WO2022262545A1 - 一种信道状态信息的反馈方法及装置 - Google Patents

一种信道状态信息的反馈方法及装置 Download PDF

Info

Publication number
WO2022262545A1
WO2022262545A1 PCT/CN2022/095178 CN2022095178W WO2022262545A1 WO 2022262545 A1 WO2022262545 A1 WO 2022262545A1 CN 2022095178 W CN2022095178 W CN 2022095178W WO 2022262545 A1 WO2022262545 A1 WO 2022262545A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
joint
basis
matrix
space
Prior art date
Application number
PCT/CN2022/095178
Other languages
English (en)
French (fr)
Inventor
高君慧
金黄平
任翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22824025.5A priority Critical patent/EP4346113A1/en
Publication of WO2022262545A1 publication Critical patent/WO2022262545A1/zh
Priority to US18/541,093 priority patent/US20240129092A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • the present application relates to the technical field of communications, and in particular to a method and device for feeding back channel state information.
  • the fifth generation (5th generation, 5G) communication system has higher requirements on system capacity and spectrum efficiency.
  • massive multiple input multiple output (MIMO) technology plays a vital role in the spectral efficiency of the system.
  • MIMO technology when the network equipment sends data to the terminal equipment, it needs to perform modulation coding and signal precoding. How the network device sends data to the terminal device depends on the channel state information (CSI) fed back from the terminal device to the network device, so the accuracy of CSI plays a very important role in the performance of the system.
  • CSI channel state information
  • the present application provides a channel state information feedback method and device, which are used to solve the problem in the prior art that the feedback CSI is inaccurate due to the expiration of the CSI, resulting in poor system performance.
  • the present application provides a channel state information feedback method, which may include: a terminal device receives a channel state information reference signal (channel state information reference signal, CSI-RS, CSI-RS) from a network device, and based on the CSI -RS performs channel measurement; then the terminal device feeds back channel state information (channel state information, CSI) to the network device based on the first codebook;
  • the first codebook may be based on one or more transmissions representing the channel end space domain frequency domain column vector and one or more receiving end space domain time domain column vectors, or the first codebook may be based on the one or more transmitting end space frequency domain column vectors representing the channel And determined by one or more time-domain column vectors; the one or more transmitter-end space-frequency-domain column vectors are used to indicate channel information that is combined with the transmitter-end space-frequency domain; the one or more receiver-end space domain time The domain column vector is used to indicate the channel information that combines the space domain and the time domain of the receiving end.
  • CSI-RS channel state
  • the terminal device describes the time-varying characteristics of the channel through the channel state information fed back based on the first codebook containing Doppler information (also time-domain information), and the Doppler information changes within a short measurement time length It is relatively slow, so the network device can reconstruct the channel within the measurement period according to the first codebook, and predict the future channel change trend according to the time-varying trend of the reconstructed channel, and calculate the downlink precoding matrix according to the predicted channel to better match the current channel , which can improve system performance.
  • Doppler information also time-domain information
  • constructing the spatial-frequency domain joint base at the transmitter and the spatial-time domain joint base at the receiver can improve channel projection sparsity and reduce feedback overhead; from the four dimensions of transmitter-frequency domain-receiver-time domain or from the transmitter Feedback of channel state information in the three dimensions of end-frequency domain-time domain can characterize channel characteristics more accurately. Therefore, the network device can perform channel prediction more accurately based on the channel state information fed back by the terminal device.
  • the first codebook may comply with the following formula:
  • the W is the first codebook
  • the W 1 is the joint basis matrix of the spatial and frequency domain of the transmitting end, and the joint basis matrix of the spatial and frequency domain of the transmitting end includes the one or more spatial and frequency domain columns of the transmitting end Vector
  • the W 3 is the joint basis matrix in the space and time domain of the receiving end, and the joint basis matrix in the space and time domain of the receiving end includes the one or more column vectors in the space and time domain of the receiving end
  • the W 2 is the transmitting end The space-frequency-domain joint basis matrix and the complex coefficient matrix corresponding to the receiving-end space-time-domain joint basis matrix.
  • the joint base of airspace and frequency domain at the transmitter and the joint spacetime and time domain at the receiver can improve the sparsity of channel projection and reduce the feedback overhead; feedback channel state information from the four dimensions of transmitter-frequency domain-receiver-time domain can be more accurate. Accurately characterize channel characteristics, so that network devices can perform more accurate channel prediction based on channel state information fed back by terminal devices.
  • the first codebook may comply with the following formula:
  • the W is the first codebook
  • the W 1 is the joint basis matrix of the spatial and frequency domain of the transmitting end, and the joint basis matrix of the spatial and frequency domain of the transmitting end includes the one or more spatial and frequency domain columns of the transmitting end Vector
  • the W 5 is a time-domain basis matrix, and the time-domain basis matrix includes the one or more time-domain column vectors
  • the W 4 is the joint basis matrix of the transmitting end space-frequency domain and the time-domain matrix of complex coefficients corresponding to the basis matrix.
  • the combination of airspace and frequency domain at the transmitter and the joint spacetime and time domain at the receiver can improve channel projection sparsity and reduce feedback overhead; feedback channel state information from the three dimensions of transmitter-frequency domain-time domain can be more accurately represented Channel characteristics, so that network devices can perform channel prediction more accurately based on the channel state information fed back by terminal devices.
  • the number of antennas is related to the number of frequency domain resource units occupied by the CSI-RS.
  • the joint compression of the space-time domain at the receiving end can improve the sparsity of the projection of the channel to the joint basis matrix of the space-time domain at the receiving end to a certain extent, and reduce the feedback overhead.
  • one frequency-domain basic substrate in the transmitting-end space-frequency-domain joint basic basis matrix may correspond to multiple transmitting-end spatial-domain basic substrates, or one of the transmitting-end spatial-frequency-domain joint basis matrices
  • the base base in the air domain at the transmitting end may correspond to multiple base bases in the frequency domain.
  • the W 11 may comply with the following formula: Among them, the is a conjugate matrix of W f , where W f is used to indicate the base basis in the frequency domain, and W tx is used to indicate the base base in the space domain of the transmitting end.
  • one time-domain basic basis in the receiving-end space-time-domain joint basis basis matrix may correspond to multiple receiving-end space-domain basis substrates, or one of the receiving-end space-time-domain joint basis matrix
  • the base base in the space domain at the receiving end may correspond to multiple base bases in the time domain.
  • the W 31 may comply with the following formula: Among them, the is the conjugate matrix of W t , the W t is used to indicate the basic basis in the time domain, and the W rx is used to indicate the basic basis in the spatial domain of the receiving end.
  • the dimension of W 2 may be L*N 1 ; wherein, the L represents the number of joint bases in the space and frequency domains selected at the transmitting end, and the L is the network device pre-configured or A predefined value; the N 1 represents the number of joint bases in the space and time domains selected at the receiving end, and the N 1 is a pre-configured or predefined value of the network device.
  • codebook compression in the four dimensions of transmitter airspace, frequency domain, receiver airspace, and time domain can be realized, and channel information can be fed back more accurately from the four dimensions, channel changes can be predicted, and feedback overhead can be reduced.
  • the dimension of W 4 may be L*N d ; wherein, the L represents the number of joint bases in the space-frequency domain of the transmitter selected, and the L is the network device pre-configured or A predefined value; said N d represents the measurement duration.
  • the codebook feedback in the three dimensions of the air domain, frequency domain, and time domain at the transmitting end can be realized, and channel changes can be predicted; at the same time, the air space dimension at the receiving end can be removed, which can reduce the feedback coefficient and feedback overhead.
  • the feedback cycle of the base base correction matrix W 12 in the space-frequency domain at the transmitting end may be T1, where T1 is a pre-configured or predefined value for the network device, and T1 is greater than the feedback period A cycle of information, the first information is information in the CSI other than the information based on the feedback from the W 12 , for example, the first information may include, but is not limited to, a base complex coefficient matrix.
  • the terminal device feeds back the base complex coefficient matrix according to a short cycle by feeding back the space-frequency domain joint base basis correction matrix of the transmitting end according to a relatively long cycle, so as to reduce feedback overhead.
  • the terminal device receives second information from the network device, where the second information indicates a codebook type used by the terminal device for channel measurement.
  • the terminal device and the network device can know the codebook type used in advance, and then perform feedback of the channel state information according to the codebook of the codebook type.
  • the present application provides a channel state information feedback method, which may include: a network device sending a channel state information reference signal CSI-RS to a terminal device; and the network device receiving the terminal device based on the first The channel state information CSI fed back by the codebook; the first codebook is determined based on one or more spatial and frequency domain column vectors of the transmitting end and one or more spatial and time domain column vectors of the receiving end representing the channel, or, the The first codebook is determined based on the one or more transmitter space-frequency domain column vectors and one or more time-domain column vectors representing the channel; the one or more transmitter space-frequency domain column vectors are used to indicate combining the channel information in the spatial and frequency domains of the transmitting end; and the one or more column vectors in the spatial and time domains of the receiving end are used to indicate combining the channel information in the spatial and time domains of the receiving end.
  • the terminal device describes the time-varying characteristics of the channel through the channel state information fed back based on the first codebook containing Doppler information (also time-domain information), and the Doppler information changes within a short measurement time length It is relatively slow, so the network device can reconstruct the channel within the measurement period according to the first codebook, and predict the future channel change trend according to the time-varying trend of the reconstructed channel, and calculate the downlink precoding matrix according to the predicted channel. match to improve system performance.
  • Doppler information also time-domain information
  • constructing the spatial-frequency domain joint base at the transmitter and the spatial-time domain joint base at the receiver can improve channel projection sparsity and reduce feedback overhead; from the four dimensions of transmitter-frequency domain-receiver-time domain or from the transmitter Feedback of channel state information in the three dimensions of end-frequency domain-time domain can characterize channel characteristics more accurately. Therefore, the network device can perform channel prediction more accurately based on the channel state information fed back by the terminal device.
  • the first codebook may comply with the following formula:
  • the W is the first codebook
  • the W 1 is the joint basis matrix of the spatial and frequency domain of the transmitting end, and the joint basis matrix of the spatial and frequency domain of the transmitting end includes the one or more spatial and frequency domain columns of the transmitting end Vector
  • the W 3 is the joint basis matrix in the space and time domain of the receiving end, and the joint basis matrix in the space and time domain of the receiving end includes the one or more column vectors in the space and time domain of the receiving end
  • the W 2 is the transmitting end The space-frequency-domain joint basis matrix and the complex coefficient matrix corresponding to the receiving-end space-time-domain joint basis matrix.
  • the joint base of airspace and frequency domain at the transmitter and the joint spacetime and time domain at the receiver can improve the sparsity of channel projection and reduce the feedback overhead; feedback channel state information from the four dimensions of transmitter-frequency domain-receiver-time domain can be more accurate. Accurately characterize channel characteristics, so that network devices can perform more accurate channel prediction based on channel state information fed back by terminal devices.
  • the first codebook may comply with the following formula:
  • the W is the first codebook
  • the W 1 is the joint basis matrix of the spatial and frequency domain of the transmitting end, and the joint basis matrix of the spatial and frequency domain of the transmitting end includes the one or more spatial and frequency domain columns of the transmitting end Vector
  • the W 5 is a time-domain basis matrix, and the time-domain basis matrix includes the one or more time-domain column vectors
  • the W 4 is the joint basis matrix of the transmitting end space-frequency domain and the time-domain matrix of complex coefficients corresponding to the basis matrix.
  • the combination of airspace and frequency domain at the transmitter and the joint spacetime and time domain at the receiver can improve channel projection sparsity and reduce feedback overhead; feedback channel state information from the three dimensions of transmitter-frequency domain-time domain can be more accurately represented Channel characteristics, so that network devices can perform channel prediction more accurately based on the channel state information fed back by terminal devices.
  • the number of antennas is related to the number of frequency domain resource units occupied by the CSI-RS.
  • the joint compression of the space-time domain at the receiving end can improve the sparsity of the projection of the channel to the joint basis matrix of the space-time domain at the receiving end to a certain extent, and reduce the feedback overhead.
  • one frequency-domain basic substrate in the transmitting-end space-frequency-domain joint basic basis matrix may correspond to multiple transmitting-end spatial-domain basic substrates, or one of the transmitting-end spatial-frequency-domain joint basis matrices
  • the base base in the air domain at the transmitting end may correspond to multiple base bases in the frequency domain.
  • the W 11 may comply with the following formula: Among them, the is a conjugate matrix of W f , where W f is used to indicate the base basis in the frequency domain, and W tx is used to indicate the base base in the space domain of the transmitting end.
  • one time-domain basic basis in the receiving-end space-time-domain joint basis basis matrix may correspond to multiple receiving-end space-domain basis substrates, or one of the receiving-end space-time-domain joint basis matrix
  • the base base in the space domain at the receiving end may correspond to multiple base bases in the time domain.
  • the W 31 may comply with the following formula: Among them, the is the conjugate matrix of W t , the W t is used to indicate the basic basis in the time domain, and the W rx is used to indicate the basic basis in the spatial domain of the receiving end.
  • the dimension of W 2 may be L*N 1 ; wherein, the L represents the number of joint bases in the space and frequency domains selected at the transmitting end, and the L is the network device pre-configured or A predefined value; the N 1 represents the number of joint bases in the space and time domains selected at the receiving end, and the N 1 is a pre-configured or predefined value of the network device.
  • codebook compression in the four dimensions of transmitter airspace, frequency domain, receiver airspace, and time domain can be realized, and channel information can be fed back more accurately from the four dimensions, channel changes can be predicted, and feedback overhead can be reduced.
  • the dimension of W 4 may be L*N d ; wherein, the L represents the number of joint bases in the space-frequency domain of the transmitter selected, and the L is the network device pre-configured or A predefined value; said N d represents the measurement duration.
  • the codebook feedback in the three dimensions of the air domain, frequency domain, and time domain at the transmitting end can be realized, and channel changes can be predicted; at the same time, the air space dimension at the receiving end can be removed, which can reduce the feedback coefficient and feedback overhead.
  • the feedback cycle of the base base correction matrix W 12 in the space-frequency domain at the transmitting end may be T1, where T1 is a pre-configured or predefined value for the network device, and T1 is greater than the feedback period A cycle of information, the first information is information in the CSI other than the information based on the feedback from the W 12 , for example, the first information may include, but is not limited to, a base complex coefficient matrix.
  • the terminal device feeds back the base complex coefficient matrix according to a short cycle by feeding back the space-frequency domain joint base basis correction matrix of the transmitting end according to a relatively long cycle, so as to reduce feedback overhead.
  • the network device sends second information to the terminal device, where the second information indicates a codebook type used by the terminal device for channel measurement.
  • the terminal device and the network device can know the codebook type used in advance, and then perform feedback of the channel state information according to the codebook of the codebook type.
  • the present application provides a channel state information feedback method, which may include: a terminal device receives a CSI-RS from a network device, and performs channel measurement based on the CSI-RS; The network device feeds back channel state information, where the channel state information is used to indicate one or more first bases, and the one or more first bases are used to generate one or more bases based on a preset base generation method. Indicates the second basis of channel state information. In this way, the bases of the terminal device and the network device can be aligned, and the channel can be reconstructed and precoded more accurately, thereby improving system performance.
  • the one or more first bases are quantized one or more joint statistical covariance base column vectors in the spatial and frequency domains.
  • the preset base generation method is an orthogonalization method preconfigured or predefined by the network device. In this way, the basis for aligning the terminal device and the network device can be accurately obtained through the pre-configured or predefined orthogonal method of the network device.
  • the present application provides a channel state information feedback method, which may include: a network device sends a CSI-RS to a terminal device; the network device receives the channel state information fed back by the terminal device, and the channel
  • the state information is used to indicate one or more first bases, and the one or more first bases are used to generate one or more second bases indicating channel state information based on a preset base generation method.
  • the bases of the terminal device and the network device can be aligned, and the channel can be reconstructed and precoded more accurately, thereby improving system performance.
  • the one or more first bases are quantized one or more joint statistical covariance base column vectors in the spatial and frequency domains.
  • the preset base generation method is an orthogonalization method preconfigured or predefined by the network device. In this way, the basis for aligning the terminal device and the network device can be accurately obtained through the pre-configured or predefined orthogonal method of the network device.
  • the present application also provides a channel state information feedback device, the channel state information feedback device has various possible design examples for realizing the above first aspect or the first aspect, or the third aspect or the third aspect Functionality of the terminal equipment in each possible design example of the aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the channel state information feedback device includes a transceiver unit and a processing unit, and these units can implement the above-mentioned first aspect or each possible design example of the first aspect, or the third aspect or the first aspect
  • the terminal device in each possible design example of the three aspects refer to the detailed description in the method example for details, and details are not repeated here.
  • the structure of the channel state information feedback device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used for sending and receiving information, signals or data, and for communicating with the communication system performing communication interaction with other devices in the above-mentioned first aspect or each possible design example of the first aspect, or the third aspect or each of the third aspect.
  • the memory is coupled with the processor, and stores necessary program instructions and data of the channel state information feedback device.
  • the structure of the channel state information feedback device includes a memory and a processor, and the processor is configured to support the channel state information feedback device to perform the first aspect or the first aspect.
  • the processor is configured to support the channel state information feedback device to perform the first aspect or the first aspect.
  • the memory is coupled with the processor, and stores necessary program instructions and data of the channel state information feedback device.
  • the present application also provides a channel state information feedback device, the channel state information feedback device has various possible design examples for realizing the above second aspect or the second aspect, or the fourth aspect or the fourth The functionality of the network device in each possible design example of the aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the channel state information feedback device includes a transceiver unit and a processing unit, and these units can implement the above-mentioned second aspect or each possible design example of the second aspect, or the fourth aspect or the first aspect
  • the structure of the channel state information feedback device includes a transceiver unit and a processing unit, and these units can implement the above-mentioned second aspect or each possible design example of the second aspect, or the fourth aspect or the first aspect
  • the structure of the channel state information feedback device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used for sending and receiving information, signals or data, and for communicating with the communication system performing communication interaction with other devices in the above-mentioned second aspect or each possible design example of the second aspect, or the fourth aspect or each of the fourth aspect
  • the memory is coupled with the processor, and stores necessary program instructions and data of the channel state information feedback device.
  • the structure of the channel state information feedback device includes a memory and a processor, and the processor is configured to support the channel state information feedback device to perform the first aspect or the first aspect.
  • the processor is configured to support the channel state information feedback device to perform the first aspect or the first aspect.
  • the memory is coupled with the processor, and stores necessary program instructions and data of the channel state information feedback device.
  • the embodiment of the present application provides a communication system, which may include the terminal device and the network device mentioned above.
  • the embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium stores program instructions, and when the program instructions are run on the computer, the computer executes the first aspect and its Any possible design, or the second aspect and any possible design thereof, or the third aspect and any possible design thereof, or the method described in the fourth aspect and any possible design thereof.
  • Exemplary, computer readable storage media may be any available media that can be accessed by a computer.
  • computer-readable media may include non-transitory computer-readable media, random-access memory (random-access memory, RAM), read-only memory (read-only memory, ROM), electrically erasable In addition to programmable read-only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage medium or other magnetic storage device, or can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media accessed by a computer.
  • random-access memory random-access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • the embodiments of the present application provide a computer program product including computer program codes or instructions, which, when run on a computer, enable the computer to implement any possible design of the above-mentioned first aspect or the first aspect, or the first aspect
  • the present application also provides a chip, including a processor, the processor is coupled to a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the first aspect above Or any possible design of the first aspect, or any possible design of the second aspect or the second aspect, or any possible design of the third aspect or the third aspect, or any possible design of the fourth aspect or the fourth aspect One possible design of the approach described.
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • FIG. 2 is a schematic diagram of communication between a network device and a terminal device provided by the present application
  • FIG. 3 is a schematic diagram of a basic flow of CSI measurement performed by a network device and a terminal device provided by the present application;
  • FIG. 4 is a schematic diagram of a CSI feedback delay provided by the present application.
  • FIG. 5 is a schematic diagram of a CSI measurement and feedback process provided by the present application.
  • FIG. 6 is a flow chart of a channel state information feedback method provided by the present application.
  • FIG. 7 is a schematic diagram of a codebook provided by the present application.
  • FIG. 8 is a schematic diagram of another codebook provided by the present application.
  • FIG. 9 is a flow chart of another channel state information feedback method provided by the present application.
  • FIG. 10 is a schematic structural diagram of a channel state information feedback device provided by the present application.
  • FIG. 11 is a structural diagram of an apparatus for feeding back channel state information provided in the present application.
  • Embodiments of the present application provide a channel state information feedback method and device, which are used to solve the problem in the prior art that in the time-varying channel scenario, due to CSI expiration, the fed back CSI is inaccurate, resulting in poor system performance.
  • the method and the device described in this application are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the network device can process the signal to be transmitted with the help of the precoding matrix that matches the channel resource, so that the precoded signal to be transmitted can be adapted to the channel, so that the receiving end ( Also known as the receiving device), the quality of the received signal (such as the signal to interference plus noise ratio (SINR), etc.) can be improved, which can reduce the complexity of eliminating the influence between channels at the receiving end.
  • the use of precoding technology can realize transmission on the same time-frequency resource between the transmitting end (also called the transmitting end and the transmitting device) and multiple receiving ends, that is, the realization of multiple user multiple input multiple output (multiple user multiple input multiple output, MU -MIMO).
  • the transmitting end may also perform precoding in other ways. For example, in a case where channel information (such as but not limited to a channel matrix) cannot be obtained, a pre-set precoding matrix or a weighting processing manner is used to perform precoding and the like. For the sake of brevity, its specific content will not be repeated here.
  • precoding matrix indicator precoding matrix indicator, PMI
  • the precoding matrix may be a precoding matrix determined by the terminal device based on the channel matrix of each frequency domain unit.
  • a frequency domain unit that is, a unit of frequency domain resources, may represent different frequency domain resource granularities.
  • the frequency domain unit may include but not limited to: subband (subband), resource block (resource block, RB), subcarrier, resource block group (resource block group, RBG) or precoding resource block group (precoding resource block group, PRG) and so on.
  • the channel matrix may be determined by the terminal device through channel estimation or other means or based on channel reciprocity. However, it should be understood that the specific method for the terminal device to determine the precoding matrix is not limited to the above, and the specific implementation manner may refer to the prior art, and for the sake of brevity, it is not listed here one by one.
  • the precoding matrix can be obtained by performing singular value decomposition (singular value decomposition, SVD) on the channel matrix or the covariance matrix of the channel matrix, or by performing eigenvalue decomposition (eigenvalue decomposition) on the covariance matrix of the channel matrix. decopomsition, EVD).
  • singular value decomposition singular value decomposition
  • eigenvalue decomposition eigenvalue decomposition
  • decopomsition EVD
  • channel state information channel state information, CSI
  • the CSI report may include but not limited to: precoding matrix indicator (PMI), rank indicator (rank indicator, RI), channel quality indicator (channel quality indicator, CQI), channel state information reference signal (channel state information reference signal, CSI) -RS) resource indicator (CSI-RS resource indicator, CRI) and layer indicator (layer indicator, LI), etc.
  • PMI precoding matrix indicator
  • rank indicator rank indicator
  • CQI channel quality indicator
  • CQI channel state information reference signal
  • CSI-RS resource indicator channel state information reference signal
  • layer indicator layer indicator
  • each antenna port can be called a reference signal A port, for example, a channel state information reference signal (channel state information reference signal, CSI-RS) port, a sounding reference signal (sounding reference signal, SRS) port, and the like.
  • the antenna port may refer to a transceiver unit (transceiver unit, TxRU).
  • the terminal device may perform channel measurement within a certain period of time according to the instruction of the network device.
  • This period of time may be referred to as a measurement duration.
  • the time length of the period may be indicated by the network device through signaling, for example, notified through high-layer signaling (such as a radio resource control (radio resource control, RRC) message, etc.).
  • the measurement duration may also be predefined, as defined by the protocol. This application is not limited to this.
  • the network device may notify the terminal device to start channel measurement through signaling.
  • the network device may notify the terminal device of the start time and/or duration of the time period through signaling, or the network device may trigger the terminal device to start channel measurement through signaling.
  • the terminal device can receive multiple reference signals used for channel measurement within the measurement duration, and can perform channel measurement based on the multiple received reference signals, so as to feed back the time-varying characteristics of the channel to the network device.
