improve the accuracy of the calculation of the weighting coefficient.
  • the unit of the first delay domain difference can be a system sampling point or a time unit, for example, a frame, a subframe, a mini-subframe, a symbol, etc., which is not limited in this application.
  • k may also be other values, which is not limited in this application.
  • k is the delay domain index of the delay domain position of the preset strongest path signal.
  • the terminal device may determine the weighting coefficient of the downlink channel according to the downlink channel vector, the preset time delay domain position, and the first time delay domain difference. In this way, the terminal device can find the weighting coefficient corresponding to the time delay field position of the strongest path signal while realizing the alignment of the time delay domain, thereby further improving the accuracy of calculating the weighting coefficient.
  • the terminal device calculates the first delay domain difference by itself, which may be the terminal device according to the terminal device's strongest path signal's delay domain position and the preset maximum path signal delay.
  • the domain position determines the first delay domain difference.
  • the terminal device can know the delay domain position of its strongest path signal, so that the terminal device can determine the delay domain position of the strongest path signal preset and the delay domain position of the strongest path signal of the terminal device.
  • the first delay domain difference is the delay domain in which the position of the delay domain of the strongest path signal of the terminal device is offset relative to the preset position of the delay domain of the strongest path signal.
  • the preset delay domain position may be an absolute delay domain position.
  • the terminal device may receive first indication information from the network device, where the first indication information is used to indicate the delay domain position of the preset strongest path signal, and according to the first indication information and the terminal device The delay domain position of the strongest path signal determines the first delay domain difference.
  • the network device may set the preset delay domain position of the strongest path signal, and notify the terminal device through the instruction information.
  • the terminal device can determine the first delay domain difference value according to the preset delay domain position of the strongest path signal indicated by the first indication information and the delay domain position of the strongest path signal of the terminal device.
  • the first indication information may be sent independently, which improves the flexibility of sending the indication information.
  • the first indication information may also be carried in control signaling and sent, which saves the signaling overhead of specifically sending the indication information.
  • control signaling may be radio resource control (radio resource control, RRC), media access control (media access control, MAC)-control element (CE), downlink control information (downlink control information, DCI) , Or other signaling, which is not limited in this application.
  • RRC radio resource control
  • media access control media access control
  • CE media access control element
  • DCI downlink control information
  • the time delay domain position of the preset strongest path signal is predefined.
  • the position of the delay domain of the preset strongest path signal may be stipulated in an agreement, or in other words, the terminal device and the network device may be agreed in advance. In this way, both the network equipment and the terminal equipment can learn the delay domain position of the preset strongest path signal.
  • the terminal device may determine the time delay domain position of the preset strongest path signal according to the transmission port of the preset strongest path signal. The terminal device then determines the first delay domain difference value according to the delay domain position of the preset strongest path signal and the delay domain position of the strongest path signal of the terminal device.
  • the time delay domain position of the preset strongest path signal may be determined by the transmission port of the preset strongest path signal, so that the terminal device can determine the preset maximum path signal as long as it knows the transmission port where the preset strongest path signal is located.
  • the position of the time delay domain of the strong path signal For example, by knowing the transmission port where the preset strongest path signal is located, the delay domain position of the strongest path signal on the transmission port can be determined, and the delay domain position of the strongest path signal on the transmission port is the preset strongest The position of the path signal in the time delay domain.
  • the transmission port of the preset strongest path signal may be predefined.
  • the transmission port of the preset strongest path signal may be stipulated by the protocol, or in other words, the terminal device and the network device may be agreed in advance. In this way, both the network equipment and the terminal equipment can learn the transmission port of the preset strongest path signal.
  • the terminal device may obtain second indication information, where the second indication information is used to indicate a preset transmission port of the strongest path signal.
  • the network device sends the second indication information to the terminal device. That is to say, the network device can indirectly indicate the preset delay domain position of the strongest path signal through the second indication information.
  • the second indication information may be sent independently, which improves the flexibility of sending indication information.
  • the second indication information may also be carried in control signaling and sent, which saves the signaling overhead of specifically sending the indication information.
  • control signaling may be RRC, MAC-CE, DCI, or other signaling, which is not limited in this application.
  • the terminal device may also report the delay domain position of its strongest path signal, which is not limited in this application.
  • the terminal device sends the weighting coefficient to the network device.
  • the network device receives the weighting coefficient from the terminal device.
  • the network device determines the downlink CSI according to the weighting coefficient, the angle delay pair of the uplink channel, and the second delay domain difference.
  • the second delay domain difference is the delay domain difference between the delay domain position of the strongest path signal of the network device and the preset delay domain position of the strongest path signal.
  • the network device determines the downlink CSI, it is necessary to consider the delay region where the delay region position of the strongest path signal of the network device is offset relative to the preset delay region position of the strongest path signal. For example, as shown in FIG. 5, the energy of the signal corresponding to the position with the coordinate position (53, 11) is the maximum value. In this way, the network device can obtain the downlink CSI shifted to the time delay domain position of the preset strongest path signal. If the weighting coefficient determined by the terminal device is a weighting coefficient shifted to the time delay domain position of the preset strongest path signal, the network device can obtain a more accurate downlink CSI.
  • the time delay domain position of the strongest path signal of the terminal equipment and network equipment is aligned to the preset time delay domain position of the strongest path signal, which reduces the start of the delay domain due to the terminal equipment and the network equipment.
  • the absolute delay domains of the positions are different, resulting in inaccurate weighting coefficients generated by the terminal equipment, and/or inaccurate downlink CSI calculated by the network equipment, thereby improving the communication quality of the downlink signal transmission.
  • the network device can first obtain the downlink space-frequency matrix according to the weighting coefficient, the angle delay pair of the uplink channel, and the second delay domain difference, and then the downlink space-frequency matrix can obtain the downlink CSI (for example, the downlink channel matrix ), the embodiment of the present application does not limit this.
  • the following embodiments are described by taking as an example that the downlink CSI is directly obtained according to the weighting coefficient, the angle delay pair of the uplink channel, and the second delay domain difference.
  • step 303 may specifically be that the weighting coefficient, the angle delay pair, the second delay domain difference, and the downlink channel matrix satisfy the following formula:
  • H′ SCF H e -j2 ⁇ , where H′ represents the downlink channel matrix, S represents the matrix constructed by the angle vector in the angle delay pair, F represents the matrix constructed by the delay vector in the angle delay pair, F H is the conjugate transpose matrix of F, C is the matrix constructed by the weighting coefficient, ⁇ represents the second delay domain difference, and j is the imaginary unit in the complex number.
  • the downlink CSI can be represented by the downlink channel matrix H'.
  • S may be a matrix composed of angle vectors in different angle delay pairs among multiple angle delay pairs. For example, if there are two pairs of angle delay pairs, each angle vector in the two pairs of angle delay pairs, that is, the matrix formed by the two angle vectors is S.
  • F may be a matrix composed of delay vectors in different angular delay pairs among multiple angular delay pairs. For example, if there are two pairs of angle delay pairs, each delay vector in the two pairs of angle delay pairs, that is, the matrix formed by the two delay vectors is F.
  • C may be a matrix formed by weighting coefficient vectors corresponding to different angle delay pairs among multiple angle delay pairs.
  • the unit of the second delay domain difference may be a system sampling point or a time unit, for example, a frame, a subframe, a mini-subframe, a symbol, etc., which is not limited in this application.
  • the units of the second delay domain difference and the first delay domain difference may be the same or different, which is not limited in this application.
  • the preset strongest path signal may be different from the delay domain position of the strongest path signal of the terminal device, and also different from the delay domain position of the strongest path signal of the network device.
  • the delay domain position of the preset strongest path signal may be the delay domain position corresponding to the absolute delay domain coordinate of 0, or the intermediate value of the absolute delay domain coordinate corresponding to the delay domain position, or the absolute time delay domain position. This application does not limit other values in the domain coordinates.
  • the preset strongest path signal and the strongest path signal of the terminal device have the same time delay domain position.
  • the terminal device may not perform step 301, as in the same manner as the calculation of the weighting coefficient in the prior art.
  • the network device calculates the downlink CSI according to step 303 according to the weighting coefficient sent by the terminal device.
  • the terminal device may send instruction information to the network device, and inform the network device of the delay domain location of the preset strongest path signal through the instruction information.
  • the indication information and the weighting coefficient may be carried in the same message, or may be sent independently, which is not limited in this application.
  • the delay domain position of the preset strongest path signal is the same as the delay domain position of the strongest path signal of the network device.
  • the terminal device may perform step 301 and step 302, while the network device may not perform step 303, but the manner of calculating downlink CSI in the prior art is the same.
  • the network device may send instruction information to the terminal device, and inform the terminal device of the delay domain location of the preset strongest path signal through the instruction information.
  • the indication information may be carried in the same message as the precoding reference signal, or may be sent independently, which is not limited in this application.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each network element such as a terminal device or a network device
  • each network element includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods to realize the described functions for each specific application, but such realization should not be considered as going beyond the scope of this application.
  • the embodiment of the present application may divide the terminal device or the network device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented either in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of using the corresponding functional modules to divide each functional module.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 6 shows a schematic block diagram of an apparatus 600 for determining downlink channel state information CSI according to an embodiment of the present application.
  • the apparatus 600 may correspond to the terminal device in the embodiment shown in FIG. 3, and may have any function of the terminal device in the method.
  • the device 600 includes a processing module 610 and a transceiver module 620.
  • the processing module 610 is configured to determine the weighting coefficient of the downlink channel according to the downlink channel vector and the delay domain difference.
  • the weighting coefficient is used by the network device to determine the downlink CSI.
  • the downlink channel vector is estimated based on the precoding reference signal,
  • the precoding reference signal is obtained by precoding the reference signal by the network device based on the angular delay of the uplink channel, and the delay domain difference is the delay domain position of the strongest path signal of the terminal device and the preset strongest The delay domain difference between the delay domain positions of the path signal;
  • the transceiver module 620 is configured to send the weighting coefficient to the network device.
  • the transceiving module 620 is further configured to receive indication information, the indication information is used to indicate the delay domain position of the preset strongest path signal; the processing module 610 is further configured to respond to the indication information and the terminal The delay domain position of the strongest path signal of the equipment, and the delay domain difference is determined.
  • the transceiver module 620 is specifically configured to: receive control signaling, where the control signaling carries the indication information.
  • the preset time delay domain position of the strongest path signal is predefined.
  • the processing module 610 is further configured to determine the time delay domain position of the preset strongest path signal according to the transmission port of the preset strongest path signal; the processing module 610 is further configured to determine the delay domain position of the preset strongest path signal according to the preset strongest path signal.
  • the delay domain position of the strongest path signal and the delay domain position of the strongest path signal of the terminal device are used to determine the delay domain difference.
  • the transmission port of the preset strongest path signal is predefined.
  • the downlink channel vector, the delay domain difference, and the weighting coefficient satisfy the following formula:
  • FIG. 7 shows an apparatus 700 for determining downlink channel state information CSI according to an embodiment of the present application.
  • the apparatus 700 may be the terminal device described in FIG. 3.
  • the device can adopt the hardware architecture shown in FIG. 7.
  • the device may include a processor 710 and a transceiver 720.
  • the device may also include a memory 730.
  • the processor 710, the transceiver 720, and the memory 730 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 610 in FIG. 6 may be implemented by the processor 710, and the related functions implemented by the transceiver module 620 may be implemented by the processor 710 controlling the transceiver 720.
  • the processor 710 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit that implements the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices (such as base stations, terminal equipment, or chips, etc.) used to determine downlink channel state information CSI, and execute software programs , Process the data of the software program.
