WO2020164387A1 - 指示和确定预编码向量的方法以及通信装置 - Google Patents

指示和确定预编码向量的方法以及通信装置 Download PDF

Info

Publication number
WO2020164387A1
WO2020164387A1 PCT/CN2020/073714 CN2020073714W WO2020164387A1 WO 2020164387 A1 WO2020164387 A1 WO 2020164387A1 CN 2020073714 W CN2020073714 W CN 2020073714W WO 2020164387 A1 WO2020164387 A1 WO 2020164387A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
space
airspace
transmission layer
vector set
Prior art date
Application number
PCT/CN2020/073714
Other languages
English (en)
French (fr)
Inventor
高翔
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910182198.2A external-priority patent/CN111585630B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020164387A1 publication Critical patent/WO2020164387A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application relates to the field of communication, and more specifically, to a method of indicating and determining a precoding vector and a communication device.
  • this solution configures a smaller number of spatial vectors and/or frequency domain vectors, which will make the weaker transmission layer (such as , Transmission layer #3, transmission layer #4)
  • the accuracy of PMI is poor, resulting in poor performance of transmission layer #3 and transmission layer #4.
  • one implementation is to reduce the overhead of transport layer #1 and transport layer #2, and reduce transport layer #1 and transport layer #
  • One way to realize the overhead of 2 is to adjust the number of spatial vectors and/or frequency domain vectors, which will cause a large performance loss of the transmission layer #1 and the transmission layer #2, and ultimately affect the overall performance.
  • the present application provides a method and a communication device for indicating and determining a precoding vector, so as to minimize the reporting overhead while ensuring that the system performance loss is minimized.
  • a method of indicating a precoding vector is provided.
  • the method may be executed by the terminal device, or may also be executed by a chip configured in the terminal device.
  • the method includes: generating first indication information, where the first indication information is used to indicate P frequency domain vectors and K space-frequency combination coefficients, the P frequency domain vectors belong to N frequency domain vector sets, and the K The space-frequency combination coefficients belong to N space-frequency combination coefficient sets, the N frequency-domain vector sets correspond one-to-one with the N space-domain vector sets, and the N space-frequency combination coefficient sets correspond to the N-space-domain vector sets one-to-one,
  • the N airspace vector sets include at least a first airspace vector set and a second airspace vector set, and at least one airspace vector set in the N airspace vector sets corresponds to at least two transmission layers, and N, P, and K are greater than or equal to 2.
  • the first indication information includes information corresponding to the first airspace vector set and information corresponding to the second airspace vector set, and the number of bits in the first indication information carrying the information corresponding to the first airspace vector set is greater than that of carrying the The number of bits of information corresponding to the second spatial vector set; sending the first indication information.
  • the information corresponding to each spatial vector set may include the index number of the frequency domain vector corresponding to the spatial vector set, and the number and position indication of the spatial-frequency combination coefficients with non-zero/zero amplitude corresponding to the spatial vector set
  • the quantization information of the space-frequency vector coefficients corresponding to the space-domain vector set may include the amplitude quantization value and the phase quantization value of the space-frequency combination coefficient, and may also include the wideband amplitude quantization value corresponding to each space vector and the differential amplitude quantization corresponding to each space-frequency combination coefficient. Value and the phase quantization value of each space-frequency combination coefficient.
  • the larger the transmission layer index the smaller the channel matrix eigenvalue or the signal to interference plus noise ratio (SINR) corresponding to the transmission layer, for example, the transmission layer
  • SINR signal to interference plus noise ratio
  • this application aims at the frequency-domain compression codebook, and according to the degree of influence of the spatial vector on the system performance, the spatial vectors corresponding to different transmission layers are grouped into spatial vectors that have a greater impact on system performance (for example, , The first spatial vector set) allocates more bits for reporting, and allocates fewer quantized bits for reporting to the spatial vector that has less impact on system performance (the second spatial vector set), thereby ensuring that the system performance loss is minimized Under the premise, the reporting overhead is minimized.
  • the above-mentioned airspace vector that has a greater impact on system performance can be a stronger airspace vector, and the airspace vector that has a lesser impact on system performance can be a weaker airspace vector.
  • the above-mentioned same transmission layer corresponds to a larger one.
  • the sum of squared amplitudes of the space-frequency combining coefficients corresponding to the strong airspace vector is greater than or equal to the sum of squared amplitudes of the space-frequency combining coefficients corresponding to the weaker airspace vector corresponding to the transmission layer, or, the above-mentioned strong space vector corresponds to
  • the minimum value of the amplitude values of the space-frequency combination coefficients is greater than or equal to the maximum value of the amplitude values of the space-frequency combination coefficients corresponding to the weaker space vector.
  • the N frequency domain vector sets include a first frequency domain vector set and a second frequency domain vector set
  • the P frequency domain vectors include P1 frequency domains in the first frequency domain vector set.
  • Vector and P2 frequency domain vectors in the second frequency domain vector set the first frequency domain vector set corresponds to the first spatial domain vector set
  • the second frequency domain vector set corresponds to the second spatial vector set
  • P1 is greater than P2
  • P2 is greater than or equal to 1.
  • the first indication information carries the first spatial vector
  • the number of bits corresponding to the information set (for example, the index number of the frequency domain vector corresponding to the first spatial vector set) is greater than that of the information corresponding to the second spatial vector set (for example, the index of the frequency domain vector corresponding to the second spatial vector set). Number), so as to minimize the reporting overhead under the premise of minimizing system performance loss.
  • the N space-frequency combination coefficient sets include a first space-frequency combination coefficient set and a second space-frequency combination coefficient set, and the first space-frequency combination coefficient set corresponds to the first space-domain vector set , The second space-frequency combination coefficient set corresponds to the second space-domain vector set, and the number of quantized bits of each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than that of each space-frequency combination coefficient set in the second space-frequency combination coefficient set. The number of quantized bits of the frequency combining coefficient.
  • the number of quantization bits for each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than the number of quantization bits for each space-frequency combination coefficient in the second space-frequency combination coefficient set, so that the first
  • the number of bits in the indication information that carries the information corresponding to the first spatial vector set (for example, the quantization information of the space-frequency combination coefficients corresponding to the first spatial vector set) is greater than that of the information that carries the information corresponding to the second spatial vector set (for example, the first spatial vector set).
  • the number of bits of the quantization information of the space-frequency combination coefficients corresponding to the two spatial vector sets so as to minimize the reporting overhead while ensuring the minimum system performance loss.
  • the quantization bit of each space-frequency combination coefficient in the first space-frequency combination coefficient set includes at least one of an amplitude quantization bit and a phase quantization bit;
  • the quantization bits of each space-frequency combination coefficient include at least one of amplitude quantization bits and phase quantization bits.
  • amplitude quantization bits may include wideband amplitude quantization bits and differential amplitude quantization bits.
  • the first indication information is also used to indicate a spatial vector Q, Q is greater than or equal to 2, to the Q vector includes the first spatial airspace Q 1 of a set of vectors and said second vectors airspace Q 2 spatial vectors in the second spatial vector set, where each spatial vector in the first spatial vector set corresponds to S frequency domain vectors, P 1 is equal to S or P 1 is equal to the product of S and Q 1 , and S is greater than Or equal to 1, each spatial vector in the second spatial vector set corresponds to R frequency domain vectors, P 2 is equal to R or P 2 is equal to the product of R and Q 2 , and R is greater than or equal to 1.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate at least one of the following: the number of airspace vectors Q 1 in the first airspace vector set, and the Second, the number of spatial vectors in the spatial vector set Q 2 , the number of frequency domain vectors in the first frequency domain vector set P 1 , the number of frequency domain vectors in the second frequency domain vector set P 2 , the first The number of space-frequency combination coefficients in the space-frequency combination coefficient set and the number of space-frequency combination coefficients in the second space-frequency combination coefficient set.
  • the second indication information is used to indicate at least one of the following: the number of airspace vectors Q 1 in the first airspace vector set, and the Second, the number of spatial vectors in the spatial vector set Q 2 , the number of frequency domain vectors in the first frequency domain vector set P 1 , the number of frequency domain vectors in the second frequency domain vector set P 2 , the first The number of space-frequency combination coefficients in the space-frequency combination coefficient set and the number of space-frequency combination coefficient
  • the number of frequency domain combining coefficients included in each spatial vector set can be p times the frequency domain unit, p ⁇ 1 and the value of p can be 3/4, 1/2, 1/4 or 1. /8.
  • the number of space-frequency combining coefficients can be ⁇ times the space-frequency vector pair, ⁇ 1 and the value can be 3/4, 1/2, 1/4, or 1/8. Therefore, the second indication information may also indicate the aforementioned scale factors p and ⁇ .
  • the number of space-frequency combination coefficients in the first space-frequency combination coefficient set is greater than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set.
  • the number of space-frequency combination coefficients determined for the first set of space-frequency combination coefficients is greater than the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients, so that the first indication information
  • the number of bits carrying the information corresponding to the first spatial vector set (for example, the quantization information of the space-frequency combining coefficients corresponding to the first spatial vector set) is greater than that carrying the information corresponding to the second spatial vector set (for example, the second spatial vector Set the number of bits corresponding to the quantization information of the space-frequency combination coefficient), so as to minimize the reporting overhead while ensuring that the system performance loss is minimized.
  • the Q 1 spatial vectors in the first spatial vector set include partial vectors corresponding to the first transmission layer and partial vectors corresponding to the second transmission layer, and Q 2 spatial vectors in the second spatial vector set
  • the spatial vector includes the partial vector corresponding to the first transmission layer and the partial vector corresponding to the second transmission layer.
  • the transmission layer #2 (for example, the second The airspace vector corresponding to the transmission layer) is divided into two parts, strong and weak, and the strong set of airspace vectors corresponding to the transmission layer #1 and the strong set of airspace vectors corresponding to the transmission layer #2 are combined into the first airspace vector set , Merge the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 into a second airspace vector set, and make the first airspace vector carried in the first indication information
  • the number of bits of the information corresponding to the set is greater than the number of bits carrying the information corresponding to the second spatial vector set, so that the reporting overhead is minimized on the premise of minimizing system performance loss.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer, and
  • the first indication information further includes information corresponding to the third space vector set, and the number of bits in the first indication information carrying information corresponding to the third space vector set is less than the number of bits carrying information corresponding to the first space vector set.
  • the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the spatial vector corresponding to the transmission layer #1 (for example, the first transmission layer) is divided into two parts, the strong and the weak part, and the transmission layer #2 (for example, the second The airspace vector corresponding to the transmission layer) is divided into two parts, strong and weak, and the strong set of airspace vectors corresponding to the transmission layer #1 and the strong set of airspace vectors corresponding to the transmission layer #2 are combined into the first airspace vector set , Merge the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 into the second airspace vector set, and determine all the airspace vectors corresponding to transmission layer #3 as the first Three spatial vector sets, and make the number of bits carrying information corresponding to the third spatial vector set in the first indication information less than the number of bits carrying information corresponding to the first spatial vector set, and greater than the number of bits carrying information corresponding to the second spatial vector set The number of bits, so as to minimize the reporting overhead under the
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer and the first All vectors corresponding to the four transmission layers, the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than that of the first airspace. The number of bits of information corresponding to the vector set.
  • the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the transmission layer #2 (for example, the second The airspace vector corresponding to the transmission layer) is divided into two parts, strong and weak, and the strong set of airspace vectors corresponding to the transmission layer #1 and the strong set of airspace vectors corresponding to the transmission layer #2 are combined into the first airspace vector set , Merge the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 into the second airspace vector set, and combine all the airspace vectors corresponding to transmission layer #3 with the transmission layer All the space vectors corresponding to #4 are determined to be the third space vector set, and the number of bits carrying information corresponding to the third space vector set in the first indication information is less than the number of bits carrying information corresponding to the first space vector set and greater than The number of bits that carry the information corresponding to the second spatial vector set, so as to minimize the
  • the value of N is 4, the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set, and the airspace vectors in the third airspace vector set include the third transmission layer Corresponding partial vectors, the airspace vectors in the fourth airspace vector set include the partial vectors corresponding to the third transmission layer, and the first indication information also includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set Information, the number of bits carrying information corresponding to the third space vector set in the first indication information is greater than the number of bits carrying information corresponding to the fourth space vector set and less than the number of bits carrying information corresponding to the first space vector set number.
  • the value of N is 4, the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set, and the airspace vectors in the third airspace vector set include the third transmission layer
  • the corresponding partial vector corresponds to the partial vector corresponding to the fourth transmission layer.
  • the space vector in the fourth space vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer.
  • the first indication information is also The information corresponding to the third airspace vector set and the information corresponding to the fourth airspace vector set are included, and the number of bits in the first indication information carrying the information corresponding to the third airspace vector set is greater than that corresponding to the fourth airspace vector set.
  • the number of information bits is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the number of bits carrying information corresponding to the second space vector set in the first indication information generated by the terminal device is greater than the number of bits carrying information corresponding to the fourth space vector set, and less than the number of bits carrying information corresponding to the third space vector set. Number of bits.
  • the space vector corresponding to transmission layer #1 is divided into two parts according to the strength of the space vector
  • the space vector corresponding to transmission layer #2 is divided according to the strength of the space vector Divided into two parts
  • the airspace vector corresponding to transmission layer #3 is divided into two parts according to the strength of the airspace vector
  • the airspace vector corresponding to transmission layer #4 is divided into two parts according to the strength of the airspace vector
  • the transmission layer# The strong set of airspace vectors corresponding to 1 and the strong set of airspace vectors corresponding to transmission layer #2 are merged into the first set of airspace vectors, and the weaker set of airspace vectors corresponding to transmission layer #1, transmission layer# 2
  • the corresponding weaker set of airspace vectors are merged into the second airspace vector set, and the stronger set of airspace vectors corresponding to transmission layer #3 and the stronger set of airspace vectors corresponding to transmission layer #4 are determined as the third In the airspace vector set, the weaker set of airspace vectors
  • the sum of the number of space vectors in the N space vector sets is equal to the sum of the numbers of space vectors corresponding to all the transmission layers.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and the first
  • the partial vector corresponding to the second transmission layer, the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, the partial vector corresponding to the third transmission layer, and the fourth transmission
  • the partial vector corresponding to the layer, the third space vector set, the space vector includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information also includes the vector corresponding to the third space vector set Information, the number of bits carrying information corresponding to the third spatial vector set in the first indication information is less than the number of bits carrying information corresponding to the first spatial vector set.
  • the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the transmission layer #2 for example, the second The airspace vector corresponding to the transmission layer
  • the airspace vector corresponding to the transmission layer #3 is divided into two parts, the transmission layer #4 (for example, the fourth transmission layer).
  • the corresponding airspace vector is divided into two parts, strong and weak, and a strong set of airspace vectors corresponding to transmission layer #1 and a strong set of airspace vectors corresponding to transmission layer #2 are combined into the first airspace vector set,
  • the weaker set of airspace vectors corresponding to transmission layer #1, the weaker set of airspace vectors corresponding to transmission layer #2, the weaker set of airspace vectors corresponding to transmission layer #3, and the weaker set of airspace vectors corresponding to transmission layer #4 The set of airspace vectors of is merged into the second airspace vector set, and the stronger set of airspace vectors corresponding to transmission layer #3 and the stronger set of airspace vectors corresponding to transmission layer #4 are determined as the third airspace vector set, And make the number of bits carrying information corresponding to the third spatial vector set in the first indication information less than the number of bits carrying information corresponding to the first spatial vector set, and greater than the number of bits carrying information corresponding to the second spatial vector set, so that Under the premise of minimizing system performance loss, the reporting
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the first transmission layer corresponding to the second transmission layer
  • the partial vector of the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer and the partial vector corresponding to the third transmission layer, and the partial vector in the third space vector set
  • the space vector includes a partial vector corresponding to the third transmission layer
  • the first indication information also includes information corresponding to the third space vector set, and the number of bits in the first indication information that carries information corresponding to the third space vector set is less than The number of bits carrying information corresponding to the first spatial vector set.
  • the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the spatial vector corresponding to the transmission layer #1 (for example, the first transmission layer) is divided into two parts, the strong and the weak part, and the transmission layer #2 (for example, the second The airspace vector corresponding to the transmission layer) is divided into two parts, strong and weak.
  • the airspace vector corresponding to the transmission layer #3 (for example, the third transmission layer) is divided into two parts, the strong and the weak part, and the stronger one corresponding to the transmission layer #1
  • the set of airspace vectors and the stronger set of airspace vectors corresponding to transmission layer #2 are combined into the first set of airspace vectors.
  • the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 are combined.
  • the set of airspace vectors and the weaker set of airspace vectors corresponding to transmission layer #3 are merged into the second airspace vector set, the stronger set of airspace vectors corresponding to transmission layer #3 is determined as the third airspace vector set, and the first The number of bits in the indication information carrying information corresponding to the third space vector set is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set, thereby ensuring minimization Under the premise of system performance loss, the reporting overhead is minimized.
  • the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the space-frequency combination of the transmission layer in the second space-frequency combination coefficient set
  • the sum of the squares of the amplitudes of the coefficients, or, the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the value of the transmission layer in the second space-frequency combination coefficient set
  • the maximum value of the amplitude values of the space-frequency combination coefficients, or the minimum value of the wideband amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the second space-frequency combination
  • the coefficient set is the maximum value among the wideband amplitude values of the space-frequency combination coefficients of the transmission layer.
  • the N space-frequency combination coefficient sets further include a third space-frequency combination coefficient set and a fourth space-frequency combination coefficient set, and the third space-frequency combination coefficient set and the third space-domain vector set
  • the fourth space-frequency combination coefficient set corresponds to the fourth space-domain vector set
  • the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the fourth space-frequency combination coefficient set
  • the sum of the squared amplitudes of the space-frequency combination coefficients of the transmission layer in the combination coefficient set, or, the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the first
  • the airspace vector in the first airspace vector set includes the airspace vector corresponding to the first polarization direction of the first transmission layer and the airspace vector corresponding to the first polarization direction of the second transmission layer
  • the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer and the airspace vector corresponding to the second polarization direction of the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include the first pole of the third transmission layer.
  • the airspace vector corresponding to the polarization direction and the airspace vector corresponding to the second polarization direction of the third transmission layer, the first indication information further includes information corresponding to the third airspace vector set, in the first indication information
  • the number of bits carrying information corresponding to the third spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include the first pole of the third transmission layer.
  • the space vector corresponding to the polarization direction, the space vector corresponding to the second polarization direction of the third transmission layer, the space vector corresponding to the first polarization direction of the fourth transmission layer, and the second polarization direction of the fourth transmission layer Direction corresponding to the airspace vector
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries the information corresponding to the third airspace vector set is less than that of the The number of bits of information corresponding to the first spatial vector set.
  • the value of N is 4, the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set, and the airspace vector in the third airspace vector set includes a third airspace vector set.
  • the airspace vector corresponding to the direction and the airspace vector corresponding to the second polarization direction of the fourth transmission layer, and the first indication information further includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set
  • the number of bits in the first indication information carrying information corresponding to the third spatial vector set is greater than the number of bits carrying information corresponding to the fourth spatial vector set, and is less than the number of bits carrying information corresponding to the first spatial vector set. The number of bits of information.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the first pole of the first transmission layer.
  • the airspace vector corresponding to the polarization direction and the airspace vector corresponding to the first polarization direction of the second transmission layer, and the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer,
  • the first indication information further includes information corresponding to the third space vector set, and the number of bits in the first indication information carrying information corresponding to the third space vector set is less than the number of bits carrying the information corresponding to the third space vector set.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the first pole of the first transmission layer.
  • the airspace vector corresponding to the polarization direction, the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer, and the airspace vector in the third airspace vector set includes the second transmission layer
  • the space vector corresponding to the second polarization direction, the first indication information further includes information corresponding to the third space vector set, and the number of bits in the first indication information that carries information corresponding to the third space vector set It is less than the number of bits carrying information corresponding to the first spatial vector set.
  • the value of N is 4, the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set, and the airspace vectors in the first airspace vector set include the first airspace vector set.
  • the vector includes the space vector corresponding to the first polarization direction of the second transmission layer and the space vector corresponding to the first polarization direction of the third transmission layer.
  • the space vector in the fourth space vector set includes the second space vector of the second transmission layer.
  • the airspace vector corresponding to the polarization direction and the airspace vector corresponding to the second polarization direction of the third transmission layer, and the first indication information further includes information corresponding to the third airspace vector set and corresponding to the fourth airspace vector set
  • the number of bits carrying the information corresponding to the third spatial vector set in the first indication information is greater than the number of bits carrying the information corresponding to the fourth spatial vector set, and is smaller than the number of bits carrying the first spatial vector set The number of bits of the corresponding information.
  • the reference amplitude value corresponding to the first polarization direction of the first transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the first transmission layer, and the second transmission layer The reference amplitude value corresponding to the first polarization direction of the layer is greater than the reference amplitude value corresponding to the second polarization direction of the second transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the third transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the third transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the fourth transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the fourth transmission layer.
  • the frequency domain vector corresponding to the first transmission layer in the second frequency domain vector set is a frequency domain corresponding to the first transmission layer from the first frequency domain vector set
  • the frequency domain vector corresponding to the second transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the second transmission layer in the first frequency domain vector set .
  • the N spatial domain vector sets further include a third frequency domain vector set and a fourth frequency domain vector set, and the third frequency domain vector set corresponds to the third spatial vector set,
  • the fourth frequency domain vector set corresponds to the fourth spatial vector set, and the frequency domain vector corresponding to the third transmission layer in the fourth frequency domain vector set is obtained from the third frequency domain vector set and Is determined from the frequency domain vector corresponding to the third transmission layer, the frequency domain vector corresponding to the fourth transmission layer in the fourth frequency domain vector set is determined from the third frequency domain vector set and the fourth transmission layer Determined in the frequency domain vector corresponding to the layer.
  • a method for determining a precoding vector is provided.
  • the method can be executed by a network device, or can also be executed by a chip configured in the network device.
  • the method includes: receiving first indication information, where the first indication information is used to indicate P frequency domain vectors and K space-frequency combination coefficients, the P frequency domain vectors belong to N frequency domain vector sets, and the K The space-frequency combination coefficients belong to N space-frequency combination coefficient sets, the N frequency-domain vector sets correspond one-to-one with the N space-domain vector sets, and the N space-frequency combination coefficient sets correspond to the N-space-domain vector sets one-to-one,
  • the N airspace vector sets include at least a first airspace vector set and a second airspace vector set, and at least one airspace vector set in the N airspace vector sets corresponds to at least two transmission layers, and N, P, and K are greater than or equal to 2.
  • the first indication information includes information corresponding to the first airspace vector set and information corresponding to the second airspace vector set, and the number of bits in the first indication information carrying the information corresponding to the first airspace vector set is greater than that of carrying the The number of bits of information corresponding to the second spatial vector set; and the precoding vector is determined according to the first indication information.
  • the larger the transmission layer index the smaller the channel matrix eigenvalue or the signal to interference plus noise ratio (SINR) corresponding to the transmission layer, for example, the transmission layer #2
  • SINR signal to interference plus noise ratio
  • this application aims at the frequency-domain compression codebook, and according to the degree of influence of the spatial vector on the system performance, the spatial vectors corresponding to different transmission layers are grouped into spatial vectors that have a greater impact on system performance (for example, , The first spatial vector set) allocates more bits for reporting, and allocates fewer quantized bits for reporting to the spatial vector that has less impact on system performance (the second spatial vector set), thereby ensuring that the system performance loss is minimized Under the premise, the reporting overhead is minimized.
  • the above-mentioned airspace vector that has a greater impact on system performance can be a stronger airspace vector, and the airspace vector that has a lesser impact on system performance can be a weaker airspace vector, where the above-mentioned stronger airspace vector corresponds to
  • the sum of squared amplitudes of the space-frequency combining coefficients is greater than or equal to the sum of squared amplitudes of the space-frequency combining coefficients corresponding to the above-mentioned weaker space-domain vector, or the smallest of the amplitude values of the space-frequency combining coefficients corresponding to the above-mentioned stronger space-domain vector
  • the value is greater than or equal to the maximum value of the amplitude value of the space-frequency combination coefficient corresponding to the weaker space vector.
  • the N frequency-domain vector set comprising a first and a second set of frequency-domain vector set of frequency domain vectors
  • the vector includes P frequency-domain frequency domain of the first set of vectors P 1 of the frequency- P 2 frequency domain vectors in the second frequency domain vector set
  • the first frequency domain vector set corresponds to the first spatial domain vector set
  • the second frequency domain vector set corresponds to the second spatial vector set
  • P 1 is greater than P 2
  • P 2 is greater than or equal to 1.
  • the first indication information carries the first spatial vector
  • the number of bits corresponding to the information set (for example, the index number of the frequency domain vector corresponding to the first spatial vector set) is greater than that of the information corresponding to the second spatial vector set (for example, the index of the frequency domain vector corresponding to the second spatial vector set). Number), so as to minimize the reporting overhead under the premise of minimizing system performance loss.
  • the N space-frequency combination coefficient sets include a first space-frequency combination coefficient set and a second space-frequency combination coefficient set, and the first space-frequency combination coefficient set corresponds to the first space-domain vector set , The second space-frequency combination coefficient set corresponds to the second space-domain vector set, and the number of quantized bits of each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than that of each space-frequency combination coefficient set in the second space-frequency combination coefficient set. The number of quantized bits of the frequency combining coefficient.
  • the number of quantization bits for each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than the number of quantization bits for each space-frequency combination coefficient in the second space-frequency combination coefficient set, so that the first
  • the number of bits in the indication information that carries the information corresponding to the first spatial vector set (for example, the quantization information of the space-frequency combination coefficients corresponding to the first spatial vector set) is greater than that of the information that carries the information corresponding to the second spatial vector set (for example, the first spatial vector set).
  • the number of bits of the quantization information of the space-frequency combination coefficients corresponding to the two spatial vector sets so as to minimize the reporting overhead while ensuring the minimum system performance loss.
  • the quantization bit of each space-frequency combination coefficient in the first space-frequency combination coefficient set includes at least one of an amplitude quantization bit and a phase quantization bit;
  • the quantization bits of each space-frequency combination coefficient include at least one of amplitude quantization bits and phase quantization bits.
  • the first indication information is also used to indicate a spatial vector Q, Q is greater than or equal to 2, to the Q vector includes the first spatial airspace Q 1 of a set of vectors and said second vectors airspace Q 2 spatial vectors in the second spatial vector set, where each spatial vector in the first spatial vector set corresponds to S frequency domain vectors, P 1 is equal to S or P 1 is equal to the product of S and Q 1 , and S is greater than Or equal to 1, each spatial vector in the second spatial vector set corresponds to R frequency domain vectors, P 2 is equal to R or P 2 is equal to the product of R and Q 2 , and R is greater than or equal to 1.
  • the method further includes: sending second indication information, where the second indication information is used to indicate at least one of the following: the number of airspace vectors Q 1 in the first airspace vector set, and the first airspace vector set.
  • the second indication information is used to indicate at least one of the following: the number of airspace vectors Q 1 in the first airspace vector set, and the first airspace vector set.
  • the number of space-frequency combination coefficients in the first space-frequency combination coefficient set is greater than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set.
  • the number of space-frequency combination coefficients determined for the first set of space-frequency combination coefficients is greater than the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients, so that the first indication information
  • the number of bits carrying the information corresponding to the first spatial vector set (for example, the quantization information of the space-frequency combining coefficients corresponding to the first spatial vector set) is greater than that carrying the information corresponding to the second spatial vector set (for example, the second spatial vector Set the number of bits corresponding to the quantization information of the space-frequency combination coefficient), so as to minimize the reporting overhead while ensuring that the system performance loss is minimized.
  • the L 1 spatial vectors in the first spatial vector set include the partial vectors corresponding to the first transmission layer and the partial vectors corresponding to the second transmission layer
  • the L 2 spatial vectors in the second spatial vector set The spatial vector includes the partial vector corresponding to the first transmission layer and the partial vector corresponding to the second transmission layer.
  • the transmission layer #2 (for example, the second The airspace vector corresponding to the transmission layer) is divided into two parts, strong and weak, and the strong set of airspace vectors corresponding to the transmission layer #1 and the strong set of airspace vectors corresponding to the transmission layer #2 are combined into the first airspace vector set , Merge the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 into a second airspace vector set, and make the first airspace vector carried in the first indication information
  • the number of bits of the information corresponding to the set is greater than the number of bits carrying the information corresponding to the second spatial vector set, so that the reporting overhead is minimized on the premise of minimizing system performance loss.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include all the vectors corresponding to the third transmission layer.
  • the first indication information further includes information corresponding to the third space vector set, and the number of bits in the first indication information carrying information corresponding to the third space vector set is less than the number of bits carrying information corresponding to the first space vector set.
  • the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the spatial vector corresponding to the transmission layer #1 (for example, the first transmission layer) is divided into two parts, the strong and the weak part, and the transmission layer #2 (for example, the second The airspace vector corresponding to the transmission layer) is divided into two parts, strong and weak, and the strong set of airspace vectors corresponding to the transmission layer #1 and the strong set of airspace vectors corresponding to the transmission layer #2 are combined into the first airspace vector set , Merge the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 into the second airspace vector set, and determine all the airspace vectors corresponding to transmission layer #3 as the first Three spatial vector sets, and make the number of bits carrying information corresponding to the third spatial vector set in the first indication information less than the number of bits carrying information corresponding to the first spatial vector set, and greater than the number of bits carrying information corresponding to the second spatial vector set The number of bits, so as to minimize the reporting overhead under the
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer and the first All vectors corresponding to the four transmission layers, the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than that of the first airspace. The number of bits of information corresponding to the vector set.
  • the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the transmission layer #2 (for example, the second The airspace vector corresponding to the transmission layer) is divided into two parts, strong and weak, and the strong set of airspace vectors corresponding to the transmission layer #1 and the strong set of airspace vectors corresponding to the transmission layer #2 are combined into the first airspace vector set , Merge the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 into the second airspace vector set, and combine all the airspace vectors corresponding to transmission layer #3 with the transmission layer All the space vectors corresponding to #4 are determined to be the third space vector set, and the number of bits carrying information corresponding to the third space vector set in the first indication information is less than the number of bits carrying information corresponding to the first space vector set and greater than The number of bits that carry the information corresponding to the second spatial vector set, so as to minimize the
  • the value of N is 4, the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set, and the airspace vectors in the third airspace vector set include the third transmission layer
  • the corresponding partial vector corresponds to the partial vector corresponding to the fourth transmission layer.
  • the space vector in the fourth space vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer.
  • the first indication information is also The information corresponding to the third airspace vector set and the information corresponding to the fourth airspace vector set are included, and the number of bits in the first indication information carrying the information corresponding to the third airspace vector set is greater than that corresponding to the fourth airspace vector set.
  • the number of information bits is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the number of bits carrying information corresponding to the second space vector set in the first indication information generated by the terminal device is greater than the number of bits carrying information corresponding to the fourth space vector set, and less than the number of bits carrying information corresponding to the third space vector set. Number of bits.
  • the space vector corresponding to transmission layer #1 is divided into two parts according to the strength of the space vector
  • the space vector corresponding to transmission layer #2 is divided according to the strength of the space vector Divided into two parts
  • the airspace vector corresponding to transmission layer #3 is divided into two parts according to the strength of the airspace vector
  • the airspace vector corresponding to transmission layer #4 is divided into two parts according to the strength of the airspace vector
  • the transmission layer# The strong set of airspace vectors corresponding to 1 and the strong set of airspace vectors corresponding to transmission layer #2 are merged into the first set of airspace vectors, and the weaker set of airspace vectors corresponding to transmission layer #1, transmission layer# 2
  • the corresponding weaker set of airspace vectors are merged into the second airspace vector set, and the stronger set of airspace vectors corresponding to transmission layer #3 and the stronger set of airspace vectors corresponding to transmission layer #4 are determined as the third In the airspace vector set, the weaker set of airspace vectors
  • the sum of the number of space vectors in the N space vector sets is equal to the sum of the numbers of space vectors corresponding to all the transmission layers.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and the first
  • the partial vector corresponding to the second transmission layer, the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, the partial vector corresponding to the third transmission layer, and the fourth transmission
  • the partial vector corresponding to the layer, the third space vector set, the space vector includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information also includes the vector corresponding to the third space vector set Information, the number of bits carrying information corresponding to the third spatial vector set in the first indication information is less than the number of bits carrying information corresponding to the first spatial vector set.
  • the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the transmission layer #2 for example, the second The airspace vector corresponding to the transmission layer
  • the airspace vector corresponding to the transmission layer #3 is divided into two parts, the transmission layer #4 (for example, the fourth transmission layer).
  • the corresponding airspace vector is divided into two parts, strong and weak, and a strong set of airspace vectors corresponding to transmission layer #1 and a strong set of airspace vectors corresponding to transmission layer #2 are combined into the first airspace vector set,
  • the weaker set of airspace vectors corresponding to transmission layer #1, the weaker set of airspace vectors corresponding to transmission layer #2, the weaker set of airspace vectors corresponding to transmission layer #3, and the weaker set of airspace vectors corresponding to transmission layer #4 The set of airspace vectors from is merged into the second airspace vector set, and the stronger set of airspace vectors corresponding to transmission layer #3 and the stronger set of airspace vectors corresponding to transmission layer #4 are determined as the third airspace vector set, And make the number of bits carrying information corresponding to the third spatial vector set in the first indication information less than the number of bits carrying information corresponding to the first spatial vector set, and greater than the number of bits carrying information corresponding to the second spatial vector set, so that Under the premise of minimizing system performance loss, the reporting
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the first transmission layer corresponding to the second transmission layer
  • the partial vector of the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer and the partial vector corresponding to the third transmission layer, and the partial vector in the third space vector set
  • the space vector includes a partial vector corresponding to the third transmission layer
  • the first indication information also includes information corresponding to the third space vector set, and the number of bits in the first indication information that carries information corresponding to the third space vector set is less than The number of bits carrying information corresponding to the first spatial vector set.
  • the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the spatial vector corresponding to the transmission layer #1 (for example, the first transmission layer) is divided into two parts, the strong and the weak part, and the transmission layer #2 (for example, the second The airspace vector corresponding to the transmission layer) is divided into two parts, strong and weak.
  • the airspace vector corresponding to the transmission layer #3 (for example, the third transmission layer) is divided into two parts, the strong and the weak part, and the stronger one corresponding to the transmission layer #1
  • the set of airspace vectors and the stronger set of airspace vectors corresponding to transmission layer #2 are combined into the first set of airspace vectors.
  • the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 are combined.
