WO2022147709A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2022147709A1
WO2022147709A1 PCT/CN2021/070605 CN2021070605W WO2022147709A1 WO 2022147709 A1 WO2022147709 A1 WO 2022147709A1 CN 2021070605 W CN2021070605 W CN 2021070605W WO 2022147709 A1 WO2022147709 A1 WO 2022147709A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
resource unit
terminal device
network device
weight
Prior art date
Application number
PCT/CN2021/070605
Other languages
English (en)
French (fr)
Inventor
夏欣
陈卫民
张颜
陈雷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21916767.3A priority Critical patent/EP4250584A4/en
Priority to CN202180081267.6A priority patent/CN116569493A/zh
Priority to PCT/CN2021/070605 priority patent/WO2022147709A1/zh
Publication of WO2022147709A1 publication Critical patent/WO2022147709A1/zh
Priority to US18/347,574 priority patent/US20230353207A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication, and more particularly, to a method and apparatus for communication.
  • a sounding reference signal is generally sent to a base station through a user equipment (user equipment, UE) or a customer premises equipment (customer premise equipment, CPE).
  • the uplink channel is estimated according to the SRS, and the downlink channel is obtained by using the reciprocity of the uplink and downlink channels.
  • the base station calculates the BF transmission weight used for downlink transmission through algorithms such as singular value decomposition (SVD).
  • SVD singular value decomposition
  • the matrix factorization dimension that needs to be processed in the calculation of single-user beamforming (SU-BF) weights is the transmit antenna dimension of the base station, and the implementation cost under massive multi-input multi-output (MIMO) big.
  • the weights of multi-user beamforming (MU-BF) generally need to do the matrix inversion of the total number of data streams of all paired users in space division multiplexing to achieve inter-user interference cancellation.
  • the computational complexity of matrix inversion is Also higher. Therefore, how to reduce the computational complexity of the precoding weights is an urgent problem to be solved.
  • the present application provides a communication method and apparatus, which uses an air interface as a computing resource, which can reduce the computational complexity of the baseband.
  • a communication method is provided.
  • the method may be performed by a network device, or may also be performed by a component (eg, a chip or a chip system) configured in the network device. This application does not limit this.
  • the network device sends the first signal to the first terminal device in the first resource unit, and the first signal becomes the second signal through the action of the downlink air interface channel, so that the first terminal device can use the first
  • the resource unit receives the second signal.
  • the first terminal device obtains the third signal according to the signal processing of the second signal, and can send the third signal in the second resource unit, the second resource unit and the first resource unit at least partially overlap or are adjacent to, the third signal After the function of the uplink air interface channel, it becomes the fourth signal, and the network device can receive the fourth signal in the second resource unit, and obtain the first beamforming BF weight according to the signal processing of the fourth signal.
  • the network device can use the first beamforming BF weight to send downlink data less than the computation amount of matrix inversion or matrix decomposition. Therefore, in the embodiment of the present application, the function of the channel is used to transmit the signal on a specific resource unit RE, and the downlink BF weight is obtained through the influence of the channel on the signal during the transmission process of the signal, and the traditional baseband calculation is equivalently implemented, so that the baseband There is no need to calculate the matrix decomposition or inversion of the antenna dimension, which can reduce the computational complexity of the baseband.
  • the method provided by the present application can support more fine-grained precoding, so that the precoding weight can better match the channel change and improve the system performance.
  • the network device sends the first signal to the first terminal device in the first resource unit, so that the first terminal device can receive the second signal in the first resource unit, and the second signal is used to calculate the The third signal sent on the second resource unit.
  • the first BF weight is used by the network device to send downlink data to the first terminal device
  • the first signal is a random signal or the network device previously
  • a downlink single-user SU-BF weight used by a resource unit or the second resource unit when sending downlink data to the first terminal device, the first BF weight is when the network device is currently sending downlink data to the first terminal device
  • the SU-BF weight used, the first terminal device is a terminal device in a single-user multiple-input multiple-output SU-MIMO transmission mode.
  • the initial random signal or the precoding weight is used as the transmission signal, and the SU-BF weight for downlink transmission can be obtained without defining a dedicated pilot such as a sounding reference signal (SRS), which can save resource.
  • SRS sounding reference signal
  • the network device determines that the current transmission mode is SU-MIMO, and can use the random signal or the downlink single-user SU used by the network device when the first resource unit or the second resource unit sent downlink data to the first terminal device last time.
  • the BF weight is used as the first signal. After the first resource unit sends the first signal to the first terminal device and calculates with the first terminal device through the air interface, the network device can obtain the SU-BF sent downlink to the first terminal device. Weight, when the network device sends downlink data to the first terminal device, the first BF weight can be used to weight the downlink data for transmission.
  • the first BF weight is used by the network device to send downlink data to the second terminal device, and the first signal is the downlink single-user SU corresponding to the second terminal device -BF weight, the first BF weight is a multi-user MU-BF weight, and the first terminal device and the second terminal device are terminal devices in a multi-user multiple-input multiple-output MU-MIMO transmission mode.
  • the method further includes: the network device receives a fifth signal at a third resource unit, where the third resource unit and the first resource unit at least partially overlap or are adjacent to each other ;
  • the network device sends a sixth signal to the third terminal device in the fourth resource unit, the fourth resource unit and the second resource unit at least partially overlap or are adjacent, and the sixth signal is based on the signal processing of the fifth signal.
  • the amount of operation of the signal processing is less than that of matrix inversion or matrix decomposition
  • the sixth signal is used by the network device to receive the fourth signal in the second resource unit, the first terminal device, the second terminal
  • the device and the third terminal device are terminal devices in MU-MIMO transmission mode.
  • the network device may use the downlink single-user SU-BF weight corresponding to the second terminal device as the first signal, and send the first signal to the first terminal device in the first resource unit, and the first signal corresponds to the first resource unit.
  • the role of the downlink air interface channel becomes the second signal.
  • the first terminal device can perform signal processing on the second signal to obtain the seventh signal.
  • the amount of operation of the signal processing is less than that of matrix inversion or matrix decomposition.
  • the first terminal The device may send the seventh signal to the network device in the third resource unit, and then the network device may receive the fifth signal in the third resource unit, the fifth signal is formed by the seventh signal through the uplink air interface channel, and the third resource unit and the A resource unit is at least partially coincident or adjacent.
  • the network device may perform signal processing on the fifth signal to obtain a sixth signal, and the computation amount of the signal processing is less than the computation amount of matrix inversion or matrix decomposition, and then the network device sends the sixth signal to the third terminal device in the fourth resource unit , the sixth signal becomes the eighth signal through the action of the downlink air interface channel corresponding to the fourth resource unit, and the third terminal device can perform signal processing on the eighth signal to obtain the third signal, and then the third terminal device in the second resource unit A third signal is sent to the network device, and the fourth resource unit is at least partially coincident with or adjacent to the second resource unit.
  • the network device receives a fourth signal in the second resource unit, where the fourth signal is formed by a third signal sent by the third terminal device on the second resource unit through an uplink air interface channel. Still further, the network device performs signal processing on the fourth signal to obtain a first beamforming BF weight. The computation amount of the signal processing is less than the computation amount of matrix inversion or matrix decomposition, and the first BF weight is used by the network device. Send downlink data to the second terminal device.
  • the signal processing includes conjugation and/or normalization operations.
  • the network device can obtain the precoding weight through simple operations such as conjugation and normalization, so that the baseband does not need to calculate the matrix decomposition or inversion of the antenna dimension, which can reduce the computational complexity of the baseband.
  • the first resource unit and the second resource unit all overlap.
  • the location of the resource for sending the signal by the network device and the resource for sending the signal by the first terminal device may be the same. In this way, more accurate precoding weights can be obtained.
  • the first resource unit and the third resource unit all overlap, and the second resource unit and the fourth resource unit all overlap.
  • the positions of the resources for sending signals by the network device and the resources for sending signals by each terminal device may be the same. In this way, more accurate precoding weights can be obtained.
  • the method further includes: receiving a first request message, where the first request message is used to request the network device to determine the location of the first resource unit.
  • the method further includes: sending first indication information, where the first indication information is used to indicate the location of the first resource unit or the second resource unit.
  • the method further includes: receiving a second request message, where the second request message is used to request the network device to send the first signal and/or obtain the first BF weight.
  • the network device can start the air interface calculation mode according to the request of the first terminal device, and in the next information exchange, the network device and the network device can start to obtain the precoding weight by the air interface calculation method.
  • the method further includes: sending second indication information, where the second indication information is used to instruct the first terminal device to receive the second signal and/or obtain the third signal signal, the second signal is formed by the first signal through the downlink air interface channel, the third signal is obtained according to the signal processing of the second signal, and the calculation amount of the signal processing is less than the operation of matrix inversion or matrix decomposition quantity.
  • the method further includes: sending third indication information, where the third indication information is used to instruct the first terminal device to determine the second BF weight according to the second signal , the second BF weight is used by the first terminal device to send uplink data to the network device.
  • the method further includes: sending fourth indication information, where the fourth indication information is used to instruct the first terminal device to use the second BF weight to perform uplink data processing Weighted send.
  • the method further includes: sending power adjustment information to the first terminal device, where the power adjustment information is used to adjust the power of the third signal.
  • the first resource unit or the second resource unit includes at least one resource unit RE.
  • the first resource unit or the second resource unit may be a resource unit (recourse element, RE), or may be a combination of multiple different REs, for example, the first resource unit or the second resource unit may be scheduled data
  • a segment of separated or continuous frequency band resources including multiple REs
  • precoding weights of various granularities can be obtained.
  • a communication method is provided, and the method can be executed by a terminal device, or can also be executed by a component (eg, a chip or a chip system) configured in the terminal device.
  • a component eg, a chip or a chip system
  • the method includes: receiving a second signal at a first resource unit; sending a third signal to a network device at a second resource unit, the second resource unit at least partially overlapping or adjacent to the first resource unit, the first resource unit
  • the third signal is obtained according to the signal processing of the second signal, and the computational complexity of the signal processing is smaller than that of matrix inversion or matrix decomposition.
  • the network device sends the first signal to the first terminal device in the first resource unit, and the first signal becomes the second signal through the action of the downlink air interface channel, so that the first terminal device can use the first
  • the resource unit receives the second signal.
  • the first terminal device may send a third signal in the second resource unit, the second resource unit and the first resource unit at least partially coincident or adjacent, and the third signal After the function of the uplink air interface channel, it becomes the fourth signal, and the network device can receive the fourth signal in the second resource unit, and obtain the first beamforming BF weight according to the signal processing of the fourth signal.
  • the network device can use the first beamforming BF weight to send downlink data less than the computation amount of matrix inversion or matrix decomposition. Therefore, in the embodiment of the present application, the function of the channel is used to transmit the signal on a specific resource unit RE, and the downlink BF weight is obtained through the influence of the channel on the signal during the transmission process of the signal, and the traditional baseband calculation is equivalently implemented, so that the baseband There is no need to calculate the matrix decomposition or inversion of the antenna dimension, which can reduce the computational complexity of the baseband.
  • the method provided by the present application can support more fine-grained precoding, so that the precoding weight can better match the channel change and improve the system performance.
  • the first terminal device sends the third signal to the network device in the second resource unit, so that the network device can receive the fourth signal in the second resource unit, where the fourth signal is used to calculate the first beamforming BF weight , and the first BF weight is used for the network device to send downlink data to the first terminal device, or for the network device to send downlink data to the second terminal device.
  • the signal processing includes conjugation and/or normalization operations.
  • the first terminal device conjugates the second signal, it may further perform a normalization operation on the obtained result, thereby obtaining the third signal.
  • the first resource unit and the second resource unit all overlap.
  • the location of the resource for sending the signal by the network device and the resource for sending the signal by the first terminal device may be the same. In this way, more accurate precoding weights can be obtained.
  • the method further includes: sending a first request message, where the first request message is used to request the network device to determine the location of the first resource unit.
  • the location of the first resource unit may be agreed upon through negotiation between the network device and the first terminal device.
  • the first terminal device sends a first request message to the network device, requesting the network device to determine the location of the first resource unit.
  • the method further includes: receiving first indication information, where the first indication information is used to indicate the location of the first resource unit or the second resource unit.
  • the method further includes: sending a second request message, where the second request message is used to request the network device to send the first signal and/or obtain the first beamforming A BF weight value, the second signal is formed by the first signal through a downlink air interface channel, and the first BF weight value is used by the network device to send downlink data to the first terminal device or the second terminal device.
  • the first terminal device may request to start the air interface calculation mode, and in the next information exchange, the first terminal device and the network device may start to obtain the precoding weight by the air interface calculation method.
  • the method further includes: receiving second indication information, where the second indication information is used to instruct the first terminal device to receive the second signal and/or obtain the second signal third signal.
  • the network device may confirm to start the air interface calculation mode according to the actual situation or according to the request of the first terminal device, and notify the first terminal device to start obtaining precoding weights through air interface calculation in the next information exchange.
  • the method further includes: receiving third indication information, where the third indication information is used to instruct the first terminal device to determine the second BF according to the second signal weight.
  • the method further includes: determining the second BF weight as the third signal.
  • the method further includes: receiving power adjustment information, where the power adjustment information is used to adjust the power of the third signal; The power is adjusted; the adjusted third signal is sent to the network device.
  • the first resource unit or the second resource unit includes at least one resource unit RE.
  • the first resource unit or the second resource unit may be a resource unit (recourse element, RE), or may be a combination of multiple different REs, for example, the first resource unit or the second resource unit may be scheduled data
  • a segment of separated or continuous frequency band resources including multiple REs
  • precoding weights of various granularities can be obtained.
  • a communication apparatus configured to perform the communication method provided in the above-mentioned first aspect.
  • the communication apparatus may include a unit for executing the communication method provided by the first aspect.
  • the communication device includes a processing unit and a transceiving unit.
  • the transceiver unit is used for sending the first signal to the first terminal device at the first resource unit; the transceiver unit is further used for receiving the fourth signal at the second resource unit; the transceiver unit is also used for using the first beamforming BF weight
  • the first BF weight is obtained according to the signal processing of the fourth signal, and the operation amount of the signal processing is smaller than the operation amount of matrix inversion or matrix decomposition.
  • the processing unit is configured to obtain the first BF weight according to signal processing of the fourth signal.
  • the first BF weight is used by the network device to send downlink data to the first terminal device
  • the first signal is a random signal or the network device previously sent the first resource unit or the second resource unit to the first terminal device.
  • the downlink single-user SU-BF weight used by a terminal device when sending downlink data is the SU-BF weight currently used by the network device when sending downlink data to the first terminal device
  • the first BF weight is A terminal device is a terminal device in a single-user multiple-input multiple-output SU-MIMO transmission mode.
  • the first BF weight is used by the network device to send downlink data to the second terminal device
  • the first signal is the downlink single-user SU-BF weight corresponding to the second terminal device
  • the first BF weight is Multi-user MU-BF weight
  • the first terminal device and the second terminal device are terminal devices in a multi-user multiple-input multiple-output MU-MIMO transmission mode.
  • the transceiver unit is further configured to receive a fifth signal at a third resource unit, the third resource unit and the first resource unit at least partially coincident or adjacent; the transceiver unit is further configured to send a signal to the fourth resource unit.
  • the third terminal device sends a sixth signal, the fourth resource unit at least partially overlaps or is adjacent to the second resource unit, the sixth signal is obtained according to the signal processing of the fifth signal, and the calculation amount of the signal processing is less than the computation amount of matrix inversion or matrix decomposition, the sixth signal is used by the network device to receive the fourth signal in the second resource unit, and the first terminal device, the second terminal device and the third terminal device are MUs - Terminal devices in MIMO transmission mode.
  • the signal processing includes conjugation and/or normalization operations.
  • the first resource unit and the second resource unit all overlap.
  • the first resource unit and the third resource unit all overlap, and the second resource unit and the fourth resource unit all overlap.
  • the transceiver unit is further configured to receive a first request message, where the first request message is used to request the network device to determine the location of the first resource unit.
  • the transceiver unit is further configured to send first indication information, where the first indication information is used to indicate the location of the first resource unit or the second resource unit.
  • the transceiver unit is further configured to receive a second request message, where the second request message is used to request the network device to send the first signal and/or obtain the first BF weight.
  • the transceiver unit is further configured to send second indication information, where the second indication information is used to instruct the first terminal device to receive a second signal and/or obtain a third signal, where the second signal is the first signal Formed through the downlink air interface channel, the third signal is obtained according to the signal processing of the second signal, and the calculation amount of the signal processing is smaller than the calculation amount of matrix inversion or matrix decomposition.
  • the transceiver unit is further configured to send fourth indication information, where the fourth indication information is used to instruct the first terminal device to use the second BF weight to perform weighted transmission of uplink data.
  • the transceiver unit is further configured to send power adjustment information to the first terminal device, where the power adjustment information is used to adjust the power of the third signal.
  • the first resource unit or the second resource unit includes at least one resource unit RE.
  • a communication apparatus configured to perform the communication method provided in the second aspect.
  • the communication apparatus may include a unit for executing the communication method provided by the second aspect.
  • the communication device includes a processing unit and a transceiving unit.