  • the processor 710 may include one or more processors, for example, include one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 720 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 730 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • read-only memory erasable read only memory
  • CD-ROM compact disc
  • the memory 730 is used to store program codes and data of the terminal device, and may be a separate device or integrated in the processor 710.
  • the processor 710 is configured to control the transceiver to perform information transmission with the terminal device.
  • the processor 710 is configured to control the transceiver to perform information transmission with the terminal device.
  • the apparatus 700 may further include an output device and an input device.
  • the output device communicates with the processor 710 and can display information in a variety of ways.
  • the output device can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 7 only shows the simplified design of the apparatus for determining the downlink channel state information CSI.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminal devices that can implement this application are protected by this application. Within range.
  • the device 600 may be a chip, for example, a communication chip that can be used in a terminal device to implement the related functions of the processing module 610 shown in FIG. 6, or to implement the related functions of the processing module 610 shown in FIG. Related functions of the processor 710.
  • the transceiver module 620 may be an interface, a pin, or a circuit for input and/or output.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a terminal device or a circuit.
  • the device can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 8 shows a schematic block diagram of an apparatus 800 for determining downlink channel state information CSI according to an embodiment of the present application.
  • the apparatus 800 may correspond to the network device in the embodiment shown in FIG. 3, and may have any function of the terminal device in the method.
  • the device 800 includes a transceiver module 810 and a processing module 820.
  • the transceiver module 810 is configured to receive the weighting coefficient of the downlink channel from the terminal device;
  • the processing module 820 is configured to determine the downlink CSI according to the weighting coefficient, the angle delay pair of the uplink channel, and the delay domain difference.
  • the delay domain difference is the delay domain position of the strongest path signal of the network device and The delay domain difference between the delay domain positions of the strongest path signal is preset.
  • the transceiver module 810 is further configured to send indication information to the terminal device, where the indication information is used to indicate the delay domain position of the preset strongest path signal.
  • the transceiver module 810 is specifically configured to send control signaling, where the control signaling includes the indication information.
  • the preset time delay domain position of the strongest path signal is predefined.
  • the processing module 820 is further configured to determine the delay domain position of the preset strongest path signal according to the transmission port of the preset strongest path signal; the processing module 820 is also configured to determine the time delay domain position of the preset strongest path signal according to the preset strongest path signal; The delay domain position of the strongest path signal and the delay domain position of the strongest path signal of the network device are used to determine the delay domain difference.
  • the transmission port of the preset strongest path signal is predefined.
  • the downlink CSI includes a downlink channel matrix, and the weighting coefficient, the angle delay pair, the delay domain difference, and the downlink channel matrix satisfy the following formula:
  • H′ represents the downlink channel matrix
  • S represents the matrix constructed by the angle vector in the angle delay pair
  • F represents the matrix constructed by the delay vector in the angle delay pair
  • F H is the conjugate of the F Set the matrix
  • C is the matrix constructed by the weighting coefficient
  • represents the delay domain difference.
  • FIG. 9 shows an apparatus 900 for determining downlink channel state information CSI provided by an embodiment of the present application.
  • the apparatus 900 may be the network device described in FIG. 3.
  • the device can adopt the hardware architecture shown in FIG. 9.
  • the device may include a processor 910 and a transceiver 920.
  • the device may further include a memory 930.
  • the processor 910, the transceiver 920, and the memory 930 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 820 in FIG. 8 may be implemented by the processor 910, and the related functions implemented by the transceiver module 810 may be implemented by the processor 910 controlling the transceiver 920.
  • the processor 910 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit that implements the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices (such as base stations or chips) used to determine downlink channel state information CSI, execute software programs, and process software programs The data.
  • the processor 910 may include one or more processors, for example, include one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 920 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 930 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), read-only memory A compact disc (read-only memory, CD-ROM), the memory 930 is used to store related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable memory
  • CD-ROM compact disc
  • the memory 930 is used to store program codes and data of the network device, and may be a separate device or integrated in the processor 910.
  • the processor 910 is configured to control the transceiver to perform information transmission with the terminal device.
  • the processor 910 is configured to control the transceiver to perform information transmission with the terminal device.
  • the apparatus 900 may further include an output device and an input device.
  • the output device communicates with the processor 910 and can display information in a variety of ways.
  • the output device can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 601 and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 9 only shows the simplified design of the apparatus for determining the downlink channel state information CSI.
  • the device can also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all network devices that can implement this application are protected by this application. Within range.
  • the device 800 may be a chip, for example, a communication chip that can be used in a network device to implement the related functions of the processing module 820 shown in FIG. 8 or to implement the related functions of the processing module 820 shown in FIG. Related functions of the processor 910.