  • the set of airspace vectors and the weaker set of airspace vectors corresponding to transmission layer #3 are merged into the second airspace vector set, the stronger set of airspace vectors corresponding to transmission layer #3 is determined as the third airspace vector set, and the first The number of bits in the indication information carrying information corresponding to the third space vector set is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set, thereby ensuring minimization Under the premise of system performance loss, the reporting overhead is minimized.
  • the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the space-frequency combination of the transmission layer in the second space-frequency combination coefficient set
  • the sum of the squares of the amplitudes of the coefficients, or, the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the value of the transmission layer in the second space-frequency combination coefficient set
  • the maximum value of the amplitude values of the space-frequency combination coefficients, or the minimum value of the wideband amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the second space-frequency combination
  • the coefficient set is the maximum value among the wideband amplitude values of the space-frequency combination coefficients of the transmission layer.
  • the N space-frequency combination coefficient sets further include a third space-frequency combination coefficient set and a fourth space-frequency combination coefficient set, and the third space-frequency combination coefficient set and the third space-domain vector set
  • the fourth space-frequency combination coefficient set corresponds to the fourth space-domain vector set
  • the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the fourth space-frequency combination coefficient set
  • the sum of the squared amplitudes of the space-frequency combination coefficients of the transmission layer in the combination coefficient set, or, the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the first
  • the airspace vector in the first airspace vector set includes the airspace vector corresponding to the first polarization direction of the first transmission layer and the airspace vector corresponding to the first polarization direction of the second transmission layer
  • the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer and the airspace vector corresponding to the second polarization direction of the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include the first pole of the third transmission layer.
  • the airspace vector corresponding to the polarization direction and the airspace vector corresponding to the second polarization direction of the third transmission layer, the first indication information further includes information corresponding to the third airspace vector set, in the first indication information
  • the number of bits carrying information corresponding to the third spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include the first pole of the third transmission layer.
  • the space vector corresponding to the polarization direction, the space vector corresponding to the second polarization direction of the third transmission layer, the space vector corresponding to the first polarization direction of the fourth transmission layer, and the second polarization direction of the fourth transmission layer Direction corresponding to the airspace vector
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries the information corresponding to the third airspace vector set is less than that of the The number of bits of information corresponding to the first spatial vector set.
  • the value of N is 4, the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set, and the airspace vector in the third airspace vector set includes a third airspace vector set.
  • the airspace vector corresponding to the direction and the airspace vector corresponding to the second polarization direction of the fourth transmission layer, and the first indication information further includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set
  • the number of bits in the first indication information carrying information corresponding to the third spatial vector set is greater than the number of bits carrying information corresponding to the fourth spatial vector set, and is less than the number of bits carrying information corresponding to the first spatial vector set. The number of bits of information.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the first pole of the first transmission layer.
  • the airspace vector corresponding to the polarization direction and the airspace vector corresponding to the first polarization direction of the second transmission layer, and the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer,
  • the first indication information further includes information corresponding to the third space vector set, and the number of bits in the first indication information carrying information corresponding to the third space vector set is less than the number of bits carrying the information corresponding to the third space vector set.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the first pole of the first transmission layer.
  • the airspace vector corresponding to the polarization direction, the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer, and the airspace vector in the third airspace vector set includes the second transmission layer
  • the space vector corresponding to the second polarization direction, the first indication information further includes information corresponding to the third space vector set, and the number of bits in the first indication information that carries information corresponding to the third space vector set It is less than the number of bits carrying information corresponding to the first spatial vector set.
  • the value of N is 4, the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set, and the airspace vectors in the first airspace vector set include the first airspace vector set.
  • the vector includes the space vector corresponding to the first polarization direction of the second transmission layer and the space vector corresponding to the first polarization direction of the third transmission layer.
  • the space vector in the fourth space vector set includes the second space vector of the second transmission layer.
  • the airspace vector corresponding to the polarization direction and the airspace vector corresponding to the second polarization direction of the third transmission layer, and the first indication information further includes information corresponding to the third airspace vector set and corresponding to the fourth airspace vector set
  • the number of bits carrying the information corresponding to the third spatial vector set in the first indication information is greater than the number of bits carrying the information corresponding to the fourth spatial vector set, and is smaller than the number of bits carrying the first spatial vector set The number of bits of the corresponding information.
  • the reference amplitude value corresponding to the first polarization direction of the first transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the first transmission layer, and the second transmission layer The reference amplitude value corresponding to the first polarization direction of the layer is greater than the reference amplitude value corresponding to the second polarization direction of the second transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the third transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the third transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the fourth transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the fourth transmission layer.
  • the frequency domain vector corresponding to the first transmission layer in the second frequency domain vector set is a frequency domain corresponding to the first transmission layer from the first frequency domain vector set
  • the frequency domain vector corresponding to the second transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the second transmission layer in the first frequency domain vector set .
  • the N spatial domain vector sets further include a third frequency domain vector set and a fourth frequency domain vector set, and the third frequency domain vector set corresponds to the third spatial vector set,
  • the fourth frequency domain vector set corresponds to the fourth spatial vector set, and the frequency domain vector corresponding to the third transmission layer in the fourth frequency domain vector set is obtained from the third frequency domain vector set and Is determined from the frequency domain vector corresponding to the third transmission layer, the frequency domain vector corresponding to the fourth transmission layer in the fourth frequency domain vector set is determined from the third frequency domain vector set and the fourth transmission layer Determined in the frequency domain vector corresponding to the layer.
  • a method for determining a target space-frequency matrix is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip configured in the terminal device.
  • the first information includes first indication information, second indication information, and third indication information.
  • the first indication information is used to indicate the index numbers of ⁇ L space vectors
  • the second indication The information is used to indicate the index number of the frequency domain vector corresponding to each space vector
  • the third indication information is used to indicate the amplitude and phase quantization values of the space-frequency combination coefficient.
  • the above method can be regarded as combining the space-frequency vectors of R transmission layers into a larger-dimensional high-dimensional space-frequency matrix (a matrix with N s rows and RN f columns). Perform dual-domain compression on the high-dimensional space-frequency matrix.
  • the first information may further include fourth indication information and fifth indication information.
  • the fourth indication information is used to indicate the number of amplitude non-zero combination coefficients
  • the fifth indication information is used to indicate the amplitude.
  • a device for indicating a precoding vector includes various modules or units for executing the method in any one of the possible implementation manners of the first aspect.
  • a device for indicating a precoding vector may be a terminal device in the above method design, or a chip set in the terminal device.
  • the device for indicating a precoding vector includes a processor, which is coupled to a memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the first aspect.
  • the device for indicating a precoding vector further includes a memory.
  • the device for indicating the precoding vector further includes a communication interface, and the processor is coupled with the communication interface.
  • the device for indicating the precoding vector is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the device for indicating the precoding vector is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a device for determining a precoding vector includes various modules or units for executing the method in any one of the possible implementation manners of the second aspect.
  • a device for determining a precoding vector may be a network device in the above method design, or a chip set in the network device.
  • the device for determining a precoding vector includes a processor, which is coupled to a memory, and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the second aspect.
  • the device for determining a precoding vector further includes a memory.
  • the device for determining the precoding vector further includes a communication interface, and the processor is coupled with the communication interface.
  • the device for determining the precoding vector is a network device.
  • the communication interface may be a transceiver or an input/output interface.
  • the device for determining the precoding vector is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect or The method in any one of the two possible implementation modes.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer to enable the computer to execute the first aspect or the first The method in any one of the two possible implementation modes.
  • a computer program also called code, or instruction
  • FIG. 1 is a schematic diagram of a communication system applicable to the method for indicating and determining a precoding vector provided by an embodiment of the present application;
  • Fig. 2 is a schematic flowchart of a method for indicating and determining a precoding vector provided by an embodiment of the present application
  • Fig. 3 is a schematic block diagram of an apparatus for indicating a precoding vector according to an embodiment of the present application
  • Fig. 4 is another schematic block diagram of an apparatus for indicating a precoding vector according to an embodiment of the present application
  • Fig. 5 is a schematic block diagram of an apparatus for determining a precoding vector according to an embodiment of the present application
  • Fig. 6 is another schematic block diagram of a device for determining a precoding vector according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th Generation
  • 5NR New Radio
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to the method for indicating and determining a precoding vector in an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 can be equipped with multiple antennas.
  • the configured multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals. Therefore, the communication devices in the communication system 100, such as the network device 110 and the terminal device 120, can communicate through multi-antenna technology.
  • the network device in the communication system may be any device with a wireless transceiver function.
  • the network equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), node B (Node B, NB), base station controller (BSC) ), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WiFi) systems
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc. can also be 5G, such as, NR, gNB in the system, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or a network node that constitutes a gNB or transmission point , Such as baseband unit (BBU), or distributed unit (DU), etc.
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements part of the functions of gNB
  • DU implements part of the functions of gNB.
  • CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements radio link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • the embodiment of this application does not limit the application scenario.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding, and the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the sending device (such as network equipment) can process the signal to be sent with the help of a precoding matrix that matches the channel resource when the channel state is known, so that the precoded signal to be sent and the channel Adaptation, thereby reducing the complexity of the receiving device (such as the terminal device) to eliminate the influence between channels. Therefore, through the precoding processing of the signal to be transmitted, the quality of the received signal (for example, the signal to interference plus noise ratio (SINR), etc.) can be improved. Therefore, the use of precoding technology can help improve the transmission performance of the sending device and multiple receiving devices on the same time-frequency resource, that is, improve the multi-user multiple input multiple output (MU-MIMO) System performance.
  • MU-MIMO multi-user multiple input multiple output
  • the sending device may also perform precoding in other ways. For example, when channel information (such as but not limited to a channel matrix) cannot be obtained, precoding is performed using a preset precoding matrix or a weighting processing method. For the sake of brevity, its specific content will not be repeated in this article.
  • PMI Precoding matrix and precoding matrix indication
  • the channel matrix may be determined by the terminal equipment through channel estimation or other methods or based on channel reciprocity.
  • the specific method for the terminal device to determine the channel matrix is not limited to the above, and the specific implementation can refer to the prior art. For brevity, it will not be listed here.
  • the precoding matrix can be obtained by performing singular value decomposition (SVD) on the channel matrix or the covariance matrix of the channel matrix, or it can also be obtained by performing eigenvalue decomposition (eigenvalue decomposition, SVD) on the covariance matrix of the channel matrix. EVD).
  • SVD singular value decomposition
  • eigenvalue decomposition eigenvalue decomposition
  • the method for determining the precoding matrix listed above is only an example, and should not constitute any limitation to this application.
  • the method for determining the precoding matrix can refer to the prior art. For brevity, it will not be listed here.
  • the precoding matrix corresponding to the frequency domain unit may refer to the precoding matrix fed back for the frequency domain unit, for example, may be performed based on the reference signal on the frequency domain unit. Precoding matrix for channel measurement and feedback.
  • the precoding matrix corresponding to the frequency domain unit can be used for precoding the data subsequently transmitted through the frequency domain unit.
  • the precoding matrix corresponding to the frequency domain unit may also be referred to as the precoding matrix of the frequency domain unit for short
  • the precoding vector corresponding to the frequency domain unit may also be referred to as the precoding vector of the frequency domain unit.
  • the precoding matrix determined by the network device based on the feedback of the terminal device can be directly used for downlink data transmission; it can also undergo some beamforming methods, such as zero forcing (zero forcing, ZF), regularized zero-forcing (RZF), minimum mean-squared error (MMSE), maximum signal-to-leakage-and-noise (SLNR), etc. , In order to obtain the final precoding matrix for downlink data transmission.
  • ZF zero forcing
  • RZF regularized zero-forcing
  • MMSE minimum mean-squared error
  • SLNR maximum signal-to-leakage-and-noise
  • the precoding matrix (or vector) involved in the following may all refer to the precoding matrix (or vector) determined by the network device based on the feedback of the terminal device.
  • a precoding matrix may include one or more vectors, such as column vectors. One precoding matrix can be used to determine one or more precoding vectors.
  • the precoding vector may be a precoding matrix.
  • the precoding vector may refer to the component of the precoding matrix on one transmission layer.
  • the precoding vector may refer to the component of the precoding matrix in one polarization direction.
  • the precoding vector may refer to the component of the precoding matrix in one transmission layer and one polarization direction.
  • the precoding vector may also be determined by the vector in the precoding matrix, for example, the vector in the precoding matrix is obtained after mathematical transformation. This application does not limit the mathematical transformation relationship between the precoding matrix and the precoding vector.
  • Antenna port referred to as port. It can be understood as a virtual antenna recognized by the receiving device. Or transmit antennas that can be distinguished in space. One antenna port can be configured for each virtual antenna. Each virtual antenna can be a weighted combination of multiple physical antennas. Each antenna port can correspond to a reference signal. Therefore, each antenna port can be called a reference signal port. . In the embodiment of the present application, the antenna port may refer to an actual independent transmitting unit (transceiver unit, TxRU).
  • TxRU transmitting unit
  • Spatial domain vector Or called spatial domain vector or spatial domain beam vector.
  • Each element in the spatial vector can represent the weight of each antenna port. Based on the weight of each antenna port represented by each element in the space vector, the signals of each antenna port are linearly superimposed to form an area with a strong signal in a certain direction in space.
  • the length of the space vector u may be the number of transmitting antenna ports N s in a polarization direction, and N s ⁇ 1 and an integer.
  • the spatial vector can be, for example, a column vector or a row vector with a length of N s . This application does not limit this.
  • spatial vector please refer to the two-dimensional (2 dimensions, 2D)-Discrete Fourier Transform (DFT) vector defined in the Type II codebook in the NR protocol TS 38.214 version 15 (release 15, R15) or Oversampled 2D-DFT vector v l,m .
  • DFT Discrete Fourier Transform
  • Airspace vector set a vector set formed by candidate airspace vectors, which can include a variety of airspace vectors of different lengths to correspond to different numbers of transmitting antenna ports.
  • the length of the airspace vector is N s
  • the length of each airspace vector in the airspace vector set to which the airspace vector reported by the terminal device belongs is all N s .
  • the set of airspace vectors may include N s airspace vectors, and the N s airspace vectors may be orthogonal to each other.
  • the N s airspace vectors can be denoted as The N s spatial vectors can construct a matrix B s , If each spatial vector in the spatial vector set is taken from the 2D-DFT matrix, then Where D N is an N ⁇ N orthogonal DFT matrix, and the element in the mth row and nth column is
  • the set of spatial vectors can be expanded into O s ⁇ N s spatial vectors by an oversampling factor O s .
  • the set of airspace vectors may include O s subsets, and each subset may include N s airspace vectors.
  • the N s spatial vectors in each subset can be orthogonal to each other.
  • Each spatial vector in the set of spatial vectors can be taken from an oversampled 2D-DFT matrix.
  • the N s space vectors in the o s (1 ⁇ o s ⁇ O s and o s is an integer) subset of the set of space vectors can be denoted as Then the matrix can be constructed based on the N s spatial vectors in the o sth subset
  • each spatial vector in the spatial vector set can be taken from a 2D-DFT matrix or an oversampled 2D-DFT matrix.
  • Each column vector in the set of spatial vectors can be referred to as a 2D-DFT vector or an oversampled 2D-DFT vector.
  • the spatial vector can be a 2D-DFT vector or an oversampled 2D-DFT vector.
  • Frequency domain vector a vector proposed in the embodiment of the present application for representing the changing law of a channel in the frequency domain.
  • Each frequency domain vector can represent a change law. Since the signal is transmitted through the wireless channel, it can reach the receiving antenna through multiple paths from the transmitting antenna. Multipath time delay causes frequency selective fading, which is the change of frequency domain channel. Therefore, different frequency domain vectors can be used to represent the changing law of channels in the frequency domain caused by delays on different transmission paths.
  • the length of the frequency domain vector may be the number of frequency domain units, or the number of frequency domain units that need to report CSI (such as the number of reporting bands).
  • the length of the frequency domain vector can also be a preset value, such as an integer that is a multiple of 2, 3, or 5.
  • the length of the frequency domain vector is denoted as N f , N f ⁇ 1, and is an integer.
  • Frequency domain vector set A vector set composed of candidate frequency domain vectors, which can include a variety of frequency domain vectors of different lengths. One or more frequency domain vectors in the set of frequency domain vectors are selected to construct a precoding vector.
  • the frequency domain vector set may include multiple frequency domain vectors.
  • the multiple frequency domain vectors may be orthogonal to each other.
  • Each frequency domain vector in the frequency domain vector set can be taken from a DFT matrix or an IDFT matrix (that is, a conjugate transpose matrix of the DFT matrix).
  • the N f frequency domain vectors can be denoted as The N f frequency domain vectors can construct a matrix B f ,
  • the frequency-domain vector set can be extended oversampling factor O f O f ⁇ N f is the frequency-domain vectors.
  • the frequency domain vector set may include O f subsets, and each subset may include N f frequency domain vectors.
  • the N f frequency domain vectors in each subset may be orthogonal to each other.
  • Each subset can be called an orthogonal group.
  • Each frequency domain vector in the frequency domain vector set can be taken from an oversampled DFT matrix or a conjugate transpose matrix of an oversampled DFT matrix.
  • the oversampling factor O f is a positive integer.
  • the N f frequency domain vectors in the o f ( 1 ⁇ o f ⁇ O f and o f is an integer) subset of the frequency domain vector set can be respectively denoted as Then the matrix can be constructed based on the N f frequency domain vectors in the o f th subset
  • each frequency domain vector in the frequency domain vector set can be taken from the DFT matrix or the oversampled DFT matrix, or from the conjugate transpose matrix of the DFT matrix or the conjugate transpose matrix of the oversampled DFT matrix.
  • Each column vector in the frequency domain vector set may be referred to as a DFT vector or an oversampled DFT vector.
  • the frequency domain vector can be a DFT vector or an oversampled DFT vector.
  • a space-frequency component matrix can be determined by a space-domain vector and a frequency-domain vector.
  • a space-frequency component matrix may be determined by, for example, a conjugate transpose of a space-domain vector and a frequency-domain vector, such as u ⁇ v H , and its dimension may be N s ⁇ N f .
  • the space-frequency component matrix may be an expression form of a space-frequency basic unit determined by a space-domain vector and a frequency-domain vector.
  • the basic unit of space-frequency can also be expressed as a space-frequency component vector, for example, the space-frequency component vector can be determined by the Kronecker product of a space-domain vector and a frequency-domain vector; the basic unit of space-frequency can also express, for example The space frequency vector is equal.
  • This application does not limit the specific manifestation of the basic air frequency unit. Those skilled in the art are based on the same concept, and various possible forms determined by a spatial domain vector and a frequency domain vector should fall within the protection scope of this application.
  • the operational relationship between the space-frequency component matrix and the space-domain vector and frequency-domain vector may also be different. This application does not limit the operational relationship between the space-frequency component matrix, the space-domain vector, and the frequency-domain vector.
  • the space-frequency matrix can be understood as an intermediate quantity used to determine the precoding matrix.
  • the space-frequency matrix can be determined by a precoding matrix or a channel matrix.
  • the space-frequency matrix may be obtained by the weighted sum of multiple space-frequency component matrices, so as to recover the downlink channel or precoding matrix.
  • the space-frequency component matrix can be expressed as a matrix with dimensions N s ⁇ N f
  • the space-frequency matrix can also be expressed as a matrix with dimensions N s ⁇ N f
  • the space-frequency matrix with a dimension of N s ⁇ N f may include N f column vectors with a length of N s .
  • the N f column vectors may correspond to the N f frequency domain units, and each column vector may be used to determine the precoding vector of the corresponding frequency domain unit.
  • the space frequency matrix can be denoted as V, Where V 1 to Is N f column vectors corresponding to N f frequency domain units, and the length of each column vector for a single-polarization antenna can be N s .
  • the N f column vectors respectively correspond to the target precoding vectors of the N f frequency domain units. That is, the space-frequency matrix can be regarded as a joint matrix formed by combining target precoding vectors corresponding to N f frequency domain units.
  • the space-frequency matrix is only an expression form used to determine the intermediate quantity of the precoding matrix, and should not constitute any limitation in this application.
  • a vector of length N s ⁇ N f can also be obtained. This vector can be called Space frequency vector.
  • the dimensions of the space-frequency matrix and the space-frequency vector shown above are only examples, and should not constitute any limitation to this application.
  • the space-frequency matrix may also be a matrix with a dimension of N f ⁇ N s .
  • each row vector may correspond to a frequency domain unit for determining the precoding vector of the corresponding frequency domain unit.
  • the dimension of the space-frequency matrix can be further expanded.
  • the dimension of the space-frequency matrix can be 2N s ⁇ N f or N f ⁇ 2N s , where V 1 to Are N f column vectors corresponding to N f frequency domain units, and the length of each column vector is 2N s . It should be understood that this application does not limit the number of polarization directions of the transmitting antenna.
  • Dual domain compression including space domain compression and frequency domain compression.
  • Spatial compression may refer to selecting one or more spatial vectors from the set of spatial vectors as the spatial vector for constructing the precoding vector.
  • Frequency domain compression may refer to selecting one or more frequency domain vectors from a set of frequency domain vectors as frequency domain vectors for constructing a precoding vector.
  • the selected airspace vector is part or all of the airspace vector in the airspace vector set.
  • the selected frequency domain vector is part or all of the frequency domain vector in the frequency domain vector set.
  • the selected one or more spatial vectors can form a spatial beam base matrix W 1 , where each column vector in W 1 corresponds to a selected spatial vector.
  • the selected one or more frequency domain vectors may form a frequency domain base matrix W 3 , where each column vector in W 3 corresponds to a selected frequency domain vector.
  • space-frequency matrix V can be expressed as the result of the linear combination of one or more selected spatial vectors and one or more selected frequency domain vectors,
  • W1 can be expressed as
  • IS(i) represents the index corresponding to the selected spatial vector.
  • L space vectors that are not completely the same can also be used for the two polarization directions.
  • each spatial vector selects the same M frequency domain vectors
  • the dimension of W 3 H is M ⁇ N f
  • each column vector in W 3 corresponds to a frequency domain vector.
  • each spatial vector corresponds to The frequency domain vectors are all M frequency domain vectors in W 3 . It is a matrix of space-frequency combination coefficients with a dimension of 2L ⁇ M. Space-frequency combination coefficient matrix The i-th row in corresponds to the i-th spatial vector in the 2L spatial vectors, and the matrix of spatial-frequency combination coefficients The j-th column in corresponds to the j-th frequency-domain basis vector among the M frequency-domain basis vectors.
  • the space-frequency combination coefficient corresponding to the i-th space domain vector is the space-frequency combination coefficient matrix
  • the i-th row vector in, the space-frequency combination coefficient corresponding to the i-th space domain vector is the space-frequency combination coefficient matrix The element contained in the i-th row vector in.
  • each of the L spatial vectors may also correspond to a different frequency domain basis vector.
  • W 3 H [W f (0),...,W f (2L-1)] H , where N f M i rows matrix composed of columns i-th spatial vector corresponding frequency-domain vector M i. among them Is the space-frequency combination coefficient matrix of 1*M i corresponding to the i-th space vector, The space-frequency combination coefficient contained in is the space-frequency combination coefficient corresponding to the i-th space domain vector. at this time, Total includes A combination factor. If the number of frequency domain vectors corresponding to each spatial vector is M, then A total of 2LM combination coefficients are included.
  • each row vector in W 3 corresponds to a selected frequency domain vector.
  • each polarization direction of the same transmission layer corresponds to L space vectors
  • the two polarization directions of the transmission layer correspond to 2L space vectors.
  • the embodiment of the present application uses the two polarization directions of the same transmission layer.
  • the L space vectors corresponding to each are exactly the same as an example for description.
  • the 2L space vectors selected for the two polarization directions of a transmission layer are called the space vectors corresponding to the transmission layer, and it is assumed to be each space vector in the 2L space vectors.
  • the vector selects M frequency domain vectors the 2L ⁇ M frequency domain vectors corresponding to the 2L spatial domain vectors are called the frequency domain vectors corresponding to the transmission layer, and the 2L ⁇ M space-frequency combination coefficients corresponding to the 2L spatial domain vectors are called The space-frequency combination coefficient corresponding to the transmission layer.
  • the space-frequency matrix can be determined through dual-domain compression according to the above method.
  • each transmission layer can use the same dual-domain compression method to determine the space-frequency matrix corresponding to each transmission layer.
  • the two transmission layers can use the same L space vectors, or they can use L space vectors that are not exactly the same.
  • the two transmission layers may use the same M frequency domain vectors, or each spatial vector of each transmission layer may correspond to a different frequency domain vector.
  • the number of space domain vectors L, the number of frequency domain vectors M, and the maximum number of space-frequency combination coefficients K 0 that need to be reported may be configured by the network device through high-level signaling.
  • the network device can directly configure the specific values of the number of spatial vectors L, the number of frequency domain vectors M, and the maximum number of space-frequency combination coefficients K0 that need to be reported through high-level signaling, and can also configure the indexes corresponding to the specific values.
  • the number of frequency domain combining coefficients can be p times the frequency domain unit, p ⁇ 1 and the value of p can be 3/4, 1/2, 1/4, or 1/8.
  • the space-frequency combination that needs to be reported The maximum number of coefficients K0 can be ⁇ times 2LM, ⁇ 1 and the value can be 3/4, 1/2, 1/4 or 1/8.
  • the matrix determined by a spatial domain vector and a frequency domain vector may also be the aforementioned spatial frequency component matrix, for example.
  • the selected one or more spatial vectors and one or more frequency domain vectors can be used to determine one or more spatial frequency component matrices.
  • the weighted sum of the one or more space-frequency component matrices can be used to construct a space-frequency matrix corresponding to one transmission layer.
  • the space-frequency matrix can be approximated as a weighted sum of the space-frequency component matrix determined by the selected one or more space-domain vectors and one or more frequency-domain vectors.
  • the space vector and the frequency vector used to construct a space-frequency component matrix can be referred to as a space-frequency vector pair.
  • the network device After the network device obtains the space-domain vector, the frequency-domain vector, and the space-frequency combination coefficients that can be used to construct the space-frequency matrix, it can further determine the precoding vector corresponding to each frequency-domain unit based on the constructed space-frequency matrix.
  • used to indicate may include used for direct indication and used for indirect indication.
  • the indication information may directly indicate I or indirectly indicate I, but it does not mean that I must be carried in the indication information.
  • the information indicated by the instruction information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated or the information to be indicated. Indicates the index of the information, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, and other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the pre-arranged order (for example, stipulated in the agreement) of various information, thereby reducing the indication overhead to a certain extent.
  • the precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same parts in terms of composition or other attributes.
  • the specific indication manner may also be various existing indication manners, such as, but not limited to, the foregoing indication manner and various combinations thereof.
  • the specific details of the various indication modes can be referred to the prior art, which will not be repeated here. It can be seen from the above that, for example, when multiple pieces of information of the same type need to be indicated, a situation where different information is indicated in different ways may occur.
  • the required instruction method can be selected according to specific needs.
  • the embodiment of the application does not limit the selected instruction method.
  • the instruction method involved in the embodiment of the application should be understood as covering the instructions to be Various methods for obtaining information to be indicated.
  • a row vector can be expressed as a column vector
  • a matrix can be expressed by the transposed matrix of the matrix
  • a matrix can also be expressed in the form of a vector or an array. It can be formed by connecting each row vector or column vector of the matrix, and the Kronecker product of two vectors can also be expressed in the form of the product of one vector and the transposed vector of another vector.
  • the information to be instructed can be sent together as a whole, or divided into multiple sub-information to be sent separately, and the sending period and/or sending timing of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be pre-defined, for example, pre-defined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, but is not limited to, radio resource control signaling, such as RRC signaling, MAC layer signaling, such as MAC-CE signaling and physical layer signaling, such as downlink control information (DCI) One or a combination of at least two of them.
  • radio resource control signaling such as RRC signaling
  • MAC layer signaling such as MAC-CE signaling
  • DCI downlink control information
  • the first, second, third, fourth, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application. For example, distinguish different fields, different instructions, etc.
  • "pre-definition" can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the equipment (for example, including terminal equipment and network equipment).
  • This application is not concerned with its specific implementation. Make a limit.
  • "saving” may refer to saving in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in the decoder, processor, or communication device.
  • the type of the memory may be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one of a, b, and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B, and c.
  • a, b, and c can be single or multiple.
  • the method provided in the embodiments of the present application can be applied to a system that communicates through multiple antenna technology, for example, the communication system 100 shown in FIG. 1.
  • the communication system may include at least one network device and at least one terminal device.
  • Multi-antenna technology can be used to communicate between network equipment and terminal equipment.
  • the embodiments shown below do not particularly limit the specific structure of the execution body of the method provided by the embodiments of the present application, as long as the program that records the code of the method provided by the embodiments of the present application can be run according to the present application.
  • the method provided in the application embodiment only needs to communicate.
  • the execution subject of the method provided in the embodiment of the application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • the interaction between the network device and the terminal device is taken as an example to describe in detail the instructions and the method of determining the precoding vector provided in the embodiments of the present application.
  • FIG. 2 is a schematic flowchart of a method 200 for indicating and determining a precoding vector provided by an embodiment of the present application from the perspective of device interaction. As shown in the figure, the method 200 may include step 210 to step 240.
  • step 220 the terminal device generates first indication information, which is used to indicate M frequency domain vectors and K space-frequency combination coefficients.
  • the P frequency domain vectors may belong to N frequency domain vector sets
  • the K space-frequency combining coefficients may belong to N space-frequency combining coefficient sets
  • N, P, and K are greater than or equal to 2.
  • the N frequency domain vector sets correspond to N spatial domain vector sets one-to-one
  • the N space-frequency combination coefficient sets correspond to the N spatial vector sets one-to-one.
  • At least one airspace vector set in the N airspace vector sets corresponds to at least two transmission layers.
  • the at least one airspace vector set may include airspace vector #1, airspace vector #2, and airspace vector #3 , ⁇ vector #4, ⁇ vector#5, ⁇ vector#6, ⁇ vector#7, and ⁇ vector#8, in which, the airspace vector #1, the kongkong vector #2, the kongkong vector #3 and the kongkong vector #4 can be one
  • the space vector corresponding to the transmission layer, the space vector #5, the space vector #6, the space vector #7, and the space vector #8 may be the space vector corresponding to another transmission layer.
  • the at least one airspace vector set may include airspace vector #1, airspace vector #2, airspace vector #3, airspace vector #4, airspace vector #5, airspace vector #6, airspace vector #7, and airspace vector #8, where the two transmission layers correspond to the same space vector, that is, the space vectors #1 to 8 can be the space vector corresponding to one transmission layer and also the space vector corresponding to the other transmission layer.
  • the N airspace vector sets include at least a first airspace vector set and a second airspace vector set, and the terminal device can indicate to the network device the information corresponding to the first airspace vector set and the second airspace through the first indication information. Information corresponding to the vector set.
  • the first indication information may include the information corresponding to the first airspace vector set and the information corresponding to the second airspace vector set.
  • the information corresponding to the first airspace vector set may be the PMI indication information corresponding to the first airspace vector set.
  • the information corresponding to the second spatial vector set may indicate the frequency domain vector corresponding to the second spatial vector set and the first spatial vector set.
  • the space-frequency combination coefficient corresponding to the two-space vector set may indicate the frequency domain vector corresponding to the second spatial vector set and the first spatial vector set.
  • the information corresponding to the first spatial vector set may include the index number of the frequency domain vector corresponding to the first spatial vector set, the number and position indication of the space-frequency combination coefficients with non-zero/zero amplitude corresponding to the first spatial vector set, and
  • the quantization information of the space-frequency vector coefficients corresponding to the first space-domain vector set, the information corresponding to the second space-domain vector set may include the index number of the frequency-domain vector corresponding to the second space-domain vector set, and the amplitude corresponding to the second space-domain vector set is non-zero /Zero space-frequency combination coefficient number and position indication and quantization information of the space-frequency vector coefficient corresponding to the second space vector set.
  • the quantization information of the space-frequency combination coefficient may include the amplitude quantization value and the phase quantization value of the space-frequency combination coefficient, and may also include the wideband amplitude quantization value corresponding to each space vector and the differential amplitude quantization corresponding to each space-frequency combination coefficient. Value and the phase quantization value of each space-frequency combination coefficient.
  • the differential amplitude quantization value corresponding to each space-frequency combination coefficient is a quantization result of the difference between the amplitude value of each space-frequency combination coefficient and the wideband amplitude value of the space vector corresponding to the space-frequency combination coefficient.
  • the amplitude quantization value, differential amplitude quantization value, phase quantization value of the space-frequency combination coefficient and the broadband amplitude quantization value corresponding to each spatial vector can be selected from the preset candidate quantization value set, and the preset candidate quantization value set includes
  • the candidate quantized value of can be pre-stored in the form of a table, which is used to indicate the amplitude quantization value, phase quantization value, differential amplitude quantization value of the space-frequency combination coefficient, and the quantization information of the broadband amplitude quantization value corresponding to each spatial vector.
  • the wideband amplitude value corresponding to the space vector can be the maximum value among the amplitude values of the space-frequency combination coefficient corresponding to the space vector, or the average value of the amplitude value of the space-frequency combination coefficient corresponding to the space vector, or it can be R15 Type
  • the wideband amplitude value defined in the II codebook is the average value of the amplitude of the spatial vector combination coefficients corresponding to all frequency domain units.
  • each polarization direction of the transmission layer can be separately indicated. For example, if each polarization direction of the transmission layer is The number of spatial vectors corresponding to the direction is L, and each spatial vector corresponds to M frequency domain vectors.
  • the terminal device can use a bitmap with a length of 2L ⁇ M to indicate; or, when each polarization of the same transmission layer
  • the terminal device may use the same indication for the two polarization directions of the same transmission layer. For example, the terminal device may use a bitmap with a length of L ⁇ M to indicate.
  • the number of bits carrying information corresponding to the first spatial vector set in the first indication information is greater than the number of bits carrying information corresponding to the second spatial vector set.
  • the terminal device sends the first indication information.
  • the network device receives the first indication information sent by the terminal device.
  • the network device determines a precoding vector according to the received first indication information.
  • the first indication information may also be used to indicate a spatial vector Q, Q is greater than or equal to 2, to the Q vector includes the first spatial airspace Q 1 of a set of vectors and the vectors airspace Q 2 spatial vectors in the second spatial vector set, the first spatial vector set corresponds to the first frequency domain vector set in the N frequency domain vector sets, and the first spatial vector set corresponds to the first spatial frequency combination coefficient set of the N
  • the K factor includes the space frequency merger K 1 space-frequency combination coefficients in the first space-frequency combination coefficient set and K 2 space-frequency combination coefficients in
  • the indicating Q space vectors may respectively indicate the index of the space vector corresponding to each transmission layer, or respectively indicate the index of the space vector corresponding to each set of space vectors.