  • the transceiver unit is configured to receive a second signal at the first resource unit; the transceiver unit is further configured to send a third signal to the network device at the second resource unit, the second resource unit and the first resource unit at least partially coincident or identical Neighboringly, the third signal is obtained according to the signal processing of the second signal, and the calculation amount of the signal processing is smaller than the calculation amount of matrix inversion or matrix decomposition.
  • the first resource unit and the second resource unit all overlap.
  • the transceiver unit is further configured to send a first request message, where the first request message is used to request the network device to determine the location of the first resource unit.
  • the transceiver unit is further configured to receive second indication information, where the second indication information is used to instruct the first terminal device to receive the second signal and/or obtain the third signal.
  • the second signal is further used to determine a second BF weight
  • the second BF weight is used by the first terminal device to send uplink data to the network device
  • the processing unit is further configured to: according to the second BF weight The signal determines the second BF weight.
  • the transceiver unit is further configured to receive third indication information, where the third indication information is used to instruct the first terminal device to determine the second BF weight according to the second signal.
  • the transceiver unit is further configured to receive fourth indication information, where the fourth indication information is used to instruct the first terminal device to use the second BF weight to perform weighted transmission of the uplink data.
  • the processing unit is further configured to determine the second BF weight as the third signal.
  • the transceiver unit is further configured to receive power adjustment information, where the power adjustment information is used to adjust the power of the third signal; the processing unit is further configured to adjust the power of the third signal according to the power adjustment information; the The transceiver unit is further configured to send the adjusted third signal to the network device.
  • the first resource unit or the second resource unit includes at least one resource unit RE.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication apparatus is a chip or a chip system configured in a network device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication apparatus is a chip or a chip system configured in the terminal device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a seventh aspect provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, enables the communication device to realize any possible implementation of the first aspect or the second aspect A method of communication in a way.
  • FIG. 1 is a schematic diagram of a communication system of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a further communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for the communication method of the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1 ; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1 .
  • the network device 110 and the terminal device 120 may communicate via a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 may be configured with multiple antennas.
  • the configured plurality of antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals. Therefore, communication between each communication device in the communication system, and between the network device 110 and the terminal device 120, can be communicated through the multi-antenna technology.
  • the network device in the communication system may be any device with a wireless transceiver function.
  • the network equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) ), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi) system connection Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home evolved NodeB home evolved NodeB, or home Node B, HNB
  • BBU Baseband unit
  • DU distributed unit
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer function.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user equipment.
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( A wireless terminal in transportation safety), a wireless terminal in a smart city, a wireless terminal in a smart home, a mobile terminal configured in a vehicle, etc., the terminal equipment in the embodiments of the present application It can also be a customer premise equipment (CPE).
  • CPE customer premise equipment
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system may further include other network devices or may also include other terminal devices, which are not shown in FIG. 1 .
  • the processing process of the downlink signal at the physical layer before sending may be performed by a network device, or may be performed by a chip configured in the network device.
  • network devices For convenience of description, hereinafter collectively referred to as network devices.
  • the sending device processes the signal to be sent by means of a precoding matrix that matches the channel state, so that the precoded signal to be sent is adapted to the channel, so that the receiving device (such as a terminal device) can eliminate the influence between channels complexity is reduced. Therefore, through the precoding process of the signal to be transmitted, the quality of the received signal (such as the signal to interference plus noise ratio (SINR), etc., is improved. Therefore, by using the precoding technology, it is possible to realize the transmission equipment and multiple The receiving device transmits on the same time-frequency resources, that is, multi-user multiple-input multiple-output (MU-MIMO) is realized.
  • MU-MIMO multi-user multiple-input multiple-output
  • Beamforming also known as beamforming and spatial filtering, is a signal processing technology that uses sensor arrays to send and receive signals directionally.
  • the beamforming technique adjusts the parameters of the basic unit of the phased array so that signals at certain angles obtain constructive interference, while signals at other angles obtain destructive interference. Beamforming can be used for both the signal transmitter and the signal receiver.
  • the BF in this application is mainly the BF in the full digital domain, that is, digital beamforming (digital beamforming, DBF).
  • the precoding weight refers to a precoding vector or a precoding matrix, and the precoding weight is used for weighted transmission of the data to be transmitted, so as to control the direction of the transmission beam to better match the channel.
  • Precoding weights may also be referred to as transmit weights or transmit weights.
  • the precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same parts in terms of composition or other properties.
  • the precoding weight may include a single-user beamforming (single-user beamforming, SU-BF) weight and a multi-user beamforming (multiple-user beamforming, MU-BF) weight.
  • the calculation mode in which the air interface is used as a resource that is, the process of obtaining the precoding weight by transmitting signals back and forth in the air interface channel is called "air interface calculation”.
  • air interface calculation the process of obtaining the precoding weight by transmitting signals back and forth in the air interface channel.
  • FIG. 2 is a schematic flowchart of a communication method 200 provided by an embodiment of the present application.
  • the method 200 in FIG. 2 may be performed by the system 100 in FIG. 1 , and the method shown in FIG. 2 may be used to obtain precoding weights for downlink transmission.
  • the network device sends the first signal to the first terminal device in the first resource unit.
  • the first resource unit and the second resource unit are composed of some resource units on a resource grid (recourse grid, RG), and the first resource unit and the second resource unit may be a resource unit (recourse element) , RE), or a combination of multiple different REs, for example: the first resource unit or the second resource unit may be a certain orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol of the scheduled data bandwidth All REs on the OFDM symbol, or a segment of separated or continuous frequency band resources (including multiple REs) can be set as the first resource unit or the second resource unit, for example, where all even-numbered subcarriers (subcarriers) on a certain OFDM symbol are located REs constitute the first resource unit.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first resource unit or the second resource unit may also be all time domain resources in a time slot (slot) on a certain subcarrier, or all odd symbols (symbol) in a time slot (slot) on a certain subcarrier.
  • the RE where it is located is set as the first resource unit or the second resource unit.
  • the first resource unit or the second resource unit may also be a special reference signal configured by the network device, and the resource location (including the time domain and the frequency domain) corresponding to the reference signal is the location of the first resource unit or the second resource unit .
  • the embodiments of the present application do not limit the specific forms and contents of the first resource unit and the second resource unit.
  • the locations of the first resource unit and the second resource unit may be defined by a protocol, and both the network device and the first terminal device know that the resource unit is used for air interface calculation. That is to say, the first resource unit and the second resource unit may be some REs reserved in the uplink and downlink subframes, and these REs are specially used to transmit and/or receive specific signals, such as signals used for air interface calculation.
  • the locations of the first resource unit and the second resource unit may also be agreed upon through negotiation between the network device and the first terminal device, and the specific agreed manner is not limited in this embodiment of the present application.
  • the network device may first determine the location of the first resource unit, and then notify the first terminal device of the location of the resource unit by sending indication information to the first terminal device.
  • the first indication information may be carried in the Physical Downlink Control Channel (PDCCH), or semi-static signaling may be sent to the first terminal device, where the semi-static signaling includes the first indication information, and the first indication information is used to indicate the location of the first resource unit.
  • PDCCH Physical Downlink Control Channel
  • semi-static signaling may be sent to the first terminal device, where the semi-static signaling includes the first indication information, and the first indication information is used to indicate the location of the first resource unit.
  • the resources for air interface calculation may also be determined according to a request of the first terminal device, and the first terminal device sends first request information to the network device, where the first request information is used to request the network device to determine the first The location of a resource unit, the network device determines the location of the first resource unit or the second resource unit according to the first request information, and sends first indication information to the first terminal device, where the first indication information is used to indicate the first resource unit. or the location of the second resource unit. That is, the first terminal device may send a request message to the network device to request the network device to determine the location of the first resource unit.
  • the network device may also send configuration information, where the configuration information may include the time interval between the first resource unit and the second resource unit, the first resource unit or the second resource unit. Duration of resource units, bandwidth density, bandwidth range or initial beam information, etc.
  • the network device may specify a time interval between the first resource unit and the second resource unit, for example, X timeslots (slots) are a time interval, and X is a positive integer.
  • the network device may also configure initial beam information for the first resource unit or the second resource unit, for example, indicating a quasi-colocation relationship with a certain reference signal, so as to assist the first terminal device to perform initial reception of the first resource unit.
  • the network device may configure multiple first resource units or second resource units, and use an index to distinguish them.
  • the network device may also send the index list of the first resource unit or the second resource unit to the first terminal device in advance.
  • the first indication information may be the first resource unit or the first resource unit. 2 The index value of the resource unit.
  • the first terminal device uses the corresponding relationship between the index value and the location of the resource unit to determine the specific location of the first resource unit or the second resource unit.
  • This embodiment of the present application does not limit the specific manner in which the first indication information indicates the first resource unit or the second resource unit.
  • the first resource unit and the second resource unit are used as "specific REs", which are used for sending uplink and downlink signals when the network device and the terminal device perform air interface calculations. After the locations of the first resource unit and the second resource unit are determined through negotiation, the network device sends the first signal to the first terminal device in the first resource unit.
  • the first signal becomes the second signal through the action of the downlink air interface channel corresponding to the first resource unit.
  • the air interface is used as a computing resource, and the first signal passes through the influence of the downlink air interface channel corresponding to the first resource unit.
  • the first signal has passed the function of the downlink air interface channel and becomes another A signal with a different signal.
  • the first terminal device receives the second signal in the first resource unit.
  • the first terminal device may receive the second signal in the first resource unit, thereby starting the air interface calculation process.
  • the first terminal device performs signal processing on the second signal to obtain a third signal, and the operation amount of the signal processing is smaller than the operation amount of matrix inversion or matrix decomposition.
  • the first terminal device may perform a conjugate and/or normalization operation on the second signal to obtain the third signal.
  • the second signal may also be used to determine the second BF weight
  • the first terminal device may also determine the second beamforming BF weight according to the second signal
  • the second BF weight is used by the first terminal device to send
  • the network device sends uplink data.
  • the first terminal device may perform a conjugate and/or normalization operation on the second signal to obtain a second BF weight.
  • the first terminal device may use the calculated second BF weight as the third signal.
  • whether the first terminal device determines the second BF weight according to the second signal may be implemented through a network device or a protocol agreement.
  • the network device may send third indication information to the first terminal device, where the third indication information is used to instruct the first terminal device to determine the second BF weight according to the second signal.
  • the network device can indicate the number of transmissions N, where N is a positive integer. After N times of uplink and downlink transmission, the first terminal device applies the second BF weight determined by the second signal to the uplink signal transmission, and N can be the same as The number of transmission cycles of the first resource unit configured by the network device is the same.
  • the network device may also use another signaling to instruct the first terminal device whether to use the second BF weight for transmission, or to instruct the terminal which reference signals or channels to transmit. For example, the network device sends fourth indication information, where the fourth indication information is used to instruct the first terminal device to use the second BF weight to weight and send the uplink data.
  • the network device may further agree with the first terminal device that at a certain time, the channel or the reference signal should use the second BF weight for uplink transmission.
  • the network device may instruct the first terminal device to use the index value of the first resource unit to determine whether the signal on the resource unit should be sent using the second BF weight, and at this time, the first indication information may indicate the first resource unit
  • the location information can also indicate whether to use the second BF weight for uplink transmission.
  • the first terminal device sends a third signal to the network device on the second resource unit, where the second resource unit and the first resource unit at least partially overlap or are adjacent to each other.
  • the network device can use the first resource unit to send the first signal, so that the first terminal device can receive the second signal in the first resource unit, and the second signal is the first signal passing through the first resource unit. It is formed by the function of the downlink air interface channel corresponding to the first resource unit.
  • the first terminal device may use the second resource unit to send the third signal, so that the network device receives the fourth signal in the second resource unit, and the fourth signal is formed by the third signal through the action of the uplink air interface channel corresponding to the second resource unit
  • the location of the second resource unit is at least partially coincident with or adjacent to the location of the first resource unit.
  • the first resource unit and the second resource unit may be all overlapping resources. That is to say, the location of the resource for sending the signal by the network device and the resource for sending the signal by the first terminal device may be the same. In this way, the network device can obtain more accurate precoding weights.
  • the positions of the resources for sending signals by the network device and the resources for sending signals by the first terminal device may also be adjacent or partially overlapped. Since the positions of the resources are adjacent or at least partially overlap, their corresponding transmission channels are relatively close. In this way, when the position of the first resource unit corresponding to the first terminal device is occupied, the The air interface calculation can be carried out in a timely and smooth manner.
  • the network device may indicate the power of the third signal sent by the terminal.
  • the terminal device should adjust the power of the third signal according to the instruction of the network device.
  • the network device may send power adjustment information to the first terminal device, where the power adjustment information is used to adjust the power of the third signal.
  • the first terminal device adjusts the power adjustment of the third signal according to the power adjustment information.
  • the power is adjusted, and the first terminal device sends the adjusted third signal to the network device.
  • the network device configures the corresponding path loss measurement reference signal and target power information for the third signal, and the first terminal device measures the used path loss measurement reference signal and determines the transmit power of the third signal.
  • the third signal becomes the fourth signal through the action of the uplink air interface channel corresponding to the second resource unit.
  • the air interface is used as a computing resource, and the third signal passes through the influence of the uplink air interface channel where the second resource unit is located. At the receiving end, the third signal has passed the function of the uplink air interface channel and becomes another The third signal is a different signal.
  • the network device receives the fourth signal in the second resource unit.
  • the third signal becomes the fourth signal at the receiving antenna of the network device through the action of the uplink air interface channel corresponding to the second resource unit, and the network device receives the fourth signal on the second resource unit.
  • the network device performs signal processing on the fourth signal to obtain a first beamforming BF weight.
  • the computation amount of the signal processing is less than the computation amount of matrix inversion or matrix decomposition, and the first BF weight is used by the network device to send the first
  • the terminal device sends downlink data, or is used by the network device to send downlink data to the second terminal device.
  • the network device may perform conjugation and/or normalization operations on the fourth signal to obtain the first BF weight, and the network device may calculate the first BF weight As the BF weight sent downlink to the first terminal device, or as the BF weight sent downlink to the second terminal device.
  • the network device sends downlink data by using the first beamforming BF weight.
  • the function of the channel is used to transmit the signal on a specific resource unit RE, and the downlink BF weight is obtained through the influence of the channel on the signal during the transmission process of the signal, and the traditional baseband calculation is equivalently implemented, so that the baseband There is no need to calculate the matrix decomposition or inversion of the antenna dimension, which can reduce the computational complexity of the baseband.
  • the downlink channel matrix H d and the uplink channel matrix H u have the following relationship:
  • f (0) is an arbitrary initial vector.
  • the embodiments of the present application can support more fine-grained precoding, so that the precoding weights can better match channel changes and improve system performance.
  • the computing resources of the baseband can be saved, the system cost can be reduced, and the power consumption can be reduced.
  • the first terminal device may also use the second BF weight to perform weighted transmission of uplink data according to the actual situation.
  • first resource unit and the second resource unit mentioned in the embodiments of the present application refer to the location of the first resource unit or the second resource unit in some cases.
  • the network device sends the first signal at the first resource unit, and the first terminal device receives the second signal at the first resource unit.
  • the first resource unit in the descriptions in these two places refers to the resource unit with the same location.
  • the network device and the first terminal device may also execute the process in FIG.
  • the obtained result is used as the first BF weight value, and the first signal is transmitted back and forth several times, which may be determined according to the internal algorithm and the speed of the channel change.
  • the first signal may be ping-pong (ping-pang) sent 1-3 times in the uplink and downlink channel ports. If multiple times of ping-pong are required, when sending the first indication information to the first terminal device, the network device may also send configuration information, where the configuration information may include the time interval between this ping-pang and the next ping-pang.
  • the first signal may be a random signal or a downlink SU-BF weight used by the network device when the first resource unit or the second resource unit previously sent downlink data to the first terminal device value
  • the first BF weight may be a single-user SU-BF weight currently used by the network device when sending downlink data to the first terminal device
  • the first BF weight is used by the network device to send downlink data to the first terminal device.
  • the first terminal device may be a terminal device in a single-user multiple-input multiple-output SU-MIMO transmission mode.
  • the network device determines that the current transmission mode is SU-MIMO, and can use the random signal as the first signal or the first signal used by the network device when the first resource unit or the second resource unit sent downlink data to the first terminal device last time.
  • the downlink SU-BF weight after the first resource unit sends the first signal to the first terminal device and calculates with the first terminal device over the air interface, the network device can obtain the SU-BF weight currently sent downlink to the first terminal device value, when the network device sends downlink data to the first terminal device, the downlink data may be weighted and sent by using the first BF weight.
  • the first signal may be a single-user SU-BF weight sent downlink by the network device to the second terminal device
  • the first BF weight may be a multi-user MU-BF weight
  • the first BF weight may be a multi-user MU-BF weight.
  • the value is used by the network device to send downlink data to the second terminal device.
  • the first terminal device and the second terminal device may be terminal devices in a multi-user multiple-input multiple-output MU-MIMO transmission mode.
  • the method further includes: the network device receives a fifth signal at a third resource unit, where the third resource unit is at least partially coincident with or adjacent to the first resource unit.