  • the measurement duration may be short, for example, may be defined in units of time slot (slot) or millisecond (ms).
  • the measurement duration may be 20 time slots or 5ms or 10ms or 20ms.
  • the measurement duration can also be longer, for example, it can be defined in seconds.
  • the measurement duration may be 10 seconds or the like.
  • the network device notifies the terminal device to start channel measurement by signaling does not mean that the terminal device has been performing channel measurement since the start time or trigger time indicated by the network device.
  • the network device only notifies the terminal device through signaling that channel measurement can be performed, and the terminal device can perform channel measurement based on the received reference signal within a time window after the start time or trigger time.
  • the size of the time window is also the measurement duration.
  • the feedback mentioned here refers to the terminal device's feedback on the time-varying characteristics of the channel, but it does not mean that the terminal device does not perform other feedbacks.
  • the terminal device can give feedback based on the feedback mode of the type II codebook within this period of time, and so on. For the sake of brevity, they are not listed here. It should be noted that other feedback performed by the terminal device during this period is a process independent of the feedback on the time-varying characteristics of the channel described in this application.
  • the time-domain basis can also be called a time-domain vector, which can be used to represent channel changes in the time domain.
  • a time-domain vector can represent a change rule of the channel over time.
  • a wireless channel is a time-varying channel that suffers attenuation losses from different paths.
  • the time-frequency dual-selective fading channel affected by frequency selective fading caused by multipath delay spread and time selective fading caused by Doppler frequency shift is a typical time-varying channel.
  • Doppler shift can refer to the frequency offset between the transmitting frequency and the receiving frequency caused by the relative movement between the terminal device and the network device.
  • the difference between the receiving frequency and the transmitting frequency is called Doppler frequency shift.
  • v is the moving speed of the terminal equipment
  • f c is the carrier frequency
  • the incident angle of the multipath signal
  • c is the speed of light.
  • may consider incident angles of different transmission paths. Since ⁇ of multipath is different, different transmission paths will correspond to different Doppler frequency shifts, thereby causing Doppler spread (Doppler spread).
  • the size of the Doppler frequency shift indicates the influence of the moving speed on the speed of the time domain change of the channel.
  • one time domain vector may correspond to one Doppler frequency shift. Therefore, different time-domain vectors can be used to represent the change law of the channel in the time domain caused by the Doppler frequency shift of different transmission paths.
  • the time domain channel can be projected into the Doppler domain, and represented by a weighted exponential function of several slowly changing Doppler frequency shifts.
  • time-domain vector is only defined for the convenience of distinguishing it from the space-domain vector and the frequency-domain vector described later, and should not constitute any limitation to the present application.
  • This application does not exclude the possibility of defining other names for time domain vectors in future agreements to represent the same or similar meanings. For example, it may also be called a Doppler vector.
  • the time-domain vector can be one or more of a discrete Fourier transform (Discrete Fourier Transform, DFT) vector, an oversampled DFT vector, a wavelet transform (wavelet transform, WT) vector or an oversampled WT vector.
  • DFT discrete Fourier Transform
  • WT wavelet transform
  • WT oversampled WT vector
  • the airspace base can also be called an airspace vector, or a beam vector, an angle vector, and the like.
  • Each element in the airspace vector may represent the weight of each antenna port (antenna port). Based on the weights of each antenna port represented by each element in the space vector, the signals of each antenna port are linearly superimposed to form an area with a strong signal in a certain direction in space.
  • Precoding the reference signal based on the spatial domain vector can make the transmitted reference signal have a certain spatial directivity. Therefore, the process of precoding the reference signal based on the space domain vector can also be regarded as a process of space domain (or simply, space domain) precoding.
  • the spatial vectors are taken from the DFT matrix.
  • Each column vector in the DFT matrix can be called a DFT vector.
  • the spatial domain vectors can be DFT vectors.
  • the spatial domain vector may also be, for example, a two-dimensional (2dimensions, 2D)-DFT vector or an oversampled 2D-DFT vector defined in the Type II (type II) codebook in the NR protocol TS 38.214 version 15 (release 15, R15). For the sake of brevity, no more details are given here.
  • the frequency-domain basis can be called a frequency-domain vector or a delay vector, etc.
  • Each frequency domain vector can represent a variation rule. Since the signal is transmitted through the wireless channel, it can reach the receiving antenna through multiple paths from the transmitting antenna. Multipath delay leads to frequency selective fading, which is the change of the channel in the frequency domain. Therefore, different frequency-domain vectors can be used to represent the change law of the channel in the frequency domain caused by the time delay on different transmission paths. Since the phase change of the channel in each frequency domain unit is related to the time delay, it can be known from the Fourier transform that the time delay of the signal in the time domain can be equivalent to the phase gradient in the frequency domain. Therefore, the frequency domain vector can also be called the delay vector. In other words, the frequency domain vector can also be used to represent the delay characteristics of the channel.
  • Precoding the reference signal based on the frequency domain vector can essentially mean that the phase rotation of each frequency domain unit in the frequency domain is performed based on the elements in the frequency domain vector, so that the frequency delay caused by the multipath delay can be corrected by precoding the reference signal. Selected characteristics for precompensation. Therefore, the process of precoding the reference signal based on the frequency domain vector can be regarded as the process of frequency domain precoding.
  • the frequency domain vector may be used together with the above space domain vector to construct a combination of multiple space domain vectors and frequency domain vectors, or space-frequency vector pairs for short, to construct a precoding vector.
  • the channel represented by the transmitter space-frequency domain matrix (the transmitter space domain vector matrix and the frequency domain vector matrix) is expressed by the transmitter space frequency domain vector (such as the transmitter space frequency domain column vector or the transmitter space frequency domain row vector). That is, the spatial and frequency domain vector of the transmitting end may indicate a channel in the spatial and frequency domain of the joint transmitting end.
  • the channel H can be expressed by formula (1), that is, H satisfies formula (1):
  • C is a diagonal matrix of L ⁇ L, where M is the number of antenna ports of the network device, L is the number of paths, and N is the number of frequency units.
  • M is the number of antenna ports of the network device
  • L is the number of paths
  • N is the number of frequency units.
  • H in formula (1) is expanded by row, that is, the channel represented by the airspace-frequency domain matrix at the transmitter is represented by a column vector in the airspace and frequency domain at the transmitter, as follows:
  • H in formula (1) is expanded by columns, that is, the channel represented by the airspace-frequency domain matrix at the transmitter is represented by a column vector in the airspace and frequency domain at the transmitter, as follows:
  • h can also be regarded as the representation of the channel in the space-frequency domain of the joint transmitter (the joint domain of the space domain and the frequency domain of the transmitter).
  • h is referred to as the frequency domain channel of the transmitting end space domain.
  • c diag (C)
  • diag (C) represents the column vector that the diagonal element of matrix C forms
  • means Khatri-Rao product, for example, a i is the ith column of A, is the Kronecker product (Kronecker product), b i is the ith column of B, and i is an integer greater than 0.
  • F * is the conjugate matrix of F
  • the lth (l 1,...,L) column of the matrix
  • F * ⁇ S can satisfy the formula (3):
  • (:,l) represents the lth column of the matrix.
  • the channel has sparse characteristics in the angular delay domain, namely Only some of the elements in are non-zero or have large values. And the angular delay changes slowly, that is, within a period of time, it can be considered that U is basically unchanged, Values at different moments, e.g. Change with time.
  • the sparsity of the projection coefficient of channel H on the base of the spatial-frequency joint at the transmitting end is enhanced due to the joint compression of the spatial domain and frequency domain at the transmitting end, which can improve the accuracy of CSI reconstruction by network devices and improve system performance.
  • the spatial-frequency-domain joint vector of the transmitting end can also be called the spatial-frequency-domain joint vector of the transmitting end, and can be used to represent the vector of the change law of the channel in the air-frequency domain of the joint transmitting end.
  • the dimension of the transmitting-end spatial-frequency-domain joint vector matrix is ((M 1 ⁇ M 2 ) ⁇ N sb ) ⁇ L, M 1 is the number of antenna ports in the horizontal direction transmitted by the network equipment, M 2 is the number of antenna ports in the vertical direction transmitted by the network equipment, N sb is the number of frequency units, L is the number of paths or the selected transmitting end
  • M 1 is the number of antenna ports in the horizontal direction transmitted by the network equipment
  • M 2 is the number of antenna ports in the vertical direction transmitted by the network equipment
  • N sb is the number of frequency units
  • L is the number of paths or the selected transmitting end
  • the joint basis of the space and time domain of the receiving end can be used to represent the vector of the change rule of the channel in the space and time domain of the joint receiving end.
  • the dimension of the space-time-domain joint vector matrix at the receiving end is (M 3 ⁇ N d ) ⁇ N 1 , where M 3 is the number of antenna ports of the terminal device, N d represents the measurement duration, and N 1 is the selected The number of joint bases in the space and time domains at the receiver.
  • the space-time-domain joint vector matrix at the receiving end may be obtained by performing SVD on the covariance matrix of the channel represented by the column vector in joint space-time domain compression at the receiving end.
  • projection coefficient matrix which is used to represent the projection coefficient of the channel in the space-frequency domain joint basis matrix of the transmitting end and the space-domain time-domain joint basis matrix of the receiving end, or to represent the projection coefficient of the channel in the space-frequency domain joint basis matrix of the transmitting end and the time-domain joint basis matrix
  • projection coefficients of domain basis matrix complex coefficients include magnitude and phase.
  • At least one (species) refers to one (species) or multiple (species), and multiple (species) refers to two (species) or more than two (species).
  • the channel state information feedback method provided by the embodiment of the present application can be applied to various communication systems, as long as there is a device in the communication system that needs to send transmission direction indication information, another device needs to receive the indication information, and determine a certain amount according to the indication information.
  • the direction of transmission in time may be Internet of Things (IoT), Narrow Band Internet of Things (NB-IoT), Long Term Evolution (LTE), or the fifth generation (5G ) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be a 5G NR system, and a new communication system that will appear in future communication development.
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • LTE Long Term Evolution
  • 5G fifth generation
  • the 5G communication system described in this application may include at least one of a non-standalone (NSA) 5G communication system and a standalone (standalone, SA) 5G communication system.
  • the communication system may also be a public land mobile network (public land mobile network, PLMN) network, a device-to-device (device-to-device, D2D) network, a machine-to-machine (machine to machine, M2M) network or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine network
  • FIG. 1 shows a schematic structural diagram of a possible communication system to which the channel state information feedback method provided in this application is applicable.
  • the communication system may include a network device and at least one terminal device, such as terminal device 1 to terminal device 6 shown in FIG. 1 .
  • terminal devices 1 to 6 can send uplink data and the like to network devices, and the network devices need to receive uplink data and the like sent by terminal devices 1 to 6 .
  • terminal equipment 4 to terminal equipment 6 may also form a sub-communication system.
  • the network device can send downlink information to terminal device 1, terminal device 2, terminal device 5, etc.; terminal device 5 can also send downlink information to terminal device 4 and terminal device 6 based on D2D technology.
  • FIG. 1 is only a schematic diagram, and the present application does not specifically limit the type of the communication system and the quantity and type of devices included in the communication system.
  • the network device can be a device with a wireless transceiver function or a chip that can be set on the network device, and the network device includes but is not limited to: a base station (generation node B, gNB), a radio network controller (radio network controller, RNC) , Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband Unit (baseband unit, BBU), wireless fidelity (wireless fidelity, Wi-Fi) system access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., may also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU).
  • RNC radio network controller
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link Functions of the radio link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • a CU may be divided into network devices in the access network RAN, or a CU may be divided into network devices in the core network CN, which is not limited.
  • the terminal equipment may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , User Agent, or User Device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, smart wearable devices (smart glasses, smart watches, smart headphones, etc.), wireless terminals in smart homes, etc., can also be Chips or chip modules (or chip systems) that can be installed in the above devices.
  • the embodiments of the present application do not limit the application scenarios.
  • the communication between the network device and the terminal device may be as shown in FIG. 2 .
  • the network device and the terminal device can exchange RRC signaling through the RRC module.
  • the network device and the terminal device can exchange media access control control element (media access control control element, MAC CE) signaling through the MAC module.
  • Network devices and terminal devices can exchange uplink/downlink control signaling through the PHY module, such as physical uplink control channel (physical uplink control channel, PUCCH)/physical downlink control channel (physical downlink control channel, PDCCH); and exchange uplink/downlink data Signaling, such as physical uplink shared channel (physical uplink shared channel, PUSCH)/physical downlink shared channel (physical downlink shared channel, PDSCH), etc.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the 5G communication system has higher requirements on system capacity and spectrum efficiency.
  • massive MIMO technology plays a vital role in the spectral efficiency of the system.
  • MIMO technology when the network equipment sends data to the terminal equipment, it needs to perform modulation coding and signal precoding. How the network device sends data to the terminal device depends on the CSI fed back from the terminal device to the network device, so the accuracy of the CSI plays a very important role in the performance of the system.
  • Step 301 The network device sends channel measurement configuration information to the terminal device, and the channel measurement configuration information is used for channel measurement configuration, for example, configuring reference signals, measurement time, and the like.
  • Step 302 the network device sends a channel measurement pilot (also referred to as a reference signal (reference signaling, RS)) to the terminal device, and the pilot is used for channel measurement.
  • a channel measurement pilot also referred to as a reference signal (reference signaling, RS)
  • RS reference signal
  • Step 303 The terminal device performs channel measurement according to the pilot sent by the network device, and performs calculations such as channel estimation to obtain CSI, and feeds back CSI to the network device (for example, through codebook feedback).
  • the fed back CSI may include Specific parameters such as rank indicator (rank indicator, RI), channel quality indicator (channel quality information, CQI), or precoding matrix indicator (precoding matrix indicator, PMI).
  • Step 304 The network device sends data according to the CSI fed back by the terminal device.
  • the network device can determine the relevant configuration of sending data according to the CSI fed back by the terminal device in step 303, for example: the network device determines the flow number of data transmission to the terminal device through RI, and the network device determines The CQI determines the modulation order and the code rate of channel coding for transmitting data to the terminal equipment, and the network equipment determines the precoding for transmitting data to the terminal equipment according to the PMI fed back by the terminal equipment.
  • a time delay in CSI feedback that is, it takes a certain amount of time between the measurement of CSI by the terminal device and the acquisition of the CSI fed back by the terminal device by the network device, which leads to the aging problem of the CSI obtained by the network device, that is,
  • the CSI fed back by the network device to the terminal device is not the CSI of the current actual channel, but the CSI of the past period of time, which causes the precoding calculated by the network device to transmit data based on the CSI fed back by the terminal device to be different from the precoding calculated based on the actual channel.
  • the encoding may be different, which may result in a loss of system performance.
  • the time delay in CSI feedback will lead to obvious performance loss
  • the user's movement scenario is one of the common scenarios.
  • the terminal equipment is at position 1 at time T1
  • the UE follows the Move at the speed and direction of , move to position 2 at time T2, and then follow
  • the speed and direction of the mobile device move to position 3 at time T3, and the channels corresponding to the terminal device at position 1, position 2 and position 3 are different, so the CSI fed back by the terminal device at time T1 is different from the channel at position 2 and position 3 Does not match.
  • the CSI expiration problem will cause the user's precoding to fail to match the real channel conditions, and introduce more interference between users, resulting in a significant decline in system performance.
  • the network device calculates a precoding matrix (precoder) according to the CSI reported by the terminal device, and the precoding matrix remains unchanged until the next CSI is reported. That is, the network device calculates the precoding matrix using the last reported CSI, and keeps the precoding matrix unchanged before the next CSI update, for example, as shown in FIG. 5 .
  • precoder a precoding matrix
  • the network device assumes that the channel condition remains unchanged during the CSI reporting period, and uses the latest reported CSI as subsequent data transmission, The basis for precoded design.
  • the CSI effective delay t1 refers to the time from when the network device sends the downlink CSI-RS to when the network device receives the uplink CSI feedback from the terminal device, and then to the time when the network device calculates the precoding matrix according to the CSI fed back by the terminal device.
  • t1 causes After the CSI is reported, there is a delay with the actual channel CSI.
  • t1 will cause the CSI to expire and cause performance degradation.
  • the channel time-varying t2 refers to the duration that the network device continues to use the precoding matrix calculated by the latest reported CSI during the CSI feedback period, that is, the precoding matrix is fixed during the t2 time, that is, the network device assumes that the channel during the CSI feedback period is Changeless.
  • the channel changes with time such as in a mobile scene, the channel will also change within t2, resulting in a mismatch between the precoding matrix calculated according to the latest CSI report and the CSI of the actual channel, resulting in performance degradation.
  • the CSI expiration causes the precoding calculated by the network device to send data based on the CSI fed back by the terminal device to not match the precoding corresponding to the current actual channel, which in turn leads to system performance degradation.
  • the problem is the problem that needs to be solved urgently.
  • an embodiment of the present application proposes a channel state information feedback method to solve the above problem. Specifically, in this application, the terminal device feeds back channel state information based on the first codebook including Doppler information (also time domain information), where the channel state information describes the time-varying characteristics of the channel.
  • the Doppler information changes slowly in a short measurement period, so the network device can reconstruct the channel information within the measurement period according to the first codebook, and predict the future channel change trend according to the time-varying trend of the reconstructed channel.
  • the downlink precoding matrix is calculated according to the predicted channel to better match the current channel, thereby improving system performance.
  • the joint base of space-frequency domain at the transmitter and space-time domain at the receiver can be constructed, which can improve channel projection sparsity and reduce feedback overhead; from the four dimensions of transmitter-frequency domain-receiver-time domain or Feedback of channel state information from the three dimensions of transmitter-frequency domain-time domain can characterize channel characteristics more accurately. Therefore, the network device can perform channel prediction more accurately based on the channel state information fed back by the terminal device.
  • the feedback of channel state information may be a terminal device, or a processor in a terminal device, or a chip or a chip system, or a functional module, etc.;
  • the CSI-RS delivered may be a network device, or a processor in the network device, or a chip or a chip system, or a functional module.
  • the channel state information feedback method provided in this application is described in detail by taking terminal equipment and network equipment as examples, but this application is not limited thereto.
  • the embodiment of the present application provides a channel state information feedback method, which is applicable to the communication system shown in FIG. 1 .
  • the specific process of the method may include:
  • Step 601 The network device sends the CSI-RS to the terminal device, and the terminal device receives the CSI-RS from the network device accordingly.
  • Step 602 The terminal device performs channel measurement based on the CSI-RS.
  • Step 603 The terminal device feeds back channel state information to the network device based on the first codebook.
  • the first codebook is known in advance by the terminal device and the network device.
  • the network device sends CSI-RS to the terminal device multiple times within the measurement duration, and the terminal device performs multiple channel measurements based on the CSI-RS sent multiple times by the network device to obtain channel information at multiple time points within the measurement duration, and then the terminal The device feeds back channel state information at multiple time points within the measurement duration to the network device based on the first codebook, where the channel state information represents channel information of channels at multiple time points within the measurement duration.
  • the first codebook contains Doppler information
  • the channel state information fed back based on the first codebook can represent channel information of channels at multiple time points within the measurement duration, reflecting channels at multiple time points. That is, the channel state information of channels at multiple time points can be fed back based on the first codebook, which means that the first codebook contains Doppler information (time domain information).
  • the first codebook can be but not limited to the following two situations:
  • the first codebook is determined based on one or more spatial and frequency domain column vectors at the transmitting end and one or more spatial and time domain column vectors at the receiving end representing channels.
  • one or more column vectors in the space and frequency domain of the transmitting end are used to indicate channel information in the space and frequency domain of the joint transmitting end
  • one or more column vectors in the space and time domain of the receiving end are used to indicate channel information in the space and time domain of the joint receiving end.
  • one or more column vectors in space and time domain of the receiving end may reflect that the first codebook contains Doppler information (also time domain information).
  • Case a2 The first codebook is determined based on one or more column vectors in the space and frequency domain of the transmitting end and one or more column vectors in the time domain representing the channel; wherein, the one or more column vectors in the space and frequency domain of the transmitting end are used for Indicates the channel information of the air and frequency domains of the joint transmitter.
  • one or more time-domain column vectors may reflect that the first codebook contains Doppler information (also time-domain information).
  • the terminal device feeds back the channel state information based on the first codebook in case a1, based on the channel in the joint spatial and frequency domain of the transmitting end indicated by one or more transmitting end spatial and frequency domain column vectors in the first codebook information, and the channel information of the space and time domain of the joint receiving end indicated by one or more space and time domain column vectors of the receiving end, to represent the channel information of the channel at multiple time points within the measurement duration.
  • the terminal device feeds back the channel state information based on the first codebook in case a2, based on the channel in the joint spatial and frequency domain of the transmitting end indicated by one or more transmitting end spatial and frequency domain column vectors in the first codebook information, and the channel information of the joint spatial and frequency domain of the transmitting end indicated by one or more spatial and frequency domain column vectors of the transmitting end, to represent the channel information of the channel at multiple time points within the measurement duration.
  • the first codebook W in case a1 may conform to the following formula 1, that is, the structure of the first codebook may be expressed by formula 1:
  • W 1 is the joint basis matrix of space and frequency domain at the transmitter, and the joint basis matrix of space and frequency domain at the transmitter includes one or more column vectors in the space and frequency domain of the transmitter;
  • W 3 is the joint basis matrix of space and time domain at the receiver, and the space and frequency domain
  • the time-domain joint basis matrix includes one or more receiving-end space-domain and time-domain column vectors;
  • W 2 is the complex coefficient matrix corresponding to the transmitting-end space-frequency-domain joint basis matrix and the receiving-end space-time-domain joint basis matrix; is the transpose matrix of W 3 .
  • the spatial-frequency-domain joint basis matrix W1 of the transmitting end may conform to the following formula 2:
  • W 1 W 11 W 12 formula two.
  • W 11 is the space-frequency domain joint basis basis matrix of the transmitter, and each column vector in W 11 corresponds to a space-frequency domain joint basis basis of the transmitter;
  • W 12 is the space-frequency domain joint basis basis correction matrix of the transmitter;
  • W 11 The length of the column vector of is related to the number of antennas of the network device and the number of frequency domain resource units occupied by the CSI-RS.
  • the basic basis matrix refers to a matrix known to both the terminal device and the network device.
  • the spatial-frequency-domain joint basic basis matrix W 11 at the transmitting end may be a discrete Fourier transform (discrete fourier transform, DFT) basis matrix.
  • the two polarization directions of the channel may correspond to the same joint basis in the space-frequency domain of the transmitting end, then the dimension of the joint base basis matrix W 11 in the space-frequency domain at the transmitting end may be ((M 1 ⁇ M 2 ) ⁇ N sb ) ⁇ S 1 ; where M 1 is the number of antenna ports in the horizontal direction transmitted by the network equipment, M 2 is the number of antenna ports in the vertical direction transmitted by the network equipment, N sb is the number of frequency units, and S 1 is the selected transmitter
  • the number of joint basis bases in the space-frequency domain; optionally, the two polarization directions of the channel may correspond to different joint bases in the space-frequency domain of the transmitting end, so the dimension of the joint base base matrix in the space-frequency domain at the transmitting end can be (2 ⁇ (M 1 ⁇ M 2 ) ⁇ N sb
  • the correction matrix W 12 of the joint basis base in the space-frequency domain at the transmitting end may also be called the coefficient feedback matrix of the joint base base in the space-frequency domain at the transmitting end to the DFT base or the projection coefficient matrix to the DFT base, which is used to make W 11 approximate to W 1 .
  • the dimension of W 12 may be S 1 ⁇ L, where L is the number of paths or the number of joint spatial-frequency domain bases selected at the transmitting end. Wherein, L may be a pre-configured or predefined value of the network device.
  • the network device when the network device pre-configures L, it may be configured through one or more of RRC, MAC CE, downlink control information (downlink control information, DCI) signaling, and the like.
  • one frequency-domain basic basis in the transmitting-end space-frequency-domain joint basis matrix W 11 may correspond to multiple transmitting-end airspace basis bases, or, one transmitting-end airspace basis in the transmitting-end space-frequency-domain joint basis matrix W 1 A base may correspond to multiple frequency-domain base bases.
  • W11 may conform to the following formula three:
  • W f is used to indicate the base basis in the frequency domain
  • W tx is used to indicate the base base in the space domain of the transmitter
  • the base basis W f in the frequency domain and the base W tx in the space domain at the transmitting end may be DFT matrices.
  • the channel state information feedback period may be divided into a long period and a short period, the long period may be, for example, 100 ms, and the short period may be, for example, 20 ms.
  • different feedback periods may be used for feeding back different information.
  • the feedback period T1 of the combined base basis correction matrix W 12 at the transmitting end may be a long period, which is reported to the network device according to a relatively long period, so as to reduce overhead as much as possible.
  • T1 may be a preconfigured or predefined value of the network device.
  • the feedback period of the first information other than the information based on the W 12 feedback is a short period, and T1 is greater than the period of the first information feedback, that is, the rest of the information except the feedback W 12 is based on the first codebook feedback
  • the channel state information is short-period.
  • the feedback cycle of W 2 , W 32 , etc. (first information) may be a short cycle.
  • T1 is a long period, such as 100 ms, etc.; the other channel state information (first information) feedback based on the first codebook has a short period, such as 20 ms, etc.