  • Each transmission layer can correspond to the same number of space vectors, or can correspond to different numbers of space vectors.
  • each transport layer corresponds to 2L spatial vectors. Or the larger the transport layer index, the smaller the number of corresponding spatial vectors.
  • the index indicating the spatial vector corresponding to each transmission layer or each spatial vector set can be indicated by the number of combinations, that is, the information bit length used to indicate the X spatial vector indexes is
  • the Q airspace vectors reported by the terminal device to the network device are determined from the airspace vectors corresponding to multiple transmission layers, and the P frequency domain vectors reported by the terminal device to the network device are corresponding to multiple transmission layers.
  • the K space-frequency combination coefficients reported by the terminal device to the network device are determined from the space-frequency combination coefficients corresponding to multiple transmission layers.
  • the terminal device determines N spatial vector sets, N frequency domain vector sets, and N spatial-frequency combination coefficient sets, the number of spatial vectors included in each spatial vector set, and the frequency domains included in each frequency domain vector set
  • the number of vectors, the number of space-frequency combination coefficients included in each space-frequency combination coefficient set, and the number of quantization bits corresponding to the space-frequency combination coefficients in each space-frequency combination coefficient set may be indicated by the network device through signaling, or , It can also be pre-configured, or it can also be determined based on a preset rule, and the preset rule is consistent for the terminal device and the network device.
  • the number of space-domain vectors included in each space-domain vector set, the number of frequency-domain vectors included in each frequency-domain vector set, and the number of space-frequency combination coefficients included in each space-frequency combination coefficient set can be pre-defined Proportional distribution.
  • the number of quantization bits corresponding to the space-frequency combination coefficients in the combination coefficient set may be allocated according to a preset value according to the number of transmission layers.
  • the foregoing only uses the network device to indicate the number of spatial vectors corresponding to each transmission layer through the second indication information, and indicates the number of spatial vectors included in each spatial vector set, and the frequencies included in each frequency domain vector set.
  • the number of domain vectors and the number of space-frequency combination coefficients included in each set of space-frequency combination coefficients are taken as examples for description, but the present invention is not limited thereto.
  • the network device may indicate the number of spatial vectors corresponding to each transmission layer through the second indication information, only indicate the number of spatial vectors included in a partial spatial vector set and/or only indicate the frequency domain vectors included in a partial frequency domain vector set
  • the number of and/or only the number of space-frequency combination coefficients included in the partial space-frequency combination coefficient set is indicated as an example.
  • the terminal device may indicate the number of space-domain vectors and partial space-domain vector sets corresponding to each transmission layer indicated by the network device
  • the number of airspace vectors included, the number of airspace vectors included in another part of the airspace vector set is determined, and/or, the terminal device may according to the number of frequency domain vectors corresponding to each transmission layer indicated by the network device and the part of the frequency domain vector set includes Determine the number of frequency domain vectors included in another part of the frequency domain vector set, and/or the terminal device can determine the number of space-frequency combination coefficients corresponding to each transmission layer and the number of part of the space-frequency combination indicated by the network device.
  • the number of space-frequency combination coefficients included in the combination coefficient set determines the number of space-frequency combination coefficients included in another part of the space-frequency combination coefficient set.
  • the method 200 may further include step 210 before step 220.
  • the network device sends second indication information to the terminal device. Accordingly, the terminal device receives the second indication information sent by the network device, where the second indication information is used to indicate at least one of the following:
  • the number of spatial vectors in the first spatial vector set, the number of spatial vectors in the second spatial vector set, the number of frequency domain vectors in the first frequency domain vector set, the frequency of the second frequency domain vector set The number of domain vectors, the number of space-frequency combination coefficients in the first set of space-frequency combination coefficients, and the number of space-frequency combination coefficients in the second set of space-frequency combination coefficients.
  • the network device may use the second indication information to indicate the first spatial domain.
  • the vector set is configured with a larger number of frequency domain vectors
  • the second spatial domain vector set is configured with a smaller number of frequency domain vectors, that is, the number of frequency domain vectors included in the first frequency domain vector set P 1 is greater than the second frequency domain The number of frequency domain vectors included in the vector set P 2 .
  • the network device may use the second indication information to configure a larger number of frequency domain vectors for each spatial vector in the first spatial vector set, and configure fewer frequency domain vectors for each spatial vector in the second spatial vector set.
  • the frequency domain vector of the number For example, each spatial vector in the first spatial vector set uses the same number of frequency domain vectors, and the number of frequency domain vectors corresponding to each spatial vector is S 1 , and each spatial vector in the second spatial vector set uses the same number of frequency domain vectors. Frequency domain vectors, and the number of frequency domain vectors corresponding to each spatial domain vector is S 2 , then S 1 >S 2 .
  • the number of frequency domain vectors in each frequency domain vector set indicated by the first indication information may be the upper limit of the number of frequency domain vectors in the frequency domain vector set indicated by the second indication information. That is, the number of frequency domain vectors reported by the terminal device through the first indication information may be less than or equal to the number of frequency domain vectors configured by the network device through the second indication information.
  • the network device can use the second indication information to:
  • the first space vector set is configured with a larger number of space-frequency combination coefficients
  • the second space vector set is configured with a smaller number of space-frequency combination coefficients, that is, the number of space-frequency combination coefficients included in the first space-frequency combination coefficient set Greater than the number of space-frequency combination coefficients included in the second set of space-frequency combination coefficients.
  • the number of space-frequency combination coefficients in each space-frequency combination coefficient set indicated by the first indication information may be the upper limit of the number of space-frequency combination coefficients in the space-frequency combination coefficient set indicated by the second indication information . That is, the number of space-frequency combination coefficients reported by the terminal device through the first indication information may be less than or equal to the number of space-frequency combination coefficients configured by the network device through the second indication information.
  • the second indication information may also indicate the aforementioned scale factors p and ⁇ .
  • the network device can use the second indication information to:
  • Each space-frequency combination coefficient in the first space-frequency combination coefficient set is allocated a larger number of quantization bits, that is, the number of quantization bits of each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than the second space-frequency combination coefficient The number of quantization bits for each space-frequency combination coefficient in the set.
  • the quantization bit of each space-frequency combination coefficient in the first space-frequency combination coefficient set includes at least one of an amplitude quantization bit and a phase quantization bit
  • each space-frequency combination coefficient in the second space-frequency combination coefficient set The quantization bits of the combined coefficient include at least one of amplitude quantization bits and phase quantization bits.
  • the amplitude quantization bit can be the number of bits required to quantize the amplitude value corresponding to each space-frequency combination coefficient, or it can be the difference between the wideband amplitude value of the space vector corresponding to the space-frequency combination coefficient and the space-frequency combination coefficient. The sum of the number of bits required to quantize the amplitude value.
  • the network device may pass the second indication information or a preset rule , To allocate a larger number of amplitude quantization bits to each space-frequency combination coefficient in the first space-frequency combination coefficient set, that is, the number of amplitude quantization bits of each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than that of the second space-frequency combination coefficient set.
  • each space-frequency combination coefficient in the first space-frequency combination coefficient set is allocated a larger number of phase quantization bits, that is, the first space-frequency combination coefficient set
  • the number of phase quantization bits of each space-frequency combination coefficient in the combination coefficient set is greater than the number of phase quantization bits of each space-frequency combination coefficient in the second space-frequency combination coefficient set; alternatively, the terminal device may be the first space-frequency combination coefficient set
  • Each space-frequency combination coefficient of is allocated a larger number of phase quantization bits and amplitude quantization bits, that is, the number of phase quantization bits of each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than that of the second space-frequency combination coefficient set
  • the number of phase quantization bits of each space-frequency combination coefficient of, and the number of amplitude quantization bits of each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than that of each space-frequency combination coefficient in the second space-frequency combination coefficient set
  • the aforementioned amplitude quantization bits may include wideband amplitude quantization bits and differential amplitude quantization bits.
  • the foregoing allocation of a larger number of amplitude quantization bits to each space-frequency combination coefficient in the first space-frequency combination coefficient set can be understood as: the wideband of each space-frequency combination coefficient in the first space-frequency combination coefficient set A greater number of quantization bits are allocated to the amplitude and/or differential amplitude; accordingly, each space-frequency combination coefficient in the second space-frequency combination coefficient set is allocated a smaller number of amplitude quantization bits, which can be understood as: A smaller number of quantization bits are allocated to the wideband amplitude and/or differential amplitude of each space-frequency combination coefficient in the space-frequency combination coefficient set.
  • the number of spatial vectors included in each spatial vector set is The number of space vector sets configured by the network device for the corresponding space vector set through the second indication information is the same, and the number of frequency domain vectors included in each frequency domain vector set is the same as the number of the frequency domain vector set included in each frequency domain vector set by the network device through the second indication information.
  • the number of configured frequency domain vectors is the same, and the number of space-frequency combination coefficient sets included in each space-frequency combination coefficient set is the same as the space-frequency combination coefficient set configured by the network device through the first indication information for the corresponding space-frequency combination coefficient set The number is the same.
  • the number of frequency domain vectors configured by the network device for the first spatial vector set through the second indication information is P 1
  • the number of spatial vectors configured by the network device for the second frequency domain vector set is P 2
  • the terminal device The number of frequency domain vectors in the first frequency domain vector set included in the first indication information sent by the network device is also P 1
  • the number of frequency domain vectors in the second frequency domain vector set included in the first indication information is also P 2
  • the number of space-frequency combination coefficients configured by the network device for the first space-frequency combination coefficient set is K 1
  • the number of space-frequency combination coefficients configured by the network device for the second space-frequency combination coefficient set is K 2
  • the number of space vectors in the first space-frequency combination coefficient set included in the first indication information sent by the terminal device to the network device is also K 1
  • the number of spatial vectors is also K 2 .
  • the number of frequency domain vectors included in each frequency domain vector set may be less than that configured by the network device for the frequency domain vector set.
  • the number of frequency domain vectors that is, the number of frequency domain vectors included in each frequency domain vector set configured by the network device for the terminal device is the number of frequency domain vectors actually included in each frequency domain vector set reported by the terminal device to the network device The maximum value of the number.
  • the terminal device can also report the number of frequency domain vectors actually reported to the network device through the first indication information.
  • the number of space-frequency combination coefficients included in each space-frequency combination coefficient set may be less than the space-frequency combination coefficient set configured by the network device.
  • the number of coefficients, that is, the number of space-frequency combination coefficients included in each space-frequency combination coefficient set configured by the network device for the terminal device is the space-frequency combination actually included in each space-frequency combination coefficient set reported by the terminal device to the network device The maximum value of the number of coefficients.
  • the terminal device may also report the actually reported number of space-frequency combination coefficients to the network device through the first indication information.
  • the actual number of quantization bits used may be less than or equal to the number of quantization bits allocated by the network device through the second indication information, that is, the network device is the terminal device.
  • the number of quantization bits configured for the space-frequency combination coefficients in each space-frequency combination coefficient set is the maximum number of quantization bits actually used when the terminal device reports the space-frequency combination coefficients of each space-frequency combination coefficient set to the network device. This application The embodiment does not limit this.
  • the frequency domain vectors corresponding to any two spatial vectors in the same spatial vector set may be completely the same, or may be partially the same, or may be completely different.
  • each spatial vector in the first spatial vector set corresponds to S frequency domain vectors
  • the terminal device reports to the network device
  • the number P 1 of the frequency domain vectors included in the first frequency domain vector set is equal to S, that is, for all the spatial vectors in the first spatial vector set, only the S frequency domain vectors are reported; if two The number of frequency domain vectors corresponding to each spatial domain vector is S, and the S frequency domain vectors are not completely the same or completely different, the number of frequency domain vectors included in the first frequency domain vector set reported by the terminal device to the network device P 1
  • It is equal to the product of S and the number of spatial vectors Q 1 included in the first spatial vector set, that is, for each spatial vector in the first spatial vector set, S frequency domain vectors corresponding to each spatial vector must be reported, where, S is greater than or equal to 1.
  • the number P 1 of frequency domain vectors included in the first frequency domain vector set reported by the terminal device to the network device is equal to the sum of the number of frequency domain vectors corresponding to the spatial vectors included in the first spatial vector set That is, for each spatial vector in the first spatial vector set, S i frequency domain vectors corresponding to each spatial vector must be reported, where S i is greater than or equal to 1.
  • each spatial vector in the second spatial vector set corresponds to R frequency domain vectors
  • the terminal device reports to the network device
  • the number P 2 of the frequency domain vectors included in the second frequency domain vector set is equal to R, that is, for all the space vectors in the second space vector set, only the R frequency domain vectors are reported; if there are two
  • the number of frequency domain vectors corresponding to each spatial vector is R, and the R frequency domain vectors are not completely the same or completely different.
  • the number of frequency domain vectors included in the second frequency domain vector set reported by the terminal device to the network device P 2 R is equal to the number of spatial vector comprising a second set of vectors of airspace product Q 2, i.e., airspace for a second set of vectors each spatial vectors were obtained for each reporting spatial vector corresponding frequency-domain vector R, wherein R is greater than or equal to 1.
  • the number of frequency domain vectors corresponding to two spatial domain vectors in the second spatial domain vector set is not completely equal, the number of frequency domain vectors corresponding to the i-th spatial domain vector is R i , and the frequency domain vectors corresponding to these two spatial domain vectors are incomplete Same or completely different, the number P 1 of frequency domain vectors included in the first frequency domain vector set reported by the terminal device to the network device is equal to the sum of the number of frequency domain vectors corresponding to the spatial vectors included in the first spatial vector set That is, for each spatial vector in the first spatial vector set, R i frequency domain vectors corresponding to each spatial vector must be reported, where R i is greater than or equal to 1.
  • the following describes in detail the method for the terminal device to generate the first indication information for different scenarios.
  • the larger the transmission layer index the smaller the channel matrix characteristic value or signal to interference plus noise ratio (SINR) corresponding to the transmission layer.
  • SINR signal to interference plus noise ratio
  • the number of transmission layers in scenario 1 is 2, and the value of N is 2.
  • the two transmission layers can be marked as transmission layer #1 and transmission layer #2.
  • the value of N can be 2.
  • the N spatial vector sets include the first spatial vector set and the second Spatial vector set
  • N frequency domain vector sets include a first frequency domain vector set and a second frequency domain vector set
  • N space-frequency combination coefficient sets include a first space-frequency combination coefficient set and a second space-frequency combination coefficient set
  • terminal The number of bits carrying information corresponding to the first spatial vector set in the first indication information generated by the device is greater than the number of bits carrying information corresponding to the second spatial vector set.
  • the terminal device may determine the first airspace vector set and the second airspace vector set from the airspace vector corresponding to the transmission layer #1 and the airspace vector corresponding to the transmission layer #2. For example, the terminal device may determine a partial vector in the space vector corresponding to transmission layer #1 and a partial vector in the space vector corresponding to transmission layer #2 as the first space vector set, and set Another part of the vector in the space vector corresponding to the transmission layer #2 is determined as the second space vector set.
  • the terminal device may divide the airspace vector corresponding to transmission layer #1 into two parts according to the strength of the airspace vector, and divide the airspace vector corresponding to transmission layer #2 into two parts according to the strength of the airspace vector.
  • the terminal device may divide the space vector corresponding to transmission layer #1 into two parts according to the strength of the space vector according to the amplitude value, the square of the amplitude value, or the broadband amplitude value of the space-frequency combination coefficient corresponding to transmission layer #1, and
  • the space vector corresponding to transmission layer #2 can be divided into two parts according to the strength of the space vector according to the amplitude value, the square of the amplitude value, or the broadband amplitude value of the space-frequency combination coefficient corresponding to the transmission layer #2.
  • the terminal device can sort the space vector corresponding to the transmission layer #1 according to the magnitude relationship of the space-frequency combination coefficient corresponding to the space vector, the square of the amplitude value, or the magnitude relationship of the wideband amplitude value, when the space-frequency combination coefficient corresponding to the space vector.
  • the amplitude value of the space-frequency combination coefficient corresponding to the spatial vector the square of the amplitude value or the broadband amplitude value is smaller, it represents the spatial domain. The weaker the vector.
  • the airspace vector corresponding to transmission layer #1 is sorted from strong to weak according to the above method as the space vector #3 corresponding to transmission layer #1, the space vector #4 corresponding to transmission layer #1, and the air space corresponding to transmission layer #1.
  • Vector #2, the space vector #1 corresponding to the transmission layer #1, the terminal device can divide the space vector #3 corresponding to the transmission layer 1 and the space vector #4 corresponding to the transmission layer #1 into a strong group, and the transmission layer The space vector #1 corresponding to #1 and the space vector #1 corresponding to the transmission layer #1 are divided into a weaker group.
  • the airspace vector corresponding to transmission layer #2 is sorted from strong to weak according to the above method as the space vector #4 corresponding to transmission layer #2, the space vector #2 corresponding to transmission layer #2, and the air space corresponding to transmission layer #2.
  • Vector #3, the space vector #1 corresponding to the transmission layer #2, the terminal device can divide the space vector #4 corresponding to the transmission layer #2 and the space vector #2 corresponding to the transmission layer #2 into a stronger group, and transmit The space vector #3 corresponding to layer #2 and the space vector #1 corresponding to transmission layer #2 are divided into a weaker group.
  • the terminal device may combine the strong set of airspace vectors corresponding to transmission layer #1 and the strong set of airspace vectors corresponding to transmission layer #2 into the first airspace vector set (that is, the airspace vectors in the first airspace vector set are transport layer # 1 # 3 corresponding to the spatial vector, the transport layer corresponding to a spatial vector # 4, # 2 corresponding to the transport layer spatial vector # 4, # 2 corresponding to the transport layer airspace vector # 2), when L takes 1
  • the value is 4, the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 are combined into the second airspace vector set (ie, the airspace vectors in the second airspace vector set a transport layer corresponding to the spatial vector # 2, a transport layer corresponding to the spatial vector # 1, # 2 corresponding to the transport layer airspace vector # 3, # 2 corresponding to the transport layer airspace vector # 1), L 2 is taken at this time
  • the value is 4.
  • the airspace vector corresponding to transmission layer #1 is sorted from strong to weak according to the above method as the space vector #3 corresponding to transmission layer #1, the space vector #4 corresponding to transmission layer #1, and the air space corresponding to transmission layer #1.
  • Vector #2, the space vector #1 corresponding to the transmission layer #1, the terminal device can divide the space vector #3 corresponding to the transmission layer 1 and the space vector #4 corresponding to the transmission layer #1 into a strong group, and the transmission layer The space vector #1 corresponding to 1 and the space vector #1 corresponding to the transmission layer #1 are divided into a weaker group.
  • the airspace vector corresponding to transmission layer #2 is sorted from strong to weak according to the above method as the space vector #4 corresponding to transmission layer #2, the space vector #6 corresponding to transmission layer #2, and the air space corresponding to transmission layer #2.
  • Vector #5 the space vector #3 corresponding to the transmission layer #2
  • the terminal device can divide the space vector #4 corresponding to the transmission layer #2 and the space vector #6 corresponding to the transmission layer #2 into a strong group, and transmit The space vector #5 corresponding to layer #2 and the space vector #3 corresponding to transmission layer #2 are divided into a weaker group.
  • the terminal device may combine the strong set of airspace vectors corresponding to transmission layer #1 and the strong set of airspace vectors corresponding to transmission layer #2 into the first airspace vector set (that is, the airspace vectors in the first airspace vector set are The space vector #3 corresponding to transmission layer 1, the space vector #4 corresponding to transmission layer 1, the space vector #4 corresponding to transmission layer #2, the space vector #6 corresponding to transmission layer #2), at this time the value of L 1 Is 4, the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2 are combined into the second airspace vector set (that is, the airspace vectors in the second airspace vector set are The space vector #2 corresponding to the transmission layer 1, the space vector #1 corresponding to the transmission layer 1, the space vector #5 corresponding to the transmission layer #2, and the space vector #3 corresponding to the transmission layer #2), at this time the value of L 2 Is 4.
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the sum of the number of airspace vectors included in the first airspace vector set and the second airspace vector set. It should be noted that when the airspace vector corresponding to transmission layer #1 is exactly the same as the airspace vector corresponding to transmission layer #2, the terminal device can only divide the airspace vector corresponding to transmission layer #1 into two parts according to the strength of the airspace vector Or, the terminal device may only divide the airspace vector corresponding to the transmission layer #2 into two parts according to the strength of the airspace vector.
  • the airspace vector corresponding to transmission layer #1 is airspace vector #1 to airspace vector #6, and the airspace vector corresponding to transmission layer #2 is also airspace vector #1 to airspace vector #6.
  • the amplitude value of the space-frequency combination coefficient corresponding to each space vector, the square of the amplitude value or the broadband amplitude value divide the space vector corresponding to transmission layer #1 into two parts according to the strength of the space vector, or according to the transmission layer#
  • the amplitude value, the square of the amplitude value, or the broadband amplitude value of the space-frequency combination coefficient corresponding to each space vector of 2 is divided into two parts according to the strength of the space vector corresponding to the transmission layer #2.
  • the strength of the same space vector corresponding to the two transmission layers can also be considered comprehensively (for example, the amplitude value of the space-frequency combination coefficient corresponding to each space vector corresponding to the two transmission layers, the square of the amplitude value, or the wideband amplitude value. Average), divide the airspace vector #1 to the airspace vector #6 into two parts.
  • the terminal device can sort the space vector corresponding to the transmission layer #1 according to the magnitude relationship of the space-frequency combination coefficient corresponding to the space vector, the square of the amplitude value, or the magnitude relationship of the wideband amplitude value, when the space-frequency combination coefficient corresponding to the space vector.
  • the amplitude value of the space-frequency combination coefficient corresponding to the spatial vector the square of the amplitude value or the broadband amplitude value is smaller, it represents the spatial domain. The weaker the vector.
  • the airspace vector corresponding to transmission layer #1 is sorted from strong to weak according to the above method as the space vector #2 corresponding to transmission layer #1, the space vector #4 corresponding to transmission layer #1, and the air space corresponding to transmission layer #1.
  • Vector #3, the space vector #1 corresponding to the transmission layer #1, the space vector #5 corresponding to the transmission layer #1, the space vector #6 corresponding to the transmission layer #1, and the terminal device can set the space vector # corresponding to the transmission layer #1 2.
  • the space vector #3 corresponding to transmission layer #1 and the space vector #4 corresponding to transmission layer #1 are divided into a strong group, and the space vector #1 corresponding to transmission layer #1 and the space corresponding to transmission layer #1
  • the vector #5 and the space vector #6 corresponding to the transmission layer #1 are divided into a weaker group.
  • the terminal device can determine the stronger set of airspace vectors as the first airspace vector set, and the value of L 1 is 3 at this time, and the weaker set of airspace vectors can be determined as the second airspace vector set.
  • the value of 2 is 3.
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the sum of the number of airspace vectors included in the first airspace vector set and the second airspace vector set.
  • the terminal device may determine P 1 frequency domain vectors for the first spatial vector set, P 2 frequency domain vectors for the second spatial vector set, P 1 frequency Domain vectors constitute the first frequency domain vector set, and P 2 frequency domain vectors constitute the second frequency domain vector set.
  • the aforementioned P frequency domain vectors reported by the terminal device to the network device are the frequency domain vectors included in the first frequency domain vector set and the second frequency domain vector set.
  • the terminal device may be based on the second indication information sent by the network device or based on advance Configure to determine a larger number of frequency domain vectors for the first space domain vector set, that is, P 1 is greater than P 2 , and the number of frequency domain vectors in the first frequency domain vector set indicated in the first indication information is more than the first indication The number of frequency domain vectors in the second frequency domain vector set indicated in the information.
  • the first indication information carries the index number of the frequency domain vector included in the first frequency domain vector set and the index number of the frequency domain vector included in the second frequency domain vector set
  • the first indication information indicated in the first indication information The number of frequency domain vectors in a frequency domain vector set is more than the number of frequency domain vectors in the second frequency domain vector set indicated in the first indication information means: the first frequency domain vector carried in the first indication information
  • the number of index numbers of frequency domain vectors included in the set is greater than the number of index numbers of frequency domain vectors included in the second frequency domain vector set carried in the first indication information, so that the first indication information carries the first spatial vector set
  • the number of bits of the corresponding information (for example, the index number of the frequency domain vector corresponding to the first spatial vector set) is greater than the number of bits carrying the information corresponding to the second spatial vector set (for example, the index number of the frequency domain vector corresponding to the second spatial vector set) )
  • the number of index numbers of the frequency domain vectors corresponding to each spatial vector set included in the first spatial vector set carried in the first indication information is greater than that of each spatial vector included in the second spatial vector set carried in the first indication information
  • the number of index numbers of the corresponding frequency domain vectors is such that the number of bits carrying information corresponding to the first spatial vector set in the first indication information is greater than the number of bits carrying information corresponding to the second spatial vector set.
  • the terminal device may determine from the space-frequency combination coefficient determined by the above-mentioned airspace vector reported to the network device and the frequency domain vector reported to the network device as The first space-frequency vector set determines K 1 space-frequency combination coefficients, and from the K space-frequency combination coefficients, K 2 space-frequency combination coefficients are determined for the second space-frequency vector set, and K 1 space-frequency combination coefficients form the first space-frequency combination.
  • Combining coefficient set, K 2 space-frequency combining coefficients constitute a second space-frequency combining coefficient set.
  • the aforementioned K space-frequency combination coefficients reported by the terminal device to the network device are the space-frequency combination coefficients included in the first space-frequency combination coefficient set and the second space-frequency combination coefficient set.
  • the terminal device may be based on the second indication information sent by the network device or based on advance Configuration to determine a larger number of space-frequency combination coefficients for the first space-frequency combination coefficient set, that is, K 1 is greater than K 2 , the number of space-frequency combination coefficients in the first space-frequency combination coefficient set indicated in the first indication information More than the number of space-frequency combination coefficients in the second set of space-frequency combination coefficients indicated in the first indication information.
  • the first indication information carries the quantization information of the space-frequency combination coefficient included in the first space-frequency combination coefficient and the quantization information of the space-frequency combination coefficient included in the second space-frequency combination coefficient set
  • the first indication information The indicated number of space-frequency combination coefficients in the first space-frequency combination coefficient set is more than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information means: first indication information
  • the number of quantization information of the space-frequency combination coefficients included in the first space-frequency combination coefficient set carried in the first indication information is greater than the number of quantization information of the space-frequency combination coefficients included in the second space-frequency combination coefficient set carried in the first indication information, so that
  • the number of bits in the first indication information that carries the information corresponding to the first spatial vector set (for example, the quantization information of the space-frequency combination coefficient corresponding to the first spatial vector set) is greater than the number of bits that carries the information corresponding to the second spatial vector set (for example, The number of bits of the quantization information
  • the terminal device may be based on the second instruction information sent by the network device or based on a pre-configuration, as the first space-frequency combination coefficient set
  • Each space-frequency combination coefficient determines a larger number of quantization bits, that is, the number of quantization bits of each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than that of each space-frequency combination coefficient in the second space-frequency combination coefficient set
  • the number of quantization bits so that the number of bits carrying information corresponding to the first spatial vector set (for example, the quantization information of the space-frequency combination coefficient corresponding to the first spatial vector set) in the first indication information is greater than that carrying the second spatial vector set
  • the number of bits of corresponding information for example, the quantization information of the space-frequency combination coefficient corresponding to the second spatial vector set).
  • the number of transmission layers in scenario 2 is 3, and the value of N is 3.
  • the three transmission layers can be denoted as transmission layer #1, transmission layer #2, and transmission layer #3.
  • the value of N can be 3, and the set of N airspace vectors includes the first airspace.
  • Vector set, second space vector set and third space vector set, N frequency domain vector sets include first frequency domain vector set, second frequency domain vector set and third frequency domain vector set, N space-frequency combination coefficient sets It includes the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, and the third space-frequency combination coefficient set.
  • the first indication information generated by the terminal device also includes information corresponding to the third space vector set, and the terminal
  • the number of bits carrying information corresponding to the third spatial vector set in the first indication information generated by the device is smaller than the number of bits carrying information corresponding to the first spatial vector set. Further, the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the terminal device can determine the first airspace vector set and the second airspace vector set from the airspace vector corresponding to transmission layer #1 and the airspace vector corresponding to transmission layer #2, and the terminal device can determine the first airspace vector set from the airspace vector corresponding to transmission layer #3.
  • Three airspace vector set For example, the terminal device may determine a partial vector in the space vector corresponding to transmission layer #1 and a partial vector in the space vector corresponding to transmission layer #2 as the first space vector set, and set Another part of the vector in the space vector corresponding to the transmission layer #2 is determined as the second space vector set. Determine all airspace vectors corresponding to transmission layer #3 as the third airspace vector set.
  • the terminal device can divide the airspace vector corresponding to transmission layer #1 into two parts according to the strength of the airspace vector according to the method described in scenario 1, and divide the airspace vector corresponding to transmission layer #2 into two parts according to the strength of the airspace vector.
  • the vector and the weaker set of airspace vectors corresponding to transmission layer #2 are merged into a second airspace vector set, and all airspace vectors corresponding to transmission layer #3 are determined as the third airspace vector set.
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the sum of the number of airspace vectors included in the first airspace vector set, the second airspace vector set, and the third airspace vector set.
  • the terminal device may determine the first airspace vector set from the airspace vector corresponding to the transmission layer #1 and the airspace vector corresponding to the transmission layer #2, from the airspace vector corresponding to the transmission layer #1, the airspace vector corresponding to the transmission layer #2 and The second airspace vector set is determined from the airspace vector corresponding to the transmission layer #3, and the third airspace vector set is determined from the airspace vector corresponding to the transmission layer #3.
  • the terminal device may determine a partial vector in the space vector corresponding to transmission layer #1 and a partial vector in the space vector corresponding to transmission layer #2 as the first space vector set, and set The other partial vector, the other partial vector in the space vector corresponding to transmission layer #2, and the partial vector in the space vector corresponding to transmission layer #3 are determined as the second space vector set, and the other partial vector in the space vector corresponding to transmission layer #3 A part of the vectors is determined as the third airspace vector set.
  • the terminal device can divide the airspace vector corresponding to transmission layer #1 into two parts according to the strength of the airspace vector according to the method described in scenario 1, and divide the airspace vector corresponding to transmission layer #2 into two parts according to the strength of the airspace vector.
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the sum of the number of airspace vectors included in the first airspace vector set, the second airspace
  • the terminal device may determine the first airspace vector set from the airspace vector corresponding to the transmission layer #1, and determine the second airspace vector set and the third airspace vector set from the airspace vector corresponding to the transmission layer #2 and the airspace vector corresponding to the transmission layer #3. Airspace vector set.
  • the terminal device may determine all the airspace vectors corresponding to the transmission layer #1 as the first airspace vector set, and determine the partial vectors in the airspace vector corresponding to the transmission layer #2 and the partial vectors in the airspace vector corresponding to the transmission layer #3 It is the second airspace vector set, and the other part of the vector in the airspace vector corresponding to transmission layer #2 and the other part of the vector in the airspace vector corresponding to transmission layer #3 are determined as the third airspace vector set.
  • the terminal device can divide the airspace vector corresponding to transmission layer #2 into two parts according to the strength of the airspace vector according to the method described in scenario 1, and divide the airspace vector corresponding to transmission layer #3 into two parts according to the strength of the airspace vector. And merge all the airspace vectors corresponding to transmission layer #1 into the first airspace vector set, and merge the weaker set of airspace vectors corresponding to transmission layer #2 and the weaker set of airspace vectors corresponding to transmission layer #3 into the first In the second airspace vector set, a strong set of airspace vectors corresponding to transmission layer #2 and a strong set of airspace vectors corresponding to transmission layer #3 are determined as the third airspace vector set.
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the sum of the number of airspace vectors included in the first airspace vector set, the second airspace vector set, and the third airspace vector set.
  • the terminal device may determine the first airspace vector set and the second airspace vector set from the airspace vector corresponding to the transmission layer #1, and determine the third airspace vector set from the airspace vector corresponding to the transmission layer #2 and the airspace vector corresponding to the transmission layer #3. Airspace vector set.
  • the terminal device may determine a part of the airspace vector corresponding to transmission layer #1 as the first airspace vector set, and determine another part of the airspace vectors corresponding to transmission layer #1 as the second airspace vector set, and transfer layer #2 All the corresponding airspace vectors and all the airspace vectors corresponding to transmission layer #3 are determined to be the third airspace vector set.
  • the terminal device can divide the airspace vector corresponding to transmission layer #1 into two parts according to the strength of the airspace vector according to the method described in scenario 1, and determine the first airspace vector set by a stronger set of airspace vectors corresponding to transmission layer #1 Determine the second airspace vector set from the weaker set of airspace vectors corresponding to transmission layer #1, and determine all airspace vectors corresponding to transmission layer #2 and all airspace vectors corresponding to transmission layer #3 as the third airspace vector set.
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the sum of the number of airspace vectors included in the first airspace vector set, the second airspace vector set, and the third airspace vector set.
  • the terminal device may determine the frequency-domain vectors P 1 is a first spatial vector set, determining a second set of spatial vector P 2 th frequency Domain vector, determine P 3 frequency domain vectors for the third spatial domain vector set, P 1 frequency domain vectors constitute the first frequency domain vector set, P 2 frequency domain vectors constitute the second frequency domain vector set, P 3 The frequency domain vectors constitute the third frequency domain vector set.
  • the aforementioned P frequency domain vectors reported by the terminal device to the network device are the frequency domain vectors included in the first frequency domain vector set, the second frequency domain vector set, and the third frequency domain vector set.
  • the terminal device In order to make the number of bits carrying information corresponding to the third spatial vector set in the first indication information smaller than the number of bits carrying information corresponding to the first spatial vector set and greater than the number of bits carrying information corresponding to the second spatial vector set, the terminal device A larger number of frequency domain vectors may be determined for the first spatial vector set based on the second indication information sent by the network device or based on pre-configuration, and a smaller number of frequency domain vectors may be allocated to the second spatial vector set to be the third spatial vector
  • the number of frequency domain vectors allocated to the set is between the number of frequency domain vectors allocated for the first set of spatial vectors and the number of frequency domain vectors allocated for the second set of spatial vectors, that is, P 3 is greater than P 2 and less than P 1.
  • the number of frequency domain vectors in the third frequency domain vector set indicated in the first indication information is greater than the number of frequency domain vectors in the second frequency domain vector set indicated in the first indication information, and is smaller than the first The number of frequency domain vectors in the first frequency domain vector set indicated in the indication information.
  • the first indication information carries the index number of the frequency domain vector included in the first frequency domain vector set, the index number of the frequency domain vector included in the second frequency domain vector set, and the frequency domain included in the third frequency domain vector set.