  • the network device performs signal processing on the fifth signal to obtain a sixth signal, and the operation amount of the signal processing is smaller than that of matrix inversion or matrix decomposition, and the signal processing may include conjugation and/or normalization operations.
  • the network device sends a sixth signal to the third terminal device in the fourth resource unit, the fourth resource unit and the second resource unit at least partially overlap or are adjacent, and the sixth signal is used by the network device to receive the fourth signal in the second resource unit.
  • the first terminal device, the second terminal device and the third terminal device may be terminal devices in the MU-MIMO transmission mode.
  • the network device determines that the current transmission mode is MU-MIMO, and can use the downlink single-user SU-BF weight corresponding to the second terminal device as the first signal.
  • the network device sends the first signal to the first terminal device in the first resource unit, and after calculating with the first terminal device through the air interface, the network device can obtain the MU-BF weight sent downlink to the second terminal device.
  • the terminal device sends the downlink data
  • the downlink data may be weighted and sent by using the first BF weight.
  • the network device and each terminal device can respectively execute the process shown in FIG. 2 to obtain the MU-BF.
  • the network device may use the downlink single-user SU-BF weight corresponding to the second terminal device as the first signal, and send the first signal to the first terminal device in the first resource unit, and the first signal passes through the downlink air interface corresponding to the first resource unit.
  • the role of the channel becomes the second signal.
  • the first terminal device can perform signal processing on the second signal to obtain the seventh signal.
  • the first terminal device sends the seventh signal to the network device in the third resource unit, and then the network device in the third
  • the resource unit receives a fifth signal, where the fifth signal is formed by the seventh signal through an uplink air interface channel corresponding to the third resource unit, and the third resource unit and the first resource unit at least partially overlap or are adjacent.
  • the network device can perform signal processing on the fifth signal to obtain the sixth signal, and the operation amount of the signal processing is less than the operation amount of matrix inversion or matrix decomposition, and the signal processing may include a conjugate operation or a normalization operation, Then the network device sends the sixth signal to the third terminal device in the fourth resource unit, the sixth signal becomes the eighth signal through the action of the downlink air interface channel corresponding to the fourth resource unit, and the third terminal device can signal the eighth signal processing to obtain a third signal, and then the third terminal device sends the third signal to the network device in the second resource unit, where the fourth resource unit and the second resource unit at least partially overlap or are adjacent to each other.
  • the network device receives a fourth signal in the second resource unit, where the fourth signal is formed by the third signal sent by the third terminal device through the uplink air interface channel corresponding to the second resource unit. Still further, the network device performs signal processing on the fourth signal to obtain a first beamforming BF weight. The computation amount of the signal processing is less than the computation amount of matrix inversion or matrix decomposition, and the first BF weight is used by the network device. Send downlink data to the second terminal device.
  • the network device determines that the current transmission mode is MU-MIMO, and can also use the single-user SU-BF weight corresponding to the first terminal device as the first signal, and send it to the resource unit agreed with the second terminal device.
  • the second terminal device may receive the second signal on the reserved resource. That is to say, the network device and the second terminal device may perform the process shown in FIG. 2 to obtain the first BF weight, which is also the MU-BF weight, and the first weight is used by the network device
  • the downlink data is weighted when the downlink data is sent to the first terminal device.
  • the role of the channel is used to send the initial random signal or the precoding weight as a transmission signal on a specific resource unit RE, and the downlink SU or MU BF is obtained through the influence of the channel on the signal during the transmission process of the signal.
  • the weights are equivalent to realize the calculation of the traditional baseband, so that the baseband does not need to calculate the matrix decomposition or inversion of the antenna dimension, which can reduce the computational complexity of the baseband.
  • the embodiment of the present application uses an initial random signal or a precoding weight as a transmission signal, and can obtain the precoding weight for downlink transmission without defining a dedicated pilot such as a sounding reference signal (SRS). save resources.
  • a dedicated pilot such as a sounding reference signal (SRS).
  • the receiving end in order to improve the accuracy of the precoding weights, the receiving end still needs to perform a small amount of arithmetic processing on the received signal to obtain the real precoding weights for subsequent data transmission.
  • Operations are only low-complexity operations such as addition, subtraction, multiplication and division of scalars and/or vectors, and do not involve high-complexity operations such as matrix decomposition and inversion, so the computational complexity of the baseband can be greatly reduced.
  • the method further includes: the first terminal device may send second request information to the network device, where the second request message is used to request the network device to send the first signal and/or determine the first BF weight. That is to say, the first terminal device may request the network device to start the air interface calculation mode, and in the next information exchange, the first terminal device and the network device may start to obtain the precoding weight through the air interface calculation method.
  • the method further includes: the network device may carry the second indication information in a physical downlink control channel (Physical Downlink Control Channel, PDCCH), or send semi-static signaling to the first terminal device, the semi-static signaling
  • the static signaling includes second indication information, the second indication information is used to instruct the first terminal device to receive the second signal and/or determine the third signal, the second signal is formed by the first signal through the downlink air interface channel, and the third signal is Obtained from the signal processing of the second signal, the computation amount of the signal processing is smaller than the computation amount of matrix inversion or matrix decomposition.
  • the network device can confirm to start the air interface calculation mode according to the actual situation or according to the request of the first terminal device, and notify the first terminal device through the second indication information to start obtaining precoding through air interface calculation in the next information exchange Weight, after the first terminal device receives the second indication information, it starts the air interface calculation mode, that is, the first terminal device can receive the second signal, determine the third signal according to the second signal, and store the third signal in the second resource unit. sent to the network device.
  • both the network device and the terminal device may determine whether to activate the air interface calculation mode according to the actual situation.
  • the first signal sent by the network device may be a random signal or an SU used by the network device when the first resource unit or the second resource unit previously sent downlink data to the first terminal device -BF weight
  • the first BF weight obtained by the network device may be the single-user SU-BF weight currently used by the network device when sending downlink data to the first terminal device.
  • the network device and the first terminal device may execute the process shown in FIG. 3 to obtain the SU-BF weight, and then use the SU-BF weight to send downlink data to the first terminal device.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the method in FIG. 3 may be performed by the system in FIG. 1 , and the method shown in FIG. 3 may be used to obtain downlink SU-BF weights.
  • TRXx represents the xth transceiver antenna.
  • TRX2 of the base station represents the second transceiver antenna of the base station
  • TRX4 of the terminal device 1 represents the first transmit and receive antenna of the terminal device 1.
  • 4 transceiver antennas In FIG. 3, only the base station has 64 transceiver antennas and the terminal device 1 has 4 transceiver antennas as an example for illustration, but in the embodiment of this application, the number of antennas of the network device is not limited, and the number of antennas of the terminal device is not limited either. limit.
  • Each small square in FIG. 3 represents a resource unit RE.
  • 5 resource unit REs are reserved for each antenna as an example.
  • the resource units from top to bottom of each antenna in FIG. 3 are marked as RE1 and RE2 respectively.
  • RE3, RE4, RE5 the downlink air interface transmission channels corresponding to RE1 to RE5 are respectively expressed as: H d1 , H d2 , H d3 , H d4 , H d5
  • the uplink air interface transmission channels corresponding to RE1 to RE5 are respectively expressed as: H u1 , H u2 , H u3 , H u4 , H u5 , that is to say, the resource unit in the shaded part in the figure, that is, the downlink air interface channel corresponding to RE2 is H d2 , and the resource unit in the shaded part in the figure, that is, the uplink air interface corresponding to RE2 The channel is Hu2 .
  • the base station and the terminal device 1 agree that RE2 (an example of the first resource unit, which is also an example of the second resource unit) is the resource for air interface calculation.
  • RE2 an example of the first resource unit, which is also an example of the second resource unit
  • the determination by the base station may also be determined by the terminal device 1, and reference may be made to step S210 above for the method for the base station and the terminal device 1 to agree on resources for air interface calculation.
  • the base station can select the initial random signal f (0) (an example of the first signal), and send the initial random signal f (0) on RE2.
  • f (0) an example of the first signal
  • a 64*1 vector of all 1s may be sent as the first signal. That is, on RE2 of each channel, 1 is sent.
  • the base station may use the SU-BF weight (instead of an all "1" vector) used last time when the first resource unit or the second resource unit sends downlink data to the first terminal device as the first signal f (0 ) , which speeds up iterative convergence.
  • the signal received by the terminal device 1 is H d2 f (0) (an example of the second signal) through the action of the downlink air interface channel H d2 .
  • the terminal device 1 can conjugate the signal to obtain (H d2 f (0) ) * , and the terminal device 1 can use the result as the second BF weight, which is used to weight the data when sending the uplink data to the network device.
  • the weight value (an example of the third signal) can also be used as the third signal, which is continuously transmitted to the base station on RE2.
  • the signal received by the base station is H u2 (H d2 f (0) ) * (an example of the fourth signal) through the action of the uplink air interface channel Hu2 .
  • the base station calculates the conjugate of the received fourth signal H u2 (H d2 f (0) ) * to obtain (H u2 (H d2 f (0) ) * ) * , and the base station can use this result as the base station to the terminal device 1
  • the single-user SU-BF weight sent downlink (an example of the first BF weight), and then the base station can use the SU-BF weight to send downlink data to the terminal device 1 .
  • the RE (first resource unit) used by the base station to send signals and the RE (second resource unit) used by the terminal device 1 to send signals may also have the same REs in adjacent locations.
  • the base station can send the first signal to the UE on RE2, and at this time, the RE2 of the terminal device 1 is occupied by other more important reference signals, then the terminal device 1 can use RE3 to send the third signal to the base station, and then the base station
  • the single-user SU-BF weight (an example of the first BF weight) sent downlink to the terminal device 1 is obtained. Since the channels of adjacent REs are relatively close, in this way, the air interface calculation can be performed in a timely and smooth manner when the REs at the same location on the opposite side are occupied.
  • FIG. 3 only takes the example that the terminal device 1 obtains the second BF weight by conjugating the second signal, but in the actual communication process, the terminal device 1 determines the second BF weight according to the second signal. Other operations other than the conjugation of the second signal, such as normalization operations, are performed, and the final calculation result is used as the second BF weight.
  • FIG. 3 only takes the base station conjugating the fourth signal to obtain the first BF weight as an example for illustration, but in the actual communication process, the base station determining the first BF weight according to the fourth signal may include comparing the fourth signal Find other operations other than conjugation, such as normalization, and use the final calculation result as the first BF weight.
  • the complexity of this mathematical operation is much less than that of matrix decomposition and matrix inversion.
  • FIG. 3 takes RE2 (an example of the first resource unit) as an example for description, but the present application does not limit the specific location of the first resource unit.
  • FIG. 3 uses one resource unit as the precoding granularity, but in the process of actual application, those skilled in the art can also select two or more REs as the precoding granularity on the basis of the method of the present application , that is, two or more REs are used as the first resource unit or the second resource unit.
  • the network device and each terminal device in the plurality of terminal devices can respectively execute the process shown in FIG. 3 to obtain the SU-BF weight of each terminal device.
  • the network device obtains the SU-BF weight of each user equipment, if it is necessary to further perform multi-user MU BF, the network device can take out the SUB BF weight of each paired user according to the prior art, and make them together once Orthogonalization obtains the MU BF weights.
  • the base station (an example of a network device) obtains the SU-BF weight value V 1 for downlink transmission to the terminal device 1 (an example of the first terminal device), and obtains the An example of a device)
  • the weight of the SU-BF sent downlink is V 2
  • the network device and the first terminal device can perform the process shown in FIG. -BF weight, then downlink data can be sent to the second terminal device using the MU-BF weight.
  • the network device and the terminal device may perform the process shown in FIG. 2 or FIG. 3 to obtain V 1 and/or V 2 , and may also obtain V 1 and/or V 2 by using methods in the prior art.
  • the application is not limited.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the method in FIG. 4 may be performed by the system in FIG. 1 , and the method shown in FIG. 4 may be used to obtain the MU-BF weight of the transmitter.
  • TRXx represents the xth transceiver antenna.
  • TRX2 of the base station represents the second transceiver antenna of the base station
  • TRX4 of the terminal device 1 represents the first transmit and receive antenna of the terminal device 1.
  • 4 transceiver antennas In FIG. 4 , only the base station has 64 transceiver antennas and the terminal device 1 has 4 transceiver antennas as an example for illustration, but in the embodiment of this application, the number of antennas of the network device is not limited, and the number of antennas of the terminal device is not limited either. limit.
  • Each small square in FIG. 4 represents a resource unit RE.
  • 5 resource unit REs are reserved for each antenna as an example.
  • the resource units from top to bottom of each antenna in FIG. 4 are marked as RE1 and RE2 respectively.
  • RE3, RE4, RE5 the downlink air interface transmission channels corresponding to RE1 to RE5 are respectively expressed as: H d1 , H d2 , H d3 , H d4 , H d5
  • the uplink air interface transmission channels corresponding to RE1 to RE5 are respectively expressed as: H u1 , H u2 , H u3 , H u4 , H u5 , that is to say, the resource unit in the shaded part in the figure, that is, the downlink air interface channel corresponding to RE3 is H d3 , and the resource unit in the shaded part in the figure, that is, the uplink air interface corresponding to RE3 The channel is Hu3 .
  • the base station and the terminal device 1 agree that RE3 (another example of the first resource unit and the second resource unit) is the resource for air interface calculation.
  • the determination may also be determined by the terminal device 1, and reference may be made to the above step S210 for the method for the base station and the terminal device 1 to agree on the resources used for the air interface calculation.
  • the base station can use the downlink single-user SU-BF weight V 2 (another example of the first signal) corresponding to the terminal device 2 (an example of the second terminal device). ) as the first signal, the signal V 2 is transmitted at RE3.
  • the signal received by the terminal device 1 is Hd3V2 ( another example of the second signal).
  • the terminal device 1 can conjugate the signal to obtain (H d3 V 2 ) * , and the terminal device 1 can use the result as the second BF weight, which is used to weight the data when sending the uplink data to the network device, and also
  • the result (another example of the third signal) may be used as the third signal, and may be continuously sent to the base station on RE3.
  • the signal received by the base station is Hu3 (H d3 V 2 ) * (another example of the fourth signal).
  • the base station calculates the conjugate of the received signal H u3 (H d3 V 2 ) * to obtain (H u3 (H d3 V 2 * ) * , since H u3 and H d3 are the channel matrix for the communication between the base station and the terminal device 1, V 1 is the SU-BF weight of the downlink data sent by the base station to the terminal device 1. According to the singular value decomposition principle, it can be known that V 1 and the right singular value matrix of H d3 are the same or similar.
  • the function of the channel is used to send the signal on a specific resource unit RE, and the MU-BF weight of the downlink data is obtained through the influence of the channel on the signal during the channel transmission process, which is equivalent to realizing the traditional baseband , so that the baseband does not need to calculate the matrix decomposition or matrix inversion of the antenna dimension, which can reduce the computational complexity of the baseband.
  • the base station and the terminal device 2 can also perform a process similar to FIG. 4 to obtain the multi-user MU-BF weight w_mu1 sent by the base station to the terminal device 1 downlink.
  • the base station an example of the network device
  • the single-user SU-BF weight V 1 sent by the downlink is used as the first signal, and is sent to the terminal equipment 2 (the first terminal equipment’s An example), the terminal device 2 receives the first signal on RE4, and then the base station and the terminal device 1 refer to the process similar to FIG. 4, and finally obtain the multi-user MU-BF weight w_mu1 (the first BF weight) sent by the base station to the terminal device 1 downlink.
  • the base station an example of the network device
  • the single-user SU-BF weight V 1 sent by the downlink is used as the first signal, and is sent to the terminal equipment 2 (the first terminal equipment’s An example)
  • the terminal device 2 receives the first signal on RE4
  • the base station and the terminal device 1 refer to the process
  • the resource unit used to obtain the SU-BF weight and the MU-BF weight may be the resource unit RE in the same location. , may also be an RE in an adjacent position, or an RE in a non-adjacent position, which is not limited in this application.
  • the resource unit used by the base station and the terminal device 1 to obtain V 1 and the resource unit used by the base station and the terminal device 2 to obtain w_mu1 may be resource units in adjacent locations.
  • the base station and the terminal device 2 obtain V
  • the resource unit used at time 2 and the resource unit used when the base station and terminal device 1 obtain w_mu2 may be resource units at adjacent locations.
  • base station and terminal device 1 can use RE2 to obtain V 1 through air interface calculation
  • base station and terminal device 2 can use RE3 to obtain V 2 through air interface calculation
  • base station and terminal device 1 can use RE2 to obtain w_mu2 through air interface calculation
  • the base station and terminal device can obtain w_mu2 through air interface calculation using RE2.
  • Device 2 can use the RE3 air interface to calculate and obtain w_mu1.
  • the base station and the terminal device 1 may Using RE2 of subframe 1 to obtain V 1 through air interface calculation, base station and terminal device 2 can use RE2 of subframe 22 to obtain V 2 through air interface calculation, and then base station and terminal device 1 can use RE2 of subframe 45 to obtain w_mu2 through air interface calculation , the base station and the terminal device 2 can use the RE2 air interface of subframe 58 to calculate and obtain w_mu1.