  • the network device when the network device pre-configures T1, it may be configured through one or more of RRC, MAC CE, and DCI signaling.
  • the space-time-domain joint basis matrix W3 at the receiving end may conform to the following formula 4 :
  • W 3 W 31 W 32 Formula 4.
  • W 31 is the joint basic basis matrix in the space and time domain of the receiving end, and each column vector in W 31 corresponds to a joint basic basis in the space and time domain at the receiving end;
  • W 32 is the joint basic basis correction matrix in the air and time domain at the receiving end;
  • W 31 The length of the column vector of is related to the number of antennas of the terminal equipment and the measurement duration.
  • the joint base basis matrix W 31 of the receiving end space-time domain may be a DFT matrix.
  • the dimension of W 31 can be (M 3 ⁇ N d ) ⁇ S 2 , where M 3 is the number of antennas of the terminal device, N d is the measurement duration, and S 2 is the number of selected receiving-end air-space-time-domain joint bases .
  • the correction matrix W 32 of the joint base basis in the space-time domain at the receiving end may also be called the coefficient feedback matrix of the joint base base in the space-time domain at the receiving end to the DFT base or the projection coefficient matrix to the DFT base, which is used to make W 31 approximate to W 3 .
  • the dimension of W 32 may be S 2 ⁇ N 1 , where N 1 represents the number of joint spatial-domain and time-domain bases selected at the receiving end.
  • N 1 may be a pre-configured or predefined value of the network device.
  • the network device when the network device pre-configures N1, it may be configured through one or more of RRC, MAC CE, and DCI signaling.
  • one time-domain basic basis in the receiving-end airspace-time-domain joint basis matrix W 31 may correspond to multiple receiving - end airspace basis basis, or, one receiving-end spatial basis A base may correspond to multiple temporal base bases.
  • W 31 may comply with the following formula five:
  • W t is used to indicate the time-domain base
  • W rx is used to indicate the receiver’s space base
  • the base W t in the time domain and the base W rx in the space domain at the receiving end may be DFT matrices.
  • the dimension of W 2 may be L*N 1 ; for the explanation of L and N 1 , refer to the related description of L and N 1 mentioned above, which will not be repeated here.
  • the first codebook W in case a2 may conform to the following formula 6, that is, the structure of the first codebook may be expressed by formula 6:
  • W 1 is the joint base matrix of space and frequency domain at the transmitter, and the joint base matrix of space and frequency domain at the transmitter includes one or more column vectors in the space and frequency domain of the transmitter;
  • W 5 is the base matrix of time domain, and the base matrix of time domain includes one or A plurality of time-domain column vectors;
  • W 4 is the complex coefficient matrix corresponding to the joint basis matrix in the space-frequency domain of the transmitting end and the time-domain basis matrix; is the transpose matrix of W 5 .
  • W 1 is the same as W 1 involved in Formula 1, and specific explanations about W 1 can be found in the related descriptions mentioned above, which will not be repeated here.
  • the time-domain basis matrix W 5 may be a DFT matrix, and the dimension of W 5 may be N d ⁇ N d .
  • the dimension of W 4 may be L ⁇ N d ; wherein, L is the number of paths or the number of joint spatial-frequency-domain bases selected at the transmitting end, and N d represents the measurement duration.
  • the network device may first notify the terminal device of the CSI acquisition scheme. For example, the terminal device receives second information from the network device, and the second information indicates the channel of the terminal device.
  • the implementation method may be that the second information is the high-level parameter codebook type (codebookType) of RRC.
  • the codebook type corresponding to this embodiment may be set to the non-precoding type in the R18 mobile scene 'typeIIr18-mobility-NonePrecoding '.
  • the terminal device may feed back one or more bases based on W 1 and W 3 , and feed back one or more spatial-frequency domain joints of the transmitter based on W 2 Coefficients corresponding to the basis matrix and the joint basis matrix in the space and time domains of the receiver.
  • the CSI fed back by the terminal device based on the first codebook shown in case a1 may include one or more bases fed back based on W 1 and W 3 , and one or more combined bases based on W 2 fed back in space and frequency domains at the transmitter matrix and the coefficients corresponding to the joint basis matrix in the space and time domains of the receiver.
  • the above information included in the CSI is only an example, and the CSI may also include other information, which is not limited in this application.
  • the terminal device may feed back one or more bases based on W 1 and W 5 , and feed back one or more transmitter-side space-frequency domain joints based on W 4
  • the basis matrix and the coefficients corresponding to the time-domain basis matrix may include one or more bases fed back based on W 1 and W 5 , and one or more bases fed back by W 4 in the space-frequency domain of the transmitter matrix and the coefficients corresponding to the time-domain basis matrix.
  • the above information included in the CSI is only an example, and the CSI may also include other information, which is not limited in this application.
  • Step 604 The network device reconstructs channels at multiple time points within the measurement duration according to the channel state information fed back by the terminal device and the first codebook, and performs future channel prediction according to the channels at multiple time points within the measurement duration, and determines the predicted encoding matrix.
  • the network device when the network device reconstructs channels at multiple time points within the measurement duration according to the channel state information fed back by the terminal device and the first codebook, the network device may Reconstruct W 1 , W 2 and W 3 , perform matrix operations according to W 1 , W 2 and W 3 to reconstruct channels at multiple time points within the measurement duration.
  • the network device when the network device reconstructs channels at multiple time points within the measurement duration according to the channel state information fed back by the terminal device and the first codebook, the network device may One or more bases fed back by W 1 and W 5 , and one or more joint base matrices in space and frequency domain of the transmitter based on W 4 feedback and coefficients corresponding to the time domain base matrix, reconstruct W 1 , W 4 and W 5 , performing matrix operations according to W 1 , W 4 and W 5 to reconstruct channels at multiple time points within the measurement duration.
  • the CSI expiration is essentially caused by the time-varying characteristics of the channel, corresponding to Doppler (Doppler) changes.
  • the network device keeps the CSI constant during the period between the last received CSI and the next received CSI, but the channel is time-varying during this period, so the CSI and time-varying channel The CSI is inconsistent.
  • the terminal device describes the time-varying characteristics of the channel through the channel state information fed back based on the first codebook containing Doppler information, and the Doppler information changes slowly within a short measurement time length, so the network device
  • the channel in the measurement period can be reconstructed according to the first codebook to predict the future channel change trend, so that the network device can predict the channel in the period between the last receiving CSI and the next receiving CSI, and perform precoding, compared to In the prior art, the CSI remains unchanged.
  • the downlink precoding matrix is calculated according to the predicted channel to better match the current channel, so that the system performance can be improved.
  • constructing the spatial-frequency-domain joint base at the transmitter and the joint space-time domain base at the receiver can make the feedback coefficients obtained by channel-to-base projection more sparse, thereby selecting a smaller number of feedback coefficients and reducing feedback overhead; from the transmitter-frequency Channel state information can be more accurately characterized by feeding back channel state information from the four dimensions of domain-receiving end-time domain or from the three dimensions of transmitting end-frequency domain-time domain. Therefore, the network device can perform channel prediction more accurately based on the channel state information fed back by the terminal device.
  • the channel information within the measurement duration is combined with the joint basis of the transmitting end Tx and the delay domain (ie frequency domain) as shown in the codebook, and the receiving end Rx and Doppler domain (time domain) joint basis for projection, and select a small number of feedback coefficients, and the terminal device will transmit Tx and delay domain (ie, frequency domain) joint base, and receive terminal Rx and Doppler based on the first codebook
  • the Le domain instant domain
  • the channel can be characterized by multiple Tx-Delay-Rx pairs, and the subsequent channel can be predicted according to the changes in the time domain of the Tx-Delay-Rx pairs at multiple time points.
  • the channel H predicted by the network device may conform to the following formula 7:
  • tx indicates the transmitting end airspace
  • f indicates the frequency domain
  • rx indicates the receiving end airspace
  • d indicates the time domain
  • the channel information within the measurement duration is combined with the joint basis of the transmitting end Tx and the delay domain (ie frequency domain) as shown in the codebook, and the Doppler domain (instantaneous domain) base for projection, and select a small number of feedback coefficients, and the terminal device will transmit Tx and delay domain (ie frequency domain) joint base and Doppler domain (time domain) base and transmit Tx according to the first codebook
  • the channel projection coefficients in the three dimensions of terminal-frequency domain-time domain are reported, and the network device reconstructs the channel within the measurement duration according to the feedback channel information.
  • the channel at each time point can be characterized by multiple Tx-Delay pairs, and According to changes in the time domain of the Tx-Delay pair at multiple time points, subsequent channels are predicted.
  • the channel H predicted by the network device may conform to the following formula 8:
  • the terminal device may feed back the CSI to the network device base.
  • the terminal equipment usually uses the statistical covariance basis for channel projection.
  • the statistical covariance basis needs to be projected onto the DFT basis, and then compressed and quantized before being fed back to the network device.
  • the statistical covariance basis represented by the DFT basis is not orthogonal, and the terminal device needs to perform an orthogonalization operation on the basis.
  • the network device can only obtain the corresponding non-orthogonal basis through the CSI fed back by the terminal device according to the existing codebook, which is inconsistent with the basis obtained after the terminal device is orthogonalized.
  • the current codebook cannot realize the alignment between the CSI base of the terminal device and the CSI base acquired by the network device through the CSI fed back by the terminal device, which will cause the network device to be unable to accurately reconstruct the channel according to the CSI feedback information, thereby affecting the precoding matrix. Accuracy.
  • the embodiment of the present application provides another channel state information feedback method, so as to realize the alignment of the CSI basis obtained by the terminal device and the CSI basis obtained by the network device.
  • Another channel state information feedback method provided by the embodiment of the present application is applicable to the communication system shown in FIG. 1 .
  • the specific process of the method may include:
  • Step 901 The network device sends the CSI-RS to the terminal device, and the terminal device receives the CSI-RS from the network device accordingly.
  • Step 902 The terminal device performs channel measurement based on the CSI-RS.
  • Step 903 The terminal device feeds back channel state information to the network device, the channel state information is used to indicate one or more first bases, and the one or more first bases are used to generate one or more indicator channels based on a preset base generation method A second base for state information.
  • the base is a vector used to characterize channel features.
  • the one or more first bases are quantized column vectors of one or more joint statistical covariance bases of spatial and frequency domains.
  • the preset base generation method may be an orthogonalization method preconfigured or predefined by the network device, such as a QR decomposition (QR decomposition) method (also called a Schmidt orthogonalization method).
  • QR decomposition also called a Schmidt orthogonalization method.
  • the terminal device and the network device respectively generate one or more second bases indicating channel state information from the one or more first bases based on a preset base generation method, so that the respective bases of the terminal device and the network device are aligned.
  • the respective bases of the terminal device and the network device are aligned, and the channel can be reconstructed and precoded more accurately, thereby improving system performance.
  • the embodiments of the present application further provide an apparatus for feeding back channel state information.
  • the channel state information feedback apparatus 1000 may include a transceiver unit 1001 and a processing unit 1002 .
  • the transceiver unit 1001 is used for the channel state information feedback device 1000 to receive a signal (information, message or data) or send a signal (information, message or data), and the processing unit 1002 is used for the channel state information
  • the operation of the information feedback device 1000 is controlled and managed.
  • the processing unit 1002 may also control the steps performed by the transceiver unit 1001 .
  • the channel state information feedback apparatus 1000 may specifically be a processor in the terminal device in the above embodiment, or a chip, or a chip system, or a functional module, etc.; or, the channel state information
  • the information feedback apparatus 1000 may specifically be the network device in the foregoing embodiments, a processor of the network device, or a chip, or a chip system, or a functional module, and the like.
  • the channel state information feedback apparatus 1000 when used to implement the functions of the terminal device in the embodiment described in FIG. 6 above, it may specifically include:
  • the transceiver unit 1001 is used to receive the CSI-RS from the network device; the processing unit 1002 is used to perform channel measurement based on the CSI-RS; The device feeds back channel state information; the first codebook is determined based on one or more column vectors in the space and frequency domain of the transmitting end and one or more column vectors in the space and time domain of the receiving end representing the channel, or the first codebook This is determined based on the one or more transmitter space-frequency domain column vectors and one or more time-domain column vectors representing the channel; the one or more transmitter space-frequency domain column vectors are used to indicate the joint The channel information in the space and frequency domain of the transmitting end; the one or more column vectors in the space and time domain of the receiving end are used to indicate the channel information combined with the space and time domain of the receiving end.
  • the first codebook may conform to the following formula:
  • the W is the first codebook
  • the W 1 is the joint basis matrix of the spatial and frequency domain of the transmitting end, and the joint basis matrix of the spatial and frequency domain of the transmitting end includes the one or more spatial and frequency domain columns of the transmitting end Vector
  • the W 3 is the joint basis matrix in the space and time domain of the receiving end, and the joint basis matrix in the space and time domain of the receiving end includes the one or more column vectors in the space and time domain of the receiving end
  • the W 2 is the transmitting end The space-frequency-domain joint basis matrix and the complex coefficient matrix corresponding to the receiving-end space-time-domain joint basis matrix.
  • the first codebook may conform to the following formula:
  • the W is the first codebook
  • the W 1 is the joint basis matrix of the spatial and frequency domain of the transmitting end, and the joint basis matrix of the spatial and frequency domain of the transmitting end includes the one or more spatial and frequency domain columns of the transmitting end Vector
  • the W 5 is a time-domain basis matrix, and the time-domain basis matrix includes the one or more time-domain column vectors
  • the W 4 is the joint basis matrix of the transmitting end space-frequency domain and the time-domain matrix of complex coefficients corresponding to the basis matrix.
  • the spatial-frequency-domain joint basis matrix W1 of the transmitting end may conform to the following formula:
  • the W 11 is the base matrix of the joint space-frequency domain of the transmitting end, and each column vector in the W 11 corresponds to a joint base base of the space-frequency domain of the transmitting end;
  • the W 12 is the joint basis of the air-frequency domain of the transmitting end Basis correction matrix;
  • the length of the column vector of W 11 is related to the number of antennas of the network device and the number of frequency domain resource units occupied by the CSI-RS.
  • the joint base matrix W3 of the receiving end in the space and time domain conforms to the following formula:
  • the W 31 is the receiving end space-time domain joint basic basis matrix, and each column vector in the W 31 corresponds to a receiving end space-time domain joint basic basis;
  • the W 32 is the receiving end air-time domain joint basis Base correction matrix;
  • the length of the column vector of W 31 is related to the number of antennas of the terminal device and the measurement duration.
  • one frequency-domain basis in the transmitting-end space-frequency-domain joint basis matrix corresponds to multiple transmitting-end space-space basis bases, or one transmit-end space-space basis in the transmitting-end space-frequency-domain joint basis matrix
  • the basis corresponds to a plurality of frequency-domain basis basis.
  • the W 11 may conform to the following formula:
  • the base basis W f in the frequency domain and the base W tx in the space domain at the transmitting end may be DFT matrices.
  • one time-domain basic basis in the receiving-end space-time-domain joint basis basis matrix corresponds to multiple receiving-end space-domain basis substrates, or, one receiving-end airspace basis in the receiving-end space-time domain joint basis matrix
  • the basis corresponds to a number of temporal basis basis.
  • the W 31 may conform to the following formula:
  • the is the conjugate matrix of W t
  • the W t is used to indicate the basic basis in the time domain
  • the W rx is used to indicate the basic basis in the spatial domain of the receiving end.
  • the base W t in the time domain and the base W rx in the space domain at the receiving end may be DFT matrices.
  • the dimension of W 2 is L*N 1 ; wherein, the L represents the number of joint bases in the space and frequency domains selected at the transmitting end, and the L is pre-configured by the network device or a predefined value; the N 1 represents the number of joint bases in the space and time domains selected at the receiving end, and the N 1 is a pre-configured or predefined value of the network device.
  • the dimension of W 4 is L*N d ; wherein, the L represents the number of joint bases in the space-frequency domain of the transmitter selected, and the L is pre-configured by the network device or a predefined value; the N d represents the measurement duration.
  • the feedback period of the base base correction matrix W 12 of the joint space-frequency domain at the transmitting end is T1
  • the T1 is a pre-configured or predefined value of the network device
  • the T1 is greater than the period for feeding back the first information
  • the first information is information other than the information fed back based on the W 12 .
  • the transceiving unit 1001 may be further configured to: receive second information from the network device, where the second information indicates a codebook type used by the terminal device for channel measurement.
  • the channel state information feedback apparatus 1000 when used to implement the functions of the network device in the embodiment described in FIG. 6 above, it may specifically include:
  • the transceiver unit 1001 is configured to send a CSI-RS to a terminal device; and receive channel state information fed back by the terminal device based on a first codebook; the first codebook is based on one or more transmitter airspaces representing channels The frequency domain column vector and one or more receiving end space domain time domain column vectors are determined, or, the first codebook is based on the one or more transmitting end space frequency domain column vectors representing the channel and one or more The time-domain column vector is determined; the one or more transmitter-end space-frequency-domain column vectors are used to indicate channel information that is combined with the transmitter-end space-frequency domain; the one or more receiver-side space-time domain column vectors are used for Indicates the channel information combined with the space domain and time domain of the receiving end; the processing unit 1002 is used to control the transceiving operation of the transceiving unit 1001 .
  • the first codebook may conform to the following formula:
  • the W is the first codebook
  • the W 1 is the joint basis matrix of the spatial and frequency domain of the transmitting end, and the joint basis matrix of the spatial and frequency domain of the transmitting end includes the one or more spatial and frequency domain columns of the transmitting end Vector
  • the W 3 is the joint basis matrix in the space and time domain of the receiving end, and the joint basis matrix in the space and time domain of the receiving end includes the one or more column vectors in the space and time domain of the receiving end
  • the W 2 is the transmitting end The space-frequency-domain joint basis matrix and the complex coefficient matrix corresponding to the receiving-end space-time-domain joint basis matrix.
  • the first codebook may conform to the following formula:
  • the W is the first codebook
  • the W 1 is the joint basis matrix of the spatial and frequency domain of the transmitting end, and the joint basis matrix of the spatial and frequency domain of the transmitting end includes the one or more spatial and frequency domain columns of the transmitting end Vector
  • the W 5 is a time-domain basis matrix, and the time-domain basis matrix includes the one or more time-domain column vectors
  • the W 4 is the joint basis matrix of the transmitting end space-frequency domain and the time-domain matrix of complex coefficients corresponding to the basis matrix.
  • the spatial-frequency-domain joint basis matrix W 1 of the transmitting end conforms to the following formula:
  • the W 11 is the base matrix of the joint space-frequency domain of the transmitting end, and each column vector in the W 11 corresponds to a joint base base of the space-frequency domain of the transmitting end;
  • the W 12 is the joint basis of the air-frequency domain of the transmitting end Basis correction matrix;
  • the length of the column vector of W 11 is related to the number of antennas of the network device and the number of frequency domain resource units occupied by the CSI-RS.
  • the joint base matrix W3 of the receiving end in the space and time domain conforms to the following formula:
  • the W 31 is the receiving end space-time domain joint basic basis matrix, and each column vector in the W 31 corresponds to a receiving end space-time domain joint basic basis;
  • the W 32 is the receiving end air-time domain joint basis Base correction matrix;
  • the length of the column vector of W 31 is related to the number of antennas of the terminal device and the measurement duration.
  • one frequency-domain basis in the transmitting-end space-frequency-domain joint basis matrix corresponds to multiple transmitting-end space-space basis bases, or one transmit-end space-space basis in the transmitting-end space-frequency-domain joint basis matrix
  • the basis corresponds to a plurality of frequency-domain basis basis.
  • the W 11 conforms to the following formula:
  • the base basis W f in the frequency domain and the base W tx in the space domain at the transmitting end may be DFT matrices.
  • one time-domain basic basis in the receiving-end space-time-domain joint basis basis matrix corresponds to multiple receiving-end space-domain basis substrates, or, one receiving-end airspace basis in the receiving-end space-time domain joint basis matrix
  • the basis corresponds to a number of temporal basis basis.
  • the W 31 complies with the following formula:
  • the is the conjugate matrix of W t
  • the W t is used to indicate the basic basis in the time domain
  • the W rx is used to indicate the basic basis in the spatial domain of the receiving end.
  • the base basis W f in the frequency domain and the base W tx in the space domain at the transmitting end may be DFT matrices.
  • the dimension of W 2 is L*N 1 ; wherein, the L represents the number of joint bases in the space-frequency domain of the transmitter selected, and the L is pre-configured or predefined by the network device Value; the N 1 represents the number of joint bases in the space and time domains selected at the receiving end, and the N 1 is a pre-configured or predefined value of the network device.
  • the dimension of W 4 is L*N d ; wherein, the L represents the number of joint bases in the space-frequency domain of the transmitter selected, and the L is pre-configured or predefined by the network device Value; said N d represents the measurement duration.
  • the feedback period of the base base correction matrix W 12 of the joint space-frequency domain at the transmitting end is T1
  • the T1 is a pre-configured or predefined value of the network device
  • the T1 is greater than the period for feeding back the first information
  • the first information is information in the CSI other than the information based on the W 12 feedback.
  • the transceiving unit 1001 is further configured to send second information to the terminal device, where the second information indicates a codebook type used by the terminal device for channel measurement.
  • the channel state information feedback apparatus 1000 when used to implement the functions of the terminal device in the embodiment described above in FIG. 9 , it may specifically include:
  • the transceiver unit 1001 is used to receive the CSI-RS from the network device; the processing unit 1002 is used to perform channel measurement based on the CSI-RS; the transceiver unit 1001 is also used to feed back channel state information to the network device , the channel state information is used to indicate one or more first bases, and the one or more first bases are used to generate one or more second bases indicating channel state information based on a preset base generation method .
  • the one or more first bases may be quantized one or more combined spatial and frequency domain statistical covariance base column vectors.
  • the preset base generation method may be an orthogonalization method preconfigured or predefined by the network device.
  • the channel state information feedback apparatus 1000 when used to implement the functions of the network device in the embodiment described in FIG. 9 , it may specifically include:
  • the transceiver unit 1001 is configured to send a CSI-RS to a terminal device; and receive channel state information fed back by the terminal device, where the channel state information is used to indicate one or more first bases, and the one or more A first base is used to generate one or more second bases indicating channel state information based on a preset base generation method; the processing unit 1002 is used to control the operation of the transceiver unit 1001 .
  • the one or more first bases may be quantized one or more combined spatial and frequency domain statistical covariance base column vectors.
  • the preset base generation method may be an orthogonalization method preconfigured or predefined by the network device.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • an apparatus 1100 for feeding back channel state information may include a transceiver 1101 and a processor 1102 .
  • the apparatus 1100 for feeding back channel state information may further include a memory 1103 .
  • the memory 1103 may be set inside the channel state information feedback device 1100 , and may also be set outside the channel state information feedback device 1100 .
  • the processor 1102 may control the transceiver 1101 to receive and send information, signals or data, and the like.
  • the processor 1102 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor 1102 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the transceiver 1101, the processor 1102 and the memory 1103 are connected to each other.
  • the transceiver 1101, the processor 1102 and the memory 1103 are connected to each other through a bus 1104;
  • the bus 1104 can be a Peripheral Component Interconnect (PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 11 , but it does not mean that there is only one bus or one type of bus.
  • the memory 1103 is used to store programs and the like.
  • the program may include program code including computer operation instructions.
  • the memory 1103 may include RAM, and may also include non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 1102 executes the application program stored in the memory 1103 to realize the above functions, thereby realizing the function of the channel state information feedback device 1100 .
  • the apparatus 1100 for feeding back channel state information may be the terminal device in the above embodiment; it may also be the network device in the above embodiment.
  • the transceiver 1101 can realize the Sending and receiving operations; the processor 1102 may implement other operations performed by the terminal device in the embodiment shown in FIG. 6 except the sending and receiving operations.
  • the processor 1102 may implement other operations performed by the terminal device in the embodiment shown in FIG. 6 except the sending and receiving operations.
  • the transceiver 1101 can implement the network equipment execution in the embodiment shown in FIG. 6 Transceiver operations; the processor 1102 can implement other operations performed by the network device in the embodiment shown in FIG. 6 except for the transceiving operations.
  • the transceiver 1101 can implement the network equipment execution in the embodiment shown in FIG. 6 Transceiver operations; the processor 1102 can implement other operations performed by the network device in the embodiment shown in FIG. 6 except for the transceiving operations.
  • the channel state information feedback apparatus 1100 realizes the functions of the terminal device in the embodiment shown in FIG.
  • the transceiving operation the processor 1102 may implement other operations performed by the terminal device in the embodiment shown in FIG. 9 except for the transceiving operation.
  • the processor 1102 may implement other operations performed by the terminal device in the embodiment shown in FIG. 9 except for the transceiving operation.
  • the transceiver 1101 can implement the network equipment execution in the embodiment shown in FIG. Transceiver operations; the processor 1102 may implement other operations performed by the network device in the embodiment shown in FIG. 9 except for the transceiving operations.
  • the transceiver 1101 can implement the network equipment execution in the embodiment shown in FIG. Transceiver operations; the processor 1102 may implement other operations performed by the network device in the embodiment shown in FIG. 9 except for the transceiving operations.
  • the embodiments of the present application provide a communication system, and the communication system may include the terminal device and the network device involved in the above embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the channel state information provided by the above-mentioned method embodiment. Feedback method.
  • An embodiment of the present application further provides a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the channel state information feedback method provided by the above method embodiment.
  • the embodiment of the present application further provides a chip, including a processor, the processor is coupled to a memory, and is configured to call a program in the memory so that the chip implements the channel state information feedback method provided by the above method embodiment.
  • An embodiment of the present application further provides a chip, the chip is coupled to a memory, and the chip is used to implement the channel state information feedback method provided by the foregoing method embodiments.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Abstract