  • the transceiver module 810 may be an interface, pin or circuit for input and/or output.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a network device or a circuit.
  • the device can be used to perform the actions performed by the network device in the foregoing method embodiments.
  • FIG. 10 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only one memory and processor are shown in FIG. 10. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1010 and a processing unit 1020.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1010 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1010 as the sending unit, that is, the transceiver unit 1010 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1010 is used to perform the sending and receiving operations on the terminal device side in the foregoing method embodiment, and the processing unit 1020 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the processing unit 1020 is configured to execute the processing step 301 on the terminal device side in FIG. 3.
  • the transceiving unit 1010 is configured to perform the transceiving operation in step 302 in FIG. 3, and/or the transceiving unit 1010 is further configured to perform other transceiving steps on the terminal device side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the device shown in FIG. 11 can also be referred to.
  • the device can perform functions similar to the processor 1010 in FIG. 10.
  • the device includes a processor 1101, a data sending processor 1103, and a data receiving processor 1105.
  • the processing module 610 in the foregoing embodiment may be the processor 1101 in FIG. 11, and completes corresponding functions.
  • the transceiver module 620 in the foregoing embodiment may be the sending data processor 1103 and the receiving data processor 1105 in FIG. 11.
  • the channel encoder and the channel decoder are shown in FIG. 11, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1200 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1203 and an interface 1204.
  • the processor 1203 completes the function of the aforementioned processing module 610
  • the interface 1204 completes the function of the aforementioned transceiver module 620.
  • the modulation subsystem includes a memory 1206, a processor 1203, and a program stored in the memory and capable of running on the processor.
  • the processor executes the program described in one of the first to fifth embodiments. method.
  • the memory 1206 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1200, as long as the memory 1206 can be connected to the The processor 1203 is sufficient.
  • the device 1300 includes one or more radio frequency units, such as a remote radio unit (RRU) 1310 and one or more basebands.
  • a unit (baseband unit, BBU) also referred to as a digital unit, DU) 1320.
  • BBU baseband unit
  • the RRU 1310 may be called a transceiver module, which corresponds to the transceiver module 810 in FIG. 8.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1316 And radio frequency unit 1317.
  • the RRU 1310 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 1310 part of the BBU is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 1310 and the BBU 1320 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1320 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 820 in FIG. 8, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1320 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) with a single access standard, or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1320 also includes a memory 1321 and a processor 1322.
  • the memory 1321 is used to store necessary instructions and data.
  • the processor 1322 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1321 and the processor 1322 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • a computer-readable storage medium is provided, and an instruction is stored thereon, and the method in the foregoing method embodiment is executed when the instruction is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method in the foregoing method embodiment is executed.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the above method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory synchronous link DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application. The implementation process constitutes any limitation.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了用于确定下行信道状态信息CSI的方法和装置。终端设备确定下行信道的加权系数需要考虑终端设备的最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域。该网络设备确定下行CSI需要考虑网络设备的最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域。也就是说,终端设备和网络设备的最强径信号的时延域位置拉齐到预设最强径信号的时延域位置,这样减少了由于终端设备和网络设备各自的时延域起始位置的绝对时延域不同,导致的终端设备生成的加权系数不准确,和/或网络设备计算的下行CSI不准确,从而提高了下行信号传输的通信质量。

Description

用于确定下行信道状态信息的方法和装置 技术领域
本申请涉及通信领域,更具体地,涉及一种用于确定(channel state information,CSI)的方法和装置。
背景技术
第五代(5th Generation,5G)系统需要具备比4G更高的性能和效率,对系统容量、频谱效率等方面有更高的要求。其中,大规模多天线系统(multiple-input multiple output,MIMO)是5G通信系统中的一项关键技术。网络设备侧大量地布置天线,使得5G网络能够成倍的提升系统吞吐量。在MIMO通信中,如何获知上行CSI和下行CSI,是提高MIMO通信的通信质量的重要参数。在时分双工(time division duplex,TDD)系统中,上行信道和下行信道具有严格的互易性,网络设备可以通过上行CSI获知下行CSI。但在频分双工(frequency division duplex,FDD)系统中,由于上行传输的频域资源和下行传输的频域资源的不同,使得上行信道和下行信道不再具有严格的互易性,因此如何获知下行CSI亟待解决。
在FDD系统中,由于网络设备和终端设备的物理位置是固定的,上行信道和下行信道具有部分互易性。例如,上行信道和下行信道具有多径角度和时延的互易性。因此,传统方案中,网络设备可以根据上行信道的先验信息(即多径角度和时延)和终端设备反馈的补充信息来重构下行CSI。具体地,网络设备根据角度和时延生成预编码,并采用该预编码编码下行信号。终端设备接收编码后的下行信号,并根据该编码后的下行信号生成加权系数。网络接收该加权系数,并根据该加权系数以及结合多径角度和时延确定下行CSI。
但是,由于终端设备和网络设备的时延域的起始时延域的绝对时延域不同,导致终端设备生成的加权系数不准确,和/或网络设备计算的下行CSI不准确。因此,如何获得准确的下行CSI亟待解决。
发明内容
本申请提供一种用于确定下行信道状态信息CSI的方法和装置,能够获得准确的下行CSI,从而有助于提高下行信号传输的通信质量。
第一方面,提供了一种用于确定下行信道状态信息CSI的方法,该方法包括:根据下行信道向量和时延域差值,确定下行信道的加权系数,该加权系数用于网络设备确定下行CSI,该下行信道向量为根据预编码参考信号估计得到的,该预编码参考信号为该网络设备基于上行信道的角度时延对对参考信号进行预编码得到的,该时延域差值为终端设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值;向该网络设备发送该加权系数。
终端设备确定下行信道的加权系数需要考虑终端设备的最强径信号的时延域位置相 对于预设最强径信号的时延域位置偏移的时延域。这样终端设备可以计算出偏移到预设最强径信号的时延域位置时的加权系数,进而有助于网络设备根据加权系数计算出准确的下行CSI,从而有助于提高下行信号传输的通信质量。
在一些可能的实现方式中,在根据该下行信道向量和该时延域差值确定该加权系数之前,该方法还包括:接收第一指示信息,该第一指示信息用于指示该预设最强径信号的时延域位置;根据该第一指示信息和该终端设备的最强径信号的时延域位置,确定该时延域差值。
网络设备可以设定预设最强径信号的时延域位置,并通过指示信息告知终端设备。这样终端设备可以根据该第一指示信息指示的预设最强径信号的时延域位置和该终端设备的最强径信号的时延域位置确定该第一时延域差值。也就是说,网络设备可以灵活设定该预设最强径信号的时延域位置,并通过指示信息告知终端设备,从而提高了设定预设最强径信号的时延域位置的灵活性。
在一些可能的实现方式中,该接收第一指示信息包括:接收控制信令,该控制信令携带该指示信息。
该第一指示信息也可以是携带在控制信令中发送的,这样节省了专门发送该指示信息的信令开销。
在一些可能的实现方式中,该预设最强径信号的时延域位置为预定义的。
该预设最强径信号的时延域位置可以是协议规定的,或者说该终端设备和该网络设备预先约定的。这样网络设备和终端设备都能够获知该预设最强径信号的时延域位置,节省了相互通知的信令开销。
在一些可能的实现方式中,在根据该下行信道向量和该时延域差值确定该加权系数之前,该方法还包括:根据该预设最强径信号的传输端口,确定该预设最强径信号的时延域位置;根据该预设最强径信号的时延域位置和该终端设备的最强径信号的时延域位置,确定该时延域差值。
预设最强径信号的传输端口和预设最强径信号的时延域位置具有映射关系,这样终端设备可以根据该映射关系查找到任意一个传输端口对应的预设最强径信号的时延域位置。也就是说,终端设备可以间接的确定预设最强径信号的时延域位置,即终端设备实现了通过另一种方式确定预设最强径信号的时延域位置。这样终端设备可以计算出偏移到预设最强径信号的时延域位置时的加权系数,进而有助于网络设备根据加权系数计算出准确的下行CSI,从而有助于提高下行信号传输的通信质量。
在一些可能的实现方式中,该预设最强径信号的传输端口为预定义的。
该预设最强径信号的传输端口可以是协议规定的,或者说该终端设备和该网络设备预先约定的。这样网络设备和终端设备都能够获知该预设最强径信号的传输端口,节省了相互通知的信令开销。
在一些可能的实现方式中,该终端设备可以获取第二指示信息,该第二指示信息用于指示预设最强径信号的传输端口。
该网络设备向该终端设备发送该第二指示信息。也就是说,网络设备可以通过第二指示信息间接的指示预设最强径信号的时延域位置。这样网络设备可以灵活设定该预设最强径信号的传输端口,并通过指示信息告知终端设备,从而提高了设定预设最强径信号的传 输端口的灵活性。
在一些可能的实现方式中,该第二指示信息可以是独立发送的,这样提高了该第二指示信息发送的灵活性。
在一些可能的实现方式中,该第二指示信息也可以是携带在控制信令中发送的,这样节省了专门发送该第二指示信息的信令开销。
在一些可能的实现方式中,该根据下行信道向量和时延域差值,确定加权系数包括:该下行信道向量、该时延域差值和该加权系数满足如下公式:
C=(he -j2πΔτ).IFFT(k),
其中,C表示该加权系数,X.IFFT(k)表示X中的第k个快速傅里叶逆变换IFFT变换值,k为该预设最强径信号的时延域位置的时延域索引,h为该下行信道向量,Δτ表示该时延域差值。
信道向量h可以是N个信道估计值构成的信道向量。对该信道向量h进行IFFT可以得到N个时域变换值。终端设备可以将该N个时域变换值中的某一个值确定为该加权系数。例如,终端设备可以将该N个时域变换值中的第k个时域变换值作为该加权系数。这样终端设备可以将最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域通过补偿相位(即e -j2πΔτ)实现时延域的对齐,从而有助于提高加权系数的计算的准确度。
第二方面,提供了一种用于确定下行信道状态信息CSI的方法,该方法包括:接收来自终端设备的下行信道的加权系数;根据该加权系数、上行信道的角度时延对和时延域差值,确定下行CSI,该时延域差值为网络设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值。
该网络设备确定下行CSI需要考虑网络设备的最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域。若终端设备确定的加权系数为偏移到预设最强径信号的时延域位置时的加权系数,则网络设备能够得到更加准确的下行CSI。也就是说,终端设备和网络设备的最强径信号的时延域位置拉齐到预设最强径信号的时延域位置,这样减少了由于终端设备和网络设备各自的时延域起始位置的绝对时延域不同,导致的终端设备生成的加权系数不准确,和/或网络设备计算的下行CSI不准确,从而提高了下行信号传输的通信质量。
在一些可能的实现方式中,在接收来自该终端设备的下行信道的加权系数之前,该方法还包括:向该终端设备发送第一指示信息,该第一指示信息用于指示该预设最强径信号的时延域位置。
网络设备可以设定预设最强径信号的时延域位置,并通过指示信息告知终端设备。这样终端设备可以根据该第一指示信息指示的预设最强径信号的时延域位置和该终端设备的最强径信号的时延域位置确定该第一时延域差值。也就是说,网络设备可以灵活设定该预设最强径信号的时延域位置,并通过指示信息告知终端设备,从而提高了设定预设最强径信号的时延域位置的灵活性。
在一些可能的实现方式中,该向该终端设备发送第一指示信息包括:发送控制信令,该控制信令包括该指示信息。
该第一指示信息也可以是携带在控制信令中发送的,这样节省了专门发送该指示信息 的信令开销。
在一些可能的实现方式中,该预设最强径信号的时延域位置为预定义的。
该预设最强径信号的时延域位置可以是协议规定的,或者说该终端设备和该网络设备预先约定的。这样网络设备和终端设备都能够获知该预设最强径信号的时延域位置,节省了相互通知的信令开销。
在一些可能的实现方式中,在接收来自该终端设备的下行信道的加权系数之前,该方法还包括:根据该预设最强径信号的传输端口,确定该预设最强径信号的时延域位置;根据该预设最强径信号的时延域位置和该网络设备的最强径信号的时延域位置,确定该时延域差值。
预设最强径信号的传输端口和预设最强径信号的时延域位置具有映射关系,这样终端设备可以根据该映射关系查找到任意一个传输端口对应的预设最强径信号的时延域位置。也就是说,终端设备可以间接的确定预设最强径信号的时延域位置,即终端设备实现了通过另一种方式确定预设最强径信号的时延域位置。这样终端设备可以计算出偏移到预设最强径信号的时延域位置时的加权系数,进而有助于网络设备根据加权系数计算出准确的下行CSI,从而有助于提高下行信号传输的通信质量。
在一些可能的实现方式中,该预设最强径信号的传输端口为预定义的。
该预设最强径信号的传输端口可以是协议规定的,或者说该终端设备和该网络设备预先约定的。这样网络设备和终端设备都能够获知该预设最强径信号的传输端口,节省了相互通知的信令开销。
在一些可能的实现方式中,该网络设备发送第二指示信息,该第二指示信息用于指示预设最强径信号的传输端口。
该网络设备向该终端设备发送该第二指示信息。也就是说,网络设备可以通过第二指示信息间接的指示预设最强径信号的时延域位置。这样网络设备可以灵活设定该预设最强径信号的传输端口,并通过指示信息告知终端设备,从而提高了设定预设最强径信号的传输端口的灵活性。
在一些可能的实现方式中,该第二指示信息可以是独立发送的,这样提高了该第二指示信息发送的灵活性。
在一些可能的实现方式中,该第二指示信息也可以是携带在控制信令中发送的,这样节省了专门发送该第二指示信息的信令开销。
在一些可能的实现方式中,该下行CSI包括下行信道矩阵,该根据该加权系数、上行信道的角度时延对和时延域差值,确定下行CSI包括:该加权系数、该角度时延对、该时延域差值和该下行信道矩阵满足如下公式:
H′=SCF He -j2πΔτ
其中,H′表示该下行信道矩阵,S表示该角度时延对中的角度向量构造的矩阵,F表示该角度时延对中的时延向量构造的矩阵,F H为该F的共轭转置矩阵,C为该加权系数构造的矩阵,Δτ表示该时延域差值。
网络设备可以通过上述公式计算得到下行信道矩阵,即实现了拉齐到预设最强径信号的时延域位置,这样减少了由于终端设备和网络设备各自的时延域起始位置的绝对时延域不同,导致的终端设备生成的加权系数不准确,和/或网络设备计算的下行CSI不准确, 从而提高了下行信号传输的通信质量。
在一些可能的实现方式中,该预设最强径信号与该终端设备的最强径信号的时延域位置相同。
在该预设最强径信号的时延域位置与该终端设备的最强径信号的时延域位置相同的情况下,减少了由于该预设最强径信号与该终端设备的最强径信号的时延域位置的时延域偏移导致的加权系数的计算不准确,提高了下行信号传输的通信质量。
在一些可能的实现方式中,该预设最强径信号的时延域位置与该网络设备的最强径信号的时延域位置相同。
在该预设最强径信号与该网络设备的最强径信号的时延域位置相同的情况下,减少了由于该预设最强径信号与该网络设备的最强径信号的时延域位置的时延域偏移导致的下行CSI的计算不准确,提高了下行信号传输的通信质量。
第三方面,提供了一种确定传输资源的装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接收模块和发送模块。可选地,该装置还包括处理模块。所述接收模块和发送模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第一方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该芯片还包括处理模块。接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器或处理电路。该处理模块可执行指令,以使该终端设备内的芯片执行上述第一方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第四方面,提供了一种用于确定下行信道状态信息CSI的装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接收模块和发送模块,可选地,该装置还包括处理模块,所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该接收模块和 发送模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第二方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为网络设备。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该装置还包括处理模块,接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器或处理电路。该处理模块可执行指令,以使该终端设备内的芯片执行上述第二方面,以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第五方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面,及其任意可能的实现方式中的方法的指令。
第六方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面,及其任意可能的实现方式中的方法的指令。
第七方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面,或其任意可能的实现方式中的方法。
第八方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面,或其任意可能的实现方式中的方法。
第九方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置和上述具有实现上述第二方面的各方法及各种可能设计的功能的装置。
第十方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或其任意可能的实现方式中的方法。
第十一方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第一方面中任一方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面,或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在终端设备上。
第十二方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第二方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第二方面,或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在网络设备上。
基于上述技术方案,终端设备确定下行信道的加权系数需要考虑终端设备的最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域。该网络设备确定下行CSI需要考虑网络设备的最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域。也就是说,终端设备和网络设备的最强径信号的时延域位置拉齐到预设最强径信号的时延域位置,这样减少了由于终端设备和网络设备各自的时延域起始位置的绝对时延域不同,导致的终端设备生成的加权系数不准确,和/或网络设备计算的下行CSI不准确,从而提高了下行信号传输的通信质量。
附图说明
图1是适用于本申请实施例的通信系统的架构示意图;
图2是本申请实施例提供的基于时延向量对参考信号进行预编码的示意图;
图3是本申请一个实施例提供的用于确定下行信道状态信息CSI的方法的示意性流程图;
图4是本申请终端设备的最强径信号的时延域位置的示意图;
图5是本申请网络设备的最强径信号的时延域位置的示意图;
图6是本申请一个实施例用于确定下行信道状态信息CSI的装置的示意性框图;
图7是本申请一个实施例的用于确定下行信道状态信息CSI的装置的示意性结构图;
图8是本申请另一个实施例的用于确定下行信道状态信息CSI的装置的示意性框图;
图9是本申请一个实施例的用于确定下行信道状态信息CSI的装置的示意性结构图;
图10是本申请一个实施例的用于确定下行信道状态信息CSI的装置的示意性结构图;
图11是本申请另一个实施例的用于确定下行信道状态信息CSI的装置的示意性结构图;
图12是本申请另一个实施例的用于确定下行信道状态信息CSI的装置的示意性结构图;
图13是本申请另一个实施例的用于确定下行信道状态信息CSI的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G移动通信系统或新无线接入技术(new radio Access Technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立 组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终 端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band)NB技术,做到海量连接,深度覆盖,终端设备省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的方法的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,如图1中所示的5G系统中的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。因此,图1中的网络设备101和终端设备102至107构成一个通信系统。
可选地,终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信。如图中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备106与网络设备101通信。
应理解,图1示例性地示出了一个网络设备和多个终端设备,以及各通信设备之间的通信链路。可选地,该通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,例如更多或更少的终端设备。本申请对此不做限定。
上述各个通信设备,如图1中的网络设备101和终端设备102至107,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
为了便于理解本申请实施例,下面简单说明下行信号在发送之前在物理层的处理过程。应理解,下文所描述的对下行信号的处理过程可以由网络设备执行,也可以由配置于网络设备中的芯片执行。为方便说明,下文统称为网络设备。
网络设备在物理信道可对码字(code word)进行处理。其中,码字可以为经过编码(例如包括信道编码)的编码比特。码字经过加扰(scrambling),生成加扰比特。加扰比特经过调制映射(modulation mapping),得到调制符号。调制符号经过层映射(layer mapping),被映射到多个层(layer),或者称,传输层。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发射出去。
应理解,上文所描述的对下行信号的处理过程仅为示例性描述,不应对本申请构成任何限定。对下行信号的处理过程具体可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
为便于理解本申请实施例,下面对本申请实施例中涉及到的术语做简单介绍。
1、预编码技术:网络设备可以在已知信道状态的情况下,借助与信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应理解,本文中有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行 预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、信道互易性:在某些通信模式中,如TDD中,上下行信道在相同的频域资源上不同的时域资源上传输信号。在相对较短的时间(如,信道传播的相干时间)之内,可以认为上、下行信道上的信号所经历的信道衰落是相同的。这就是上下行信道的互易性。基于上下行信道的互易性,网络设备可以根据上行参考信号,如探测参考信号(sounding reference signal,SRS),测量上行信道。并可以根据上行信道来估计下行信道,从而可以确定用于下行传输的预编码矩阵。
然而,在另一些通信模式中,如FDD中,由于上下行信道的频带间隔远大于相干带宽,上下行信道不具有完整的互易性,利用上行信道来确定用于下行传输的预编码矩阵可能并不能够与下行信道相适配。但是,FDD模式下的上下行信道仍然具有部分的互易性,例如,角度的互易性和时延的互易性。因此,角度和时延也可以称为互易性参数。
信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。时延是无线信号在不同传输路径上的传输时间,由距离和速度决定,与无线信号的频域没有关系。信号在不同的传输路径上传输时,由于距离不同,存在不同的传输时延。由于网络设备与终端设备之间的物理位置是固定的,因而上下行信道的多径分布在时延上是相同的。因此,时延在FDD模式下的上下行信道可以认为是相同的,或者说,互易的。