  • RE2 of subframe 1 to obtain V 1 through air interface calculation
  • base station and terminal device 2 can use RE2 of subframe 22 to obtain V 2 through air interface calculation
  • RE2 of subframe 45 to obtain w_mu2 through air interface calculation
  • the base station and the terminal device 2 can use the RE2 air interface of subframe 58 to calculate and obtain w_mu1.
  • FIG. 4 only takes the terminal device 1 conjugating the second signal to obtain the second BF weight as an example for illustration, but in the actual communication process, the terminal device 1 determining the second BF weight according to the second signal may include: Other operations other than the conjugation of the second signal, such as normalization operations, are performed, and the final calculation result is used as the second BF weight.
  • FIG. 4 only takes the base station conjugating the fourth signal to obtain the first BF weight as an example for illustration, but in the actual communication process, the base station determining the first BF weight according to the fourth signal may include comparing the fourth signal Find other operations other than conjugation, such as normalization, and use the final calculation result as the first BF weight.
  • the specific signal processing algorithms in the embodiments of the present application are only for illustration, and are not intended to limit the communication method of the present application.
  • FIG. 4 uses the base station and the terminal device 1 agreeing that RE3 (an example of the first resource unit) is the resource for air interface calculation as an example for description, but the application does not limit the specific location of the first resource unit.
  • RE3 an example of the first resource unit
  • one resource unit is used as the precoding granularity, but in the process of actual application, those skilled in the art can also select two or more REs as the precoding granularity on the basis of the method of the present application .
  • the obtained precoding weight is a vector
  • the precoding weight is a matrix
  • the base station determines that the current transmission mode is MU-MIMO and that there are three paired user equipments, and the base station obtains downlink data to terminal device 1 (an example of the first terminal device)
  • the sent SU-BF weight is V 1
  • the SU-BF weight sent downlink to the terminal device 2 is V 2
  • the downlink sent to the terminal device 3 is V 3
  • the base station and terminal equipment 1 and terminal equipment 3 can implement the orthogonalization process as shown in FIG.
  • the MU-BF weight value sends downlink data to the terminal device 2 .
  • the base station and the terminal device 1, the terminal device 2, and the terminal device 3 can respectively execute the processes shown in FIG. 2 or FIG. 3 to obtain V 1 , V 2 , and V 3 , and can also use the methods in the prior art to obtain V . 1 , V 2 , V 3 , which are not limited in this application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the method in FIG. 5 may be performed by the system in FIG. 1 , and the method shown in FIG. 5 may be used to obtain the MU-BF weight of the transmitter.
  • TRXx represents the xth transceiver antenna.
  • TRX2 of the base station represents the second transceiver antenna of the base station
  • TRX1 of the terminal device 1 represents the first transmit and receive antenna of the terminal device 1.
  • 1 transceiver antenna In FIG. 5, only the base station has 32 transceiver antennas, the terminal device 1 has 4 transceiver antennas, and the terminal device 3 has 4 transceiver antennas as an example for description, but the number of antennas of the network device is not limited in this embodiment of the present application. The number of antennas of the terminal equipment is also not limited.
  • Each small square in FIG. 5 represents a resource unit RE.
  • 4 resource unit REs are reserved for each antenna as an example.
  • the resource units from top to bottom of each antenna in FIG. 5 are marked as RE1 and RE2 respectively.
  • RE3, RE4 the downlink air interface transmission channels corresponding to RE1 to RE4 are respectively expressed as: H d1 , H d2 , H d3 , H d4
  • the uplink air interface transmission channels corresponding to RE1 to RE4 are respectively expressed as: H u1 , H u2 , H u3 , H u4 .
  • the base station and the terminal device 1 agree that RE1 (another example of the first resource unit) and RE2 (an example of the third resource unit) are resources for air interface calculation, and the base station and the terminal device 1 specifically agree on which resource unit location is the first resource unit.
  • the resource unit and the second resource unit may be determined by the base station, or may be determined by the terminal device 1.
  • the method for the base station and the terminal device 1 to agree on a resource unit for air interface calculation reference may be made to step S210 above.
  • the base station can use the downlink single-user SU-BF weight V 2 (another example of the first signal) corresponding to the terminal device 2 (an example of the second terminal device) as the first signal.
  • a signal, signal V2 is sent on RE1.
  • the signal received by the terminal device 1 is H d1 V 2 (another example of the second signal) through the action of the downlink air interface channel H d1 where the RE1 is located.
  • the terminal device 1 can conjugate the signal to obtain (H d1 V 2 ) * , and the terminal device 1 can take the signal as the seventh signal, put it on RE2 and send it to the base station.
  • the signal received by the base station is H u2 (H d1 V 2 ) * (an example of the fifth signal) through the action of the uplink air interface channel H u2 where the RE2 is located.
  • the base station conjugates the received signal H u2 (H d1 V 2 ) * to obtain (H u2 (H d1 V 2 ) * ) * , since H u2 and H d1 are adjacent, and H d1 is the base station and the terminal
  • the channel matrix of device 1 communication, and V 1 is the SU-BF weight of the downlink data sent by the base station to terminal device 1. Therefore, the calculated (H u2 (H d1 V 2 ) * ) * and V 1 V 1 H V 2 Approximate.
  • the base station may use Z as the sixth signal, and send it to the terminal device 3 on the resource unit RE3 (an example of the fourth resource unit) agreed with the terminal device 3 .
  • the signal received by the terminal device 3 is H d3 Z (an example of the eighth signal) through the action of the downlink air interface channel H d3 where the RE3 is located.
  • the terminal device 3 can conjugate the signal to obtain (H d3 Z) * , and the terminal device 1 can take the signal as the third signal, put it on the RE4 (another example of the second resource unit) agreed with the base station, and send it to the base station. base station.
  • the function of the channel is used to send the signal on a specific resource unit RE, and the MU-BF weight of the downlink data is obtained through the influence of the channel on the signal during the channel transmission process, which is equivalent to realizing the traditional baseband , so that the baseband does not need to calculate the matrix decomposition or matrix inversion of the antenna dimension, which can reduce the computational complexity of the baseband.
  • the base station may also perform air interface transmission with the terminal device 3 first, and then perform air interface transmission with the terminal device 1 .
  • the present application does not limit the sequence of interactions.
  • the base station can also use V 1 as the first signal, and perform a process similar to FIG. 5 with the terminal equipment 2 and terminal equipment 3 to obtain the multi-user MU-BF weight w_mu1 sent by the base station downlink to the terminal equipment 1; the base station can also Using V 3 as the first signal, perform a process similar to FIG. 5 with terminal device 1 and terminal device 2 to obtain the multi-user MU-BF weight w_mu3 sent downlink by the base station to terminal device 3 .
  • adjacent resource units are used as examples for illustration, but in practical applications, the same resource units or partially overlapping resource units may also be used.
  • the method of the present application can also be extended to the air interface calculation of multiple network devices and multiple terminal devices, and the present application does not limit the number of network devices and the number of terminal devices.
  • the communication apparatus 1000 may correspond to the network device in the above method embodiments, for example, may be a network device, or a component (eg, a chip or a chip system) configured in the network device.
  • a component eg, a chip or a chip system
  • the communication apparatus 1000 may correspond to the network device in the method 200 according to the embodiment of the present application, and the communication apparatus 1000 may include a unit for executing the method performed by the network device in the method 200 in FIG. 2 . Moreover, each unit in the communication apparatus 1000 and the other operations and/or functions mentioned above are respectively to implement the corresponding flow of the method 200 in FIG. 2 .
  • the processing unit 1100 can be used to execute step S280 of the method 200
  • the transceiver unit 1200 can be used to execute the steps S210 , S270 and S290 of the method 200 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 in the communication device 1000 can be implemented through an input/output interface, and the processing unit 1100 in the communication device 1000 can be implemented through the Implementation of a processor, microprocessor or integrated circuit integrated on a chip or system of chips.
  • the communication apparatus 1000 may correspond to the terminal device in the above method embodiments, for example, may be a terminal device, or a component (such as a chip or a chip system) configured in the terminal device.
  • the communication apparatus 1000 may correspond to the terminal device in the method 200 according to the embodiment of the present application, and the communication apparatus 1000 may include a unit for executing the method performed by the terminal device in the method 200 in FIG. 2 . Moreover, each unit in the communication apparatus 1000 and the other operations and/or functions mentioned above are respectively to implement the corresponding flow of the method 200 in FIG. 2 .
  • the processing unit 1100 can be used to execute the step S240 of the method 200
  • the transceiver unit 1200 can be used to execute the steps S230 and S250 of the method 200 . It should be understood that the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiments, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented by a transceiver, for example, may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 7
  • the processing unit 1100 in 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the terminal device 2000 shown in FIG. 6 .
  • the transceiver unit 1200 in the communication device 1000 can be implemented through an input/output interface, and the processing unit 1100 in the communication device 1000 can be implemented through the Implementation of a processor, microprocessor or integrated circuit integrated on a chip or system of chips.
  • FIG. 7 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030 .
  • the processor 2010 , the transceiver 2002 and the memory 2030 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 2030 is used to store computer programs, and the processor 2010 is used to retrieve data from the memory 2030 The computer program is called and executed to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for sending the uplink data or uplink control signaling output by the transceiver 2020 through wireless signals.
  • the above transceiver 2020 may correspond to the transceiver unit 1200 in FIG. 6 , and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive the signal, and the transmitter is used to send the signal.
  • the terminal device 2000 shown in FIG. 7 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of each module in the terminal device 2000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 may be configured to perform the actions implemented inside the terminal device described in the foregoing method embodiments, such as performing signal processing on the second signal to obtain a third signal, and the like.
  • the transceiver 2020 may be configured to perform the actions described in the foregoing method embodiments that the terminal device sends to or receives from the network device, such as sending the third signal, the first request information and the second request information, receiving the second signal, the first request One indication information and second indication information, etc.
  • the terminal device sends to or receives from the network device, such as sending the third signal, the first request information and the second request information, receiving the second signal, the first request One indication information and second indication information, etc.
  • the above terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may further include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, a sensor 2100, etc., the audio circuit Speakers 2082, microphones 2084, etc. may also be included.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application, which may be, for example, a schematic structural diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBUs) (also referred to as distributed units (DUs). )) 3200.
  • RRU 3100 may be called a transceiver unit, which corresponds to the transceiver unit 1100 in FIG. 8 .
  • the transceiver unit 3100 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 3101 and a radio frequency unit 3102 .
  • the transceiver unit 3100 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called a receiver, a receiving circuit), and the sending unit may correspond to a transmitter (or called a transmitter, a sending circuit).
  • the RRU 3100 part is mainly used for transmitting and receiving radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending the first signal, the first indication information and the second indication information to the terminal equipment, and for receiving the fourth signal, the first request information and second request information, etc.
  • the RRU 3100 part is mainly used for transmitting and receiving radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending the first signal, the first indication information and the second indication information to the terminal equipment, and for receiving the fourth signal, the first request information and second request information, etc.
  • the part of the BBU 3200 is mainly used to perform baseband processing, control the base station, and the like.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing unit 1100 in FIG. 6 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spectrum spreading, and the like.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the above method embodiments, for example, perform signal processing on the fourth signal to obtain the first BF weight and the like.
  • the BBU processing unit
  • the BBU 3200 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow of the network device in the foregoing method embodiments.
  • the memory 3201 and processor 3202 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the base station 3000 shown in FIG. 8 can implement various processes involving network devices in the method embodiment shown in FIG. 2 .
  • the operations and/or functions of each module in the base station 3000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 3200 may be used to perform the actions described in the foregoing method embodiments that are implemented internally by the network device, while the RRU 3100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the base station 3000 shown in FIG. 8 is only a possible form of network equipment, and should not constitute any limitation to the present application.
  • the method provided in this application can be applied to other forms of network equipment.
  • it includes AAU, may also include CU and/or DU, or includes BBU and adaptive radio unit (ARU), or BBU; may also be customer terminal equipment (customer premises equipment, CPE), may also be
  • AAU adaptive radio unit
  • BBU adaptive radio unit
  • CPE customer premises equipment
  • the CU and/or DU may be used to perform the actions implemented by the network device described in the foregoing method embodiments, and the AAU may be used to execute the network device described in the foregoing method embodiments to send or receive from the terminal device. Actions. For details, please refer to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • An embodiment of the present application further provides a processing apparatus, including a processor and an interface, where the processor is configured to execute the method in any of the foregoing method embodiments.
  • the above-mentioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application further provides a computer-readable medium, where the computer-readable medium stores program codes, when the program codes are executed on a computer, the computer is made to execute the embodiment shown in FIG. 2 .
  • the method performed by the terminal device and the network device respectively.