一种信道状态信息的反馈方法及装置,用以解决现有技术中由于CSI过期,导致反馈的CSI不准确,进而导致系统性能较差的问题。该方法包括:终端设备接收来自网络设备的信道状态信息参考信号CSI-RS,并基于CSI-RS进行信道测量;终端设备基于第一码本向网络设备反馈信道状态信息;第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个接收端空域时域列向量确定的,或者,第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;一个或多个发射端空域频域列向量用于指示联合发射端空域频域的信道信息;一个或多个接收端空域时域列向量用于指示联合接收端空域时域的信道信息。

Description

一种信道状态信息的反馈方法及装置
相关申请的交叉引用
本申请要求在2021年06月16日提交中国专利局、申请号为202110664838.0、申请名称为“一种信道状态信息的反馈方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信道状态信息的反馈方法及装置。
背景技术
第五代(5th generation,5G)通信系统对系统容量、频谱效率等方面有了更高的要求。在5G通信系统中,大规模多输入多输出(multiple input multiple output,MIMO)技术对系统的频谱效率起到至关重要的作用。采用MIMO技术时,网络设备向终端设备发送数据时,需要进行调制编码及信号预编码。网络设备向终端设备如何发送数据,需要依靠终端设备向网络设备反馈的信道状态信息(channel state information,CSI),因此CSI的准确性对系统的性能起到非常重要的作用。
在实际系统中,CSI的反馈存在时延,导致网络设备获取的CSI存在着过期问题,也即网络设备获得的终端设备反馈的CSI和当前实际信道的CSI之间存在着时延。从而导致网络设备根据终端设备反馈的CSI计算出的用以发送数据的预编码与当前实际信道对应的预编码不匹配,进而导致系统的性能下降。
发明内容
本申请提供一种信道状态信息的反馈方法及装置,用以解决现有技术中由于CSI过期,导致反馈的CSI不准确,进而导致系统性能较差的问题。
第一方面,本申请提供了一种信道状态信息的反馈方法,该方法可以包括:终端设备接收来自网络设备的信道状态信息参考信号(channel state information reference signal,CSI-RS,并基于所述CSI-RS进行信道测量;之后所述终端设备基于第一码本向所述网络设备反馈信道状态信息(channel state information,CSI);所述第一码本可以是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个接收端空域时域列向量确定的,或者,所述第一码本可以是基于表示所述信道的所述一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;所述一个或多个发射端空域频域列向量用于指示联合所述发射端空域频域的信道信息;所述一个或多个接收端空域时域列向量用于指示联合所述接收端空域时域的信道信息。
通过上述方法,终端设备通过基于包含多普勒信息(也即时域信息)的第一码本反馈的信道状态信息描述了信道的时变特性,多普勒信息在较短的测量时间长度内变化较为缓慢,因此网络设备可以根据第一码本重构测量时长内的信道,并根据重构信道的时变趋势,预测未来信道变化趋势,根据预测的信道计算下行预编码矩阵与当前信道更加匹配,从而 可以提升系统性能。除此以外,构建发射端空域频域联合、接收端空域时域联合基底,可以提升信道投影稀疏性,降低反馈开销;从发射端-频域-接收端-时域这四个维度或者从发射端-频域-时域这三个维度反馈信道状态信息可以更精确的表征信道特性。因此,网络设备基于终端设备反馈的信道状态信息可以更加精准地进行信道预测。
在一个可能的设计中,所述第一码本可以符合以下公式:
Figure PCTCN2022095178-appb-000001
其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 3为接收端空域时域联合基底矩阵,所述接收端空域时域联合基底矩阵包括所述一个或多个接收端空域时域列向量;所述W 2为所述发射端空域频域联合基底矩阵和所述接收端空域时域联合基底矩阵对应的复系数矩阵。这样构建发射端空域频域联合、接收端空域时域联合基底,可以提升信道投影稀疏性,降低反馈开销;从发射端-频域-接收端-时域这四个维度反馈信道状态信息可以更精确的表征信道特性,进而使网络设备基于终端设备反馈的信道状态信息可以更加精准地进行信道预测。
在一个可能的设计中,所述第一码本可以符合以下公式:
Figure PCTCN2022095178-appb-000002
其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 5为时域基底矩阵,所述时域基底矩阵包括所述一个或多个时域列向量;所述W 4为所述发射端空域频域联合基底矩阵和所述时域基底矩阵对应的复系数矩阵。这样构建发射端空域频域联合、接收端空域时域联合基底,可以提升信道投影稀疏性,降低反馈开销;从发射端-频域-时域这三个维度反馈信道状态信息可以更精确的表征信道特性,进而使网络设备基于终端设备反馈的信道状态信息可以更加精准地进行信道预测。
在一个可能的设计中,所述发射端空域频域联合基底矩阵W 1可以符合以下公式:W 1=W 11W 12;其中,所述W 11为发射端空域频域联合基础基底矩阵,所述W 11中的每一个列向量对应一个发射端空域频域联合基础基底;所述W 12为发射端空域频域联合基础基底修正矩阵;所述W 11的列向量长度与所述网络设备的天线数量和所述CSI-RS占用的频域资源单元数量有关。通过上述方法,发射端空域频域的联合压缩使得信道对发射端空域频域联合基底矩阵的投影系数更加稀疏,降低反馈开销。
在一个可能的设计中,所述接收端空域时域联合基底矩阵W 3可以符合以下公式:W 3=W 31W 32;其中,所述W 31为接收端空域时域联合基础基底矩阵,所述W 31中的每一个列向量对应一个接收端空域时域联合基础基底;所述W 32为接收端空域时域联合基础基底修正矩阵;所述W 31的列向量长度与所述终端设备的天线数量和测量时长有关。通过上述方法,接收端空域时域的联合压缩一定程度上可以提升信道对接收端空域时域联合基底矩阵投影的稀疏性,降低反馈开销。
在一个可能的设计中,所述发射端空域频域联合基础基底矩阵中的一个频域基础基底可以对应多个发射端空域基础基底,或者,所述发射端空域频域联合基底矩阵中的一个发射端空域基础基底可以对应多个频域基础基底。
在一个可能的设计中,所述W 11可以符合以下公式:
Figure PCTCN2022095178-appb-000003
其中,所述
Figure PCTCN2022095178-appb-000004
为W f的共轭矩阵,所述W f用于指示频域基础基底,所述W tx用于指示发射端空域基础基底。
在一个可能的设计中,所述接收端空域时域联合基础基底矩阵中的一个时域基础基底可以对应多个接收端空域基础基底,或者,所述接收端空域时域联合基底矩阵中的一个接 收端空域基础基底可以对应多个时域基础基底。
在一个可能的设计中,所述W 31可以符合以下公式:
Figure PCTCN2022095178-appb-000005
其中,所述
Figure PCTCN2022095178-appb-000006
为W t的共轭矩阵,所述W t用于指示时域基础基底,所述W rx用于指示接收端空域基础基底。
在一个可能的设计中,所述W 2的维度可以为L*N 1;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N 1表示选择的接收端空域时域联合基底的个数,所述N 1为所述网络设备预配置或预定义的值。这样可以实现发射端空域、频域、接收端空域、时域四个维度的码本压缩,从四个维度更加精准的反馈信道信息,预测信道变化,同时降低反馈开销。
在一个可能的设计中,所述W 4的维度可以为L*N d;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N d表示测量时长。这样可以实现发射端空域、频域、时域三个维度的码本反馈,预测信道变化;同时去掉接收端空域维度,可以减少反馈系数,降低反馈开销。
在一个可能的设计中,所述发射端空域频域联合基础基底修正矩阵W 12的反馈周期可以为T1,所述T1为所述网络设备预配置或者预定义的值,所述T1大于反馈第一信息的周期,所述第一信息为所述CSI中除基于所述W 12反馈的信息以外的信息,例如所述第一信息可以但不限于包括基底复系数矩阵。通过上述方法,终端设备通过按照较长周期反馈发射端空域频域联合基础基底修正矩阵,按照较短周期反馈基底复系数矩阵,以降低反馈开销。
在一个可能的设计中,所述终端设备接收来自所述网络设备的第二信息,所述第二信息指示所述终端设备信道测量时采用的码本类型。这样终端设备和网络设备可以预先知晓采用的码本类型,进而按照该码本类型的码本进行信道状态信息的反馈。
第二方面,本申请提供了一种信道状态信息的反馈方法,该方法可以包括:网络设备向终端设备发送信道状态信息参考信号CSI-RS;以及所述网络设备接收所述终端设备基于第一码本反馈的信道状态信息CSI;所述第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个接收端空域时域列向量确定的,或者,所述第一码本是基于表示信道的所述一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;所述一个或多个发射端空域频域列向量用于指示联合所述发射端空域频域的信道信息;所述一个或多个接收端空域时域列向量用于指示联合所述接收端空域时域的信道信息。
通过上述方法,终端设备通过基于包含多普勒信息(也即时域信息)的第一码本反馈的信道状态信息刻画了信道的时变特性,多普勒信息在较短的测量时间长度内变化较为缓慢,因此网络设备可以根据第一码本重构在测量时长内的信道,并根据重构信道的时变趋势,预测未来信道变化趋势,根据预测的信道计算下行预编码矩阵与当前信道更加匹配,从而可以提升系统性能。除此以外,构建发射端空域频域联合、接收端空域时域联合基底,可以提升信道投影稀疏性,降低反馈开销;从发射端-频域-接收端-时域这四个维度或者从发射端-频域-时域这三个维度反馈信道状态信息可以更精确的表征信道特性。因此,网络设备基于终端设备反馈的信道状态信息可以更加精准地进行信道预测。
在一个可能的设计中,所述第一码本可以符合以下公式:
Figure PCTCN2022095178-appb-000007
其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 3为接收端空域时域联合基底矩阵,所述接收端空域时域联合基底矩阵包括所述一个或多个接收端空域时域列向量;所述 W 2为所述发射端空域频域联合基底矩阵和所述接收端空域时域联合基底矩阵对应的复系数矩阵。这样构建发射端空域频域联合、接收端空域时域联合基底,可以提升信道投影稀疏性,降低反馈开销;从发射端-频域-接收端-时域这四个维度反馈信道状态信息可以更精确的表征信道特性,进而使网络设备基于终端设备反馈的信道状态信息可以更加精准地进行信道预测。
在一个可能的设计中,所述第一码本可以符合以下公式:
Figure PCTCN2022095178-appb-000008
其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 5为时域基底矩阵,所述时域基底矩阵包括所述一个或多个时域列向量;所述W 4为所述发射端空域频域联合基底矩阵和所述时域基底矩阵对应的复系数矩阵。这样构建发射端空域频域联合、接收端空域时域联合基底,可以提升信道投影稀疏性,降低反馈开销;从发射端-频域-时域这三个维度反馈信道状态信息可以更精确的表征信道特性,进而使网络设备基于终端设备反馈的信道状态信息可以更加精准地进行信道预测。
在一个可能的设计中,所述发射端空域频域联合基底矩阵W 1可以符合以下公式:W 1=W 11W 12;其中,所述W 11为发射端空域频域联合基础基底矩阵,所述W 11中的每一个列向量对应一个发射端空域频域联合基础基底;所述W 12为发射端空域频域联合基础基底修正矩阵;所述W 11的列向量长度与所述网络设备的天线数量和所述CSI-RS占用的频域资源单元数量有关。通过上述方法,发射端空域频域的联合压缩使得信道对发射端空域频域联合基底矩阵的投影系数更加稀疏,降低反馈开销。
在一个可能的设计中,所述接收端空域时域联合基底矩阵W 3可以符合以下公式:W 3=W 31W 32;其中,所述W 31为接收端空域时域联合基础基底矩阵,所述W 31中的每一个列向量对应一个接收端空域时域联合基础基底;所述W 32为接收端空域时域联合基础基底修正矩阵;所述W 31的列向量长度与所述终端设备的天线数量和测量时长有关。通过上述方法,接收端空域时域的联合压缩一定程度上可以提升信道对接收端空域时域联合基底矩阵投影的稀疏性,降低反馈开销。
在一个可能的设计中,所述发射端空域频域联合基础基底矩阵中的一个频域基础基底可以对应多个发射端空域基础基底,或者,所述发射端空域频域联合基底矩阵中的一个发射端空域基础基底可以对应多个频域基础基底。
在一个可能的设计中,所述W 11可以符合以下公式:
Figure PCTCN2022095178-appb-000009
其中,所述
Figure PCTCN2022095178-appb-000010
为W f的共轭矩阵,所述W f用于指示频域基础基底,所述W tx用于指示发射端空域基础基底。
在一个可能的设计中,所述接收端空域时域联合基础基底矩阵中的一个时域基础基底可以对应多个接收端空域基础基底,或者,所述接收端空域时域联合基底矩阵中的一个接收端空域基础基底可以对应多个时域基础基底。
在一个可能的设计中,所述W 31可以符合以下公式:
Figure PCTCN2022095178-appb-000011
其中,所述
Figure PCTCN2022095178-appb-000012
为W t的共轭矩阵,所述W t用于指示时域基础基底,所述W rx用于指示接收端空域基础基底。
在一个可能的设计中,所述W 2的维度可以为L*N 1;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N 1表示选择的接收端空域时域联合基底的个数,所述N 1为所述网络设备预配置或预定义的值。这样可以实现发射端空域、频域、接收端空域、时域四个维度的码本压缩,从四个维度更加精准的反馈信道信息,预测信道变化,同时降低反馈开销。
在一个可能的设计中,所述W 4的维度可以为L*N d;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N d表示测量时长。这样可以实现发射端空域、频域、时域三个维度的码本反馈,预测信道变化;同时去掉接收端空域维度,可以减少反馈系数,降低反馈开销。
在一个可能的设计中,所述发射端空域频域联合基础基底修正矩阵W 12的反馈周期可以为T1,所述T1为所述网络设备预配置或者预定义的值,所述T1大于反馈第一信息的周期,所述第一信息为所述CSI中除基于所述W 12反馈的信息以外的信息,例如所述第一信息可以但不限于包括基底复系数矩阵。通过上述方法,终端设备通过按照较长周期反馈发射端空域频域联合基础基底修正矩阵,按照较短周期反馈基底复系数矩阵,以降低反馈开销。
在一个可能的设计中,所述网络设备向所述终端设备发送第二信息,所述第二信息指示所述终端设备信道测量时采用的码本类型。这样终端设备和网络设备可以预先知晓采用的码本类型,进而按照该码本类型的码本进行信道状态信息的反馈。
第三方面,本申请提供了一种信道状态信息的反馈方法,该方法可以包括:终端设备接收来自网络设备的CSI-RS,并基于所述CSI-RS进行信道测量;之后所述终端设备向所述网络设备反馈信道状态信息,所述信道状态信息用于指示1个或多个第一基底,所述1个或多个第一基底用于基于预设基底生成方法生成1个或多个指示信道状态信息的第二基底。这样,终端设备和网络设备的基底可以对齐,可以更加准确的重构信道并进行预编码,从而提升系统性能。
在一个可能的设计中,所述1个或多个第一基底是量化后的1个或多个空域频域联合统计协方差基底列向量。
在一个可能的设计中,所述预设基底生成方法是所述网络设备预配置或预定义的正交化方法。这样可以准确地通过网络设备预配置的或者预定义的正交方法得到终端设备和网络设备对齐的基底。
第四方面,本申请提供了一种信道状态信息的反馈方法,该方法可以包括:网络设备向终端设备发送CSI-RS;所述网络设备接收所述终端设备反馈的信道状态信息,所述信道状态信息用于指示1个或多个第一基底,所述1个或多个第一基底用于基于预设基底生成方法生成1个或多个指示信道状态信息的第二基底。这样,终端设备和网络设备的基底可以对齐,可以更加准确的重构信道并进行预编码,从而提升系统性能。
在一个可能的设计中,所述1个或多个第一基底是量化后的1个或多个空域频域联合统计协方差基底列向量。
在一个可能的设计中,所述预设基底生成方法是所述网络设备预配置或预定义的正交化方法。这样可以准确地通过网络设备预配置的或者预定义的正交方法得到终端设备和网络设备对齐的基底。
第五方面,本申请还提供了一种信道状态信息的反馈装置,所述信道状态信息的反馈装置具有实现上述第一方面或第一方面的各个可能的设计示例,或者第三方面或第三方面的各个可能的设计示例中终端设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述信道状态信息的反馈装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例,或者第三方面或 第三方面的各个可能的设计示例中终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述信道状态信息的反馈装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发信息、信号或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述信道状态信息的反馈装置执行上述第一方面或第一方面的各个可能的设计示例,或者第三方面或第三方面的各个可能的设计示例中终端设备的相应的功能。所述存储器与所述处理器耦合,其保存所述信道状态信息的反馈装置必要的程序指令和数据。
在一个可能的设计中,所述信道状态信息的反馈装置的结构中包括存储器和处理器,所述处理器被配置为支持所述信道状态信息的反馈装置执行上述第一方面或第一方面的各个可能的设计示例,或者第三方面或第三方面的各个可能的设计示例中终端设备的相应的功能。所述存储器与所述处理器耦合,其保存所述信道状态信息的反馈装置必要的程序指令和数据。
第六方面,本申请还提供了一种信道状态信息的反馈装置,所述信道状态信息的反馈装置具有实现上述第二方面或第二方面的各个可能的设计示例,或者第四方面或第四方面的各个可能的设计示例中网络设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述信道状态信息的反馈装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例,或者第四方面或第四方面的各个可能的设计示例中网络设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述信道状态信息的反馈装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发信息、信号或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述信道状态信息的反馈装置执行上述第二方面或第二方面的各个可能的设计示例,或者第四方面或第四方面的各个可能的设计示例中网络设备的相应的功能。所述存储器与所述处理器耦合,其保存所述信道状态信息的反馈装置必要的程序指令和数据。
在一个可能的设计中,所述信道状态信息的反馈装置的结构中包括存储器和处理器,所述处理器被配置为支持所述信道状态信息的反馈装置执行上述第一方面或第一方面的各个可能的设计示例,或者第三方面或第三方面的各个可能的设计示例中终端设备的相应的功能。所述存储器与所述处理器耦合,其保存所述信道状态信息的反馈装置必要的程序指令和数据。
第七方面,本申请实施例提供了一种通信系统,可以包括上述提及的终端设备和网络设备。
第八方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计,或第二方面及其任一可能的设计,或第三方面及其任一可能的设计,或第四方面及其任一可能的设计中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only  memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第九方面,本申请实施例提供一种包括计算机程序代码或指令的计算机程序产品,当其在计算机上运行时,使得计算机实现上述第一方面或第一方面任一种可能的设计,或第二方面或第二方面任一种可能的设计,或第三方面或第三方面任一种可能的设计,或第四方面或第四方面任一种可能的设计中所述的方法。
第十方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计,或第二方面或第二方面任一种可能的设计,或第三方面或第三方面任一种可能的设计,或第四方面或第四方面任一种可能的设计中所述的方法。
上述第五方面至第十方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案,或者第二方面或第二方面中的各种可能方案,或者第三方面或第三方面中的各种可能方案,或者第四方面或第四方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种通信系统的架构示意图;
图2为本申请提供的一种网络设备与终端设备之间的通信的示意图;
图3为本申请提供的一种网络设备和终端设备进行CSI测量的基本流程的示意图;
图4为本申请提供的一种CSI反馈时延的示意图;
图5为本申请提供的一种CSI测量及反馈流程的示意图;
图6为本申请提供的一种信道状态信息的反馈方法的流程图;
图7为本申请提供的一种码本示意图;
图8为本申请提供的另一种码本示意图;
图9为本申请提供的另一种信道状态信息的反馈方法的流程图;
图10为本申请提供的一种信道状态信息的反馈装置的结构示意图;
图11为本申请提供的一种信道状态信息的反馈装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种信道状态信息的反馈方法及装置,用以解决现有技术中时变信道的场景下由于CSI过期,导致反馈的CSI不准确,进而导致系统性能较差的问题。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、预编码
网络设备可以在已知信道状态的情况下,借助与信道资源相匹配的预编码矩阵对待发送的信号进行处理,使得经过预编码的待发送的信号与信道相适配,从而让使得接收端(也 称接收设备)接收信号的质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升,可以降低接收端消除信道间影响的复杂度。可见采用预编码技术,可以实现发射端(也称发送端、发送设备)与多个接收端在相同的时频资源上传输,即实现多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应注意,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发射端还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2)、预编码矩阵指示(precoding matrix indicator,PMI)
可用于指示预编码矩阵,网络设备基于PMI获取该预编码矩阵。其中,该预编码矩阵可以是终端设备基于各个频域单元的信道矩阵确定的预编码矩阵。频域单元,即频域资源的单位,可表示不同的频域资源粒度。频域单元例如可以包括但不限于:子带(subband)、资源块(resource block,RB)、子载波、资源块组(resource block group,RBG)或预编码资源块组(precoding resource block group,PRG)等。此外,一个频域单元的频域长度可以是子带或频域子带的R倍,R<=1,例如R的取值可以为1或1/2。该信道矩阵可以是终端设备通过信道估计等方式或者基于信道的互易性确定。但应理解,终端设备确定预编码矩阵的具体方法并不限于上文所述,具体实现方式可参考现有技术,为了简洁,这里不再一一列举。
例如,预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decopomsition,EVD)的方式获得。应理解,上文中列举的预编码矩阵的确定方式仅为示例,不应对本申请构成任何限定。预编码矩阵的确定方式可以参考现有技术,为了简洁,这里不再一一列举。
3)、信道状态信息(channel state information,CSI)
在无线通信系统中,由接收端(如终端设备)向发射端(如网络设备)上报的用于描述通信链路的信道属性的信息。CSI报告中可以包括但不限于:预编码矩阵指示(PMI)、秩指示(rank indicator,RI)、信道质量指示(channel quality indicator,CQI)、信道状态信息参考信号(channel state information reference signal,CSI-RS)资源指示(CSI-RS resource indicator,CRI)以及层指示(layer indicator,LI)等。应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请实施例构成任何限定。CSI可以包括上文所列举的一项或多项,也可以包括除上述列举之外的其他用于表征CSI的信息,本申请实施例对此不作限定。
4)、天线端口
或者称为端口,可以理解为被接收端所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以预配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号对应,因此,每个天线端口可以称为一个参考信号的端口,例如,信道状态信息参考信号(channel state information reference signal,CSI-RS)端口、探测参考信号(sounding reference signal,SRS)端口等。在本申请实施例中,天线端口可以是指收发单元(transceiver unit,TxRU)。