此外,角度可以是指信号经由无线信道到达接收天线的到达角(angle of arrival,AOA),也可以是指通过发射天线发射信号的离开角(angle of departure,AOD)。在本申请实施例中,该角度可以是指上行信号到达网络设备的到达角,也可以是指网络设备发射下行信号的离开角。由于上下行信道在不同频率上的传输路径的互易,该上行参考信号的到达角和下行参考信号的离开角可以认为是互易的。
在本申请实施例中,每个角度可以通过一个角度向量来表征。每个时延可通过一个时延向量来表征。因此,在本申请实施例中,一个角度向量可以表示一个角度,一个时延向量可以表示一个时延。
3、参考信号(reference signal,RS)与预编码参考信号:参考信号也可以称为导频(pilot)、参考序列等。在本申请实施例中,参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是用于下行信道测量的信道状态信息参考信号(channel state information reference signal,CSI-RS),也可以是用于上行信道测量的SRS。应理解,上文列举的参考信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
预编码参考信号可以是对参考信号进行预编码后得到的参考信号。其中,预编码具体可以包括波束赋形(beamforming)和/或相位旋转。其中,波束赋形例如可以通过基于一个或多个角度向量对下行参考信号进行预编码来实现,相位旋转例如可以通过将一个或多个时延向量对下行参考信号进行预编码来实现。
在本申请实施例中,为方便区分和说明,将经过预编码,如波束赋形和/或相位旋转,得到的参考信号称为预编码参考信号;未经过预编码的参考信号简称为参考信号。
在本申请实施例中,基于一个或多个角度向量对下行参考信号进行预编码,也可以称 为,将一个或多个角度向量加载到下行参考信号上,以实现波束赋形。基于一个或多个时延向量对下行参考信号进行预编码,也可以称为将一个或多个时延向量加载到下行参考信号上,以实现相位旋转。
4、端口(port):可以包括发射端口和接收端口。
其中,发射端口可以理解为被接收设备所识别的虚拟天线。
可选地,端口可以是指发射天线端口。例如,每个发射天线端口的参考信号可以是未经过预编码的参考信号。其中,发射天线端口,可以是指实际的独立发送单元(transceiver unit,TxRU)。
可选地,端口也可以是指经过波束赋形后的端口。例如,每个端口的参考信号可以是基于一个角度向量对参考信号进行预编码得到的预编码参考信号。可以理解的是,若对参考信号做了波束赋形,则端口数可以是指预编码参考信号的端口数。该预编码参考信号的端口数可以小于发射天线端口数。
可选地,端口也可以是指经过相位旋转后的端口,例如,每个端口的参考信号可以是基于一个时延向量对参考信号进行预编码且通过一个发射天线端口发送的预编码参考信号。该端口也可以称为预编码参考信号的端口。
可选地,端口也可以是指经过波束赋形和相位旋转后的端口。例如,每个端口的参考信号可以是基于一个角度向量和一个时延向量对参考信号进行预编码得到的预编码参考信号。该端口也可以称为预编码参考信号的端口。
每个端口的参考信号可以通过一个或者多个频域单元传输。
在下文示出的实施例中,在涉及发射天线端口时,可以是指未进行空域预编码的端口数。即,是实际的独立发送单元数。在涉及端口时,在不同的实施例中,可以是指发射天线端口,也可以是指预编码参考信号的端口。端口所表达的具体含义可以根据具体实施例来确定。下文中为方便区分,将预编码参考信号的端口称为参考信号端口。
接收端口可以理解为接收设备的接收天线。例如在下行传输中,接收端口可以是指终端设备的接收天线。
5、角度向量:可以理解为用于对参考信号进行波束赋形的预编码向量。通过波束赋形,可以使得发送设备发射出来的参考信号具有一定的空间指向性。因此,基于角度向量对参考信号进行预编码的过程也可以视为是空间域(或简称,空域)预编码的过程。因此角度向量也可以称为空域向量、波束(beam)向量等。
基于一个或多个角度向量对参考信号进行预编码后得到的预编码参考信号的端口数与角度向量的个数相同。当角度向量的个数K小于一个极化方向上的发射天线端口数T时,可以通过空域预编码来实现天线端口的降维,从而减小导频开销。其中K≥1,T≥1,且K、T均为整数。
角度向量可以是一长度为T的向量。
可选地,角度向量是离散傅里叶变换(Discrete Fourier Transform,DFT)向量。DFT向量可以是指DFT矩阵中的向量。
可选地,角度向量是DFT向量的共轭转置向量。DFT共轭转置向量可以是指DFT矩阵的共轭转置矩阵中的列向量。
可选地,角度向量是过采样DFT向量。过采样DFT向量可以是指过采样DFT矩阵中 的向量。
在一种可能的设计中,该角度向量例如可以是NR协议TS 38.214版本15(release 15,R15)中类型II(type II)码本中定义的二维(2 dimensions,2D)-DFT向量v l,m。换句话说,角度向量可以是2D-DFT向量
Figure PCTCN2020073638-appb-000001
或过采样2D-DFT向量
Figure PCTCN2020073638-appb-000002
Figure PCTCN2020073638-appb-000003
Figure PCTCN2020073638-appb-000004
其中,I 1为天线阵列中每一列(或行)中包含的同一极化方向的天线端口数,I 2为天线阵列中每一行(或列)包含的同一极化方向的天线端口数。在本实施例中,T=I 1×I 2。O 1和O 2为过采样因子。i 1和i 2满足0≤i 1≤(O 1×I 1-1),0≤i 2≤(O 2×I 2-1)。其中,O 1和O 2均为1时,
Figure PCTCN2020073638-appb-000005
为2D-DFT向量,O 1和O 2中至少一项大于1时,
Figure PCTCN2020073638-appb-000006
为过采样2D-DFT向量。
可选地,角度向量是均匀线阵(uniform linear array,ULA)的导向矢量a(θ k)。如,
Figure PCTCN2020073638-appb-000007
其中,θ k为角度,k=1,2,……,K。K表示角度向量的个数;λ为波长,d为天线间距。
其中,导向矢量可以表示一条径的到达角在不同天线的响应存在的相位差。导向矢量a(θ k)与DFT矩阵中的向量
Figure PCTCN2020073638-appb-000008
满足:
Figure PCTCN2020073638-appb-000009
可选地,该角度向量是均匀面阵(uniform plane array,UPA)的导向矢量。该导向矢量例如可以是包含水平角和俯仰角信息的导向矢量
Figure PCTCN2020073638-appb-000010
如,
Figure PCTCN2020073638-appb-000011
其中,θ k为水平角,
Figure PCTCN2020073638-appb-000012
为俯仰角;ρ t为第t个发射天线端口的三维坐标,t=1,2,……,T;u k为第k个角度对应的单位球基矢量:
Figure PCTCN2020073638-appb-000013
可以理解的是,该导向矢量也可以称为角度向量,本申请实施例中对导向矢量和角度向量不进行区分,下述实施例以角度向量为例进行说明。
下文中为方便说明,将角度向量记作a(θ k)。
在下行传输中,由于加载了角度向量的参考信号可以通过下行信道传输至终端设备,因此,终端设备根据接收到的预编码参考信号测量的信道等效于加载了角度向量的信道。 例如,将角度向量a(θ k)加载到下行信道V,可以表示为Va(θ k)。
假设发送设备配置有单极化天线,发射天线端口数为T;频域单元数为N,N≥1,且N为整数。则对于接收设备的一个接收端口来说,基于接收到的参考信号估计的信道可以是一个维度为N×T的矩阵。若基于一个角度向量对参考信号进行空域预编码,则可以将角度向量分别加载到参考信号上。由于角度向量的维度为T×1,故,对于接收设备的一个接收端口来说,基于预编码参考信号估计的信道的维度可以为N×1。并且在每个接收端口、每个频域单元上,终端设备基于接收到的预编码参考信号估计的信道的维度可以是1×1。
应理解,角度向量是本申请提出的用于表示角度的一种形式。角度向量仅为便于与时延区分而命名,而不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。
6、时延向量:也可以称为频域向量。时延向量可用于表示信道在频域的变化规律的向量。如前所述,多径时延导致频率选择性衰落。由傅里叶变换可知,信号在时域上的时间延迟,可以等效到频域的相位渐变。
例如,对于信号g(τ),由傅里叶变换可以将该信号变换到频域上:
Figure PCTCN2020073638-appb-000014
对于信号g(τ-τ 0),由傅里叶变换可将该信号变换到频域上:
Figure PCTCN2020073638-appb-000015
其中,ω为频率变量,不同频率对应的相位旋转不同;τ为时间变量,τ 0表示时延。
该两个时延的信号可以表示为x(τ)=g(τ)+g(τ-τ 0),由此可以得到频率变量的函数
Figure PCTCN2020073638-appb-000016
令g(ω)≡1,可以得到
Figure PCTCN2020073638-appb-000017
因此,两个不同时延的信号造成了频域选择性衰落。
由于信道在各频域单元的相位变化与时延相关,故可将信道在各频域单元的相位的变化规律通过时延向量来表示。换句话说,该时延向量可用于表示信道的时延特性。
基于时延向量对参考信号进行预编码,实质上可以是指基于时延向量中的元素对频域上各个频域单元进行相位旋转,以通过预编码参考信号来对多径时延造成的频选特性进行预补偿。因此,基于时延向量对参考信号进行预编码的过程可以视为频域预编码的过程。
基于不同的时延向量对参考信号进行预编码,就相当于基于不同的时延向量对信道各个频域单元进行相位旋转。且,同一个频域单元中的不同资源(例如资源元素(resource element,RE))由于加载的时延向量的不同,相位旋转的角度也可以不同。为了区分不同的时延,网络设备可以基于L个时延向量中的每个时延向量分别对参考信号进行预编码。
可选地,时延向量的长度为N,N可以是指用于承载参考信号(如,未经过预编码的参考信号或经过预编码的参考信号)的频域单元数,N≥1,且N为整数。
可选地,L个时延向量中的第l个时延向量可以表示为b(τ l),
Figure PCTCN2020073638-appb-000018
其中,τ l表示时延,l=1,2,……,L;L可以表示时延向量的个数;f 0,f 1,……,f N-1分别表示第1个、第2个至第N个频域单元的载波频率。
可选地,时延向量取自DFT矩阵。如
Figure PCTCN2020073638-appb-000019
该DFT矩阵中的每个向量可以称为DFT向量。
其中,O f为过采样因子,O f≥1;k为DFT向量的索引,并满足0≤k≤O f×N-1或者1-O f×N≤k≤0。
例如,当k<0时,b(τ l)与DFT矩阵中的向量u k可以满足:
b(τ l)=u kβ l
Figure PCTCN2020073638-appb-000020
其中
Figure PCTCN2020073638-appb-000021
Δf=f n-f n+1,1≤n≤N-1。
下文中为方便说明,将时延向量记作b(τ l)。
在本申请实施例中,为便于理解,以资源块(resource block,RB)作为频域单元的一例来说明对参考信号进行频域预编码的具体过程。当将RB作为频域单元的一例时,可以认为每个频域单元仅包括一个用于承载参考信号的RB。事实上,每个频域单元可以包括一个或多个用于承载参考信号的RB。当每个频域单元中包括多个用于承载参考信号的RB时,网络设备可以将时延向量加载到每个频域单元中用于承载参考信号的多个RB上。
在下行传输中,由于加载了时延向量的参考信号可以通过下行信道传输至终端设备,因此,终端设备根据接收到的预编码参考信号测量的信道等效于加载了时延向量的信道。若基于长度为N的时延向量对参考信号进行频域预编码,则可以将该时延向量中的N个元素分别加载到承载于N个RB上的参考信号上。将时延向量中的第n个元素加载到第n个RB上的信道V (n)上例如可以表示为
Figure PCTCN2020073638-appb-000022
需要说明的是,基于时延向量对参考信号进行频域预编码可以是在资源映射之前执行,也可以是在资源映射之后执行,本申请对此不作限定。
为便于理解,下面结合图2详细说明基于时延向量b(τ l)对参考信号进行预编码的过程。
图2示出了基于时延向量b(τ 1)对N个RB上承载的参考信号进行频域预编码的一例。该N个RB可以包括RB#0、RB#1至RB#N-1。该N个RB中的每个RB上包括一个或多个用于承载该参考信号的RE。例如,用于承载该参考信号的RE可以是每个RB中首个时域符号、首个子载波上的RE。如图中带阴影的方格所示。此情况下,可以对每个RB中的首个时域符号、首个子载波上的RE上加载时域向量b(τ 1)。该N个RB中的每个RB中的首个时域符号、首个子载波上的RE上承载的参考信号可以是对应于同一个端口的参考信号。
假设时延向量
Figure PCTCN2020073638-appb-000023
若将时延向量b(τ 1)加载到N个频域单元上,可以对N个频域单元进行相位旋转。该时延向量中的N个元素可以与该N个频域单元一一对应。例如,该频域向量b(τ 1)中的第0个元素
Figure PCTCN2020073638-appb-000024
可以加载在RB#0上,该频域向量b(τ 1)中的第1个元素
Figure PCTCN2020073638-appb-000025
可以加载在RB#1上,时延向量b(τ 1)中的N-1个元素
Figure PCTCN2020073638-appb-000026
可以加载在RB#N-1上。以此类推,时延向量b(τ 1)中的第n个元素
Figure PCTCN2020073638-appb-000027
可以加载在RB#n 上。为了简洁,这里不一一列举。
应理解,RB仅为频域单元的一例,不应对本申请构成任何限定。本申请对于频域单元的具体定义不作限定。
还应理解,时延向量是本申请提出的用于表示时延的一种形式。时延向量仅为便于与角度区分而命名,而不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。
另外,假设如网络设备配置有单极化天线,发射天线端口数为T,频域单元数为N。则对于终端设备的一个接收端口而言,基于接收到的参考信号所估计的信道可以表示为一个维度为N×T的矩阵。若基于L个时延向量对参考信号进行频域预编码,则对于终端设备的一个接收端口而言,基于接收到的预编码参考信号所估计的信道可以表示为一个维度为N×L的矩阵。并且在每个接收端口、每个频域单元上,终端设备基于接收到的预编码参考信号估计的信道的维度可以是1×L。
7、频域单元:频域资源的单位,可表示不同的频域资源粒度。频域单元例如可以包括但不限于,子带(subband)、资源块(RB)、资源块组(resource block group,RBG)、预编码资源块组(precoding resource block group,PRG)等。
在本申请实施例中,网络设备可以基于终端设备的反馈确定与各频域单元对应的预编码矩阵。
8、角度时延对:也可以称为空频向量对。一个角度时延对可以是一个角度向量和一个时延向量的组合。每个角度时延对可以包括一个角度向量和一个时延向量。任意两个角度时延对中所包含的角度向量和时延向量中至少有一项不同。换句话说,每个角度时延对可以由一个角度向量和一个时延向量唯一确定。
在本申请实施例中,基于一个角度向量a(θ k)和一个时延向量b(τ l)对参考信号进行预编码时,用于对参考信号进行预编码的预编码矩阵可以表示为一个角度向量和一个时延向量的共轭转置的乘积,例如可以表示为a(θ k)×b(τ l) H,其维度可以是T×N。或者,用于对参考信号进行预编码的预编码矩阵也可以表示为一个角度向量与一个时延向量的克罗内克尔积(Kronecker)积,例如可以表示为
Figure PCTCN2020073638-appb-000028
其维度可以是T×N。
应理解,上文列举的各种数学表达仅为示例,不应对本申请构成任何限定。例如,用于对参考信号进行预编码的预编码矩阵还可以表示为一个时延向量与一个角度向量的共轭转置的乘积,或,一个时延向量与一个角度向量的克罗内克尔积,其维度可以是N×T。或者,用于对参考信号进行预编码的预编码矩阵还可以表示为上述各种表达的数学变换。为了简洁,这里不一一列举。
在本申请实施例中,一个或多个角度时延对的加权和可以用于确定空频矩阵。基于一个角度时延对所确定的维度T×N为的矩阵可以称为该空频矩阵的一个分量,简称为空频分量矩阵。在下文实施例中,为方便说明,假设由一个角度时延对所确定的维度T×N为的矩阵由a(θ k)×b(τ l) H得到。
