WO2022083307A1 - 信道测量的方法及通信装置 - Google Patents

信道测量的方法及通信装置 Download PDF

Info

Publication number
WO2022083307A1
WO2022083307A1 PCT/CN2021/116159 CN2021116159W WO2022083307A1 WO 2022083307 A1 WO2022083307 A1 WO 2022083307A1 CN 2021116159 W CN2021116159 W CN 2021116159W WO 2022083307 A1 WO2022083307 A1 WO 2022083307A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
channel
matrix
unit
units
Prior art date
Application number
PCT/CN2021/116159
Other languages
English (en)
French (fr)
Inventor
孟鑫
杨烨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21881726.0A priority Critical patent/EP4224731A4/en
Publication of WO2022083307A1 publication Critical patent/WO2022083307A1/zh
Priority to US18/303,067 priority patent/US20230261704A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback
    • H04L25/03955Spatial equalizers equalizer selection or adaptation based on feedback in combination with downlink estimations, e.g. downlink path losses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present application relates to the field of communication, and more particularly, to a method and a communication device for channel measurement.
  • massive multiple-input multiple-output massive MIMO
  • network equipment can reduce the interference between multiple users and the interference between multiple signal streams of the same user through precoding. It is beneficial to improve signal quality, realize space division multiplexing, and improve spectrum utilization.
  • a channel measurement method is known.
  • the network device sends a downlink channel state information reference signal (CSI-RS), and the terminal device estimates the downlink channel according to the received downlink CSI-RS, and then uses the predefined code to estimate the downlink channel.
  • the codeword that best matches the downlink channel is selected from this set, and finally the selected codeword is fed back to the network device through the uplink channel.
  • the codebook set is usually discrete and finite, while the real channel is usually infinitely continuous. Therefore, there is an inevitable quantization error between the codebook and the real channel, which restricts network equipment to improve the downlink channel state. The bottleneck of channel state information (CSI) accuracy.
  • CSI channel state information
  • the present application provides a channel measurement method and a communication device, which can determine a downlink channel by combining codebook feedback on multiple time-frequency blocks, and improve the accuracy of determining the downlink channel.
  • a first aspect provides a method for channel measurement, the method may include: receiving multiple reference signals on multiple first frequency domain units in the same time domain unit, where the multiple reference signals are respectively determined by the first The precoding matrix corresponding to the frequency domain unit is precoded, wherein the precoding matrices corresponding to at least two different first frequency domain units in the plurality of first frequency domain units are different; the precoding matrix indication ( pre-coding matrix indicator, PMI), the PMI is used to indicate multiple codewords corresponding to multiple second frequency domain units, the multiple second frequency domain units and the multiple first frequency domain units belong to the same frequency domain resource, the multiple codewords are used to determine the downlink channel; the PMI is sent.
  • PMI pre-coding matrix indicator
  • the correlation of the channels on different frequency domain units can be reduced, and the terminal equipment can be further reduced.
  • the codewords on different frequency domain units are quantized and fed back to the error correlation, so the accuracy of reconstructing the downlink channel can be improved.
  • a method for channel measurement may include: sending multiple reference signals on multiple first frequency domain units in the same time domain unit, where the multiple reference signals are respectively The precoding matrix corresponding to the frequency domain unit is precoded, wherein the precoding matrices corresponding to at least two different first frequency domain units in the plurality of first frequency domain units are different; and a PMI is received, where the PMI is used to indicate a plurality of second frequency domain units.
  • Multiple codewords corresponding to domain units, the multiple second frequency domain units and the multiple first frequency domain units belong to the same frequency domain resources; determined according to the multiple codewords and the spatial frequency domain channel characteristic matrix of the uplink channel downlink channel.
  • the space-frequency domain channel characteristic matrix of the uplink channel is determined according to the channel matrix of the uplink channel and the conjugate transpose of the channel matrix.
  • the correlation of the channels on different frequency domain units can be reduced, and the terminal equipment can be further reduced.
  • the codewords on different frequency domain units are quantized and fed back to the error correlation, so the accuracy of reconstructing the downlink channel can be improved.
  • the time domain unit may be a radio frame (frame), a sub-frame (sub-frame), a time slot (slot), and the like.
  • the first frequency domain unit may be a subband, a resource block (resource block, RB), a resource block group (resource block group, RBG), a precoding resource block group (precoding resource block group, PRG) and the like.
  • the second frequency domain unit may be a subband, RB, RBG, PRG, or the like.
  • the second frequency domain unit may be an RB, that is, the terminal device may perform codebook quantization feedback based on the RB; the second frequency domain unit may also be a subband, that is, the terminal device may perform codebook quantization feedback based on the subband.
  • a frequency domain resource can be an RB, or an RBG, or a predefined subband (subband), or a frequency band (band), or a bandwidth part (BWP), or a component carrier (CC).
  • subband a predefined subband
  • band a frequency band
  • BWP bandwidth part
  • CC component carrier
  • Multiple second frequency domain units and multiple first frequency domain units belong to the same frequency domain resources, which can be understood as frequency domain resources composed of multiple second frequency domain units and frequency domain resources composed of multiple first frequency domain units Are the same.
  • the first frequency domain unit is an RB
  • the second frequency domain unit is an RBG.
  • the frequency domain resources composed of multiple first frequency domain units are 12 RBs, denoted as RB#1-RB#12;
  • the frequency domain resources composed of multiple second frequency domain units are also 12 RBs, which are RB#1-RB#12.
  • the bandwidth composed of multiple first frequency domain units is 15 Hz
  • the bandwidth composed of multiple second frequency domain units is also 15 Hz.
  • determining the downlink channel according to the codeword and the space-frequency domain channel characteristic matrix of the uplink channel includes: according to the codeword and the space-frequency domain channel characteristic The matrix obtains the first downlink channel, and the first downlink channel is an angle delay domain channel; according to the first downlink channel and the spatial frequency domain channel characteristic matrix, a second downlink channel is obtained, and the second downlink channel is the spatial frequency domain. domain channel.
  • the downlink channel is reconstructed by combining the codebook feedback on multiple time-frequency blocks in the angle delay domain, and then the channel in the angle delay domain is transformed.
  • the complexity of reconstructing the downlink channel can be reduced, and the performance of the reconstructed downlink channel can be improved.
  • the precoding matrices corresponding to any two different first frequency domain units respectively are different.
  • the plurality of first frequency domain units are divided into at least two frequency domain unit groups, the at least two frequency domain units
  • the precoding matrices corresponding to the groups are different.
  • the first frequency-domain unit is an RB
  • the group of frequency-domain units is a subband.
  • the precoding matrices respectively corresponding to any two different frequency domain unit groups are different.
  • the precoding matrix is a random semi-unitary matrix.
  • the precoding matrix is a product of a fixed beam matrix and a mutually unbiased bases (mutually unbiased bases, MUB) matrix, the fixed beam matrix.
  • the beam matrix is a semi-unitary matrix with different columns having the same beam pattern.
  • a method for channel measurement may include: receiving multiple reference signals on multiple first frequency domain units in the same time domain unit; generating a PMI based on the multiple reference signals and a weighting matrix , the PMI is used to indicate multiple codewords corresponding to the weighted equivalent channels of multiple second frequency domain units, the multiple codewords are used to determine the downlink channel, and the weighted equivalent channel of each second frequency domain unit is based on Obtained from the weighting matrices corresponding to the second frequency domain units, the weighting matrices corresponding to at least two different second frequency domain units in the plurality of second frequency domain units are different, and the plurality of second frequency domain units and the plurality of first frequency domain units are different. Domain units belong to the same frequency domain resource; this PMI is sent.
  • the correlation of the channels on different second frequency domain units can be reduced, and the terminal equipment can further reduce the impact on different second frequency domain units.
  • the codeword on the frequency domain unit is used to quantize the correlation of the feedback errors, so the accuracy of reconstructing the downlink channel can be improved.
  • a method for channel measurement may include: sending multiple reference signals on multiple first frequency domain units in the same time domain unit; receiving a PMI, where the PMI is used to indicate multiple first frequency domain units Multiple codewords corresponding to the weighted equivalent channel of the second frequency domain unit, the multiple codewords are used to determine the downlink channel, and the weighted equivalent channel of each second frequency domain unit is based on the weighting matrix corresponding to the second frequency domain unit obtained, the weighting matrices corresponding to at least two different second frequency domain units in the plurality of second frequency domain units are different, and the plurality of second frequency domain units and the plurality of first frequency domain units belong to the same frequency domain resource;
  • the downlink channel is determined according to the plurality of codewords and the space-frequency domain channel characteristic matrix of the uplink channel.
  • the space-frequency domain channel characteristic matrix of the uplink channel is determined according to the channel matrix of the uplink channel and the conjugate transpose of the channel matrix.
  • the correlation of the channels on different second frequency domain units can be reduced, and the terminal equipment can further reduce the impact on different second frequency domain units.
  • the codeword on the frequency domain unit is used to quantize the correlation of the feedback errors, so the accuracy of reconstructing the downlink channel can be improved.
  • the time domain unit may be a radio frame, a subframe, a time slot, or the like.
  • the first frequency domain unit may be a subband, RB, RBG, PRG, or the like.
  • the second frequency domain unit may be a subband, RB, RBG, PRG, or the like.
  • the second frequency domain unit may be an RB, that is, the terminal device may perform codebook quantization feedback based on the RB, and the terminal device may perform codebook quantization feedback based on the weighted equivalent channel of each RB, and the weighting matrices corresponding to at least two RBs are different
  • the second frequency domain unit can also be a subband, that is, the terminal device can perform codebook quantization feedback based on the subband, and the terminal device can perform codebook quantization feedback based on the weighted equivalent channel of each subband, and at least two subbands correspond to The weighting matrices of are different.
  • the frequency domain resource may be an RB, or an RBG, or a predefined subband (subband), or a frequency band (band), or a BWP, or a CC.
  • Multiple second frequency domain units and multiple first frequency domain units belong to the same frequency domain resources, which can be understood as frequency domain resources composed of multiple second frequency domain units and frequency domain resources composed of multiple first frequency domain units Are the same.
  • the first frequency domain unit is an RB
  • the second frequency domain unit is an RBG.
  • the frequency domain resources composed of multiple first frequency domain units are 12 RBs, denoted as RB#1-RB#12;
  • the frequency domain resources composed of multiple second frequency domain units are also 12 RBs, which are RB#1-RB#12.
  • the bandwidth composed of multiple first frequency domain units is 15 Hz
  • the bandwidth composed of multiple second frequency domain units is also 15 Hz.
  • determining the downlink channel according to the plurality of codewords and the spatial frequency domain channel characteristic matrix of the uplink channel includes: according to the plurality of codewords and the spatial frequency domain
  • the first downlink channel is obtained from the channel characteristic matrix, and the first downlink channel is an angle delay domain channel;
  • the second downlink channel is obtained according to the first downlink channel and the space-frequency domain channel characteristic matrix, and the second downlink channel is Spatial frequency domain channel.
  • the downlink channel is reconstructed by combining the codebook feedback on multiple time-frequency blocks in the angle delay domain, and then the channel in the angle delay domain is transformed.
  • the complexity of reconstructing the downlink channel can be reduced, and the performance of the reconstructed downlink channel can be improved.
  • the corresponding weighting matrices of any two different second frequency domain units are different.
  • the plurality of second frequency domain units are divided into at least two frequency domain unit groups, at least two different frequency domain units
  • the corresponding weighting matrices for the groups are different.
  • the second frequency domain unit is an RB
  • the frequency domain unit group is a subband
  • the corresponding weighting matrices of any two different frequency domain unit groups are different.
  • the multiple reference signals are precoded by a fixed beam matrix, and the fixed beam matrix is that different columns have the same beam pattern
  • the semiunitary matrix of ; the weighting matrix is the MUB matrix.
  • a communication apparatus may be a terminal device, or a component in the terminal device.
  • the communication apparatus may include various modules or units for performing the method in the first aspect or the third aspect and any possible implementation manner of the first aspect or the third aspect.
  • a communication apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory, so as to implement the method in the first aspect or the third aspect and any possible implementation manner of the first aspect or the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, the communication interface is used for inputting and/or outputting information, and the information includes at least one of instructions and data.
  • the communication apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication apparatus is a chip or a chip system configured in the terminal device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication apparatus in a seventh aspect, may be a network device or a component in the network device.
  • the communication apparatus may include various modules or units for performing the method in the second aspect or the fourth aspect and any possible implementation manner of the second aspect or the fourth aspect.
  • a communication apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method of the second aspect or the fourth aspect and any possible implementation of the second aspect or the fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled to the communication interface, the communication interface is used for inputting and/or outputting information, and the information includes at least one of instructions and data.
  • the communication apparatus is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication apparatus is a chip or a chip system configured in a network device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the possible implementation manners of the first aspect to the fourth aspect.
  • the above-mentioned processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing apparatus including a communication interface and a processor.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing device executes the method in any one of the possible implementations of the first aspect to the fourth aspect.
  • processors there are one or more processors and one or more memories.
  • a processing apparatus including a processor and a memory.
  • the processor is configured to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter, so that the processing device executes the method in any one of the possible implementations of the first aspect to the fourth aspect .
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting manner of the memory and the processor.
  • ROM read only memory
  • sending indication information may be a process of outputting indication information from the processor
  • receiving indication information may be a process of inputting received indication information to the processor.
  • the information output by the processing can be output to the transmitter, and the input information received by the processor can be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the device in the tenth aspect and eleventh aspect above may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, or the like; when When implemented by software, the processor can be a general-purpose processor, and is implemented by reading software codes stored in a memory, which can be integrated in the processor or located outside the processor and exist independently.
  • a twelfth aspect provides a computer program product, the computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes a computer to execute the above-mentioned first aspect to The method in any possible implementation manner of the fourth aspect.
  • a computer program also referred to as code, or instructions
  • a computer-readable medium stores a computer program (also referred to as code, or instruction) when it is run on a computer, causing the computer to execute the above-mentioned first aspect to The method in any possible implementation manner of the fourth aspect.
  • a computer program also referred to as code, or instruction
  • a communication system including the aforementioned terminal device and network device.
  • FIG. 1 is a schematic diagram of a communication system to which the method for channel measurement according to the embodiment of the present application is applied.
  • FIG. 2 is a schematic flowchart of a channel measurement method provided by an embodiment of the present application.
  • FIG. 3 to FIG. 5 are schematic diagrams of mapping of reference signals in time-frequency resources provided by embodiments of the present application.
  • FIG. 6 is a schematic flowchart of a channel measurement method provided by another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication system fifth generation (5th Generation , 5G) mobile communication system or new wireless access access technology (new radio access technology, NR).
  • the 5G mobile communication system may include non-standalone (NAS) and/or standalone (SA).
  • the technical solutions provided in this application can also be applied to machine type communication (MTC), Long Term Evolution-machine (LTE-M), and device to device (D2D) networks.
  • M2M Machine to Machine
  • IoT Internet of Things
  • the IoT network may include, for example, the Internet of Vehicles.
  • vehicle to X, V2X, X can represent anything
  • the V2X may include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and vehicle Vehicle to infrastructure (V2I) communication, vehicle to pedestrian (V2P) or vehicle to network (V2N) communication, etc.
  • the network device may be any device with a wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved Node B, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi) system
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc. can also be 5G, such as, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system, or, it can also be a network node that constitutes a
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer function.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer.
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may include one or more devices of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment, and the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , can also belong to the base station corresponding to the small cell, where the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell), etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a macro base station for example, a macro eNB or a macro gNB, etc.
  • the small cell can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico cell), femto cell (femto cell), etc.
  • these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission
  • a terminal device may also be referred to as user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, PDA, etc.), mobile Internet device (mobile Internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminal in industrial control (industrial control), wireless terminal in unmanned driving (self driving), wireless terminal in remote medical (remote medical) Terminal, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless Telephones, session initiation protocol (SIP) telephones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices, computing devices or links with wireless communication capabilities
  • wearable devices can also be called wearable smart devices, which is a general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full functions, large sizes, and can achieve complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (part of terminal equipment), receiving control information and downlink data of network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for the method provided by this embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 shown in FIG. 1 ; the communication system 100 may also include at least one terminal device, such as the terminal device 102 to 107.
  • the terminal devices 102 to 107 may be mobile or stationary.
  • Each of the network device 101 and one or more of the end devices 102 to 107 may communicate over a wireless link.
  • Each network device can provide communication coverage for a specific geographic area and can communicate with terminal devices located within that coverage area.
  • the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device. Therefore, the network device 101 and the terminal devices 102 to 107 in FIG. 1 constitute a communication system.
  • terminal devices 105 and 106 can directly communicate with the network device 101; they can also communicate with the network device 101 indirectly.
  • the terminal device 105 communicates with the network device 101 .
  • FIG. 1 exemplarily shows a network device, a plurality of terminal devices, and communication links between the communication devices.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices, such as more or less terminal devices. This application does not limit this.
  • Each of the above communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain, which can be understood by those of ordinary skill in the art, all of which may include multiple components (eg, processors, modulators, multiplexers) related to signal transmission and reception. , demodulator, demultiplexer or antenna, etc.). Therefore, the multi-antenna technology can be used for communication between the network device and the terminal device.
  • the wireless communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • network entities such as a network controller, a mobility management entity, and the like, which are not limited in this embodiment of the present application.
  • the multi-antenna system configures multiple transceiver antennas on the network equipment, and improves the system capacity by exploiting the spatial dimension resources.
  • a key factor for improving the downlink capacity of a multi-antenna system is to obtain relatively accurate downlink channel state information (CSI) at the network device side.
  • CSI downlink channel state information
  • the downlink CSI can be estimated by the uplink sounding reference signal (SRS) sent by the user.
  • SRS uplink sounding reference signal
  • the FDD system has no channel reciprocity due to the difference between the uplink and downlink frequency bands, so the downlink CSI can only be fed back by the terminal device to the network device.
  • the equivalent baseband channel between the network device and the terminal device does not have reciprocity. Therefore, the downlink CSI also needs to be fed back by the terminal device to the network device.
  • the network device In the downlink CSI feedback process, the network device first sends a downlink channel state information reference signal (CSI-RS); the terminal device estimates the downlink channel according to the received downlink CSI-RS, and then uses the pre-defined downlink CSI-RS to estimate the downlink channel.
  • the codeword that best matches the downlink channel is selected from the codebook set, and finally the selected codeword is fed back to the network device through the uplink channel.
  • the codebook set is usually discrete finite state, while the real channel is usually continuous infinite state, so there is an inevitable quantization error between the codebook and the real channel, which restricts the network equipment to improve the downlink CSI.
  • Accuracy bottleneck Since wireless channels usually have time correlation and frequency correlation, codebook feedback on multiple time-frequency blocks can be used jointly on the network device side to jointly reconstruct the channels on these time-frequency blocks to improve CSI accuracy.
  • An existing scheme for reconstructing a downlink channel by utilizing the time correlation of the channel is as follows: when the network device sends the CSI-RS, a pilot weighting matrix is used to weight the CSI-RS, and the weighting matrix is used at different times (CSI-RS).
  • the weighting matrix on all resource blocks (RBs) in the same CSI-RS subframe is the same; the terminal equipment performs channel estimation according to the received downlink CSI-RS, and obtains the channel estimation result. is the weighted equivalent channel of the real channel, and the codebook is quantized on the equivalent channel, and then the codebook is fed back to the network device; the network device combines the corresponding pilot weighting matrix fed back by the terminal device each time to reconstruct the real downlink CSI .
  • the downlink CSI reconstructed by the network device can be used for downlink multi-user scheduling, beamforming transmission, and the like.
  • the network device Since the above channel reconstruction scheme only utilizes the time correlation of the channel in principle, but does not utilize the frequency correlation of the channel, even if the terminal device is under subband feedback, the network device reconstructs each subband channel independently, and There is no joint reconstruction between subbands, so there is room for performance improvement.
  • the network device uses the same weighting matrix in the whole band when sending CSI-RS, even if the terminal device adopts sub-band feedback, the correlation between the codebook quantization errors between sub-bands is very high. Therefore, the network device performs sub-band feedback. There is no gain in the joint reconstruction between the two.
  • the embodiments of the present application provide a method for channel measurement, so as to improve the accuracy of downlink channel reconstruction by network equipment.
  • the terminal equipment shown in the following embodiments may be replaced with components (such as circuits, chips, or chip systems) in the configuration and terminal equipment.
  • the network equipment shown in the downlink embodiments may also be replaced with components (eg, circuits, chips, or chip systems) configured in the network equipment.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be executed to execute the method provided by the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • FIG. 2 is a schematic flowchart of a method 200 for channel measurement provided by an embodiment of the present application. As shown in FIG. 2 , the method 200 may include S210 to S260. Each step in the method 200 is described in detail below.
  • the terminal device sends an uplink reference signal.
  • the network device receives the uplink reference signal.
  • the uplink reference signal sent by the terminal device to the network device can be used to measure the uplink channel, and the uplink reference signal can be a sounding reference signal (sounding reference signal, SRS), or can be other reference signals, which is not done in this embodiment of the present application limited.
  • SRS sounding reference signal
  • the terminal device may periodically send the uplink reference signal to the network device.
  • the network device estimates the uplink channel according to the uplink reference signal, and calculates the spatial frequency domain channel characteristic matrix of the uplink channel.
  • the following describes a method for the network device to calculate the channel characteristic matrix in the spatial frequency domain according to the estimated uplink channel.
  • the network device splices the rth transmitting antenna of the terminal device to all the antennas of the network device in the uplink channels of all RBs into a column vector, denoted as Among them, vec( ) represents the vectorization operation, The dimension of is M t K ⁇ 1. Further, the network device calculates Statistical averaging is performed on all transmitting antennas and time of the terminal device to obtain the long-term statistical space-frequency domain joint channel covariance matrix R of the terminal device, and the dimension of R is M t K ⁇ M t K .
  • the network device will obtain multiple uplink reference signals from the terminal device within a period of time Statistical averaging is performed to obtain the long-term statistical space-frequency domain joint channel covariance matrix R of the terminal equipment.
  • the network device can first Statistical averaging is performed on all transmitting antennas of the terminal equipment to obtain Further, the network device will obtain multiple uplink reference signals from the terminal device within a period of time. Statistical averaging is performed to obtain the long-term statistical space-frequency domain joint channel covariance matrix R of the terminal equipment.
  • the network devices described above will The method for performing statistical averaging on all transmit antennas and time of the terminal device is only an example, and should not limit the embodiments of the present application.
  • the network device may also use multiple uplink reference signals obtained from multiple uplink reference signals from the terminal device within a period of time. multiple multiple Statistical averaging is performed to obtain the long-term statistical space-frequency domain joint channel covariance matrix R of the terminal equipment.