5)、测量时长
本申请实施例中,终端设备可以根据网络设备的指示,在某一时段内进行信道测量。该时段可以称为测量时长。该时段的时间长度可以由网络设备通过信令指示,如,通过高层信令(如无线资源控制(radio resource control,RRC)消息等)通知。该测量时长也可以是预定义的,如协议定义。本申请对此不作限定。
网络设备可以通过信令通知终端设备开始进行信道测量。例如,网络设备可以通过信令通知终端设备该时段的起始时间和/或持续时间,或者,网络设备可以通过信令触发终端设备开始进行信道测量。终端设备在测量时长内可以接收多次用作信道测量的参考信号,并可以基于多次接收到的参考信号进行信道测量,以将信道的时变特征反馈给网络设备。该测量时长可以较短,例如可以以时隙(slot)或者毫秒(ms)为单位来定义。如,该测量时长可以为20个时隙或者5ms或10ms或20ms等。或者,该测量时长也可以较长,例如可以以秒为单位来定义。如,该测量时长可以为10秒等。
应理解,网络设备通过信令通知终端设备开始进行信道测量,并不代表终端设备在网络设备所指示的起始时间或触发时间开始就一直在做信道测量。网络设备只是通过信令通知终端设备可以进行信道测量,终端设备可以在由该起始时间或触发时间往后的一个时间窗内,基于接收到的参考信号进行信道测量。该时间窗的大小也即测量时长。
还应理解,这里所说的反馈是指终端设备对信道的时变特征的反馈,但并不表示终端设备除此之外不作其他的反馈。例如,终端设备可以在该时段内基于type II码本的反馈方式来反馈等等。为了简洁,这里不再一一列举。需要注意的是,终端设备在此时段内所做的其他反馈与本申请中所述的对信道的时变特征的反馈是相互独立的过程。
6)、时域基底
时域基底又可以称作时域向量,可用于表示信道在时域的变化。一个时域向量可以表示信道随时间的一种变化规律。无线信道是一种时变信道,会遭遇来自不同路径的衰减损耗。比如,由多径时延扩展造成的频率选择性衰落和由多普勒频移造成时间选择性衰落共同影响的时间-频率双选择性衰落信道即为一种典型的时变信道。
多普勒频移(Doppler shift)可以是指由于终端设备和网络设备之间的相对移动而引发的发射频率和接收频率之间的频率偏移,接收频率与发射频率之差称为多普勒频移。通常来说,多普勒频移f d可以定义为f d=v×f c×cosθ/c。其中,v为终端设备的移动速度,f c为载波频率,θ为多径信号的入射角,c为光速。具体实现时,θ可以考虑不同传输路径的入射角,由于多径的θ不同,则不同传输路径会对应不同的多普勒频移,从而引起多普勒扩展(Doppler spread)。一般来说,多普勒频移的大小表示了移动速度对于信道时域变化快慢的影响。
在本申请实施例中,一个时域向量可以对应一个多普勒频移。因此,可以通过不同的时域向量来表示不同传输路径的多普勒频移导致的信道在时域上的变化规律。通常来说,为了便于描述信道时域的变化,可以将时域信道投影到多普勒域,并通过若干个缓变的多普勒频移的指数函数的加权表示。
应理解,时域向量仅为便于与后文所述的空域向量、频域向量区分而定义,不应对本申请构成任何限定。本申请并不排除在未来的协议中对时域向量定义其他的名称以表示与其相同或相似含义的可能。例如,也可以称为多普勒向量。
可选地,时域向量可以是离散傅里叶变换(Discrete Fourier Transform,DFT)向量、过采样DFT向量、小波变换(wavelet transform,WT)向量或过采样WT向量中的一种或 多种。本申请对此不作限定。
7)、空域基底
空域基底又可称作空域向量,或者称波束(beam)向量、角度向量等。空域向量中的各个元素可以表示各个天线端口(antenna port)的权重。基于空域向量中各个元素所表示的各个天线端口的权重,将各个天线端口的信号做线性叠加,可以在空间某一方向上形成信号较强的区域。基于空域向量对参考信号做预编码,可以使得发射出来的参考信号具有一定的空间指向性。因此,基于空域向量对参考信号做预编码的过程也可以视为是空间域(或简称,空域)预编码的过程。
可选地,空域向量取自DFT矩阵。该DFT矩阵中的每个列向量可以称为一个DFT向量。换句话说,空域向量可以为DFT向量。该空域向量例如也可以是NR协议TS 38.214版本15(release 15,R15)中类型II(type II)码本中定义的二维(2dimensions,2D)-DFT向量或过采样2D-DFT向量。这里为了简洁,不再赘述。
8)、频域基底
频域基底,可以称为频域向量或者称时延向量等。可用于表示信道在频域的变化规律的向量。每个频域向量可以表示一种变化规律。由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。因此,可以通过不同的频域向量来表示不同传输路径上时延导致的信道在频域上的变化规律。而由于信道在各频域单元的相位变化与时延相关,由傅里叶变换可知,信号在时域上的时间延迟,可以等效到频域的相位渐变。故频域向量也可以称为时延向量。换句话说,该频域向量也可用于表示信道的时延特性。
基于频域向量对参考信号进行预编码,实质上可以是指基于频域向量中的元素对频域上各个频域单元进行相位旋转,以通过预编码参考信号来对多径时延造成的频选特性进行预补偿。因此,基于频域向量对参考信号进行预编码的过程可以视为频域预编码的过程。
在本申请实施例中,频域向量可用于和上述空域向量构建多个空域向量和频域向量的组合,或者简称空频向量对,以用于构建预编码向量。
9)、联合发射端空域频域压缩
是指将用发射端空域-频域矩阵(发射端空域向量矩阵和频域向量矩阵)表示的信道用发射端空域频域向量表示(例如发射端空频域列向量或者发射端空频域行向量)。也就是,发射端空域频域向量可指示联合发射端空域频域的信道。以下行信道为例,假设终端设备为单天线,且信道为单极化信道,信道H可通过公式(1)表示,即H满足公式(1):
H=SCF H   (1)
在公式(1)中,
Figure PCTCN2022095178-appb-000013
即C为L×L的对角矩阵,其中,M为网络设备的天线端口数目,L为路径个数,N为频率单元个数,
Figure PCTCN2022095178-appb-000014
在本文中表示复数集合。
公式(1)中的H按行展开,即将用发射端空域-频域矩阵表示的信道用发射端空域频域列向量表示,有:
Figure PCTCN2022095178-appb-000015
(m,:)表示矩阵的第m行,m=1,…, M。
公式(1)中的H按列展开,即将用发射端空域-频域矩阵表示的信道用发射端空域频域列向量表示,有:
Figure PCTCN2022095178-appb-000016
其中,(:,l)表示矩阵的第l列,l=1,…,L。
以公式(1)中的H用列向量表示,那么与公式(1)等效的列向量可满足公式(2):
Figure PCTCN2022095178-appb-000017
h也可以认为信道在联合发射端空频域(发端空域和频域的联合域)的表示。为了便于描述,在文本中,将h称为发射端空域频域信道。在公式(2)中,c=diag(C),diag(C)表示矩阵C的对角线元素构成的列向量;
Figure PCTCN2022095178-appb-000018
⊙表示Khatri-Rao积,举例来说,
Figure PCTCN2022095178-appb-000019
a i是A的第i个列,
Figure PCTCN2022095178-appb-000020
是克罗内克积(Kronecker积),b i是B的第i个列,i为大于0的整数。F *是F的共轭矩阵,矩阵F *⊙S的第l(l=1,…,L)列可满足公式(3):
Figure PCTCN2022095178-appb-000021
其中,(:,l)表示矩阵的第l列。
针对列向量表示的信道h,其统计协方差矩阵SVD分解满足公式(4):
Figure PCTCN2022095178-appb-000022
其中,
Figure PCTCN2022095178-appb-000023
表示对随机数/矩阵求期望,U为信道R h的特征向量,U的每一列对应的特征值为对角阵Λ的对角线上的元素,且Λ对角线上的元素从大到小排列,那么瞬时信道可满足公式(5):
Figure PCTCN2022095178-appb-000024
其中,
Figure PCTCN2022095178-appb-000025
为h在U上的投影,
Figure PCTCN2022095178-appb-000026
为h在U p上的投影,U p=U(:,1:P),表示U p为从U中选择1到P列构成的矩阵。
或者,
Figure PCTCN2022095178-appb-000027
Figure PCTCN2022095178-appb-000028
表示对h的近似。
应理解,信道在角度时延域具有稀疏特性,即
Figure PCTCN2022095178-appb-000029
中仅部分元素非零或者取值较大。且角度时延变化速度较慢,即在一段时间内,可认为U基本不变,
Figure PCTCN2022095178-appb-000030
在不同时刻的值,例如
Figure PCTCN2022095178-appb-000031
随时间变化。由于在发射端空域频域联合压缩使得信道H在发射端空域频联合基底上的投影系数的稀疏性增强,可提升网络设备重构CSI的精度,可提升系统性能。
10)、发射端空域频域联合基底
也可以称为发射端空域频域联合向量,可用于表示信道在联合发射端空域频域的变化规律的向量。在本申请实施例中,如果信道的两个极化方向对应相同的发射端空域频域联合基底,那么发射端空域频域联合向量矩阵的维度为((M 1×M 2)×N sb)×L,M 1为网络设备发射的水平方向的天线端口数量,M 2为网络设备发射的垂直方向的天线端口数量,N sb为频率单元个数,L为路径个数或者为选择的发射端空域频域联合基底的个数;应理解,如果信道的两个极化方向对应不同的发射端空域频域联合基底,那么发射端空域频域联合向量矩阵的维度为(2×(M 1×M 2)×N sb)×L。例如,发射端空域频域联合向量矩阵可以通过发射端联合空域频域压缩中列向量表示的信道h的协方差矩阵进行SVD的方式获得。
11)、接收端空域时域联合基底
也可以称为接收端空域时域联合基底,可用于表示信道在联合接收端空域时域的变化规律的向量。在本申请实施例中,接收端空域时域联合向量矩阵的维度为(M 3×N d)×N 1,M 3为终端设备的天线端口数量,N d表示测量时长,N 1为选择的接收端空域时域联合基底的个数。例如,接收端空域时域联合向量矩阵可以通过联合接收端空域时域压缩中列向量表示的信道的协方差矩阵进行SVD的方式获得。
12)、复系数矩阵
也可以称作投影系数矩阵,用于表示信道在发射端空域频域联合基底矩阵与接收端空域时域联合基底矩阵的投影系数,或者用于表示信道在发射端空域频域联合基底矩阵与时域基底矩阵的投影系数,复系数包括幅度和相位。
需要说明的是,在本申请实施例中,多处涉及矩阵和向量的变换。为便于描述,这里做统一说明。上角标T表示转置,如A T表示矩阵(或向量)A的转置;上角标H表示共轭转置,如,A H表示矩阵(或向量)A的共轭转置;上角标*表示共轭,如A*表示矩阵(或向量)A的共轭。后文中为了简洁,省略对相同或相似情况的说明。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的信道状态信息的反馈方法及装置进行详细说明。
本申请实施例提供的信道状态信息的反馈方法可以应用于各种通信系统,只要该通信系统中存在设备需要发送传输方向指示信息,另一个设备需要接收该指示信息,并根据该指示信息确定一定时间内的传输方向。例如,该通信系统可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、长期演进(long term evolution,LTE),也可以是第五代(5G)通信系统,还可以是LTE与5G混合架构、也可以是5G NR系统以及未来通信发展中出现的新的通信系统等。本申请所述的5G通信系统可以包括非独立组网(non-standalone,NSA)的5G通信系统、独立组网(standalone,SA)的5G通信系统中的至少一种。通信系统还可以是公共陆地移动网络(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络或者其他网络。
图1示出了一种本申请提供的信道状态信息的反馈方法适用的一种可能的通信系统的架构示意图。该通信系统可以包括网络设备和至少一个终端设备,例如图1示出的终端设备1~终端设备6。在该通信系统中,终端设备1~终端设备6可以发送上行数据等给网络设备,网络设备需要接收终端设备1~终端设备6发送的上行数据等。此外,终端设备4~终端设备6也可以组成一个子通信系统。网络设备可以发送下行信息等给终端设备1、终端设备2和终端设备5等;终端设备5也可以基于D2D技术发送下行信息等给终端设备4和终端设备6。应理解,图1仅是一种示意图,本申请并不对通信系统的类型,以及通信系统内包括的设备的数量、类型等进行具体限定。
其中,网络设备可以为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:基站(generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端等等,也可以是能够设置于以上设备的芯片或芯片模组(或芯片系统)等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
示例性的,网络设备与终端设备之间的通信可以如图2所示。具体的,网络设备和终端设备可以通过RRC模块交互RRC信令。网络设备和终端设备可以通过MAC模块交互媒体接入控制控制元素(media access control control element,MAC CE)信令。网络设备和终端设备可以通过PHY模块交互上/下行控制信令,例如物理上行控制信道(physical uplink control channel,PUCCH)/物理下行控制信道(physical downlink control channel,PDCCH);以及交互上/下行数据信令,例如物理上行共享信道(physical uplink shared channel,PUSCH)/物理下行共享信道(physical downlink shared channel,PDSCH)等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
目前,5G通信系统对系统容量、频谱效率等方面有了更高的要求。在5G通信系统中,大规模MIMO技术对系统的频谱效率起到至关重要的作用。采用MIMO技术时,网络设备向终端设备发送数据时,需要进行调制编码及信号预编码。网络设备向终端设备如何发送数据,需要依靠终端设备向网络设备反馈的CSI,因此CSI的准确性对系统的性能起到非常重要的作用。
网络设备和终端设备进行CSI测量的基本流程可以如图3所示,具体的可以包括如下步骤:
步骤301:网络设备向终端设备发送信道测量配置信息,该信道测量配置信息用于信道测量的配置,例如,配置参考信号、测量时间等。
步骤302:网络设备向终端设备发送信道测量导频(也可以称为参考信号(reference signaling,RS)),该导频用于信道的测量。
步骤303:终端设备根据网络设备发送的导频进行信道测量,并进行信道估计等计算,得到CSI,并向网络设备反馈CSI(例如,通过码本反馈),示例性地,反馈的CSI可以包含秩指示(rank indicator,RI)、信道质量指示(channel quality information,CQI)、或预编码矩阵指示(precoding matrix indicator,PMI)等具体参数。
步骤304:网络设备根据终端设备反馈的CSI进行数据发送。其中,在步骤304中,网络设备可以根据终端设备在步骤303中反馈的CSI确定发送数据的相关配置,例如:网络设备通过RI确定给终端设备传输数据的流数,网络设备根据终端设备反馈的CQI确定给终端设备传输数据的调制阶数及信道编码的码率,网络设备根据终端设备反馈的PMI确定给终端设备传输数据的预编码。
在实际系统中,CSI反馈通常存在时延,即从终端设备测量CSI到网络设备获取终端设备反馈的CSI之间需要一定时间,从而导致网络设备获取的CSI存在着过期(aging)问题,也即网络设备获得终端设备反馈的CSI并非是当前实际信道的CSI,而是过去一段时间的CSI,导致网络设备根据终端设备反馈的CSI计算出的用以发送数据的预编码与根据实际信道计算的预编码可能不同,从而可能导致系统性能损失。在时变信道的场景下,CSI反馈存在的时延会导致明显的性能损失,其中,用户的移动场景是常见场景之一。例如,如图4所示,终端设备在T1时刻处于位置1,UE按照
Figure PCTCN2022095178-appb-000032
的速度和方向进行移动,在T2时刻移动到位置2,之后按照
Figure PCTCN2022095178-appb-000033
的速度和方向进行移动,在T3时刻移动到位置3,而终端设备在位置1、位置2和位置3对应的信道不同,因此终端设备在T1时刻反馈的CSI与位置2和位置3时的信道不相符。CSI过期问题会导致用户的预编码无法匹配真实的信道条件,引入更多的用户间干扰,从而导致系统性能大幅度下降。
目前,在CSI的测量流程中,网络设备根据终端设备上报的CSI计算预编码矩阵(precoder),且该预编码矩阵在下次CSI上报前保持不变。也即,网络设备使用最近一次上报的CSI计算预编码矩阵,并在下一次CSI更新前保持预编码矩阵不变,例如,如图5所示。
由图5中的CSI测量及反馈流程可知,在每次CSI测量及上报周期内,网络设备是假设信道条件在CSI上报周期内是保持不变的,并用最近一次上报的CSI作为后续数据传输、预编码设计的基础。然而,由于CSI生效时延t1和信道时变t2的存在,导致CSI过期的问题。其中,CSI生效时延t1是指从网络设备发送下行CSI-RS到网络设备接收到终端设备上行CSI反馈,再到网络设备根据终端设备反馈的CSI计算出预编码矩阵的时长,t1 的存在导致CSI上报后已经与实际的信道CSI存在延迟。当信道时变时,t1会导致CSI过期,而引起性能下降。信道时变t2是指网络设备在CSI反馈周期间持续使用最近上报的CSI计算的预编码矩阵的时长,也即预编码矩阵在t2时间内是固定的,即网络设备假设CSI反馈周期期间信道是不变的。而当信道时变时,如移动场景,信道在t2时间内也会发生变化,导致根据最近一次CSI上报计算的预编码矩阵与实际信道的CSI不匹配,从而导致性能下降。
综上,在信道的时变场景下,CSI过期导致网络设备根据终端设备反馈的CSI计算出的用以发送数据的预编码与当前实际信道对应的预编码不匹配,进而导致系统的性能下降的问题,是目前亟待解决的问题。基于此,本申请实施例提出一种信道状态信息的反馈方法,用以解决上述问题。具体的,本申请中,终端设备通过基于包含多普勒信息(也即时域信息)的第一码本反馈信道状态信息,该信道状态信息描述了信道的时变特性。多普勒信息在较短的测量时长内变化较为缓慢,因此网络设备可以根据第一码本重构在测量时长内的信道信息,并根据重构信道的时变趋势,预测未来信道变化趋势,根据预测的信道计算下行预编码矩阵与当前信道更加匹配,从而可以提升系统性能。另外,本申请中,构建发射端空域频域联合、接收端空域时域联合基底,可以提升信道投影稀疏性,降低反馈开销;从发射端-频域-接收端-时域这四个维度或者从发射端-频域-时域这三个维度反馈信道状态信息可以更精确的表征信道特性。因此,网络设备基于终端设备反馈的信道状态信息可以更加精准地进行信道预测。
需要说明的是,在本申请实施例中可实现信道状态信息的反馈的可以是终端设备,或者是终端设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等;实现下发CSI-RS下发的可以是网络设备,或者是网络设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等。在以下的实施例中,仅以终端设备和网络设备为例对本申请提供的信道状态信息的反馈方法进行详细说明,但对本申请并不作为限定。
基于以上描述,本申请实施例提供的一种信道状态信息的反馈方法,适用于图1所示的通信系统。参阅图6所示,该方法的具体流程可以包括:
步骤601:网络设备向终端设备发送CSI-RS,相应地,终端设备接收来自网络设备的CSI-RS。
步骤602:终端设备基于CSI-RS进行信道测量。
步骤603:终端设备基于第一码本向网络设备反馈信道状态信息。
需要说明的是,第一码本是终端设备和网络设备预先已知的。
具体的,网络设备在测量时长内向终端设备多次发送CSI-RS,终端设备基于网络设备多次发送的CSI-RS进行多次信道测量,得到测量时长内多个时间点的信道信息,然后终端设备将测量时长内多个时间点的信道信息基于第一码本向网络设备反馈信道状态信息,该信道状态信息表征测量时长内多个时间点的信道的信道信息。
在该步骤中,第一码本包含了多普勒信息,基于第一码本反馈的信道状态信息可以表征测量时长内多个时间点的信道的信道信息,体现了多个时间点的信道。也即基于第一码本可以反馈多个时间点的信道的信道状态信息即表示了第一码本包含了多普勒信息(时域信息)。
其中,第一码本可以但不限于为以下两种情况:
情况a1:第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多 个接收端空域时域列向量确定的。其中,一个或多个发射端空域频域列向量用于指示联合发射端空域频域的信道信息,一个或多个接收端空域时域列向量用于指示联合接收端空域时域的信道信息。其中,一个或多个接收端空域时域列向量可以体现第一码本中包含了多普勒信息(也即时域信息)。
情况a2:第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;其中,一个或多个发射端空域频域列向量用于指示联合发射端空域频域的信道信息。其中,一个或多个时域列向量可以体现第一码本中包含了多普勒信息(也即时域信息)。
示例性的,终端设备在基于情况a1中的第一码本反馈信道状态信息时,基于第一码本中的一个或多个发射端空域频域列向量指示的联合发射端空域频域的信道信息,以及一个或多个接收端空域时域列向量指示的联合接收端空域时域的信道信息,来表示测量时长内多个时间点的信道的信道信息。
示例性的,终端设备在基于情况a2中的第一码本反馈信道状态信息时,基于第一码本中的一个或多个发射端空域频域列向量指示的联合发射端空域频域的信道信息,以及一个或多个发射端空域频域列向量指示的联合发射端空域频域的信道信息,来表示测量时长内多个时间点的信道的信道信息。
在一种可选的实施方式中,情况a1中的第一码本W可以符合以下公式一,也即第一码本的结构可以通过公式一表示:
Figure PCTCN2022095178-appb-000034
其中,W 1为发射端空域频域联合基底矩阵,发射端空域频域联合基底矩阵包括一个或多个发射端空域频域列向量;W 3为接收端空域时域联合基底矩阵,接收端空域时域联合基底矩阵包括一个或多个接收端空域时域列向量;W 2为发射端空域频域联合基底矩阵和接收端空域时域联合基底矩阵对应的复系数矩阵;
Figure PCTCN2022095178-appb-000035
为W 3的转置矩阵。
示例性的,发射端空域频域联合基底矩阵W 1可以符合以下公式二:
W 1=W 11W 12    公式二。
其中,W 11为发射端空域频域联合基础基底矩阵,W 11中的每一个列向量对应一个发射端空域频域联合基础基底;W 12为发射端空域频域联合基础基底修正矩阵;W 11的列向量长度与网络设备的天线数量和CSI-RS占用的频域资源单元数量有关。
需要说明是,本申请中,基础基底矩阵是指终端设备和网络设备均已知的矩阵。
可选的,发射端空域频域联合基础基底矩阵W 11可以是离散傅里叶变换(discrete fourier transform,DFT)基底矩阵。可选的,信道的两个极化方向可以对应相同的发射端空域频域联合基底,那么发射端空域频域联合基础基底矩阵W 11的维度可以为((M 1×M 2)×N sb)×S 1;其中,M 1为网络设备发射的水平方向的天线端口数量,M 2为网络设备发射的垂直方向的天线端口数量,N sb为频率单元个数,S 1为选择的发射端空域频域联合基础基底的个数;可选的,信道的两个极化方向可以对应不同的发射端空域频域联合基底,那么发射端空域频域联合基础基底矩阵的维度可以为(2×(M 1×M 2)×N sb)×S 1
可选的,发射端空域频域联合基础基底修正矩阵W 12也可以称为发射端空域频域联合基底对DFT基底的系数反馈矩阵或者对DFT基底的投影系数矩阵,用于使得W 11逼近W 1。W 12的维度可以为S 1×L,L为路径个数或者为选择的发射端空域频域联合基底的个数。其中,L可以为网络设备预配置或预定义的值。
示例性的,网络设备预配置L时,可以通过RRC、MAC CE、下行控制信息(downlink control information,DCI)信令等中的一种或多种配置。
具体的,发射端空域频域联合基础基底矩阵W 11中的一个频域基础基底可以对应多个发射端空域基础基底,或者,发射端空域频域联合基底矩阵W 1中的一个发射端空域基础基底可以对应多个频域基础基底。
在一种示例性的实施方式中,W 11可以符合以下公式三:
Figure PCTCN2022095178-appb-000036
其中,
Figure PCTCN2022095178-appb-000037
为W f的共轭矩阵,W f用于指示频域基础基底,W tx用于指示发射端空域基础基底,
Figure PCTCN2022095178-appb-000038
为克罗内克积。
可选的,频域基础基底W f和发射端空域基础基底W tx可以是DFT矩阵。
可选的,信道状态信息的反馈周期可以分为长周期和短周期,长周期例如可以为100ms等,短周期例如可以为20ms等。反馈信道状态信息时,反馈不同的信息可以使用不用的反馈周期。
示例性的,发射端空域频域联合基础基底修正矩阵W 12的反馈周期T1可以是长周期,按照较长周期上报给网络设备,以尽量减少开销。T1可以为网络设备预配置的或者预定义的值。信道状态信息中除基于所述W 12反馈的信息以外的第一信息的反馈周期为短周期,T1大于反馈第一信息的周期,也即除反馈的W 12以外的其余基于第一码本反馈的信道状态信息为短周期。例如W 2、W 32等(第一信息)的反馈周期可以为短周期。
其中,T1为长周期,例如可以100ms等;其余基于第一码本反馈的信道状态信息(第一信息)的周期为短周期,例如可以为20ms等。
示例性的,网络设备预配置T1时,可以通过RRC、MAC CE、DCI信令等中的一种或多种配置。
在一种可能的实施方式中,接收端空域时域联合基底矩阵W 3可以符合以下公式四:
W 3=W 31W 32   公式四。
其中,W 31为接收端空域时域联合基础基底矩阵,W 31中的每一个列向量对应一个接收端空域时域联合基础基底;W 32为接收端空域时域联合基础基底修正矩阵;W 31的列向量长度与终端设备的天线数量和测量时长有关。
可选的,接收端空域时域联合基础基底矩阵W 31可以为DFT矩阵。W 31的维度可以为(M 3×N d)×S 2,其中,M 3为终端设备的天线数量,N d为测量时长,S 2为选择的接收端空域时域联合基础基底的个数。
可选的,接收端空域时域联合基础基底修正矩阵W 32也可以称为接收端空域时域联合基底对DFT基底的系数反馈矩阵或者对DFT基底的投影系数矩阵,用于使得W 31逼近W 3。W 32的维度可以为S 2×N 1,N 1表示选择的接收端空域时域联合基底的个数。
其中,N 1可以为网络设备预配置或预定义的值。
示例性的,网络设备预配置N 1时,可以通过RRC、MAC CE、DCI信令等中的一种或多种配置。
具体的,接收端空域时域联合基础基底矩阵W 31中的一个时域基础基底可以对应多个接收端空域基础基底,或者,接收端空域时域联合基底矩阵W 3中的一个接收端空域基础基底可以对应多个时域基础基底。
在一种示例性的实施方式中,W 31可以符合以下公式五:
Figure PCTCN2022095178-appb-000039
其中,
Figure PCTCN2022095178-appb-000040
为W t的共轭矩阵,W t用于指示时域基础基底,W rx用于指示接收端空域基础基底,
Figure PCTCN2022095178-appb-000041
为克罗内克积。
可选的,时域基础基底W t和接收端空域基础基底W rx可以是DFT矩阵。
在一种具体的方式中,W 2的维度可以为L*N 1;其中,L和N 1的解释可以参见上述涉及的L和N 1的相关描述,此处不再重复赘述。
在另一种可选的实施方式中,情况a2中的第一码本W可以符合以下公式六,也即第一码本的结构可以通过公式六表示:
Figure PCTCN2022095178-appb-000042
其中,W 1为发射端空域频域联合基底矩阵,发射端空域频域联合基底矩阵包括一个或多个发射端空域频域列向量;W 5为时域基底矩阵,时域基底矩阵包括一个或多个时域列向量;W 4为发射端空域频域联合基底矩阵和时域基底矩阵对应的复系数矩阵;
Figure PCTCN2022095178-appb-000043
为W 5的转置矩阵。
其中,W 1与公式一中涉及的W 1相同,具体对W 1的相关解释可以参见上述涉及的相关描述,此处不再重复赘述。
可选的,时域基底矩阵W 5可以为DFT矩阵,W 5的维度可以为N d×N d
示例性的,W 4的维度可以为L×N d;其中,L为路径个数或者为选择的发射端空域频域联合基底的个数,N d表示测量时长。
在一种可选的实施方式中,在进行信道测量之前,网络设备可以先通知终端设备CSI的获取方案,示例性的,终端设备接收来自网络设备的第二信息,第二信息指示终端设备信道测量时采用的码本类型。例如,实现方式可以为所述第二信息为RRC的高层参数码本类型(codebookType),具体可以将本实施例对应的码本类型设置为R18移动场景下非预编码类型‘typeIIr18-mobility-NonePrecoding’。
示例性的,终端设备基于情况a1所示的第一码本反馈CSI时,终端设备可以基于W 1和W 3反馈一个或多个基底,基于W 2反馈一个或多个发射端空域频域联合基底矩阵和接收端空域时域联合基底矩阵对应的系数。也即终端设备基于情况a1所示的第一码本反馈的CSI可以包含基于W 1和W 3反馈的一个或多个基底,以及基于W 2反馈的一个或多个发射端空域频域联合基底矩阵和接收端空域时域联合基底矩阵对应的系数。需要说明的是,CSI包含的上述信息仅为示例,CSI中还可以包含其它信息,本申请对此不作限定。
示例性的,终端设备基于情况a2所示的第一码本反馈CSI时,终端设备可以基于W 1和W 5反馈一个或多个基底,基于W 4反馈一个或多个发射端空域频域联合基底矩阵和所述时域基底矩阵对应的系数。也即终端设备基于情况a1所示的第一码本反馈的CSI可以包含基于W 1和W 5反馈的一个或多个基底,以及基于W 4反馈的一个或多个发射端空域频域联合基底矩阵和所述时域基底矩阵对应的系数。需要说明的是,CSI包含的上述信息仅为示例,CSI中还可以包含其它信息,本申请对此不作限定。
步骤604:网络设备根据终端设备反馈的信道状态信息和第一码本重构测量时长内多个时间点的信道,并根据测量时长内多个时间点的信道进行未来的信道预测,并确定预编码矩阵。
示例性的,在情况a1所示的第一码本的情况下,网络设备根据终端设备反馈的信道状态信息和第一码本重构测量时长内多个时间点的信道时,可以根据终端设备基于W 1和W 3 反馈的一个或多个基底,以及基于W 2反馈的一个或多个发射端空域频域联合基底矩阵和接收端空域时域联合基底矩阵对应的系数,重构W 1、W 2和W 3,根据W 1、W 2和W 3进行矩阵运算重构测量时长内多个时间点的信道。
示例性的,在情况a2所示的第一码本的情况下,网络设备根据终端设备反馈的信道状态信息和第一码本重构测量时长内多个时间点的信道时,可以根据终端设备W 1和W 5反馈的一个或多个基底,以及基于W 4反馈的一个或多个发射端空域频域联合基底矩阵和所述时域基底矩阵对应的系数,重构W 1、W 4和W 5,根据W 1、W 4和W 5进行矩阵运算重构测量时长内多个时间点的信道。
通过上述方法,由于第一码本包含了多普勒信息,而CSI过期本质上是由于信道的时变特性引起,对应多普勒(Doppler)变化。现有技术中,网络设备在收到最近一次收到CSI到下一次收到CSI之间的时长内,保持CSI不变,但在这段时间内信道是时变,因此导致CSI与时变信道的CSI不一致。本申请中,终端设备通过基于包含多普勒信息的第一码本反馈的信道状态信息描述了信道的时变特性,多普勒信息在较短的测量时间长度内变化较为缓慢,因此网络设备可以根据第一码本重构测量时长内的信道来预测未来信道变化趋势,这样网络设备可以预测最近一次收到CSI到下一次收到CSI之间的时长内的信道,进行预编码,相对于现有技术保持CSI不变,本申请通过预测信道变化趋势,根据预测的信道计算下行预编码矩阵与当前信道更加匹配,从而可以提升系统性能。
进一步地,构建发射端空域频域联合、接收端空域时域联合基底,可以使得信道对基底投影所得的反馈系数更加稀疏,从而选取更少数量的反馈系数,降低反馈开销;从发射端-频域-接收端-时域这四个维度或者从发射端-频域-时域这三个维度反馈信道状态信息可以更精确的表征信道特性。因此,网络设备基于终端设备反馈的信道状态信息可以更加精准地进行信道预测。
在一个具体的示例中,如图7所示,将测量时长内的信道信息对如码本所示的发射端Tx和时延域(即频域)联合基底、以及接收端Rx和多普勒域(即时域)联合基底进行投影,并选取较少数量的反馈系数,而终端设备根据第一码本将发射端Tx和时延域(即频域)联合基底、以及接收端Rx和多普勒域(即时域)联合基底和发射端-频域-接收端-时域四个维度的信道投影系数进行上报,网络设备根据反馈的信道信息重构测量时长内的信道,每个时间点的信道可以由多个Tx-Delay-Rx对进行表征,根据多个时间点上的Tx-Delay-Rx对在时域上的变化,从而预测后续信道。
示例性的,如图7所示的码本,网络设备预测的信道H可以符合以下公式七:
Figure PCTCN2022095178-appb-000044
其中,
Figure PCTCN2022095178-appb-000045
表示复系数,
Figure PCTCN2022095178-appb-000046
表示发射端空域频域联合基底,
Figure PCTCN2022095178-appb-000047
表示接收端空域时域联合基底,tx表示发射端空域,f表示频域,rx表示接收端空域,d表示时域。
在另一个具体的示例中,如图8所示,将测量时长内的信道信息对如码本所示的发射端Tx和时延域(即频域)联合基底、以及多普勒域(即时域)基底进行投影,并选取较少数量的反馈系数,而终端设备根据第一码本将发射端Tx和时延域(即频域)联合基底以及多普勒域(即时域)基底和发射端-频域-时域三个维度的信道投影系数进行上报,网络设备根据反馈的信道信息重构测量时长内的信道,每个时间点的信道可以由多个 Tx-Delay对进行表征,并根据多个时间点上的Tx-Delay对在时域上的变化,从而预测后续信道。
示例性的,如图8所示的码本,网络设备预测的信道H可以符合以下公式八:
Figure PCTCN2022095178-appb-000048
其中,
Figure PCTCN2022095178-appb-000049
表示复系数,
Figure PCTCN2022095178-appb-000050
表示发射端空域频域联合基底,
Figure PCTCN2022095178-appb-000051
表示时域基底,tx表示发射端空域,f表示频域,d表示时域。
目前,在进行CSI反馈时,终端设备可以通过CSI反馈给网络设备基底。为了使CSI反馈的系数更加稀疏,通常终端设备采用统计协方差基底进行信道投影,同时为了降低反馈开销,需要将统计协方差基底投影到DFT基底上,并进行压缩量化后反馈给网络设备,此时通过DFT基底表示的统计协方差基底已经不正交,终端设备需要对基底进行正交化操作。而网络设备只能按照现有码本通过终端设备反馈的CSI获取对应的未正交的基底,与终端设备正交化后得到的基底不一致。也即目前的码本不能实现终端设备的CSI基底和网络设备通过终端设备反馈的CSI获取的CSI基底对齐,这样会导致网络设备无法根据CSI反馈信息准确地重构信道,进而影响预编码矩阵的精确度。
基于此,本申请实施例提供了另一种信道状态信息的反馈方法,以实现终端设备获取的CSI基底和网络设备获取的CSI基底对齐。
本申请实施例提供的另一种信道状态信息的反馈方法,适用于图1所示的通信系统。参阅图9所示,该方法的具体流程可以包括:
步骤901:网络设备向终端设备发送CSI-RS,相应地,终端设备接收来自网络设备的CSI-RS。
步骤902:终端设备基于CSI-RS进行信道测量。
步骤903:终端设备向网络设备反馈信道状态信息,信道状态信息用于指示一个或多个第一基底,该一个或多个第一基底用于基于预设基底生成方法生成一个或多个指示信道状态信息的第二基底。
需要说明的是,本申请中,基底即为用于表征信道特征的向量。
在一种可选的实施方式中,该一个或多个第一基底是量化后的一个或多个空域频域联合的统计协方差基底列向量。
示例性的,所述预设基底生成方法可以是网络设备预配置的或预定义的正交化方法,例如QR分解(QR decomposition)方法(也称施密特正交化方法)。
具体的,终端设备和网络设备分别基于预设基底生成方法将该一个或多个第一基底生成一个或多个指示信道状态信息的第二基底,以使终端设备和网络设备各自的基底对齐。
通过上述方法,终端设备和网络设备各自的基底对齐,可以更加准确的重构信道并进行预编码,从而提升系统性能。
基于以上实施例,本申请实施例还提供了一种信道状态信息的反馈装置。参阅图10所示,所述信道状态信息的反馈装置1000可以包括收发单元1001和处理单元1002。其中,所述收发单元1001用于所述信道状态信息的反馈装置1000接收信号(信息、消息或数据)或发送信号(信息、消息或数据),所述处理单元1002用于对所述信道状态信息的反馈装置1000的动作进行控制管理。所述处理单元1002还可以控制所述收发单元1001执行的步骤。
示例性地,该信道状态信息的反馈装置1000具体可以是上述实施例中的终端设备所述终端设备中的处理器,或者芯片,或者芯片系统,或者是一个功能模块等;或者,该信道状态信息的反馈装置1000具体可以是上述实施例中的网络设备、所述网络设备的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述信道状态信息的反馈装置1000用于实现上述图6所述的实施例中终端设备的功能时,具体可以包括:
所述收发单元1001用于接收来自网络设备的CSI-RS;所述处理单元1002用于基于所述CSI-RS进行信道测量;所述收发单元1001还用于基于第一码本向所述网络设备反馈信道状态信息;所述第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个接收端空域时域列向量确定的,或者,所述第一码本是基于表示信道的所述一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;所述一个或多个发射端空域频域列向量用于指示联合所述发射端空域频域的信道信息;所述一个或多个接收端空域时域列向量用于指示联合所述接收端空域时域的信道信息。
在一种可选的实施方式中,所述第一码本可以符合以下公式:
Figure PCTCN2022095178-appb-000052
其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 3为接收端空域时域联合基底矩阵,所述接收端空域时域联合基底矩阵包括所述一个或多个接收端空域时域列向量;所述W 2为所述发射端空域频域联合基底矩阵和所述接收端空域时域联合基底矩阵对应的复系数矩阵。
在另一种可选的实施方式中,所述第一码本可以符合以下公式:
Figure PCTCN2022095178-appb-000053
其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 5为时域基底矩阵,所述时域基底矩阵包括所述一个或多个时域列向量;所述W 4为所述发射端空域频域联合基底矩阵和所述时域基底矩阵对应的复系数矩阵。
示例性的,所述发射端空域频域联合基底矩阵W 1可以符合以下公式:
W 1=W 11W 12
其中,所述W 11为发射端空域频域联合基础基底矩阵,所述W 11中的每一个列向量对应一个发射端空域频域联合基础基底;所述W 12为发射端空域频域联合基础基底修正矩阵;所述W 11的列向量长度与所述网络设备的天线数量和所述CSI-RS占用的频域资源单元数量有关。
示例性的,所述接收端空域时域联合基底矩阵W 3符合以下公式:
W 3=W 31W 32
其中,所述W 31为接收端空域时域联合基础基底矩阵,所述W 31中的每一个列向量对应一个接收端空域时域联合基础基底;所述W 32为接收端空域时域联合基础基底修正矩阵;所述W 31的列向量长度与所述终端设备的天线数量和测量时长有关。
可选的,所述发射端空域频域联合基础基底矩阵中的一个频域基础基底对应多个发射端空域基础基底,或者,所述发射端空域频域联合基底矩阵中的一个发射端空域基础基底对应多个频域基础基底。
具体的,所述W 11可以符合以下公式:
Figure PCTCN2022095178-appb-000054
其中,所述
Figure PCTCN2022095178-appb-000055
为W f的共轭矩阵,所述W f用于指示频域基础基底,所述W tx用于指示发射端空域基础基底。
可选的,频域基础基底W f和发射端空域基础基底W tx可以是DFT矩阵。
可选的,所述接收端空域时域联合基础基底矩阵中的一个时域基础基底对应多个接收端空域基础基底,或者,所述接收端空域时域联合基底矩阵中的一个接收端空域基础基底对应多个时域基础基底。
具体的,所述W 31可以符合以下公式:
Figure PCTCN2022095178-appb-000056
其中,所述
Figure PCTCN2022095178-appb-000057
为W t的共轭矩阵,所述W t用于指示时域基础基底,所述W rx用于指示接收端空域基础基底。
可选的,时域基础基底W t和接收端空域基础基底W rx可以是DFT矩阵。
在一种示例性的方式中,所述W 2的维度为L*N 1;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N 1表示选择的接收端空域时域联合基底的个数,所述N 1为所述网络设备预配置或预定义的值。
在一种示例性的方式中,所述W 4的维度为L*N d;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N d表示测量时长。
可选的,所述发射端空域频域联合基础基底修正矩阵W 12的反馈周期为T1,所述T1为所述网络设备预配置或者预定义的值,所述T1大于反馈第一信息的周期,所述第一信息为基于所述W 12反馈的信息以外的信息。
在一种可选的实施方式中,所述收发单元1001还可以用于:接收来自所述网络设备的第二信息,所述第二信息指示所述终端设备信道测量时采用的码本类型。
在一个实施例中,所述信道状态信息的反馈装置1000用于实现上述图6所述的实施例中网络设备的功能时,具体可以包括:
所述收发单元1001用于向终端设备发送CSI-RS;以及接收所述终端设备基于第一码本反馈的信道状态信息;所述第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个接收端空域时域列向量确定的,或者,所述第一码本是基于表示信道的所述一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;所述一个或多个发射端空域频域列向量用于指示联合所述发射端空域频域的信道信息;所述一个或多个接收端空域时域列向量用于指示联合所述接收端空域时域的信道信息;所述处理单元1002用于控制所述收发单元1001的收发操作。
在一种可选的实施方式中,所述第一码本可以符合以下公式:
Figure PCTCN2022095178-appb-000058
其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 3为接收端空域时域联合基底矩阵,所述接收端空域时域联合基底矩阵包括所述一个或多个接收端空域时域列向量;所述W 2为所述发射端空域频域联合基底矩阵和所述接收端空域时域联合基底矩阵对应的复系数矩阵。
在另一种可选的实施方式中,所述第一码本可以符合以下公式:
Figure PCTCN2022095178-appb-000059
其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 5为时域基底矩阵,所述时域基底矩阵包括所述一个或多个时域列向量;所述W 4为所述发射端空域频域联合基底矩阵和所述时域基底矩阵对应的复系数矩阵。
示例性的,所述发射端空域频域联合基底矩阵W 1符合以下公式:
W 1=W 11W 12
其中,所述W 11为发射端空域频域联合基础基底矩阵,所述W 11中的每一个列向量对应一个发射端空域频域联合基础基底;所述W 12为发射端空域频域联合基础基底修正矩阵;所述W 11的列向量长度与所述网络设备的天线数量和所述CSI-RS占用的频域资源单元数量有关。
示例性的,所述接收端空域时域联合基底矩阵W 3符合以下公式:
W 3=W 31W 32
其中,所述W 31为接收端空域时域联合基础基底矩阵,所述W 31中的每一个列向量对应一个接收端空域时域联合基础基底;所述W 32为接收端空域时域联合基础基底修正矩阵;所述W 31的列向量长度与所述终端设备的天线数量和测量时长有关。
可选的,所述发射端空域频域联合基础基底矩阵中的一个频域基础基底对应多个发射端空域基础基底,或者,所述发射端空域频域联合基底矩阵中的一个发射端空域基础基底对应多个频域基础基底。
具体的,所述W 11符合以下公式:
Figure PCTCN2022095178-appb-000060
其中,所述
Figure PCTCN2022095178-appb-000061
为W f的共轭矩阵,所述W f用于指示频域基础基底,所述W tx用于指示发射端空域基础基底。
可选的,频域基础基底W f和发射端空域基础基底W tx可以是DFT矩阵。
可选的,所述接收端空域时域联合基础基底矩阵中的一个时域基础基底对应多个接收端空域基础基底,或者,所述接收端空域时域联合基底矩阵中的一个接收端空域基础基底对应多个时域基础基底。
具体的,所述W 31符合以下公式:
Figure PCTCN2022095178-appb-000062
其中,所述
Figure PCTCN2022095178-appb-000063
为W t的共轭矩阵,所述W t用于指示时域基础基底,所述W rx用于指示接收端空域基础基底。
可选的,频域基础基底W f和发射端空域基础基底W tx可以是DFT矩阵。
一种示例中,所述W 2的维度为L*N 1;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N 1表示选择的接收端空域时域联合基底的个数,所述N 1为所述网络设备预配置或预定义的值。
一种示例中,所述W 4的维度为L*N d;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N d表示测量时长。
可选的,所述发射端空域频域联合基础基底修正矩阵W 12的反馈周期为T1,所述T1为所述网络设备预配置或者预定义的值,所述T1大于反馈第一信息的周期,所述第一信 息为所述CSI中除基于所述W 12反馈的信息以外的信息。
示例性的,所述收发单元1001还用于向所述终端设备发送第二信息,所述第二信息指示所述终端设备信道测量时采用的码本类型。
在一个实施例中,所述信道状态信息的反馈装置1000用于实现上述图9所述的实施例中终端设备的功能时,具体可以包括:
所述收发单元1001用于接收来自网络设备的CSI-RS;所述处理单元1002用于基于所述CSI-RS进行信道测量;所述收发单元1001还用于向所述网络设备反馈信道状态信息,所述信道状态信息用于指示1个或多个第一基底,所述1个或多个第一基底用于基于预设基底生成方法生成1个或多个指示信道状态信息的第二基底。
示例性的,所述1个或多个第一基底可以是量化后的1个或多个空域频域联合的统计协方差基底列向量。
可选的,所述预设基底生成方法可以是所述网络设备预配置或预定义的正交化方法。
在一个实施例中,所述信道状态信息的反馈装置1000用于实现上述图9所述的实施例中网络设备的功能时,具体可以包括:
所述收发单元1001用于向终端设备发送CSI-RS;以及接收所述终端设备反馈的信道状态信息,所述信道状态信息用于指示1个或多个第一基底,所述1个或多个第一基底用于基于预设基底生成方法生成1个或多个指示信道状态信息的第二基底;所述处理单元1002用于控制所述收发单元1001的操作。
示例性的,所述1个或多个第一基底可以是量化后的1个或多个空域频域联合的统计协方差基底列向量。
可选的,所述预设基底生成方法可以是所述网络设备预配置或预定义的正交化方法。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种信道状态信息的反馈装置,参阅图11所示,信道状态信息的反馈装置1100可以包括收发器1101和处理器1102。可选的,所述信道状态信息的反馈装置1100中还可以包括存储器1103。其中,所述存储器1103可以设置于所述信道状态信息的反馈装置1100内部,还可以设置于所述信道状态信息的反馈装置1100外部。其中,所述处理器1102可以控制所述收发器1101接收和发送信息、信号或数据等。
具体地,所述处理器1102可以是中央处理器(central processing unit,CPU),网络处 理器(network processor,NP)或者CPU和NP的组合。所述处理器1102还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器1101、所述处理器1102和所述存储器1103之间相互连接。可选的,所述收发器1101、所述处理器1102和所述存储器1103通过总线1104相互连接;所述总线1104可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器1103,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1103可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器1102执行所述存储器1103所存放的应用程序,实现上述功能,从而实现信道状态信息的反馈装置1100的功能。
示例性地,该信道状态信息的反馈装置1100可以是上述实施例中的终端备;还可以是上述实施例中的网络设备。
在一个实施例中,所述信道状态信息的反馈装置1100在实现图6所示的实施例中终端设备的功能时,收发器1101可以实现图6所示的实施例中的由终端设备执行的收发操作;处理器1102可以实现图6所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图6所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述信道状态信息的反馈装置1100在实现图6所示的实施例中网络设备的功能时,收发器1101可以实现图6所示的实施例中的由网络设备执行的收发操作;处理器1102可以实现图6所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图6所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述信道状态信息的反馈装置1100在实现图9所示的实施例中终端设备的功能时,收发器1101可以实现图9所示的实施例中的由终端设备执行的收发操作;处理器1102可以实现图9所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图9所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述信道状态信息的反馈装置1100在实现图9所示的实施例中网络设备的功能时,收发器1101可以实现图9所示的实施例中的由网络设备执行的收发操作;处理器1102可以实现图9所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图9所示的实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的终端设备和网络设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的信道状态信息的反馈方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的信道状态信息的反馈方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的信道状态信息的反馈方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的信道状态信息的反馈方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (76)