  • the index number of the vector, the number of frequency domain vectors in the third frequency domain vector set indicated in the first indication information is greater than the number of frequency domain vectors in the second frequency domain vector set indicated in the first indication information, And less than the number of frequency domain vectors in the first frequency domain vector set indicated in the first indication information means: the number of index numbers of the frequency domain vectors included in the third frequency domain vector set carried in the first indication information is greater than The number of index numbers of frequency domain vectors included in the second frequency domain vector set carried in the first indication information is smaller than the number of index numbers of frequency domain vectors included in the first frequency domain vector set carried in the first indication information, Therefore, the number of bits in the first indication information that carries the information corresponding to the third spatial vector set (for example, the index number of the frequency domain vector corresponding to the third spatial vector
  • the terminal device can determine K 1 space-frequency combination coefficients for the first space vector set, and K 2 space-frequency combinations for the second space vector set
  • the combination coefficients are used to determine K 3 space-frequency combination coefficients for the third space-domain vector set, K 1 space-frequency combination coefficients constitute the first space-frequency combination coefficient set, and K 2 space-frequency combination coefficients constitute the second space-frequency combination coefficient set, K 3 space-frequency combination coefficients constitute the third space-frequency combination coefficient set.
  • the aforementioned K space-frequency combination coefficients reported by the terminal device to the network device are the space-frequency combination coefficients included in the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, and the third space-frequency combination coefficient set.
  • the terminal device In order to make the number of bits carrying information corresponding to the third spatial vector set in the first indication information smaller than the number of bits carrying information corresponding to the first spatial vector set and greater than the number of bits carrying information corresponding to the second spatial vector set, the terminal device A larger number of space-frequency combination coefficients can be determined for the first set of space-frequency combination coefficients, and a larger number of space-frequency combination coefficients can be determined for the second set of space-frequency combination coefficients based on the second instruction information sent by the network device or based on pre-configuration ,
  • the number of space-frequency combination coefficients determined for the third set of space-frequency combination coefficients is between the number of space-frequency combination coefficients determined for the first set of space-frequency combination coefficients and the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients K 3 is greater than K 2 and K 3 is less than K 1 , the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information is greater than the number of space-frequency
  • the first indication information carries the quantization information of the space-frequency combination coefficient included in the first space-frequency combination coefficient, the quantization information of the space-frequency combination coefficient included in the second space-frequency combination coefficient set, and the third space-frequency combination coefficient.
  • the quantization information of the space-frequency combination coefficients included in the set, then the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information is greater than the number of the second space-frequency combination coefficients indicated in the first indication information
  • the number of space-frequency combining coefficients in the coefficient set and being smaller than the number of space-frequency combining coefficients in the first space-frequency combining coefficient set indicated in the first indication information means: the third space-frequency combining coefficients carried in the first indication information
  • the number of quantization information of space-frequency combining coefficients included in the combined coefficient set is greater than the number of quantized information of space-frequency combining coefficients included in the second set of space-frequency combining coefficients carried in the first indication information, and is smaller than the number of quantization information
  • the terminal device may be based on the second indication information sent by the network device or based on pre-configuration, as Each space-frequency combination coefficient in the first space-frequency combination coefficient set determines a larger number of quantization bits, and each space-frequency combination coefficient in the second space-frequency combination coefficient set determines a smaller number of quantization bits, which is the third space-frequency combination
  • the number of quantization bits determined for each space-frequency combination coefficient in the combined coefficient set is between the number of quantization bits determined for each space-frequency combination coefficient in the first space-frequency combination coefficient set and the number of quantization bits determined for each space-frequency combination coefficient set in the second space-frequency combination coefficient set.
  • the number of quantization bits determined by the frequency combination coefficient that is, the number of quantization bits of each space-frequency combination coefficient in the third space-frequency combination coefficient set is greater than the number of quantization bits of each space-frequency combination coefficient in the second space-frequency combination coefficient set , And less than the number of quantized bits of each space-frequency combination coefficient in the first space-frequency combination coefficient set, so that the first indication information carries the information corresponding to the third space-domain vector set (for example, the The number of bits carrying the information corresponding to the second spatial vector set (for example, the quantization information of the space-frequency combining coefficients corresponding to the second spatial vector set) is greater than the number of bits carrying the first spatial vector set.
  • Information corresponding to the spatial vector set (for example, quantization information of the space-frequency combination coefficient corresponding to the first spatial vector set).
  • each spatial vector in the second spatial vector set may correspond to S same frequency domain vectors.
  • S frequency domain vectors may be reported, or for the first spatial vector set.
  • Two spatial vector sets it is possible to report only the broadband amplitude value corresponding to each spatial vector.
  • the number of transmission layers in scenario 3 is 4, and the value of N is 3.
  • the 4 transmission layers can be marked as transmission layer #1, transmission layer #2, transmission layer #3, and transmission layer #4.
  • the value of N can be 3, and N space vectors
  • the set includes the first spatial vector set, the second spatial vector set and the third spatial vector set.
  • the N frequency domain vector sets include the first frequency domain vector set, the second frequency domain vector set and the third frequency domain vector set, N
  • the space-frequency combination coefficient set includes the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, and the third space-frequency combination coefficient set.
  • the first indication information generated by the terminal device also includes the corresponding third space vector set.
  • the number of bits carrying information corresponding to the third spatial vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first spatial vector set. Further, the number of bits carrying information corresponding to the third space vector set in the first indication information generated by the terminal device is less than the number of bits carrying information corresponding to the first space vector set, and greater than the number of bits carrying information corresponding to the second space vector set. Number of bits.
  • the terminal device can determine the first airspace vector set and the second airspace vector set from the airspace vector corresponding to the transmission layer #1 and the airspace vector corresponding to the transmission layer #2, and the terminal device can determine the first airspace vector set and the second airspace vector set from the airspace vector and the transmission layer corresponding to the transmission layer #3.
  • the third airspace vector set is determined from the airspace vector corresponding to #4.
  • the terminal device may determine a partial vector in the space vector corresponding to transmission layer #1 and a partial vector in the space vector corresponding to transmission layer #2 as the first space vector set, and set Another part of the vector and another part of the airspace vectors corresponding to transmission layer #2 are determined as the second airspace vector set, and all airspace vectors corresponding to transmission layer #3 and all airspace vectors corresponding to transmission layer #4 are determined as the third airspace.
  • Vector set may be determined a partial vector in the space vector corresponding to transmission layer #1 and a partial vector in the space vector corresponding to transmission layer #2 as the first space vector set, and set Another part of the vector and another part of the airspace vectors corresponding to transmission layer #2 are determined as the second airspace vector set, and all airspace vectors corresponding to transmission layer #3 and all airspace vectors corresponding to transmission layer #4 are determined as the third airspace.
  • the terminal device can divide the airspace vector corresponding to transmission layer #1 into two parts according to the strength of the airspace vector according to the method described in scenario 1, and divide the airspace vector corresponding to transmission layer #2 into two parts according to the strength of the airspace vector.
  • the vector and the weaker set of airspace vectors corresponding to transmission layer #2 are merged into the second airspace vector set, and all airspace vectors corresponding to transmission layer #3 and all airspace vectors corresponding to transmission layer #4 are determined as the third airspace vector set .
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the airspace vectors included in the first airspace vector set, the second airspace vector set, and the third airspace vector set.
  • the terminal device may determine the first airspace vector set from the airspace vector corresponding to transmission layer #1 and the airspace vector corresponding to transmission layer #2, from the airspace vector corresponding to transmission layer #1, the airspace vector corresponding to transmission layer #2, The second airspace vector set is determined from the airspace vector corresponding to transmission layer #3 and the airspace vector corresponding to transmission layer #4, and the third airspace vector set is determined from the airspace vector corresponding to transmission layer #3 and the airspace vector corresponding to transmission layer #4 .
  • the terminal device may determine a partial vector in the space vector corresponding to transmission layer #1 and a partial vector in the space vector corresponding to transmission layer #2 as the first space vector set, and set Another partial vector, another partial vector in the space vector corresponding to transmission layer #2, a partial vector in the space vector corresponding to transmission layer #3, and a partial vector in the space vector corresponding to transmission layer #4 are determined to be the second space vector set , Determining another partial vector in the space vector corresponding to transmission layer #3 and another partial vector in the space vector corresponding to transmission layer #4 as the third space vector set.
  • the terminal device can divide the airspace vector corresponding to transmission layer #1 into two parts according to the strength of the airspace vector according to the method described in scenario 1, and divide the airspace vector corresponding to transmission layer #2 into two parts according to the strength of the airspace vector.
  • the space vector corresponding to transmission layer #3 is divided into two parts according to the strength of the space vector
  • the space vector corresponding to transmission layer #4 is divided into two parts according to the strength of the space vector
  • the transmission layer #1 corresponds to the stronger
  • the set of airspace vectors of, and the stronger set of airspace vectors corresponding to transmission layer #2 are merged into the first set of airspace vectors, the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2
  • the weaker set of airspace vectors corresponding to transmission layer #3 and the weaker set of airspace vectors corresponding to transmission layer #4 are merged into the second airspace vector set, and the stronger corresponding to transmission layer #3
  • the terminal device can determine P 1 frequency domain vectors for the first airspace vector set, and determine the second frequency domain vectors for the second airspace vector set P 2 frequency domain vectors included in the set, P 3 frequency domain vectors are determined for the third spatial vector set, P 1 frequency domain vectors constitute the first frequency domain vector set, and P 2 frequency domain vectors constitute the second frequency Domain vector set, P 3 frequency domain vectors constitute the third frequency domain vector set.
  • the aforementioned P frequency domain vectors reported by the terminal device to the network device are the frequency domain vectors included in the first frequency domain vector set, the second frequency domain vector set, and the third frequency domain vector set.
  • the terminal device In order to make the number of bits carrying information corresponding to the third spatial vector set in the first indication information smaller than the number of bits carrying information corresponding to the first spatial vector set and greater than the number of bits carrying information corresponding to the second spatial vector set, the terminal device A larger number of frequency domain vectors may be determined for the first spatial vector set based on the second indication information sent by the network device or based on pre-configuration, and a smaller number of frequency domain vectors may be allocated to the second spatial vector set to be the third spatial vector
  • the number of frequency domain vectors allocated to the set is between the number of frequency domain vectors allocated for the first set of spatial vectors and the number of frequency domain vectors allocated for the second set of spatial vectors, that is, P 3 is greater than P 2 and less than P 1.
  • the number of frequency domain vectors in the third frequency domain vector set indicated in the first indication information is greater than the number of frequency domain vectors in the second frequency domain vector set indicated in the first indication information, and is smaller than the first The number of frequency domain vectors in the first frequency domain vector set indicated in the indication information.
  • the first indication information carries the index number of the frequency domain vector included in the first frequency domain vector set, the index number of the frequency domain vector included in the second frequency domain vector set, and the frequency domain included in the third frequency domain vector set.
  • the index number of the vector, the number of frequency domain vectors in the third frequency domain vector set indicated in the first indication information is greater than the number of frequency domain vectors in the second frequency domain vector set indicated in the first indication information, And less than the number of frequency domain vectors in the first frequency domain vector set indicated in the first indication information means: the number of index numbers of the frequency domain vectors included in the third frequency domain vector set carried in the first indication information is greater than The number of index numbers of frequency domain vectors included in the second frequency domain vector set carried in the first indication information is smaller than the number of index numbers of frequency domain vectors included in the first frequency domain vector set carried in the first indication information, Therefore, the number of bits in the first indication information that carries the information corresponding to the third spatial vector set (for example, the index number of the frequency domain vector corresponding to the third spatial vector
  • the terminal device can determine K 1 space-frequency combination coefficients for the first space vector set, which is the second space vector set Determine K 2 space-frequency combination coefficients, determine K 3 space-frequency combination coefficients for the third space vector set, K 1 space-frequency combination coefficients constitute the first space-frequency combination coefficient set, and K 2 space-frequency combination coefficients constitute the second The space-frequency combination coefficient set, K 3 space-frequency combination coefficients constitute the third space-frequency combination coefficient set.
  • the aforementioned K space-frequency combination coefficients reported by the terminal device to the network device are the space-frequency combination coefficients included in the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, and the second space-frequency combination coefficient set.
  • the terminal device In order to make the number of bits carrying information corresponding to the third spatial vector set in the first indication information smaller than the number of bits carrying information corresponding to the first spatial vector set and greater than the number of bits carrying information corresponding to the second spatial vector set, the terminal device A larger number of space-frequency combination coefficients can be determined for the first set of space-frequency combination coefficients, and a larger number of space-frequency combination coefficients can be determined for the second set of space-frequency combination coefficients based on the second instruction information sent by the network device or based on pre-configuration ,
  • the number of space-frequency combination coefficients determined for the third set of space-frequency combination coefficients is between the number of space-frequency combination coefficients determined for the first set of space-frequency combination coefficients and the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients K 3 is greater than K 2 and K 3 is less than K 1 , the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information is greater than the number of space-frequency
  • the first indication information carries the quantization information of the space-frequency combination coefficient included in the first space-frequency combination coefficient, the quantization information of the space-frequency combination coefficient included in the second space-frequency combination coefficient set, and the third space-frequency combination coefficient.
  • the quantization information of the space-frequency combination coefficients included in the set, then the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information is greater than the number of the second space-frequency combination coefficients indicated in the first indication information
  • the number of space-frequency combining coefficients in the coefficient set and being smaller than the number of space-frequency combining coefficients in the first space-frequency combining coefficient set indicated in the first indication information means: the third space-frequency combining coefficients carried in the first indication information
  • the number of quantization information of space-frequency combining coefficients included in the combined coefficient set is greater than the number of quantized information of space-frequency combining coefficients included in the second set of space-frequency combining coefficients carried in the first indication information, and is smaller than the number of quantization information
  • the terminal device may be based on the second indication information sent by the network device or based on pre-configuration, as Each space-frequency combination coefficient in the first space-frequency combination coefficient set determines a larger number of quantization bits, and each space-frequency combination coefficient in the second space-frequency combination coefficient set determines a smaller number of quantization bits, which is the third space-frequency combination
  • the number of quantization bits determined for each space-frequency combination coefficient in the combined coefficient set is between the number of quantization bits determined for each space-frequency combination coefficient in the first space-frequency combination coefficient set and the number of quantization bits determined for each space-frequency combination coefficient set in the second space-frequency combination coefficient set.
  • the number of quantization bits determined by the frequency combination coefficient that is, the number of quantization bits of each space-frequency combination coefficient in the third space-frequency combination coefficient set is greater than the number of quantization bits of each space-frequency combination coefficient in the second space-frequency combination coefficient set , And less than the number of quantized bits of each space-frequency combination coefficient in the first space-frequency combination coefficient set, so that the first indication information carries the information corresponding to the third space-domain vector set (for example, the The number of bits carrying the information corresponding to the second spatial vector set (for example, the quantization information of the space-frequency combining coefficients corresponding to the second spatial vector set) is greater than the number of bits carrying the first spatial vector set.
  • Information corresponding to the spatial vector set (for example, quantization information of the space-frequency combination coefficient corresponding to the first spatial vector set).
  • each spatial vector in the above second spatial vector set may correspond to S same frequency domain vectors.
  • S frequency domain vectors may be reported, or for In the second airspace vector set, only the broadband amplitude value corresponding to each airspace vector can be reported.
  • the number of transmission layers is 4, and the value of N is 4.
  • the 4 transmission layers can be denoted as transmission layer #1, transmission layer #2, transmission layer #3, and transmission layer #4.
  • the value of N can be 4, and N space vectors
  • the set includes the first space vector set, the second space vector set, the third space vector set and the fourth space vector set.
  • the N frequency domain vector sets include the first frequency domain vector set, the second frequency domain vector set, and the third frequency vector set. Domain vector set and the fourth frequency domain vector set.
  • the N space-frequency combination coefficient sets include the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, the third space-frequency combination coefficient set and the fourth space-frequency combination coefficient set
  • the first indication information generated by the terminal device also includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set
  • the first indication information generated by the terminal device carries the third airspace vector set corresponding to
  • the number of bits of information is greater than the number of bits that carry information corresponding to the fourth spatial vector set, and is less than the number of bits that carry information corresponding to the first spatial vector set.
  • the number of bits carrying information corresponding to the second space vector set in the first indication information generated by the terminal device is greater than the number of bits carrying information corresponding to the fourth space vector set, and less than the number of bits carrying information corresponding to the third space vector set. Number of bits.
  • the terminal device can determine the first airspace vector set and the second airspace vector set from the airspace vector corresponding to the transmission layer #1 and the airspace vector corresponding to the transmission layer #2, and the terminal device can determine the first airspace vector set and the second airspace vector set from the airspace vector and the transmission layer corresponding to the transmission layer #3.
  • the third and fourth airspace vector sets are determined in the airspace vector corresponding to #4.
  • the terminal device may determine a partial vector in the space vector corresponding to transmission layer #1 and a partial vector in the space vector corresponding to transmission layer #2 as the first space vector set, and set The other part of the vector is determined to be the second space vector set in the space vector corresponding to the transmission layer #2, and the partial vector in the space vector corresponding to the transmission layer #3 can be the same as that of the space vector corresponding to the transmission layer #4.
  • the partial vector is determined as the third airspace vector set, and another partial vector in the airspace vector corresponding to the transmission layer #3 and another partial vector in the airspace vector corresponding to the transmission layer #4 are determined as the fourth airspace vector set.
  • the terminal device can divide the airspace vector corresponding to transmission layer #1 into two parts according to the strength of the airspace vector according to the method described in scenario 1, and divide the airspace vector corresponding to transmission layer #2 into two parts according to the strength of the airspace vector.
  • the space vector corresponding to transmission layer #3 is divided into two parts according to the strength of the space vector
  • the space vector corresponding to transmission layer #4 is divided into two parts according to the strength of the space vector
  • the transmission layer #1 corresponds to the stronger
  • the set of airspace vectors of, and the stronger set of airspace vectors corresponding to transmission layer #2 are merged into the first set of airspace vectors, the weaker set of airspace vectors corresponding to transmission layer #1 and the weaker set of airspace vectors corresponding to transmission layer #2
  • the set of airspace vectors of is merged into the second airspace vector set, and the stronger set of airspace vectors corresponding to transmission layer #3 and the stronger set of airspace vectors corresponding to transmission layer #4 are determined as the third airspace vector set.
  • the weaker set of airspace vectors corresponding to transmission layer #3 and the weaker set of airspace vectors corresponding to transmission layer #4 are merged into a fourth airspace vector set.
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the sum of the number of airspace vectors included in the first airspace vector set, the second airspace vector set, the third airspace vector set, and the fourth airspace vector set. .
  • the terminal device may determine P 1 frequency domain vectors for the first airspace vector set, which is the second airspace vector set Determine P 2 frequency domain vectors, determine P 3 frequency domain vectors for the third spatial vector set, P 4 frequency domain vectors for the third spatial vector set, P 1 frequency domain vectors constitute the first frequency domain vector set , P 2 frequency domain vectors constitute the second frequency domain vector set, P 3 frequency domain vectors constitute the third frequency domain vector set, and P 4 frequency domain vectors constitute the fourth frequency domain vector set.
  • the P frequency domain vectors reported by the terminal device to the network device are the frequencies included in the first frequency domain vector set, the second frequency domain vector set, the third frequency domain vector set, and the fourth frequency domain vector set. Domain vector.
  • the terminal device may be based on the second indication information sent by the network device or Based on pre-configuration, the number of frequency domain vectors determined for the first spatial vector set is greater than the number of frequency domain vectors determined for the third spatial vector set, and the number of frequency domain vectors determined for the third spatial vector set is greater than The number of frequency domain vectors determined by the second spatial vector set, the number of frequency domain vectors determined for the second spatial vector set is greater than the number of frequency domain vectors determined for the fourth spatial vector set, that is, P 1 is greater than P 3 , P 3 is greater than P 2 , P 2 is
  • the first indication information carries the index number of the frequency domain vector included in the first frequency domain vector set, the index number of the frequency domain vector included in the second frequency domain vector set, and the frequency domain included in the third frequency domain vector set.
  • the index number of the vector and the index number of the frequency domain vector included in the fourth frequency domain vector set, the number of frequency domain vectors in the first frequency domain vector set indicated in the first indication information is greater than that indicated in the first indication information
  • the number of frequency domain vectors in the third frequency domain vector set indicated, and the number of frequency domain vectors in the third frequency domain vector set indicated in the first indication information is greater than the second frequency domain indicated in the first indication information
  • the number of frequency domain vectors in the vector set, the number of frequency domain vectors in the second frequency domain vector set indicated in the first indication information is greater than the frequency domain vectors in the fourth frequency domain vector set indicated in the first indication information
  • the terminal device can determine K 1 space-frequency combination coefficients for the first space vector set, which is the second space vector set determining K 2 empty combined frequency coefficient, a third spatial vector set to determine K 3 empty combined frequency coefficient, a fourth spatial vector set to determine K 4 empty combined frequency coefficient, K 1 empty space constituting the first frequency coefficient merger Frequency combination coefficient set, K 2 space-frequency combination coefficients constitute the second space-frequency combination coefficient set, K 3 space-frequency combination coefficients constitute the third space-frequency combination coefficient set, K 4 space-frequency combination coefficients constitute the fourth space-frequency combination Coefficient set.
  • the K space-frequency combination coefficients reported by the terminal device to the network device are the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, the third space-frequency combination coefficient set, and the fourth space-frequency combination coefficient set. Space-frequency combination coefficients included in the coefficient set.
  • the terminal device may be based on the second indication information sent by the network device or Based on pre-configuration, the number of space-frequency combination coefficients determined for the first set of space-frequency combination coefficients is greater than the number of space-frequency combination coefficients determined for the third set of space-frequency combination coefficients, which is determined for the third set of space-frequency combination coefficients.
  • the number of space-frequency combination coefficients is greater than the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients, and the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients is greater than that of
  • K 1 is greater than K 3
  • K 3 is greater than K 2
  • K 2 is greater than K 4
  • the number of space-frequency combination coefficients in the first space-frequency combination coefficient set indicated in the first indication information is greater than that indicated in the first indication information
  • the number of space-frequency combination coefficients in the third space-frequency combination coefficient set in the first indication information is greater than the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information
  • the number of space-frequency combination coefficients in the space-frequency combination coefficient set, and the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information is greater than the fourth space-frequency combination coefficient indicated in the first indication information
  • the first indication information carries quantization information of the space-frequency combination coefficient included in the first space-frequency combination coefficient, quantization information of the space-frequency combination coefficient included in the second space-frequency combination coefficient set, and the third space-frequency combination coefficient.
  • the number of coefficients is greater than the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information, and the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information
  • the number is greater than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information, and the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information Greater than the number of space-frequency combination coefficients in the fourth space-frequency combination coefficient
  • the number of bits of information (for example, the quantization information of the space-frequency combination coefficient corresponding to the second spatial vector set), and the first indication information carries the information corresponding to the second spatial vector set (for example, the space-frequency corresponding to the second spatial vector set).
  • the number of bits of the quantization information of the combined coefficients is greater than the number of bits that carry the information corresponding to the fourth spatial vector set (for example, the quantization information of the space-frequency combined coefficients corresponding to the fourth spatial vector set).
  • the terminal device may be based on the second space-frequency combination coefficient set sent by the network device.
  • the indication information or based on pre-configuration the number of quantization bits determined for each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than the number of quantization bits determined for each space-frequency combination coefficient in the third space-frequency combination coefficient set, which is The number of quantization bits determined for each space-frequency combination coefficient in the third space-frequency combination coefficient set is greater than the number of quantization bits determined for each space-frequency combination coefficient in the second space-frequency combination coefficient set, which is the number of quantization bits in the second space-frequency combination coefficient set.
  • the number of quantization bits determined for each space-frequency combination coefficient is greater than the number of quantization bits determined for each space-frequency combination coefficient in the fourth space-frequency combination coefficient set, so that the first indication information carries information corresponding to the first space-domain vector set (For example
  • the number of bits of information (for example, the quantization information of the space-frequency combination coefficient corresponding to the second spatial vector set), and the first indication information carries the information corresponding to the second spatial vector set (for example, the space-frequency corresponding to the second spatial vector set).
  • the number of bits of the quantization information of the combined coefficients is greater than the number of bits that carry the information corresponding to the fourth spatial vector set (for example, the quantization information of the space-frequency combined coefficients corresponding to the fourth spatial vector set).
  • each spatial vector in the above second spatial vector set may correspond to S same frequency domain vectors.
  • S frequency domain vectors may be reported, or for In the second airspace vector set, only the broadband amplitude value corresponding to each airspace vector can be reported.
  • the polarization direction can also be used as the granularity to divide the space vector set corresponding to the transmission layer into two parts.
  • the space vector corresponding to a polarization direction of the transmission layer can be divided into two parts. Determine the airspace vector in a certain airspace vector set, and determine the airspace vector corresponding to another polarization direction of the transmission layer as the airspace vector in another airspace vector set.
  • each polarization direction of the transmission layer corresponds to a combination coefficient quantization reference amplitude.
  • the combination coefficient quantization reference amplitude value corresponding to a polarization direction represents the spatial vector corresponding to the polarization direction.
  • the quantized reference amplitude of the combined coefficient corresponding to each polarization direction may be the maximum amplitude value of the space-frequency combined coefficient corresponding to the polarization direction, and the quantized reference amplitude value of the combined coefficient corresponding to the stronger space vector is greater than or equal to that of the weaker space vector.
  • the corresponding merging coefficient quantizes the reference amplitude value.
  • the quantized reference amplitude value of the merging coefficient corresponding to the stronger spatial vector can be normalized to 1.
  • the terminal equipment can also sort the space vector corresponding to each polarization direction of each transmission layer according to the maximum amplitude value or the sum of square amplitude values of the space-frequency combination coefficient corresponding to the space vector.
  • a polarization direction The larger the maximum amplitude value or the square sum of the amplitude value of the space-frequency combination coefficient corresponding to the corresponding space vector, the stronger the space vector corresponding to the polarization direction.
  • the space vector corresponding to a polarization direction corresponds to the space vector The smaller the maximum amplitude value or the square sum of the amplitude values of the frequency combining coefficient, the weaker the spatial vector corresponding to the polarization direction.
  • the stronger set of airspace vectors ie, the airspace vector corresponding to a polarization direction
  • the weaker set of airspace vectors ie, the other The airspace vector corresponding to one polarization direction
  • the three transmission layers can be marked as transmission layer #1, transmission layer #2, and transmission layer #3.
  • the value of N can be 4, and the set of N airspace vectors includes the first airspace.
  • N frequency domain vector sets include the first frequency domain vector set, the second frequency domain vector set, the third frequency domain vector set and the Four frequency domain vector sets
  • N space-frequency combination coefficient sets include the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, the third space-frequency combination coefficient set, and the fourth space-frequency combination coefficient set.
  • the first indication information generated by the device also includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set, and the first indication information generated by the terminal device carries the number of bits corresponding to the third airspace vector set. It is greater than the number of bits carrying information corresponding to the fourth spatial vector set, and less than the number of bits carrying information corresponding to the first spatial vector set.
  • the number of bits carrying information corresponding to the second spatial vector set in the first indication information generated by the terminal device is greater than or equal to the number of bits carrying information corresponding to the fourth spatial vector set, and is less than the number of bits carrying information corresponding to the third spatial vector set. The number of bits of information.
  • the terminal device can determine the first and second airspace vector sets from the airspace vector corresponding to the transmission layer #1, and the terminal device can determine the airspace vector set corresponding to the transmission layer #2.
  • the third airspace vector set is determined from the airspace vector corresponding to the transmission layer #3.
  • the terminal device # 1 can transfer layer L 1 th spatial vector corresponding to the first polarization direction is determined as a first spatial vector set, L 1 th spatial transport layer # 1 in the second polarization direction corresponding The vector is determined as the second space vector set, the L 2 space vectors corresponding to the first polarization direction of transmission layer #2 and the L 3 space vectors corresponding to the first polarization direction of transmission layer #3 are determined as the first Three airspace vector sets, the L 2 airspace vectors corresponding to the second polarization direction of transmission layer #2 and the L 3 airspace vectors corresponding to the second polarization direction of transmission layer #3 are determined as the fourth airspace vector set .
  • the terminal device can divide the airspace vector corresponding to the transmission layer #1 in two polarization directions (for example, the first polarization direction and the second polarization direction) into two parts with the polarization direction as the granularity, and each part contains one polarization.
  • L 1 space vector corresponding to the direction the space vector corresponding to the two polarization directions of the transmission layer #2 is divided into two parts with the polarization direction as the granularity, and each part contains L 2 space vectors corresponding to one polarization direction.
  • the space vectors corresponding to the two polarization directions of the transmission layer #3 are divided into two parts with the polarization direction as the granularity, and each part contains L 3 space vectors corresponding to one polarization direction.
  • the set of airspace vectors is combined with a stronger set of airspace vectors corresponding to a certain polarization direction (for example, the first polarization direction) of transmission layer #3 into a third airspace vector set, and the other polarization of transmission layer #2
  • the weaker set of airspace vectors corresponding to the direction (for example, the second polarization direction) and the weaker set of airspace vectors corresponding to the other polarization direction (for example, the second polarization direction) of transmission layer #3 are merged into The fourth airspace vector set.
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the sum of the number of airspace vectors included in the first airspace vector set, the second airspace vector set, and the third airspace vector set.
  • the terminal device may be based on the second indication information sent by the network device or Based on pre-configuration, the number of frequency domain vectors determined for the first spatial vector set is greater than the number of frequency domain vectors determined for the third spatial vector set, and the number of frequency domain vectors determined for the third spatial vector set is greater than The number of frequency domain vectors determined by the second spatial vector set, the number of frequency domain vectors determined for the second spatial vector set is greater than the number of frequency domain vectors determined for the fourth spatial vector set, that is, P 1 is greater than P 3 , P 3 is greater than P 2 , P 2 is
  • the same number of frequency domain vectors can be determined for each spatial vector corresponding to each transmission layer in the first spatial vector set; for the second spatial vector set, it can be Each spatial vector corresponding to each transmission layer in the second spatial vector set determines the same number of frequency domain vectors (S 2 frequency domain vectors); for the third spatial vector set, it can be each transmission layer in the third spatial vector set Each corresponding spatial vector determines the same number of frequency domain vectors (S 3 frequency domain vectors); for the fourth spatial vector set, each spatial vector corresponding to each transmission layer in the fourth spatial vector set can be determined to be the same The number of frequency domain vectors (S 4 frequency domain vectors).
  • the terminal device may be based on the second instruction information sent by the network device or based on pre-configuration, the number of frequency domain vectors determined for the first spatial vector set is greater than the number of frequency domain vectors determined for the third spatial vector set, which is the third
  • the number of frequency domain vectors determined by the spatial vector set is greater than the number of frequency domain vectors determined for the second spatial vector set, and the number of frequency domain vectors determined for the second spatial vector set is greater than that determined for the fourth spatial vector set
  • the number of frequency domain vectors that is, S 1 is greater than S 3 , S 3 is greater than S 2 , and S 2 is greater than S 4 .
  • the first indication information carries the index number of the frequency domain vector included in the first frequency domain vector set, the index number of the frequency domain vector included in the second frequency domain vector set, and the frequency domain included in the third frequency domain vector set.
  • the index number of the vector and the index number of the frequency domain vector included in the fourth frequency domain vector set, the number of frequency domain vectors in the first frequency domain vector set indicated in the first indication information is greater than that indicated in the first indication information
  • the number of frequency domain vectors in the third frequency domain vector set indicated, and the number of frequency domain vectors in the third frequency domain vector set indicated in the first indication information is greater than the second frequency domain indicated in the first indication information
  • the number of frequency domain vectors in the vector set, the number of frequency domain vectors in the second frequency domain vector set indicated in the first indication information is greater than the frequency domain vectors in the fourth frequency domain vector set indicated in the first indication information
  • the number of bits carrying information corresponding to the first spatial vector set in the first indication information is greater than the number of bits carrying information corresponding to the third spatial vector set
  • the number of bits carrying information corresponding to the third spatial vector set is greater than the number of bits carrying information corresponding to the third spatial vector set.
  • the number of bits of information corresponding to the second spatial vector set, and the number of bits carrying information corresponding to the second spatial vector set is greater than the number of bits carrying information corresponding to the fourth spatial vector set
  • the terminal device may be based on the second instruction sent by the network device Information or based on pre-configuration, the number of frequency domain vectors determined for each spatial vector in the first spatial vector set is greater than the number of frequency domain vectors determined for each spatial vector in the third spatial vector set, which is the third spatial domain
  • the number of frequency domain vectors determined by each spatial vector in the vector set is greater than the number of frequency domain vectors determined for each spatial vector in the second spatial vector set, and the frequency determined for each spatial vector in the second spatial vector set
  • the number of domain vectors is greater than the number of frequency domain vectors determined for each spatial vector in the fourth spatial domain vector set.
  • the terminal device can determine K 1 space-frequency combination coefficients for the first space vector set, which is the second space vector set determining K 2 empty combined frequency coefficient, a third spatial vector set to determine K 3 empty combined frequency coefficient, a fourth spatial vector set to determine K 4 empty combined frequency coefficient, K 1 empty space constituting the first frequency coefficient merger Frequency combination coefficient set, K 2 space-frequency combination coefficients constitute the second space-frequency combination coefficient set, K 3 space-frequency combination coefficients constitute the third space-frequency combination coefficient set, K 4 space-frequency combination coefficients constitute the fourth space-frequency combination Coefficient set.
  • the K space-frequency combination coefficients reported by the terminal device to the network device are the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, the third space-frequency combination coefficient set, and the fourth space-frequency combination coefficient set. Space-frequency combination coefficients included in the coefficient set.
  • the terminal device may be based on the second indication information sent by the network device or Based on pre-configuration, the number of space-frequency combination coefficients determined for the first set of space-frequency combination coefficients is greater than the number of space-frequency combination coefficients determined for the third set of space-frequency combination coefficients, which is determined for the third set of space-frequency combination coefficients.
  • the number of space-frequency combination coefficients is greater than the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients, and the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients is greater than that of
  • K 1 is greater than K 3
  • K 3 is greater than K 2
  • K 2 is greater than K 4
  • the number of space-frequency combination coefficients in the first space-frequency combination coefficient set indicated in the first indication information is greater than that indicated in the first indication information
  • the number of space-frequency combination coefficients in the third space-frequency combination coefficient set in the first indication information is greater than the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information
  • the number of space-frequency combination coefficients in the space-frequency combination coefficient set, and the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information is greater than the fourth space-frequency combination coefficient indicated in the first indication information
  • the first indication information carries quantization information of the space-frequency combination coefficient included in the first space-frequency combination coefficient, quantization information of the space-frequency combination coefficient included in the second space-frequency combination coefficient set, and the third space-frequency combination coefficient.