  • the network device calculates the low-rank approximation of R to obtain the spatial frequency domain channel characteristic matrix P, that is, R ⁇ PP H , the dimension of P is M t K ⁇ N, and N is much smaller than M t K .
  • the method for calculating the low-rank approximation of the matrix may refer to the prior art.
  • the network device splices the rth transmitting antenna of the terminal device to all the antennas of the network device in the uplink channels of all RBs into a matrix, denoted as The dimension of is M t ⁇ K. Further, the network device calculates and And perform statistical averaging on all the transmitting antennas and time of the terminal device, and obtain the long-term statistical space domain channel covariance matrix R s and frequency domain channel covariance matrix R f of the terminal device respectively, and the dimensions of R s and R f are M respectively. t ⁇ M t and K ⁇ K.
  • the network device will obtain multiple uplink reference signals from the terminal device within a period of time Carry out statistical averaging to obtain the long-term statistical spatial domain channel covariance matrix R s of the terminal equipment; a plurality of uplink reference signals obtained from the terminal equipment will be obtained within a period of time Statistical averaging is performed to obtain the long-term statistical frequency domain channel covariance matrix R f of the terminal equipment.
  • the network device can first Statistical averaging is performed on all transmitting antennas of the terminal equipment to obtain Will Statistical averaging is performed on all transmitting antennas of the terminal equipment to obtain Further, the network device will obtain multiple uplink reference signals from the terminal device within a period of time. Perform statistical averaging to obtain the long-term statistical spatial domain channel covariance matrix R s of the terminal equipment, and combine the multiple uplink reference signals obtained from multiple uplink reference signals from the terminal equipment within a period of time. Statistical averaging is performed to obtain the long-term statistical frequency domain channel covariance matrix R f of the terminal equipment.
  • the network device may also convert multiple uplink reference signals obtained from multiple uplink reference signals from the terminal device within a period of time. multiple multiple Carry out statistical averaging to obtain the long-term statistical spatial domain channel covariance matrix R s of the terminal equipment; a plurality of uplink reference signals obtained from the terminal equipment will be obtained within a period of time multiple multiple Statistical averaging is performed to obtain the long-term statistical frequency-domain channel covariance matrix R f of the terminal equipment.
  • the method for calculating the low-rank approximation of the matrix may refer to the prior art.
  • the network device sends multiple reference signals #A.
  • the terminal device receives a plurality of reference signals #A.
  • the multiple reference signals #A are reference signals on multiple first frequency domain units in the same time domain unit, and hereinafter, the time domain unit where the multiple reference signals #A are located is denoted as time domain unit #A.
  • the multiple reference signals #A are respectively precoded by the precoding matrix #1 corresponding to the first frequency domain unit where they are located, and the precoding matrix #1 corresponding to at least two different first frequency domain units are different, that is, carried on at least two different first frequency domain units.
  • the reference signals #A on different first frequency domain units are precoded by different precoding matrices #1.
  • the corresponding precoding matrix #1 on any two different first frequency domain units is different, that is, the reference signal #A carried on any two different first frequency domain units is processed by different precoding matrix #1. precoded.
  • the time domain unit #1 may be a radio frame (frame), a sub-frame (sub-frame), a time slot (slot), etc., which is not limited in this embodiment of the present application, and the time domain unit #1 is hereinafter referred to as a sub-frame. frame as an example.
  • the first frequency domain unit may be a subband, a resource block (RB), a resource block group (RBG), a precoding resource block group (precoding resource block group, PRG), etc. This is not limited.
  • FIG. 3 shows a schematic diagram of mapping of K reference signals #A on time domain resources.
  • the reference signal #A (RS#1 to RS#K) is carried on the time domain unit #1 (subframe #1), and the reference signal #A (RS#1 to RS#K) is Any two reference signals #A are reference signals on different RBs, for example, RS#1 is carried on RB#1, RS#2 is carried on RB#2, ..., RS#K is carried on RB#K , that is, any two of RS#1 to RS#K are reference signals on different RBs.
  • any two reference signals #A among the K reference signals #A are reference signals on different RBs.
  • the precoding matrices #1 corresponding to at least two reference signals #A among the K reference signals #A are different.
  • RS#1 sent by the network device on RB#1 is denoted as B 1 X 1
  • RS#2 sent on RB#2 is denoted as B 2 X 2
  • X k and B k are P ⁇ P and M t ⁇ P, respectively, where P represents the number of ports of the reference signal #A.
  • P represents the number of ports of the reference signal #A.
  • the precoding matrices #1 corresponding to any two reference signals #A among the K reference signals #A shown in FIG. 3 are different, that is, any two of B 1 , B 2 , . . . , B K one is different.
  • the first frequency domain unit may be a subband.
  • FIG. 4 shows a schematic diagram of mapping of K reference signals #A on time domain resources.
  • the reference signal #A (RS#1 to RS#K) is carried on the time domain unit #1 (subframe #1), and the reference signal #A (RS#1 to RS#K) is At least two reference signals #A are reference signals on different subbands, for example, RS#1 is carried on subband #1, and RS#3 is carried on subband #2, that is, RS#1 and RS#3 are Reference signals on different subbands.
  • the precoding matrices #1 corresponding to the reference signals #A on at least two different subbands are different.
  • the precoding matrix #1 corresponding to reference signal #A on subband #1 and subband #2 may be different.
  • RS#1 and RS#3 are carried in subband #1 and subband #2 respectively, then B 1 and B 3 corresponding to RS#1 and RS#3, respectively, are different.
  • the precoding matrix #1 corresponding to the reference signal #A on subband #1 and other subbands except subband #2 may be different or the same, for example, subband #1 and Precoding matrix #1 corresponding to reference signal #A on subband #M may be the same or different; subband #2 and reference signal #A on other subbands except subband #1
  • the corresponding precoding matrix #1 may be the same or different.
  • the precoding matrix #1 corresponding to the reference signal #A on the subband #2 and the subband #M may be the same or different. different.
  • the precoding matrix #1 corresponding to the reference signal #A on different RBs on the same subband is the same.
  • B 1 and B 2 corresponding to RS#1 and RS#2 respectively are the same.
  • the precoding matrices #1 corresponding to the reference signals #A on any two different subbands are different.
  • This embodiment of the present application does not limit the specific form of the precoding matrix #1.
  • the precoding matrix #1 may be a random semi-unitary matrix, denoted by ⁇ .
  • B k can be expressed as:
  • ⁇ k represents a random semi-unitary matrix with dimension M t ⁇ P, that is, for different k, ⁇ k should be different.
  • B k can be expressed as:
  • the precoding matrix #1 may be the product of a fixed beam matrix and a mutually unbiased bases (MUB) matrix.
  • the fixed beam matrix may be a semi-unitary matrix with different columns having the same beam pattern, for example, may be a discrete Fourier transform (discrete fourier transform, DFT) matrix, denoted as F, and the MUB matrix as ⁇ .
  • DFT discrete Fourier transform
  • B k can be expressed as:
  • ⁇ 0 , ⁇ 1 ,..., ⁇ P ⁇ represents the set of MUB matrices with P+1 dimensions all being P ⁇ P, and mod(a,b) represents the operation of modulo b on a.
  • B k can be expressed as:
  • ⁇ 0 , ⁇ 1 ,..., ⁇ P ⁇ represents the set of MUB matrices with P+1 dimensions all being P ⁇ P, and mod(a,b) represents the operation of modulo b on a.
  • the terminal device generates PMI#1.
  • the terminal device sends PMI#1. Accordingly, in S250, the network device receives PMI#1.
  • the PMI #1 is determined by the terminal device based on the received multiple reference signals #A.
  • PMI#1 is used to indicate multiple codewords #1, and multiple codewords #1 are in one-to-one correspondence with multiple second frequency domain units, and multiple second frequency domain units and multiple first frequency domain units belong to the same frequency domain. Domain resources, multiple codewords #1 are used to determine the downlink channel. It can be understood that the one-to-one correspondence between the multiple codewords #1 and the multiple second frequency domain units means that each codeword #1 is obtained by the terminal device based on the reference signal #A on the second frequency domain unit.
  • the second frequency domain unit may be a subband, RB, RBG, PRG, etc., which is not limited in this embodiment of the present application.
  • the frequency domain resource may be an RB, or an RBG, or a predefined subband (subband), or a frequency band (band), or a BWP, or a CC.
  • Multiple second frequency domain units and multiple first frequency domain units belong to the same frequency domain resources, which can be understood as frequency domain resources composed of multiple second frequency domain units and frequency domain resources composed of multiple first frequency domain units Are the same.
  • the first frequency domain unit is an RB
  • the second frequency domain unit is an RBG.
  • the frequency domain resources composed of multiple first frequency domain units are 12 RBs, denoted as RB#1-RB#12;
  • the frequency domain resources composed of multiple second frequency domain units are also 12 RBs, which are RB#1-RB#12.
  • the bandwidth composed of multiple first frequency domain units is 15 Hz
  • the bandwidth composed of multiple second frequency domain units is also 15 Hz.
  • the following description will be given by taking the second frequency domain unit as an RB as an example. That is to say, the following description is given by taking the terminal device obtaining the codeword #1 based on the reference signal #A received on each RB as an example.
  • the terminal device After receiving the multiple reference signals #A sent by the network device, the terminal device can measure the downlink channel and estimate the equivalent channel of each RB according to the multiple reference signals #A.
  • This embodiment of the present application does not limit the method for estimating the equivalent channel of each RB by the terminal device.
  • the terminal device may estimate the equivalent channel of each RB by using the least squares (least square, LS) method.
  • the signal received by the terminal device can be expressed as:
  • H dl,k represents the downlink channel on the kth RB, and the dimension is M r ⁇ M t ; Z k represents the interference noise, and the dimension is M r ⁇ P.
  • the LS estimate of the equivalent channel H dl,k B k of the kth RB can be obtained as Y k X k -1 .
  • the precoding matrix #1 corresponding to all reference signals #A in the same subband is the same. Therefore, the terminal equipment It is also possible to perform joint filtering and noise reduction processing on the LS estimation results of all RBs in the same subband, and the resulting equivalent channel on the kth RB can be expressed as This embodiment of the present application does not limit the specific method of joint filtering and noise reduction processing.
  • the terminal device may determine the codeword #1 corresponding to each RB according to the equivalent channel of each RB, and feed it back to the network device through PMI #1.
  • This embodiment of the present application does not limit the method for the terminal device to determine the codeword #1 of each RB according to the equivalent channel of each RB.
  • the terminal device may perform singular value decomposition (SVD) on the equivalent channel of each RB to determine the codeword #1 of each RB.
  • each column may correspond to one transmission layer.
  • the codeword #1 of the kth RB is denoted as J k , its dimension is P ⁇ R, and R is the number of layers of the transmission layer. It can be understood that in the case that the precoding matrix #1 corresponding to the reference signal #A on each RB is different, the quantization feedback of the codeword #1 of each RB should be performed independently.
  • the terminal device may also perform quantization feedback based on subbands, that is, the second frequency domain unit may be a subband.
  • the terminal device may determine the equivalent channel of the subband according to the equivalent channels of all RBs in a subband; further, determine the codeword #1 of the subband according to the equivalent channel of the subband.
  • each column may correspond to one transmission layer.
  • the codeword #1 of the mth subband is denoted as W m , and its dimension is P ⁇ R, where R is the number of layers of the transmission layer. It can be understood that when the precoding matrix #1 corresponding to the reference signal #A on each subband is different, the quantization feedback of the codeword #1 of each subband should be performed independently.
  • This embodiment of the present application does not limit the manner in which the terminal device feeds back the codeword #1 of each RB to the network device through PMI #1.
  • the terminal device may send multiple PMI #1 to the network device, each PMI #1 is used to indicate the codeword #1 of one RB.
  • the terminal device may send one PMI#1 to the network device, where the one PMI#1 is used to indicate the codeword #1 of each RB.
  • This embodiment of the present application does not limit the manner in which the terminal device determines the PMI#1.
  • the terminal device may determine the PMI based on the port selection codebook.
  • the port selection codebook may be, for example, a type II port selection codebook (type II port selection codebook) defined in the NR protocol.
  • type II port selection codebook type II port selection codebook
  • the network device may determine the codeword #1 of each RB according to the PMI #1.
  • the network device determines the downlink channel according to the codeword #1 of each RB and the space-frequency domain channel characteristic matrix of the uplink channel.
  • e k represents a column vector with dimension K ⁇ 1
  • the network device can perform the following iterative operations:
  • t_largest_eigvec() means to find the first t largest eigenvectors, V k,1 and Respectively The left and right feature matrices of , which are obtained by SVD decomposition IterNum is the number of iterations, and ⁇ 2 is a positive real parameter.
  • the G obtained after iteration represents the reconstructed angular delay domain channel.
  • the network device obtains the spatial frequency domain channel on each RB according to formula (6):
  • the network device only takes the determination of the downlink channel of each RB as an example for description, and should not constitute any limitation to the embodiments of the present application.
  • the above formula for iterative operation and formula (6) can be used to determine the downlink channel of each subband after appropriate modification.
  • the correlation of channels on different frequency domain units can be reduced, and further The correlation of errors in the quantization feedback of the codeword #1 on the different frequency domain units by the terminal equipment is reduced, so that the accuracy of reconstructing the downlink channel can be improved.
  • the reconstruction can be reduced. The complexity of the downlink channel improves the performance of the reconstructed downlink channel.
  • the method 200 may further include S270 to S290.
  • the network device sends multiple reference signals #B.
  • the terminal device receives a plurality of reference signals #B.
  • the multiple reference signals #B are reference signals on multiple first frequency domain units in the same time domain unit, and hereinafter the time domain unit where the multiple reference signals #B are located is denoted as time domain unit #2.
  • the multiple reference signals #B are precoded by the precoding matrix #2 corresponding to the first frequency domain unit where they are located, and the corresponding precoding matrix #2 on at least two different first frequency domain units are different, that is, they are carried on at least two different frequency domain units.
  • the reference signals #B on different first frequency domain units are precoded by different precoding matrices #2.
  • the precoding matrix #2 corresponding to any two different first frequency domain units is different, that is, the reference signal #A carried on any two different first frequency domain units is precoded by different precoding matrix #1. encoded.
  • mapping relationship of the multiple reference signals #B on the time-frequency resources reference may be made to the description of the reference signal #A in S230.
  • this embodiment of the present application will not describe in detail.
  • precoding matrix #2 For the description of the precoding matrix #2, reference may be made to the description about the precoding matrix #1 in S230. For brevity, this embodiment of the present application will not describe it in detail.
  • Time domain unit #2 is different from time domain unit #1.
  • This embodiment of the present application does not limit the relationship between the precoding matrix #1 and the precoding matrix #2.
  • the precoding matrix #1 and the precoding matrix #2 respectively corresponding to the reference signal #A and the reference signal #B on the same frequency domain unit may be the same.
  • the following description will be given by taking an example that the first frequency domain unit is a subband.
  • RS#1,1 an example of reference signal #A
  • RS#2,1 the first example of reference signal #B
  • the precoding matrix #1 and precoding matrix #2 corresponding to #1,1 and RS#2,1 may be the same; for another example, RS#1,3 (an example of reference signal #A) and RS2,3 (reference signal #A)
  • An example of signal #B) is a reference signal on subband #2, so precoding matrix #1 and precoding matrix #2 corresponding to RS #1, 3 and RS #2, 3 respectively may be the same.
  • the precoding matrix #1 and the precoding matrix #2 respectively corresponding to the reference signal #A and the reference signal #B on the same first frequency domain unit are different.
  • the following description will be given by taking an example that the first frequency domain unit is a subband.
  • the precoding matrix #1 corresponding to RS#1,1 is different from the precoding matrix #2 corresponding to RS#2,1; the precoding matrix #1 corresponding to RS#1,2 is different from The precoding matrix #2 corresponding to RS#2,2; ...; the precoding matrix #1 corresponding to RS#1,K is different from the precoding matrix #2 corresponding to RS#2,K.
  • the precoding matrix #1 corresponding to any one reference signal #A and the precoding matrix #2 corresponding to any one reference signal #B are different.
  • the precoding matrix #1 corresponding to RS#1,1 is different from the precoding matrix #2 corresponding to RS#2,1 to RS#2,K respectively; the precoding matrix #2 corresponding to RS#1,2 Precoding matrix #1 is different from precoding matrix #2 corresponding to RS#2,1 to RS#2,K respectively; ...; Precoding matrix #1 corresponding to RS#1,K is different from RS#2 , 1 to RS#2, K correspond to the precoding matrix #2 respectively.
  • the network device may also send multiple reference signals #C on the time domain unit #3, and send multiple reference signals #D on the time domain unit #4, . . . , and so on.
  • Time domain unit #3 is different from time domain unit #4, and time domain unit #3 and time domain unit #4 are different from time domain unit #2 and time domain unit #1.
  • precoding matrices corresponding to reference signals on different time domain units are described below by taking the network device sending reference signals on L time domain units as an example. It should be understood that the reference signals described below still satisfy that the precoding matrices corresponding to the reference signals on at least two different first frequency domain units are different. The following description is given by taking the time domain unit as a subframe and the first frequency domain unit as a subband as an example.
  • the precoding matrices respectively corresponding to any two reference signals carried on the same subband and different subframes are the same.
  • the different values of B k,l are only related to the subscript k, but have nothing to do with the subscript l, that is, the value of the subscript k belongs to
  • B k,l remains unchanged, that is, B k, l corresponding to multiple reference signals carried on the same subband and different subframes remains unchanged.
  • the precoding matrices respectively corresponding to at least two reference signals carried on the same subband and different subframes are different.
  • the different values of B k,l are related to both the subscript k and the subscript l, that is, when the subscript k belongs to
  • B k,l may change, that is, the B k,l corresponding to multiple reference signals carried on different subbands and different subframes are incomplete. same.
  • the terminal device sends PMI#2. Accordingly, in S290, the network device receives PMI#2.
  • PMI #2 is determined by the terminal device based on the received multiple reference signals #B.
  • PMI#2 is used to indicate multiple codewords #2, and multiple codewords #2 are in one-to-one correspondence with multiple second frequency domain units, and multiple second frequency domain units and multiple first frequency domain units belong to the same frequency domain. Domain resources, multiple codewords #2 are used to determine the downlink channel. It can be understood that the one-to-one correspondence between the plurality of codewords #2 and the plurality of second frequency domain units means that each codeword #2 is obtained by the terminal device based on the reference signal #B on the second frequency domain unit.
  • the terminal device determines the PMI#2 according to the received reference signal #B, and the method for sending the PMI#2 to the network device may refer to the description about the PMI#1 in S240.
  • the embodiments of the present application will not be described in detail again.
  • the terminal device may jointly determine the downlink by PMI#1 and PMI#2 channel.
  • the network device can send multiple reference signals #C on the time domain unit #3, and accordingly, the terminal device can measure the downlink channel according to the multiple reference signals #C, and feed back PMI#3, PMI to the network device #3 is used to indicate codeword #3; the network device can send multiple reference signals #D on the time domain unit #4, and accordingly, the terminal device can measure the downlink channel according to the multiple reference signals #D, and feed back to the network device PMI#4, PMI#4 is used to indicate codeword #4..., and so on.
  • the terminal device may determine the downlink channel in conjunction with multiple PMIs.
  • the method for jointly determining a downlink channel will be described by taking the network device sending reference signals on L time domain units as an example.
  • the following description will be given by taking as an example that the time-domain unit is a subframe, and the first frequency-domain unit and the second frequency-domain unit are RBs.
  • the premise of the method described below is to assume that the downlink channel is approximately unchanged within L subframes.
  • the network device may determine the downlink channel based on the PMI #1 described above.
  • the signal received by the terminal device on the kth RB of the lth subframe can be expressed as:
  • H dl,k,l represents the downlink channel on the kth RB of the lth subframe, and the dimension is M r ⁇ M t ;
  • Z k,l represents the interference noise, and the dimension is M r ⁇ P.
  • the LS estimate of the equivalent channel H dl,k,l B k,l of the kth RB of the lth subframe can be obtained as Y k,l X k,l -1 .
  • the terminal device can also The LS estimation results of all RBs in the subband are subjected to joint filtering and noise reduction processing, and the resulting equivalent channel on the kth RB of the lth subframe can be expressed as This embodiment of the present application does not limit the specific method of joint filtering and noise reduction processing.
  • the terminal device may determine the codeword of the kth RB of the lth subframe according to the equivalent channel on the kth RB of the lth subframe, and feed it back to the network device through the PMI.
  • the codeword of the k-th RB of the l-th subframe is denoted as J k,l , and its dimension is P ⁇ R, where R is the number of layers of the transmission layer. It can be understood that in the case where the precoding matrices corresponding to the reference signals on each RB in the 1 th subframe are different, the quantization feedback of the codewords of each RB in the 1 th subframe should be performed independently.
  • the terminal device may also perform quantization feedback based on subbands, that is, the second frequency domain unit may be a subband.
  • the terminal device may determine the equivalent channel of the mth subband of the lth subframe according to the equivalent channels of all RBs in the mth subband of the lth subframe; further, according to the mth subband of the lth subframe The equivalent channel of determines the codeword of the mth subband of the lth subframe.
  • the codeword of the mth subband of the lth subframe is denoted as W m,l , and its dimension is P ⁇ R, where R is the number of layers of the transmission layer.
  • the network device can perform the following iterative operations:
  • t_largest_eigvec() means to find the first r largest eigenvectors, V k, l, 1 and Respectively
  • the left and right feature matrices of which are obtained by SVD decomposition IterNum is the number of iterations, and ⁇ 2 is a positive real parameter.
  • the G obtained after iteration represents the reconstructed angular delay domain channel.
  • the network device obtains the spatial frequency domain channel on each RB according to formula (6):
  • the network device only takes the determination of the downlink channel of each RB as an example for description, and should not constitute any limitation to the embodiments of the present application.
  • the above formula for iterative operation and formula (6) can be used to determine the downlink channel of each subband after appropriate modification.
  • FIG. 6 is a schematic flowchart of a method 600 for channel measurement provided by another embodiment of the present application. As shown in FIG. 6 , the method 600 may include S610 to S660. The steps in the method 600 are described in detail below.
  • the terminal device sends an uplink reference signal.
  • the network device receives the uplink reference signal.
  • the network device estimates the uplink channel according to the uplink reference signal, and calculates the spatial frequency domain channel characteristic matrix of the uplink channel.
  • the network device sends multiple reference signals #A.
  • the terminal device receives multiple reference signals #A.
  • the multiple reference signals #A are reference signals on different first frequency domain units in the same time domain unit, and hereinafter, the time domain unit where the multiple reference signals #A are located is denoted as time domain unit #A.
  • the plurality of reference signals #A may be precoded reference signals or reference signals that have not been precoded, which is not limited in this embodiment of the present application.
  • each reference signal #A in the plurality of reference signals #A is a reference signal precoded by a precoding matrix #1, and the precoding matrix #1 corresponding to a different reference signal #A is the same.
  • the precoding matrix #1 may be the fixed beam matrix F described above.
  • the reference signal #A sent by the network device on the kth RB may be denoted as B k X k .
  • the time domain unit #1 may be a radio frame (frame), a sub-frame (sub-frame), a time slot (slot), etc., which is not limited in this embodiment of the present application.
  • the time domain unit #1 is a subframe as: example to illustrate.
  • the first frequency domain unit may be a subband, RB, RBG, PRG, etc., which is not limited in this embodiment of the present application.
  • the terminal device sends PMI#1.
  • the network device receives PMI#1.
  • the PMI #1 is determined by the terminal device based on the received multiple reference signals #A and the weighting matrix #1.
  • PMI#1 is used to indicate multiple codewords #1
  • multiple codewords #1 are used to determine downlink channels
  • multiple codewords #1 are in one-to-one correspondence with weighted equivalent channels of multiple second frequency domain units
  • each The weighted equivalent channel of the second frequency domain unit is obtained according to the weighting matrix #1 corresponding to the second frequency domain unit
  • the weighting matrix #1 corresponding to at least two different second frequency domain units is different, that is, at least two different The weighted equivalent channels of the two frequency domain units are obtained according to different weighting matrices #1
  • the multiple second frequency domain unit sources and the multiple first frequency domain units belong to the same frequency domain resource.
  • the one-to-one correspondence between the multiple codewords #1 and the weighted equivalent channels of the multiple second frequency domain units means that each codeword #1 is obtained by the terminal device based on the reference signal #A on the second frequency domain unit.
  • the second frequency domain unit may be a subband, RB, RBG, PRG, etc., which is not limited in this embodiment of the present application.
  • the frequency domain resource may be an RB, or an RBG, or a predefined subband (subband), or a frequency band (band), or a BWP, or a CC.
  • Multiple second frequency domain units and multiple first frequency domain units belong to the same frequency domain resources, which can be understood as frequency domain resources composed of multiple second frequency domain units and frequency domain resources composed of multiple first frequency domain units Are the same.
  • the first frequency domain unit is an RB
  • the second frequency domain unit is an RBG.
  • the frequency domain resources composed of multiple first frequency domain units are 12 RBs, denoted as RB#1-RB#12;
  • the frequency domain resources composed of multiple second frequency domain units are also 12 RBs, which are RB#1-RB#12.
  • the bandwidth composed of multiple first frequency domain units is 15 Hz
  • the bandwidth composed of multiple second frequency domain units is also 15 Hz.
  • the following description will be given by taking the second frequency domain unit as an RB as an example. That is to say, the following description is given by taking the terminal device obtaining the codeword #1 based on the reference signal #A received on each RB as an example.
  • the terminal device After receiving the multiple reference signals #A sent by the network device, the terminal device can measure the downlink channel and estimate the equivalent channel of each RB according to the multiple reference signals #A.
  • This embodiment of the present application does not limit the method for estimating the equivalent channel of each RB by the terminal device.
  • the terminal device may estimate the equivalent channel of each RB by using the least squares (least square, LS) method.