9、空频矩阵:在本申请实施例中,空频矩阵是用于确定预编码矩阵的一个中间量。
在本申请实施例中,空频矩阵可以基于接收端口确定,也可以基于传输层确定。如前所述,空频矩阵可以由一个或多个角度时延对的加权和确定,故空频矩阵的维度也可以是N×T。
若空频矩阵基于接收端口确定,则该空频矩阵可以称为与接收端口对应的空频矩阵。与接收端口对应的空频矩阵可用于构建各频域单元的下行信道矩阵,进而可确定与各频域单元对应的预编码矩阵。与某一频域单元对应的信道矩阵例如可以是由各个接收端口对应的空频矩阵中对应于同一频域单元的列向量构造而成的矩阵的共轭转置。如,将各接收端口对应的空频矩阵中的第n个列向量抽取出来,按照接收端口的顺序由左向右排布可得到维度为T×R的矩阵,R表示接收端口数,R≥1且为整数。该矩阵经过共轭转置后可以得到第n个频域单元的信道矩阵V (n)。下文中会详细说明信道矩阵与空频矩阵的关系,这里暂且省略对二者关系的详细说明。
若空频矩阵基于传输层确定,则该空频矩阵可以称为与与传输层对应的空频矩阵。与传输层对应的空频矩阵可直接用于确定与各频域单元对应的预编码矩阵。与某一频域单元对应的预编码矩阵例如可以是由各个传输层对应的空频矩阵中对应于同一频域单元的列向量构造而成。如,将各传输层对应的空频矩阵中的第n个列向量抽取出来,按照传输层的顺序由左到右排布可得到维度为T×Z的矩阵,Z表示传输层数,Z≥1且为整数。该矩阵可以作为第n个频域单元的预编码矩阵W (n)
需要说明的是,由本申请实施例提供的信道测量方法所确定的预编码矩阵可以是直接用于下行数据传输的预编码矩阵;也可以经过一些波束成形方法,例如包括迫零(zero forcing,ZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。下文中所涉及的预编码矩阵均可以是指基于本申请提供的信道测量方法确定的预编码矩阵。
对空频矩阵与下行信道矩阵、预编码矩阵的关系做简单说明。
空频矩阵是基于信道的频域连续性而提出的一种可用于构建预编码矩阵的中间量。空频矩阵H可满足:H=SCF H。其中,S表示一个或多个(例如,K个,K为正整数)角度向量构造的矩阵,例如S=[a(θ 1) a(θ 2) … a(θ K)],F表示一个或多个(例如,L个,L为正整数)时延向量构造的矩阵,例如F=[b(τ 1) b(τ 2) … b(τ L)],F H为F的共轭转置矩阵,C表示与K个角度向量中的每个角度向量和L个时延向量中的每个时延向量对应的加权系数所构成的系数矩阵。C中的每一个元素可以表示所对应的一个角度向量对的加权系数。
在FDD模式下,由于时延和角度的上下行信道互易性,由上行信道测量得到的空频矩阵H UL可以表示为H UL=SC ULF H,由下行信道测量得到的空频矩阵H DL可以表示为H DL=SC DLF H。因此,在本申请实施例中,通过下行信道测量来确定和反馈下行信道对应的系数矩阵C DL,便可以确定与下行信道矩阵。
如前所述,空频分量矩阵被定义为由a(θ k)×b(τ l) H确定,由此可确定空频矩阵H DL的维度为:发射天线端口数×频域单元数。如,下行信道对应的空频矩阵的维度为T×N。在下文实施例中,未作出特别说明的情况下,空频矩阵均是指上文所述的维度为T×N的矩阵H DL
然而这并不一定是由真实的信道确定的空频矩阵。在通常情况下,信道矩阵的维度被定义为:接收端口数×发射端口数,如,下行信道的维度为R×T。由信道矩阵确定的空频矩阵的维度为N×T,与上述空频矩阵H DL的维度T×N正好相反。因此,本申请实施例中,真实的信道可以是由上述空频矩阵H DL确定的信道矩阵的共轭转置。换言之,由空频矩阵 H DL确定的下行信道矩阵可以是真实的信道的共轭转置。
进一步地,由空频矩阵H DL可以确定预编码矩阵。其中,第n个频域单元的预编码矩阵可以是各传输层对应的空频矩阵中的第n个列向量构建。
以对信道矩阵做奇异值分解(singular value decomposition,SVD)为例,由信道矩阵V做SVD可以得到预编码矩阵的共轭转置。而若将信道矩阵做共轭转置后再进行SVD,即,对V H做SVD,则正好可以得到预编码矩阵。因此,本申请实施例中由真实信道的共轭转置所确定的空频矩阵H DL可以直接确定得到与各频域单元对应的预编码矩阵。
再结合上文公式H UL=SC ULF H来理解空频矩阵与下行信道矩阵的关系。
对H DL=SC DLF H变形可以得到S HH DL=C DLF H,进一步变形可以得到(H DL HS) H=C DLF H,由此可得到系数矩阵C DL=(H DL HS) HF。其中,H DL H是由真实信道确定的空频矩阵;H DL HS是经过空域预编码后的真实信道。该系数矩阵中C DL的各元素可以分别由(H DL HS) H中的一行与F中的一列相乘确定。换句话说,矩阵系数C DL中的各元素可以由真实信道H DL HS的共轭转置(H DL HS) H中的一行与F中的一列相乘得到,或者说,是由真实信道H DL HS的一列的共轭转置与F的一列相乘得到。
因此,在本申请实施例中,基于终端设备反馈的各角度时延对的加权系数而确定的空频矩阵H DL可以是由真实信道的共轭转置得到。反之,本申请实施例中的空频矩阵也可以是由真实的信道V的共轭转置(即,V H)得到。
应理解,真实的信道与空频矩阵H DL的关系并不是固定不变的。对空频矩阵以及空频分量矩阵的不同定义,可能会使得真实的信道与空频矩阵H DL之间的关系发生变化。例如,空频矩阵H DL可以由真实的信道的共轭转置得到,也可以由真实的信道的转置得到。
当对空频矩阵以及空频分量矩阵的定义不同时,在加载时延和角度时网络设备所执行的操作也有所不同,终端设备在进行信道测量并反馈时所执行的操作也相应地发生变化。但这只是终端设备和网络设备的实现行为,不应对本申请构成任何限定。本申请实施例仅为便于理解,示出了空频矩阵由真实的信道的共轭转置得到的情况。本申请对于信道矩阵的定义、空频矩阵的维度及其定义以及二者间的转换关系不作限定。同理,本申请对于空频矩阵与预编码矩阵间的转换关系也不作限定。
10、天线时延对:可以是一个发射天线端口和一个时延向量的组合。每个天线时延对可以包括一个发射天线端口和一个时延向量。任意两个天线时延对中包含的发射天线端口和/或时延向量不同。换句话说,每个天线时延对可以由一个发射天线端口和一个时延向量唯一确定。应理解,天线时延对可以理解为由一个发射天线端口和一个时延向量确定的空频基本单位的表现形式,但并一定是唯一的表现形式,本申请对于发射天线端口与时延向量的组合的表现形式不作限定。
此外,此外,为了便于理解本申请实施例,作出以下几点说明。
第一,为方便理解,下面对本申请中涉及到的主要参数做简单说明:
T:一个极化方向上的发射天线端口数,T为正整数;
P:一个极化方向上的发射端口数,P为正整数;
R:接收端口数,R为正整数;
Z:传输层数,Z为正整数;
N:用于承载参考信号的频域单元数,N为正整数;
K:角度向量数,K为正整数;
L:时延向量数,L为正整数;
J:发射天线的极化方向数,J为正整数;
第二,在本申请实施例中,为便于描述,在涉及编号时,可以从0开始连续编号。例如,K个角度向量可以包括第0个角度向量至第K-1个角度向量,L个时延向量可以包括第0个时延向量至第L-1个时延向量等,为了简洁,这里不一一列举。当然,具体实现时不限于此。比如也可以从1开始连续编号。例如,K个角度向量可以包括第1个角度向量至第K个角度向量,L个时延向量可以包括第1个时延向量至第L个时延向量等。
应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
第三,在本申请中,多处涉及矩阵和向量的变换。为便于理解,这里做同一说明。上角标T表示转置,如A T表示矩阵(或向量)A的转置;上角标*表示共轭,如,A *表示矩阵(或向量)A的共轭;上角标H表示共轭转置,如,A H表示矩阵(或向量)A的共轭转置。后文中为了简洁,省略对相同或相似情况的说明。
第四,在下文示出的实施例中,以角度向量和时延向量均为列向量为例来说明本申请提供的实施例,但这不应对本申请构成任何限定。基于相同的构思,本领域的技术人员还可以想到其他更多可能的表现方式。
第五,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息也可以称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如行向量可以表现为列向量,一个矩阵可以通过该矩阵的转置矩阵来表示,一个矩阵也可以表现为向量或者数组的形式,该向量或者数组可以由该矩阵的各个行向量或者列向量相互连接而成,等。本申请实施例提供的 技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息(downlink control information,DCI)。
第六,本申请对很多特性(例如克罗内克积、信道状态信息(channel state information,CSI)、RB、角度以及时延等)所列出的定义仅用于以举例方式来解释该特性的功能,其详细内容可以参考现有技术。
第七,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息等。
第八,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第九,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第十,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第十一,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
第十二,在本申请实施例中,多处提及发射端口和接收端口。为避免引起歧义,作出如下说明:发射端口可以是指发射参考信号(如预编码参考信号等)的端口。接收端口可以是指接收参考信号(如预编码参考信号等)的端口。在本申请实施例中,发射端口可以是网络设备端的端口,接收端口可以是终端设备端的端口。
传统方案中,基站可以根据上行信道的先验信息(即多径角度和时延)和终端设备反 馈的补充信息来重构下行CSI。具体地,网络设备根据角度和时延生成预编码,并采用该预编码编码下行信号。终端设备接收编码后的下行信号,并根据该编码后的下行信号生成加权系数。网络接收该加权系数,并根据该加权系数以及结合多径角度和时延确定下行CSI。但是,由于终端设备和网络设备的时延域的起始时延域的绝对时延域不同,导致终端设备生成的加权系数不准确,和/或网络设备计算的下行CSI不准确。因此,如何获得准确的下行CSI亟待解决。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
图3示出了本申请实施例的用于确定下行CSI的方法的示意性流程图。
301,终端设备根据下行信道向量和第一时延域差值,确定下行信道的加权系数。该加权系数用于网络设备确定下行CSI,该下行信道向量为根据预编码参考信号估计得到的,该预编码参考信号为该网络设备基于角度时延对对参考信号进行预编码得到的,该第一时延域差值为终端设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值。
具体地,网络设备根据上行信道的角度时延对对参考信号进行预编码得到预编码参考信号,并将该预编码参考信号发送给终端设备。终端设备根据该预编码参考信号进行估计可以得到下行信道向量,并根据该下行信道向量和第一时延域差值,确定下行信道的加权系数。也就是说,终端设备确定下行信道的加权系数需要考虑终端设备的最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域。这样终端设备可以计算出偏移到预设最强径信号的时延域位置时的加权系数,进而有助于网络设备根据加权系数计算出准确的下行CSI,从而有助于提高下行信号传输的通信质量。
可以理解的是,最强径信号的时延域位置可以是信号的能量最大的时延域位置。例如,如图4所示,坐标位置为(1,8)的位置对应的信号的能量为最大值。
需要说明的是,该第一时延域差值可以终端设备自己计算得到的,也可以是直接获取到的,本申请对此不进行限定。
可选地,步骤301具体可以是该下行信道向量、该时延域差值和该加权系数满足如下公式:
C=(he -j2πΔτ).IFFT(k),
其中,C表示加权系数,X.IFFT(k)表示X中的第k个快速傅里叶逆变换IFFT变换值,h为该下行信道向量,Δτ表示该第一时延域差值,j为复数中虚数单位。
具体地,信道向量h可以是N个信道估计值构成的信道向量。对该信道向量h进行IFFT可以得到N个时域变换值。终端设备可以将该N个时域变换值中的某一个值确定为该加权系数。例如,终端设备可以将该N个时域变换值中的第k个时域变换值作为该加权系数。这样终端设备可以将最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域通过补偿相位(即e -j2πΔτ)实现时延域的对齐,从而有助于提高加权系数的计算的准确度。
可以理解的是,该第一时延域差值的单位可以是系统采样点,也可以是时间单元,例 如,帧、子帧、迷你子帧、符号等,本申请对此不进行限定。
需要说明的是,k的取值还可以是其他值,本申请对此不进行限定。
可选地,k为该预设最强径信号的时延域位置的时延域索引。也就是说,终端设备可以根据下行信道向量、预设时延域位置和该第一时延域差值,确定该下行信道的加权系数。这样终端设备可以在实现时延域的对齐的情况下,找到最强径信号的时延域位置对应的加权系数,从而更进一步提高了计算加权系数的准确度。
可选地,在步骤301之前,终端设备自己计算该第一时延域差值可以是该终端设备根据该终端设备的最强径信号的时延域位置和预设最强径信号的时延域位置确定该第一时延域差值。
具体地,该终端设备能够获知自己的最强径信号的时延域位置,这样终端设备可以根据预设最强径信号的时延域位置和终端设备的最强径信号的时延域位置确定第一时延域差值,即终端设备的最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域。
可以理解的是,该预设时延域位置可以为绝对时延域位置。
在一个示例中,该终端设备可以从网络设备接收第一指示信息,该第一指示信息用于指示该预设最强径信号的时延域位置,并根据该第一指示信息和该终端设备的最强径信号的时延域位置确定该第一时延域差值。
具体地,网络设备可以设定预设最强径信号的时延域位置,并通过指示信息告知终端设备。这样终端设备可以根据该第一指示信息指示的预设最强径信号的时延域位置和该终端设备的最强径信号的时延域位置确定该第一时延域差值。
可选地,该第一指示信息可以是独立发送的,这样提高了指示信息发送的灵活性。
可选地,该第一指示信息也可以是携带在控制信令中发送的,这样节省了专门发送该指示信息的信令开销。
具体地,该控制信令可以是无线资源控制(radio resource control,RRC)、媒体访问控制(media access control,MAC)-控制元素(control element,CE)、下行控制信息(downlink control information,DCI),或者还可以是其他信令,本申请对此不进行限定。
在另一个示例中,该预设最强径信号的时延域位置为预定义的。
具体地,该预设最强径信号的时延域位置可以是协议规定的,或者说该终端设备和该网络设备预先约定的。这样网络设备和终端设备都能获知该预设最强径信号的时延域位置。
在又一个示例中,在步骤301之前,该终端设备可以根据预设最强径信号的传输端口,确定该预设最强径信号的时延域位置。该终端设备再根据该预设最强径信号的时延域位置和该终端设备的最强径信号的时延域位置确定该第一时延域差值。
具体地,该预设最强径信号的时延域位置可以是由预设最强径信号的传输端口确定,这样终端设备只要获知预设最强径信号所在的传输端口就可以确定预设最强径信号的时延域位置。例如,知道预设最强径信号所在的传输端口,就可以确定该传输端口上最强径信号的时延域位置,该传输端口上最强径信号的时延域位置即为预设最强径信号的时延域位置。
可选地,该预设最强径信号的传输端口可以是预定义的。
具体地,该预设最强径信号的传输端口可以是协议规定的,或者说该终端设备和该网络设备预先约定的。这样网络设备和终端设备都能获知该预设最强径信号的传输端口。
可选地,该终端设备可以获取第二指示信息,该第二指示信息用于指示预设最强径信号的传输端口。相应地,该网络设备向该终端设备发送该第二指示信息。也就是说,网络设备可以通过第二指示信息间接的指示预设最强径信号的时延域位置。
可选地,该第二指示信息可以是独立发送的,这样提高了指示信息发送的灵活性。
可选地,该第二指示信息也可以是携带在控制信令中发送的,这样节省了专门发送该指示信息的信令开销。