  • the number of coefficients is greater than the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information, and the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information
  • the number is greater than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information, and the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information Greater than the number of space-frequency combination coefficients in the fourth space-frequency combination coefficient
  • the number of bits of information (for example, the quantization information of the space-frequency combination coefficient corresponding to the second spatial vector set), and the first indication information carries the information corresponding to the second spatial vector set (for example, the space-frequency corresponding to the second spatial vector set).
  • the number of bits of the quantization information of the combined coefficients is greater than the number of bits that carry the information corresponding to the fourth spatial vector set (for example, the quantization information of the space-frequency combined coefficients corresponding to the fourth spatial vector set).
  • the terminal device may be based on the second space-frequency combination coefficient set sent by the network device.
  • the indication information or based on pre-configuration the number of quantization bits determined for each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than the number of quantization bits determined for each space-frequency combination coefficient in the third space-frequency combination coefficient set, which is The number of quantization bits determined for each space-frequency combination coefficient in the third space-frequency combination coefficient set is greater than the number of quantization bits determined for each space-frequency combination coefficient in the second space-frequency combination coefficient set, which is the number of quantization bits in the second space-frequency combination coefficient set.
  • the number of quantization bits determined for each space-frequency combination coefficient is greater than the number of quantization bits determined for each space-frequency combination coefficient in the fourth space-frequency combination coefficient set, so that the first indication information carries information corresponding to the first space-domain vector set (For example
  • the number of bits of information (for example, the quantization information of the space-frequency combination coefficient corresponding to the second spatial vector set), and the first indication information carries the information corresponding to the second spatial vector set (for example, the space-frequency corresponding to the second spatial vector set).
  • the number of bits of the quantization information of the combined coefficients is greater than the number of bits that carry the information corresponding to the fourth spatial vector set (for example, the quantization information of the space-frequency combined coefficients corresponding to the fourth spatial vector set).
  • the number of quantization bits corresponding to the space-frequency combination coefficient includes amplitude quantization bits and phase quantization bits.
  • the amplitude quantization bit may be a bit used to indicate the difference amplitude value of the amplitude value of the space-frequency combination coefficient relative to the quantized reference amplitude corresponding to the polarization direction of the space-frequency combination coefficient (may be 3 bits).
  • the phase quantization bit may be a bit used to indicate the phase value of the space-frequency combination coefficient (may be 3 bits or 4 bits).
  • each spatial vector in the second spatial vector set may correspond to S same frequency domain vectors.
  • S frequency domain vectors may be reported, or for the first spatial vector set.
  • Two spatial vector sets it is possible to report only the broadband amplitude value corresponding to each spatial vector.
  • the 4 transmission layers can be denoted as transmission layer #1, transmission layer #2, transmission layer #3, and transmission layer #4.
  • the value of N can be 4, and N space vectors
  • the set includes the first space vector set, the second space vector set, the third space vector set and the fourth space vector set.
  • the N frequency domain vector sets include the first frequency domain vector set, the second frequency domain vector set, and the third frequency vector set. Domain vector set and the fourth frequency domain vector set.
  • the N space-frequency combination coefficient sets include the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, the third space-frequency combination coefficient set and the fourth space-frequency combination coefficient set
  • the first indication information generated by the terminal device also includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set
  • the first indication information generated by the terminal device carries the third airspace vector set corresponding to
  • the number of bits of information is greater than the number of bits that carry information corresponding to the fourth spatial vector set, and is less than the number of bits that carry information corresponding to the first spatial vector set.
  • the number of bits carrying information corresponding to the second spatial vector set in the first indication information generated by the terminal device is greater than or equal to the number of bits carrying information corresponding to the fourth spatial vector set, and is less than the number of bits carrying information corresponding to the third spatial vector set. The number of bits of information.
  • the terminal device can determine the first and second airspace vector sets from the airspace vector corresponding to transmission layer #1 and the airspace vector corresponding to transmission layer #2, and the terminal device The third airspace vector set and the fourth airspace vector set can be determined from the airspace vector corresponding to the transmission layer #3 and the airspace vector corresponding to the transmission layer #4.
  • the terminal device may determine the L 1 spatial vectors corresponding to the transmission layer #1 in the first polarization direction and the L 2 spatial vectors corresponding to the transmission layer #2 in the first polarization direction as the first spatial vector set the transport layer # 1 L 1 th vector spatial transport layer # 2 in the second polarization direction corresponding to the L 2 th spatial vector corresponding to a second direction of polarization as the second spatial vector set, the transport layer #3 L 3 space vectors corresponding to the first polarization direction and L 4 space vectors corresponding to the transmission layer #4 in the first polarization direction are determined to be the third space vector set, and the transmission layer #3 is set in the first polarization direction.
  • the L 3 space vectors corresponding to the second polarization direction and the L 4 space vectors corresponding to the second polarization direction of the transmission layer #4 are determined as the fourth space vector set.
  • the terminal device can divide the space vector corresponding to the transmission layer #1 in two polarization directions (for example, the first polarization direction and the second polarization direction) into two parts with the polarization direction as the granularity, and each part contains one polarization.
  • L 1 space vector corresponding to the direction the space vector corresponding to the two polarization directions of the transmission layer #2 is divided into two parts with the polarization direction as the granularity, and each part contains L 2 space vectors corresponding to one polarization direction.
  • the space vector corresponding to the two polarization directions of the transmission layer #3 is divided into two parts with the polarization direction as the granularity.
  • Each part contains L 3 space vectors corresponding to one polarization direction, and the transmission layer #4 is in the two polarities.
  • the airspace vector corresponding to the polarization direction is divided into two parts with the polarization direction as the granularity, and each part contains L 4 airspace vectors corresponding to one polarization direction.
  • a certain polarization direction (for example, the first polarization direction) of the transmission layer #1 corresponds to a strong set of spatial vectors corresponding to a certain polarization direction (for example, the first polarization direction) of the transmission layer #2
  • a certain polarization direction (for example, the second polarization direction) corresponding to a weaker set of airspace vectors is combined into a second airspace vector set, and a certain polarization direction of the transmission layer #3 (for example, the first polarization direction) Direction) corresponding to a stronger set of airspace vectors and a stronger set of airspace vectors corresponding to a certain polarization direction (for example, the first polarization direction) of transmission layer #4, merge into a third airspace vector set, and transmit A set of weaker
  • the weak set of airspace vectors is merged into the fourth airspace vector set.
  • the aforementioned Q airspace vectors reported by the terminal device to the network device are the sum of the number of airspace vectors included in the first airspace vector set, the second airspace vector set, and the third airspace vector set.
  • the terminal device may be based on the second indication information sent by the network device or Based on pre-configuration, the number of frequency domain vectors determined for the first spatial vector set is greater than the number of frequency domain vectors determined for the third spatial vector set, and the number of frequency domain vectors determined for the third spatial vector set is greater than The number of frequency domain vectors determined by the second spatial vector set, the number of frequency domain vectors determined for the second spatial vector set is greater than the number of frequency domain vectors determined for the fourth spatial vector set, that is, P 1 is greater than P 3 , P 3 is greater than P 2 , P 2 is
  • the same number of frequency domain vectors can be determined for each spatial vector corresponding to each transmission layer in the first spatial vector set; for the second spatial vector set, it can be Each spatial vector corresponding to each transmission layer in the second spatial vector set determines the same number of frequency domain vectors (S 2 frequency domain vectors); for the third spatial vector set, it can be each transmission layer in the third spatial vector set Each corresponding spatial vector determines the same number of frequency domain vectors (S 3 frequency domain vectors); for the fourth spatial vector set, each spatial vector corresponding to each transmission layer in the fourth spatial vector set can be determined to be the same The number of frequency domain vectors (S 4 frequency domain vectors).
  • the terminal device may be based on the second instruction information sent by the network device or based on pre-configuration, the number of frequency domain vectors determined for the first spatial vector set is greater than the number of frequency domain vectors determined for the third spatial vector set, which is the third
  • the number of frequency domain vectors determined by the spatial vector set is greater than the number of frequency domain vectors determined for the second spatial vector set, and the number of frequency domain vectors determined for the second spatial vector set is greater than that determined for the fourth spatial vector set
  • the number of frequency domain vectors that is, S 1 is greater than S 3 , S 3 is greater than S 2 , S 2 is greater than S 4 ,
  • the first indication information carries the index number of the frequency domain vector included in the first frequency domain vector set, the index number of the frequency domain vector included in the second frequency domain vector set, and the frequency domain included in the third frequency domain vector set.
  • the index number of the vector and the index number of the frequency domain vector included in the fourth frequency domain vector set, the number of frequency domain vectors in the first frequency domain vector set indicated in the first indication information is greater than that indicated in the first indication information
  • the number of frequency domain vectors in the third frequency domain vector set indicated, and the number of frequency domain vectors in the third frequency domain vector set indicated in the first indication information is greater than the second frequency domain indicated in the first indication information
  • the number of frequency domain vectors in the vector set, the number of frequency domain vectors in the second frequency domain vector set indicated in the first indication information is greater than the frequency domain vectors in the fourth frequency domain vector set indicated in the first indication information
  • the number of bits carrying information corresponding to the first spatial vector set in the first indication information is greater than the number of bits carrying information corresponding to the third spatial vector set
  • the number of bits carrying information corresponding to the third spatial vector set is greater than the number of bits carrying information corresponding to the third spatial vector set.
  • the number of bits of information corresponding to the second spatial vector set, and the number of bits carrying information corresponding to the second spatial vector set is greater than the number of bits carrying information corresponding to the fourth spatial vector set
  • the terminal device may be based on the second instruction sent by the network device Information or based on pre-configuration, the number of frequency domain vectors determined for each spatial vector in the first spatial vector set is greater than the number of frequency domain vectors determined for each spatial vector in the third spatial vector set, which is the third spatial domain
  • the number of frequency domain vectors determined by each spatial vector in the vector set is greater than the number of frequency domain vectors determined for each spatial vector in the second spatial vector set, and the frequency determined for each spatial vector in the second spatial vector set
  • the number of domain vectors is greater than the number of frequency domain vectors determined for each spatial vector in the fourth spatial domain vector set.
  • the terminal device can determine K 1 space-frequency combination coefficients for the first space vector set, which is the second space vector set determining K 2 empty combined frequency coefficient, a third spatial vector set to determine K 3 empty combined frequency coefficient, a fourth spatial vector set to determine K 4 empty combined frequency coefficient, K 1 empty space constituting the first frequency coefficient merger Frequency combination coefficient set, K 2 space-frequency combination coefficients constitute the second space-frequency combination coefficient set, K 3 space-frequency combination coefficients constitute the third space-frequency combination coefficient set, K 4 space-frequency combination coefficients constitute the fourth space-frequency combination Coefficient set.
  • the K space-frequency combination coefficients reported by the terminal device to the network device are the first space-frequency combination coefficient set, the second space-frequency combination coefficient set, the third space-frequency combination coefficient set, and the fourth space-frequency combination coefficient set. Space-frequency combination coefficients included in the coefficient set.
  • the terminal device may be based on the second indication information sent by the network device or Based on pre-configuration, the number of space-frequency combination coefficients determined for the first set of space-frequency combination coefficients is greater than the number of space-frequency combination coefficients determined for the third set of space-frequency combination coefficients, which is determined for the third set of space-frequency combination coefficients.
  • the number of space-frequency combination coefficients is greater than the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients, and the number of space-frequency combination coefficients determined for the second set of space-frequency combination coefficients is greater than that of
  • K 1 is greater than K 3
  • K 3 is greater than K 2
  • K 2 is greater than K 4
  • the number of space-frequency combination coefficients in the first space-frequency combination coefficient set indicated in the first indication information is greater than that indicated in the first indication information
  • the number of space-frequency combination coefficients in the third space-frequency combination coefficient set in the first indication information is greater than the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information
  • the number of space-frequency combination coefficients in the space-frequency combination coefficient set, and the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information is greater than the fourth space-frequency combination coefficient indicated in the first indication information
  • the first indication information carries quantization information of the space-frequency combination coefficient included in the first space-frequency combination coefficient, quantization information of the space-frequency combination coefficient included in the second space-frequency combination coefficient set, and the third space-frequency combination coefficient.
  • the number of coefficients is greater than the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information, and the number of space-frequency combination coefficients in the third space-frequency combination coefficient set indicated in the first indication information
  • the number is greater than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information, and the number of space-frequency combination coefficients in the second space-frequency combination coefficient set indicated in the first indication information Greater than the number of space-frequency combination coefficients in the fourth space-frequency combination coefficient
  • the number of bits of information (for example, the quantization information of the space-frequency combination coefficient corresponding to the second spatial vector set), and the first indication information carries the information corresponding to the second spatial vector set (for example, the space-frequency corresponding to the second spatial vector set).
  • the number of bits of the quantization information of the combined coefficients is greater than the number of bits that carry the information corresponding to the fourth spatial vector set (for example, the quantization information of the space-frequency combined coefficients corresponding to the fourth spatial vector set).
  • the terminal device may be based on the second space-frequency combination coefficient set sent by the network device.
  • the indication information or based on pre-configuration the number of quantization bits determined for each space-frequency combination coefficient in the first space-frequency combination coefficient set is greater than the number of quantization bits determined for each space-frequency combination coefficient in the third space-frequency combination coefficient set, which is The number of quantization bits determined for each space-frequency combination coefficient in the third space-frequency combination coefficient set is greater than the number of quantization bits determined for each space-frequency combination coefficient in the second space-frequency combination coefficient set, which is the number of quantization bits in the second space-frequency combination coefficient set.
  • the number of quantization bits determined for each space-frequency combination coefficient is greater than the number of quantization bits determined for each space-frequency combination coefficient in the fourth space-frequency combination coefficient set, so that the first indication information carries information corresponding to the first space-domain vector set (For example
  • the number of bits of information (for example, the quantization information of the space-frequency combination coefficient corresponding to the second spatial vector set), and the first indication information carries the information corresponding to the second spatial vector set (for example, the space-frequency corresponding to the second spatial vector set).
  • the number of bits of the quantization information of the combined coefficients is greater than the number of bits that carry the information corresponding to the fourth spatial vector set (for example, the quantization information of the space-frequency combined coefficients corresponding to the fourth spatial vector set).
  • the number of quantization bits corresponding to the space-frequency combination coefficient includes amplitude quantization bits and phase quantization bits.
  • the amplitude quantization bit may be a bit used to indicate the difference amplitude value of the amplitude value of the space-frequency combination coefficient relative to the quantized reference amplitude corresponding to the polarization direction of the space-frequency combination coefficient (may be 3 bits).
  • the phase quantization bit may be a bit used to indicate the phase value of the space-frequency combination coefficient (may be 3 bits or 4 bits).
  • each spatial vector in the second spatial vector set may correspond to S same frequency domain vectors.
  • S frequency domain vectors may be reported, or for the first spatial vector set.
  • Two spatial vector sets it is possible to report only the broadband amplitude value corresponding to each spatial vector.
  • Table 1 lists the number of spatial vectors and frequency domain vectors configured for different transmission layers and different polarization directions.
  • L represents the number of spatial vectors corresponding to each transmission layer and each polarization direction
  • the value of L can be configured by the network device.
  • M 0 represents the number of frequency domain vectors corresponding to each transmission layer and each spatial vector in the case of rank 1 and rank 2.
  • the value of M 0 can be configured by the network device.
  • N SB represents the number of frequency domain subbands, and the value of R can be 1 or 2.
  • M r,l,p is the number of frequency domain vectors configured by the network device in the polarization direction or reported by the terminal device when the rank is r, the transmission layer with index 1, and the polarization direction network device with index p.
  • N SB 13
  • R 1
  • each space vector corresponding to the first polarization direction corresponds to 7 frequency domain vectors
  • each space vector corresponding to the second polarization direction corresponds to 4 frequency domain vectors
  • each spatial vector corresponding to the first polarization direction corresponds to 6 frequency domain vectors.
  • each spatial vector corresponding to the second polarization direction corresponds to 3 frequency domain vectors.
  • the first Each spatial vector corresponding to the polarization direction corresponds to 6 frequency domain vectors.
  • each spatial vector corresponding to the second polarization direction corresponds to 3 frequency domain vectors.
  • the combined coefficient quantized reference amplitude value corresponding to the first polarization direction is greater than or equal to the combined coefficient quantized reference amplitude value corresponding to the first polarization direction.
  • each spatial vector corresponding to the second polarization direction corresponds to 3 frequency domain vectors.
  • the first Each spatial vector corresponding to the polarization direction corresponds to 4 frequency domain vectors.
  • each spatial vector corresponding to the second polarization direction corresponds to 2 frequency domain vectors.
  • the first polarization direction corresponds to Each space vector of, corresponds to 4 frequency domain vectors, and for the transmission layer 4, each space vector corresponding to the second polarization direction corresponds to 2 frequency domain vectors.
  • the combined coefficient quantized reference amplitude value corresponding to the first polarization direction is greater than or equal to the combined coefficient quantized reference amplitude value corresponding to the first polarization direction.
  • the value of M p,r,l can also be determined based on the network device configuration parameters v r,l,p and preset rules, where
  • Fig. 3 shows a schematic block diagram of an apparatus 300 for indicating a precoding vector according to an embodiment of the present application.
  • the apparatus 300 is used to execute the method executed by the terminal device in the foregoing method embodiment.
  • the specific form of the apparatus 300 may be a chip in a terminal device.
  • the embodiments of this application do not limit this.
  • the device 300 includes:
  • the processing module 301 is configured to generate first indication information.
  • the first indication information is used to indicate P frequency domain vectors and K space-frequency combination coefficients.
  • the P frequency domain vectors belong to N frequency domain vector sets
  • the K The space-frequency combination coefficients belong to N space-frequency combination coefficient sets
  • the N frequency-domain vector sets correspond one-to-one with the N space-domain vector sets
  • the N space-frequency combination coefficient sets correspond to the N-space-domain vector sets one-to-one.
  • the N airspace vector sets include at least a first airspace vector set and a second airspace vector set, and at least one airspace vector set in the N airspace vector sets corresponds to at least two transmission layers, and N, P, K are greater than or equal to 2,
  • the first indication information includes information corresponding to the first airspace vector set and information corresponding to the second airspace vector set, and the number of bits in the first indication information that carries information corresponding to the first airspace vector set is greater than that of the first airspace vector set. 2.
  • the number of bits of information corresponding to the spatial vector set is provided.
  • the transceiver module 302 is configured to send the first indication information.
  • the N frequency-domain vector set comprising a first and a second set of frequency-domain vector set of frequency domain vectors
  • the vector includes P frequency-domain frequency domain of the first set of vectors P 1 of the frequency-domain vector and the second P 2 frequency domain vectors in two frequency domain vector sets, the first frequency domain vector set corresponds to the first spatial domain vector set, the second frequency domain vector set corresponds to the second spatial vector set, P 1 is greater than P 2 , And P 2 is greater than or equal to 1.
  • the N space-frequency combination coefficient sets include a first space-frequency combination coefficient set and a second space-frequency combination coefficient set, the first space-frequency combination coefficient set corresponds to the first space-domain vector set, and the second space-frequency combination coefficient set
  • the frequency combination coefficient set corresponds to the second space vector set, and the number of quantization bits of each space frequency combination coefficient in the first space frequency combination coefficient set is greater than that of each space frequency combination coefficient in the second space frequency combination coefficient set Number of bits.
  • the quantization bit of each space-frequency combination coefficient in the first space-frequency combination coefficient set includes at least one of an amplitude quantization bit and a phase quantization bit; each space-frequency combination coefficient in the second space-frequency combination coefficient set
  • the quantization bits of the coefficients include at least one of amplitude quantization bits and phase quantization bits.
  • the first indication information is also used to indicate Q airspace vectors, where Q is greater than or equal to 2, and the Q airspace vectors include Q 1 airspace vectors in the first airspace vector set and Q 1 airspace vectors in the second airspace vector set.
  • Q 2 spatial vectors where each spatial vector in the first set of spatial vectors corresponds to S frequency domain vectors, P 1 is equal to S or P 1 is equal to the product of S and Q 1 , and S is greater than or equal to 1.
  • Each spatial vector in the second spatial vector set corresponds to R frequency domain vectors, P 2 is equal to R or P 2 is equal to the product of R and Q 2 , and R is greater than or equal to 1.
  • the transceiver module 302 is further configured to receive second indication information, where the second indication information is used to indicate at least one of the following: the number of airspace vectors Q 1 in the first airspace vector set, the second airspace vector The number of spatial vectors in the set Q 2 , the number of frequency domain vectors in the first frequency domain vector set P 1 , the number of frequency domain vectors in the second frequency domain vector set P 2 , the first space-frequency combination The number of space-frequency combination coefficients in the coefficient set and the number of space-frequency combination coefficients in the second space-frequency combination coefficient set.
  • the second indication information is used to indicate at least one of the following: the number of airspace vectors Q 1 in the first airspace vector set, the second airspace vector The number of spatial vectors in the set Q 2 , the number of frequency domain vectors in the first frequency domain vector set P 1 , the number of frequency domain vectors in the second frequency domain vector set P 2 , the first space-frequency combination The number of space-frequency combination coefficients in the coefficient set and the number of
  • the number of space-frequency combination coefficients in the first space-frequency combination coefficient set is greater than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set.
  • the Q 1 space vectors in the first space vector set include a partial vector corresponding to the first transmission layer and a partial vector corresponding to the second transmission layer
  • the Q 2 space vectors in the second space vector set include the first The partial vector corresponding to one transmission layer is the partial vector corresponding to the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer, and the first indication information also The information corresponding to the third spatial vector set is included, and the number of bits carrying information corresponding to the third spatial vector set in the first indication information is less than the number of bits carrying information corresponding to the first spatial vector set.
  • the value of N is 3, the N airspace vector sets also include a third airspace vector set, and the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer and those corresponding to the fourth transmission layer. All vectors, the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than the number of bits that carry the information corresponding to the first airspace vector set The number of bits.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the third airspace vector set include partial vectors corresponding to the third transmission layer and The partial vector corresponding to the fourth transmission layer
  • the space vector in the fourth space vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information further includes the third space vector Information corresponding to the vector set and information corresponding to the fourth spatial vector set, and the number of bits in the first indication information carrying information corresponding to the third spatial vector set is greater than the number of bits carrying information corresponding to the fourth spatial vector set, And is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the sum of the number of space vectors in the N space vector sets is equal to the sum of the numbers of space vectors corresponding to all the transmission layers.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and those corresponding to the second transmission layer.
  • the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer.
  • the airspace vector in the third airspace vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information also includes information corresponding to the third airspace vector set
  • the first The number of bits in the indication information carrying information corresponding to the third spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and the second transmission layer.
  • the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, and the partial vector corresponding to the third transmission layer.
  • the space vector in the third space vector set includes the first transmission layer.
  • the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than that of the first airspace. The number of bits of information corresponding to the vector set.
  • the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the square of the amplitude squares of the space-frequency combination coefficients of the transmission layer in the second space-frequency combination coefficient set.
  • the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to that of the space-frequency combination coefficients of the transmission layer in the second space-frequency combination coefficient set.
  • the maximum value in the amplitude value, or the minimum value in the broadband amplitude value corresponding to the space-frequency combination coefficient corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the transmission layer in the second space-frequency combination coefficient set
  • the N space-frequency combination coefficient sets further include a third space-frequency combination coefficient set and a fourth space-frequency combination coefficient set, the third space-frequency combination coefficient set corresponds to the third space-domain vector set, and the fourth space-frequency combination coefficient set
  • the space-frequency combination coefficient set corresponds to the fourth space-domain vector set, and the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the transmission in the fourth space-frequency combination coefficient set.
  • the sum of the squared amplitudes of the space-frequency combination coefficients of the layer, or the smallest value of the transmission layer in the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the fourth space
  • the maximum value of the amplitude values of the space-frequency combination coefficients in the frequency combination coefficient set, or the minimum value of the wideband amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to this
  • the fourth space-frequency combination coefficient set is the maximum value among the wideband amplitude values of the space-frequency combination coefficients of the transmission layer.
  • the airspace vector in the first airspace vector set includes the airspace vector corresponding to the first polarization direction of the first transmission layer and the airspace vector corresponding to the first polarization direction of the second transmission layer, and the second airspace vector
  • the space vector in the vector set includes the space vector corresponding to the second polarization direction of the first transmission layer and the space vector corresponding to the second polarization direction of the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include the airspace corresponding to the first polarization direction of the third transmission layer
  • the vector corresponds to the space vector corresponding to the second polarization direction of the third transmission layer
  • the first indication information further includes information corresponding to the third space vector set
  • the first indication information carries the third
  • the number of bits of information corresponding to the spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the third airspace vector set include the airspace corresponding to the first polarization direction of the third transmission layer Vector, the space vector corresponding to the second polarization direction of the third transmission layer, the space vector corresponding to the first polarization direction of the fourth transmission layer, and the space vector corresponding to the second polarization direction of the fourth transmission layer
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information carrying information corresponding to the third airspace vector set is smaller than that of the first airspace vector set. The number of bits of the corresponding information.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the third airspace vector set include the first airspace vector set of the third transmission layer.
  • the space vector corresponding to the polarization direction is the space vector corresponding to the first polarization direction of the fourth transmission layer
  • the space vector in the fourth space vector set includes the space vector corresponding to the second polarization direction of the third transmission layer
  • the first indication information further includes information corresponding to the third space vector set and information corresponding to the fourth space vector set, the first The number of bits in the indication information carrying information corresponding to the third space vector set is greater than the number of bits carrying information corresponding to the fourth space vector set and less than the number of bits carrying information corresponding to the first space vector set.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the airspace corresponding to the first polarization direction of the first transmission layer
  • the vector corresponds to the space vector corresponding to the first polarization direction of the second transmission layer
  • the space vector in the second space vector set includes the space vector corresponding to the second polarization direction of the first transmission layer and the space vector of the second transmission layer.
  • the first indication information further includes information corresponding to the third spatial vector set, and the number of bits in the first indication information that carries information corresponding to the third spatial vector set is smaller than that of the first spatial vector set. The number of bits of information corresponding to the vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include the airspace corresponding to the first polarization direction of the first transmission layer
  • the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer
  • the airspace vector in the third airspace vector set includes the first polarization of the second transmission layer
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries the information corresponding to the third airspace vector set is smaller than that of the first The number of bits of information corresponding to a spatial vector set.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the first airspace vector set include the first airspace vector set of the first transmission layer.
  • the airspace vector corresponding to the polarization direction, the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer, and the airspace vector in the third airspace vector set includes the second transmission
  • the space vector corresponding to the first polarization direction of the layer and the space vector corresponding to the first polarization direction of the third transmission layer, and the space vector in the fourth space vector set includes the space vector corresponding to the second polarization direction of the second transmission layer
  • the airspace vector corresponds to the airspace vector corresponding to the second polarization direction of the third transmission layer.
  • the first indication information also includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set.
  • the number of bits carrying information corresponding to the third spatial vector set in the first indication information is greater than the number of bits carrying information corresponding to the fourth spatial vector set, and is smaller than the number of bits carrying information corresponding to the first spatial vector set number.
  • the reference amplitude value corresponding to the first polarization direction of the first transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the first transmission layer, and the first polarization direction of the second transmission layer
  • the reference amplitude value corresponding to the polarization direction is greater than the reference amplitude value corresponding to the second polarization direction of the second transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the third transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the third transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the fourth transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the fourth transmission layer.
  • the frequency domain vector corresponding to the first transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the first transmission layer in the first frequency domain vector set
  • the frequency domain vector corresponding to the second transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the second transmission layer in the first frequency domain vector set.
  • the N spatial vector sets further include a third frequency domain vector set and a fourth frequency domain vector set, the third frequency domain vector set corresponds to the third spatial vector set, and the fourth frequency The domain vector set corresponds to the fourth spatial domain vector set, and the frequency domain vector in the fourth frequency domain vector set corresponding to the third transmission layer is from the third frequency domain vector set and the third transmission layer Is determined from the corresponding frequency domain vector, the frequency domain vector corresponding to the fourth transmission layer in the fourth frequency domain vector set is from the frequency domain corresponding to the fourth transmission layer in the third frequency domain vector set Determined in the vector.
  • the apparatus 300 for indicating a precoding vector according to the embodiment of the present application may correspond to the terminal device in the embodiment of the method 200 according to the embodiment of the present application, and the apparatus 300 may include The module of the method performed by the terminal device.
  • the above and other operations and/or functions of the various modules in the device 300 are used to implement the corresponding steps performed by the terminal device in the method 200 embodiment in FIG. 2, so the beneficial effects in the foregoing method embodiment can also be achieved. Concise, I won’t go into details here.
  • each module in the device 300 can be implemented in the form of software and/or hardware, which is not specifically limited.
  • the device 300 is presented in the form of functional modules.
  • the "module” here may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the apparatus 300 may adopt the form shown in FIG. 4.
  • the processing module 301 may be implemented by the processor 401 and the memory 402 shown in FIG. 4.
  • the transceiver module 302 may be implemented by the transceiver 403 shown in FIG. 4.
  • the processor is implemented by executing a computer program stored in the memory.
  • the function and/or implementation process of the transceiver module 302 may also be implemented by pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the computer device, as shown in FIG. 4 Storage 402.
  • FIG. 4 shows a schematic structural diagram of an apparatus 400 for indicating a precoding vector according to an embodiment of the present application.
  • the apparatus 400 includes a processor 401.
  • the processor 401 is configured to: generate first indication information, where the first indication information is used to indicate P frequency domain vectors and K space-frequency combination coefficients, and the P frequency domain vectors They belong to N frequency domain vector sets, the K space-frequency combination coefficients belong to N space-frequency combination coefficient sets, the N frequency domain vector sets correspond to N space-domain vector sets one-to-one, and the N space-frequency combination coefficient sets correspond to
  • the N airspace vector sets have a one-to-one correspondence
  • the N airspace vector sets include at least a first airspace vector set and a second airspace vector set, and at least one airspace vector set in the N airspace vector sets corresponds to at least two transmission layers , N, P, and K are greater than or equal to 2
  • the first indication information includes information corresponding to the first airspace vector set and information corresponding to the second airspace vector set, and the first indication information carries the first airspace vector
  • the number of bits of information corresponding to the set is greater than the number of bits carrying information corresponding to the second spatial vector set
  • the processor 401 is further configured to call an interface to perform the following actions: send the first instruction information.
  • the N frequency-domain vector set comprising a first and a second set of frequency-domain vector set of frequency domain vectors
  • the vector includes P frequency-domain frequency domain of the first set of vectors P 1 of the frequency-domain vector and the second P 2 frequency domain vectors in two frequency domain vector sets, the first frequency domain vector set corresponds to the first spatial domain vector set, the second frequency domain vector set corresponds to the second spatial vector set, P 1 is greater than P 2 , And P 2 is greater than or equal to 1.
  • the N space-frequency combination coefficient sets include a first space-frequency combination coefficient set and a second space-frequency combination coefficient set, the first space-frequency combination coefficient set corresponds to the first space-domain vector set, and the second space-frequency combination coefficient set
  • the frequency combination coefficient set corresponds to the second space vector set, and the number of quantization bits of each space frequency combination coefficient in the first space frequency combination coefficient set is greater than that of each space frequency combination coefficient in the second space frequency combination coefficient set Number of bits.
  • the quantization bit of each space-frequency combination coefficient in the first space-frequency combination coefficient set includes at least one of an amplitude quantization bit and a phase quantization bit; each space-frequency combination coefficient in the second space-frequency combination coefficient set
  • the quantization bits of the coefficients include at least one of amplitude quantization bits and phase quantization bits.
  • the first indication information is also used to indicate Q airspace vectors, where Q is greater than or equal to 2, and the Q airspace vectors include Q 1 airspace vectors in the first airspace vector set and Q 1 airspace vectors in the second airspace vector set.
  • Q 2 spatial vectors where each spatial vector in the first set of spatial vectors corresponds to S frequency domain vectors, P 1 is equal to S or P 1 is equal to the product of S and Q 1 , and S is greater than or equal to 1.
  • Each spatial vector in the second spatial vector set corresponds to R frequency domain vectors, P 2 is equal to R or P 2 is equal to the product of R and Q 2 , and R is greater than or equal to 1.
  • the processor 401 is further configured to call an interface to perform the following actions: receive second indication information, where the second indication information is used to indicate at least one of the following: the number of airspace vectors in the first airspace vector set Q 1.
  • the number of spatial vectors in the second spatial vector set Q 2 the number of frequency domain vectors in the first frequency domain vector set P 1 , the number of frequency domain vectors in the second frequency domain vector set P 2
  • the number of space-frequency combination coefficients in the first space-frequency combination coefficient set is greater than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set.
  • the Q 1 space vectors in the first space vector set include a partial vector corresponding to the first transmission layer and a partial vector corresponding to the second transmission layer
  • the Q 2 space vectors in the second space vector set include the first The partial vector corresponding to one transmission layer is the partial vector corresponding to the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer, and the first indication information also The information corresponding to the third spatial vector set is included, and the number of bits carrying information corresponding to the third spatial vector set in the first indication information is less than the number of bits carrying information corresponding to the first spatial vector set.
  • the value of N is 3, the N airspace vector sets also include a third airspace vector set, and the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer and those corresponding to the fourth transmission layer. All vectors, the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than the number of bits that carry the information corresponding to the first airspace vector set The number of bits.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the third airspace vector set include partial vectors corresponding to the third transmission layer and The partial vector corresponding to the fourth transmission layer
  • the space vector in the fourth space vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information further includes the third space vector Information corresponding to the vector set and information corresponding to the fourth spatial vector set, and the number of bits in the first indication information carrying information corresponding to the third spatial vector set is greater than the number of bits carrying information corresponding to the fourth spatial vector set, And is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the sum of the number of space vectors in the N space vector sets is equal to the sum of the numbers of space vectors corresponding to all the transmission layers.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and those corresponding to the second transmission layer.
  • the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer.
  • the airspace vector in the third airspace vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information also includes information corresponding to the third airspace vector set
  • the first The number of bits in the indication information carrying information corresponding to the third spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and the second transmission layer.
  • the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, and the partial vector corresponding to the third transmission layer.
  • the space vector in the third space vector set includes the first transmission layer.
  • the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than that of the first airspace. The number of bits of information corresponding to the vector set.
  • the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the square of the amplitude squares of the space-frequency combination coefficients of the transmission layer in the second space-frequency combination coefficient set.