  • each reference signal #A is a reference signal precoded by a fixed beam matrix F
  • the signal received by the terminal device can be expressed as:
  • the LS estimate of the equivalent channel H dl,k B k of the kth RB can be obtained as Y k X k -1 .
  • each reference signal #A is an unprecoded reference signal
  • the signal received by the terminal device can be expressed as:
  • the LS estimation of the equivalent channel H dl,k of the kth RB can be obtained as Y k X k -1 .
  • the terminal device may also perform joint filtering and noise reduction processing on the LS estimation results of all RBs in the full band, and finally obtain The equivalent channel on the kth RB can be expressed as or This embodiment of the present application does not limit the specific method of joint filtering and noise reduction processing.
  • the terminal device obtains the weighted equivalent channel of each RB according to the weighting matrix #1 and the equivalent channel of each RB.
  • This embodiment of the present application does not limit the weighting matrix #1.
  • the weighting matrix #1 may be a MUB matrix.
  • the weighting matrix #1 for obtaining the weighted equivalent channel of the kth RB can be denoted as ⁇ mod(k,P+1) .
  • mod(a,b) represents taking a modulo b operation.
  • the weighted equivalent channel of the kth RB can be expressed as
  • the terminal device can determine the codeword #1 corresponding to the kth RB according to the weighted equivalent channel of the kth RB, denoted as Its dimension is P ⁇ R, where R is the number of layers of the transport layer.
  • the weighted equivalent channels of different RBs are obtained according to different weighting matrices #1, so the codebook quantization of each RB should be performed independently.
  • the second frequency domain unit may be a subband.
  • the weighted equivalent channels of different subbands may be obtained according to different weighting matrices #1.
  • the terminal device can determine the equivalent channel of the mth subband according to the equivalent channel of each RB in the mth subband, which can be expressed as Further, according to the weighting matrix #1 corresponding to the mth subband, the weighted equivalent channel of the mth subband is obtained, indicating that
  • the terminal device may first obtain the weighted equivalent channel of each RB in the mth subband according to the weighting matrix #1 corresponding to the mth subband, and then obtain the weighted equivalent channel of each RB in the mth subband according to the weighted equivalent channel of each RB in the mth subband. Weighted equivalent channel for the mth subband.
  • the terminal device can obtain the codeword #1 of the mth subband according to the weighted equivalent channel of the mth subband, denoted as W m , whose dimension is P ⁇ R, where R is the number of layers of the transmission layer.
  • This embodiment of the present application does not limit the method for the terminal device to determine the codeword #1 of each RB according to the weighted equivalent channel of each RB.
  • the terminal device may perform singular value decomposition (singular value decomposition, SVD) on the weighted equivalent channel of each RB, and determine the codeword #1 corresponding to the weighted equivalent channel of each RB.
  • singular value decomposition singular value decomposition, SVD
  • This embodiment of the present application does not limit the manner in which the terminal device feeds back the codeword #1 of each RB to the network device through PMI #1.
  • the terminal device may send multiple PMI #1 to the network device, each PMI #1 is used to indicate the codeword #1 of one RB.
  • the terminal device may send one PMI#1 to the network device, where the one PMI#1 is used to indicate the codeword #1 of each RB.
  • This embodiment of the present application does not limit the manner in which the terminal device determines the PMI#1.
  • the terminal device may determine the PMI based on the port selection codebook.
  • the port selection codebook may be, for example, a type II port selection codebook (type II port selection codebook) defined in the NR protocol.
  • type II port selection codebook type II port selection codebook
  • the network device may determine the codeword #1 of each RB according to the PMI #1.
  • the network device determines the downlink channel according to the codeword #1 of each RB and the space-frequency domain channel characteristic matrix of the uplink channel.
  • e k represents a column vector with dimension K ⁇ 1
  • the network device can perform the following iterative operations:
  • t_largest_eigvec() means to find the first t largest eigenvectors, V k,1 and Respectively The left and right feature matrices of , which are obtained by SVD decomposition IterNum is the number of iterations, and ⁇ 2 is a positive real parameter.
  • the G obtained after iteration represents the reconstructed angular delay domain channel.
  • the network device obtains the spatial frequency domain channel on each RB according to formula (6):
  • the network device only takes the determination of the downlink channel of each RB as an example for description, and should not constitute any limitation to the embodiments of the present application.
  • the above formula for iterative operation and formula (6) can be used to determine the downlink channel of each subband after appropriate modification.
  • the correlation of the channels on different second frequency domain units can be reduced, and the terminal equipment can be further reduced.
  • the correlation of errors fed back by quantization is performed on the codeword #1 on different second frequency domain units, so that the accuracy of reconstructing the downlink channel can be improved.
  • the reconstruction can be reduced. The complexity of the downlink channel improves the performance of the reconstructed downlink channel.
  • the method 600 may further include S670 to S690.
  • the network device sends multiple reference signals #B.
  • the terminal device receives a plurality of reference signals #B.
  • the multiple reference signals #B are reference signals on different first frequency domain units in the same time domain unit, and hereinafter, the time domain unit where the multiple reference signals #B are located is denoted as time domain unit #2.
  • the plurality of reference signals #B may be precoded reference signals or reference signals that have not been precoded, which is not limited in this embodiment of the present application.
  • each reference signal #B in the plurality of reference signals #B is a reference signal precoded by a precoding matrix #2, and the precoding matrix #2 corresponding to a different reference signal #B is the same.
  • the precoding matrix #2 may be the fixed beam matrix F described above.
  • the reference signal #B sent by the network device on the kth RB can be denoted as B k X k .
  • Time domain unit #2 is different from time domain unit #1.
  • the terminal device sends PMI#2. Accordingly, in S690, the network device receives PMI#2.
  • the PMI #2 is determined by the terminal device based on the received multiple reference signals #B and the weighting matrix #2.
  • PMI#2 is used to indicate multiple codewords #2
  • multiple codewords #2 are used to determine downlink channels
  • multiple codewords #2 are in one-to-one correspondence with the weighted equivalent channels of multiple second frequency domain units
  • each The weighted equivalent channel of the second frequency domain unit is obtained according to the weighting matrix #2 corresponding to the second frequency domain unit
  • the weighting matrix #2 corresponding to at least two different second frequency domain units is different, that is, at least two different The weighted equivalent channels of the two frequency domain units are obtained according to different weighting matrices #2
  • the multiple second frequency domain units and the multiple first frequency domain units belong to the same frequency domain resource.
  • the one-to-one correspondence between the multiple codewords #2 and the weighted equivalent channels of the multiple second frequency domain units means that each codeword #2 is obtained by the terminal device based on the reference signal #B on the second frequency domain unit.
  • the second frequency domain unit may be a subband, RB, RBG, PRG, etc., which is not limited in this embodiment of the present application.
  • weighting matrix #2 please refer to the description about the weighting matrix #1 in S650, and for the method for the terminal device to generate and transmit the PMI#2 according to the received reference signal #B, refer to the description about the PMI#1 in S650,
  • the embodiments of the present application will not be described in detail again.
  • weighting matrix #1 corresponding to the second frequency domain unit mentioned below indicates that the terminal device is used to determine the weighting matrix of the weighted equivalent channel of the second frequency domain unit, and the terminal device determines the weighted equivalent channel of the second frequency domain unit according to the The reference signal #A and weighting matrix #1 received on the frequency domain unit determine the weighted equivalent channel;
  • the weighting matrix #2 corresponding to the second frequency domain unit mentioned below indicates that the terminal equipment is used to determine the second frequency domain the weighted equivalent channel of the cell, and the terminal device determines the weighted equivalent channel according to the reference signal #A received on the second frequency domain cell and the weighted matrix #1.
  • This embodiment of the present application does not limit the relationship between the weighting matrix #1 and the weighting matrix #2.
  • weighting matrix #1 and weighting matrix #2 corresponding to the same second frequency domain unit on different time domain units may be the same.
  • the following description is given by taking an example that the second frequency domain unit is an RB.
  • the terminal equipment can obtain the equivalent weighted channel of RB#1 according to RS#1, 1 (an example of reference signal #A) and weighting matrix #1 on RB#1, and the terminal equipment can also obtain the equivalent weighted channel of RB#1 according to RB# RS#2,1 (an example of reference signal #B) and weighting matrix #2 on 1 obtain the equivalent weighted channel of RB#1, and the weighting matrix #1 and weighting matrix #2 corresponding to RB#1 can be the same .
  • weighting matrix #1 and weighting matrix #2 corresponding to the same second frequency domain unit on different time domain units are different.
  • the following description takes the second frequency domain unit RB as an example.
  • the terminal equipment can obtain the equivalent weighted channel of RB#1 according to RS#1, 1 (an example of reference signal #A) and weighting matrix #1 on RB#1, and the terminal equipment can also obtain the equivalent weighted channel of RB#1 according to RB# RS#2,1 (an example of reference signal #B) and weighting matrix #2 on 1 obtain the equivalent weighted channel of RB#1, and the weighting matrix #1 and weighting matrix #2 corresponding to RB#1 may be different .
  • the weighting matrix #1 corresponding to any second frequency domain unit is different from the weighting matrix #2 corresponding to any other second frequency domain unit.
  • the weighting matrix #1 corresponding to RB#1 is different from the weighting matrix #2 corresponding to RB#1 to RB#K respectively; the weighting matrix #1 corresponding to RB#2 is different from the weighting matrix #1 corresponding to RB#1 Weighting matrix #2 corresponding to RB#K respectively; ...; weighting matrix #1 corresponding to RB#K is different from weighting matrix #2 corresponding to RB#1 to RB#K respectively.
  • the terminal device may determine the downlink channel jointly with PMI#1 and PMI#2 .
  • the network device may also send multiple reference signals #C on the time domain unit #3, and send multiple reference signals #D on the time domain unit #4, . . . , and so on.
  • Time domain unit #3 is different from time domain unit #4, and time domain unit #3 and time domain unit #4 are different from time domain unit #2 and time domain unit #1.
  • the weighting matrices corresponding to the second frequency-domain units on different time-domain units are described below by taking the network device sending reference signals on L time-domain units as an example. It should be understood that the content described below still satisfies that the weighting matrices corresponding to at least two different second frequency domain units on the same time domain unit are different. In the following description, the second frequency domain unit is taken as the RB.
  • the weighting matrices corresponding to the same second frequency domain unit on different time domain units are the same.
  • the weighting matrix corresponding to the kth RB of the lth subframe may be expressed as: ⁇ mod(k,P+1) .
  • the different values of the weighting matrix are only related to the subscript k, but have nothing to do with the subscript l, that is, when the subscript k remains unchanged, the value of the subscript l ranges from 1 to L
  • the weighting matrix remains unchanged, that is, the weighting matrix corresponding to the same second frequency-domain unit on different time-domain units remains unchanged.
  • the weighting matrix #1 and the weighting matrix #2 corresponding to the same second frequency domain unit on different time domain units are different.
  • the weighting matrix corresponding to the kth RB of the lth subframe may be expressed as: ⁇ mod(k+1,P+1) .
  • weighting matrix different values of the weighting matrix are related to the subscript k and the subscript l, that is, when the subscript k changes and/or the value of the subscript l changes.
  • the weighting matrix may vary, that is, the weighting matrix corresponding to the same second frequency-domain unit on different time-domain units is not exactly the same.
  • the terminal device may generate PMI #3 according to multiple reference signals #C, generate PMI #4 according to multiple reference signals #D, . . . , and so on. Further, assuming that the downlink channel is approximately unchanged in multiple time domain units, in S660, the terminal device may determine the downlink channel in conjunction with multiple PMIs.
  • the method for jointly determining a downlink channel provided by the embodiment of the present application will be described by taking the network device sending reference signals on L time domain units as an example.
  • the time domain unit is a subframe
  • the first frequency domain unit and the second frequency domain unit are RBs as an example for description
  • the reference signal sent by the network device is an example that is precoded by a fixed beam matrix.
  • the premise of the method described below is to assume that the downlink channel is approximately unchanged within L subframes. In the case that the downlink channel changes rapidly, the network device may determine the downlink channel based on the PMI #1 described above.
  • the signal received by the terminal device on the kth RB of the lth subframe can be expressed as:
  • H dl,k,l represents the downlink channel on the kth RB of the lth subframe, and the dimension is M r ⁇ M t ;
  • Z k,l represents the interference noise, and the dimension is M r ⁇ P;
  • the LS estimation of the equivalent channel H dl,k,l B k,l of the kth RB of the lth subframe can be obtained as Y k,l X k,l -1 .
  • the terminal device can also perform joint filtering and noise reduction processing on the LS estimation results of all RBs in the full band, and finally obtain the kth RB.
  • the upper equivalent channel can be expressed as This embodiment of the present application does not limit the specific method of joint filtering and noise reduction processing.
  • the terminal device can obtain the equivalent weighted channel of the kth RB of the lth subframe:
  • the terminal device may determine the codeword of the kth RB of the lth subframe according to the weighted equivalent channel on the kth RB of the lth subframe, and feed it back to the network device through the PMI.
  • the codeword of the kth RB of the lth subframe is P ⁇ R, where R is the number of layers of the transport layer. It can be understood that in the case where the weighting matrices corresponding to each RB of the lth subframe are different, the quantization feedback of the codeword of each RB of the lth subframe should be performed independently.
  • the terminal device may also perform quantization feedback based on subbands, that is, the second frequency domain unit may be a subband.
  • the terminal device may determine the equivalent channel of the mth subband of the lth subframe according to the equivalent channels of all RBs in the mth subband of the lth subframe; further, according to the mth subband of the lth subframe determine the equivalent weighted channel of the mth subband of the lth subframe; further, according to the weighted equivalent channel of the mth subband of the lth subframe, determine the weighted equivalent channel of the mth subband of the lth subframe Codeword.
  • the codeword of the mth subband of the lth subframe is denoted as W m,l , and its dimension is P ⁇ R, where R is the number of layers of the transmission layer.
  • the quantization feedback of the codeword of each subband of the lth subframe should be performed independently.
  • the network device can perform the following iterative operations:
  • t_largest_eigvec() means to find the first r largest eigenvectors, V k, l, 1 and Respectively
  • the left and right feature matrices of which are obtained by SVD decomposition IterNum is the number of iterations, and ⁇ 2 is a positive real parameter.
  • the G obtained after iteration represents the reconstructed angular delay domain channel.
  • the network device obtains the spatial frequency domain channel on each RB according to formula (6):
  • the network device only takes the determination of the downlink channel of each RB as an example for description, and should not constitute any limitation to the embodiments of the present application.
  • the above formula for iterative operation and formula (6) can be used to determine the downlink channel of each subband after appropriate modification.
  • the size of the sequence numbers of each process does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any implementation process of the embodiments of the present application. limited.
  • FIG. 7 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1000 may include a transceiver unit 1200 and a processing unit 1100 .
  • the communication apparatus 1000 may correspond to the terminal device in the above method embodiments, for example, it may be a terminal device, or a component (such as a circuit, a chip or a chip system, etc.) configured in the terminal device .
  • the communication apparatus 1000 may correspond to the terminal device in the method 200 or the method 600 according to the embodiment of the present application, and the communication apparatus 1000 may include a method for executing the method 200 in FIG. 2 or the method 600 in FIG. 6 .
  • each unit in the communication apparatus 1000 and the other operations and/or functions mentioned above are respectively to implement the corresponding flow of the method 200 in FIG. 2 or the method 600 in FIG. 6 .
  • the transceiver unit 1200 can be used to execute S210 , S230 and S250 of the method 200
  • the processing unit 1100 can be used to execute S240 of the method 200 .
  • the transceiver unit 1200 can be used to perform S610 , S630 and S650 in the method 600
  • the processing unit 1100 can be used to perform S640 in the method 600 .
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the communication apparatus 2000 shown in FIG. 8 or the transceiver 2020 in FIG. 9 .
  • the transceiver 3020 in the shown terminal device 3000, the processing unit 1100 in the communication apparatus 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the communication apparatus 2000 shown in FIG. 8 or FIG. 9
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented through input/output interfaces, circuits, etc., and the processing unit 1100 in the communication apparatus 1000 It can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • the communication apparatus 1000 may correspond to the network device in the above method embodiments, for example, may be a network device, or a component (such as a circuit, a chip, or a chip system, etc.) configured in the network device ).
  • the communication apparatus 1000 may correspond to the network device in the method 200 or the method 600 according to the embodiment of the present application, and the communication apparatus 1000 may include a method for executing the method 200 in FIG. 2 or the method 600 in FIG. 6 .
  • each unit in the communication apparatus 1000 and the other operations and/or functions mentioned above are respectively to implement the corresponding flow of the method 200 in FIG. 2 or the method 600 in FIG. 6 .
  • the transceiver unit 1200 can be used to execute S210 , S230 and S250 of the method 200
  • the processing unit 1100 can be used to execute S220 and S260 of the method 200 .
  • the transceiver unit 1200 can be used to perform S610 , S630 and S650 in the method 600
  • the processing unit 1100 can be used to perform S620 and S660 in the method 600 .
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the communication apparatus 2000 shown in FIG. 8 or the transceiver 2020 in FIG. 10 .
  • the RRU 4100 in the shown base station 4000, the processing unit 1100 in the communication device 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the communication device 2000 shown in FIG. 8 or the processor 2010 shown in FIG. 10 .
  • the processing unit 4200 or the processor 4202 in the outgoing base station 4000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the communication apparatus 2000 shown in FIG. 8 or the transceiver 2020 in FIG. 10 .
  • the RRU 4100 in the shown base station 4000, the processing unit 1100 in the communication device 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the communication device 2000 shown in FIG. 8 or the processor 2010 shown in FIG. 10
  • the transceiver unit 1200 in the communication apparatus 1000 may be implemented through input/output interfaces, circuits, etc., and the processing unit 1100 in the communication apparatus 1000 It can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • FIG. 8 is another schematic block diagram of a communication apparatus 2000 provided by an embodiment of the present application.
  • the communication apparatus 2000 includes a processor 2010 , a transceiver 2020 and a memory 2030 .
  • the processor 2010, the transceiver 2020 and the memory 2030 communicate with each other through an internal connection path, the memory 2030 is used to store instructions, and the processor 2010 is used to execute the instructions stored in the memory 2030 to control the transceiver 2020 to send signals and / or receive signals.
  • the communication apparatus 2000 may correspond to the terminal device in the above method embodiments, and may be used to execute various steps and/or processes performed by the network device or the terminal device in the above method embodiments.
  • the memory 2030 may include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 2030 may be a separate device or may be integrated in the processor 2010 .
  • the processor 2010 may be configured to execute the instructions stored in the memory 2030, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is configured to execute each of the foregoing method embodiments corresponding to the network device or the terminal device steps and/or processes.
  • the communication apparatus 2000 is the terminal device in the foregoing embodiment.
  • the communication apparatus 2000 is the network device in the foregoing embodiment.
  • the transceiver 2020 may include a transmitter and a receiver.
  • the transceiver 2020 may further include antennas, and the number of the antennas may be one or more.
  • the processor 2010, the memory 2030 and the transceiver 2020 may be devices integrated on different chips.
  • the processor 2010 and the memory 2030 may be integrated in a baseband chip, and the transceiver 2020 may be integrated in a radio frequency chip.
  • the processor 2010, the memory 2030 and the transceiver 2020 may also be devices integrated on the same chip. This application does not limit this.
  • the communication apparatus 2000 is a component configured in a terminal device, such as a circuit, a chip, a chip system, and the like.
  • the communication apparatus 2000 is a component configured in a network device, such as a circuit, a chip, a chip system, and the like.
  • the transceiver 2020 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 2020, the processor 2010 and the memory 2030 can be integrated in the same chip, such as integrated in a baseband chip.
  • FIG. 9 is a schematic structural diagram of a terminal device 3000 provided by an embodiment of the present application.
  • the terminal device 3000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 3000 includes a processor 3010 and a transceiver 3020 .
  • the terminal device 3000 further includes a memory 3030 .
  • the processor 3010, the transceiver 3020 and the memory 3030 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the computer program is invoked and executed to control the transceiver 3020 to send and receive signals.
  • the terminal device 3000 may further include an antenna 3040 for sending the uplink data or uplink control signaling output by the transceiver 3020 through wireless signals.
  • the above-mentioned processor 3010 and the memory 3030 can be combined into a processing device, and the processor 3010 is configured to execute the program codes stored in the memory 3030 to realize the above-mentioned functions.
  • the memory 3030 may also be integrated in the processor 3010 or independent of the processor 3010 .
  • the processor 3010 may correspond to the processing unit 1100 in FIG. 7 or the processor 2010 in FIG. 8 .
  • the transceiver 3020 described above may correspond to the transceiver unit 1200 in FIG. 7 or the transceiver 2020 in FIG. 8 .
  • the transceiver 3020 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the terminal device 3000 shown in FIG. 9 can implement each process involving the terminal device in the method embodiment shown in FIG. 2 or FIG. 6 .
  • the operations and/or functions of each module in the terminal device 3000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 3010 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the terminal device, and the transceiver 3020 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 3020 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the above-mentioned terminal device 3000 may further include a power supply 3050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 3000 may further include one or more of an input unit 3060, a display unit 3070, an audio circuit 3080, a camera 3090, a sensor 3100, etc., the audio circuit Speakers 3082, microphones 3084, etc. may also be included.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application, which may be, for example, a schematic structural diagram of a base station.
  • the base station 4000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the base station 4000 may include one or more radio frequency units, such as a remote radio unit (RRU) 4100 and one or more baseband units (BBUs) (also referred to as distributed units (DUs). )) 4200.
  • RRU 4100 may be called a transceiver unit, which may correspond to the transceiver unit 1200 in FIG. 7 or the transceiver 2020 in FIG. 8 .
  • the RRU 4100 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4101 and a radio frequency unit 4102.
  • the RRU 4100 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called a receiver, a receiving circuit), and the sending unit may correspond to a transmitter (or called a transmitter, a sending circuit).
  • the RRU 4100 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals to baseband signals, for example, for sending indication information to terminal equipment.
  • the part of the BBU 4200 is mainly used to perform baseband processing and control the base station.
  • the RRU 4100 and the BBU 4200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 4200 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing unit 1100 in FIG. 7 or the processor 2010 in FIG. 8, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing , modulation, spread spectrum, etc.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to generate the foregoing indication information and the like.
  • the BBU 4200 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 4200 also includes a memory 4201 and a processor 4202.
  • the memory 4201 is used to store necessary instructions and data.
  • the processor 4202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiments.
  • the memory 4201 and the processor 4202 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the base station 4000 shown in FIG. 10 can implement various processes involving network devices in the method embodiment shown in FIG. 2 or FIG. 6 .
  • the operations and/or functions of each module in the base station 4000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 4200 may be used to perform the actions described in the foregoing method embodiments that are implemented internally by the network device, while the RRU 4100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 4100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the base station 4000 shown in FIG. 10 is only a possible form of network equipment, and should not constitute any limitation to the present application.
  • the method provided in this application can be applied to other forms of network equipment.
  • it includes AAU, may also include CU and/or DU, or includes BBU and adaptive radio unit (ARU), or BBU; may also be customer terminal equipment (customer premises equipment, CPE), may also be
  • AAU adaptive radio unit
  • BBU adaptive radio unit
  • CPE customer premises equipment
  • the CU and/or DU may be used to perform the actions implemented by the network device described in the foregoing method embodiments, and the AAU may be used to execute the network device described in the foregoing method embodiments to send or receive from the terminal device. Actions. For details, please refer to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • the present application also provides a processing apparatus, including at least one processor, where the at least one processor is configured to execute a computer program stored in a memory, so that the processing apparatus executes the terminal device or network device in any of the foregoing method embodiments method performed.
  • the embodiment of the present application also provides a processing apparatus, which includes a processor and a communication interface.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing apparatus executes the method executed by the terminal device or the network device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a processing apparatus, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing apparatus executes the method performed by the terminal device or the network device in any of the above method embodiments.
  • the above-mentioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the program shown in FIG. 2 or FIG. 6 .
  • the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute FIG. 2 or FIG. 6.
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • the terminal device may be used as an example of a receiving device
  • the network device may be used as an example of a sending device.
  • the sending device and the receiving device may both be terminal devices or the like. This application does not limit the specific types of the sending device and the receiving device.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道测量的方法及通信装置。该方法包括:在同一时域单元中的多个第一频域单元上接收多个参考信号,该多个参考信号分别由所在的第一频域单元对应的预编码矩阵预编码,其中该多个第一频域单元中至少两个不同的第一频域单元对应的预编码矩阵不同;基于该多个参考信号生成PMI,该PMI用于指示多个第二频域单元对应的多个码字,该多个第二频域单元与该多个第一频域单元属于相同的频域资源,该多个码字用于确定下行信道;发送该PMI。根据本申请实施例提供的方法,可以提高重构下行信道的精度。