具体地,该控制信令可以是RRC、MAC-CE、DCI,或者还可以是其他信令,本申请对此不进行限定。
可以理解的是,该终端设备也可以上报其最强径信号的时延域位置,本申请对此不进行限定。
302,该终端设备向该网络设备发送该加权系数。相应地,该网络设备从该终端设备接收该加权系数。
303,该网络设备根据该加权系数、上行信道的角度时延对和第二时延域差值,确定下行CSI。该第二时延域差值为该网络设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值。
具体地,该网络设备确定下行CSI需要考虑网络设备的最强径信号的时延域位置相对于预设最强径信号的时延域位置偏移的时延域。例如,如图5所示,坐标位置为(53,11)的位置对应的信号的能量为最大值。这样网络设备可以得到偏移到预设最强径信号的时延域位置的下行CSI。若终端设备确定的加权系数为偏移到预设最强径信号的时延域位置时的加权系数,则网络设备能够得到更加准确的下行CSI。换句话说,终端设备和网络设备的最强径信号的时延域位置拉齐到预设最强径信号的时延域位置,这样减少了由于终端设备和网络设备各自的时延域起始位置的绝对时延域不同,导致的终端设备生成的加权系数不准确,和/或网络设备计算的下行CSI不准确,从而提高了下行信号传输的通信质量。
可以理解的是,网络设备根据加权系数、上行信道的角度时延对和第二时延域差值可以先得到下行空频矩阵,再由下行空频矩阵可以得到下行CSI(例如,下行信道矩阵),本申请实施例对此不进行限定。为方便描述,下述实施例以根据加权系数、上行信道的角度时延对和第二时延域差值直接得到下行CSI为例进行说明。
可选地,步骤303具体可以是加权系数、该角度时延对、该第二时延域差值和该下行信道矩阵满足如下公式:
H′=SCF He -j2πΔτ,其中,H′表示该下行信道矩阵,S表示该角度时延对中的角度向量构造的矩阵,F表示该角度时延对中的时延向量构造的矩阵,F H为F的共轭转置矩阵,C为该加权系数构造的矩阵,Δτ表示该第二时延域差值,j为复数中虚数单位。
具体地,下行CSI可以通过下行信道矩阵H′表示。S可以是多个角度时延对中的不同角度时延对中的角度向量构成的矩阵。例如,若存在2对角度时延对,则该2对角度时延对中的每个角度向量,即2个角度向量构成的矩阵即为S。同样地,F可以是多个角度时延对中的不同角度时延对中的时延向量构成的矩阵。例如,若存在2对角度时延对,则该2对角度时延对中的每个时延向量,即2个时延向量构成的矩阵即为F。以及,C可以是 多个角度时延对中的不同角度时延对对应的加权系数向量构成的矩阵。
可以理解的是,该第二时延域差值的单位可以是系统采样点,也可以是时间单元,例如,帧、子帧、迷你子帧、符号等,本申请对此不进行限定。
还可以理解的是,该第二时延域差值和该第一时延域差值的单位可以相同也可以不同,本申请对此不进行限定。
可以理解的是,该预设最强径信号可以不同于该终端设备的最强径信号的时延域位置,也不同于该网络设备的最强径信号的时延域位置。例如,该预设最强径信号的时延域位置可以是绝对时延域坐标为0对应的时延域位置,或绝对时延域坐标的中间值对应时延域位置,还可以是绝对时延域坐标中的其他值,本申请对此不进行限定。
在另一个实施例中,该预设最强径信号与该终端设备的最强径信号的时延域位置相同。
具体地,在该预设最强径信号的时延域位置与该终端设备的最强径信号的时延域位置相同的情况下,减少了由于该预设最强径信号与该终端设备的最强径信号的时延域位置的时延域偏移导致的加权系数的计算不准确。也就是说,终端设备可以不执行步骤301,如与现有技术中计算加权系数的方式相同。网络设备根据终端设备发送的加权系数按照步骤303计算下行CSI。
可以理解的是,终端设备可以通过向网络设备发送指示信息,通过该指示信息告知网络设备该预设最强径信号的时延域位置。其中,该指示信息可以与加权系数承载在同一个消息中,也可以是分别独立发送,本申请对此不进行限定。
在又一个实施例中,该预设最强径信号的时延域位置与该网络设备的最强径信号的时延域位置相同。
具体地,在该预设最强径信号与该网络设备的最强径信号的时延域位置相同的情况下,减少了由于该预设最强径信号与该网络设备的最强径信号的时延域位置的时延域偏移导致的下行CSI的计算不准确。也就是说,终端设备可以执行步骤301和步骤302,而网络设备可以不执行步骤303,而与现有技术中计算下行CSI的方式相同。
可以理解的是,网络设备可以通过向终端设备发送指示信息,通过该指示信息告知终端设备该预设最强径信号的时延域位置。其中,该指示信息可以与预编码参考信号承载在同一个消息中,也可以分别独立发送,本申请对此不进行限定。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备或者网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描 述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或者网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图3至图5详细说明了本申请实施例提供的方法。以下,结合图6至图13详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图6示出了本申请实施例的用于确定下行信道状态信息CSI的装置600的示意性框图。
应理解,该装置600可以对应于图3所示的实施例中的终端设备,可以具有方法中的终端设备的任意功能。该装置600包括处理模块610和收发模块620。
该处理模块610,用于根据下行信道向量和时延域差值,确定下行信道的加权系数,该加权系数用于网络设备确定下行CSI,该下行信道向量为根据预编码参考信号估计得到的,该预编码参考信号为该网络设备基于上行信道的角度时延对对参考信号进行预编码得到的,该时延域差值为终端设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值;
该收发模块620,用于向该网络设备发送该加权系数。
可选地,该收发模块620,还用于接收指示信息,该指示信息用于指示该预设最强径信号的时延域位置;该处理模块610,还用于根据该指示信息和该终端设备的最强径信号的时延域位置,确定该时延域差值。
可选地,该收发模块620具体用于:接收控制信令,该控制信令携带该指示信息。
可选地,该预设最强径信号的时延域位置为预定义的。
可选地,该处理模块610,还用于根据该预设最强径信号的传输端口,确定该预设最强径信号的时延域位置;该处理模块610,还用于根据该预设最强径信号的时延域位置和该终端设备的最强径信号的时延域位置,确定该时延域差值。
可选地,该预设最强径信号的传输端口为预定义的。
可选地,该下行信道向量、该时延域差值和该加权系数满足如下公式:
C=(he -j2πΔτ).IFFT(k),其中,C表示该加权系数,X.IFFT(k)表示X中的第k个快速傅里叶逆变换IFFT变换值,k为该预设最强径信号的时延域位置的时延域索引,h为该下行信道向量,Δτ表示该时延域差值。
图7示出了本申请实施例提供的用于确定下行信道状态信息CSI的装置700,该装置 700可以为图3中所述的终端设备。该装置可以采用如图7所示的硬件架构。该装置可以包括处理器710和收发器720,可选地,该装置还可以包括存储器730,该处理器710、收发器720和存储器730通过内部连接通路互相通信。图6中的处理模块610所实现的相关功能可以由处理器710来实现,收发模块620所实现的相关功能可以由处理器710控制收发器720来实现。
可选地,处理器710可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对用于确定下行信道状态信息CSI的装置(如,基站、终端设备、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器710可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器720用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器730包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器730用于存储相关指令及数据。
存储器730用于存储终端设备的程序代码和数据,可以为单独的器件或集成在处理器710中。
具体地,所述处理器710用于控制收发器与终端设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置700还可以包括输出设备和输入设备。输出设备和处理器710通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图7仅仅示出了用于确定下行信道状态信息CSI的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端设备都在本申请的保护范围之内。
在一种可能的设计中,该装置600可以是芯片,例如可以为可用于终端设备中的通信芯片,用于实现图6所示的处理模块610的相关功能,或者用于实现图7所示的处理器710的相关功能。装置600为芯片时,收发模块620可以是用于输入和/或输出的接口、管脚或电路。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片, 中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端设备也可以是电路。该装置可以用于执行上述方法实施例中由终端设备所执行的动作。
图8示出了本申请实施例的用于确定下行信道状态信息CSI的装置800的示意性框图。
应理解,该装置800可以对应于图3所示的实施例中的网络设备,可以具有方法中的终端设备的任意功能。该装置800包括收发模块810和处理模块820。
该收发模块810,用于接收来自终端设备的下行信道的加权系数;
该处理模块820,用于根据该加权系数、上行信道的角度时延对和时延域差值,确定下行CSI,该时延域差值为网络设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值。
可选地,该收发模块810,还用于向该终端设备发送指示信息,该指示信息用于指示该预设最强径信号的时延域位置。
可选地,该收发模块810具体用于:发送控制信令,该控制信令包括该指示信息。
可选地,该预设最强径信号的时延域位置为预定义的。
可选地,该处理模块820,还用于根据该预设最强径信号的传输端口,确定该预设最强径信号的时延域位置;该处理模块820,还用于根据该预设最强径信号的时延域位置和该网络设备的最强径信号的时延域位置,确定该时延域差值。
可选地,该预设最强径信号的传输端口为预定义的。
可选地,该下行CSI包括下行信道矩阵,该加权系数、该角度时延对、该时延域差值和该下行信道矩阵满足如下公式:
H′=SCF He -j2πΔτ
其中,H′表示该下行信道矩阵,S表示该角度时延对中的角度向量构造的矩阵,F表示该角度时延对中的时延向量构造的矩阵,F H为该F的共轭转置矩阵,C为该加权系数构造的矩阵,Δτ表示该时延域差值。
图9示出了本申请实施例提供的用于确定下行信道状态信息CSI的装置900,该装置900可以为图3中所述的网络设备。该装置可以采用如图9所示的硬件架构。该装置可以包括处理器910和收发器920,可选地,该装置还可以包括存储器930,该处理器910、收发器920和存储器930通过内部连接通路互相通信。图8中的处理模块820所实现的相关功能可以由处理器910来实现,收发模块810所实现的相关功能可以由处理器910控制收发器920来实现。
可选地,处理器910可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对用于确定下行信道状态信息CSI的装置(如,基站或芯片等)进行控制, 执行软件程序,处理软件程序的数据。
可选地,该处理器910可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器920用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器930包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器930用于存储相关指令及数据。
存储器930用于存储网络设备的程序代码和数据,可以为单独的器件或集成在处理器910中。
具体地,所述处理器910用于控制收发器与终端设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置900还可以包括输出设备和输入设备。输出设备和处理器910通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图9仅仅示出了用于确定下行信道状态信息CSI的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
在一种可能的设计中,该装置800可以是芯片,例如可以为可用于网络设备中的通信芯片,用于实现图8所示的处理模块820的相关功能,或者用于实现图9所示的处理器910的相关功能。装置800为芯片时,收发模块810可以是用于输入和/或输出的接口、管脚或电路。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是网络设备也可以是电路。该装置可以用于执行上述方法实施例中由网络设备所执行的动作。
可选地,本实施例中的装置为终端设备时,图10示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例 如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图10所示,终端设备包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1010用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1020用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1020用于执行图3中终端设备侧的处理步骤301。收发单元1010,用于执行图3中的步骤302中的收发操作,和/或收发单元1010还用于执行本申请实施例中终端设备侧的其他收发步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
可选地,该装置为终端设备时,还可以参照图11所示的设备。作为一个例子,该设备可以完成类似于图10中处理器1010的功能。在图11中,该设备包括处理器1101,发送数据处理器1103,接收数据处理器1105。上述实施例中的处理模块610可以是图11中的该处理器1101,并完成相应的功能。上述实施例中的收发模块620可以是图11中的发送数据处理器1103和接收数据处理器1105。虽然图11中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图12示出本实施例的另一种形式。处理装置1200中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信设备可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1203,接口1204。其中处理器1203完成上述处理模块610的功能,接口1204完成上述收发模块620的功能。作为另一种变形,该调制子系统包括存储器1206、处理器1203及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现实施例一至五之一所述方法。需要注意的是,所述存储器1206可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1200中,只要该存储器1206可以连接到所述处理器1203即可。