  • the minimum value corresponding to each transmission layer in the amplitude values corresponding to the space-frequency combination coefficients in the first space-frequency combination coefficient set is greater than or equal to that of the space-frequency combination coefficients of the transmission layer in the second space-frequency combination coefficient set
  • the maximum value in the amplitude value, or the minimum value in the broadband amplitude value corresponding to the space-frequency combination coefficient corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the transmission layer in the second space-frequency combination coefficient set
  • the N space-frequency combination coefficient sets further include a third space-frequency combination coefficient set and a fourth space-frequency combination coefficient set, the third space-frequency combination coefficient set corresponds to the third space-domain vector set, and the fourth space-frequency combination coefficient set
  • the space-frequency combination coefficient set corresponds to the fourth space-domain vector set, and the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the transmission in the fourth space-frequency combination coefficient set.
  • the sum of the squared amplitudes of the space-frequency combination coefficients of the layer, or the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the fourth space-frequency combination coefficient
  • the maximum value of the amplitude values of the space-frequency combination coefficients of the transmission layer is concentrated, or the minimum value of the broadband amplitude values corresponding to the space-frequency combination coefficients of each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the
  • the fourth space-frequency combination coefficient set is the maximum value among the wideband amplitude values of the space-frequency combination coefficients of the transmission layer.
  • the airspace vector in the first airspace vector set includes the airspace vector corresponding to the first polarization direction of the first transmission layer and the airspace vector corresponding to the first polarization direction of the second transmission layer, and the second airspace vector
  • the space vector in the vector set includes the space vector corresponding to the second polarization direction of the first transmission layer and the space vector corresponding to the second polarization direction of the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include the airspace corresponding to the first polarization direction of the third transmission layer
  • the vector corresponds to the space vector corresponding to the second polarization direction of the third transmission layer
  • the first indication information further includes information corresponding to the third space vector set
  • the first indication information carries the third
  • the number of bits of information corresponding to the spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the third airspace vector set include the airspace corresponding to the first polarization direction of the third transmission layer Vector, the space vector corresponding to the second polarization direction of the third transmission layer, the space vector corresponding to the first polarization direction of the fourth transmission layer, and the space vector corresponding to the second polarization direction of the fourth transmission layer
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information carrying information corresponding to the third airspace vector set is smaller than that of the first airspace vector set. The number of bits of the corresponding information.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the third airspace vector set include the first airspace vector set of the third transmission layer.
  • the space vector corresponding to the polarization direction is the space vector corresponding to the first polarization direction of the fourth transmission layer
  • the space vector in the fourth space vector set includes the space vector corresponding to the second polarization direction of the third transmission layer
  • the first indication information further includes information corresponding to the third space vector set and information corresponding to the fourth space vector set, the first The number of bits in the indication information carrying information corresponding to the third space vector set is greater than the number of bits carrying information corresponding to the fourth space vector set and less than the number of bits carrying information corresponding to the first space vector set.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the airspace corresponding to the first polarization direction of the first transmission layer
  • the vector corresponds to the space vector corresponding to the first polarization direction of the second transmission layer
  • the space vector in the second space vector set includes the space vector corresponding to the second polarization direction of the first transmission layer and the space vector of the second transmission layer.
  • the first indication information further includes information corresponding to the third spatial vector set, and the number of bits in the first indication information that carries information corresponding to the third spatial vector set is smaller than that of the first spatial vector set. The number of bits of information corresponding to the vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include the airspace corresponding to the first polarization direction of the first transmission layer
  • the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer
  • the airspace vector in the third airspace vector set includes the first polarization of the second transmission layer
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries the information corresponding to the third airspace vector set is smaller than that of the first The number of bits of information corresponding to a spatial vector set.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the first airspace vector set include the first airspace vector set of the first transmission layer.
  • the airspace vector corresponding to the polarization direction, the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer, and the airspace vector in the third airspace vector set includes the second transmission
  • the space vector corresponding to the first polarization direction of the layer and the space vector corresponding to the first polarization direction of the third transmission layer, and the space vector in the fourth space vector set includes the space vector corresponding to the second polarization direction of the second transmission layer
  • the airspace vector corresponds to the airspace vector corresponding to the second polarization direction of the third transmission layer.
  • the first indication information also includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set.
  • the number of bits carrying information corresponding to the third spatial vector set in the first indication information is greater than the number of bits carrying information corresponding to the fourth spatial vector set, and is smaller than the number of bits carrying information corresponding to the first spatial vector set number.
  • the reference amplitude value corresponding to the first polarization direction of the first transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the first transmission layer, and the first polarization direction of the second transmission layer
  • the reference amplitude value corresponding to the polarization direction is greater than the reference amplitude value corresponding to the second polarization direction of the second transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the third transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the third transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the fourth transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the fourth transmission layer.
  • the frequency domain vector corresponding to the first transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the first transmission layer in the first frequency domain vector set
  • the frequency domain vector corresponding to the second transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the second transmission layer in the first frequency domain vector set.
  • the N spatial vector sets further include a third frequency domain vector set and a fourth frequency domain vector set, the third frequency domain vector set corresponds to the third spatial vector set, and the fourth frequency The domain vector set corresponds to the fourth spatial domain vector set, and the frequency domain vector in the fourth frequency domain vector set corresponding to the third transmission layer is from the third frequency domain vector set and the third transmission layer Is determined from the corresponding frequency domain vector, the frequency domain vector corresponding to the fourth transmission layer in the fourth frequency domain vector set is from the frequency domain corresponding to the fourth transmission layer in the third frequency domain vector set Determined in the vector.
  • the processor 401 may call an interface to perform the foregoing receiving action, where the called interface may be a logical interface or a physical interface, which is not limited in the embodiment of the present application.
  • the physical interface can be implemented by a transceiver.
  • the device 400 may further include a transceiver 403.
  • the device 400 further includes a memory 402, and the memory 402 can store the program code in the foregoing method embodiment, so that the processor 401 can call it.
  • the device 400 includes the processor 401, the memory 402, and the transceiver 403, the processor 401, the memory 402, and the transceiver 403 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the processor 401, the memory 402, and the transceiver 403 may be implemented by chips.
  • the processor 401, the memory 402, and the transceiver 403 may be implemented on the same chip, or may be implemented on different chips. Or any combination of two functions can be implemented in one chip.
  • the memory 402 may store program codes, and the processor 401 calls the program codes stored in the memory 402 to implement corresponding functions of the device 400.
  • apparatus 400 may also be used to perform other steps and/or operations on the terminal device side in the foregoing embodiment, and for the sake of brevity, details are not described here.
  • FIG. 5 shows a schematic block diagram of an apparatus 500 for determining a precoding vector according to an embodiment of the present application.
  • the apparatus 500 is used to execute the method executed by the network device in the foregoing method embodiment.
  • the specific form of the apparatus 500 may be a chip in a network device.
  • the embodiments of this application do not limit this.
  • the device 500 includes:
  • the transceiver module 501 is configured to receive first indication information.
  • the first indication information is used to indicate P frequency domain vectors and K space-frequency combination coefficients.
  • the P frequency domain vectors belong to N frequency domain vector sets
  • the K The space-frequency combination coefficients belong to N space-frequency combination coefficient sets
  • the N frequency-domain vector sets correspond one-to-one with the N space-domain vector sets
  • the N space-frequency combination coefficient sets correspond to the N-space-domain vector sets one-to-one.
  • the N airspace vector sets include at least a first airspace vector set and a second airspace vector set, and at least one airspace vector set in the N airspace vector sets corresponds to at least two transmission layers, and N, P, K are greater than or equal to 2,
  • the first indication information includes information corresponding to the first airspace vector set and information corresponding to the second airspace vector set, and the number of bits in the first indication information that carries information corresponding to the first airspace vector set is greater than that of the first airspace vector set. 2.
  • the number of bits of information corresponding to the spatial vector set is provided.
  • the processing module 502 is configured to determine a precoding vector according to the first indication information.
  • the N frequency-domain vector set comprising a first and a second set of frequency-domain vector set of frequency domain vectors
  • the vector includes P frequency-domain frequency domain of the first set of vectors P 1 of the frequency-domain vector and the second P 2 frequency domain vectors in two frequency domain vector sets, the first frequency domain vector set corresponds to the first spatial domain vector set, the second frequency domain vector set corresponds to the second spatial vector set, P 1 is greater than P 2 , And P 2 is greater than or equal to 1.
  • the N space-frequency combination coefficient sets include a first space-frequency combination coefficient set and a second space-frequency combination coefficient set, the first space-frequency combination coefficient set corresponds to the first space-domain vector set, and the second space-frequency combination coefficient set
  • the frequency combination coefficient set corresponds to the second space vector set, and the number of quantization bits of each space frequency combination coefficient in the first space frequency combination coefficient set is greater than that of each space frequency combination coefficient in the second space frequency combination coefficient set Number of bits.
  • the quantization bit of each space-frequency combination coefficient in the first space-frequency combination coefficient set includes at least one of an amplitude quantization bit and a phase quantization bit; each space-frequency combination coefficient in the second space-frequency combination coefficient set
  • the quantization bits of the coefficients include at least one of amplitude quantization bits and phase quantization bits.
  • the first indication information is also used to indicate Q airspace vectors, where Q is greater than or equal to 2, and the Q airspace vectors include Q 1 airspace vectors in the first airspace vector set and Q 1 airspace vectors in the second airspace vector set.
  • Q 2 spatial vectors where each spatial vector in the first set of spatial vectors corresponds to S frequency domain vectors, P 1 is equal to S or P 1 is equal to the product of S and Q 1 , and S is greater than or equal to 1.
  • Each spatial vector in the second spatial vector set corresponds to R frequency domain vectors, P 2 is equal to R or P 2 is equal to the product of R and Q 2 , and R is greater than or equal to 1.
  • the transceiver module 501 is further configured to send second indication information, where the second indication information is used to indicate at least one of the following: the number of airspace vectors Q 1 in the first airspace vector set, the second airspace vector The number of spatial vectors in the set Q 2 , the number of frequency domain vectors in the first frequency domain vector set P 1 , the number of frequency domain vectors in the second frequency domain vector set P 2 , the first space-frequency combination The number of space-frequency combination coefficients in the coefficient set and the number of space-frequency combination coefficients in the second space-frequency combination coefficient set.
  • the second indication information is used to indicate at least one of the following: the number of airspace vectors Q 1 in the first airspace vector set, the second airspace vector The number of spatial vectors in the set Q 2 , the number of frequency domain vectors in the first frequency domain vector set P 1 , the number of frequency domain vectors in the second frequency domain vector set P 2 , the first space-frequency combination The number of space-frequency combination coefficients in the coefficient set and the number of
  • the number of space-frequency combination coefficients in the first space-frequency combination coefficient set is greater than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set.
  • the L 1 spatial vectors in the first spatial vector set include a partial vector corresponding to the first transmission layer and a partial vector corresponding to the second transmission layer
  • the L 2 spatial vectors in the second spatial vector set include the first The partial vector corresponding to one transmission layer is the partial vector corresponding to the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer, and the first indication information also The information corresponding to the third spatial vector set is included, and the number of bits carrying information corresponding to the third spatial vector set in the first indication information is less than the number of bits carrying information corresponding to the first spatial vector set.
  • the value of N is 3, the N airspace vector sets also include a third airspace vector set, and the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer and those corresponding to the fourth transmission layer. All vectors, the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than the number of bits that carry the information corresponding to the first airspace vector set The number of bits.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the third airspace vector set include partial vectors corresponding to the third transmission layer and The partial vector corresponding to the fourth transmission layer
  • the space vector in the fourth space vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information further includes the third space vector Information corresponding to the vector set and information corresponding to the fourth spatial vector set, and the number of bits in the first indication information carrying information corresponding to the third spatial vector set is greater than the number of bits carrying information corresponding to the fourth spatial vector set, And is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the sum of the number of space vectors in the N space vector sets is equal to the sum of the numbers of space vectors corresponding to all the transmission layers.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and those corresponding to the second transmission layer.
  • the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer.
  • the airspace vector in the third airspace vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information also includes information corresponding to the third airspace vector set
  • the first The number of bits in the indication information carrying information corresponding to the third spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and the second transmission layer.
  • the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, and the partial vector corresponding to the third transmission layer.
  • the space vector in the third space vector set includes the first transmission layer.
  • the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than that of the first airspace. The number of bits of information corresponding to the vector set.
  • the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the square of the amplitude squares of the space-frequency combination coefficients of the transmission layer in the second space-frequency combination coefficient set.
  • the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to that of the space-frequency combination coefficients of the transmission layer in the second space-frequency combination coefficient set.
  • the maximum value in the amplitude value, or the minimum value in the broadband amplitude value corresponding to the space-frequency combination coefficient corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the transmission layer in the second space-frequency combination coefficient set
  • the N space-frequency combination coefficient sets further include a third space-frequency combination coefficient set and a fourth space-frequency combination coefficient set, the third space-frequency combination coefficient set corresponds to the third space-domain vector set, and the fourth space-frequency combination coefficient set
  • the space-frequency combination coefficient set corresponds to the fourth space-domain vector set, and the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the transmission in the fourth space-frequency combination coefficient set.
  • the sum of the squared amplitudes of the space-frequency combination coefficients of the layer, or the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the fourth space-frequency combination coefficient
  • the maximum value of the amplitude values of the space-frequency combination coefficients of the transmission layer is concentrated, or the minimum value of the broadband amplitude values corresponding to the space-frequency combination coefficients of each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the
  • the fourth space-frequency combination coefficient set is the maximum value among the wideband amplitude values of the space-frequency combination coefficients of the transmission layer.
  • the airspace vector in the first airspace vector set includes the airspace vector corresponding to the first polarization direction of the first transmission layer and the airspace vector corresponding to the first polarization direction of the second transmission layer, and the second airspace vector
  • the space vector in the vector set includes the space vector corresponding to the second polarization direction of the first transmission layer and the space vector corresponding to the second polarization direction of the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include the airspace corresponding to the first polarization direction of the third transmission layer
  • the vector corresponds to the space vector corresponding to the second polarization direction of the third transmission layer
  • the first indication information further includes information corresponding to the third space vector set
  • the first indication information carries the third
  • the number of bits of information corresponding to the spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the third airspace vector set include the airspace corresponding to the first polarization direction of the third transmission layer Vector, the space vector corresponding to the second polarization direction of the third transmission layer, the space vector corresponding to the first polarization direction of the fourth transmission layer, and the space vector corresponding to the second polarization direction of the fourth transmission layer
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information carrying information corresponding to the third airspace vector set is smaller than that of the first airspace vector set. The number of bits of the corresponding information.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the third airspace vector set include the first airspace vector set of the third transmission layer.
  • the space vector corresponding to the polarization direction is the space vector corresponding to the first polarization direction of the fourth transmission layer
  • the space vector in the fourth space vector set includes the space vector corresponding to the second polarization direction of the third transmission layer
  • the first indication information further includes information corresponding to the third space vector set and information corresponding to the fourth space vector set, the first The number of bits in the indication information carrying information corresponding to the third space vector set is greater than the number of bits carrying information corresponding to the fourth space vector set and less than the number of bits carrying information corresponding to the first space vector set.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the airspace corresponding to the first polarization direction of the first transmission layer
  • the vector corresponds to the space vector corresponding to the first polarization direction of the second transmission layer
  • the space vector in the second space vector set includes the space vector corresponding to the second polarization direction of the first transmission layer and the space vector of the second transmission layer.
  • the first indication information further includes information corresponding to the third spatial vector set, and the number of bits in the first indication information that carries information corresponding to the third spatial vector set is smaller than that of the first spatial vector set. The number of bits of information corresponding to the vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include the airspace corresponding to the first polarization direction of the first transmission layer Vector
  • the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer
  • the airspace vector in the third airspace vector set includes the first polarization of the second transmission layer
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries the information corresponding to the third airspace vector set is smaller than that of the first The number of bits of information corresponding to a spatial vector set.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the first airspace vector set include the first airspace vector set of the first transmission layer.
  • the airspace vector corresponding to the polarization direction, the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer, and the airspace vector in the third airspace vector set includes the second transmission
  • the space vector corresponding to the first polarization direction of the layer and the space vector corresponding to the first polarization direction of the third transmission layer, and the space vector in the fourth space vector set includes the space vector corresponding to the second polarization direction of the second transmission layer
  • the airspace vector corresponds to the airspace vector corresponding to the second polarization direction of the third transmission layer.
  • the first indication information also includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set.
  • the number of bits carrying information corresponding to the third spatial vector set in the first indication information is greater than the number of bits carrying information corresponding to the fourth spatial vector set, and is smaller than the number of bits carrying information corresponding to the first spatial vector set number.
  • the reference amplitude value corresponding to the first polarization direction of the first transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the first transmission layer, and the first polarization direction of the second transmission layer
  • the reference amplitude value corresponding to the polarization direction is greater than the reference amplitude value corresponding to the second polarization direction of the second transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the third transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the third transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the fourth transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the fourth transmission layer.
  • the frequency domain vector corresponding to the first transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the first transmission layer in the first frequency domain vector set
  • the frequency domain vector corresponding to the second transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the second transmission layer in the first frequency domain vector set.
  • the N spatial vector sets further include a third frequency domain vector set and a fourth frequency domain vector set, the third frequency domain vector set corresponds to the third spatial vector set, and the fourth frequency The domain vector set corresponds to the fourth spatial domain vector set, and the frequency domain vector in the fourth frequency domain vector set corresponding to the third transmission layer is from the third frequency domain vector set and the third transmission layer Is determined from the corresponding frequency domain vector, the frequency domain vector corresponding to the fourth transmission layer in the fourth frequency domain vector set is from the frequency domain corresponding to the fourth transmission layer in the third frequency domain vector set Determined in the vector.
  • the apparatus 500 for determining a precoding vector according to the embodiment of the present application may correspond to the network device in the embodiment of the method 200 according to the embodiment of the present application, and the apparatus 500 may include The module of the method performed by the network device.
  • the foregoing and other operations and/or functions of each module in the device 500 are used to implement the corresponding steps performed by the network device in the method 200 embodiment in FIG. 2, so the beneficial effects in the foregoing method embodiment can also be achieved. Concise, I won’t go into details here.
  • each module in the device 500 can be implemented in the form of software and/or hardware, which is not specifically limited.
  • the device 500 is presented in the form of functional modules.
  • the "module” here may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the device 500 may adopt the form shown in FIG. 6.
  • the processing module 501 may be implemented by the processor 601 and the memory 602 shown in FIG. 6.
  • the transceiver module 502 may be implemented by the transceiver 603 shown in FIG. 6.
  • the processor is implemented by executing a computer program stored in the memory.
  • the function and/or implementation process of the transceiver module 502 can also be implemented by pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit in the computer device located outside the chip, as shown in FIG. 6 Storage 602.
  • Fig. 6 shows a schematic structural diagram of an apparatus 600 for determining a precoding vector according to an embodiment of the present application.
  • the apparatus 600 includes a processor 601.
  • the processor 601 is configured to call an interface to perform the following actions: receive first indication information, where the first indication information is used to indicate P frequency domain vectors and K space-frequency combination coefficients, and The P frequency domain vectors belong to N frequency domain vector sets, the K space-frequency combining coefficients belong to N space-frequency combining coefficient sets, and the N frequency domain vector sets correspond to N spatial vector sets one-to-one.
  • the frequency combination coefficient set corresponds to the N spatial vector sets one-to-one, the N spatial vector sets include at least a first spatial vector set and a second spatial vector set, and at least one spatial vector set in the N spatial vector sets corresponds to at least Two transport layers correspond, N, P, and K are greater than or equal to 2.
  • the first indication information includes information corresponding to the first airspace vector set and information corresponding to the second airspace vector set, and the first indication information carries The number of bits of information corresponding to the first spatial vector set is greater than the number of bits carrying information corresponding to the second spatial vector set.
  • the processor 601 is further configured to determine a precoding vector according to the first indication information.
  • the N frequency-domain vector set comprising a first and a second set of frequency-domain vector set of frequency domain vectors
  • the vector includes P frequency-domain frequency domain of the first set of vectors P 1 of the frequency-domain vector and the second P 2 frequency domain vectors in two frequency domain vector sets, the first frequency domain vector set corresponds to the first spatial domain vector set, the second frequency domain vector set corresponds to the second spatial vector set, P 1 is greater than P 2 , And P 2 is greater than or equal to 1.
  • the N space-frequency combination coefficient sets include a first space-frequency combination coefficient set and a second space-frequency combination coefficient set, the first space-frequency combination coefficient set corresponds to the first space-domain vector set, and the second space-frequency combination coefficient set
  • the frequency combination coefficient set corresponds to the second space vector set, and the number of quantization bits of each space frequency combination coefficient in the first space frequency combination coefficient set is greater than that of each space frequency combination coefficient in the second space frequency combination coefficient set Number of bits.
  • the quantization bit of each space-frequency combination coefficient in the first space-frequency combination coefficient set includes at least one of an amplitude quantization bit and a phase quantization bit; each space-frequency combination coefficient in the second space-frequency combination coefficient set
  • the quantization bits of the coefficients include at least one of amplitude quantization bits and phase quantization bits.
  • the first indication information is also used to indicate Q airspace vectors, where Q is greater than or equal to 2, and the Q airspace vectors include Q 1 airspace vectors in the first airspace vector set and Q 1 airspace vectors in the second airspace vector set.
  • Q 2 spatial vectors where each spatial vector in the first set of spatial vectors corresponds to S frequency domain vectors, P 1 is equal to S or P 1 is equal to the product of S and Q 1 , and S is greater than or equal to 1.
  • Each spatial vector in the second spatial vector set corresponds to R frequency domain vectors, P 2 is equal to R or P 2 is equal to the product of R and Q 2 , and R is greater than or equal to 1.
  • the processor 601 is further configured to call the interface to perform the following actions: send second indication information, where the second indication information is used to indicate at least one of the following: the number of airspace vectors in the first airspace vector set Q 1.
  • the number of spatial vectors in the second spatial vector set Q 2 the number of frequency domain vectors in the first frequency domain vector set P 1 , the number of frequency domain vectors in the second frequency domain vector set P 2
  • the number of space-frequency combination coefficients in the first space-frequency combination coefficient set is greater than the number of space-frequency combination coefficients in the second space-frequency combination coefficient set.
  • the L 1 spatial vectors in the first spatial vector set include a partial vector corresponding to the first transmission layer and a partial vector corresponding to the second transmission layer
  • the L 2 spatial vectors in the second spatial vector set include the first The partial vector corresponding to one transmission layer is the partial vector corresponding to the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer, and the first indication information also The information corresponding to the third spatial vector set is included, and the number of bits carrying information corresponding to the third spatial vector set in the first indication information is less than the number of bits carrying information corresponding to the first spatial vector set.
  • the value of N is 3, the N airspace vector sets also include a third airspace vector set, and the airspace vectors in the third airspace vector set include all vectors corresponding to the third transmission layer and those corresponding to the fourth transmission layer. All vectors, the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than the number of bits that carry the information corresponding to the first airspace vector set The number of bits.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the third airspace vector set include partial vectors corresponding to the third transmission layer and The partial vector corresponding to the fourth transmission layer
  • the space vector in the fourth space vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information further includes the third space vector Information corresponding to the vector set and information corresponding to the fourth spatial vector set, and the number of bits in the first indication information carrying information corresponding to the third spatial vector set is greater than the number of bits carrying information corresponding to the fourth spatial vector set, And is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the sum of the number of space vectors in the N space vector sets is equal to the sum of the numbers of space vectors corresponding to all the transmission layers.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and those corresponding to the second transmission layer.
  • the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer.
  • the airspace vector in the third airspace vector set includes the partial vector corresponding to the third transmission layer and the partial vector corresponding to the fourth transmission layer
  • the first indication information also includes information corresponding to the third airspace vector set
  • the first The number of bits in the indication information carrying information corresponding to the third spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include partial vectors corresponding to the first transmission layer and the second transmission layer.
  • the space vector in the second space vector set includes the partial vector corresponding to the first transmission layer, the partial vector corresponding to the second transmission layer, and the partial vector corresponding to the third transmission layer.
  • the space vector in the third space vector set includes the first transmission layer.
  • the first indication information also includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries information corresponding to the third airspace vector set is less than that of the first airspace. The number of bits of information corresponding to the vector set.
  • the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the square of the amplitude squares of the space-frequency combination coefficients of the transmission layer in the second space-frequency combination coefficient set.
  • the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to that of the space-frequency combination coefficients of the transmission layer in the second space-frequency combination coefficient set.
  • the maximum value in the amplitude value, or the minimum value in the broadband amplitude value corresponding to the space-frequency combination coefficient corresponding to each transmission layer in the first space-frequency combination coefficient set is greater than or equal to the transmission layer in the second space-frequency combination coefficient set
  • the N space-frequency combination coefficient sets further include a third space-frequency combination coefficient set and a fourth space-frequency combination coefficient set, the third space-frequency combination coefficient set corresponds to the third space-domain vector set, and the fourth space-frequency combination coefficient set
  • the space-frequency combination coefficient set corresponds to the fourth space-domain vector set, and the sum of the square amplitudes of the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the transmission in the fourth space-frequency combination coefficient set.
  • the sum of the squared amplitudes of the space-frequency combination coefficients of the layer, or the smallest value of the amplitude values corresponding to the space-frequency combination coefficients corresponding to each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the fourth space-frequency combination coefficient
  • the maximum value of the amplitude values of the space-frequency combination coefficients of the transmission layer is concentrated, or the minimum value of the broadband amplitude values corresponding to the space-frequency combination coefficients of each transmission layer in the third space-frequency combination coefficient set is greater than or equal to the
  • the fourth space-frequency combination coefficient set is the maximum value among the wideband amplitude values of the space-frequency combination coefficients of the transmission layer.
  • the airspace vector in the first airspace vector set includes the airspace vector corresponding to the first polarization direction of the first transmission layer and the airspace vector corresponding to the first polarization direction of the second transmission layer, and the second airspace vector
  • the space vector in the vector set includes the space vector corresponding to the second polarization direction of the first transmission layer and the space vector corresponding to the second polarization direction of the second transmission layer.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the third airspace vector set include the airspace corresponding to the first polarization direction of the third transmission layer
  • the vector corresponds to the space vector corresponding to the second polarization direction of the third transmission layer
  • the first indication information further includes information corresponding to the third space vector set
  • the first indication information carries the third
  • the number of bits of information corresponding to the spatial vector set is smaller than the number of bits carrying information corresponding to the first spatial vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the third airspace vector set include the airspace corresponding to the first polarization direction of the third transmission layer Vector, the space vector corresponding to the second polarization direction of the third transmission layer, the space vector corresponding to the first polarization direction of the fourth transmission layer, and the space vector corresponding to the second polarization direction of the fourth transmission layer
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information carrying information corresponding to the third airspace vector set is smaller than that of the first airspace vector set. The number of bits of the corresponding information.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the third airspace vector set include the first airspace vector set of the third transmission layer.
  • the space vector corresponding to the polarization direction is the space vector corresponding to the first polarization direction of the fourth transmission layer
  • the space vector in the fourth space vector set includes the space vector corresponding to the second polarization direction of the third transmission layer
  • the first indication information further includes information corresponding to the third space vector set and information corresponding to the fourth space vector set, the first The number of bits in the indication information carrying information corresponding to the third space vector set is greater than the number of bits carrying information corresponding to the fourth space vector set and less than the number of bits carrying information corresponding to the first space vector set.
  • the value of N is 3, the N airspace vector sets further include a third airspace vector set, and the airspace vectors in the first airspace vector set include the airspace corresponding to the first polarization direction of the first transmission layer
  • the vector corresponds to the space vector corresponding to the first polarization direction of the second transmission layer
  • the space vector in the second space vector set includes the space vector corresponding to the second polarization direction of the first transmission layer and the space vector of the second transmission layer.
  • the first indication information further includes information corresponding to the third spatial vector set, and the number of bits in the first indication information that carries information corresponding to the third spatial vector set is smaller than that of the first spatial vector set. The number of bits of information corresponding to the vector set.
  • the N airspace vector sets further include a third airspace vector set
  • the airspace vectors in the first airspace vector set include the airspace corresponding to the first polarization direction of the first transmission layer
  • the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer
  • the airspace vector in the third airspace vector set includes the first polarization of the second transmission layer
  • the first indication information further includes information corresponding to the third airspace vector set, and the number of bits in the first indication information that carries the information corresponding to the third airspace vector set is smaller than that of the first The number of bits of information corresponding to a spatial vector set.
  • the N airspace vector sets further include a third airspace vector set and a fourth airspace vector set
  • the airspace vectors in the first airspace vector set include the first airspace vector set of the first transmission layer.
  • the airspace vector corresponding to the polarization direction, the airspace vector in the second airspace vector set includes the airspace vector corresponding to the second polarization direction of the first transmission layer, and the airspace vector in the third airspace vector set includes the second transmission
  • the space vector corresponding to the first polarization direction of the layer and the space vector corresponding to the first polarization direction of the third transmission layer, and the space vector in the fourth space vector set includes the space vector corresponding to the second polarization direction of the second transmission layer
  • the airspace vector corresponds to the airspace vector corresponding to the second polarization direction of the third transmission layer.
  • the first indication information also includes information corresponding to the third airspace vector set and information corresponding to the fourth airspace vector set.
  • the number of bits carrying information corresponding to the third spatial vector set in the first indication information is greater than the number of bits carrying information corresponding to the fourth spatial vector set, and is smaller than the number of bits carrying information corresponding to the first spatial vector set number.
  • the reference amplitude value corresponding to the first polarization direction of the first transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the first transmission layer, and the first polarization direction of the second transmission layer
  • the reference amplitude value corresponding to the polarization direction is greater than the reference amplitude value corresponding to the second polarization direction of the second transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the third transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the third transmission layer.
  • the reference amplitude value corresponding to the first polarization direction of the fourth transmission layer is greater than the reference amplitude value corresponding to the second polarization direction of the fourth transmission layer.
  • the frequency domain vector corresponding to the first transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the first transmission layer in the first frequency domain vector set
  • the frequency domain vector corresponding to the second transmission layer in the second frequency domain vector set is determined from the frequency domain vector corresponding to the second transmission layer in the first frequency domain vector set.
  • the N spatial vector sets further include a third frequency domain vector set and a fourth frequency domain vector set, the third frequency domain vector set corresponds to the third spatial vector set, and the fourth frequency The domain vector set corresponds to the fourth spatial domain vector set, and the frequency domain vector in the fourth frequency domain vector set corresponding to the third transmission layer is from the third frequency domain vector set and the third transmission layer Is determined from the corresponding frequency domain vector, the frequency domain vector corresponding to the fourth transmission layer in the fourth frequency domain vector set is from the frequency domain corresponding to the fourth transmission layer in the third frequency domain vector set Determined in the vector.
  • the processor 601 may call an interface to execute the above receiving action, where the called interface may be a logical interface or a physical interface, which is not limited in the embodiment of the present application.
  • the physical interface can be implemented by a transceiver.
  • the device 600 may further include a transceiver 603.
  • the device 600 further includes a memory 602, and the memory 602 can store the program code in the foregoing method embodiment, so that the processor 601 can call it.
  • the device 600 includes a processor 601, a memory 602, and a transceiver 603, the processor 601, the memory 602, and the transceiver 603 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the processor 601, the memory 602, and the transceiver 603 can be implemented by chips, and the processor 601, the memory 602, and the transceiver 603 can be implemented on the same chip, or they may be implemented on different chips. Or any combination of two functions can be implemented in one chip.
  • the memory 602 can store program codes, and the processor 601 calls the program codes stored in the memory 602 to implement corresponding functions of the device 600.