Description

信道测量的方法及通信装置
本申请要求于2020年10月22日提交中国国家知识产权局、申请号为202011141660.3、申请名称为“信道测量的方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信道测量的方法及通信装置。
背景技术
在大规模多输入多输出(massive multiple-input multiple-output,Massive MIMO)技术中,网络设备可通过预编码减小多用户之间的干扰以及同一用户的多个信号流之间的干扰,有利于提高信号质量,实现空分复用,提高频谱利用率。
目前已知一种信道测量方法,网络设备发送下行信道状态信息参考信号(channel state information reference signal,CSI-RS),终端设备根据接收的下行CSI-RS估计下行信道,然后从预定义好的码本集合中挑选出与下行信道最匹配的码字,最后通过上行信道将挑选出的码字反馈给网络设备。然而受到反馈开销的限制,码本集合通常是离散有限状态的,而真实信道通常是无限连续状态的,因此码本与真实信道间存在不可避免的量化误差,这成为制约网络设备提升下行信道状态信息(channel state information,CSI)精度的瓶颈。
发明内容
本申请提供一种信道测量的方法及通信装置,可以联合多个时频块上的码本反馈确定下行信道,提升确定下行信道的精度。
第一方面,提供了一种信道测量的方法,该方法可以包括:接收同一时域单元中多个第一频域单元上的多个参考信号,该多个参考信号中分别由所在的第一频域单元对应的预编码矩阵预编码,其中该多个第一频域单元中至少两个不同的第一频域单元对应的预编码矩阵不同;基于该多个参考信号生成预编码矩阵指示(pre-coding matrix indicator,PMI),该PMI用于指示多个第二频域单元对应的多个码字,该多个第二频域单元与该多个第一频域单元属于相同的频域资源,该多个码字用于确定下行信道;发送该PMI。
基于上述技术方案,通过对相同时域单元上的至少两个不同频域单元上的参考信号加载不同的预编码矩阵,可以降低不同频域单元上的信道的相关性,进一步可以降低终端设备对不同频域单元上的码字进行量化反馈的误差的相关性,因此可以提高重构下行信道的精度。
第二方面,提供了一种信道测量的方法,该方法可以包括:在同一时域单元中的多个第一频域单元上发送多个参考信号,该多个参考信号分别由所在的第一频域单元对应的预编码矩阵预编码,其中该多个第一频域单元中至少两个不同第一频域单元对应的预编码矩 阵不同;接收PMI,该PMI用于指示多个第二频域单元对应的多个码字,该多个第二频域单元与该多个第一频域单元属于相同的频域资源;根据该多个码字和上行信道的空间频率域信道特征矩阵确定下行信道。
其中,上行信道的空间频率域信道特征矩阵是根据上行信道的信道矩阵和信道矩阵的共轭转置确定的。
基于上述技术方案,通过对相同时域单元上的至少两个不同频域单元上的参考信号加载不同的预编码矩阵,可以降低不同频域单元上的信道的相关性,进一步可以降低终端设备对不同频域单元上的码字进行量化反馈的误差的相关性,因此可以提高重构下行信道的精度。
其中,时域单元可以是无线帧(frame)、子帧(sub-frame)、时隙(slot)等。
第一频域单元可以是是子带、资源块(resource block,RB)、资源块组(resource block group,RBG)、预编码资源块组(precoding resource block group,PRG)等。
第二频域单元可以是子带、RB、RBG、PRG等。
例如,第一频域单元是子带,则可以对相同时域单元上的至少两个不同子带上的参考信号分别加载不同的预编码矩阵。相应地,第二频域单元可以是RB,即终端设备可以基于RB进行码本量化反馈;第二频域单元也可以是子带,即终端设备可以基于子带进行码本量化反馈。
频域资源可以是RB,或者是RBG,或者预定义的子带(subband),或者是频带(band),或者是带宽部分(bandwith part,BWP),或者是单元载波(component carrier,CC)。
多个第二频域单元与多个第一频域单元属于相同的频域资源,可以理解为多个第二频域单元组成的频域资源与多个第一频域单元组成的频域资源是相同的。例如,第一频域单元是RB,第二频域单元是RBG,若第一频域单元的个数为12,则多个第一频域单元组成的频域资源为12个RB,记为RB#1-RB#12;相应地,多个第二频域单元组成的频域资源也是12个RB,为RB#1-RB#12。又例如,多个第一频域单元组成的带宽为15Hz,则多个第二频域单元组成的带宽也是15Hz。
结合第二方面,在第二方面的某些实现方式中,该根据该个码字和上行信道的空间频率域信道特征矩阵确定下行信道,包括:根据该个码字和该空间频率域信道特征矩阵得到第一下行信道,该第一下行信道是角度时延域信道;根据该第一下行信道和该空间频率域信道特征矩阵得到第二下行信道,该第二下行信道是空间频率域信道。
基于上述技术方案,通过利用下行信道在角度时延域上的稀疏性,在角度时延域上联合多个时频块上的码本反馈重构下行信道,再将角度时延域的信道变换到空间频率域,可以降低重构下行信道的复杂度,提升重构下行信道的性能。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,任意两个不同第一频域单元分别对应的预编码矩阵不同。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该多个第一频域单元被划分为至少两个频域单元组,该至少两个频域单元组分别对应的预编码矩阵不同。
例如,第一频域单元是RB,频域单元组是子带。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,任意两个不同 频域单元组分别对应的预编码矩阵不同。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该预编码矩阵是随机半酉矩阵。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该预编码矩阵是固定波束矩阵与互相无偏基(mutually unbiased bases,MUB)矩阵的乘积,该固定波束矩阵是不同列具有相同的波束方向图的半酉矩阵。
第三方面,提供了一种信道测量的方法,该方法可以包括:接收同一时域单元中的多个第一频域单元上的多个参考信号;基于该多个参考信号和加权矩阵生成PMI,该PMI用于指示多个第二频域单元的加权等效信道对应的多个码字,该多个码字用于确定下行信道,每个第二频域单元的加权等效信道是根据第二频域单元对应的加权矩阵得到的,多个第二频域单元中至少两个不同第二频域单元对应的加权矩阵不同,该多个第二频域单元与该多个第一频域单元属于相同的频域资源;发送该PMI。
基于上述技术方案,通过对至少两个不同第二频域单元的等效信道加载不同的加权矩阵,可以降低不同第二频域单元上的信道的相关性,进一步可以降低终端设备对不同第二频域单元上的码字进行量化反馈的误差的相关性,因此可以提高重构下行信道的精度。
第四方面,提供了一种信道测量的方法,该方法可以包括:在同一时域单元中的多个第一频域单元上发送多个参考信号;接收PMI,该PMI用于指示多个第二频域单元的加权等效信道对应的多个码字,该多个码字用于确定下行信道,每个第二频域单元的加权等效信道是根据第二频域单元对应的加权矩阵得到的,多个第二频域单元中至少两个不同第二频域单元对应的加权矩阵不同,该多个第二频域单元与该多个第一频域单元属于相同的频域资源;根据该多个码字和上行信道的空间频率域信道特征矩阵确定下行信道。
其中,上行信道的空间频率域信道特征矩阵是根据上行信道的信道矩阵和信道矩阵的共轭转置确定的。
基于上述技术方案,通过对至少两个不同第二频域单元的等效信道加载不同的加权矩阵,可以降低不同第二频域单元上的信道的相关性,进一步可以降低终端设备对不同第二频域单元上的码字进行量化反馈的误差的相关性,因此可以提高重构下行信道的精度。
其中,时域单元可以是无线帧、子帧、时隙等。
第一频域单元可以是是子带、RB、RBG、PRG等。
第二频域单元可以是子带、RB、RBG、PRG等。
例如,第二频域单元可以是RB,即终端设备可以基于RB进行码本量化反馈,并且终端设备基于各个RB的加权等效信道进行码本量化反馈,至少两个RB对应的加权矩阵是不同的;第二频域单元也可以是子带,即终端设备可以基于子带进行码本量化反馈,并且终端设备基于各个子带的加权等效信道进行码本量化反馈,至少两个子带的对应的加权矩阵是不同的。
频域资源可以是RB,或者是RBG,或者预定义的子带(subband),或者是频带(band),或者是BWP,或者是CC。
多个第二频域单元与多个第一频域单元属于相同的频域资源,可以理解为多个第二频域单元组成的频域资源与多个第一频域单元组成的频域资源是相同的。例如,第一频域单元是RB,第二频域单元是RBG,若第一频域单元的个数为12,则多个第一频域单元组成 的频域资源为12个RB,记为RB#1-RB#12;相应地,多个第二频域单元组成的频域资源也是12个RB,为RB#1-RB#12。又例如,多个第一频域单元组成的带宽为15Hz,则多个第二频域单元组成的带宽也是15Hz。
结合第四方面,在第四方面的某些实现方式中,该根据该多个码字和上行信道的空间频率域信道特征矩阵确定下行信道,包括:根据该多个码字和该空间频率域信道特征矩阵得到第一下行信道,该第一下行信道是角度时延域信道;根据该第一下行信道和该空间频率域信道特征矩阵得到第二下行信道,该第二下行信道是空间频率域信道。
基于上述技术方案,通过利用下行信道在角度时延域上的稀疏性,在角度时延域上联合多个时频块上的码本反馈重构下行信道,再将角度时延域的信道变换到空间频率域,可以降低重构下行信道的复杂度,提升重构下行信道的性能。
结合第三方面或第四方面,在第三方面或第四方面的某些实现方式中,任意两个不同第二频域单元的对应的加权矩阵不同。
结合第三方面或第四方面,在第三方面或第四方面的某些实现方式中,该多个第二频域单元被划分为至少两个频域单元组,至少两个不同频域单元组的对应的加权矩阵不同。
例如,第二频域单元是RB,频域单元组是子带。
结合第三方面或第四方面,在第三方面或第四方面的某些实现方式中,任意两个不同频域单元组的对应的加权矩阵不同的。
结合第三方面或第四方面,在第三方面或第四方面的某些实现方式中,该多个参考信号分别由固定波束矩阵预编码,该固定波束矩阵是不同列具有相同的波束方向图的半酉矩阵;该加权矩阵是MUB矩阵。
第五方面,提供了一种通信装置,该通信装置可以是终端设备,或终端设备中的部件。该通信装置可以包括用于执行第一方面或第三方面以及第一方面或第三方面中任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第三方面及第一方面或第三方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。当该通信装置为配置于终端设备中的芯片或芯片系统时,所述通信接口可以是输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第七方面,提供了一种通信装置,该通信装置可以是网络设备,或网络设备中的部件。该通信装置可以包括用于执行第二方面或第四方面以及第二方面或第四方面中任一种可能实现方式中的方法的各个模块或单元。
第八方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第四方面以及第二方面或第四方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。当该通信装置为配置于网络设备中的芯片或芯片系统时,所述通信接口可以是输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第九方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述第一方面至第四方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供了一种处理装置,包括通信接口和处理器。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行第一方面至第四方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
第十一方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以使得所述处理装置执行第一方面至第四方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的信息交互过程,例如发送指示信息可以为从处理器输出指示信息的过程,接收指示信息可以为向处理器输入接收到的指示信息的过程。具体地,处理输出的信 息可以输出给发射器,处理器接收的输入信息可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十方面和第十一方面中的装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第四方面中任一种可能实现方式中的方法。
第十三方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一种可能实现方式中的方法。
第十四方面,提供了一种通信系统,包括前述的终端设备和网络设备。
附图说明
图1是适用于本申请实施例的信道测量的方法的通信系统的示意图。
图2是本申请实施例提供的信道测量方法的示意性流程图。
图3至图5是本申请实施例提供的参考信号在时频资源中映射的示意图。
图6是本申请另一实施例提供的信道测量方法的示意性流程图。
图7是本申请实施例提供的通信装置的示意性框图。
图8是本申请实施例提供的通信装置的另一示意性框图。
图9是本申请实施例提供的终端设备的示意性结构图。
图10是本申请实施例提供的网络设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:长期演讲(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5 th Generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NAS)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施 (vehicle to infrastructure,V2I)通信、车辆与行人间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile Internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving) 中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或链接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注与某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的信道测量方法的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,如图1中所示的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。因此,图1中的网络设备101和终端设备102至107构成一个通信系统。
可选地,终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备105与网络设备101通信。
应理解,图1示例性地示出了一个网络设备和多个终端设备,以及各通信设备之间的通信链路。可选地,该通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,例如更多或更少的终端设备。本申请对此不做限定。
上述各个通信设备,如图1中的网络设备101和终端设备102至107,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的 接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可以通过多天线技术通信。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
多天线系统在网络设备配置多根收发天线,通过发掘利用空间维度资源以提升系统容量。提升多天线系统下行容量的一个关键因素是在网络设备端获取较为准确的下行信道状态信息(channel state information,CSI)。通道校准后的TDD系统因为存在上下行信道互易性,可以通过用户发送的上行探测信号(sounding reference signal,SRS)估计出下行CSI。FDD系统由于存在上下行频带差,不具有信道互易性,因此下行CSI只能是由终端设备向网络设备反馈。此外,如果TDD系统的通道未校准,则网络设备与终端设备间的等效基带信道也不具有互易性,因此,下行CSI也需要终端设备向网络设备反馈。
在下行CSI反馈流程中,网络设备首先发送下行信道状态信息参考信号(channel state information reference signal,CSI-RS);终端设备根据接收到的下行CSI-RS估计出下行信道,然后从预先定义好的码本集合中挑选出与下行信道最匹配的码字,最后通过上行信道将挑选出的码字反馈给网络设备。受到上行反馈开销的限制,码本集合通常是离散有限状态的,而真实信道通常是连续无限状态的,因此码本与真实信道间存在不可避免的量化误差,这成为制约网络设备端提升下行CSI精度的瓶颈。鉴于无线信道通常具有时间相关性与频率相关性,因此在网络设备端可以联合利用多个时频块上的码本反馈,对这些时频块上的信道进行联合重构,以提升CSI精度。
目前已有的一种通过利用信道的时间相关性重构下行信道的方案如下:网络设备发送CSI-RS时使用导频加权矩阵对CSI-RS进行加权,且加权矩阵在不同时刻(CSI-RS子帧)之间变化,同一CSI-RS子帧内全带所有资源块(resource block,RB)上的加权矩阵相同;终端设备根据接收到的下行CSI-RS进行信道估计,得到的信道估计结果是真实信道经过加权后的等效信道,并对等效信道进行码本量化,再将码本反馈给网络设备;网络设备结合终端设备每次反馈对应的导频加权矩阵,重构真实下行CSI。网络设备重构的下行CSI可以用于下行多用户调度、波束赋形发送等。
由于上述信道重构方案在原理上只利用了信道的时间相关性,而未利用信道的频率相关性,即使终端设备在子带反馈下,网络设备也是对各子带信道独立进行重构,而没有在子带间进行联合重构,因此存在性能改进空间。此外,由于网络设备发送CSI-RS时,在全带使用相同的加权矩阵,即使终端设备采用子带反馈,子带间的码本量化误差的相关性也很高,因此,网络设备进行子带间联合重构时无法带来增益。
有鉴于此,本申请实施例提供一种信道测量的方法,以期提高网络设备重构下行信道的精度。
下面将结合附图详细说明本申请实施例提供的方法。
应理解,下文仅为便于理解和说明,以终端设备与网络设备之间的交互为例详细说明本申请实施例所提供的方法。但这不应对本申请提供的方法的执行主体构成任何限定。例如,下文实施例示出的终端设备可以替换为配置与终端设备中的部件(如电路、芯片或芯片系统)等。下行实施例示出的网络设备也可以替换为配置于网络设备中的部件(如电路、 芯片或芯片系统)等。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
下面结合附图详细说明本申请实施例提供的信道测量的方法。图2是本申请实施例提供的信道测量的方法200的示意性流程图。如图2所示,该方法200可以包括S210至S260。下面详细说明方法200中的各步骤。
S210,终端设备发送上行参考信号。相应地,在S210中,网络设备接收上行参考信号。
终端设备向网络设备发送的上行参考信号可以用于测量上行信道,该上行参考信号可以是探测参考信号(sounding reference signal,SRS),或者,可以是其他参考信号,本申请实施例对此不做限定。
具体地,终端设备可以周期性地向网络设备发送上行参考信号。
S220,网络设备根据上行参考信号估计上行信道,并计算上行信道的空间频率域信道特征矩阵。
具体地,网络设备根据上行参考信号估计上行信道的方法可以参考现有技术,为了简洁,本申请实施例不做详述。
下面对网络设备根据估计的上行信道计算空间频率域信道特征矩阵的方法进行说明。
为便于理解,假设网络设备端的天线数为M t,终端设备端的天线数为M r,频域单元(以RB为例)的个数为K。针对终端设备的第r根发送天线,网络设备估计出该第r根发送天线到网络设备的所有天线在第k个RB的上行信道可以记为
Figure PCTCN2021116159-appb-000001
其中,k=1,2,…,K,r=1,2,…,M r
Figure PCTCN2021116159-appb-000002
的维度为M t×1。可以理解,网络设备每接收到一个来自终端设备的上行参考信号,就可以根据该上行参考信号计算出一个
Figure PCTCN2021116159-appb-000003
作为一个示例,网络设备将终端设备的第r根发送天线到网络设备的所有天线在所有RB的上行信道拼接成一个列向量,记为
Figure PCTCN2021116159-appb-000004
其中,vec(·)表示向量化操作,
Figure PCTCN2021116159-appb-000005
的维度是M tK×1。进一步地,网络设备计算
Figure PCTCN2021116159-appb-000006
并在终端设备的所有发送天线与时间上进行统计平均,得到终端设备的长期统计空间频率域联合信道协方差矩阵R,R的维度是M tK×M tK。
例如,若终端设备只有一根发送天线,则网络设备将一段时间内根据来自终端设备的多个上行参考信号得到的多个
Figure PCTCN2021116159-appb-000007
进行统计平均,得到终端设备的长期统计空间频率域联合信道协方差矩阵R。
又例如,若终端设备有多根发送天线,则网络设备可以首先将
Figure PCTCN2021116159-appb-000008
在终端设备的所有发送天线上进行统计平均,得到
Figure PCTCN2021116159-appb-000009
进一步地,网络设备将一段时间内根据来自终端设备的多个上行参考信号得到的多个
Figure PCTCN2021116159-appb-000010
进行统计平均,得到终端设备的长期统计空间频率域联合信道协方差矩阵R。
应理解,上文中描述的网络设备将
Figure PCTCN2021116159-appb-000011
在终端设备的所有发送天线与时间上进行统计平均的方法仅为示例,不应对本申请实施例造成限定。例如,网络设备还可以将一段时间内根据来自终端设备的多个上行参考信号得到的多个
Figure PCTCN2021116159-appb-000012
多个
Figure PCTCN2021116159-appb-000013
多个