本实施例中的装置为网络设备时,该网络设备可以如图13所示,装置1300包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1310和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1320。所述RRU 1310可以称为收发模块,与图8中的收发模块810对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1316和射频单元1317。所述RRU 1310部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1310部分主要用于进行基带处理,对基站进行控制等。所述RRU 1310与BBU 1320可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1320为基站的控制中心,也可以称为处理模块,可以与图8中的处理模块820对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1320可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1320还包括存储器1321和处理器1322。所述存储器1321用以存储必要的指令和数据。所述处理器1322用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1321和处理器1322可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方 法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外, 这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种用于确定下行信道状态信息CSI的方法,其特征在于,包括:
    根据下行信道向量和时延域差值,确定下行信道的加权系数,所述加权系数用于网络设备确定下行CSI,所述下行信道向量为根据预编码参考信号估计得到的,所述预编码参考信号为所述网络设备基于上行信道的角度时延对对参考信号进行预编码得到的,所述时延域差值为终端设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值;
    向所述网络设备发送所述加权系数。
  2. 根据权利要求1所述的方法,其特征在于,在根据所述下行信道向量和所述时延域差值确定所述加权系数之前,所述方法还包括:
    接收指示信息,所述指示信息用于指示所述预设最强径信号的时延域位置;
    根据所述指示信息和所述终端设备的最强径信号的时延域位置,确定所述时延域差值。
  3. 根据权利要求2所述的方法,其特征在于,所述接收指示信息包括:
    接收控制信令,所述控制信令携带所述指示信息。
  4. 根据权利要求1所述的方法,其特征在于,所述预设最强径信号的时延域位置为预定义的。
  5. 根据权利要求1所述的方法,其特征在于,在根据所述下行信道向量和所述时延域差值确定所述加权系数之前,所述方法还包括:
    根据所述预设最强径信号的传输端口,确定所述预设最强径信号的时延域位置;
    根据所述预设最强径信号的时延域位置和所述终端设备的最强径信号的时延域位置,确定所述时延域差值。
  6. 根据权利要求5所述的方法,其特征在于,所述预设最强径信号的传输端口为预定义的。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述根据下行信道向量和时延域差值,确定加权系数包括:
    所述下行信道向量、所述时延域差值和所述加权系数满足如下公式:
    C=(he -j2πΔτ).IFFT(k),
    其中,C表示所述加权系数,X.IFFT(k)表示X中的第k个快速傅里叶逆变换IFFT变换值,k为所述预设最强径信号的时延域位置的时延域索引,h为所述下行信道向量,Δτ表示所述时延域差值。
  8. 一种用于确定下行信道状态信息CSI的方法,其特征在于,包括:
    接收来自终端设备的下行信道的加权系数;
    根据所述加权系数、上行信道的角度时延对和时延域差值,确定下行CSI,所述时延域差值为网络设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值。
  9. 根据权利要求8所述的方法,其特征在于,在接收来自所述终端设备的下行信道 的加权系数之前,所述方法还包括:
    向所述终端设备发送指示信息,所述指示信息用于指示所述预设最强径信号的时延域位置。
  10. 根据权利要求9所述的方法,其特征在于,所述向所述终端设备发送指示信息包括:
    发送控制信令,所述控制信令包括所述指示信息。
  11. 根据权利要求8所述的方法,其特征在于,所述预设最强径信号的时延域位置为预定义的。
  12. 根据权利要求8所述的方法,其特征在于,在接收来自所述终端设备的下行信道的加权系数之前,所述方法还包括:
    根据所述预设最强径信号的传输端口,确定所述预设最强径信号的时延域位置;
    根据所述预设最强径信号的时延域位置和所述网络设备的最强径信号的时延域位置,确定所述时延域差值。
  13. 根据权利要求12所述的方法,其特征在于,所述预设最强径信号的传输端口为预定义的。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述下行CSI包括下行信道矩阵,所述根据所述加权系数、上行信道的角度时延对和时延域差值,确定下行CSI包括:
    所述加权系数、所述角度时延对、所述时延域差值和所述下行信道矩阵满足如下公式:
    H′=SCF He -j2πΔτ
    其中,H′表示所述下行信道矩阵,S表示所述角度时延对中的角度向量构造的矩阵,F表示所述角度时延对中的时延向量构造的矩阵,F H为所述F的共轭转置矩阵,C为所述加权系数构造的矩阵,Δτ表示所述时延域差值。
  15. 一种用于确定下行信道状态信息CSI的装置,其特征在于,包括:
    处理模块,用于根据下行信道向量和时延域差值,确定下行信道的加权系数,所述加权系数用于网络设备确定下行CSI,所述下行信道向量为根据预编码参考信号估计得到的,所述预编码参考信号为所述网络设备基于上行信道的角度时延对对参考信号进行预编码得到的,所述时延域差值为终端设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值;
    收发模块,用于向所述网络设备发送所述加权系数。
  16. 根据权利要求15所述的装置,其特征在于,所述收发模块,还用于接收指示信息,所述指示信息用于指示所述预设最强径信号的时延域位置;
    所述处理模块,还用于根据所述指示信息和所述终端设备的最强径信号的时延域位置,确定所述时延域差值。
  17. 根据权利要求16所述的装置,其特征在于,所述收发模块具体用于:
    接收控制信令,所述控制信令携带所述指示信息。
  18. 根据权利要求15所述的装置,其特征在于,所述预设最强径信号的时延域位置为预定义的。
  19. 根据权利要求15所述的装置,其特征在于,所述处理模块,还用于根据所述预 设最强径信号的传输端口,确定所述预设最强径信号的时延域位置;
    所述处理模块,还用于根据所述预设最强径信号的时延域位置和所述终端设备的最强径信号的时延域位置,确定所述时延域差值。
  20. 根据权利要求19所述的装置,其特征在于,所述预设最强径信号的传输端口为预定义的。
  21. 根据权利要求15至20中任一项所述的装置,其特征在于,所述下行信道向量、所述时延域差值和所述加权系数满足如下公式:
    C=(he -j2πΔτ).IFFT(k),
    其中,C表示所述加权系数,X.IFFT(k)表示X中的第k个快速傅里叶逆变换IFFT变换值,k为所述预设最强径信号的时延域位置的时延域索引,h为所述下行信道向量,Δτ表示所述时延域差值。
  22. 一种用于确定下行信道状态信息CSI的装置,其特征在于,包括:
    收发模块,用于接收来自终端设备的下行信道的加权系数;
    处理模块,用于根据所述加权系数、上行信道的角度时延对和时延域差值,确定下行CSI,所述时延域差值为网络设备的最强径信号的时延域位置与预设最强径信号的时延域位置之间的时延域差值。
  23. 根据权利要求22所述的装置,其特征在于,所述收发模块,还用于向所述终端设备发送指示信息,所述指示信息用于指示所述预设最强径信号的时延域位置。
  24. 根据权利要求23所述的装置,其特征在于,所述收发模块具体用于:
    发送控制信令,所述控制信令包括所述指示信息。
  25. 根据权利要求22所述的装置,其特征在于,所述预设最强径信号的时延域位置为预定义的。
  26. 根据权利要求22所述的装置,其特征在于,所述处理模块,还用于根据所述预设最强径信号的传输端口,确定所述预设最强径信号的时延域位置;
    所述处理模块,还用于根据所述预设最强径信号的时延域位置和所述网络设备的最强径信号的时延域位置,确定所述时延域差值。
  27. 根据权利要求26所述的装置,其特征在于,所述预设最强径信号的传输端口为预定义的。
  28. 根据权利要求22至27中任一项所述的装置,其特征在于,所述下行CSI包括下行信道矩阵,所述加权系数、所述角度时延对、所述时延域差值和所述下行信道矩阵满足如下公式:
    H′=SCF He -j2πΔτ
    其中,H′表示所述下行信道矩阵,S表示所述角度时延对中的角度向量构造的矩阵,F表示所述角度时延对中的时延向量构造的矩阵,F H为所述F的共轭转置矩阵,C为所述加权系数构造的矩阵,Δτ表示所述时延域差值。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求1-7中任一项所述的方法或权利要求8-14中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令, 当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求1-7中任一项所述的方法或权利要求8-14中任一项所述的方法。
PCT/CN2020/073638 2020-01-21 2020-01-21 用于确定下行信道状态信息的方法和装置 WO2021146961A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073638 WO2021146961A1 (zh) 2020-01-21 2020-01-21 用于确定下行信道状态信息的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073638 WO2021146961A1 (zh) 2020-01-21 2020-01-21 用于确定下行信道状态信息的方法和装置

Publications (1)

Publication Number Publication Date
WO2021146961A1 true WO2021146961A1 (zh) 2021-07-29

Family

ID=76991954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073638 WO2021146961A1 (zh) 2020-01-21 2020-01-21 用于确定下行信道状态信息的方法和装置

Country Status (1)

Country Link
WO (1) WO2021146961A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209193A (zh) * 2016-08-19 2016-12-07 西华大学 基于压缩感知大规模mimo系统的csi反馈方法
CN108390836A (zh) * 2018-01-10 2018-08-10 南京邮电大学 一种大规模mimo系统上行信道估计方法
CN108964726A (zh) * 2018-09-03 2018-12-07 东南大学 一种低复杂度的大规模mimo上行链路传输信道估计方法
WO2019157230A1 (en) * 2018-02-08 2019-08-15 Cohere Technologies, Inc. Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209193A (zh) * 2016-08-19 2016-12-07 西华大学 基于压缩感知大规模mimo系统的csi反馈方法
CN108390836A (zh) * 2018-01-10 2018-08-10 南京邮电大学 一种大规模mimo系统上行信道估计方法
WO2019157230A1 (en) * 2018-02-08 2019-08-15 Cohere Technologies, Inc. Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications
CN108964726A (zh) * 2018-09-03 2018-12-07 东南大学 一种低复杂度的大规模mimo上行链路传输信道估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUTUREWEI: "Rel-17 work scope on NR MIMO", 3GPP DRAFT; RP-191869, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190916 - 20190920, 9 September 2019 (2019-09-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051782415 *

Similar Documents

Publication Publication Date Title
US20220263560A1 (en) Channel state information reporting method and communications apparatus
WO2022048593A1 (zh) 信道测量的方法和装置
EP4027543A1 (en) Channel measurement method and communication apparatus
US20230164004A1 (en) Channel parameter obtaining method and apparatus
EP3783807A1 (en) Communication method and communication apparatus
JP2022530973A (ja) プリコーディング行列表示及び決定方法、及び通信装置
WO2021081847A1 (zh) 一种信道测量方法和通信装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
WO2024027394A1 (zh) 一种通信方法及装置
WO2021203373A1 (zh) 一种信道测量方法和通信装置
US20230239028A1 (en) Channel measurement method and communication apparatus
WO2023165458A1 (zh) 信道状态信息的反馈方法和通信装置
US20230019630A1 (en) Update Method and Communications Apparatus
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
US20220271900A1 (en) Method for configuring transmit port of downlink reference signal and communication apparatus
US11784853B2 (en) Channel measurement method and communication apparatus
WO2022121746A1 (zh) 信道信息反馈方法及通信装置
WO2021159537A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2021146961A1 (zh) 用于确定下行信道状态信息的方法和装置
WO2021146938A1 (zh) 用于确定下行信道状态信息的方法和装置
US20230379020A1 (en) Precoding method and apparatus
WO2022227976A1 (zh) 通信方法和通信装置
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置
WO2024032241A1 (zh) 一种频域分量上报的方法及装置
WO2022147709A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915337

Country of ref document: EP

Kind code of ref document: A1