  • apparatus 600 may also be used to perform other steps and/or operations on the terminal device side in the foregoing embodiments, and for the sake of brevity, details are not described here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本申请提供了一种指示预编码向量的方法,包括:生成第一指示信息,第一指示信息用于指示P个频域向量与K个空频合并系数,P个频域向量属于N个频域向量集,K个空频合并系数属于N个空频合并系数集,N个频域向量集与N个空域向量集一一对应,该N个空频合并系数集与该N个空域向量集一一对应,N个空域向量集中至少包括第一空域向量集和第二空域向量集,该N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,第一指示信息中承载第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数;发送第一指示信息。该方法能够在保证最小化系统性能损失的前提下,最大限度地降低上报开销。

Description

指示和确定预编码向量的方法以及通信装置
本申请要求于2019年02月15日提交中国专利局、申请号为201910118166.6、申请名称为“指示和确定预编码向量的方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2019年03月11日提交中国专利局、申请号为201910182198.2、申请名称为“指示和确定预编码向量的方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及指示和确定预编码向量的方法以及通信装置。
背景技术
目前,已知一种针对空频压缩码本的非均匀量化方法,该方案对于不同传输层,采用不同数量的空域向量、不同数量的频域向量,和/或,对于不同传输层采用不同数量的合并系数进行上报。
然而,该方案对于较弱的传输层(传输层索引越大,对应的信道特征值越小),配置数量更少的空域向量和/或频域向量,这会使得较弱的传输层(例如,传输层#3、传输层#4)PMI的精度较差,导致传输层#3、传输层#4的性能较差。
为了保持上报开销不变的情况下提高传输层#3与传输层#4的性能,一种实现是将传输层#1与传输层#2的开销降低,而降低传输层#1、传输层#2的开销的一种实现方式是调整空域向量和/或频域向量的个数,这会导致传输层#1、传输层#2的性能损失较大,最终影响整体性能。
发明内容
本申请提供一种指示和确定预编码向量的方法以及通信装置,以期在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
第一方面,提供了一种指示预编码向量的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
具体地,该方法包括:生成第一指示信息,该第一指示信息用于指示P个频域向量与K个空频合并系数,该P个频域向量属于N个频域向量集,该K个空频合并系数属于N个空频合并系数集,该N个频域向量集与N个空域向量集一一对应,该N个空频合并系数集与该N个空域向量集一一对应,该N个空域向量集中至少包括第一空域向量集和第二空域向量集,且该N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,该第一指示信息中包括该第一空域向量集对应的信息与该第二空域 向量集对应的信息,该第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数;发送该第一指示信息。
需要说明的是,每个空域向量集对应的信息可以包括该空域向量集对应的频域向量的索引号,该空域向量集对应的幅度为非零/零的空频合并系数的数目和位置指示以该空域向量集对应的空频向量系数的量化信息。其中,空频合并系数的量化信息可以包括空频合并系数的幅度量化值和相位量化值,此外也可以包括每个空域向量对应的宽带幅度量化值和每个空频合并系数对应的差分幅度量化值以及每个空频合并系数的相位量化值。
需要说明的是,在本申请中,传输层索引越大,该传输层对应的信道矩阵特征值或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)则越小,例如,传输层#2对应的信道矩阵特征值或SINR小于传输层#1对应的信道矩阵特征值或SINR。
基于上述技术方案,本申请针对频域压缩码本,按照空域向量的强弱对系统性能的影响程度,将不同传输层对应的空域向量进行分组,为对系统性能影响较大的空域向量(例如,第一空域向量集)分配更多的比特数进行上报,为对系统性能影响较小的空域向量(第二空域向量集)分配较少的量化比特进行上报,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
需要说明的是,上述对系统性能影响较大的空域向量可以是较强的空域向量,对系统性能影响较小的空域向量可以是较弱的空域向量,其中,上述同一个传输层对应的较强的空域向量对应的空频合并系数的幅度平方之和大于或等于该传输层对应的较弱的空域向量对应的空频合并系数的幅度平方之和,或,上述较强的空域向量对应的空频合并系数的幅度值中的最小值大于或等于上述较弱的空域向量对应的空频合并系数的幅度值中的最大值。
在一种可能的实现方式中,该N个频域向量集包括第一频域向量集与第二频域向量集,该P个频域向量包括该第一频域向量集中的P1个频域向量和该第二频域向量集中的P2个频域向量,该第一频域向量集与该第一空域向量集对应,该第二频域向量集与该第二空域向量集对应,P1大于P2,且P2大于或等于1。
基于上述技术方案,通过使得为第一空域向量集确定的频域向量的个数大于为第二空域向量集确定的频域向量的个数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的频域向量的索引号)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,该N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,该第一空频合并系数集与该第一空域向量集对应,该第二空频合并系数集与该第二空域向量集对应,该第一空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数。
基于上述技术方案,通过使得为第一空频合并系数集中的每个空频合并系数的量化比特数大于为第二空频合并系数集中的每个空频合并系数的量化比特数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,从而在保证最小化系统性能损失的前提下,最大 限度地降低上报开销。
在一种可能的实现方式中,该第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;该第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
需要说明的是,上述的幅度量化比特可以包括宽带幅度量化比特与差分幅度量化比特。
在一种可能的实现方式中,该第一指示信息还用于指示Q个空域向量,Q大于或等于2,该Q个空域向量包括该第一空域向量集中的Q 1个空域向量和该第二空域向量集中的Q 2个空域向量,其中,该第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,该第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
在一种可能的实现方式中,该方法还包括:接收第二指示信息,该第二指示信息用于指示以下至少一项:该第一空域向量集中的空域向量的个数Q 1、该第二空域向量集中的空域向量的个数Q 2、该第一频域向量集中的频域向量的个数P 1、该第二频域向量集中的频域向量的个数P 2、该第一空频合并系数集中的空频合并系数的个数与该第二空频合并系数集中的空频合并系数的个数。
需要注意的是,每个空域向量集中包含的频域合并系数的数目可以是频域单元的p倍,p<1且p的取值可以为3/4、1/2、1/4或1/8。此外,空频合并系数的数目可以是空频向量对的β倍,β<1且取值可以为3/4、1/2、1/4或1/8。因此,第二指示信息也可以指示上述比例因子p和β。
在一种可能的实现方式中,该第一空频合并系数集中的空频合并系数的个数大于该第二空频合并系数集中的空频合并系数的个数。
基于上述技术方案,通过使得为第一空频合并系数集确定的空频合并系数的个数多于为第二空频合并系数集确定的空频合并系数的个数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,该第一空域向量集中的Q 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的Q 2个空域向量包括该第一传输层对应的部分向量与该第二传输层对应的部分向量。
基于上述技术方案,当传输层的个数为2时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空域向量合并为第二空域向量集,并使得第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,N的取值为3,该N个空域向量集还包括第三空域向量集, 该第三空域向量集中的空域向量包括第三传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为3时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的全部空域向量确定为第三空域向量集,并使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为4时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的全部空域向量与传输层#4对应的全部空域向量确定为第三空域向量集,并使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,N的取值为4,该N个空域向量集还包括第三空域向量集与第四空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的部分向量,该第四空域向量集中的空域向量包括该第三传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息与该第四空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数大于承载该第四空域向量集对应的信息的比特数,且小于承载该第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为4,该N个空域向量集还包括第三空域向量集与第四空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,该第四空域向量集中的空域向量包括该第三传输层对应的部分 向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息与该第四空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数大于承载该第四空域向量集对应的信息的比特数,且小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,且小于承载第三空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为4时,将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,将传输层#2对应的空域向量按照空域向量的强弱划分为两部分,将传输层#3对应的空域向量按照空域向量的强弱划分为两部分,将传输层#4对应的空域向量按照空域向量的强弱划分为两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量、传输层#2对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的较强的一组空域向量与传输层#4对应的较强的一组空域向量确定为第三空域向量集,将传输层#3对应的较弱的一组空域向量与传输层#4对应的较弱的一组空域向量合并为第四空域向量集,并使得第一指示信息中承载该第三空域向量集对应的信息的比特数大于承载该第四空域向量集对应的信息的比特数,且小于承载该第一空域向量集对应的信息的比特数,第一指示信息中承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,且小于承载第三空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,该N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
在一种可能的实现方式中,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量、第三传输层对应的部分向量与第四传输层对应的部分向量,该第三空域向量集中空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为4时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,将传输层#3(例如,第三传输层)对应的空域向量分为强弱两部分,将传输层#4(例如,第四传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量、传输层#2对应的较弱的一组空域向量、传输层#3对应的较弱的一组空域向量与传输层#4对应的较弱的一组空域向量合并为第二空域向量集, 将传输层#3对应的较强的一组空域向量与将传输层#4对应的较强的一组空域向量确定为第三空域向量集,并使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量与第三传输层对应的部分向量,该第三空域向量集中的空域向量包括该第三传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为3时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,将传输层#3(例如,第三传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量、传输层#2对应的较弱的一组空域向量与传输层#3对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的较强的一组空域向量确定为第三空域向量集,并使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,该第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
在一种可能的实现方式中,该N个空频合并系数集还包括第三空频合并系数集与第四空频合并系数集,该第三空频合并系数集与该第三空域向量集对应,该第四空频合并系数集与该第四空域向量集对应,该第三空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
在一种可能的实现方式中,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向对应的空域向量。
在一种可能的实现方式中,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化方向对应的空域向量、所述第二传输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
在一种可能的实现方式中,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
在一种可能的实现方式中,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
在一种可能的实现方式中,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
在一种可能的实现方式中,所述N个空域向量集还包括第三频域向量集与第四频域向量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
第二方面,提供了一种确定预编码向量的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。
具体地,该方法包括:接收第一指示信息,该第一指示信息用于指示P个频域向量与K个空频合并系数,该P个频域向量属于N个频域向量集,该K个空频合并系数属于N个空频合并系数集,该N个频域向量集与N个空域向量集一一对应,该N个空频合并系数集与该N个空域向量集一一对应,该N个空域向量集中至少包括第一空域向量集和第二空域向量集,且该N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,该第一指示信息中包括该第一空域向量集对应的信息与该第二空域向量集对应的信息,该第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数;根据该第一指示信息,确定预编码向量。
需要说明的是,在本申请中,传输层索引越大,该传输层对应的信道矩阵特征值或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)则越小,例如,传输层#2 对应的信道矩阵特征值或SINR小于传输层#1对应的信道矩阵特征值或SINR。
基于上述技术方案,本申请针对频域压缩码本,按照空域向量的强弱对系统性能的影响程度,将不同传输层对应的空域向量进行分组,为对系统性能影响较大的空域向量(例如,第一空域向量集)分配更多的比特数进行上报,为对系统性能影响较小的空域向量(第二空域向量集)分配较少的量化比特进行上报,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
需要说明的是,上述对系统性能影响较大的空域向量可以是较强的空域向量,对系统性能影响较小的空域向量可以是较弱的空域向量,其中,上述较强的空域向量对应的空频合并系数的幅度平方之和大于或等于上述较弱的空域向量对应的空频合并系数的幅度平方之和,或,上述较强的空域向量对应的空频合并系数的幅度值中的最小值大于或等于上述较弱的空域向量对应的空频合并系数的幅度值中的最大值。
在一种可能的实现方式中,该N个频域向量集包括第一频域向量集与第二频域向量集,该P个频域向量包括该第一频域向量集中的P 1个频域向量和该第二频域向量集中的P 2个频域向量,该第一频域向量集与该第一空域向量集对应,该第二频域向量集与该第二空域向量集对应,P 1大于P 2,且P 2大于或等于1。
基于上述技术方案,通过使得为第一空域向量集确定的频域向量的个数大于为第二空域向量集确定的频域向量的个数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的频域向量的索引号)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,该N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,该第一空频合并系数集与该第一空域向量集对应,该第二空频合并系数集与该第二空域向量集对应,该第一空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数。
基于上述技术方案,通过使得为第一空频合并系数集中的每个空频合并系数的量化比特数大于为第二空频合并系数集中的每个空频合并系数的量化比特数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,该第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;该第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
在一种可能的实现方式中,该第一指示信息还用于指示Q个空域向量,Q大于或等于2,该Q个空域向量包括该第一空域向量集中的Q 1个空域向量和该第二空域向量集中的Q 2个空域向量,其中,该第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,该第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
在一种可能的实现方式中,该方法还包括:发送第二指示信息,该第二指示信息用于 指示以下至少一项:该第一空域向量集中的空域向量的个数Q 1、该第二空域向量集中的空域向量的个数Q 2、该第一频域向量集中的频域向量的个数P 1、该第二频域向量集中的频域向量的个数P 2、该第一空频合并系数集中的空频合并系数的个数与该第二空频合并系数集中的空频合并系数的个数。
在一种可能的实现方式中,该第一空频合并系数集中的空频合并系数的个数大于该第二空频合并系数集中的空频合并系数的个数。
基于上述技术方案,通过使得为第一空频合并系数集确定的空频合并系数的个数多于为第二空频合并系数集确定的空频合并系数的个数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,该第一空域向量集中的L 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的L 2个空域向量包括该第一传输层对应的部分向量与该第二传输层对应的部分向量。
基于上述技术方案,当传输层的个数为2时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空域向量合并为第二空域向量集,并使得第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为3时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的全部空域向量确定为第三空域向量集,并使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全 部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为4时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的全部空域向量与传输层#4对应的全部空域向量确定为第三空域向量集,并使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,N的取值为4,该N个空域向量集还包括第三空域向量集与第四空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,该第四空域向量集中的空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息与该第四空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数大于承载该第四空域向量集对应的信息的比特数,且小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,且小于承载第三空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为4时,将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,将传输层#2对应的空域向量按照空域向量的强弱划分为两部分,将传输层#3对应的空域向量按照空域向量的强弱划分为两部分,将传输层#4对应的空域向量按照空域向量的强弱划分为两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量、传输层#2对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的较强的一组空域向量与传输层#4对应的较强的一组空域向量确定为第三空域向量集,将传输层#3对应的较弱的一组空域向量与传输层#4对应的较弱的一组空域向量合并为第四空域向量集,并使得第一指示信息中承载该第三空域向量集对应的信息的比特数大于承载该第四空域向量集对应的信息的比特数,且小于承载该第一空域向量集对应的信息的比特数,第一指示信息中承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,且小于承载第三空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,该N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
在一种可能的实现方式中,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量、第三传输层对应的部分向量与第四传输层对应的部分向量,该第三空域向量集中空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为4时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,将传输层#3(例如,第三传输层)对应的空域向量分为强弱两部分,将传输层#4(例如,第四传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量、传输层#2对应的较弱的一组空域向量、传输层#3对应的较弱的一组空域向量与传输层#4对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的较强的一组空域向量与将传输层#4对应的较强的一组空域向量确定为第三空域向量集,并使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上报开销。
在一种可能的实现方式中,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量与第三传输层对应的部分向量,该第三空域向量集中的空域向量包括该第三传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
基于上述技术方案,当传输层的个数为3时,通过将传输层#1(例如,第一传输层)对应的空域向量分为强弱两部分,将传输层#2(例如,第二传输层)对应的空域向量分为强弱两部分,将传输层#3(例如,第三传输层)对应的空域向量分为强弱两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量、传输层#2对应的较弱的一组空域向量与传输层#3对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的较强的一组空域向量确定为第三空域向量集,并使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,从而在保证最小化系统性能损失的前提下,最大限度地降低上 报开销。
在一种可能的实现方式中,该第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
在一种可能的实现方式中,该N个空频合并系数集还包括第三空频合并系数集与第四空频合并系数集,该第三空频合并系数集与该第三空域向量集对应,该第四空频合并系数集与该第四空域向量集对应,该第三空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
在一种可能的实现方式中,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向对应的空域向量。
在一种可能的实现方式中,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集 对应的信息的比特数。
在一种可能的实现方式中,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化方向对应的空域向量、所述第二传输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
在一种可能的实现方式中,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
在一种可能的实现方式中,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
在一种可能的实现方式中,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
在一种可能的实现方式中,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
在一种可能的实现方式中,所述N个空域向量集还包括第三频域向量集与第四频域向 量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
第三方面,提供了一种确定目标空频矩阵的方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
具体地,该方法包括:终端设备确定第一信息,所述第一信息用于确定R个传输层在N f个频域单元上对应的目标空频矩阵V,所述目标空频矩阵V是N s行R*N f列的矩阵,
Figure PCTCN2020073714-appb-000001
其中V r b为第r个传输层,第b个频域单元对应的目标空频向量,r大于或等于1,且小于或等于R,上述的幅度量化比特可以包括宽带幅度量化比特,b大于或等于1,且小于或等于N f,所述目标空频矩阵V满足V=W 1W 2W 3 H,所述W 1是由从空域向量集中选择的αL个空域向量构成的N s行αL列的矩阵,所述W 3=[W f(1),...,W f(αL)],其中W f(i)为第i个空域向量对应的从频域向量集中选择的M i个频域向量构成的M i行RN f列的矩阵,频域向量集可以是RN f乘以RN f大小的正交DFT矩阵或过采样DFT矩阵包含的向量,或者是RN f乘以RN f大小的正交DFT矩阵的共轭转置矩阵或过采样DFT矩阵的共轭转置矩阵包含的向量,
Figure PCTCN2020073714-appb-000002
W 2 (i)是每个空域向量对应的维度是1*M i的空频合并系数矩阵;终端设备向网络设备发送所述第一信息。
在一种可能的实现方式中,所述αL个空域波束基向量采用相同的M频域基向量,所述目标空频矩阵V=W 1W 2W 3 H,其中W 1是从空域波束基向量集合中选择的αL个空域波束基向量构成的N s行αL列的矩阵,所述W 3为从频域基向量集合中选择的M个频域基向量构成的M行RN f列的矩阵,W 2是维度为αL*M的空频合并系数矩阵。
在一种可能的实现方式中,所述第一信息包括第一指示信息、第二指示信息和第三指示信息,所述第一指示信息用于指示αL个空域向量的索引号,第二指示信息用于指示每个空域向量对应的频域向量的索引号,第三指示信息用于指示空频合并系数的幅度和相位量化值。
以上方法,可以视为将R个传输层的空频向量组合为更大维度的高维空频矩阵(N s行RN f列的矩阵)。对所述高维空频矩阵进行双域压缩。
在一种可能的实现方式中,所述第一信息还可以包括第四指示信息和第五指示信息,第四指示信息用于指示幅度非零合并系数的数目,第五指示信息用于指示幅度非零合并系数的索引。
第四方面,提供了一种指示预编码向量的装置,该指示预编码向量的装置包括用于执行第一方面中任一种可能实现方式中的方法的各个模块或单元。
第五方面,提供一种指示预编码向量的装置,该指示预编码向量的装置可以为上述方法设计中的终端设备,或者,为设置在终端设备中的芯片。该指示预编码向量的装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该指示预编码向量的装置还包括存储器。可选地,该指示预编码向量的装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该指示预编码向量的装置为终端设备。当该指示预编码向量的装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该指示预编码向量的装置为配置于终端设备中的芯片。当该指示预编码向量的装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供了一种确定预编码向量的装置,该确定预编码向量的装置包括用于执行第二方面中任一种可能实现方式中的方法的各个模块或单元。
第七方面,提供一种确定预编码向量的装置,该确定预编码向量的装置可以为上述方法设计中的网络设备,或者,为设置在网络设备中的芯片。该确定预编码向量的装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面中任一种可能实现方式中的方法。可选地,该确定预编码向量的装置还包括存储器。可选地,该确定预编码向量的装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该确定预编码向量的装置为网络设备。当该确定预编码向量的装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该确定预编码向量的装置为配置于网络设备中的芯片。当该确定预编码向量的装置为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
附图说明
图1是适用于本申请实施例提供的指示和确定预编码向量的方法的通信系统的示意图;
图2是本申请实施例提供的指示和确定预编码向量的方法的示意性流程图;
图3是根据本申请实施例的指示预编码向量的装置的示意性框图;
图4是根据本申请实施例的指示预编码向量的装置的另一示意性框图;
图5是根据本申请实施例的确定预编码向量的装置的示意性框图;
图6是根据本申请实施例的确定预编码向量的装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的指示和确定预编码向量的方法的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,如网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。
1、预编码技术:发送设备(如网络设备)可以在已知信道状态的情况下,借助与信道资源相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备(如终端设备)消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以有助于提升发送设备与多个接收设备在相同的时频资源上传输的性能,即提升多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)系统的性能。
应理解,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、预编码矩阵和预编码矩阵指示(PMI):PMI可以用于指示预编码矩阵。其中,该预编码矩阵例如可以是终端设备基于各个频域单元(如,频域子带,或频域子带的R倍,R=1或1/2,或RB)的信道矩阵确定的、与各频域单元对应的预编码矩阵。
其中,信道矩阵可以是终端设备通过信道估计等方式或者基于信道互易性确定。但应理解,终端设备确定信道矩阵的具体方法并不限于上文所述,具体实现方式可参考现有技术,为了简洁,这里不再一一列举。
预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decomposition,EVD)的方式获得。
应理解,上文中列举的预编码矩阵的确定方式仅为示例,不应对本申请构成任何限定。预编码矩阵的确定方式可以参考现有技术,为了简洁,这里不再一一列举。
需要说明的是,在本申请实施例中,与频域单元对应的预编码矩阵,可以是指,针对该频域单元反馈的预编码矩阵,例如可以是基于该频域单元上的参考信号进行信道测量和反馈的预编码矩阵。与频域单元对应的预编码矩阵可用于对后续通过该频域单元传输的数据做预编码的预编码矩阵。下文中,与频域单元对应的预编码矩阵也可以简称为该频域单元的预编码矩阵,与频域单元对应的预编码向量也可以称为该频域单元的预编码向量。
还需要说明的是,在本申请实施例中,网络设备基于终端设备的反馈所确定的预编码矩阵可以直接用于下行数据传输;也可以经过一些波束成形方法,例如包括迫零(zero forcing,ZF)、正则化迫零(regularized zero-forcing,RZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,以得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。在未作出特别说明的情况下,下文中所涉及的预编码矩阵(或向量)均可以是指网络设备基于终端设备反馈所确定的预编码矩阵(或向量)。
3、预编码向量:一个预编码矩阵可以包括一个或多个向量,如列向量。一个预编码矩阵可以用于确定一个或多个预编码向量。
当传输层数为1且发射天线的极化方向数也为1时,预编码向量可以是预编码矩阵。当传输层数为多个且发射天线的极化方向数为1时,预编码向量可以是指预编码矩阵在一个传输层上的分量。当传输层数为1且发射天线的极化方向数为多个时,预编码向量可以是指预编码矩阵在一个极化方向上的分量。当传输层数为多个且发射天线的极化方向数也为多个时,预编码向量可以是指预编码矩阵在一个传输层、一个极化方向上的分量。
应理解,预编码向量也可以由预编码矩阵中的向量确定,如,对预编码矩阵中的向量进行数学变换后得到。本申请对于预编码矩阵与预编码向量之间的数学变换关系不作限定。
4、天线端口(antenna port):简称端口。可以理解为被接收设备所识别的虚拟天线。或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号对应,因此,每个天线端口可以称为一个参考信号的端口。在本申请实施例中,天线端口可以是指实际的独立发送单元(transceiver unit,TxRU)。
5、空域向量(spatial domain vector):或者称空域基向量或空域波束向量。空域向量中的各个元素可以表示各个天线端口的权重。基于空域向量中各个元素所表示的各个天线端口的权重,将各个天线端口的信号做线性叠加,可以在空间某一方向上形成信号较强的区域。
下文中为方便说明,假设空域向量记作u。空域向量u的长度可以为一个极化方向上的发射天线端口数N s,N s≥1且为整数。空域向量例如可以为长度为N s的列向量或行向量。本申请对此不作限定。
关于空域向量的定义可以参考NR协议TS 38.214版本15(release 15,R15)中类型II码本中定义的二维(2 dimensions,2D)-离散傅里叶变换(Discrete Fourier Transform,DFT)向量或过采样2D-DFT向量v l,m。这里为了简洁,不再赘述。
6、空域向量集合:候选空域向量构成的向量集合,可以包括多种不同长度的空域向量,以与不同的发射天线端口数对应。在本申请实施例中,由于空域向量的长度为N s,故终端设备所上报的空域向量所属的空域向量集合中的各空域向量的长度均为N s
在一种可能的设计中,该空域向量集合可以包括N s个空域向量,该N s个空域向量之间可以两两相互正交。该空域向量集合中的每个空域向量可以取自2D-DFT矩阵。其中,2D可以表示两个不同的方向,如,水平方向和垂直方向。若水平方向和垂直方向的天线端口数目分别为N 1和N 2,那么N s=N 1N 2
该N s个空域向量例如可以记作
Figure PCTCN2020073714-appb-000003
该N s个空域向量可以构建矩阵B s
Figure PCTCN2020073714-appb-000004
若空域向量集合中的每个空域向量取自2D-DFT矩阵,则
Figure PCTCN2020073714-appb-000005
其中D N为N×N的正交DFT矩阵,第m行第n列的元素为
Figure PCTCN2020073714-appb-000006
在另一种可能的设计中,该空域向量集合可以通过过采样因子O s扩展为O s×N s个空域向量。此情况下,该空域向量集合可以包括O s个子集,每个子集可以包括N s个空域向量。每个子集中的N s个空域向量之间可以两两相互正交。该空域向量集合中的每个空域向量可以取自过采样2D-DFT矩阵。其中,过采样因子O s为正整数。具体地,O s=O 1×O 2,O 1可以是水平方向的过采样因子,O 2可以是垂直方向的过采样因子。O 1≥1,O 2≥1,O 1、O 2不同时为1,且均为整数。
该空域向量集合中的第o s(1≤o s≤O s且o s为整数)个子集中的N s个空域向量例如可以分别记作
Figure PCTCN2020073714-appb-000007
则基于该第o s个子集中的N s个空域向量可以构造矩阵
Figure PCTCN2020073714-appb-000008
Figure PCTCN2020073714-appb-000009
因此,空域向量集合中的各空域向量可以取自2D-DFT矩阵或过采样2D-DFT矩阵。该空域向量集合中的每个列向量可以称为一个2D-DFT向量或过采样2D-DFT向量。换句话说,空域向量可以为2D-DFT向量或过采样2D-DFT向量。
7、频域向量(frequency domain vector):本申请实施例中提出的用于表示信道在频域的变化规律的向量。每个频域向量可以表示一种变化规律。由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。因此,可以通过不同的频域向量来表示不同传输路径上时延导致的信道在频域上的变化规律。
下文中为方便说明,假设频域向量记作v。频域向量的长度可以为频域单元的数目,还可以是需要上报CSI的频域单元的数目(如reporting band的数目)。此外,频域向量的长度还可以是预设的取值,如是2、3或5的倍数的整数。频域向量的长度记作N f,N f≥1,且为整数。
8、频域向量集合:候选频域向量构成的向量集合,可以包括多种不同长度的频域向量。该频域向量集合中的一个或多个频域向量被选择用于构建预编码向量。
在一种可能的设计中,该频域向量集合可以包括多个频域向量。该多个频域向量之间可以两两相互正交。该频域向量集合中的每个频域向量可以取自DFT矩阵或IDFT矩阵(即DFT矩阵的共轭转置矩阵)。
例如,该N f个频域向量例如可以记作
Figure PCTCN2020073714-appb-000010
该N f个频域向量可以构建矩阵B f
Figure PCTCN2020073714-appb-000011
在另一种可能的设计中,该频域向量集合可以通过过采样因子O f扩展为O f×N f个频域向量。此情况下,该频域向量集合可以包括O f个子集,每个子集可以包括N f个频域向量。每个子集中的N f个频域向量之间可以两两相互正交。每个子集可以称为一个正交组。该频域向量集合中的每个频域向量可以取自过采样DFT矩阵或过采样DFT矩阵的共轭转置矩阵。其中,过采样因子O f为正整数。
例如,该频域向量集合中的第o f(1≤o f≤O f且o f为整数)个子集中的N f个频域向量例如可以分别记作
Figure PCTCN2020073714-appb-000012
则基于该第o f个子集中的N f个频域向量可以构造矩阵
Figure PCTCN2020073714-appb-000013
Figure PCTCN2020073714-appb-000014
因此,频域向量集合中的各频域向量可以取自DFT矩阵或过采样DFT矩阵,或者取自DFT矩阵的共轭转置矩阵或过采样DFT矩阵的共轭转置矩阵。该频域向量集合中的每个列向量可以称为一个DFT向量或过采样DFT向量。换句话说,频域向量可以为DFT向量或过采样DFT向量。
9、空频分量矩阵:通过一个空域向量和一个频域向量可以确定一个空频分量矩阵。一个空频分量矩阵例如可以由一个空域向量和一个频域向量的共轭转置确定,如u×v H,其维度可以为N s×N f
应理解,空频分量矩阵可以是由一个空域向量和一个频域向量确定的空频基本单位的一种表现形式。空频基本单位例如还可以表现为空频分量向量,该空频分量向量例如可以由一个空域向量和一个频域向量的克罗内克(Kronecker)积确定;该空频基本单位例如还可以表现为空频向量对等。本申请对于空频基本单位的具体表现形式不作限定。本领域的技术人员基于相同的构思,由一个空域向量和一个频域向量确定的各种可能的形式均应落入本申请保护的范围内。此外,如果对空域向量或频域向量定义了与上文列举所不同的形式,空频分量矩阵与空域向量、频域向量的运算关系也可能不同。本申请对于空频分量矩阵与空域向量、频域向量的运算关系不作限定。
10、空频矩阵:在本申请实施例中,空频矩阵可以理解为用于确定预编码矩阵的一个中间量。对于终端设备来说,空频矩阵可以由预编码矩阵或信道矩阵确定。对于网络设备来说,空频矩阵可以是由多个空频分量矩阵的加权和得到,以用于恢复下行信道或预编码矩阵。
如前所述,空频分量矩阵可以表示为维度为N s×N f的矩阵,空频矩阵也可以表示为维度为N s×N f的矩阵。该维度为N s×N f的空频矩阵可以包括N f个长度为N s的列向量。该N f个列向量可以与N f个频域单元对应,每个列向量可用于确定所对应的频域单元的预编码向量。
例如,空频矩阵可以记作V,
Figure PCTCN2020073714-appb-000015
其中,V 1
Figure PCTCN2020073714-appb-000016
是与N f个频域单元对应的N f个列向量,对于单极化方向天线各列向量的长度均可以为N s。该N f个列向量分别对应N f个频域单元的目标预编码向量。即空频矩阵可以视为将N f个频域单元对应的目标预编码向量组合构成的联合矩阵。
应理解,空频矩阵仅为用于确定预编码矩阵的中间量的一种表现形式,不应对本申请构成任何限定。例如,将空频矩阵中的各列向量按从左至右的顺序依次首位相接,或者按照其他预定义的规则排列,也可以得到长度为N s×N f的向量,该向量可以称为空频向量。
还应理解,上文所示的空频矩阵和空频向量的维度仅为示例,不应对本申请构成任何限定。例如,该空频矩阵也可以是维度为N f×N s的的矩阵。其中,每个行向量可对应于一个频域单元,以用于确定所对应的频域单元的预编码向量。
此外,当发射天线配置有多个极化方向时,该空频矩阵的维度还可以进一步扩展。如,对于双极化方向天线,该空频矩阵的维度可以为2N s×N f或N f×2N s,其中V 1
Figure PCTCN2020073714-appb-000017
是与N f个频域单元对应的N f个列向量,各列向量的长度均为2N s。应理解,本申请对于发射天线 的极化方向数不作限定。
11、双域压缩:包括空域压缩和频域压缩。空域压缩可以是指在空域向量集合中选择一个或多个空域向量,作为构建预编码向量的空域向量。频域压缩可以是指在频域向量集合中选择一个或多个频域向量,作为构建预编码向量的频域向量。被选择的空域向量为空域向量集合中的部分或全部空域向量。被选择的频域向量为频域向量集合中的部分或全部频域向量。
选择的一个或多个空域向量可以构成空域波束基矩阵W 1,其中W 1中的每一个列向量对应选择的一个空域向量。选择的一个或多个频域向量可以构成频域基矩阵W 3,其中W 3中的每一个列向量对应选择的一个频域向量。对于一个传输层空频矩阵V可以表示为选择的一个或多个空域向量与选择的一个或多个频域向量线性合并的结果,
Figure PCTCN2020073714-appb-000018
其中,若采用双极化方向,为每个传输层的每个极化方向选择L个空域向量,W1的维度为2Ns×2L。在一种可能的实现方式中,两个极化方向采用相同的L个空域向量
Figure PCTCN2020073714-appb-000019
此时,W1可以表示为
Figure PCTCN2020073714-appb-000020
其中I S(i)表示选择的空域向量对应的索引。此外,两个极化方向也可以采用不完全相同的L个空域向量。