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信的方法和装置,该方法包括:网络设备在第一资源单元向第一终端设备发送第一信号;该网络设备在第二资源单元接收第四信号,该第二资源单元与该第一资源单元至少部分重合或相邻;该网络设备使用第一波束赋形BF权值发送下行数据,该第一BF权值是根据对该第四信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量。本申请提供的通信的方法,将空口作为计算资源,能够降低基带的计算复杂度。

Description

一种通信方法和装置 技术领域
本申请涉及通信领域,更具体地,涉及一种通信的方法和装置。
背景技术
波束成型(beamforming,BF)技术是多天线无线通信系统的重要技术。通过对数据在不同天线上加不同的权值,控制发送波束的方向更好的匹配信道,可以集中能量增强覆盖。此外在相同时频资源上通过空间维度传输不同用户的数据流,提高复用增益。空分传输不同用户的数据流,需要精确设计每个用户各个数据流的发送权值,使各流的发送方向在匹配自身信道特征向量(eigen-mode)方向和对其它流干扰较小这两个需求上做到合理折中。
目前发送权值的设计需要基站获得尽量准确的各用户的信道信息。在时分双工(time division duplex,TDD)系统中,一般通过用户设备(user equipment,UE)或客户端设备(customer premise equipment,CPE)发送探测参考信号(sounding reference signal,SRS)给基站,基站根据SRS估计上行信道,并利用上下行信道互易性得到下行信道。基站获得下行信道后,通过奇异值分解(singular value decomposition,SVD)等算法,计算下行发送使用的BF发送权值。
单用户波束成型(single-user beamforming,SU-BF)权值计算需要处理的矩阵分解维度是基站发送天线维度,在大规模多输入多输出(multi-input multi-output,MIMO)下的实现代价大。多用户波束成型(multiple-user beamforming,MU-BF)权值一般需要做所有空分复用的配对用户总数据流数的矩阵求逆,以实现用户间干扰消除,矩阵求逆的计算复杂度也较高。因此,如何降低预编码权值的计算复杂度是亟待解决的问题。
发明内容
本申请提供一种通信的方法和装置,将空口作为计算资源,能够降低基带的计算复杂度。
第一方面,提供了一种通信的方法,该方法可以由网络设备执行,或者,也可以由配置在网络设备中的部件(如,芯片或芯片系统)执行。本申请对此不作限定。
具体地,该方法包括:在第一资源单元向第一终端设备发送第一信号;在第二资源单元接收第四信号,该第二资源单元与该第一资源单元至少部分重合或相邻;使用第一波束赋形BF权值发送下行数据,该第一BF权值是根据对该第四信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
基于本申请的上述技术方案,网络设备在第一资源单元向第一终端设备发送第一信号,第一信号经过下行空口信道的作用,成为第二信号,从而第一终端设备可以在该第一资源单元接收该第二信号。第一终端设备根据对第二信号的信号处理获得第三信号,可以 在第二资源单元发送第三信号,该第二资源单元与该第一资源单元至少部分重合或相邻,该第三信号经过上行空口信道的作用,成为第四信号,网络设备可以在第二资源单元接收第四信号,并根据对第四信号的信号处理获得第一波束赋形BF权值,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,网络设备可以使用第一波束赋形BF权值发送下行数据。因此,本申请实施例利用信道的作用,将信号在特定的资源单元RE上发送,通过信号在发送过程中信道对信号的影响,获得下行BF权值,等效实现传统基带的计算,使得基带不需要计算天线维度的矩阵分解或求逆,能够降低基带的计算复杂度。
另一方面,本申请提供的方法可以支持更细粒度的预编码,使得预编码权值可以更好的匹配信道变化,提升系统性能。
应理解,网络设备在该第一资源单元向第一终端设备发送第一信号,可以使得第一终端设备在该第一资源单元接收第二信号,该第二信号用于计算第一终端设备在第二资源单元上发送的第三信号。
结合第一方面,在第一方面的某些实现方式中,该第一BF权值用于网络设备向第一终端设备发送下行数据,该第一信号为随机信号或网络设备前一次在该第一资源单元或该第二资源单元向第一终端设备发送下行数据时使用的下行单用户SU-BF权值,该第一BF权值为该网络设备当前向该第一终端设备发送下行数据时使用的SU-BF权值,该第一终端设备是单用户多输入多输出SU-MIMO传输模式中的终端设备。
因此,本申请实施例使用初始随机信号或预编码权值作为发送信号,不需要定义探测参考信号(sounding reference signal,SRS)等专用导频就可以获得下行发送的SU-BF权值,能够节省资源。
即,网络设备确定当前的传输模式为SU-MIMO,可以使用随机信号或网络设备前一次在该第一资源单元或该第二资源单元向第一终端设备发送下行数据时使用的下行单用户SU-BF权值作为第一信号,在第一资源单元将第一信号发送给第一终端设备,与第一终端设备通过空口计算后,网络设备可以得到向第一终端设备下行发送的SU-BF权值,当网络设备向第一终端设备发送下行数据时,可以使用第一BF权值对下行数据进行加权发送。
结合第一方面,在第一方面的某些实现方式中,该第一BF权值用于网络设备向第二终端设备发送下行数据,该第一信号为第二终端设备对应的下行单用户SU-BF权值,该第一BF权值为多用户MU-BF权值,该第一终端设备和该第二终端设备是多用户多输入多输出MU-MIMO传输模式中的终端设备。
即,网络设备确定当前的传输模式为MU-MIMO,可以使用第二终端设备对应的下行单用户SU-BF权值作为第一信号。网络设备在第一资源单元将第一信号发送给第一终端设备,与第一终端设备通过空口计算后,网络设备可以得到向第二终端设备下行发送的MU-BF权值,当向第二终端设备发送下行数据时,可以使用第一BF权值对下行数据进行加权发送。
因此,本申请实施例使用初始随机信号或预编码权值作为发送信号,不需要定义SRS等专用导频就可以获得下行发送的MU-BF权值,能够节省资源。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:网络设备在第三资源单元接收第五信号,该第三资源单元与该第一资源单元至少部分重合或相邻;网络设备在 第四资源单元向第三终端设备发送第六信号,该第四资源单元与该第二资源单元至少部分重合或相邻,该第六信号是根据对该第五信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,该第六信号用于网络设备在该第二资源单元接收该第四信号,该第一终端设备、该第二终端设备和该第三终端设备是MU-MIMO传输模式中的终端设备。
应理解,网络设备可以使用第二终端设备对应的下行单用户SU-BF权值作为第一信号,在第一资源单元向第一终端设备发送第一信号,第一信号经过第一资源单元对应的下行空口信道的作用,成为第二信号,第一终端设备可以对第二信号进行信号处理,获得第七信号,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,第一终端设备可以在第三资源单元向网络设备发送第七信号,然后网络设备可以在第三资源单元接收第五信号,该第五信号是第七信号经过上行空口信道形成的,第三资源单元与第一资源单元至少部分重合或相邻。网络设备可以对第五信号进行信号处理,获得第六信号,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,然后网络设备在第四资源单元向第三终端设备发送第六信号,第六信号经过第四资源单元对应的下行空口信道的作用,成为第八信号,第三终端设备可以对第八信号进行信号处理,获得第三信号,然后第三终端设备在第二资源单元向网络设备发送第三信号,第四资源单元与第二资源单元至少部分重合或相邻。进一步,网络设备在第二资源单元接收第四信号,该第四信号是第三终端设备在第二资源单元上发送的第三信号经过上行空口信道形成的。再进一步,网络设备对第四信号进行信号处理,获得第一波束赋形BF权值,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,该第一BF权值用于网络设备向第二终端设备发送下行数据。
结合第一方面,在第一方面的某些实现方式中,该信号处理包括共轭和/或归一化运算。
即,网络设备通过共轭、归一化等简单运算即可获得预编码权值,使得基带不需要计算天线维度的矩阵分解或求逆,能够降低基带的计算复杂度。
结合第一方面,在第一方面的某些实现方式中,该第一资源单元与该第二资源单元全部重合。
即,网络设备发送信号的资源和第一终端设备发送信号的资源的位置可以是相同的。通过这种方式,可以获得更精确的预编码权值。
结合第一方面,在第一方面的某些实现方式中,该第一资源单元与该第三资源单元全部重合,该第二资源单元与该第四资源单元全部重合。
即,网络设备发送信号的资源和各个终端设备发送信号的资源的位置可以都是相同的。通过这种方式,可以获得更精确的预编码权值。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收第一请求消息,该第一请求消息用于请求网络设备确定该第一资源单元的位置。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:发送第一指示信息,该第一指示信息用于指示该第一资源单元或所述第二资源单元的位置。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收第二请求消息,该第二请求消息用于请求网络设备发送该第一信号和/或获得该第一BF权值。
即,网络设备可以依第一终端设备的请求启动空口计算模式,在接下来的信息交互中, 与网络设备可以开始通过空口计算的方法获得预编码权值。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:发送第二指示信息,该第二指示信息用于指示该第一终端设备接收第二信号和/或获得第三信号,该第二信号是该第一信号经过下行空口信道形成的,该第三信号是根据对该第二信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
即,网络设备可以根据实际情况或者根据第一终端设备的请求确认启动空口计算模式,并通知第一终端设备在接下来的信息交互中,开始通过空口计算获得预编码权值。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:发送第三指示信息,该第三指示信息用于指示该第一终端设备根据第二信号确定第二BF权值,该第二BF权值用于第一终端设备向网络设备发送上行数据。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:发送第四指示信息,该第四指示信息用于指示第一终端设备使用该第二BF权值对上行数据进行加权发送。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:向第一终端设备发送功率调整信息,该功率调整信息用于调整第三信号的功率。
结合第一方面,在第一方面的某些实现方式中,该第一资源单元或该第二资源单元包括至少一个资源单元RE。
即,第一资源单元或第二资源单元可以是一个资源单元(recourse element,RE),也可以是多个不同的RE的组合,例如:第一资源单元或第二资源单元可以是调度的数据带宽的某个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上的所有RE,也可以将一段分离或连续的频段资源(包含多个RE)设置为第一资源单元。通过这种方式,可以获得各个粒度的预编码权值。
第二方面,提供了一种通信的方法,该方法可以由终端设备执行,或者,也可以由配置在终端设备中的部件(如,芯片或芯片系统)执行。本申请对此不作限定。
具体地,该方法包括:在第一资源单元接收第二信号;在第二资源单元向网络设备发送第三信号,该第二资源单元与该第一资源单元至少部分重合或相邻,该第三信号是根据对该第二信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
基于本申请的上述技术方案,网络设备在第一资源单元向第一终端设备发送第一信号,第一信号经过下行空口信道的作用,成为第二信号,从而第一终端设备可以在该第一资源单元接收该第二信号。第一终端设备根据对第二信号的信号处理获得第三后,可以在第二资源单元发送第三信号,该第二资源单元与该第一资源单元至少部分重合或相邻,该第三信号经过上行空口信道的作用,成为第四信号,网络设备可以在第二资源单元接收第四信号,并根据对第四信号的信号处理获得第一波束赋形BF权值,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,网络设备可以使用第一波束赋形BF权值发送下行数据。因此,本申请实施例利用信道的作用,将信号在特定的资源单元RE上发送,通过信号在发送过程中信道对信号的影响,获得下行BF权值,等效实现传统基带的计算,使得基带不需要计算天线维度的矩阵分解或求逆,能够降低基带的计算复杂度。
另一方面,本申请提供的方法可以支持更细粒度的预编码,使得预编码权值可以更好的匹配信道变化,提升系统性能。
应理解,第一终端设备在第二资源单元向网络设备发送第三信号,可以使得网络设备在该第二资源单元接收第四信号,该第四信号用于计算第一波束赋形BF权值,该第一BF权值用于网络设备向第一终端设备发送下行数据,或用于所述网络设备向所述第二终端设备发送下行数据。
结合第二方面,在第二方面的某些实现方式中,该信号处理包括共轭和/或归一化运算。
即,第一终端设备对第二信号共轭之后,还可以对得到的结果进行归一化运算,进而得到第三信号。
结合第二方面,在第二方面的某些实现方式中,该第一资源单元与该第二资源单元全部重合。
即,网络设备发送信号的资源和第一终端设备发送信号的资源的位置可以是相同的。通过这种方式,可以获得更精确的预编码权值。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:发送第一请求消息,该第一请求消息用于请求该网络设备确定该第一资源单元的位置。
即,第一资源单元的位置可以是网络设备和第一终端设备进行协商约定的,如第一终端设备向网络设备发送第一请求消息,请求网络设备确定第一资源单元的位置。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收第一指示信息,该第一指示信息用于指示该第一资源单元或该第二资源单元的位置。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:发送第二请求消息,该第二请求消息用于请求该网络设备发送第一信号和/或获得第一波束赋形BF权值,该第二信号是该第一信号经过下行空口信道形成的,该第一BF权值用于网络设备向该第一终端设备或第二终端设备发送下行数据。
即,第一终端设备可以请求启动空口计算模式,在接下来的信息交互中,与网络设备可以开始通过空口计算的方法获得预编码权值。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收第二指示信息,该第二指示信息用于指示该第一终端设备接收该第二信号和/或获得该第三信号。
即,网络设备可以根据实际情况或者根据第一终端设备的请求确认启动空口计算模式,并通知第一终端设备在接下来的信息交互中,开始通过空口计算获得预编码权值。
结合第二方面,在第二方面的某些实现方式中,该第二信号还用于确定第二BF权值,该第二BF权值用于该第一终端设备向该网络设备发送上行数据,该方法还包括:根据该第二信号确定该第二BF权值。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收第三指示信息,该第三指示信息用于指示该第一终端设备根据该第二信号确定该第二BF权值。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收第四指示信息,该第四指示信息用于指示该第一终端设备使用该第二BF权值对该上行数据进行加权发送。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:将该第二BF权值确定为该第三信号。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收功率调整信息, 该功率调整信息用于调整该第三信号的功率;根据功率调整信息对该第三信号的功率进行调整;向该网络设备发送调整后的第三信号。
结合第二方面,在第二方面的某些实现方式中,该第一资源单元或该第二资源单元包括至少一个资源单元RE。
即,第一资源单元或第二资源单元可以是一个资源单元(recourse element,RE),也可以是多个不同的RE的组合,例如:第一资源单元或第二资源单元可以是调度的数据带宽的某个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上的所有RE,也可以将一段分离或连续的频段资源(包含多个RE)设置为第一资源单元。通过这种方式,可以获得各个粒度的预编码权值。
第三方面,提供了一种通信装置,所述装通信置用于执行上述第一方面提供的通信的方法。具体地,所述通信装置可以包括用于执行第一方面提供的通信方法的单元。
示例性地,该通信装置包括处理单元和收发单元。
该收发单元用于在第一资源单元向第一终端设备发送第一信号;该收发单元还用于在第二资源单元接收第四信号;该收发单元还用于使用第一波束赋形BF权值发送下行数据,该第一BF权值是根据对该第四信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
可选地,该处理单元用于根据对该第四信号的信号处理获得该第一BF权值。
可选地,该第一BF权值用于网络设备向第一终端设备发送下行数据,该第一信号为随机信号或网络设备前一次在该第一资源单元或该第二资源单元向该第一终端设备发送下行数据时使用的下行单用户SU-BF权值,该第一BF权值为该网络设备当前向该第一终端设备发送下行数据时使用的SU-BF权值,该第一终端设备是单用户多输入多输出SU-MIMO传输模式中的终端设备。
可选地,该第一BF权值用于网络设备向第二终端设备发送下行数据,该第一信号为第二终端设备对应的下行单用户SU-BF权值,该第一BF权值为多用户MU-BF权值,该第一终端设备和该第二终端设备是多用户多输入多输出MU-MIMO传输模式中的终端设备。
可选地,该收发单元还用于在第三资源单元接收第五信号,该第三资源单元与该第一资源单元至少部分重合或相邻;该收发单元还用于在第四资源单元向第三终端设备发送第六信号,该第四资源单元与该第二资源单元至少部分重合或相邻,该第六信号是根据对该第五信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,该第六信号用于网络设备在该第二资源单元接收该第四信号,该第一终端设备、该第二终端设备和该第三终端设备是MU-MIMO传输模式中的终端设备。
可选地,该信号处理包括共轭和/或归一化运算。
可选地,该第一资源单元与该第二资源单元全部重合。
可选地,该第一资源单元与该第三资源单元全部重合,该第二资源单元与该第四资源单元全部重合。
可选地,该收发单元还用于接收第一请求消息,该第一请求消息用于请求网络设备确定该第一资源单元的位置。
可选地,该收发单元还用于发送第一指示信息,该第一指示信息用于指示该第一资源 单元或该第二资源单元的位置。
可选地,该收发单元还用于接收第二请求消息,该第二请求消息用于请求网络设备发送该第一信号和/或获得该第一BF权值。
可选地,该收发单元还用于发送第二指示信息,该第二指示信息用于指示该第一终端设备接收第二信号和/或获得第三信号,该第二信号是该第一信号经过下行空口信道形成的,该第三信号是根据对该第二信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
可选地,该收发单元还用于发送第三指示信息,该第三指示信息用于指示该第一终端设备根据第二信号确定第二BF权值,该第二BF权值用于第一终端设备向网络设备发送上行数据。
可选地,该收发单元还用于发送第四指示信息,该第四指示信息用于指示第一终端设备使用该第二BF权值对上行数据进行加权发送。
可选地,该收发单元还用于向第一终端设备发送功率调整信息,该功率调整信息用于调整第三信号的功率。
可选地,该第一资源单元或该第二资源单元包括至少一个资源单元RE。
第四方面,提供了一种通信装置,所述装置用于执行上述第二方面提供的通信的方法。具体地,所述通信装置可以包括用于执行第二方面提供的通信方法的单元。
示例性地,该通信装置包括处理单元和收发单元。
该收发单元用于在第一资源单元接收第二信号;该收发单元还用于在第二资源单元向网络设备发送第三信号,该第二资源单元与该第一资源单元至少部分重合或相邻,该第三信号是根据对该第二信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
可选地,该处理单元用于根据对该第二信号的信号处理获得该第三信号。
可选地,该信号处理包括共轭和/或进行归一化运算。
可选地,该第一资源单元与该第二资源单元全部重合。
可选地,该收发单元还用于发送第一请求消息,该第一请求消息用于请求该网络设备确定该第一资源单元的位置。
可选地,该收发单元还用于接收第一指示信息,该第一指示信息用于指示该第一资源单元或该第二资源单元的位置。
可选地,该收发单元还用于发送第二请求消息,该第二请求消息用于请求该网络设备发送第一信号和/或获得第一BF权值,该第二信号是该第一信号经过下行空口信道形成的,该第一BF权值用于网络设备向该第一终端设备或第二终端设备发送下行数据。
可选地,该收发单元还用于接收第二指示信息,该第二指示信息用于指示该第一终端设备接收该第二信号和/或获得该第三信号。