Figure PCTCN2021116159-appb-000014
进行统计平均,得到终端设备的长期统计空间频率域联合信道协方差矩阵R。
进一步地,网络设备计算R的低秩近似得到空间频率域信道特征矩阵P,即R≈PP H,P的维度是M tK×N,N远小于M tK。其中,计算矩阵的低秩近似的方法可以参考现有技术。
作为另一个示例,网络设备将终端设备的第r根发送天线到网络设备的所有天线在所有RB的上行信道拼接成一个矩阵,记为
Figure PCTCN2021116159-appb-000015
Figure PCTCN2021116159-appb-000016
的维度是M t×K。进一步地,网络设备分别计算
Figure PCTCN2021116159-appb-000017
Figure PCTCN2021116159-appb-000018
并在终端设备的所有发送天线与时间上进行统计平均,分别得到终端设备的长期统计空间域信道协方差矩阵R s与频率域信道协方差阵R f,R s与R f的维度分别是M t×M t与K×K。
例如,若终端设备只有一根发送天线,则网络设备将一段时间内根据来自终端设备的多个上行参考信号得到的多个
Figure PCTCN2021116159-appb-000019
进行统计平均,得到终端设备的长期统计空间域信道协方差矩阵R s;将一段时间内根据来自终端设备的多个上行参考信号得到的多个
Figure PCTCN2021116159-appb-000020
进行统计平均,得到终端设备的长期统计频率域信道协方差矩阵R f
又例如,若终端设备有多根发送天线,则网络设备可以首先将
Figure PCTCN2021116159-appb-000021
在终端设备的所有发送天线上进行统计平均,得到
Figure PCTCN2021116159-appb-000022
Figure PCTCN2021116159-appb-000023
在终端设备的所有发送天线上进行统计平均,得到
Figure PCTCN2021116159-appb-000024
进一步地,网络设备将一段时间内根据来自终端设备的多个上行参考信号得到的多个
Figure PCTCN2021116159-appb-000025
进行统计平均,得到终端设备的长期统计空间域信道协方差矩阵R s,将一段时间内根据来自终端设备的多个上行参考信号得到的多个
Figure PCTCN2021116159-appb-000026
进行统计平均,得到终端设备的长期统计频率域信道协方差矩阵R f
应理解,上文中描述的网络设备将
Figure PCTCN2021116159-appb-000027
Figure PCTCN2021116159-appb-000028
在终端设备的所有发送天线与时间上进行统计平均的方法仅为示例,不应对本申请实施例造成限定。例如,网络设备还可以将一段时间内根据来自终端设备的多个上行参考信号得到的多个
Figure PCTCN2021116159-appb-000029
多个
Figure PCTCN2021116159-appb-000030
多个
Figure PCTCN2021116159-appb-000031
进行统计平均,得到终端设备的长期统计空间域信道协方差矩阵R s;将一段时间内根据来自终端设备的多个上行参考信号得到的多个
Figure PCTCN2021116159-appb-000032
多个
Figure PCTCN2021116159-appb-000033
多个
Figure PCTCN2021116159-appb-000034
进行统计平均,得到终端设备的长期统计频率域信道协方差矩阵R f
进一步地,网络设备分别计算R s与R f的低秩近似,得到空间域信道特征矩阵P s和频率域信道特征矩阵P f,即
Figure PCTCN2021116159-appb-000035
P s的维度是M t×N s,P f的维度是K×N f;进一步地,网络设备计算根据P s和P f计算空间频率域信道特征矩阵P,即
Figure PCTCN2021116159-appb-000036
P的维度是M tK×N,N=N sN f。其中,计算矩阵的低秩近似的方法可以参考现有技术。
S230,网络设备发送多个参考信号#A。相应地,在S230中,终端设备接收多个参考信号#A。
多个参考信号#A是相同时域单元中的多个第一频域单元上参考信号,下文中将多个参考信号#A所在的时域单元记为时域单元#A。多个参考信号#A中分别由所在的第一频域单元对应的预编码矩阵#1预编码,且至少两个不同第一频域单元对应的预编码矩阵#1不同,即承载于至少两个不同第一频域单元上的参考信号#A是经过不同的预编码矩阵#1预编码的。
可选地,任意两个不同第一频域单元上对应的预编码矩阵#1不同,即承载于任意两个不同第一频域单元上的参考信号#A是经过不同的预编码矩阵#1预编码的。
其中,时域单元#1可以是无线帧(frame)、子帧(sub-frame)、时隙(slot)等,本申请实施例对此不做限定,下文中以时域单元#1是子帧为例进行说明。
第一频域单元可以是子带、资源块(resource block,RB)、资源块组(resource block group,RBG)、预编码资源块组(precoding resource block group,PRG)等,本申请实施例对此不做限定。
以第一频域单元是RB、参考信号#A的个数是K为例,图3示出了K个参考信号#A在时域资源上的映射示意图。如图3所示,参考信号#A(RS#1至RS#K)都承载在时域单元#1(子帧#1)上,且参考信号#A(RS#1至RS#K)中的任意两个参考信号#A是不同RB上的参考信号,例如,RS#1承载在RB#1上,RS#2承载在RB#2上,……,RS#K承载在RB#K上,即RS#1至RS#K中的任意两个是不同RB上的参考信号。
如图3所示,K个参考信号#A中的任意两个参考信号#A是不同RB上的参考信号。并且,K个参考信号#A中的至少两个参考信号#A对应的预编码矩阵#1不同。将网络设备在RB#1上发送的RS#1记为B 1X 1,在RB#2上发送的RS#2记为B 2X 2,……,在RB#K上发送的RS#K记为B KX K,其中,X k和B k分别是与RS#k对应的预编码前的参考信号和预编码矩阵#1,k=1,2,…,K。X k和B k的维度分别是P×P与M t×P,P表示参考信号#A的端口数。由上文描述可知,B 1,B 2,……,B K中的至少两个是不相同的。可以理解,在P=1的情况下,B k的维度是M t×1,则B k可以称为预编码向量。
可选地,如图3所示的K个参考信号#A中的任意两个参考信号#A对应的预编码矩阵#1不同,即B 1,B 2,……,B K中的任意两个是不同的。
作为另一个示例,第一频域单元可以是子带。以参考信号#A的个数是K为例,图4示出了K个参考信号#A在时域资源上的映射示意图。如图4所示,参考信号#A(RS#1至RS#K)都承载在时域单元#1(子帧#1)上,且参考信号#A(RS#1至RS#K)中的至少两个参考信号#A是不同子带上的参考信号,例如,RS#1承载于子带#1上,RS#3承载于子带#2上,即RS#1与RS#3是不同子带上的参考信号。
如图4所示,K个参考信号#A中的至少两个参考信号#A是不同子带上的参考信号。相应地,K个参考信号#A中,至少两个不同子带上的参考信号#A对应的预编码矩阵#1不同。例如,子带#1与子带#2上的参考信号#A对应的预编码矩阵#1可以是不同的,例如RS#1和RS#3分别承载于子带#1和子带#2,则与RS#1和RS#3分别对应的B 1和B 3是不同的。在此情况下,子带#1与除子带#2的其他子带上的参考信号#A对应的预编码矩阵#1可以是不同的,也可以是相同的,例如,子带#1与子带#M上的参考信号#A对应的预编码矩阵#1可以是相同的,也可以是不同的;子带#2与除子带#1之外的其他子带上的参考信号#A对应的预编码矩阵#1可以是相同的,也可以是不同的,例如,子带#2与子带#M上的参考信号#A对应的预编码矩阵#1可以是相同的,也可以是不同的。
可以理解,在考虑子带量化的情况下,同一子带上的不同RB上的参考信号#A对应的预编码矩阵#1是相同的。例如,RS#1和RS#2都承载于子带#1,则与RS#1和RS#2分别对应的B 1和B 2是相同的。
可选地,如图4所示的K个参考信号#A中,任意两个不同子带上的参考信号#A对应的预编码矩阵#1是不同的。
应理解,图4中仅以一个子带包括两个RB为例进行说明,在不同的系统配置下,一个子带包括的RB数可以是不同的。
本申请实施例对预编码矩阵#1的具体形式不做限定。
作为一个示例,预编码矩阵#1可以是随机半酉矩阵,记为Ψ。
例如,在参考信号#A的个数是K、第一频域单元是RB的情况下,B k可以表示为:
B k=Ψ k,k=1,2,…,K    (1)
Ψ k表示维度为M t×P的随机的半酉矩阵,即对于不同的k,Ψ k应不同。
又例如,在参考信号#A个数是K、第一频域单元是子带的情况下,若考虑子带量化,即同一子带上的不同RB上的参考信号#A对应的预编码矩阵#1相同,则B k可以表示为:
Figure PCTCN2021116159-appb-000037
其中,M为子带数;Ψ m表示维度为M t×P的随机的半酉矩阵,即对于不同的m,Ψ m应不同;
Figure PCTCN2021116159-appb-000038
表示第m个子带包含的承载参考信号#A的RB集合,
Figure PCTCN2021116159-appb-000039
如图4所示,子带#1包含的承载参考信号#ARB为RB#1和RB#2,则
Figure PCTCN2021116159-appb-000040
子带#2包含的承载参考信号#A的RB为RB#3和RB#4,则
Figure PCTCN2021116159-appb-000041
子带#M包含的承载参考信号#A的RB集合为RB#K-1和RB#K,则
Figure PCTCN2021116159-appb-000042
作为另一个示例,预编码矩阵#1可以是固定波束矩阵与互相无偏基(mutually unbiased bases,MUB)矩阵的乘积。其中,固定波束矩阵可以是不同列具有相同的波束方向图的半酉矩阵,例如,可以是离散傅里叶变换(discrete fourier transform,DFT)矩阵,记为F,MUB矩阵记为Φ。
例如,在参考信号#A的个数是K、第一频域单元是RB的情况下,B k可以表示为:
B k=FΦ mod(k,P+1),k=1,2,…,K       (3)
01,…,Φ P}表示P+1个维度都是P×P的MUB矩阵集合,mod(a,b)表示对a取模b操作。
又例如,在参考信号#A个数是K、第一频域单元是子带的情况下,则B k可以表示为:
Figure PCTCN2021116159-appb-000043
01,…,Φ P}表示P+1个维度都是P×P的MUB矩阵集合,mod(a,b)表示对a取模b操作。
S240,终端设备生成PMI#1。
S250,终端设备发送PMI#1。相应地,在S250中,网络设备接收PMI#1。
PMI#1是终端设备基于接收到的多个参考信号#A确定的。PMI#1用于指示多个码字#1,多个码字#1与多个第二频域单元一一对应,多个第二频域单元与多个第一频域单元属于相同的频域资源,多个码字#1用于确定下行信道。多个码字#1与多个第二频域单元一一对应可以理解为,每个码字#1是终端设备基于第二频域单元上参考信号#A得到的。
第二频域单元可以是子带、RB、RBG、PRG等,本申请实施例对此不做限定。
频域资源可以是RB,或者是RBG,或者预定义的子带(subband),或者是频带(band),或者是BWP,或者是CC。
多个第二频域单元与多个第一频域单元属于相同的频域资源,可以理解为多个第二频域单元组成的频域资源与多个第一频域单元组成的频域资源是相同的。例如,第一频域单元是RB,第二频域单元是RBG,若第一频域单元的个数为12,则多个第一频域单元组成的频域资源为12个RB,记为RB#1-RB#12;相应地,多个第二频域单元组成的频域资源也是12个RB,为RB#1-RB#12。又例如,多个第一频域单元组成的带宽为15Hz,则多个第二频域单元组成的带宽也是15Hz。
下文中以第二频域单元是RB为例进行说明。也就是说,下文中以终端设备基于每个RB上接收到的参考信号#A得到码字#1为例进行说明。
终端设备接收到网络设备发送的多个参考信号#A之后,可以根据多个参考信号#A测量下行信道并估计各个RB的等效信道。本申请实施例对终端设备估计各个RB的等效信道的方法不做限定,例如,终端设备可以采用最小二乘(least square,LS)法估计各个RB的等效信道。
例如,针对网络设备发送的第k个参考信号#A,终端设备接收到的信号可以表示为:
Y k=H dl,kB kX k+Z k,k=1,2,…,K       (5)
其中,H dl,k表示第k个RB上的下行信道,维度为M r×M t;Z k表示表示干扰噪声,维度为M r×P。根据公式(5)可以得到第k个RB的等效信道H dl,kB k的LS估计为Y kX k -1
可选地,在第一频域单元是子带的情况下,根据上文的描述,与同一子带内的所有参考信号#A分别对应的预编码矩阵#1是相同的,因此,终端设备还可以对同一子带内的所有RB的LS估计结果进行联合滤波降噪处理,最终得到的第k个RB上等效信道可以表示为
Figure PCTCN2021116159-appb-000044
本申请实施例对联合滤波降噪处理的具体方法不做限定。
进一步地,终端设备可以根据各个RB的等效信道确定与各个RB对应的码字#1,并通过PMI#1反馈给网络设备。
本申请实施例对终端设备根据各个RB的等效信道确定各个RB的码字#1的方法不做限定。例如,终端设备可以对各个RB的等效信道进行奇异值分解(singular value decomposition,SVD),确定各个RB的码字#1。在一个RB的码字#1中,每一列可对应于一个传输层。将第k个RB的码字#1记为J k,其维度为P×R,R为传输层的层数。可以理解,在与各个RB上的参考信号#A分别对应的预编码矩阵#1不同的情况下,各个RB 的码字#1的量化反馈应独立进行。
可选地,终端设备还可以基于子带进行量化反馈,即第二频域单元可以是子带。终端设备可以根据一个子带内的所有RB的等效信道确定子带的等效信道;进一步地根据子带的等效信道确定子带的码字#1。同样地,在一个子带的码字#1中,每一列可对应于一个传输层。将第m个子带的码字#1记为W m,其维度为P×R,R为传输层的层数。可以理解,在与各个子带上的参考信号#A分别对应的预编码矩阵#1不同的情况下,各个子带的码字#1的量化反馈应独立进行。
本申请实施例对终端设备通过PMI#1向网络设备反馈各个RB的码字#1的方式不做限定。
例如,终端设备可以向网络设备发送多个PMI#1,每个PMI#1用于指示一个RB的码字#1。又例如,终端设备可以向网络设备发送一个PMI#1,该一个PMI#1用于指示各个RB的码字#1。
本申请实施例对终端设备确定PMI#1的方式不做限定。例如,终端设备可以基于端口选择码本确定PMI。该端口选择码本例如可以为NR协议中定义的类型二端口选择码本(type II port selection codebook)。更多的关于终端设备确定PMI#1的方式可以参考现有技术,为了简洁,本申请实施例不再详述。
进一步地,网络设备接收到PMI#1之后,可以根据PMI#1确定各个RB的码字#1。
S260,网络设备根据各个RB的码字#1和上行信道的空间频率域信道特征矩阵确定下行信道。
Figure PCTCN2021116159-appb-000045
其中,e k表示维度为K×1、只有第k个元素为1、其余元素为0的列向量,
Figure PCTCN2021116159-appb-000046
表示维度为M t×M t的单位阵。
在终端设备基于子带进行量化反馈情况下,令
Figure PCTCN2021116159-appb-000047
进一步地,网络设备可以进行如下迭代运算:
Figure PCTCN2021116159-appb-000048
其中,t_largest_eigvec()表示求前t个最大特征向量,V k,1
Figure PCTCN2021116159-appb-000049
分别表示
Figure PCTCN2021116159-appb-000050
的左右特征矩阵,即通过SVD分解得到
Figure PCTCN2021116159-appb-000051
IterNum为迭 代次数,σ 2为正实参数。迭代完得到的G表示重构出的角度时延域信道。最后网络设备根据公式(6)得到每个RB上的空间频率域信道:
Figure PCTCN2021116159-appb-000052
应理解,上述确定下行信道的过程中,仅以网络设备确定每个RB的下行信道为例进行说明,不应对本申请实施例构成任何限定。例如,上述迭代运算的公式以及公式(6)可以进行适当的变形之后,用于确定每个子带的下行信道。
在本申请实施例中,通过对相同时域单元上的至少两个不同第一频域单元上的参考信号加载不同的预编码矩阵,可以降低不同频域单元上的信道的相关性,进一步可以降低终端设备对不同频域单元上的码字#1进行量化反馈的误差的相关性,因此可以提高重构下行信道的精度。此外,本申请实施例通过利用下行信道在角度时延域上的稀疏性,在角度时延域上联合重构下行信道,再将角度时延域的信道变换到空间频率域,可以降低重构下行信道的复杂度,提升重构下行信道的性能。
可选地,方法200还可以包括S270至S290。
S270,网络设备发送多个参考信号#B。相应地,在S270中,终端设备接收多个参考信号#B。
多个参考信号#B是相同时域单元中的多个第一频域单元上的参考信号,下文中将多个参考信号#B所在的时域单元记为时域单元#2。多个参考信号#B分别由所在的第一频域单元对应的预编码矩阵#2预编码,且至少两个不同第一频域单元上对应的预编码矩阵#2不同,即承载于至少两个不同第一频域单元上的参考信号#B是经过不同的预编码矩阵#2预编码的。
可选地,任意两个不同第一频域单元对应的预编码矩阵#2不同,即承载于任意两个不同第一频域单元上的参考信号#A是经过不同的预编码矩阵#1预编码的。
关于多个参考信号#B在时频资源上的映射关系可以参考S230中关于参考信号#A的描述,为了简洁,本申请实施例不再详述。
关于预编码矩阵#2的描述可以参考S230中关于预编码矩阵#1的描述,为了简洁,本申请实施例不再详述。
时域单元#2不同于时域单元#1。
下面对预编码矩阵#1和预编码矩阵#2的关系进行说明。
本申请实施例对预编码矩阵#1和预编码矩阵#2的关系不做限定。
作为一个示例,与在相同频域单元上的参考信号#A和参考信号#B分别对应的预编码矩阵#1和预编码矩阵#2可以是相同的。下文以第一频域单元是子带为例进行说明。
例如图5所示,RS#1,1(参考信号#A的一例)与RS#2,1(参考信号#B的第一例)都是子带#1上的参考信号,则分别与RS#1,1和RS#2,1对应的预编码矩阵#1和预编码矩阵#2可以是相同的;又例如,RS#1,3(参考信号#A的一例)与RS2,3(参考信号#B的一例)都是子带#2上的参考信号,则分别与RS#1,3和RS#2,3对应的预编码矩阵#1和预编码矩阵#2可以是相同的。
作为另一个示例,与相同第一频域单元上的参考信号#A和参考信号#B分别对应的预编码矩阵#1和预编码矩阵#2是不同的。下文以第一频域单元是子带为例进行说明。
例如图5所示,与RS#1,1对应的预编码矩阵#1不同于与RS#2,1对应的预编码矩阵#2; 与RS#1,2对应的预编码矩阵#1不同于与RS#2,2对应的预编码矩阵#2;……;与RS#1,K对应的预编码矩阵#1不同于与RS#2,K对应的预编码矩阵#2。
可选地,与任意一个参考信号#A对应的预编码矩阵#1和与任意一个参考信号#B对应的预编码矩阵#2是不同的。
例如图5所示,与RS#1,1对应的预编码矩阵#1不同于与RS#2,1至RS#2,K分别对应的预编码矩阵#2;与RS#1,2对应的预编码矩阵#1不同于与RS#2,1至RS#2,K分别对应的预编码矩阵#2;……;与RS#1,K对应的预编码矩阵#1不同于与RS#2,1至RS#2,K分别对应的预编码矩阵#2。
可选地,网络设备在还可以在时域单元#3上发送多个参考信号#C,在时域单元#4上发送多个参考信号#D,……,等等。时域单元#3不同于时域单元#4,且时域单元#3和时域单元#4不同于时域单元#2和时域单元#1。
以下不失一般性地,以网络设备在L个时域单元上发送参考信号为例,对与不同时域单元上的参考信号对应的预编码矩阵进行说明。应理解,下文中描述的参考信号仍然满足至少两个不同第一频域单元上的参考信号分别对应的预编码矩阵不同。下文以时域单元是子帧、第一频域单元是子带为例进行说明。
假设网络设备在每个子帧上发送的参考信号的个数为K,将网络设备在第l个子帧的第k个RB上发送的参考信号记为B k,lX k,l,B k,l和X k,l分别是预编码矩阵和预编码前的参考信号,k=1,2,…,K,l=1,2,…,L。
在一种实现方式中,与任意两个承载于相同子带不同子帧上的参考信号分别对应的预编码矩阵是相同的。
作为一个示例,
Figure PCTCN2021116159-appb-000053
作为另一个示例,
Figure PCTCN2021116159-appb-000054
根据上述两个示例中的B k,l的表达式可知,B k,l的不同取值只与下标k有关,而与下标l无关,即在下标k所属的
Figure PCTCN2021116159-appb-000055
保持不变、下标l的取值从1至L变化的情况下,B k,l保持不变,即与承载于相同子带不同子帧上的多个参考信号对应的B k,l保持不变。
在另一种实现方式中,与至少两个承载于相同子带不同子帧上的参考信号分别对应的预编码矩阵是不同的。
作为一个示例,
Figure PCTCN2021116159-appb-000056
作为另一个示例,
Figure PCTCN2021116159-appb-000057
根据上述两个示例中的B k,l的表达式可知,B k,l的不同取值与下标k和下标l都有关,即在下标k所属的
Figure PCTCN2021116159-appb-000058
发生变化和/或下标l的取值发生变化的情况下,B k,l可能发生变化,即与承载于不同子带不同子帧上的多个参考信号分别对应的B k,l不完全相同。
S280,终端设备生成PMI#2。
S290,终端设备发送PMI#2。相应地,在S290中,网络设备接收PMI#2。
PMI#2是终端设备基于接收到的多个参考信号#B确定的。PMI#2用于指示多个码字#2,多个码字#2与多个第二频域单元一一对应,多个第二频域单元与多个第一频域单元属于相同的频域资源,多个码字#2用于确定下行信道。多个码字#2与多个第二频域单元一一对应可以理解为,每个码字#2是终端设备基于第二频域单元上的参考信号#B得到的。
具体地,终端设备根据接收到的参考信号#B确定PMI#2,并向网络设备发送PMI#2的方法可以参考S240中关于PMI#1的描述。为了简洁,本申请实施例不再详述。
在方法200执行了S270至S290的情况下,假设信道在时域单元#1和时域单元#2内近似不不变,则在S260中,终端设备可以联合PMI#1和PMI#2确定下行信道。
如上文所述,网络设备可以在时域单元#3上发送多个参考信号#C,相应地,终端设备可以根据多个参考信号#C测量下行信道,并向网络设备反馈PMI#3,PMI#3用于指示码字#3;网络设备可以在时域单元#4上发送多个参考信号#D,相应地,终端设备可以根据多个参考信号#D测量下行信道,并向网络设备反馈PMI#4,PMI#4用于指示码字#4……,等等。在此情况下,假设下行信道在多个时域单元内近似不变,则在S250中,终端设备可以联合多个PMI确定下行信道。