  1. 一种信道状态信息的反馈方法,其特征在于,包括:
    终端设备接收来自网络设备的信道状态信息参考信号CSI-RS,并基于所述CSI-RS进行信道测量;
    所述终端设备基于第一码本向所述网络设备反馈信道状态信息CSI;所述第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个接收端空域时域列向量确定的,或者,所述第一码本是基于表示所述信道的所述一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;所述一个或多个发射端空域频域列向量用于指示联合所述发射端空域频域的信道信息;所述一个或多个接收端空域时域列向量用于指示联合所述接收端空域时域的信道信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一码本符合以下公式:
    Figure PCTCN2022095178-appb-100001
    其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 3为接收端空域时域联合基底矩阵,所述接收端空域时域联合基底矩阵包括所述一个或多个接收端空域时域列向量;所述W 2为所述发射端空域频域联合基底矩阵和所述接收端空域时域联合基底矩阵对应的复系数矩阵。
  3. 如权利要求1所述的方法,其特征在于,所述第一码本符合以下公式:
    Figure PCTCN2022095178-appb-100002
    其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 5为时域基底矩阵,所述时域基底矩阵包括所述一个或多个时域列向量;所述W 4为所述发射端空域频域联合基底矩阵和所述时域基底矩阵对应的复系数矩阵。
  4. 如权利要求2或3所述的方法,其特征在于,所述发射端空域频域联合基底矩阵W 1符合以下公式:
    W 1=W 11W 12
    其中,所述W 11为发射端空域频域联合基础基底矩阵,所述W 11中的每一个列向量对应一个发射端空域频域联合基础基底;所述W 12为发射端空域频域联合基础基底修正矩阵;所述W 11的列向量长度与所述网络设备的天线数量和所述CSI-RS占用的频域资源单元数量有关。
  5. 如权利要求2所述的方法,其特征在于,所述接收端空域时域联合基底矩阵W 3符合以下公式:
    W 3=W 31W 32
    其中,所述W 31为接收端空域时域联合基础基底矩阵,所述W 31中的每一个列向量对应一个接收端空域时域联合基础基底;所述W 32为接收端空域时域联合基础基底修正矩阵;所述W 31的列向量长度与所述终端设备的天线数量和测量时长有关。
  6. 如权利要求4所述的方法,其特征在于,所述发射端空域频域联合基础基底矩阵中的一个频域基础基底对应多个发射端空域基础基底,或者,所述发射端空域频域联合基底矩阵中的一个发射端空域基础基底对应多个频域基础基底。
  7. 如权利要求4或6所述的方法,其特征在于,所述W 11符合以下公式:
    Figure PCTCN2022095178-appb-100003
    其中,所述
    Figure PCTCN2022095178-appb-100004
    为W f的共轭矩阵,所述W f用于指示频域基础基底,所述W tx用于指示发射端空域基础基底。
  8. 如权利要求5所述的方法,其特征在于,所述接收端空域时域联合基础基底矩阵中的一个时域基础基底对应多个接收端空域基础基底,或者,所述接收端空域时域联合基底矩阵中的一个接收端空域基础基底对应多个时域基础基底。
  9. 如权利要求5或8所述的方法,其特征在于,所述W 31符合以下公式:
    Figure PCTCN2022095178-appb-100005
    其中,所述
    Figure PCTCN2022095178-appb-100006
    为W t的共轭矩阵,所述W t用于指示时域基础基底,所述W rx用于指示接收端空域基础基底。
  10. 如权利要求2所述的方法,其特征在于,所述W 2的维度为L*N 1;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N 1表示选择的接收端空域时域联合基底的个数,所述N 1为所述网络设备预配置或预定义的值。
  11. 如权利要求3所述的方法,其特征在于,所述W 4的维度为L*N d;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N d表示测量时长。
  12. 如权利要求4、6-7任一项所述的方法,其特征在于,所述发射端空域频域联合基础基底修正矩阵W 12的反馈周期为T1,所述T1为所述网络设备预配置或者预定义的值,所述T1大于反馈第一信息的周期,所述第一信息为所述CSI中除基于所述W 12反馈的信息以外的信息。
  13. 如权利要求1-12任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二信息,所述第二信息指示所述终端设备信道测量时采用的码本类型。
  14. 一种终端设备,其特征在于,包括:
    收发单元,用于接收来自网络设备的信道状态信息参考信号CSI-RS
    处理单元,用于基于所述CSI-RS进行信道测量;
    所述收发单元,还用于基于第一码本向所述网络设备反馈信道状态信息CSI;所述第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个接收端空域时域列向量确定的,或者,所述第一码本是基于表示所述信道的所述一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;所述一个或多个发射端空域频域列向量用于指示联合所述发射端空域频域的信道信息;所述一个或多个接收端空域时域列向量用于指示联合所述接收端空域时域的信道信息。
  15. 如权利要求14所述的终端设备,其特征在于,所述第一码本符合以下公式:
    Figure PCTCN2022095178-appb-100007
    其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 3为接收端空域时域联合基底矩阵,所述接收端空域时域联合基底矩阵包括所述一个或多个接收端空域时域列向量;所述W 2为所述发射端空域频域联合基底矩阵和所述接收端空域时域联合基底矩 阵对应的复系数矩阵。
  16. 如权利要求14所述的终端设备,其特征在于,所述第一码本符合以下公式:
    Figure PCTCN2022095178-appb-100008
    其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 5为时域基底矩阵,所述时域基底矩阵包括所述一个或多个时域列向量;所述W 4为所述发射端空域频域联合基底矩阵和所述时域基底矩阵对应的复系数矩阵。
  17. 如权利要求15或16所述的终端设备,其特征在于,所述发射端空域频域联合基底矩阵W 1符合以下公式:
    W 1=W 11W 12
    其中,所述W 11为发射端空域频域联合基础基底矩阵,所述W 11中的每一个列向量对应一个发射端空域频域联合基础基底;所述W 12为发射端空域频域联合基础基底修正矩阵;所述W 11的列向量长度与所述网络设备的天线数量和所述CSI-RS占用的频域资源单元数量有关。
  18. 如权利要求15所述的终端设备,其特征在于,所述接收端空域时域联合基底矩阵W 3符合以下公式:
    W 3=W 31W 32
    其中,所述W 31为接收端空域时域联合基础基底矩阵,所述W 31中的每一个列向量对应一个接收端空域时域联合基础基底;所述W 32为接收端空域时域联合基础基底修正矩阵;所述W 31的列向量长度与所述终端设备的天线数量和测量时长有关。
  19. 如权利要求17所述的终端设备,其特征在于,所述发射端空域频域联合基础基底矩阵中的一个频域基础基底对应多个发射端空域基础基底,或者,所述发射端空域频域联合基底矩阵中的一个发射端空域基础基底对应多个频域基础基底。
  20. 如权利要求17或19所述的终端设备,其特征在于,所述W 11符合以下公式:
    Figure PCTCN2022095178-appb-100009
    其中,所述
    Figure PCTCN2022095178-appb-100010
    为W f的共轭矩阵,所述W f用于指示频域基础基底,所述W tx用于指示发射端空域基础基底。
  21. 如权利要求18所述的终端设备,其特征在于,所述接收端空域时域联合基础基底矩阵中的一个时域基础基底对应多个接收端空域基础基底,或者,所述接收端空域时域联合基底矩阵中的一个接收端空域基础基底对应多个时域基础基底。
  22. 如权利要求18或21所述的终端设备,其特征在于,所述W 31符合以下公式:
    Figure PCTCN2022095178-appb-100011
    其中,所述
    Figure PCTCN2022095178-appb-100012
    为W t的共轭矩阵,所述W t用于指示时域基础基底,所述W rx用于指示接收端空域基础基底。
  23. 如权利要求15所述的终端设备,其特征在于,所述W 2的维度为L*N 1;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N 1表示选择的接收端空域时域联合基底的个数,所述N 1为所述网络设备预配置或预定义的值。
  24. 如权利要求16所述的终端设备,其特征在于,所述W 4的维度为L*N d;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的 值;所述N d表示测量时长。
  25. 如权利要求17、19-20任一项所述的终端设备,其特征在于,所述发射端空域频域联合基础基底修正矩阵W 12的反馈周期为T1,所述T1为所述网络设备预配置或者预定义的值,所述T1大于反馈第一信息的周期,所述第一信息为所述CSI中除基于所述W 12反馈的信息以外的信息。
  26. 如权利要求14-25任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收来自所述网络设备的第二信息,所述第二信息指示所述终端设备信道测量时采用的码本类型。
  27. 一种终端设备,其特征在于,包括处理器和收发器,其中:
    所述收发器,用于接收和/或发送信号或信息;
    所述处理器,与存储器耦合,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求1-13任一项所述的方法。
  28. 一种终端设备,其特征在于,包括处理器和存储器,其中:
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求1-13任一项所述的方法。
  29. 一种信道状态信息的反馈方法,其特征在于,包括:
    网络设备向终端设备发送信道状态信息参考信号CSI-RS;
    所述网络设备接收所述终端设备基于第一码本反馈的信道状态信息CSI;所述第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个接收端空域时域列向量确定的,或者,所述第一码本是基于表示信道的所述一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;所述一个或多个发射端空域频域列向量用于指示联合所述发射端空域频域的信道信息;所述一个或多个接收端空域时域列向量用于指示联合所述接收端空域时域的信道信息。
  30. 如权利要求29所述的方法,其特征在于,所述第一码本符合以下公式:
    Figure PCTCN2022095178-appb-100013
    其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 3为接收端空域时域联合基底矩阵,所述接收端空域时域联合基底矩阵包括所述一个或多个接收端空域时域列向量;所述W 2为所述发射端空域频域联合基底矩阵和所述接收端空域时域联合基底矩阵对应的复系数矩阵。
  31. 如权利要求29所述的方法,其特征在于,所述第一码本符合以下公式:
    Figure PCTCN2022095178-appb-100014
    其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 5为时域基底矩阵,所述时域基底矩阵包括所述一个或多个时域列向量;所述W 4为所述发射端空域频域联合基底矩阵和所述时域基底矩阵对应的复系数矩阵。
  32. 如权利要求30或31所述的方法,其特征在于,所述发射端空域频域联合基底矩阵W 1符合以下公式:
    W 1=W 11W 12
    其中,所述W 11为发射端空域频域联合基础基底矩阵,所述W 11中的每一个列向量对应一个发射端空域频域联合基础基底;所述W 12为发射端空域频域联合基础基底修正矩阵;所述W 11的列向量长度与所述网络设备的天线数量和所述CSI-RS占用的频域资源单元数量有关。
  33. 如权利要求31所述的方法,其特征在于,所述接收端空域时域联合基底矩阵W 3符合以下公式:
    W 3=W 31W 32
    其中,所述W 31为接收端空域时域联合基础基底矩阵,所述W 31中的每一个列向量对应一个接收端空域时域联合基础基底;所述W 32为接收端空域时域联合基础基底修正矩阵;所述W 31的列向量长度与所述终端设备的天线数量和测量时长有关。
  34. 如权利要求32所述的方法,其特征在于,所述发射端空域频域联合基础基底矩阵中的一个频域基础基底对应多个发射端空域基础基底,或者,所述发射端空域频域联合基底矩阵中的一个发射端空域基础基底对应多个频域基础基底。
  35. 如权利要求32或34所述的方法,其特征在于,所述W 11符合以下公式:
    Figure PCTCN2022095178-appb-100015
    其中,所述
    Figure PCTCN2022095178-appb-100016
    为W f的共轭矩阵,所述W f用于指示频域基础基底,所述W tx用于指示发射端空域基础基底。
  36. 如权利要求33所述的方法,其特征在于,所述接收端空域时域联合基础基底矩阵中的一个时域基础基底对应多个接收端空域基础基底,或者,所述接收端空域时域联合基底矩阵中的一个接收端空域基础基底对应多个时域基础基底。
  37. 如权利要求33或36所述的方法,其特征在于,所述W 31符合以下公式:
    Figure PCTCN2022095178-appb-100017
    其中,所述
    Figure PCTCN2022095178-appb-100018
    为W t的共轭矩阵,所述W t用于指示时域基础基底,所述W rx用于指示接收端空域基础基底。
  38. 如权利要求30所述的方法,其特征在于,所述W 2的维度为L*N 1;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N 1表示选择的接收端空域时域联合基底的个数,所述N 1为所述网络设备预配置或预定义的值。
  39. 如权利要求31所述的方法,其特征在于,所述W 4的维度为L*N d;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N d表示测量时长。
  40. 如权利要求32、34-35任一项所述的方法,其特征在于,所述发射端空域频域联合基础基底修正矩阵W 12的反馈周期为T1,所述T1为所述网络设备预配置或者预定义的值,所述T1大于反馈第一信息的周期,所述第一信息为所述CSI中除基于所述W 12反馈的信息以外的信息。
  41. 如权利要求29-40任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息指示所述终端设备信道测量时采用的码本类型。
  42. 一种网络设备,其特征在于,包括:
    收发单元,用于向终端设备发送信道状态信息参考信号CSI-RS;以及接收所述终端设 备基于第一码本反馈的信道状态信息CSI;所述第一码本是基于表示信道的一个或多个发射端空域频域列向量以及一个或多个接收端空域时域列向量确定的,或者,所述第一码本是基于表示信道的所述一个或多个发射端空域频域列向量以及一个或多个时域列向量确定的;所述一个或多个发射端空域频域列向量用于指示联合所述发射端空域频域的信道信息;所述一个或多个接收端空域时域列向量用于指示联合所述接收端空域时域的信道信息;
    处理单元,用于控制所述收发单元执行收发操作。
  43. 如权利要求42所述的网络设备,其特征在于,所述第一码本符合以下公式:
    Figure PCTCN2022095178-appb-100019
    其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 3为接收端空域时域联合基底矩阵,所述接收端空域时域联合基底矩阵包括所述一个或多个接收端空域时域列向量;所述W 2为所述发射端空域频域联合基底矩阵和所述接收端空域时域联合基底矩阵对应的复系数矩阵。
  44. 如权利要求42所述的网络设备,其特征在于,所述第一码本符合以下公式:
    Figure PCTCN2022095178-appb-100020
    其中,所述W为所述第一码本;所述W 1为发射端空域频域联合基底矩阵,所述发射端空域频域联合基底矩阵包括所述一个或多个发射端空域频域列向量;所述W 5为时域基底矩阵,所述时域基底矩阵包括所述一个或多个时域列向量;所述W 4为所述发射端空域频域联合基底矩阵和所述时域基底矩阵对应的复系数矩阵。
  45. 如权利要求43或44所述的网络设备,其特征在于,所述发射端空域频域联合基底矩阵W 1符合以下公式:
    W 1=W 11W 12
    其中,所述W 11为发射端空域频域联合基础基底矩阵,所述W 11中的每一个列向量对应一个发射端空域频域联合基础基底;所述W 12为发射端空域频域联合基础基底修正矩阵;所述W 11的列向量长度与所述网络设备的天线数量和所述CSI-RS占用的频域资源单元数量有关。
  46. 如权利要求44所述的网络设备,其特征在于,所述接收端空域时域联合基底矩阵W 3符合以下公式:
    W 3=W 31W 32
    其中,所述W 31为接收端空域时域联合基础基底矩阵,所述W 31中的每一个列向量对应一个接收端空域时域联合基础基底;所述W 32为接收端空域时域联合基础基底修正矩阵;所述W 31的列向量长度与所述终端设备的天线数量和测量时长有关。
  47. 如权利要求45所述的网络设备,其特征在于,所述发射端空域频域联合基础基底矩阵中的一个频域基础基底对应多个发射端空域基础基底,或者,所述发射端空域频域联合基底矩阵中的一个发射端空域基础基底对应多个频域基础基底。
  48. 如权利要求45或47所述的网络设备,其特征在于,所述W 11符合以下公式:
    Figure PCTCN2022095178-appb-100021
    其中,所述
    Figure PCTCN2022095178-appb-100022
    为W f的共轭矩阵,所述W f用于指示频域基础基底,所述W tx用于指示发射端空域基础基底。
  49. 如权利要求46所述的网络设备,其特征在于,所述接收端空域时域联合基础基底 矩阵中的一个时域基础基底对应多个接收端空域基础基底,或者,所述接收端空域时域联合基底矩阵中的一个接收端空域基础基底对应多个时域基础基底。
  50. 如权利要求46或49所述的网络设备,其特征在于,所述W 31符合以下公式:
    Figure PCTCN2022095178-appb-100023
    其中,所述
    Figure PCTCN2022095178-appb-100024
    为W t的共轭矩阵,所述W t用于指示时域基础基底,所述W rx用于指示接收端空域基础基底。
  51. 如权利要求43所述的网络设备,其特征在于,所述W 2的维度为L*N 1;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N 1表示选择的接收端空域时域联合基底的个数,所述N 1为所述网络设备预配置或预定义的值。
  52. 如权利要求44所述的网络设备,其特征在于,所述W 4的维度为L*N d;其中,所述L表示选择的发射端空域频域联合基底的个数,所述L为所述网络设备预配置或预定义的值;所述N d表示测量时长。
  53. 如权利要求45、47-48任一项所述的网络设备,其特征在于,所述发射端空域频域联合基础基底修正矩阵W 12的反馈周期为T1,所述T1为所述网络设备预配置或者预定义的值,所述T1大于反馈第一信息的周期,所述第一信息为所述CSI中除基于所述W 12反馈的信息以外的信息。
  54. 如权利要求42-53任一项所述的网络设备,其特征在于,所述收发单元,还用于:
    向所述终端设备发送第二信息,所述第二信息指示所述终端设备信道测量时采用的码本类型。
  55. 一种网络设备,其特征在于,包括处理器和收发器,其中:
    所述收发器,用于接收和/或发送信号或信息;
    所述处理器,与存储器耦合,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求29-41任一项所述的方法。
  56. 一种网络设备,其特征在于,包括处理器和存储器,其中:
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求29-41任一项所述的方法。
  57. 一种信道状态信息的反馈方法,其特征在于,包括:
    终端设备接收来自网络设备的信道状态信息参考信号CSI-RS,并基于所述CSI-RS进行信道测量;
    所述终端设备向所述网络设备反馈信道状态信息,所述信道状态信息用于指示1个或多个第一基底,所述1个或多个第一基底用于基于预设基底生成方法生成1个或多个指示信道状态信息的第二基底。
  58. 如权利要求57所述的方法,其特征在于,所述1个或多个第一基底是量化后的1个或多个空域频域联合统计协方差基底列向量。
  59. 如权利要求57或58所述的方法,其特征在于,所述预设基底生成方法是所述网络设备预配置或预定义的正交化方法。
  60. 一种信道状态信息的反馈方法,其特征在于,包括:
    网络设备向终端设备发送信道状态信息参考信号CSI-RS;
    所述网络设备接收所述终端设备反馈的信道状态信息,所述信道状态信息用于指示1个或多个第一基底,所述1个或多个第一基底用于基于预设基底生成方法生成1个或多个指示信道状态信息的第二基底。
  61. 如权利要求60所述的方法,其特征在于,所述1个或多个第一基底是量化后的1个或多个空域频域联合统计协方差基底列向量。
  62. 如权利要求60或61所述的方法,其特征在于,所述预设基底生成方法是所述网络设备预配置或预定义的正交化方法。
  63. 一种终端设备,其特征在于,包括:
    收发单元,用于接收来自网络设备的信道状态信息参考信号CSI-RS;
    处理单元,用于基于所述CSI-RS进行信道测量;
    所述收发单元,还用于向所述网络设备反馈信道状态信息,所述信道状态信息用于指示1个或多个第一基底,所述1个或多个第一基底用于基于预设基底生成方法生成1个或多个指示信道状态信息的第二基底。
  64. 如权利要求63所述的终端设备,其特征在于,所述1个或多个第一基底是量化后的1个或多个空域频域联合统计协方差基底列向量。
  65. 如权利要求63或64所述的终端设备,其特征在于,所述预设基底生成方法是所述网络设备预配置或预定义的正交化方法。
  66. 一种网络设备,其特征在于,包括:
    收发单元,用于向终端设备发送信道状态信息参考信号CSI-RS;以及接收所述终端设备反馈的信道状态信息,所述信道状态信息用于指示1个或多个第一基底,所述1个或多个第一基底用于基于预设基底生成方法生成1个或多个指示信道状态信息的第二基底;
    处理单元,用于控制所述收发单元的收发操作。
  67. 如权利要求66所述的网络设备,其特征在于,所述1个或多个第一基底是量化后的1个或多个空域频域联合统计协方差基底列向量。
  68. 如权利要求66或67所述的网络设备,其特征在于,所述预设基底生成方法是所述网络设备预配置或预定义的正交化方法。
  69. 一种终端设备,其特征在于,包括处理器和收发器,其中:
    所述收发器,用于接收和/或发送信号或信息;
    所述处理器,与存储器耦合,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求57-59任一项所述的方法。
  70. 一种终端设备,其特征在于,包括处理器和存储器,其中:
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求57-59任一项所述的方法。
  71. 一种网络设备,其特征在于,包括处理器和收发器,其中:
    所述收发器,用于接收和/或发送信号或信息;
    所述处理器,与存储器耦合,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求60-62任一项所述的方法。
  72. 一种网络设备,其特征在于,包括处理器和存储器,其中:
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求60-62任一项所述的方法。
  73. [根据细则91更正 21.06.2022] 
    一种通信系统,其特征在于,包括如权利要求14-28、63-65、69-70中任一项所述的终端设备,以及如权利要求42-56、66-68、71-72中任一项所述的网络设备。
  74. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求1-13、29-41、57-62中任一项所述的方法。
  75. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机如执行权利要求1-13、29-41、57-62中任一项所述的方法。
  76. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-13、29-41、57-62中任一项所述的方法。
PCT/CN2022/095178 2021-06-16 2022-05-26 一种信道状态信息的反馈方法及装置 WO2022262545A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22824025.5A EP4346113A1 (en) 2021-06-16 2022-05-26 Method and apparatus for feeding back channel state information
US18/541,093 US20240129092A1 (en) 2021-06-16 2023-12-15 Channel state information feedback method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110664838.0A CN115483950A (zh) 2021-06-16 2021-06-16 一种信道状态信息的反馈方法及装置
CN202110664838.0 2021-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/541,093 Continuation US20240129092A1 (en) 2021-06-16 2023-12-15 Channel state information feedback method and apparatus