可选的,该第二信号还用于确定第二BF权值,该第二BF权值用于该第一终端设备向该网络设备发送上行数据,该处理单元还用于:根据该第二信号确定该第二BF权值。
可选地,该收发单元还用于接收第三指示信息,该第三指示信息用于指示该第一终端设备根据该第二信号确定该第二BF权值。
可选地,该收发单元还用于接收第四指示信息,该第四指示信息用于指示该第一终端 设备使用该第二BF权值对该上行数据进行加权发送。
可选地,该处理单元还用于将该第二BF权值确定为该第三信号。
可选地,该收发单元还用于接收功率调整信息,该功率调整信息用于调整该第三信号的功率;该处理单元还用于根据功率调整信息对该第三信号的功率进行调整;该收发单元还用于向该网络设备发送调整后的第三信号。
可选地,该第一资源单元或该第二资源单元包括至少一个资源单元RE。
第五方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面任一种可能实现方式中的通信的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面任一种可能实现方式中的通信的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为第一终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面或第二方面中任意一种可能的实现方式中的通信的方法。
第八方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面或第二方面中任意一种可能的实现方式中的通信的方法。
第九方面,提供了一种通信系统,包括前述的网络设备和第一终端设备。
附图说明
图1是本申请实施例的通信方法的通信系统的示意图。
图2是本申请实施例提供的一通信的方法的示意性流程图。
图3是本申请实施例提供的又一通信的方法的示意性流程图。
图4是本申请实施例提供的又一通信的方法的示意性流程图。
图5是本申请实施例提供的再一通信的方法的示意性流程图。
图6是本申请实施例提供的通信装置的示意性框图;
图7是本申请实施例提供的终端设备的结构示意图;
图8是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。图1是适用于本申请实施例的通信方法的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置多个天线。对于该通信系统中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发送天线和至少一个用于接收信号的接收天线。因此,该通信系统中的各通信设备之间,网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划 分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、配置在交通工具中的移动终端等等,本申请的实施例中的终端设备还可以是客户终端设备(customer premise equipment,CPE)。本申请的实施例对应用场景不做限定。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了便于理解本申请实施例,下面简单说明下行信号在发送之前在物理层的处理过程。应理解,下文所描述的对下行信号的处理过程可以由网络设备执行,也可以由配置于网络设备中的芯片执行。为方便说明,下文统称为网络设备。
网络设备在物理信道可对码字(code word)进行处理。其中,码字可以为经过编码(例如包括信道编码)的编码比特。码字经过加扰(scrambling),生成加扰比特。加扰比特经过调制映射(modulation mapping),得到调制符号。调制符号经过层映射(layer mapping),被映射到多个层(layer),或者称,传输层。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源单元(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发送出去。
应理解,上文所描述的对下行信号的处理过程仅为示例性描述,不应对本申请构成任何限定。对下行信号的处理过程具体可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
为便于理解本申请实施例,下面对本申请实施例中涉及到的术语或概念做简单介绍。
1、预编码(pre-coding)技术
发送设备(如基站)借助与信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备(如终端设备)消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
2、波束赋形
波束赋形(beamforming,BF)又叫波束成型、空域滤波,是一种使用传感器阵列定向发送和接收信号的信号处理技术。波束赋形技术通过调整相位阵列的基本单元的参数,使得某些角度的信号获得相长干涉,而另一些角度的信号获得相消干涉。波束赋形既可以用于信号发送端,又可以用于信号接收端。
本申请中的BF,主要是全数字域的BF,即数字波束成型(digital beamforming,DBF),该技术与预编码在本领域类概念基本相同,本申请对此不做区分。
3、预编码权值
预编码权值是指预编码向量或预编码矩阵,预编码权值用于对待传输数据进行加权发送,以控制发送波束的方向更好的匹配信道。预编码权值也可以称为发送权值或发射权值。本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
预编码权值可以包括单用户波束赋形(single-user beamforming,SU-BF)权值和多用户波束赋形(multiple-user beamforming,MU-BF)权值。
4、空口计算
在本申请实施例中,将以空口作为资源的计算模式,即通过信号在空口信道来回传递获得预编码权值的过程称作“空口计算”。本申请文中其他地方出现的“空口计算”这一词语,均指该方法或流程。
下面结合附图详细说明本申请实施例提供的方法。图2是本申请实施例提供的一种通信的方法200的示意性流程图。图2的方法200可以由图1中的系统100执行,如图2所示的方法可以用于获得下行发送的预编码权值。
S210,网络设备在第一资源单元向第一终端设备发送第一信号。
在本申请实施例中,第一资源单元和第二资源单元由资源网格(recourse grid,RG)上某些资源单元组成,第一资源单元和第二资源单元可以是一个资源单元(recourse element,RE),也可以是多个不同的RE的组合,例如:第一资源单元或第二资源单元可以是调度的数据带宽的某个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上的所有RE,也可以将一段分离或连续的频段资源(包含多个RE)设置为第一资源单元或第二资源单元,例如,某个OFDM符号上的所有偶数子载波(subcarrier)所在的RE组成第一资源单元。第一资源单元或第二资源单元还可以是某个子载波上一个时隙(slot)内所有的时域资源,也可以将某个子载波上一个时隙(slot)内所有的奇数符号(symbol)所在的RE设置为第一资源单元或第二资源单元。另外,第一资源单元或第二资源单元还可以是网络设备配置的特殊参考信号,该参考信号对应的资源位置(包括时域和频域)即为第一资源单元或第二资源单元的位置。本申请实施例对第一资源单元和第二资源单元的具体形式和内容不作限定。
应理解,第一资源单元和第二资源单元的位置可以是协议定义的,网络设备和第一终端设备都知道该资源单元用于进行空口计算。也就是说,第一资源单元和第二资源单元可以是上下行子帧中预留的一些RE,这些RE专门用于发送和/或接收特定的信号,如用于空口计算的信号。
第一资源单元和第二资源单元的位置也可以是网络设备和第一终端设备进行协商约定的,具体约定的方式本申请实施例不做限定。
作为一种可能的实现方式,可以是网络设备先确定第一资源单元的位置,再通过向第一终端设备发送指示信息的方式,向第一终端设备通知该资源单元的位置,例如,网络设备可以在物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载第一指示信息,或者向第一终端设备发送半静态信令,该半静态信令包括第一指示信息,该第一 指示信息用于指示该第一资源单元的位置。
作为一种可能的实现方式,空口计算的资源还可以是根据第一终端设备的请求确定的,第一终端设备向网络设备发送第一请求信息,该第一请求信息用于请求网络设备确定第一资源单元的位置,网络设备根据第一请求信息确定第一资源单元或第二资源单元的位置,并向第一终端设备发送第一指示信息,该第一指示信息用于指示第一资源单元或第二资源单元的位置。也就是说,第一终端设备可以向网络设备发送请求消息,请求网络设备确定第一资源单元的位置,网络设备确定当前第一资源单元未被占用,可以用于空口计算,则向第一终端设备发送第一指示信息,指示第一资源单元的位置;若网络设备确定当前第一资源单元被其他信令占用,可以根据实际情况确定第二资源单元的位置,并向第一终端设备发送第一指示信息,指示第二资源单元的位置,其中,第二资源单元可以是与第一资源单元至少部分重合或相邻的资源。
可选的,网络设备在向第一终端设备发送第一指示信息时,还可以发送配置信息,该配置信息可以包括第一资源单元和第二资源单元的时间间隔、第一资源单元或第二资源单元的持续时间、带宽密度、带宽范围或初始的波束信息等。具体的,网络设备可以指定第一资源单元和第二资源单元的时间间隔,比如X个时隙(slot)为一个时间间隔,X为正整数。网络设备还可以为第一资源单元或第二资源单元配置初始的波束信息,例如指示与某个参考信号的准同位关系,以辅助第一终端设备对第一资源单元进行初始化接收。可选的,网络设备可以配置多个第一资源单元或第二资源单元,并使用索引对其进行区分。网络设备还可以预先将第一资源单元或第二资源单元的索引列表发送给第一终端设备,在向第一终端设备发送第一指示信息时,第一指示信息可以是第一资源单元或第二资源单元的索引值。第一终端设备收到该指示信息后,使用索引值与资源单元位置的对应关系确定第一资源单元或第二资源单元的具体位置。
本申请实施例对第一指示信息指示第一资源单元或第二资源单元的具体方式不作限定。
在本申请实施例中,第一资源单元和第二资源单元作为“特定的RE”,其用于网络设备和终端设备进行空口计算时发送上下行信号使用。第一资源单元和第二资源单元的位置协商确定后,网络设备在第一资源单元将第一信号发送给第一终端设备。
S220,网络设备发送第一信号后,第一信号经过第一资源单元对应的下行空口信道的作用,成为第二信号。
应理解,本申请实施例将空口作为计算资源,第一信号经过第一资源单元对应的下行空口信道的影响,在接收端,第一信号已经经过了下行空口信道的作用,成为另一个与第一信号不同的信号。
S230,第一终端设备在第一资源单元接收第二信号。
第一终端设备可以在第一资源单元接收第二信号,从而启动空口计算流程。
S240,第一终端设备对第二信号进行信号处理,获得第三信号,信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
作为示例,第一终端设备可以对第二信号进行共轭和/或归一化运算,获得第三信号。
可选的,第二信号还可以用于确定第二BF权值,第一终端设备还可以根据第二信号确定第二波束赋形BF权值,第二BF权值用于第一终端设备向网络设备发送上行数据。 例如,第一终端设备可以对所述第二信号进行共轭和/或归一化运算,获得第二BF权值。
作为一种可能的实现方式,第一终端设备可以将计算得到的第二BF权值作为第三信号。
作为一种可能的实现方式,第一终端设备是否根据第二信号确定第二BF权值可以通过网络设备或协议约定实现。例如,网络设备可以向第一终端设备发送第三指示信息,第三指示信息用于指示第一终端设备根据第二信号确定所述第二BF权值。具体的,网络设备可以指示传输次数N,N为正整数,在经过N次上下行传输后,第一终端设备将通过第二信号确定的第二BF权值应用于上行信号传输,N可以与网络设备配置的第一资源单元的发送周期次数相同。
作为一种可能的实现方式,网络设备还可以使用另外的信令指示第一终端设备是否使用第二BF权值进行传输,或指示终端对哪些参考信号或信道进行传输。例如,网络设备发送第四指示信息,所述第四指示信息用于指示所述第一终端设备使用所述第二BF权值对所述上行数据进行加权发送。
可选的,网络设备还可以与第一终端设备约定,在某个特定的时刻、信道或参考信号应该使用第二BF权值进行上行传输。例如,网络设备可以指示第一终端设备使用第一资源单元的索引值来确定该资源单元上的信号是否应该使用第二BF权值发送,此时,第一指示信息既可以指示第一资源单元的位置信息,还可以指示是否使用第二BF权值上行传输。
S250,第一终端设备在第二资源单元上向网络设备发送第三信号,第二资源单元与第一资源单元至少部分重合或相邻。
在网络设备和第一终端设备进行空口计算时,网络设备可以使用第一资源单元发送第一信号,从而第一终端设备可以在第一资源单元接收第二信号,第二信号是第一信号经过第一资源单元对应的下行空口信道的作用形成的。另外,第一终端设备可以使用第二资源单元发送第三信号,从而网络设备在第二资源单元接收第四信号,第四信号是第三信号经过第二资源单元对应的上行空口信道的作用形成的,第二资源单元位置与第一资源单元的位置至少部分重合或相邻。作为一种可能的实现方式,第一资源单元与第二资源单元可以是全部重合的资源。也就是说,网络设备发送信号的资源和第一终端设备发送信号的资源的位置可以是相同的。通过这种方式,可以使网络设备获得更精确的预编码权值。
作为一种可能的实现方式,网络设备发送信号的资源和第一终端设备发送信号的资源的位置也可以相邻或部分重合。由于资源的位置相邻或者至少部分重合的情况下,它们对应的传输信道是比较接近的,通过这种方式,可以在第一终端设备对应的第一资源单元的位置被占用的情况下,使得空口计算能够及时顺利的进行。
可选的,网络设备可以对终端发送第三信号的功率进行指示。此时,终端设备应根据网络设备的指示对第三信号的功率进行调整。例如,网络设备可以向第一终端设备发送功率调整信息,所述功率调整信息用于调整第三信号的功率,第一终端设备收到该功率调整信息后,根据功率调整信息对第三信号的功率进行调整,所述第一终端设备将调整后的第三信号向发送给网络设备。一种可能的实现方式为,网络设备为第三信号配置对应的路损测量参考信号以及目标功率信息,第一终端设备对使用路损测量参考信号进行测量并确定第三信号的发送功率。
S260,第三信号经过第二资源单元对应的上行空口信道的作用,成为第四信号。
应理解,本申请实施例将空口作为计算资源,第三信号经过第二资源单元所在的上行空口信道的影响,在接收端,该第三信号已经经过了上行空口信道的作用,成为另一个与第三信号不同的信号。
S270,网络设备在第二资源单元接收第四信号。
第三信号经过第二资源单元对应的上行空口信道的作用,在网络设备的接收天线处,成为第四信号,网络设备在第二资源单元上接收第四信号。
S280,网络设备对第四信号进行信号处理,获得第一波束赋形BF权值,信号处理的运算量小于矩阵求逆或矩阵分解的运算量,第一BF权值用于网络设备向第一终端设备发送下行数据,或用于网络设备向第二终端设备发送下行数据。
作为一种可能的实现方式,网络设备接收到第四信号后,可以对第四信号进行共轭和/或归一化运算,进而得到第一BF权值,网络设备可以将第一BF权值作为向第一终端设备下行发送的BF权值,或将其作为向第二终端设备下行发送的BF权值。
S290,网络设备使用第一波束赋形BF权值发送下行数据。
因此,本申请实施例利用信道的作用,将信号在特定的资源单元RE上发送,通过信号在发送过程中信道对信号的影响,获得下行BF权值,等效实现传统基带的计算,使得基带不需要计算天线维度的矩阵分解或求逆,能够降低基带的计算复杂度。
应理解,本申请的方案中,将信道矩阵的奇异值分解(singular value decomposition,SVD)的具体实现用幂法(power method)、雅可比法(Jacobi method)、Lanzcos算法等方法替代,这样可以拆分大部分计算量至空口传输过程中,减少基带的计算复杂度。
应理解,在TDD系统中,由于上下行互易性,下行信道矩阵H d与上行信道矩阵H u具有如下关系:
H d H=H u *
其中,H d H是下行信道矩阵H d的共轭转置矩阵,H u *是上行信道矩阵H u的共轭矩阵。
预编码向量V,可以将信道矩阵H d的自相关函数R hh=H d HH d进行拆分,即有:
R hh n=(H d HH d) n=(H d HH d) n-1(H u(H d) *) *
求预编码向量V,也就是计算R hh的主特征向量,根据幂法的计算原理,则有:
V=R hh nf (0)=(H d HH d) nf (0)=(H d HH d) n-1(H u(H df (0)) *) *
其中,f (0)为任意初始向量。
因此,可以利用任意初始信号分别过下行空口信道H d和上行空口信道H u的作用,以及共轭、归一化等简单运算实现预编码权值的计算。
应理解,上文仅以幂法为例进行说明,在实际应用中,也可以用雅可比法(Jacobi method)、Lanzcos算法等方法实现。关于每一种数学算法的基本原理,可以参考现有技术。
另一方面,本申请实施例可以支持更细粒度的预编码,使得预编码权值可以更好的匹配信道变化,提升系统性能。
再另一方面,通过本申请实施例的方法可以节约基带的计算资源,降低系统成本,降低功耗。
可选的,当第一终端设备获得第二BF权值后,第一终端设备也可以根据实际情况使 用第二BF权值对上行数据进行加权发送。
应理解,本申请实施例中所说的第一资源单元和第二资源单元,有的情况下指的是第一资源单元或第二资源单元的位置。本领域的技术人员应该根据方案的具体实现和上下文的表述,理解每次描述的真实含义。例如,网络设备在第一资源单元发送第一信号,第一终端设备在第一资源单元接收第二信号,这两处的描述中的第一资源单元,指的是具有相同位置的资源单元。
应理解,图2中仅以第一信号被往复传递1次为例进行说明,但是在实际应用中,网络设备和第一终端设备也可以将图2中的流程执行多次,将网络设备最终获得的结果作为第一BF权值,第一信号具体被往复传递几次,可以根据内部算法和信道的变化快慢而定。作为一个示例而非限定,在典型静止或低速移动的场景中,可以将第一信号在上下行空信道口中乒乓(ping-pang)发送1~3次。若需要乒乓多次,网络设备向第一终端设备发送第一指示信息时,还可以发送配置信息,该配置信息可以包括这次ping-pang和下次ping-pang之间的时间间隔。
作为一种可能的实现方式,第一信号可以是随机信号或网络设备前一次在所述第一资源单元或所述第二资源单元向第一终端设备发送下行数据时使用的下行SU-BF权值,第一BF权值则可以是网络设备当前向第一终端设备发送下行数据时使用的单用户SU-BF权值,第一BF权值用于网络设备向第一终端设备发送下行数据。其中,第一终端设备可以是单用户多输入多输出SU-MIMO传输模式中的终端设备。
网络设备确定当前的传输模式为SU-MIMO,可以使用随机信号作为第一信号或网络设备前一次在所述第一资源单元或所述第二资源单元向第一终端设备发送下行数据时使用的下行SU-BF权值,在第一资源单元将第一信号发送给第一终端设备,与第一终端设备通过空口计算后,网络设备可以得到当前向第一终端设备下行发送的SU-BF权值,当网络设备向第一终端设备发送下行数据时,可以使用第一BF权值对下行数据进行加权发送。
作为一种可能的实现方式,第一信号可以是网络设备向第二终端设备下行发送的单用户SU-BF权值,第一BF权值可以为多用户MU-BF权值,第一BF权值用于网络设备向第二终端设备发送下行数据。其中,第一终端设备和第二终端设备可以是多用户多输入多输出MU-MIMO传输模式中的终端设备。
可选的,该方法还包括:网络设备在第三资源单元接收第五信号,第三资源单元与所述第一资源单元至少部分重合或相邻。网络设备对所述第五信号进行信号处理,获得第六信号,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,该信号处理可以包括共轭和/或归一化运算。网络设备在第四资源单元向第三终端设备发送第六信号,第四资源单元与第二资源单元至少部分重合或相邻,第六信号用于网络设备在第二资源单元接收第四信号。其中,第一终端设备、第二终端设备和第三终端设备可以是MU-MIMO传输模式中的终端设备。
作为一种可能的实现方式第一资源单元与第三资源单元可以是全部重合的资源,第二资源单元与第四资源单元可以是全部重合的资源。也就是说,网络设备发送信号的资源和各个终端设备发送信号的资源的位置可以都是相同的。通过这种方式,可以使网络设备获得更精确的预编码权值。
网络设备确定当前的传输模式为MU-MIMO,可以使用第二终端设备对应的下行单用户SU-BF权值作为第一信号。网络设备在第一资源单元将第一信号发送给第一终端设备,与第一终端设备通过空口计算后,网络设备可以得到向第二终端设备下行发送的MU-BF权值,当向第二终端设备发送下行数据时,可以使用第一BF权值对下行数据进行加权发送。
应理解,对于网络设备与多用户通信时,网络设备与各个终端设备可以分别执行图2所示的流程获得MU-BF。网络设备可以使用第二终端设备对应的下行单用户SU-BF权值作为第一信号,在第一资源单元向第一终端设备发送第一信号,第一信号经过第一资源单元对应的下行空口信道的作用,成为第二信号,第一终端设备可以对第二信号进行信号处理,获得第七信号,第一终端设备在第三资源单元向网络设备发送第七信号,然后网络设备在第三资源单元接收第五信号,该第五信号是第七信号经过第三资源单元对应的上行空口信道形成的,第三资源单元与第一资源单元至少部分重合或相邻。网络设备可以对第五信号进行信号处理,获得第六信号,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,该信号处理包括可以共轭运算,也可以包括归一化运算,然后网络设备在第四资源单元向第三终端设备发送第六信号,第六信号经过第四资源单元对应的下行空口信道的作用,成为第八信号,第三终端设备可以对第八信号进行信号处理,获得第三信号,然后第三终端设备在第二资源单元向网络设备发送第三信号,第四资源单元与第二资源单元至少部分重合或相邻。进一步,网络设备在第二资源单元接收第四信号,该第四信号是第三终端设备发送的第三信号经过第二资源单元对应的上行空口信道形成的。再进一步,网络设备对第四信号进行信号处理,获得第一波束赋形BF权值,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量,该第一BF权值用于网络设备向第二终端设备发送下行数据。