以下不失一般性地,以网络设备在L个时域单元上发送参考信号为例,对本申请实施例提供的联合确定下行信道的方法进行说明。下文以时域单元是子帧、第一频域单元和第二频域单元是RB为例进行说明。应理解,下文描述的方法的前提是假设下行信道在L个子帧内近似不变。在下行信道快速变化的情况下,网络设备可以基于上文描述的PMI#1确定下行信道。
假设网络设备在每个子帧上发送的参考信号的个数为K,终端设备在第l个子帧的第k个RB上接收的信号可以表示为:
Y k,l=H dl,k,lB k,lX k,l+Z k,l        (7)
其中,H dl,k,l表示第l个子帧的第k个RB上的下行信道,维度为M r×M t;Z k,l表示表示干扰噪声,维度为M r×P。根据公式(7)可以得到第l个子帧的第k个RB的等效信道H dl,k,lB k,l的LS估计为Y k,lX k,l -1
可选地,在第一频域单元是子带的情况下,根据上文的描述,与同一子带内的所有参考信号分别对应的预编码矩阵是相同的,因此,终端设备还可以对同一子带内的所有RB的LS估计结果进行联合滤波降噪处理,最终得到的第l个子帧的第k个RB上的等效信道可以表示为
Figure PCTCN2021116159-appb-000059
本申请实施例对联合滤波降噪处理的具体方法不做限定。
进一步地,终端设备可以根据第l个子帧的第k个RB上的等效信道确定第l个子帧的第k个RB的码字,并通过PMI反馈给网络设备。将第l个子帧的第k个RB的码字记为J k,l,其维度为P×R,R为传输层的层数。可以理解,在与第l个子帧的各个RB上的参考信号分别对应的预编码矩阵不同的情况下,第l个子帧的各个RB的码字的量化反馈应独立进行。
可选地,终端设备还可以基于子带进行量化反馈,即第二频域单元可以是子带。终端设备可以根据第l个子帧的第m个子带内的所有RB的等效信道,确定第l个子帧的第m个子带的等效信道;进一步地,根据第l个子帧的第m个子带的等效信道确定第l个子帧的第m个子带的码字。将第l个子帧的第m个子带的码字记为W m,l,其维度为P×R,R为传输层的层数。在与第l个子帧的各个子带上的参考信号分别对应的预编码矩阵不同的情况下,第l个子帧的各个子带的码字的量化反馈应独立进行。
进一步地,令
Figure PCTCN2021116159-appb-000060
在终端设备基于子带进行量化反馈情况下,令
Figure PCTCN2021116159-appb-000061
进一步地,网络设备可以进行如下迭代运算:
Figure PCTCN2021116159-appb-000062
其中,t_largest_eigvec()表示求前r个最大特征向量,V k,l,1
Figure PCTCN2021116159-appb-000063
分别表示
Figure PCTCN2021116159-appb-000064
的左右特征矩阵,即通过SVD分解得到
Figure PCTCN2021116159-appb-000065
IterNum为迭代次数,σ 2为正实参数。迭代完得到的G表示重构出的角度时延域信道。最后网络设备根据公式(6)得到每个RB上的空间频率域信道:
Figure PCTCN2021116159-appb-000066
应理解,上述确定下行信道的过程中,仅以网络设备确定每个RB的下行信道为例进行说明,不应对本申请实施例构成任何限定。例如,上述迭代运算的公式以及公式(6)可以进行适当的变形之后,用于确定每个子带的下行信道。
图6是本申请另一实施例提供的信道测量的方法600的示意性流程图。如图6所示,该方法600可以包括S610至S660。下面详细说明方法600中的各步骤。
S610,终端设备发送上行参考信号。相应地,在S610中,网络设备接收上行参考信号。
S620,网络设备根据上行参考信号估计上行信道,并计算上行信道的空间频率域信道特征矩阵。
具体地,关于S610和S620的详细描述可以参考上文中关于S210和S220的描述,为了简洁,此处不再详述。
S630,网络设备发送多个参考信号#A。相应地,在S630中,终端设备接收多个参考信号#A。
多个参考信号#A是相同时域单元中的不同第一频域单元上的参考信号,下文中将多个参考信号#A所在的时域单元记为时域单元#A。多个参考信号#A可以是经过预编码的参考信号,也可以是未经过预编码的参考信号,本申请实施例对此不做限定。
例如,多个参考信号#A中的每个参考信号#A都是预编码矩阵#1预编码的参考信号,且与不同的参考信号#A对应的预编码矩阵#1是相同的。预编码矩阵#1可以是上文所述固定波束矩阵F。
如上文所述,假设参考信号#A的个数为K,则网络设备在第k个RB上发送的参考信号#A可以记为B k X k。其中,B k=F,k=1,2,…,K。
时域单元#1可以是无线帧(frame)、子帧(sub-frame)、时隙(slot)等,本申请实施例对此不做限定,下文中以时域单元#1是子帧为例进行说明。
第一频域单元可以是子带、RB、RBG、PRG等,本申请实施例对此不做限定。
S640,终端设备生成PMI#1。
S650,终端设备发送PMI#1。相应地,在S650中,网络设备接收PMI#1。
PMI#1是终端设备基于接收到的多个参考信号#A和加权矩阵#1确定的。PMI#1用于指示多个码字#1,多个码字#1用于确定下行信道,多个码字#1与多个第二频域单元的加权等效信道一一对应,每个第二频域单元的加权等效信道是根据第二频域单元对应的加权矩阵#1得到的,且至少两个不同第二频域单元对应的加权矩阵#1不同,即至少两个不同第二频域单元的加权等效信道是根据不同的加权矩阵#1得到的,多个第二频域单元源与多个第一频域单元属于相同的频域资源。多个码字#1与多个第二频域单元的加权等效信道一一对应可以理解为,每个码字#1是终端设备基于第二频域单元上参考信号#A得到的。
第二频域单元可以是子带、RB、RBG、PRG等,本申请实施例对此不做限定。
频域资源可以是RB,或者是RBG,或者预定义的子带(subband),或者是频带(band),或者是BWP,或者是CC。
多个第二频域单元与多个第一频域单元属于相同的频域资源,可以理解为多个第二频域单元组成的频域资源与多个第一频域单元组成的频域资源是相同的。例如,第一频域单元是RB,第二频域单元是RBG,若第一频域单元的个数为12,则多个第一频域单元组成的频域资源为12个RB,记为RB#1-RB#12;相应地,多个第二频域单元组成的频域资源也是12个RB,为RB#1-RB#12。又例如,多个第一频域单元组成的带宽为15Hz,则多个第二频域单元组成的带宽也是15Hz。
下文中以第二频域单元是RB为例进行说明。也就是说,下文中以终端设备基于每个RB上接收到的参考信号#A得到码字#1为例进行说明。
终端设备接收到网络设备发送的多个参考信号#A之后,可以根据多个参考信号#A测量下行信道并估计各个RB的等效信道。本申请实施例对终端设备估计各个RB的等效信道的方法不做限定,例如,终端设备可以采用最小二乘(least square,LS)法估计各个RB的等效信道。
例如,若每个参考信号#A是经过固定波束矩阵F预编码的参考信号,则针对网络设备发送的第k个参考信号#A,终端设备接收到的信号可以表示为:
Y k=H dl,kB kX k+Z k,k=1,2,…,K      (7)
其中,H dl,k表示第k个RB上的下行信道,维度为M r×M t;Z k表示表示干扰噪声,维度为M r×P;B k=F。根据公式(7)可以得到第k个RB的等效信道H dl,kB k的LS估计为Y kX k -1
又例如,若每个参考信号#A是未经预编码的参考信号,则针对网络设备发送的第k个参考信号#A,终端设备接收到的信号可以表示为:
Y k=H dl,kX k+Z k,k=1,2,…,K      (8)
根据公式(8)可以得到第k个RB的等效信道H dl,k的LS估计为Y kX k -1
可选地,由于与所有参考信号#A分别对应的预编码矩阵#1是相同的,因此,终端设备还可以对全带内的所有RB的LS估计结果进行联合滤波降噪处理,最终得到的第k个RB上等效信道可以表示为
Figure PCTCN2021116159-appb-000067
Figure PCTCN2021116159-appb-000068
本申请实施例对联合滤波降噪处理的具体方法不做限定。
进一步地,终端设备根据加权矩阵#1和各个RB的等效信道得到各个RB的加权等效信道。
本申请实施例对加权矩阵#1不做限定。
作为一个示例,若参考信号#A是经过固定波束矩阵F预编码的参考信号,则加权矩阵#1可以是MUB矩阵。
例如,用于得到第k个RB的加权等效信道的加权矩阵#1可以记为Φ mod(k,P+1)。其中,k=1,2,…,K,{Φ 01,…,Φ P}表示P+1个维度都是P×P的MUB矩阵集合,mod(a,b)表示对a取模b操作。则第k个RB的加权等效信道可以表示为
Figure PCTCN2021116159-appb-000069
进一步地,终端设备可以根据第k个RB的加权等效信道确定与第k个RB对应的码字#1,记为
Figure PCTCN2021116159-appb-000070
其维度为P×R,R为传输层的层数。
可以理解,在该示例中,不同RB的加权等效信道是根据不同的加权矩阵#1得到的,因此各个RB的码本量化应独立进行。
可选地,第二频域单元可以是子带,在此情况下,不同子带的加权等效信道可以是根据不同的加权矩阵#1得到的。与第m个子带对应的加权矩阵#1可以表示为:Φ mod(m,P+1),m=1,2,…,M,M为子带数。
例如,终端设备可以根据第m个子带内的各个RB的等效信道确定第m个子带的等效信道,可以表示为
Figure PCTCN2021116159-appb-000071
进一步地,根据与第m个子带对应的加权矩阵#1得到第m个子带的加权等效信道,表示
Figure PCTCN2021116159-appb-000072
又例如,终端设备可以先根据与第m个子带对应的加权矩阵#1得到第m个子带内的各个RB的加权等效信道,再根据第m个子带内的各个RB的加权等效信道得到第m个子带的加权等效信道。
进一步地,终端设备可以根据第m个子带的加权等效信道得到第m个子带的码字#1,记为W m,其维度为P×R,R为传输层的层数。
本申请实施例对终端设备根据各个RB的加权等效信道确定各个RB的码字#1的方法不做限定。例如,终端设备可以对各个RB的加权等效信道进行奇异值分解(singular value decomposition,SVD),确定与各个RB的加权等效信道对应的码字#1。
本申请实施例对终端设备通过PMI#1向网络设备反馈各个RB的码字#1的方式不做限定。
例如,终端设备可以向网络设备发送多个PMI#1,每个PMI#1用于指示一个RB的码字#1。又例如,终端设备可以向网络设备发送一个PMI#1,该一个PMI#1用于指示各个RB的码字#1。
本申请实施例对终端设备确定PMI#1的方式不做限定。例如,终端设备可以基于端 口选择码本确定PMI。该端口选择码本例如可以为NR协议中定义的类型二端口选择码本(type II port selection codebook)。更多的关于终端设备确定PMI#1的方式可以参考现有技术,为了简洁,本申请实施例不再详述。
进一步地,网络设备接收到PMI#1之后,可以根据PMI#1确定各个RB的码字#1。
S660,网络设备根据各个RB的码字#1和上行信道的空间频率域信道特征矩阵确定下行信道。
Figure PCTCN2021116159-appb-000073
其中,e k表示维度为K×1、只有第k个元素为1、其余元素为0的列向量,
Figure PCTCN2021116159-appb-000074
表示维度为M t×M t的单位阵。
若终端设备反馈的码字#1是
Figure PCTCN2021116159-appb-000075
且加权矩阵#1是MUB矩阵,则令
Figure PCTCN2021116159-appb-000076
若终端设备反馈的码字#1是W m,且加权矩阵#1是MUB矩阵,则令
Figure PCTCN2021116159-appb-000077
进一步地,网络设备可以进行如下迭代运算:
Figure PCTCN2021116159-appb-000078
其中,t_largest_eigvec()表示求前t个最大特征向量,V k,1
Figure PCTCN2021116159-appb-000079
分别表示
Figure PCTCN2021116159-appb-000080
的左右特征矩阵,即通过SVD分解得到
Figure PCTCN2021116159-appb-000081
IterNum为迭代次数,σ 2为正实参数。迭代完得到的G表示重构出的角度时延域信道。最后网络设备根据公式(6)得到每个RB上的空间频率域信道:
Figure PCTCN2021116159-appb-000082
应理解,上述确定下行信道的过程中,仅以网络设备确定每个RB的下行信道为例进行说明,不应对本申请实施例构成任何限定。例如,上述迭代运算的公式以及公式(6)可以进行适当的变形之后,用于确定每个子带的下行信道。
在本申请实施例中,通过对至少两个不同第二频域单元的等效信道加载不同的加权矩阵#1,可以降低不同第二频域单元上的信道的相关性,进一步可以降低终端设备对不同第二频域单元上的码字#1进行量化反馈的误差的相关性,因此可以提高重构下行信道的精度。此外,本申请实施例通过利用下行信道在角度时延域上的稀疏性,在角度时延域上联合重构下行信道,再将角度时延域的信道变换到空间频率域,可以降低重构下行信道的复 杂度,提升重构下行信道的性能。
可选地,方法600还可以包括S670至S690。
S670,网络设备发送多个参考信号#B。相应地,在S670中,终端设备接收多个参考信号#B。
多个参考信号#B是相同时域单元中不同第一频域单元上的参考信号,下文中将多个参考信号#B所在的时域单元记为时域单元#2。多个参考信号#B可以是经过预编码的参考信号,也可以是未经过预编码的参考信号,本申请实施例对此不做限定。
例如,多个参考信号#B中的每个参考信号#B都是预编码矩阵#2预编码的参考信号,且与不同的参考信号#B对应的预编码矩阵#2是相同的。预编码矩阵#2可以是上文所述的固定波束矩阵F。
如上文所述,假设参考信号#B的个数为K,则网络设备在第k个RB上发送的参考信号#B可以记为B k X k。其中,B k=F,k=1,2,…,K。
时域单元#2不同于时域单元#1。
S680,终端设备生成PMI#2。
S690,终端设备发送PMI#2。相应地,在S690中,网络设备接收PMI#2。
PMI#2是终端设备基于接收到的多个参考信号#B和加权矩阵#2确定的。PMI#2用于指示多个码字#2,多个码字#2用于确定下行信道,多个码字#2与多个第二频域单元的加权等效信道一一对应,每个第二频域单元的加权等效信道是根据第二频域单元对应的加权矩阵#2得到的,且至少两个不同第二频域单元对应的加权矩阵#2不同,即至少两个不同第二频域单元的加权等效信道是根据不同的加权矩阵#2得到的,多个第二频域单元与多个第一频域单元属于相同的频域资源。多个码字#2与多个第二频域单元的加权等效信道一一对应可以理解为,每个码字#2是终端设备基于第二频域单元上参考信号#B得到的。
第二频域单元可以是子带、RB、RBG、PRG等,本申请实施例对此不做限定。
关于加权矩阵#2的描述可以参考S650中关于加权矩阵#1的描述,以及关于终端设备根据接收到的参考信号#B生成并发送PMI#2的方法可以参考S650中关于PMI#1的描述,为了简洁,本申请实施例不再详述。
下面对加权矩阵#1和加权矩阵#2的关系进行说明。需要说明的是,下文中提及的与第二频域单元对应的加权矩阵#1表示:终端设备用于确定第二频域单元的加权等效信道的加权矩阵,并且终端设备根据在第二频域单元上接收到的参考信号#A和加权矩阵#1确定加权等效信道;下文中提及的与第二频域单元对应的加权矩阵#2表示:终端设备用于确定第二频域单元的加权等效信道的加权矩阵,并且终端设备根据在第二频域单元上接收到的参考信号#A和加权矩阵#1确定加权等效信道。
本申请实施例对加权矩阵#1和加权矩阵#2的关系不做限定。
作为一个示例,与不同时域单元上的相同第二频域单元对应的加权矩阵#1和加权矩阵#2可以是相同的。下文以第二频域单元是RB为例进行说明。
例如图5所示,终端设备根据RB#1上的RS#1,1(参考信号#A的一例)和加权矩阵#1可以得到RB#1的等效加权信道,终端设备也可以根据RB#1上的RS#2,1(参考信号#B的一例)和加权矩阵#2得到RB#1的等效加权信道,与RB#1对应的加权矩阵#1和加权矩阵#2可以是相同的。
作为另一个示例,与不同时域单元上的相同第二频域单元对应的加权矩阵#1和加权矩阵#2是不同的。下文以第二频域单元RB为例进行说明。
例如图5所示,终端设备根据RB#1上的RS#1,1(参考信号#A的一例)和加权矩阵#1可以得到RB#1的等效加权信道,终端设备也可以根据RB#1上的RS#2,1(参考信号#B的一例)和加权矩阵#2得到RB#1的等效加权信道,与RB#1对应的加权矩阵#1和加权矩阵#2可以是不同的。
可选地,与任意一个第二频域单元的对应的加权矩阵#1和与另外任意一个第二频域单元对应加权矩阵#2不同。
例如图5所示,与RB#1对应的加权矩阵#1不同于与RB#1至RB#K分别对应的加权矩阵#2;与RB#2对应的加权矩阵#1不同于与RB#1至RB#K分别对应的加权矩阵#2;……;与RB#K对应的加权矩阵#1不同于与RB#1至RB#K分别对应的加权矩阵#2。
在方法600执行了S670至S690的情况下,假设信道在时域单元#1和时域单元#2内近似不变,则在S660中,终端设备可以联合PMI#1和PMI#2确定下行信道。
可选地,网络设备在还可以在时域单元#3上发送多个参考信号#C,在时域单元#4上发送多个参考信号#D,……,等等。时域单元#3不同于时域单元#4,且时域单元#3和时域单元#4不同于时域单元#2和时域单元#1。
以下不失一般性地,以网络设备在L个时域单元上发送参考信号为例,对与不同时域单元上的第二频域单元对应的加权矩阵进行说明。应理解,下文中描述的内容仍然满足同一时域单元上的至少两个不同第二频域单元对应的加权矩阵不同。下文中以第二频域单元为RB进行说明。
假设网络设备在每个子帧上发送的参考信号的个数为K,若网络设备发送的参考信号没有经过预编码,则参考上文所述的公式(8),可以将终端设备得到的第l个子帧的第k个RB的等效信道记为H dl,k,l=Y k,lX k,l -1;若网络设备发送的参考信号经过固定波束矩阵F预编码,则参考上所述的公式(7),可以将终端设备得到的第l个子帧的第k个RB的等效信道记为H dl,k,lB k,l==Y k,lX k,l -1,B k,l=F。
在一种实现方式中,与不同时域单元上的相同第二频域单元对应的加权矩阵是相同的。
作为一个示例,与第l个子帧的第k个RB对应的加权矩阵可以表示为:Φ mod(k,P+1)
根据上述示例中的加权矩阵的表达式可知,加权矩阵的不同取值只与下标k有关,而与下标l无关,即在下标k保持不变、下标l的取值从1至L变化的情况下,加权矩阵保持不变,即与不同时域单元上的相同第二频域单元对应的加权矩阵保持不变。
在另一种实现方式中,与不同时域单元上的相同第二频域单元对应的加权矩阵#1和加权矩阵#2是不同的。
作为一个示例,与第l个子帧的第k个RB对应的加权矩阵可以表示为:Φ mod(k+l,P+1)
根据上述示例中的加权矩阵的表达式可知,加权矩阵的不同取值与下标k和下标l都有关,即在下标k发生变化和/或下标l的取值发生变化的情况下,加权矩阵可能发生变化,即与不同时域单元上的相同第二频域单元对应的加权矩阵不完全相同。
相应地,终端设备可以根据多个参考信号#C生成PMI#3,根据多个参考信号#D生成PMI#4,……,等等。进一步地,假设下行信道在多个时域单元内近似不变,则在S660 中,终端设备可以联合多个PMI确定下行信道。
以下不失一般性地,以网络设备在L个时域单元上发送参考信号为例,对本申请实施例提供的联合确定下行信道的方法进行说明。下文以时域单元是子帧、第一频域单元和第二频域单元是RB为例进行说明,以及下文中以网络设备发送的参考信号是经过固定波束矩阵预编码的参考信号为例进行说明。应理解,下文描述的方法的前提是假设下行信道在L个子帧内近似不变。在下行信道快速变化的情况下,网络设备可以基于上文描述的PMI#1确定下行信道。
假设网络设备在每个子帧上发送的参考信号的个数为K,终端设备在第l个子帧的第k个RB上接收的信号可以表示为:
Y k,l=H dl,k,lB k,lX k,l+Z k,l       (9)
其中,H dl,k,l表示第l个子帧的第k个RB上的下行信道,维度为M r×M t;Z k,l表示表示干扰噪声,维度为M r×P;B k,l=F,k=1,2,…,K,l=1,2,…,L。根据公式(9)可以得到第l个子帧的第k个RB的等效信道H dl,k,lB k,l的LS估计为Y k,lX k,l -1
可选地,由于与所有参考信号分别对应的预编码矩阵是相同的,因此,终端设备还可以对全带内的所有RB的LS估计结果进行联合滤波降噪处理,最终得到的第k个RB上等效信道可以表示为
Figure PCTCN2021116159-appb-000083
本申请实施例对联合滤波降噪处理的具体方法不做限定。
进一步地,以加权矩阵为MUB矩阵为例,终端设备可以得到第l个子帧的第k个RB的等效加权信道:
Figure PCTCN2021116159-appb-000084
进一步地,终端设备可以根据第l个子帧的第k个RB上的加权等效信道确定第l个子帧的第k个RB的码字,并通过PMI反馈给网络设备。将第l个子帧的第k个RB的码字记为
Figure PCTCN2021116159-appb-000085
其维度为P×R,R为传输层的层数。可以理解,在与第l个子帧的各个RB分别对应的加权矩阵不同的情况下,第l个子帧的各个RB的码字的量化反馈应独立进行。
可选地,终端设备还可以基于子带进行量化反馈,即第二频域单元可以是子带。终端设备可以根据第l个子帧的第m个子带内的所有RB的等效信道,确定第l个子帧的第m个子带的等效信道;进一步地,根据第l个子帧的第m个子带的等效信道确定第l个子帧的第m个子带的等效加权信道;再进一步地,根据第l个子帧的第m个子带的加权等效信道确定第l个子帧的第m个子带的码字。将第l个子帧的第m个子带的码字记为W m,l,其维度为P×R,R为传输层的层数。在与第l个子帧的各个子带上分别对应的加权码矩阵不同的情况下,第l个子帧的各个子带的码字的量化反馈应独立进行。
进一步地,令
Figure PCTCN2021116159-appb-000086
Figure PCTCN2021116159-appb-000087
或者,在终端设备基于子带进行量化反馈情况下,令
Figure PCTCN2021116159-appb-000088
进一步地,网络设备可以进行如下迭代运算:
Figure PCTCN2021116159-appb-000089
Figure PCTCN2021116159-appb-000090
其中,t_largest_eigvec()表示求前r个最大特征向量,V k,l,1
Figure PCTCN2021116159-appb-000091
分别表示