Publications (1)

Publication Number Publication Date
WO2022262545A1 true WO2022262545A1 (zh) 2022-12-22

Family

ID=84419697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095178 WO2022262545A1 (zh) 2021-06-16 2022-05-26 一种信道状态信息的反馈方法及装置

Country Status (4)

Country Link
US (1) US20240129092A1 (zh)
EP (1) EP4346113A1 (zh)
CN (1) CN115483950A (zh)
WO (1) WO2022262545A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116405074A (zh) * 2023-06-08 2023-07-07 北京智芯微电子科技有限公司 码本选择方法、装置、存储介质及处理器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010249A (zh) * 2019-12-23 2020-04-14 华中科技大学 一种角度时延域信道预测方法、预测系统及应用
CN111510189A (zh) * 2019-01-30 2020-08-07 华为技术有限公司 信息反馈方法及装置
CN112075031A (zh) * 2018-04-27 2020-12-11 三星电子株式会社 启用基于非均匀空频压缩的csi报告的方法和装置
WO2021028425A1 (en) * 2019-08-15 2021-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Three-component codebook based csi reporting
CN112583501A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 信道测量方法和通信装置
CN112751592A (zh) * 2019-10-29 2021-05-04 华为技术有限公司 上报信道状态信息的方法和通信装置
US20210143885A1 (en) * 2018-05-30 2021-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Doppler-delay codebook-based precoding and csi reporting wireless communications systems
CN112910807A (zh) * 2021-02-04 2021-06-04 华中科技大学 一种基于空间随机采样的智能超表面信道估计方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112075031A (zh) * 2018-04-27 2020-12-11 三星电子株式会社 启用基于非均匀空频压缩的csi报告的方法和装置
US20210143885A1 (en) * 2018-05-30 2021-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Doppler-delay codebook-based precoding and csi reporting wireless communications systems
CN111510189A (zh) * 2019-01-30 2020-08-07 华为技术有限公司 信息反馈方法及装置
WO2021028425A1 (en) * 2019-08-15 2021-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Three-component codebook based csi reporting
CN112583501A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 信道测量方法和通信装置
CN112751592A (zh) * 2019-10-29 2021-05-04 华为技术有限公司 上报信道状态信息的方法和通信装置
CN111010249A (zh) * 2019-12-23 2020-04-14 华中科技大学 一种角度时延域信道预测方法、预测系统及应用
CN112910807A (zh) * 2021-02-04 2021-06-04 华中科技大学 一种基于空间随机采样的智能超表面信道估计方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Technical Categorization for CSI enhancements MTRP and FR1 FDD reciprocity", 3GPP DRAFT; R1-2007268, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200817 - 20200828, 28 August 2020 (2020-08-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051922826 *
MODERATOR (HUAWEI, HISILICON): "Summary of CSI enhancements for MTRP and FDD (Round 0)", 3GPP DRAFT; R1-2101884, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210125 - 20210205, 27 January 2021 (2021-01-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051975967 *
VIVO: "Further discussion and evaluation on MTRP CSI and partial reciprocity", 3GPP DRAFT; R1-2102512, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 6 April 2021 (2021-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051993116 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116405074A (zh) * 2023-06-08 2023-07-07 北京智芯微电子科技有限公司 码本选择方法、装置、存储介质及处理器
CN116405074B (zh) * 2023-06-08 2023-08-22 北京智芯微电子科技有限公司 码本选择方法、装置、存储介质及处理器

Also Published As

Publication number Publication date
CN115483950A (zh) 2022-12-16
US20240129092A1 (en) 2024-04-18
EP4346113A1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
US20220239360A1 (en) Csi omission rules for enhanced type ii csi reporting
KR20160086948A (ko) 채널 상태 정보의 피드백 방법 및 장치
US20220263560A1 (en) Channel state information reporting method and communications apparatus
US11588524B2 (en) Channel measurement method and communications apparatus
US11296755B2 (en) Communication method and communications apparatus
CN111342873A (zh) 一种信道测量方法和通信装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
EP4027543A1 (en) Channel measurement method and communication apparatus
WO2022048593A1 (zh) 信道测量的方法和装置
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
US11943014B2 (en) Channel measurement method and communications apparatus
US20240129092A1 (en) Channel state information feedback method and apparatus
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
US20230164004A1 (en) Channel parameter obtaining method and apparatus
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
US20220416866A1 (en) Channel state information feedback method and communications apparatus
US20220271900A1 (en) Method for configuring transmit port of downlink reference signal and communication apparatus
EP4274112A1 (en) Channel state information feedback method and communication apparatus
WO2022227976A1 (zh) 通信方法和通信装置
WO2024001744A1 (zh) 一种信道状态信息的上报方法及通信装置
WO2021146961A1 (zh) 用于确定下行信道状态信息的方法和装置
CN116743217A (zh) 信道状态信息的反馈方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022824025

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022824025

Country of ref document: EP

Effective date: 20231225

NENP Non-entry into the national phase

Ref country code: DE