应理解,网络设备确定当前的传输模式为MU-MIMO,还可以将第一终端设备对应的单用户SU-BF权值作为第一信号,在与第二终端设备约定的资源单元上,发送给第二终端设备。同样的,第二终端设备可以在约定的资源上接收第二信号。也就是说,网络设备和第二终端设备可以执行如图2所述的流程,得到第一BF权值,该第一BF权值也是MU-BF权值,该第一权值用于网络设备向第一终端设备发送下行数据时对下行数据加权。
因此,本申请实施例利用信道的作用,将初始随机信号或预编码权值作为发送信号在特定的资源单元RE上发送,通过信号在发送过程中信道对信号的影响,获得下行SU或者MU BF权值,等效实现传统基带的计算,使得基带不需要计算天线维度的矩阵分解或求逆,能够降低基带的计算复杂度。
另一方面,本申请实施例使用初始随机信号或预编码权值作为发送信号,不需要定义探测参考信号(sounding reference signal,SRS)等专用导频就可以获得下行发送的预编码权值,能够节省资源。
应理解,在实际应用中,为了提升预编码权值的准确性,接收端仍需要对接收到的信号做少量的运算处理,才能得到真正供后续数据传输的预编码权值,但是这些少量的运算,仅是一些标量和/或向量的加减乘除等低复杂度的运算,不涉及矩阵分解、求逆等高复杂度的运算,因此可以大大降低基带的计算复杂度。
作为一种可能的实现方式,该方法还包括:第一终端设备可以向网络设备发送第二请求信息,第二请求消息用于请求网络设备发送第一信号和/或确定第一BF权值。也就是说, 第一终端设备可以请求网络设备启动空口计算模式,在接下来的信息交互中,与网络设备可以开始通过空口计算的方法获得预编码权值。
作为一种可能的实现方式,该方法还包括:网络设备可以在物理下行控制信道(Physical Downlink Control Channel,PDCCH)中承载第二指示信息,或者向第一终端设备发送半静态信令,该半静态信令包括第二指示信息,第二指示信息用于指示第一终端设备接收第二信号和/或确定第三信号,第二信号是第一信号经过下行空口信道形成的,第三信号是根据对第二信号的信号处理获得的,该信号处理的运算量小于矩阵求逆或矩阵分解的运算量。也就是说,网络设备可以根据实际情况或者根据第一终端设备的请求确认启动空口计算模式,并通过第二指示信息通知第一终端设备在接下来的信息交互中,开始通过空口计算获得预编码权值,第一终端设备收到第二指示信息后,启动空口计算模式,即第一终端设备可以接收第二信号,根据第二信号确定第三信号,并将第三信号在第二资源单元上发送给网络设备。
因此,在本申请实施例中,网络设备和终端设备均可以根据实际情况确定是否启动空口计算模式。
作为一种可能的实现方式,网络设备发送的第一信号可以是随机信号或网络设备前一次在所述第一资源单元或所述第二资源单元向第一终端设备发送下行数据时使用的SU-BF权值,网络设备获得的第一BF权值可以为网络设备当前向第一终端设备发送下行数据时使用的单用户SU-BF权值。例如,网络设备和第一终端设备可以执行如图3所示的流程获得SU-BF权值,然后使用该SU-BF权值向第一终端设备发送下行数据。
图3是本申请实施例提供的又一通信的方法的示意性流程图。图3的方法可以由图1中的系统执行,如图3所示的方法可以用于获得下行SU-BF权值。
图3中TRXx表示第x个收发天线,例如,基站(网络设备的一例)的TRX2表示基站的第2个收发天线,终端设备1(第一终端设备的一例)的TRX4表示终端设备1的第4个收发天线。图3中仅以基站具有64个收发天线、终端设备1具有4个收发天线为例进行说明,但是本申请实施例中对网络设备的天线的数量不作限制,对终端设备的天线的数量也不作限制。
图3中的每一个小方格代表一个资源单元RE,图中以每个天线预留5个资源单元RE为例,图3中每个天线由上至下的资源单元分别记为RE1、RE2、RE3、RE4、RE5,RE1至RE5对应的下行空口传输信道分别表示为:H d1、H d2、H d3、H d4、H d5,RE1至RE5对应的上行空口传输信道分别表示为:H u1、H u2、H u3、H u4、H u5,也就是说,图中阴影部分的资源单元、即RE2对应的下行空口信道为H d2,图中阴影部分的资源单元、即RE2对应的上行空口信道为H u2
图3中基站和终端设备1约定RE2(第一资源单元的一例,也是第二资源单元的一例)为进行空口计算的资源,基站和终端设备1具体约定哪个资源单元位置用于空口计算可以由基站确定,也可以由终端设备1确定,基站和终端设备1约定用于空口计算的资源的方法可以参考上文的步骤S210。
基站和终端设备1约定好将RE2作为口空计算的资源单元后,基站可以选择初始随机信号f (0)(第一信号的一例),并在RE2上发送初始随机信号f (0)。例如,对64射频通道的基站,可以发送64*1的全1向量,作为第一信号。即在每个通道的RE2上,都发送 1。或者,基站可以将上一次在第一资源单元或第二资源单元向第一终端设备发送下行数据时所使用的SU-BF权值(而不是全“1”向量)作为第一信号f (0),这样可加快迭代收敛。
第一信号f (0)发送后,经过下行空口信道H d2的作用,终端设备1接收的信号为H d2f (0)(第二信号的一例)。
终端设备1可以对该信号求共轭,得到(H d2f (0)) *,终端设备1可以将该结果作为第二BF权值,用于向网络设备发送上行数据时对数据进行加权发送,也可以将该权值(第三信号的一例)作为第三信号,继续在RE2上发送给基站。
第三信号(H d2f (0)) *发送后,经过上行空口信道H u2的作用,基站接收到的信号为H u2(H d2f (0)) *(第四信号的一例)。
基站对接收到的第四信号H u2(H d2f (0)) *求共轭,得到(H u2(H d2f (0)) *) *,基站可以将该结果作为基站向终端设备1下行发送的单用户SU-BF权值(第一BF权值的一例),然后基站可以使用该SU-BF权值向终端设备1发送下行数据。
因此,本申请实施例利用信道的作用,将信号在特定的资源单元RE上发送,通过信号在信道发送过程中信道对信号的影响,获得下行数据的SU-BF权值,等效实现传统基带的计算,使得基带不需要计算天线维度的矩阵分解,能够降低基带的计算复杂度。
作为一种可能的实现方式,基站和终端设备1进行空口计算时,基站发送信号使用的RE(第一资源单元)和终端设备1发送信号使用的RE(第二资源单元)也可以是具有相邻位置的RE。例如,基站可以在RE2上将第一信号发给UE,而此时终端设备1的RE2被其他更重要的参考信号占用了,那么终端设备1可以用RE3将第三信号发送给基站,然后基站获得向终端设备1下行发送的单用户SU-BF权值(第一BF权值的一例)。由于相邻的RE的信道是比较接近的,通过这种方式,可以在对侧的相同位置的RE被占用的情况下,使得空口计算能够及时顺利的进行。
应理解,图3仅以终端设备1对第二信号求共轭得到第二BF权值为例进行说明,但是在实际通信过程中,终端设备1根据第二信号确定第二BF权值可以包括对第二信号求共轭之外的其他运算,例如归一化运算,并将最终计算结果作为第二BF权值。同样的,图3仅以基站对第四信号求共轭得到第一BF权值为例进行说明,但是在实际通信过程中,基站根据第四信号确定第一BF权值可以包括对第四信号求共轭之外的其他运算,例如归一化运算,并将最终计算结果作为第一BF权值。但是,无论求共轭或归一化运算,这种数学运算的复杂度远小于矩阵分解和矩阵求逆的运算复杂度。
应理解,本申请实施例中的具体信号处理的算法仅是为了举例说明,不作为对本申请的通信方法的限制。
应理解,图3以RE2(第一资源单元的一例)为例进行说明,但本申请对第一资源单元的具体位置不作限制。
应理解,图3以1个资源单元作为预编码粒度,但是在实际运用的过程中,本领域的技术人员也可以在本申请的方法的基础上,选择两个或多个RE作为预编码粒度,即使用两个或多个RE作为第一资源单元或第二资源单元。
因此,网络设备和多个终端设备中的每个终端设备可以分别执行图3所示的流程获得每个终端设备的SU-BF权值。当网络设备获得每个用户设备的SU-BF权值,若还需要进一步做多用户MU BF,可以按照现有技术中,网络设备取出每个配对用户的SU BF权值, 拼在一起做一次正交化即得到MU BF权值。
作为一种可能的实现方式,假设基站(网络设备的一例)获得对终端设备1(第一终端设备的一例)下行发送的SU-BF权值为V 1,获得对终端设备2(第二终端设备的一例)下行发送的SU-BF权值为V 2,网络设备和第一终端设备可以执行如图4所示的流程实现正交化,即获得网络设备向第二终端设备下行发送的MU-BF权值,然后可以使用该MU-BF权值向第二终端设备发送下行数据。
应理解,网络设备和终端设备可以执行如图2或图3所示的流程获得V 1和/或V 2,也可以使用现有技术中的方法获得V 1和/或V 2,对此本申请不作限定。
图4是本申请实施例提供的又一通信的方法的示意性流程图。图4的方法可以由图1中的系统执行,如图4所示的方法可以用于获得发送端的MU-BF权值。
图4中TRXx表示第x个收发天线,例如,基站(网络设备的一例)的TRX2表示基站的第2个收发天线,终端设备1(第一终端设备的一例)的TRX4表示终端设备1的第4个收发天线。图4中仅以基站具有64个收发天线、终端设备1具有4个收发天线为例进行说明,但是本申请实施例中对网络设备的天线的数量不作限制,对终端设备的天线的数量也不作限制。
图4中的每一个小方格代表一个资源单元RE,图中以每个天线预留5个资源单元RE为例,图4中每个天线由上至下的资源单元分别记为RE1、RE2、RE3、RE4、RE5,RE1至RE5对应的下行空口传输信道分别表示为:H d1、H d2、H d3、H d4、H d5,RE1至RE5对应的上行空口传输信道分别表示为:H u1、H u2、H u3、H u4、H u5,也就是说,图中阴影部分的资源单元、即RE3对应的下行空口信道为H d3,图中阴影部分的资源单元、即RE3对应的上行空口信道为H u3
图4中基站和终端设备1约定RE3(第一资源单元和第二资源单元的又一例)为进行空口计算的资源,基站和终端设备1具体约定哪个资源单元位置作为空口计算的资源可以由基站确定,也可以由终端设备1确定,基站和终端设备1约定用于空口计算的资源的方法可以参考上文的步骤S210。
基站和终端设备1约定好将RE3作为口空计算的资源后,基站可以将终端设备2(第二终端设备的一例)对应的下行单用户SU-BF权值V 2(第一信号的又一例)作为第一信号,在RE3发送信号V 2
第一信号V 2发送后,经过下行空口信道H d3的作用,终端设备1接收的信号为H d3V 2(第二信号的又一例)。
终端设备1可以对该信号求共轭,得到(H d3V 2) *,终端设备1可以将该结果作为第二BF权值,用于向网络设备发送上行数据时对数据进行加权发送,也可以将该结果(第三信号的又一例)作为第三信号,继续在RE3上发送给基站。
第三信号(H d3V 2) *发送后,经过上行空口信道H u3的作用,基站接收到的信号为H u3(H d3V 2) *(第四信号的又一例)。
基站对接收到的信号H u3(H d3V 2) *进行求共轭,得到(H u3(H d3V 2 *) *,由于H u3和H d3是基站与终端设备1通信的信道矩阵,V 1是基站向终端设备1发送下行数据的SU-BF权值,根据奇异值分解原理可知V 1与H d3的右奇异值矩阵相同或相近,因此,计算得到的(H u3(H d3V 2 *) *与V 1V 1 HV 2基本接近,基站只需要做向量的减法,根据 w_mu2=(I-V 1V 1 H)V 2=V 2-V 1V 1 HV 2,得到第一BF权值,并将该权值作为基站向终端设备2下行发送的多用户MU-BF权值,然后基站可以使用该MU-BF权值向终端设备2发送下行数据。也就是说,通过这种计算方法,可以等价实现正交化。
因此,本申请实施例利用信道的作用,将信号在特定的资源单元RE上发送,通过信号在信道发送过程中信道对信号的影响,获得下行数据的MU-BF权值,等效实现传统基带的计算,使得基带不需要计算天线维度的矩阵分解或矩阵求逆,能够降低基带的计算复杂度。
应理解,基站和终端设备2也可以执行与图4类似的流程获得基站向终端设备1下行发送的多用户MU-BF权值w_mu1,此时,基站(网络设备的一例)可以将终端设备1(第二终端设备的又一例)的下行发送的单用户SU-BF权值V 1作为第一信号,在RE4(第一资源单元的又一例)上发送给终端设备2(第一终端设备的一例),终端设备2在RE4上接收第一信号,然后基站和终端设备1参考类似图4的流程,最终获得基站向终端设备1下行发送的多用户MU-BF权值w_mu1(第一BF权值的又一例)。具体过程可以参考上文的描述,在此不再赘述。
应理解,若使用本申请的方法先获得SU-BF权值再获得MU-BF权值,则获得SU-BF权值与MU-BF权值所使用的资源单元可以是相同位置的资源单元RE,也可以是相邻位置的RE,也可以是不相邻位置的RE,本申请对此不做限定。
作为一种可能的实现方式,基站和终端设备1获得V 1时使用的资源单元与基站和终端设备2获得w_mu1时使用的资源单元可以是相邻位置的资源单元,基站和终端设备2获得V 2时使用的资源单元与基站和终端设备1获得w_mu2时使用的资源单元可以是相邻位置的资源单元。例如,基站和终端设备1可以使用RE2通过空口计算获得V 1,基站和终端设备2可以使用RE3通过空口计算获得V 2,然后基站和终端设备1可以使用RE2通过空口计算获得w_mu2,基站和终端设备2可以使用RE3空口计算获得w_mu1。
作为一可能的实现方式,基站和终端设备1获得V 1时使用的资源单元、基站和终端设备2获得V 2时使用的资源单元、基站和终端设备1获得w_mu2时使用的资源单元、基站和终端设备2获得w_mu1时使用的资源单元可以都是相同位置的资源单元,而在不同下行子帧(subframe)或传输时间间隔(transmission time interval,TTI)来进行,例如,基站和终端设备1可以使用子帧1的RE2通过空口计算获得V 1,基站和终端设备2可以使用子帧22的RE2通过空口计算获得V 2,然后基站和终端设备1可以使用子帧45的RE2通过空口计算获得w_mu2,基站和终端设备2可以使用子帧58的RE2空口计算获得w_mu1。通过这种方法,在实现RE粒度的SU预编码和MU预编码的同时,可以具有更高的MU预编码准确性。
应理解,图4仅以终端设备1对第二信号求共轭得到第二BF权值为例进行说明,但是在实际通信过程中,终端设备1根据第二信号确定第二BF权值可以包括对第二信号求共轭之外的其他运算,例如归一化运算,并将最终计算结果作为第二BF权值。同样的,图4仅以基站对第四信号求共轭得到第一BF权值为例进行说明,但是在实际通信过程中,基站根据第四信号确定第一BF权值可以包括对第四信号求共轭之外的其他运算,例如归一化运算,并将最终计算结果作为第一BF权值。本申请实施例中的具体信号处理的算法仅是为了举例说明,不作为对本申请的通信方法的限制。
应理解,图4以基站和终端设备1约定RE3(第一资源单元的一例)为进行空口计算的资源为例进行说明,但本申请对第一资源单元的具体位置不作限制。
应理解,图4以1个资源单元作为预编码粒度,但是在实际运用的过程中,本领域的技术人员也可以在本申请的方法的基础上,选择两个或多个RE作为预编码粒度。
应理解,在实际应用中,若网络设备向用户设备发送的数据是单流,那么获得的预编码权值就是向量,若发送的是多流数据,那么预编码权值是矩阵。例如,假设当前传输模式为2个UE配对的MU-MIMO,若每UE的数据流为2流,共4流,则对应每个UE的2列权值,都可以通过空口传输获得MU-BF权值。
作为一种可能的实现方式,假设基站(网络设备的一例)确定当前的传输模式为MU-MIMO,且配对的用户设备为3个,基站获得对终端设备1(第一终端设备的一例)下行发送的SU-BF权值为V 1,对终端设备2(第二终端设备的一例)下行发送的SU-BF权值为V 2,对终端设备3(第三终端设备的一例)下行发送的SU-BF权值为V 3,基站和终端设备1与终端设备3可以执行如图5所示的流程实现正交化,即获得基站向终端设备2下行发送的MU-BF权值,然后使用该MU-BF权值向终端设备2发送下行数据。
应理解,基站和终端设备1、终端设备2、终端设备3可以分别执行如图2或图3所示的流程获得V 1、V 2、V 3,也可以使用现有技术中的方法获得V 1、V 2、V 3,对此本申请不作限定。
图5是本申请实施例提供的又一通信的方法的示意性流程图。图5的方法可以由图1中的系统执行,如图5所示的方法可以用于获得发送端的MU-BF权值。
图5中TRXx表示第x个收发天线,例如,基站(网络设备的一例)的TRX2表示基站的第2个收发天线,终端设备1(第一终端设备的一例)的TRX1表示终端设备1的第1个收发天线。图5中仅以基站具有32个收发天线、终端设备1具有4个收发天线、终端设备3具有4个收发天线为例进行说明,但是本申请实施例中对网络设备的天线的数量不作限制,对终端设备的天线的数量也不作限制。
图5中的每一个小方格代表一个资源单元RE,图中以每个天线预留4个资源单元RE为例,图5中每个天线由上至下的资源单元分别记为RE1、RE2、RE3、RE4,RE1至RE4对应的下行空口传输信道分别表示为:H d1、H d2、H d3、H d4,RE1至RE4对应的上行空口传输信道分别表示为:H u1、H u2、H u3、H u4
图5中基站和终端设备1约定RE1(第一资源单元的又一例)和RE2(第三资源单元的一例)为进行空口计算的资源,基站和终端设备1具体约定哪个资源单元位置作为第一资源单元和第二资源单元可以由基站确定,也可以由终端设备1确定,基站和终端设备1约定用于空口计算的资源单元的方法可以参考上文的步骤S210。
基站和终端设备1约定好口空计算的资源后,基站可以将终端设备2(第二终端设备的一例)对应的下行单用户SU-BF权值V 2(第一信号的又一例)作为第一信号,在RE1上发送信号V 2
第一信号V 2发送后,经过RE1所在的下行空口信道H d1的作用,终端设备1接收的信号为H d1V 2(第二信号的又一例)。
终端设备1可以对该信号求共轭,得到(H d1V 2) *,终端设备1可以将该信号作为第七信号,放在RE2上发送给基站。
第七信号(H d3V 2) *发送后,经过RE2所在的上行空口信道H u2的作用,基站接收到的信号为H u2(H d1V 2) *(第五信号的一例)。
基站对接收到的信号H u2(H d1V 2) *进行求共轭,得到(H u2(H d1V 2) *) *,由于H u2和H d1相邻,且H d1是基站与终端设备1通信的信道矩阵,而V 1是基站向终端设备1发送下行数据的SU-BF权值,因此,计算得到的(H u2(H d1V 2) *) *与V 1V 1 HV 2近似。基站进一步可以计算Z=(I-V 1V 1 H)V 2=V 2-V 1V 1 HV 2
基站可以将Z作为第六信号,在与终端设备3约定的资源单元RE3(第四资源单元的一例)上发送给终端设备3。
第六信号Z发送后,经过RE3所在的下行空口信道H d3的作用,终端设备3接收的信号为H d3Z(第八信号的一例)。
终端设备3可以对该信号求共轭,得到(H d3Z) *,终端设备1可以将该信号作为第三信号,放在与基站约定的RE4(第二资源单元的又一例)上发送给基站。
第三信号(H d3Z) *发送后,经过上行空口信道H u4的作用,基站接收到的信号为H u4(H d3Z) *(第四信号的一例)。
基站对接收到的信号H u4(H d3Z) *进行求共轭,得到(H u4(H d3Z) *) *,由于H u4和H d3相邻,且H d3是基站与终端设备3通信的信道矩阵,而V 3是基站向终端设备3发送下行数据的SU-BF权值,因此,计算得到的(H u4(H d3Z) *) *与V 3V 3 HZ近似。基站进一步可以计算得到w_mu2=Z-V 3V 3 HZ,即MU-BF权值(第一BF权值的又一例),并将该权值作为基站向终端设备2下行发送的多用户MU-BF权值,然后基站可以使用该MU-BF权值向终端设备2发送下行数据。也就是说,通过这种计算方法,可以等价实现正交化。
因此,本申请实施例利用信道的作用,将信号在特定的资源单元RE上发送,通过信号在信道发送过程中信道对信号的影响,获得下行数据的MU-BF权值,等效实现传统基带的计算,使得基带不需要计算天线维度的矩阵分解或矩阵求逆,能够降低基带的计算复杂度。
应理解,在图5所示的方法中,基站也可以先和终端设备3进行空口传输,再和终端设备1进行空口传输。当涉及3个及以上的UE,本申请对交互的先后顺序不作限制。
应理解,基站也可以将V 1作为第一信号,和终端设备2、终端设备3执行与图5类似的流程获得基站向终端设备1下行发送的多用户MU-BF权值w_mu1;基站也可以将V 3作为第一信号,和终端设备1、终端设备2执行与图5类似的流程获得基站向终端设备3下行发送的多用户MU-BF权值w_mu3。
应理解,上述空口计算的过程中,以相邻的资源单元举例说明,但是在实际应用中,也可以使用相同的资源单元或部分重合的资源单元。
应理解,本申请的方法也可以扩展至多个网络设备和多个终端设备的空口计算,本申请对网络设备的个数和终端设备的个数均不做限定。
应理解,在本申请实施例的MU-BF的计算过程中,对终端设备3来说,其接收到的第八信号也可以称为第二信号。对终端设备1来说,其发送的第七信号也可以称为第三信号。在本申请的各种实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,例如,区分不同的信号或指示信息等,并不用来限制本申请实施例的范围。
以上,结合图2至图5详细说明了本申请实施例提供的方法。以下,结合图6至图8 详细说明本申请实施例提供的装置。