Figure PCTCN2021116159-appb-000092
的左右特征矩阵,即通过SVD分解得到
Figure PCTCN2021116159-appb-000093
IterNum为迭代次数,σ 2为正实参数。迭代完得到的G表示重构出的角度时延域信道。最后网络设备根据公式(6)得到每个RB上的空间频率域信道:
Figure PCTCN2021116159-appb-000094
应理解,上述确定下行信道的过程中,仅以网络设备确定每个RB的下行信道为例进行说明,不应对本申请实施例构成任何限定。例如,上述迭代运算的公式以及公式(6)可以进行适当的变形之后,用于确定每个子带的下行信道。
还应理解,上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图6详细说明了本申请实施例提供的信道测量的方法。以下,结合图7至图9详细说明本申请实施例提供的通信装置。
图7是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括收发单元1200和处理单元1100。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如电路、芯片或芯片系统等)。
具体地,该通信装置1000可对应于根据本申请实施例的方法200或方法600中的终端设备,该通信装置1000可以包括用于执行图2中的方法200或图6中的方法600中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200或图6中的方法600的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,收发单元1200可用于执行方法200中的S210、S230和S250,处理单元1100可用于执行方法200中的S240。
当该通信装置1000用于执行图6中的方法600时,收发单元1200可用于执行方法600中的S610、S630和S650,处理单元1100可用于执行方法600中的S640。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图8中示出的通信装置2000中的收发器2020或图9中示出的终端设备3000中的收发器3020,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图8中示出的通信装置2000中的处理器2010或图9中示 出的终端设备3000中的处理器3010。
还应理解,该通信装置1000为配置于终端设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如电路、芯片或芯片系统等)。
具体地,该通信装置1000可对应于根据本申请实施例的方法200或方法600中的网络设备,该通信装置1000可以包括用于执行图2中的方法200或图6中的方法600中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200或图6中的方法600的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,收发单元1200可用于执行方法200中的S210、S230和S250,处理单元1100可用于执行方法200中的S220和S260。
当该通信装置1000用于执行图6中的方法600时,收发单元1200可用于执行方法600中的S610、S630和S650,处理单元1100可用于执行方法600中的S620和S660。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图8中示出的通信装置2000中的收发器2020或图10中示出的基站4000中的RRU 4100,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图8中示出的通信装置2000中的处理器2010或图10中示出的基站4000中的处理单元4200或处理器4202。
还应理解,该通信装置1000为配置于网络设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图8是本申请实施例提供的通信装置2000的另一示意性框图。如图8所示,该通信装置2000包括处理器2010、收发器2020和存储器2030。其中,处理器2010、收发器2020和存储器2030通过内部连接通路互相通信,该存储器2030用于存储指令,该处理器2010用于执行该存储器2030存储的指令,以控制该收发器2020发送信号和/或接收信号。
应理解,该通信装置2000可以对应于上述方法实施例中的终端设备,并且可以用于执行上述方法实施例中网络设备或终端设备执行的各个步骤和/或流程。可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器2030可以是一个单独的器件,也可以集成在处理器2010中。该处理器2010可以用于执行存储器2030中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与网络设备或终端设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置2000是前文实施例中的终端设备。
可选地,该通信装置2000是前文实施例中的网络设备。
其中,收发器2020可以包括发射机和接收机。收发器2020还可以进一步包括天线,天线的数量可以为一个或多个。该处理器2010和存储器2030与收发器2020可以是集成在不同芯片上的器件。如,处理器2010和存储器2030可以集成在基带芯片中,收发器2020可以集成在射频芯片中。该处理器2010和存储器2030与收发器2020也可以是集成 在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置2000是配置在终端设备中的部件,如电路、芯片、芯片系统等。
可选地,该通信装置2000是配置在网络设备中的部件,如电路、芯片、芯片系统等。
其中,收发器2020也可以是通信接口,如输入/输出接口、电路等。该收发器2020与处理器2010和存储器2030都可以集成在同一个芯片中,如集成在基带芯片中。
图9是本申请实施例提供的终端设备3000的结构示意图。该终端设备3000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备3000包括处理器3010和收发器3020。可选地,该终端设备3000还包括存储器3030。其中,处理器3010、收发器3020和存储器3030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器3030用于存储计算机程序,该处理器3010用于从该存储器3030中调用并运行该计算机程序,以控制该收发器3020收发信号。可选地,终端设备3000还可以包括天线3040,用于将收发器3020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器3010可以和存储器3030可以合成一个处理装置,处理器3010用于执行存储器3030中存储的程序代码来实现上述功能。具体实现时,该存储器3030也可以集成在处理器3010中,或者独立于处理器3010。该处理器3010可以与图7中的处理单元1100或图8中的处理器2010对应。
上述收发器3020可以与图7中的收发单元1200或图8中的收发器2020对应。收发器3020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图9所示的终端设备3000能够实现图2或图6所示方法实施例中涉及终端设备的各个过程。终端设备3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器3010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器3020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备3000还可以包括电源3050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备3000还可以包括输入单元3060、显示单元3070、音频电路3080、摄像头3090和传感器3100等中的一个或多个,所述音频电路还可以包括扬声器3082、麦克风3084等。
图10是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站4000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站4000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)4100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))4200。所述RRU 4100可以称为收发单元,可以与图7中的收发单元1200或图8中的收发器2020对应。可选地,该RRU 4100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线4101和射频单元4102。可选地,RRU 4100可以包括接收单元和发送单元, 接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 4100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 4200部分主要用于进行基带处理,对基站进行控制等。所述RRU 4100与BBU 4200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 4200为基站的控制中心,也可以称为处理单元,可以与图7中的处理单元1100或图8中的处理器2010对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 4200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 4200还包括存储器4201和处理器4202。所述存储器4201用以存储必要的指令和数据。所述处理器4202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器4201和处理器4202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图10所示的基站4000能够实现图2或图6所示方法实施例中涉及网络设备的各个过程。基站4000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 4200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 4100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图10所示出的基站4000仅为网络设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括AAU,还可以包括CU和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请对于网络设备的具体形态不做限定。
其中,CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和通信接口。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计 算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产 品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2或图6所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2或图6所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
上述实施例中,终端设备可以作为接收设备的一例,网络设备可以作为发送设备的一例。但这不应对本申请构成任何限定。例如,发送设备和接收设备也可以均为终端设备等。本申请对于发送设备和接收设备的具体类型不作限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种信道测量的方法,其特征在于,包括:
    接收同一时域单元中多个第一频域单元上的多个参考信号,所述多个参考信号分别由所在的第一频域单元对应的预编码矩阵预编码,其中所述多个第一频域单元中至少两个不同的第一频域单元对应的预编码矩阵不同;
    基于所述多个参考信号生成预编码矩阵指示PMI,所述PMI用于指示多个第二频域单元对应的多个码字,所述多个第二频域单元与所述多个第一频域单元属于相同的频域资源所述多个码字用于确定下行信道;
    发送所述PMI。
  2. 一种信道测量的方法,其特征在于,包括:
    在同一时域单元中的多个第一频域单元上发送多个参考信号,所述多个参考信号分别由所在的第一频域单元对应的预编码矩阵预编码,其中所述多个第一频域单元中至少两个不同的第一频域单元对应的预编码矩阵不同;
    接收预编码矩阵指示PMI,所述PMI用于指示多个第二频域单元对应的码字,所述多个第二频域单元与所述多个第一频域单元属于相同的频域资源;
    根据所述多个码字和上行信道的空间频率域信道特征矩阵确定下行信道。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述多个码字和上行信道的空间频率域信道特征矩阵确定下行信道,包括:
    根据所述多个码字和所述空间频率域信道特征矩阵得到第一下行信道,所述第一下行信道是角度时延域信道;
    根据所述第一下行信道和所述空间频率域信道特征矩阵得到第二下行信道,所述第二下行信道是空间频率域信道。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述预编码矩阵是随机半酉矩阵。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述预编码矩阵是固定波束矩阵与互相无偏基MUB矩阵的乘积,所述固定波束矩阵是不同列具有相同的波束方向图的半酉矩阵。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述时域单元是子帧,所述第一频域单元是资源块RB或子带,所述第二频域单元是RB或子带。
  7. 一种信道测量的方法,其特征在于,包括:
    接收同一时域单元中的多个第一频域单元上的多个参考信号;
    基于所述多个参考信号和加权矩阵生成预编码矩阵指示PMI,所述PMI用于指示多个第二频域单元的加权等效信道对应的多个码字,所述多个码字用于确定下行信道,每个第二频域单元的加权等效信道是根据第二频域单元对应的加权矩阵得到的,多个第二频域单元中至少两个不同第二频域单元对应的加权矩阵不同,所述多个第二频域单元与所述多个第一频域单元属于相同的频域资源;
    发送所述PMI。
  8. 一种信道测量的方法,其特征在于,包括:
    在同一时域单元中的多个第一频域单元上发送多个参考信号;
    接收预编码矩阵指示PMI,所述PMI用于指示多个第二频域单元的加权等效信道对应的多个码字,所述多个码字用于确定下行信道,每个第二频域单元的加权等效信道是根据第二频域单元对应的加权矩阵得到的,多个第二频域单元中至少两个不同第二频域单元对应的加权矩阵不同,所述多个第二频域单元与所述多个第一频域单元属于相同的频域资源;
    根据所述多个码字和上行信道的空间频率域信道特征矩阵确定下行信道。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述多个码字和上行信道的空间频率域信道特征矩阵确定下行信道,包括:
    根据所述多个码字和所述空间频率域信道特征矩阵得到第一下行信道,所述第一下行信道是角度时延域信道;
    根据所述第一下行信道和所述空间频率域信道特征矩阵得到第二下行信道,所述第二下行信道是空间频率域信道。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述多个参考信号分别由固定波束矩阵预编码,所述固定波束矩阵是不同列具有相同的波束方向图的半酉矩阵;
    所述加权矩阵是互相无偏基MUB矩阵。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述时域单元是子帧,所述第一频域单元是资源块RB或子带,所述第二频域单元是RB或子带。
  12. 一种通信装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于接收同一时域单元中多个第一频域单元上的多个参考信号,所述多个参考信号中分别由所在的第一频域单元对应的预编码矩阵预编码,其中所述多个第一频域单元中至少两个不同第一频域单元上对应的预编码矩阵不同;
    所述处理单元用于基于所述多个参考信号生成预编码矩阵指示PMI,所述PMI用于指示多个第二频域单元对应的多个码字,所述多个第二频域单元与所述多个第一频域单元属于相同的频域资源,所述多个码字用于确定下行信道;
    所述收发单元还用于发送所述PMI。
  13. 一种通信装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于在同一时域单元中的多个第一频域单元上发送多个参考信号,所述多个参考信号分别由所在的第一频域单元对应的预编码矩阵预编码,其中所述多个第一频域单元中至少两个不同的第一频域单元对应的预编码矩阵不同;
    所述收发单元还用于接收预编码矩阵指示PMI,所述PMI用于指示多个第二频域单元对应的多个码字,所述多个第二频域单元与所述多个第一频域单元属于相同的频域资源;
    所述处理单元用于根据所述多个码字和上行信道的空间频率域信道特征矩阵确定下行信道。
  14. 根据权利要求13所述的通信装置,所述处理单元具体用于:
    根据所述多个码字和所述空间频率域信道特征矩阵得到第一下行信道,所述第一下行信道是角度时延域信道;
    根据所述第一下行信道和所述空间频率域信道特征矩阵得到第二下行信道,所述第二下行信道是空间频率域信道。
  15. 根据权利要求12至14中任一项所述的通信装置,其特征在于,所述预编码矩阵是随机半酉矩阵。
  16. 根据权利要求12至14中任一项所述的通信装置,其特征在于,所述预编码矩阵是固定波束矩阵与互相无偏基MUB矩阵的乘积,所述固定波束矩阵是不同列具有相同的波束方向图的半酉矩阵。
  17. 根据权利要求12至16中任一项所述的通信装置,其特征在于,所述时域单元是子帧,所述第一频域单元是资源块RB或子带,所述第二频域单元是RB或子带。
  18. 一种通信装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于接收同一时域单元中的多个第一频域单元上的多个参考信号;
    所述处理单元用于基于所述多个参考信号和加权矩阵生成预编码矩阵指示PMI,所述PMI用于指示多个第二频域单元对应的多个码字,所述多个码字用于确定下行信道,所述多个第二频域单元的加权等效信道分别是根据第二频域单元对应的加权矩阵得到的,所述多个第二频域单元中至少两个不同第二频域单元对应的加权矩阵不同,所述多个第二频域单元与所述多个第一频域单元属于相同的频域资源;
    所述收发单元还用于发送所述PMI。
  19. 一种通信装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于在同一时域单元中的多个第一频域单元上发送多个参考信号;
    所述收发单元还用于接收预编码矩阵指示PMI,所述PMI用于指示多个第二频域单元的加权等效信道对应的多个码字,所述多个码字用于确定下行信道,所述多个第二频域单元的加权等效信道分别是根据第二频域单元对应的加权矩阵得到的,所述多个第二频域单元中至少两个不同第二频域单元对应的加权矩阵不同,所述多个第二频域单元与所述多个第一频域单元属于相同的频域资源;
    所述处理单元用于根据所述多个码字和上行信道的空间频率域信道特征矩阵确定下行信道。
  20. 根据权利要求19所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述多个码字和所述空间频率域信道特征矩阵得到第一下行信道,所述第一下行信道是角度时延域信道;
    根据所述第一下行信道和所述空间频率域信道特征矩阵得到第二下行信道,所述第二下行信道是空间频率域信道。
  21. 根据权利要求18至20中任一项所述的通信装置,其特征在于,所述多个参考信号分别由固定波束矩阵预编码,所述固定波束矩阵是不同列具有相同的波束方向图的半酉矩阵;
    所述加权矩阵是互相无偏基MUB矩阵。
  22. 根据权利要求18至21中任一项所述的通信装置,其特征在于,所述时域单元是子帧,所述第一频域单元是资源块RB或子带,所述第二频域单元是RB或子带。
  23. 一种通信装置,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至11中任一项所述的方法。
  24. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法。
PCT/CN2021/116159 2020-10-22 2021-09-02 信道测量的方法及通信装置 WO2022083307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21881726.0A EP4224731A4 (en) 2020-10-22 2021-09-02 CHANNEL MEASUREMENT METHOD AND COMMUNICATION APPARATUS
US18/303,067 US20230261704A1 (en) 2020-10-22 2023-04-19 Channel measurement method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011141660.3A CN114389661B (zh) 2020-10-22 2020-10-22 信道测量的方法及通信装置
CN202011141660.3 2020-10-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/303,067 Continuation US20230261704A1 (en) 2020-10-22 2023-04-19 Channel measurement method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022083307A1 true WO2022083307A1 (zh) 2022-04-28