图6是本申请实施例提供的通信装置的示意性框图。如图6所示,该通信装置1000可以包括处理单元1100和收发单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如芯片或芯片系统)。
应理解,该通信装置1000可对应于根据本申请实施例的方法200中的网络设备,该通信装置1000可以包括用于执行图2中的方法200中网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,处理单元1100可用于执行方法200中的步骤S280,收发单元1200可用于执行方法200中的步骤S210、步骤S270和步骤S290。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元1200可通过收发器实现,例如可对应于图8中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图8中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如芯片或芯片系统)。
应理解,该通信装置1000可对应于根据本申请实施例的方法200中的终端设备,该通信装置1000可以包括用于执行图2中的方法200中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,处理单元1100可用于执行方法200中的步骤S240,收发单元1200可用于执行方法200中的步骤S230和步骤S250。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图7中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图6中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图7是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备 2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图6中的处理单元1100对应。
上述收发器2020可以与图6中的收发单元1200对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发送信号。
应理解,图7所示的终端设备2000能够实现图2示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,如对所述第二信号进行信号处理获得第三信号等。收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作,如发送第三信号、第一请求信息和第二请求信息,接收第二信号、第一指示信息和第二指示信息等。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图8是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元,与图8中的收发单元1100对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送第一信号、第一指示信息和第二指示信息,以及接收第四信号、第一请求信息和第二请求信息等。具体请见前面方法实施例中的描述,此处不再赘述。
所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图6中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,对所述第四信号进行信号处理获得第一BF权值等。具体请见前面方法实施例中的描述,此处不再赘述。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图8所示的基站3000能够实现图2所示方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图8所示出的基站3000仅为网络设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括AAU,还可以包括CU和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请对于网络设备的具体形态不做限定。
其中,CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器, 闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所示实施例中终端设备和网络设备分别执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2所示实施例中终端设备和网络设备分别执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程 构成任何限定。
应理解,在本申请的各种实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信号或指示信息等。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种通信的方法,其特征在于,包括:
    网络设备在第一资源单元向第一终端设备发送第一信号;
    所述网络设备在第二资源单元接收第四信号,所述第二资源单元与所述第一资源单元至少部分重合或相邻;
    所述网络设备使用第一波束赋形BF权值发送下行数据,所述第一BF权值是根据对所述第四信号的信号处理获得的,所述信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
  2. 如权利要求1所述的方法,其特征在于,所述第一BF权值用于所述网络设备向所述第一终端设备发送下行数据,
    所述第一信号为随机信号或所述网络设备前一次在所述第一资源单元或所述第二资源单元向所述第一终端设备发送下行数据时使用的下行单用户SU-BF权值,所述第一BF权值为所述网络设备当前向所述第一终端设备发送下行数据时使用的SU-BF权值,所述第一终端设备是单用户多输入多输出SU-MIMO传输模式中的终端设备。
  3. 如权利要求1所述的方法,其特征在于,所述第一BF权值用于所述网络设备向第二终端设备发送下行数据,
    所述第一信号为所述第二终端设备对应的下行单用户SU-BF权值,所述第一BF权值为多用户MU-BF权值,所述第一终端设备和所述第二终端设备是多用户多输入多输出MU-MIMO传输模式中的终端设备。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述网络设备在第三资源单元接收第五信号,所述第三资源单元与所述第一资源单元至少部分重合或相邻;
    所述网络设备在第四资源单元向第三终端设备发送第六信号,所述第四资源单元与所述第二资源单元至少部分重合或相邻,所述第六信号是根据对所述第五信号的信号处理获得的,所述信号处理的运算量小于矩阵求逆或矩阵分解的运算量,所述第六信号用于所述网络设备在所述第二资源单元接收所述第四信号,所述第一终端设备、所述第二终端设备和所述第三终端设备是MU-MIMO传输模式中的终端设备。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述信号处理包括共轭和/或归一化运算。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述第一资源单元与所述第二资源单元全部重合。
  7. 如权利要求4至6中任一项所述的方法,其特征在于,所述第一资源单元与所述第三资源单元全部重合,所述第二资源单元与所述第四资源单元全部重合。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收第一请求消息,所述第一请求消息用于请求所述网络设备确定所述第一资源单元的位置。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一资源单元或所述第二资源单元的位置。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收第二请求消息,所述第二请求消息用于请求所述网络设备发送所述第一信号和/或获得所述第一BF权值。
  11. 如权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二指示信息,所述第二指示信息用于指示所述第一终端设备接收第二信号和/或获得第三信号,所述第二信号是所述第一信号经过下行空口信道形成的,所述第三信号是根据对所述第二信号的信号处理获得的,所述信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,所述第一资源单元或所述第二资源单元包括至少一个资源单元RE。
  13. 一种通信的方法,其特征在于,包括:
    第一终端设备在第一资源单元接收第二信号;
    所述第一终端设备在第二资源单元向网络设备发送第三信号,所述第二资源单元与所述第一资源单元至少部分重合或相邻,所述第三信号是根据对所述第二信号的信号处理获得的,所述信号处理的运算量小于矩阵求逆或矩阵分解的运算量。
  14. 如权利要求13所述的方法,其特征在于,所述信号处理包括共轭和/或归一化运算。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一资源单元与所述第二资源单元全部重合。
  16. 如权利要求13至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备发送第一请求消息,所述第一请求消息用于请求所述网络设备确定所述第一资源单元的位置。
  17. 如权利要求13至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第一指示信息,所述第一指示信息用于指示所述第一资源单元或所述第二资源单元的位置。
  18. 如权利要求13至17所中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备发送第二请求消息,所述第二请求消息用于请求所述网络设备发送第一信号和/或获得第一波束赋形BF权值,所述第二信号是所述第一信号经过下行空口信道形成的,所述第一BF权值用于所述网络设备向所述第一终端设备或第二终端设备发送下行数据。
  19. 如权利要求13至17所中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第二指示信息,所述第二指示信息用于指示所述第一终端设备接收所述第二信号和/或获得所述第三信号。
  20. 如权利要求13至19中任一项所述的方法,其特征在于,所述第二信号还用于确定第二BF权值,所述第二BF权值用于所述第一终端设备向所述网络设备发送上行数据,所述方法还包括:
    所述第一终端设备根据所述第二信号确定所述第二BF权值。
  21. 如权利要求13至20所中任一项所述的方法,其特征在于,所述第一资源单元或所述第二资源单元包括至少一个资源单元RE。
  22. 一种通信装置,其特征在于,包括用于执行如权利要求1至21中任一项所述方法的单元。
  23. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述通信装置实现如权利要求1至21中任一项所述的方法。
  24. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至21中任一项所述的方法。
PCT/CN2021/070605 2021-01-07 2021-01-07 一种通信方法和装置 WO2022147709A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21916767.3A EP4250584A4 (en) 2021-01-07 2021-01-07 COMMUNICATION METHOD AND APPARATUS
CN202180081267.6A CN116569493A (zh) 2021-01-07 2021-01-07 一种通信方法和装置
PCT/CN2021/070605 WO2022147709A1 (zh) 2021-01-07 2021-01-07 一种通信方法和装置
US18/347,574 US20230353207A1 (en) 2021-01-07 2023-07-06 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070605 WO2022147709A1 (zh) 2021-01-07 2021-01-07 一种通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/347,574 Continuation US20230353207A1 (en) 2021-01-07 2023-07-06 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022147709A1 true WO2022147709A1 (zh) 2022-07-14

Family

ID=82357749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070605 WO2022147709A1 (zh) 2021-01-07 2021-01-07 一种通信方法和装置

Country Status (4)

Country Link
US (1) US20230353207A1 (zh)
EP (1) EP4250584A4 (zh)
CN (1) CN116569493A (zh)
WO (1) WO2022147709A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716866A (zh) * 2014-10-30 2017-05-24 英特尔Ip公司 乒乓波束成形
CN107994932A (zh) * 2016-10-26 2018-05-04 华为技术有限公司 一种基于加权探测信号的波束成型发送方法及装置
CN108923834A (zh) * 2018-07-12 2018-11-30 瑞典爱立信有限公司 波束成型方法及其网络设备
US20190341978A1 (en) * 2018-05-04 2019-11-07 Samsung Electronics Co., Ltd. Precoding for advanced wireless communication systems
US20200244335A1 (en) * 2017-08-11 2020-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Precoding in a Multi-User Multiple-Input Multiple-Output Wireless Communication System

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016070122A1 (en) * 2014-10-30 2016-05-06 Intel IP Corporation Ping pong beamforming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716866A (zh) * 2014-10-30 2017-05-24 英特尔Ip公司 乒乓波束成形
CN107994932A (zh) * 2016-10-26 2018-05-04 华为技术有限公司 一种基于加权探测信号的波束成型发送方法及装置
US20200244335A1 (en) * 2017-08-11 2020-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Precoding in a Multi-User Multiple-Input Multiple-Output Wireless Communication System
US20190341978A1 (en) * 2018-05-04 2019-11-07 Samsung Electronics Co., Ltd. Precoding for advanced wireless communication systems
CN108923834A (zh) * 2018-07-12 2018-11-30 瑞典爱立信有限公司 波束成型方法及其网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU SIYUAN; ZHAO SHENGJIE; SHI QINGJIANG: "Block-Diagonal Zero-Forcing Beamforming for Weighted Sum-Rate Maximization in Multi-User Massive MIMO Systems", 2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 7 July 2020 (2020-07-07), pages 1 - 6, XP033840338, DOI: 10.1109/ISCC50000.2020.9219669 *
See also references of EP4250584A4 *

Also Published As

Publication number Publication date
CN116569493A (zh) 2023-08-08
US20230353207A1 (en) 2023-11-02
EP4250584A1 (en) 2023-09-27
EP4250584A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US20220263560A1 (en) Channel state information reporting method and communications apparatus
WO2022048593A1 (zh) 信道测量的方法和装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
EP4020854A1 (en) Channel measurement method and communication apparatus
US20220217567A1 (en) Channel measurement method and communications apparatus
CN111431679B (zh) 参数配置方法和通信装置
US20230239111A1 (en) Method for sending demodulation reference signal, method for receiving demodulation reference signal, and communication apparatus
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2021081847A1 (zh) 一种信道测量方法和通信装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
CN115315906B (zh) 一种信道测量方法和通信装置
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
US20230019630A1 (en) Update Method and Communications Apparatus
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
US20220271900A1 (en) Method for configuring transmit port of downlink reference signal and communication apparatus
US11784853B2 (en) Channel measurement method and communication apparatus
WO2022121746A1 (zh) 信道信息反馈方法及通信装置
WO2022147709A1 (zh) 一种通信方法和装置
EP4106246A1 (en) Channel state information feedback method and communication apparatus
WO2020073788A1 (zh) 指示和确定预编码向量的方法以及通信装置
CN114070436A (zh) 一种信道测量方法和通信装置
US20230379020A1 (en) Precoding method and apparatus
WO2022227976A1 (zh) 通信方法和通信装置
WO2021146961A1 (zh) 用于确定下行信道状态信息的方法和装置
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180081267.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021916767

Country of ref document: EP

Effective date: 20230619

NENP Non-entry into the national phase

Ref country code: DE