Family

ID=81194551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116159 WO2022083307A1 (zh) 2020-10-22 2021-09-02 信道测量的方法及通信装置

Country Status (4)

Country Link
US (1) US20230261704A1 (zh)
EP (1) EP4224731A4 (zh)
CN (1) CN114389661B (zh)
WO (1) WO2022083307A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171507A1 (ko) * 2016-03-31 2017-10-05 삼성전자 주식회사 무선 통신 시스템에서의 자원 할당 방법 및 이에 기반한 데이터 수신 방법과 이를 위한 장치
CN108631999A (zh) * 2017-03-25 2018-10-09 华为技术有限公司 信令的发送方法,装置和系统
US20180343046A1 (en) * 2015-11-23 2018-11-29 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system, and apparatus therefor
US20190020386A1 (en) * 2016-01-12 2019-01-17 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor
CN109787727A (zh) * 2017-11-13 2019-05-21 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
US20190173538A1 (en) * 2016-08-10 2019-06-06 Huawei Technologies Co., Ltd. Precoding matrix determining method and apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296011B (zh) * 2008-04-25 2011-11-16 浙江大学 无线认知网络中的自适应随机波束模式选择方法
CN102111197B (zh) * 2009-12-28 2014-03-12 电信科学技术研究院 预编码矩阵索引信息上报方法和设备
US9197284B2 (en) * 2010-01-15 2015-11-24 Google Technology Holdings LLC Method and apparatus for pilot signal processing in a wireless communication system
WO2014039056A1 (en) * 2012-09-10 2014-03-13 Nokia Siemens Networks Oy Codebook construction using csi feedback for evolving deployment scenarios
CN110855336B (zh) * 2018-08-20 2022-04-22 华为技术有限公司 指示和确定预编码向量的方法以及通信装置
CN111342913B (zh) * 2018-12-18 2021-06-01 华为技术有限公司 一种信道测量方法和通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180343046A1 (en) * 2015-11-23 2018-11-29 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system, and apparatus therefor
US20190020386A1 (en) * 2016-01-12 2019-01-17 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor
WO2017171507A1 (ko) * 2016-03-31 2017-10-05 삼성전자 주식회사 무선 통신 시스템에서의 자원 할당 방법 및 이에 기반한 데이터 수신 방법과 이를 위한 장치
US20190173538A1 (en) * 2016-08-10 2019-06-06 Huawei Technologies Co., Ltd. Precoding matrix determining method and apparatus
CN108631999A (zh) * 2017-03-25 2018-10-09 华为技术有限公司 信令的发送方法,装置和系统
CN109787727A (zh) * 2017-11-13 2019-05-21 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA: "Corrections to 38.214 including alignment of terminology across specifications in RAN1#98", 3GPP DRAFT; 38214_CR_41R1_R15_R1-1909884, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20190826 - 20190830, 3 September 2019 (2019-09-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051766475 *
See also references of EP4224731A4

Also Published As

Publication number Publication date
EP4224731A4 (en) 2024-03-20
CN114389661B (zh) 2022-11-22
CN114389661A (zh) 2022-04-22
EP4224731A1 (en) 2023-08-09
US20230261704A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
CN112751592B (zh) 上报信道状态信息的方法和通信装置
WO2022048593A1 (zh) 信道测量的方法和装置
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
WO2022021443A1 (zh) 一种预编码方法及装置
WO2021081847A1 (zh) 一种信道测量方法和通信装置
WO2022022331A1 (zh) 获取信道参数的方法及装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
CN115315906B (zh) 一种信道测量方法和通信装置
US20230239028A1 (en) Channel measurement method and communication apparatus
US20230019630A1 (en) Update Method and Communications Apparatus
WO2022121746A1 (zh) 信道信息反馈方法及通信装置
WO2022160322A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2022083307A1 (zh) 信道测量的方法及通信装置
WO2021159537A1 (zh) 一种信道状态信息反馈方法及通信装置
WO2021081964A1 (zh) 一种下行参考信号的发送端口的配置方法和通信装置
WO2024001744A1 (zh) 一种信道状态信息的上报方法及通信装置
WO2022227976A1 (zh) 通信方法和通信装置
WO2022165668A1 (zh) 一种进行预编码的方法和装置
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置
WO2021146961A1 (zh) 用于确定下行信道状态信息的方法和装置
WO2022147709A1 (zh) 一种通信方法和装置
WO2021146938A1 (zh) 用于确定下行信道状态信息的方法和装置
CN117639863A (zh) 一种信道状态信息csi上报的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021881726

Country of ref document: EP

Effective date: 20230503

NENP Non-entry into the national phase

Ref country code: DE