举例说明,每个空域向量选择相同的M个频域向量,则W 3 H的维度为M×N f,W 3中的每一个列向量对应一个频域向量,此时每个空域向量对应的频域向量均为W 3中的M个频域向量。
Figure PCTCN2020073714-appb-000021
为空频合并系数矩阵,维度为2L×M。空频合并系数矩阵
Figure PCTCN2020073714-appb-000022
中的第i行对应2L个空域向量中的第i个空域向量,空频合并系数矩阵
Figure PCTCN2020073714-appb-000023
中的第j列对应M个频域基向量中的第j个频域基向量。第i个空域向量对应的空频合并系数为空频合并系数矩阵
Figure PCTCN2020073714-appb-000024
中的第i个行向量,第i个空域向量对应的空频合并系数为空频合并系数矩阵
Figure PCTCN2020073714-appb-000025
中的第i个行向量中包含的元素。
此外,L个空域向量中的每一个空域向量也可以对应不同的频域基向量。此时,W 3 H=[W f(0),...,W f(2L-1)] H,其中
Figure PCTCN2020073714-appb-000026
为第i个空域向量对应的M i个频域向量构成的M i行N f列的矩阵。
Figure PCTCN2020073714-appb-000027
其中
Figure PCTCN2020073714-appb-000028
是第i个空域向量对应的维度是1*M i的空频合并系数矩阵,
Figure PCTCN2020073714-appb-000029
中包含的空频合并系数为第i个空域向量对应的空频合并系数。此时,
Figure PCTCN2020073714-appb-000030
共计包含
Figure PCTCN2020073714-appb-000031
个合并系数。若每个空域向量对应的频域向量的数目均为M,则
Figure PCTCN2020073714-appb-000032
共计包含2LM个合并系数。
此外,空频矩阵V也可以表示为
Figure PCTCN2020073714-appb-000033
此时W 3中的每一个行向量对应选择的一个频域向量。
需要说明的是,同一传输层的每个极化方向各自对应L个空域向量,传输层的两个极化方向共对应2L个空域向量,本申请实施例以同一传输层的两个极化方向各自对应的L个空域向量完全相同为例进行说明。
还需要说明的是,在本申请实施例中,将为一个传输层的两个极化方向选择的2L个空域向量称为传输层对应的空域向量,假设为2L个空域向量中的每个空域向量选择M个频域向量,则将2L个空域向量对应的2L×M个频域向量称为传输层对应的频域向量,将2L个空域向量对应的2L×M个空频合并系数称为传输层对应的空频合并系数。
还需要说明的是,在一种实施方式中,仅需要上报合并系数矩阵
Figure PCTCN2020073714-appb-000034
中包含的所有合并系数的子集。基站通过指示信息指示需要上报的合并系数的最大数目K0,UE实际上报K1个合并系数,且K 1<=K 0<=2LM。对于未上报的合并系数,认为对应的空频合并系数为0。
还需要说明的是,对于一个传输层,可以按照上述方法通过双域压缩确定空频矩阵。对于多个传输层,其中每个传输层均可以采用相同的双域压缩方法确定每个传输层对应的空频矩阵。以2个传输层为例,2个传输层可以采用相同的L个空域向量,也可以采用不完全相同的L个空域向量。2个传输层可以采用相同的M个频域向量,也可以是每个传输层的每个空域向量对应不同的频域向量。
还需要说明的是,空域向量数目L,频域向量数目M以及需要上报的空频合并系数的最大数目K 0可以是网络设备通过高层信令配置的。网络设备通过高层信令可以直接配置空域向量数目L,频域向量数目M以及需要上报的空频合并系数的最大数目K0的具体数值,也可以配置具体数值对应的索引。此外,频域合并系数的数目可以是频域单元的p倍,p<1且p的取值可以为3/4、1/2、1/4或1/8此外,需要上报的空频合并系数的最大数目K0可以是2LM的β倍,β<1且取值可以为3/4、1/2、1/4或1/8。
此外,一个空域向量和一个频域向量所确定的矩阵例如也可以为上述空频分量矩阵。被选择的一个或多个空域向量和一个或多个频域向量可用于确定一个或多个空频分量矩阵。该一个或多个空频分量矩阵的加权和可用于构建与一个传输层对应的空频矩阵。换句话说,空频矩阵可以近似为由上述被选择的一个或多个空域向量和一个或多个频域向量所确定的空频分量矩阵的加权和。这里,用于构建一个空频分量矩阵的空域向量和频域向量可以称为一个空频向量对。
因此,当网络设备获取了可用于构建空频矩阵的空域向量、频域向量和空频合并系数后,便可以基于所构建的空频矩阵进一步确定与各频域单元对应的预编码向量。
为便于理解本申请实施例,在介绍本申请实施例之前,先做出以下几点说明。
第一,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示。例如,当描述某一指示信息用于指示信息I时,可以包括该指示信息直接指示I或间接指示I,而并不代表该指示信息中一定携带有I。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵 中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如行向量可以表现为列向量,一个矩阵可以通过该矩阵的转置矩阵来表示,一个矩阵也可以表现为向量或者数组的形式,该向量或者数组可以由该矩阵的各个行向量或者列向量相互连接而成,两个向量的克罗内克尔积也可以通过一个向量与另一个向量的转置向量的乘积等形式来表现等。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令,例如RRC信令、MAC层信令,例如MAC-CE信令和物理层信令,例如下行控制信息(downlink control information,DCI)中的一种或者至少两种的组合。
第二,在下文示出的实施例中,第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的字段、不同的指示信息等。
第三,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第四,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第五,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
下面结合附图详细说明本申请实施例提供的指示和确定预编码向量的方法。
应理解,本申请实施例提供的方法可以应用于通过多天线技术通信的系统,例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备。网络设备和终端设备之间可通过多天线技术通信。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的指示和确定预编码向量的方法。
图2是从设备交互的角度示出的本申请实施例提供的指示和确定预编码向量的方法200的示意性流程图。如图所示,该方法200可以包括步骤210至步骤240。
下面详细说明该方法中各个步骤。
在步骤220中,终端设备生成第一指示信息,该第一指示信息用于指示M个频域向量与K个空频合并系数。
在本申请实施例中,该P个频域向量可以属于N个频域向量集,该K个空频合并系数可以属于N个空频合并系数集,N、P、K大于或等于2。其中,该N个频域向量集与N个空域向量集一一对应,该N个空频合并系数集与N个空域向量集一一对应。
作为示例而非限定,该N个空域向量集中的至少一个空域向量集与至少两个传输层对应,例如,该至少一个空域向量集可以包括空域向量#1、空域向量#2、空域向量#3、空域向量#4、空域向量#5、空域向量#6、空域向量#7与空域向量#8,其中,空域向量#1、空域向量#2、空域向量#3与空域向量#4可以是一个传输层对应的空域向量,空域向量#5、空域向量#6、空域向量#7与空域向量#8可以是另一个传输层对应的空域向量。作为另一个示例,该至少一个空域向量集可以包括空域向量#1、空域向量#2、空域向量#3、空域向量#4、空域向量#5、空域向量#6、空域向量#7与空域向量#8,其中两个传输层对应相同的空域向量,即空域向量#1~8可以是一个传输层对应的空域向量,也是另一个传输层对应的空域向量。作为示例而非限定,该N个空域向量集中至少包括第一空域向量集与第二空域向量集,终端设备可以通过第一指示信息向网络设备指示第一空域向量集对应的信息与第二空域向量集对应的信息。
例如,第一指示信息中可以包括第一空域向量集对应的信息与第二空域向量集对应的信息,第一空域向量集对应的信息可以是第一空域向量集对应的PMI指示信息,可以用于指示第一空域向量集对应的频域向量与第一空域向量集对应的空频合并系数,类似地,第二空域向量集对应的信息可以指示第二空域向量集对应的频域向量与第二空域向量集对应的空频合并系数。
例如,第一空域向量集对应的信息可以包括第一空域向量集对应的频域向量的索引号,第一空域向量集对应的幅度为非零/零的空频合并系数的数目和位置指示以及第一空域向量集对应的空频向量系数的量化信息,第二空域向量集对应的信息可以包括第二空域向量集对应的频域向量的索引号、第二空域向量集对应的幅度为非零/零的空频合并系数的数目和位置指示以及第二空域向量集对应的空频向量系数的量化信息。
其中,空频合并系数的量化信息可以包括空频合并系数的幅度量化值和相位量化值,此外也可以包括每个空域向量对应的宽带幅度量化值和每个空频合并系数对应的差分幅度量化值以及每个空频合并系数的相位量化值。其中每个空频合并系数对应的差分幅度量化值为每个空频合并系数的幅度值与该空频合并系数对应的空域向量的宽带幅度值的差值的量化结果。该空频合并系数的幅度量化值、差分幅度量化值、相位量化值以及每个空域向量对应的宽带幅度量化值可以从预设的候选量化值集合中选择,预设的候选量化值集合中包含的候选量化值可以预存为表格的形式,用于指示空频合并系数的幅度量化值、相位量化值、差分幅度量化值以及每个空域向量对应的宽带幅度量化值的量化信息可以是候选量化值在预存表格(或候选量化值集合)中对应的索引。空域向量对应的宽带幅度值可以是该空域向量对应的空频合并系数的幅度值中的最大值,也可以是该空域向量对应的空频合并系数的幅度值的平均值,还可以是R15 Type II码本中定义的宽带幅度值,即所有频域单元对应的空域向量合并系数的幅度的平均值。
需要说明的是,当终端设备通过第一信息向网络设备指示非零空频合并系数的位置时,可以对传输层的每个极化方向分别进行指示,例如,若该传输层每个极化方向对应的空域向量的数目为L,每个空域向量对应M个频域向量,终端设备可以采用长度为2L×M的位图(bitmap)进行指示;或者,当同一传输层的每个极化方向对应的非零空频合并系数的位置相同时,终端设备可以对同一传输层的两个极化方向采用相同的指示,例如,终端设备可以采用长度为L×M的bitmap进行指示。
在本申请实施例中,第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数。
在步骤230中,终端设备发送该第一指示信息。相应地,网络设备接收终端设备发送的第一指示信息。在步骤240中,网络设备根据接收到的第一指示信息,确定预编码向量。
进一步地,在本申请实施例中,第一指示信息还可以用于指示Q个空域向量,Q大于或等于2,该Q个空域向量包括该第一空域向量集中的Q 1个空域向量和该第二空域向量集中的Q 2个空域向量,该第一空域向量集与N个频域向量集中的第一频域向量集对应,该第一空域向量集与N个空频合并系数集中的第一空频合并系数集对应,该第二空域向量集与N个频域向量集中的第二频域向量集对应,该第一空域向量集与N个空频合并系数集中的第二空频合并系数集对应,该P个频域向量包括该第一频域向量集中的P 1个频域向量和该第二频域向量集中的P 2个频域向量,该K个空频合并系数包括该第一空频合并系数集中的K  1个空频合并系数和该第二空频合并系数集中的K 2个空频合并系数。其中指示Q个空域向量可以分别指示每个传输层对应的空域向量的索引,或分别指示每个空域向量集对应的空域向量的索引。每个传输层可以对应相同数目的空域向量,也可以对应不同数目的空域向量。例如,每个传输层分别对应2L个空域向量。或者传输层索引越大,对应的空域向量数目越小。指示每个传输层或每个空域向量集对应的空域向量的索引可以采用组合数的方式进行指示,即用于指示X个空域向量索引的信息比特长度为
Figure PCTCN2020073714-appb-000035
需要说明的是,终端设备向网络设备上报的Q个空域向量是从多个传输层对应的空域向量中确定的,终端设备向网络设备上报的P个频域向量是从多个传输层对应的频域向量中确定的,终端设备向网络设备上报的K个空频合并系数是从多个传输层对应的空频合并系数中确定的。
其中,终端设备确定N个空域向量集、N个频域向量集与N个空频合并系数集时,每个空域向量集中包括的空域向量的个数、每个频域向量集中包括的频域向量的个数、每个空频合并系数集包括的空频合并系数的个数以及每个空频合并系数集中的空频合并系数对应的量化比特数可以由网络设备通过信令进行指示,或者,也可以预先配置,或者,还可以基于预设的规则确定,该预设的规则对于终端设备与网络设备而言是一致的。例如每个空域向量集包含的空域向量的个数、每个频域向量集中包括的频域向量的个数、每个空频合并系数集包括的空频合并系数的个数可以按照预定义的比例进行分配。或者每个空域向量集包含的空域向量的个数、每个频域向量集中包括的频域向量的个数、每个空频合并系数集包括的空频合并系数的个数以及每个空频合并系数集中的空频合并系数对应的量化比特数可以根据传输层数目按照预设的取值进行分配。
需要说明的是,上述仅以网络设备通过第二指示信息指示每个传输层对应的空域向量的数量,并且指示每个空域向量集包括的空域向量的数量、每个频域向量集包括的频域向量的数量及每个空频合并系数集包括的空频合并系数的数量为例进行说明,但本发明并不限定于此。
例如,网络设备可以通过第二指示信息指示每个传输层对应的空域向量的数量,只指示部分空域向量集包括的空域向量的数量和/或,只指示部分频域向量集包括的频域向量的数量和/或,只指示部分空频合并系数集包括的空频合并系数的数量为例进行说明,终端设备可以根据网络设备指示的每个传输层对应的空域向量的数量以及部分空域向量集包括的空域向量的数量,确定另一部分空域向量集包括的空域向量的数量,和/或,终端设备可以根据网络设备指示的每个传输层对应的频域向量的数量以及部分频域向量集包括的频域向量的数量,确定另一部分频域向量集包括的频域向量的数量,和/或,终端设备可以根据网络设备指示的每个传输层对应的空频合并系数的数量以及部分空频合并系数集包括的空频合并系数的数量,确定另一部分空频合并系数集包括的空频合并系数的数量。
当由网络设备通过信令进行指示时,方法200在步骤220之前,还可以包括步骤210。
在步骤210中,网络设备向终端设备发送第二指示信息,相应地,终端设备接收网络设备发送的第二指示信息,该第二指示信息用于指示以下至少一项:
该第一空域向量集中的空域向量的个数、该第二空域向量集中的空域向量的个数、该第一频域向量集中的频域向量的个数、该第二频域向量集中的频域向量的个数、该第一空频合并系数集中的空频合并系数的个数与该第二空频合并系数集中的空频合并系数的个数。
例如,为了使得第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数,网络设备可以通过第二指示信息,为第一空域向量集配置较多个数的频域向量,为第二空域向量集配置较少个数的频域向量,即第一频域向量集中包括的频域向量的个数P 1大于第二频域向量集中包括的频域向量的个数P 2
进一步地,网络设备可以通过第二指示信息,为第一空域向量集中的每个空域向量均配置较多个数的频域向量,为第二空域向量集中的每个空域向量均配置较少个数的频域向量。例如,第一空域向量集中的每个空域向量采用相同数目的频域向量,且每个空域向量对应的频域向量的数目为S 1,第二空域向量集中的每个空域向量采用相同数目的频域向 量,且每个空域向量对应的频域向量的数目为S 2,则S 1>S 2
需要注意的是,第一指示信息指示的每个频域向量集中的频域向量的个数可以是第二指示信息指示的该频域向量集中的频域向量的个数的上限。即终端设备通过第一指示信息上报的频域向量的个数可以小于或等于网络设备通过第二指示信息配置的频域向量的个数。
除此之外,为了使得第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数,网络设备可以通过第二指示信息,为第一空域向量集配置较多个数的空频合并系数,为第二空域向量集配置较少个数的空频合并系数,即第一空频合并系数集中包括的空频合并系数的个数大于第二空频合并系数集中包括的空频合并系数的个数。
需要注意的是,第一指示信息指示的每个空频合并系数集中的空频合并系数的个数可以是第二指示信息指示的该空频合并系数集中的空频合并系数的个数的上限。即终端设备通过第一指示信息上报的空频合并系数的个数可以小于或等于网络设备通过第二指示信息配置的空频合并系数的个数。
需要注意的是,频域合并系数的数目可以是频域单元的p倍,p<1且p的取值可以为3/4、1/2、1/4或1/8。此外,空频合并系数的数目可以是空频向量对的β倍,β<1且取值可以为3/4、1/2、1/4或1/8。因此,第二指示信息也可以指示上述比例因子p和β。
除此之外,为了使得第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数,网络设备可以通过第二指示信息,为第一空频合并系数集中的每个空频合并系数分配较多个数的量化比特,即第一空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数。
在本申请实施例中,第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种,第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。其中幅度量化比特可以是对每个空频合并系数对应的幅度值进行量化所需的比特数,也可以是该空频合并系数对应的空域向量的宽带幅度值与该空频合并系数对应的差分幅度值进行量化所需的比特数之和。
例如,为了使得第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数,网络设备可以通过第二指示信息或者预设的规则,为第一空频合并系数集中的每个空频合并系数分配较多个数的幅度量化比特,即第一空频合并系数集中的每个空频合并系数的幅度量化比特数大于该第二空频合并系数集中的每个空频合并系数的幅度量化比特数;或者,为第一空频合并系数集中的每个空频合并系数分配较多个数的相位量化比特,即第一空频合并系数集中的每个空频合并系数的相位量化比特数大于该第二空频合并系数集中的每个空频合并系数的相位量化比特数;或者,终端设备可以为第一空频合并系数集中的每个空频合并系数分配较多个数的相位量化比特与幅度量化比特,即第一空频合并系数集中的每个空频合并系数的相位量化比特数大于该第二空频合并系数集中的每个空频合并系数的相位量化比特数,并且,第一空频合并系数集中的每个空频合并系数的幅度量化比特数大于该第二空频合并系数集中的每个空频合并系数的幅度量化比特数。
需要说明的是,上述的幅度量化比特可以包括宽带幅度量化比特与差分幅度量化比特。此时,上述为第一空频合并系数集中的每个空频合并系数分配较多个数的幅度量化比特,可以理解为:为第一空频合并系数集中的每个空频合并系数的宽带幅度和/或差分幅度分配较多个数的量化比特;相应地,为第二空频合并系数集中的每个空频合并系数分配较少个数的幅度量化比特,可以理解为:为第二空频合并系数集中的每个空频合并系数的宽带幅度和/或差分幅度分配较少个数的量化比特。
通常情况下,终端设备通过第一指示信息向网络设备上报N个空域向量集、N个频域向量集与N个空频合并系数集时,每个空域向量集中包括的空域向量的个数与网络设备通过第二指示信息为相应空域向量集配置的空域向量的个数一致,每个频域向量集中包括的频域向量的个数与网络设备通过第二指示信息为相应频域向量集配置的频域向量的个数一致,每个空频合并系数集中包括的空频合并系数集的个数与网络设备通过第一指示信息为相应空频合并系数集配置的空频合并系数集的个数一致。
例如,网络设备通过第二指示信息为第一空域向量集配置的频域向量的个数为P 1,网络设备为第二频域向量集配置的空域向量的个数为P 2,终端设备向网络设备发送的第一指示信息中包括的第一频域向量集中的频域向量的个数也为P 1,第一指示信息中包括的第二频域向量集合中的频域向量的个数也为P 2;网络设备为第一空频合并系数集配置的空频合并系数的个数为K 1,网络设备为第二空频合并系数集配置的空频合并系数的个数为K 2,终端设备向网络设备发送的第一指示信息中包括的第一空频合并系数集合中的空域向量的个数也为K 1,第一指示信息中包括的第二空频合并系数集合中的空域向量的个数也为K 2
在本申请实施例中,终端设备通过第一指示信息向网络设备上报频域向量集时,每个频域向量集中包括的频域向量的个数可以小于网络设备为该频域向量集配置的频域向量的个数,即,网络设备为终端设备配置的每个频域向量集中包括的频域向量的数量是终端设备向网络设备上报的每个频域向量集中实际包括的频域向量的数量的最大值,此时,终端设备还可以通过第一指示信息将实际上报的频域向量的个数上报至网络设备。
终端设备通过第一指示信息向网络设备上报空频合并系数集时,每个空频合并系数集中包括的空频合并系数的个数可以小于网络设备为该空频合并系数集配置的空频合并系数的个数,即,网络设备为终端设备配置的每个空频合并系数集中包括的空频合并系数的数量是终端设备向网络设备上报的每个空频合并系数集中实际包括的空频合并系数的数量的最大值,此时,终端设备还可以通过第一指示信息将实际上报的空频合并系数的个数上报至网络设备。
终端设备通过第一指示信息向网络设备上报空频合并系数的量化信息时,实际使用的量化比特数可以小于或等于网络设备通过第二指示信息分配的量化比特数,即,网络设备为终端设备的每个空频合并系数集中的空频合并系数配置的量化比特数是终端设备向网络设备上报每个空频合并系数集空频合并系数时,实际使用的量化比特数的最大值,本申请实施例对此不作限定。
在本申请实施例中,同一空域向量集中的任意两个空域向量所对应的频域向量可以完全相同,或者,可以部分相同,或者,可以完全不同。
例如,假设第一空域向量集中的每个空域向量与S个频域向量对应,如果第一空域向 量集中的任意两个空域向量所对应的S个频域向量完全相同,终端设备向网络设备上报的第一频域向量集中包括的频域向量的个数P 1与S相等,即针对第一空域向量集中的所有空域向量,仅上报该S个频域向量;如果第一空域向量集中某两个空域向量所对应的频域向量数目均为S,且S个频域向量不完全相同或者完全不同,终端设备向网络设备上报的第一频域向量集中包括的频域向量的个数P 1等于S与第一空域向量集中包括的空域向量的个数Q 1的乘积,即针对第一空域向量集中的每个空域向量,均得上报每个空域向量对应的S个频域向量,其中,S大于或等于1。如果第一空域向量集中某两个空域向量所对应的频域向量数目不完全相等,第i个空域向量对应的频域向量数目为S i,且这两个空域向量对应的频域向量不完全相同或者完全不同,终端设备向网络设备上报的第一频域向量集中包括的频域向量的个数P 1等于第一空域向量集中包括的空域向量的所对应的频域向量数目之和
Figure PCTCN2020073714-appb-000036
即针对第一空域向量集中的每个空域向量,均得上报每个空域向量对应的S i个频域向量,其中,S i大于或等于1。
例如,假设第二空域向量集中的每个空域向量与R个频域向量对应,如果第二空域向量集中的任意两个空域向量所对应的R个频域向量完全相同,终端设备向网络设备上报的第二频域向量集中包括的频域向量的个数P 2与R相等,即针对第二空域向量集中的所有空域向量,仅上报该R个频域向量;如果第二空域向量集中某两个空域向量所对应的频域向量数目均为R,且R个频域向量不完全相同或者完全不同,终端设备向网络设备上报的第二频域向量集中包括的频域向量的个数P 2等于R与第二空域向量集中包括的空域向量的个数Q 2的乘积,即针对第二空域向量集中的每个空域向量,均得上报每个空域向量对应的R个频域向量,其中,R大于或等于1。如果第二空域向量集中某两个空域向量所对应的频域向量数目不完全相等,第i个空域向量对应的频域向量数目为R i,且这两个空域向量对应的频域向量不完全相同或者完全不同,终端设备向网络设备上报的第一频域向量集中包括的频域向量的个数P 1等于第一空域向量集中包括的空域向量的所对应的频域向量数目之和
Figure PCTCN2020073714-appb-000037
即针对第一空域向量集中的每个空域向量,均得上报每个空域向量对应的R i个频域向量,其中,R i大于或等于1。
下面针对不同场景,对终端设备生成第一指示信息的方法进行详细说明。
首先,需要说明的是,在本申请实施例中,传输层索引越大,该传输层对应的信道矩阵特征值或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)则越小,例如,传输层#2对应的信道矩阵特征值或SINR小于传输层#1对应的信道矩阵特征值或SINR。
场景1传输层的个数为2,N的取值为2。
在本申请实施例中,可以将2个传输层记为传输层#1与传输层#2,此时,N的取值可以为2,N个空域向量集包括第一空域向量集与第二空域向量集,N个频域向量集包括第一频域向量集与第二频域向量集,N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,终端设备生成的第一指示信息中承载第一空域向量集对应的信息的比特数大于承载第二空域向量集对应的信息的比特数。
终端设备可以从传输层#1对应的空域向量与传输层#2对应的空域向量中确定第一空域向量集与第二空域向量集。例如,终端设备可以将传输层#1对应的空域向量中的部分向量与传输层#2对应的空域向量中的部分向量确定为第一空域向量集,将传输层#1对应的空域向量中的另一部分向量与传输层#2对应的空域向量中的另一部分向量确定为第二空域向量集。
终端设备可以将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,并且将传输层#2对应的空域向量按照空域向量的强弱划分为两部分。例如,终端设备可以根据传输层#1对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值,将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,并且可以根据传输层#2对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值,将传输层#2对应的空域向量按照空域向量的强弱划分为两部分.
例如,终端设备可以将传输层#1对应的空域向量按照空域向量对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值的大小关系进行排序,当空域向量对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值越大时,代表该空域向量越强,当空域向量对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值越小时,代表该空域向量越弱。
假设传输层#1对应的空域向量按照上述方法由强至弱排序后的顺序为传输层#1对应的空域向量#3、传输层#1对应的空域向量#4、传输层#1对应的空域向量#2、传输层#1对应的空域向量#1,终端设备可以将传输层1对应的空域向量#3、传输层#1对应的空域向量#4划分为较强的一组,将传输层#1对应的空域向量#2、传输层#1对应的空域向量#1划分为较弱的一组。假设传输层#2对应的空域向量按照上述方法由强至弱排序后的顺序为传输层#2对应的空域向量#4、传输层#2对应的空域向量#2、传输层#2对应的空域向量#3、传输层#2对应的空域向量#1,终端设备可以将传输层#2对应的空域向量#4、传输层#2对应的空域向量#2划分为较强的一组,将传输层#2对应的空域向量#3、传输层#2对应的空域向量#1划分为较弱的一组。
终端设备可以将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集(即,第一空域向量集中的空域向量为传输层#1对应的空域向量#3、传输层1对应的空域向量#4、传输层#2对应的空域向量#4、传输层#2对应的空域向量#2),此时L 1的取值为4,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空域向量合并为第二空域向量集(即,第二空域向量集中的空域向量为传输层1对应的空域向量#2、传输层1对应的空域向量#1、传输层#2对应的空域向量#3、传输层#2对应的空域向量#1),此时L 2的取值为4。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集与第二空域向量集中包括的空域向量的数量的总和。
假设传输层#1对应的空域向量按照上述方法由强至弱排序后的顺序为传输层#1对应的空域向量#3、传输层#1对应的空域向量#4、传输层#1对应的空域向量#2、传输层#1对应的空域向量#1,终端设备可以将传输层1对应的空域向量#3、传输层#1对应的空域向量#4划分为较强的一组,将传输层1对应的空域向量#2、传输层#1对应的空域向量#1划分为较弱的一组。假设传输层#2对应的空域向量按照上述方法由强至弱排序后的顺序为传输层#2对应的空域向量#4、传输层#2对应的空域向量#6、传输层#2对应的空域向量#5、传输层#2对应的空域向量#3,终端设备可以将传输层#2对应的空域向量#4、传输层#2对应的空域向量#6划分为较强的一组,将传输层#2对应的空域向量#5、传输层#2对应的空域向量#3划分为较弱的一组。
终端设备可以将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组 空域向量合并为第一空域向量集(即,第一空域向量集中的空域向量为传输层1对应的空域向量#3、传输层1对应的空域向量#4、传输层#2对应的空域向量#4、传输层#2对应的空域向量#6),此时L 1的取值为4,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空域向量合并为第二空域向量集(即,第二空域向量集中的空域向量为传输层1对应的空域向量#2、传输层1对应的空域向量#1、传输层#2对应的空域向量#5、传输层#2对应的空域向量#3),此时L 2的取值为4。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集与第二空域向量集中包括的空域向量的数量的总和。需要说明的是,当传输层#1对应的空域向量与传输层#2对应的空域向量完全相同时,终端设备可以仅将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,或者,终端设备可以仅将传输层#2对应的空域向量按照空域向量的强弱划分为两部分。
例如,传输层#1对应的空域向量为空域向量#1~空域向量#6,传输层#2对应的空域向量同样为空域向量#1~空域向量#6,终端设备可以根据传输层#1的每个空域向量对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值,将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,或者,可以根据传输层#2的每个空域向量对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值,将传输层#2对应的空域向量按照空域向量的强弱划分为两部分。此外,还可以综合考虑两个传输层对应的同一个空域向量的强弱(如两个传输层对应的每个空域向量对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值的平均值),将空域向量#1~空域向量#6划分为两部分。
例如,终端设备可以将传输层#1对应的空域向量按照空域向量对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值的大小关系进行排序,当空域向量对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值越大时,代表该空域向量越强,当空域向量对应的空频合并系数的幅度值、幅度值的平方或者宽带幅度值越小时,代表该空域向量越弱。
假设传输层#1对应的空域向量按照上述方法由强至弱排序后的顺序为传输层#1对应的空域向量#2、传输层#1对应的空域向量#4、传输层#1对应的空域向量#3、传输层#1对应的空域向量#1、传输层#1对应的空域向量#5、传输层#1对应的空域向量#6,终端设备可以将传输层#1对应的空域向量#2、传输层#1对应的空域向量#3、传输层#1对应的空域向量#4划分为较强的一组,将传输层#1对应的空域向量#1、传输层#1对应的空域向量#5、传输层#1对应的空域向量#6划分为较弱的一组。
终端设备可以将该较强的一组空域向量确定为第一空域向量集,此时L 1的取值为3,将该较弱的一组空域向量确定为第二空域向量集,此时L 2的取值为3。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集与第二空域向量集中包括的空域向量的数量的总和。
对于确定的第一空域向量集与第二空域向量集,终端设备可以为第一空域向量集确定P 1个频域向量,为第二空域向量集确定P 2个频域向量,P 1个频域向量构成该第一频域向量集,P 2个频域向量构成该第二频域向量集。此时,前面提到的终端设备向网络设备上报的P个频域向量就是第一频域向量集与第二频域向量集中包括的频域向量。
为了使得第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者 基于预先配置,为第一空域向量集确定较多数量的频域向量,即P 1大于P 2,第一指示信息中所指示的第一频域向量集中的频域向量的个数多于第一指示信息中所指示的第二频域向量集中的频域向量的个数。
例如,第一指示信息中携带有第一频域向量集中包括的频域向量的索引号与第二频域向量集中的包括的频域向量的索引号,则第一指示信息中所指示的第一频域向量集中的频域向量的个数多于第一指示信息中所指示的第二频域向量集中的频域向量的个数意味着:第一指示信息中携带的第一频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第二频域向量集中包括的频域向量的索引号的数量,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的频域向量的索引号)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数。进一步地,第一指示信息中携带的第一空域向量集中包括的每个空域向量对应的频域向量的索引号的数量大于第一指示信息中携带的第二空域向量集中包括的每个空域向量对应的频域向量的索引号的数量,从而使得第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数。
除此之外,对于确定的第一空域向量集与第二空域向量集,终端设备可以从由上述向网络设备上报的空域向量与向网络设备上报的频域向量确定的空频合并系数中为第一空域向量集确定K 1个空频合并系数,从该K个空频合并系数中为第二空域向量集确定K 2个空频合并系数,K 1个空频合并系数构成第一空频合并系数集,K 2个空频合并系数构成第二空频合并系数集。此时,前面提到的终端设备向网络设备上报的K个空频合并系数就是第一空频合并系数集与第二空频合并系数集中包括的空频合并系数。
为了使得第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集确定较多数量的空频合并系数,即K 1大于K 2,第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数多于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数。
例如,第一指示信息中携带有第一空频合并系数中包括的空频合并系数的量化信息与第二空频合并系数集中的包括的空频合并系数的量化信息,则第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数多于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数意味着:第一指示信息中携带的第一空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第二空频合并系数集中包括的空频合并系数的量化信息的数量,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数。
除此之外,对于确定的第一空频合并系数集与第二空频合并系数集,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集中的每个空频合并系数确定较大数目的量化比特,即第一空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数 的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数。
场景2传输层的个数为3,N的取值为3。
在本申请实施例中,可以将3个传输层记为传输层#1、传输层#2与传输层#3,此时,N的取值可以为3,N个空域向量集包括第一空域向量集、第二空域向量集与第三空域向量集,N个频域向量集包括第一频域向量集、第二频域向量集与第三频域向量集,N个空频合并系数集包括第一空频合并系数集、第二空频合并系数集与第三空频合并系数集,此时,终端设备生成的第一指示信息中还包括第三空域向量集对应的信息,并且终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数。进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
终端设备可以从传输层#1对应的空域向量与传输层#2对应的空域向量中确定第一空域向量集与第二空域向量集,终端设备可以从传输层#3对应的空域向量中确定第三空域向量集。例如,终端设备可以将传输层#1对应的空域向量中的部分向量与传输层#2对应的空域向量中的部分向量确定为第一空域向量集,将传输层#1对应的空域向量中的另一部分向量与传输层#2对应的空域向量中的另一部分向量确定为第二空域向量集。将传输层#3对应的全部空域向量确定为第三空域向量集。
终端设备可以根据场景1中描述的方法将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,将传输层#2对应的空域向量按照空域向量的强弱划分为两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的全部空域向量确定为第三空域向量集。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集、第二空域向量集与第三空域向量集中包括的空域向量的数量的总和。
此外,终端设备可以从传输层#1对应的空域向量与传输层#2对应的空域向量中确定第一空域向量集,从传输层#1对应的空域向量、传输层#2对应的空域向量与传输层#3对应的空域向量中确定第二空域向量集,从传输层#3对应的空域向量中确定第三空域向量集。
例如,终端设备可以将传输层#1对应的空域向量中的部分向量与传输层#2对应的空域向量中的部分向量确定为第一空域向量集,将传输层#1对应的空域向量中的另一部分向量、传输层#2对应的空域向量中的另一部分向量、传输层#3对应的空域向量中的部分向量确定为第二空域向量集,将传输层#3对应的空域向量中的另一部分向量确定为第三空域向量集。
终端设备可以根据场景1中描述的方法将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,将传输层#2对应的空域向量按照空域向量的强弱划分为两部分,将传输层#3对应的空域向量按照空域向量的强弱划分为两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量、传输层#2对应的较弱的一组空域向量与传输层#3对应 的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的较强的一组空域向量确定为第三空域向量集。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集、第二空域向量集与第三空域向量集中包括的空域向量的数量的总和。
此外,终端设备可以从传输层#1对应的空域向量中确定第一空域向量集,从传输层#2对应的空域向量与传输层#3对应的空域向量中确定第二空域向量集与第三空域向量集。
例如,终端设备可以将传输层#1对应的全部空域向量确定为第一空域向量集,将传输层#2对应的空域向量中的部分向量与传输层#3对应的空域向量中的部分向量确定为第二空域向量集,将传输层#2对应的空域向量中的另一部分向量与传输层#3对应的空域向量中的另一部分向量确定为第三空域向量集。
终端设备可以根据场景1中描述的方法将传输层#2对应的空域向量按照空域向量的强弱划分为两部分,将传输层#3对应的空域向量按照空域向量的强弱划分为两部分,并将传输层#1对应的全部空域向量合并为第一空域向量集,将传输层#2对应的较弱的一组空域向量与传输层#3对应的较弱的一组空域向量合并为第二空域向量集,将传输层#2对应的较强的一组空域向量与传输层#3对应的较强的一组空域向量确定为第三空域向量集。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集、第二空域向量集与第三空域向量集中包括的空域向量的数量的总和。
此外,终端设备可以从传输层#1对应的空域向量中确定第一空域向量集与第二空域向量集,从传输层#2对应的空域向量与传输层#3对应的空域向量中确定第三空域向量集。
例如,终端设备可以将传输层#1对应的部分空域向量确定为第一空域向量集,将传输层#1对应的空域向量中的另一部分向量确定为第二空域向量集,将传输层#2对应的全部空域向量与传输层#3对应的全部空域向量中确定为第三空域向量集。
终端设备可以根据场景1中描述的方法将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,将传输层#1对应的较强的一组空域向量确定第一空域向量集,将传输层#1对应的较弱的一组空域向量确定第二空域向量集,将传输层#2对应全部空域向量与传输层#3对应全部空域向量确定为第三空域向量集。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集、第二空域向量集与第三空域向量集中包括的空域向量的数量的总和。
对于确定的第一空域向量集、第二空域向量集与第三空域向量集,终端设备可以为第一空域向量集确定P 1个频域向量,为第二空域向量集确定第P 2个频域向量,为第三空域向量集确定P 3个频域向量,P 1个频域向量构成该第一频域向量集,P 2个频域向量构成该第二频域向量集,P 3个频域向量构成该第三频域向量集。此时,前面提到的终端设备向网络设备上报的P个频域向量就是第一频域向量集、第二频域向量集与第三频域向量集中包括的频域向量。
为了使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空域向量集确定较多数量的频域向量,为第二空域向量集分配较少数量的频域向量,为第三空域向量集分配的频域向量的数量介于为第一空域向量集分配的频域向量的数量与为第二空域向量集分配 的频域向量的数量之间,即P 3大于P 2,且小于P 1,第一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,且小于第一指示信息中所指示的第一频域向量集中的频域向量的个数。
例如,第一指示信息中携带有第一频域向量集中包括的频域向量的索引号、第二频域向量集中包括的频域向量的索引号与第三频域向量集中的包括的频域向量的索引号,则第一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,且小于第一指示信息中所指示的第一频域向量集中的频域向量的个数意味着:第一指示信息中携带的第三频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第二频域向量集中包括的频域向量的索引号的数量,且小于第一指示信息中携带的第一频域向量集中包括的频域向量的索引号的数量,从而使得第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的频域向量的索引号)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数,且小于承载该第一空域向量集对应的信息(例如,第一空域向量集对应的频域向量的索引号)的比特数。
除此之外,对于确定的第一空域向量集与第二空域向量集,终端设备可以为第一空域向量集确定K 1个空频合并系数,为第二空域向量集确定K 2个空频合并系数,为第三空域向量集确定K 3个空频合并系数,K 1个空频合并系数构成第一空频合并系数集,K 2个空频合并系数构成第二空频合并系数集,K 3个空频合并系数构成第三空频合并系数集。此时,前面提到的终端设备向网络设备上报的K个空频合并系数就是第一空频合并系数集、第二空频合并系数集与第三空频合并系数集中包括的空频合并系数。
为了使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集确定较多数量的空频合并系数,为第二空频合并系数集确定较多数量的空频合并系数,为第三空频合并系数集确定的空频合并系数的数量介于为第一空频合并系数集确定的空频合并系数的数量与为第二空频合并系数集确定的空频合并系数的数量,即K 3大于K 2,且K 3小于K 1,第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,且小于第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数。
例如,第一指示信息中携带有第一空频合并系数中包括的空频合并系数的量化信息、第二空频合并系数集中的包括的空频合并系数的量化信息与第三空频合并系数集中的包括的空频合并系数的量化信息,则第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,且小于第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数意味着:第一指示信息中携带的第三空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第二空频合并系数集中包括的空频合并系数的量化信息的数量,且小于第一指示信息中携带的第一空频合并系数集中包括的空频合并系数的量化信息的数量,从而使得第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息 (例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,且小于第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数。
除此之外,对于确定的第一空频合并系数集、第二空频合并系数集与第三空频合并系数集,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集中的每个空频合并系数确定较大数目的量化比特,为第二空频合并系数集中的每个空频合并系数确定较小数目的量化比特,为第三空频合并系数集中的每个空频合并系数确定的量化比特数介于为第一空频合并系数集中的每个空频合并系数确定的量化比特数与为第二空频合并系数集中的每个空频合并系数确定的量化比特数之间,即第三空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数,且小于该第一空频合并系数集中的每个空频合并系数的量化比特数,从而使得第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,且小于承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)。
需要说明的是,上述第二空域向量集中的每个空域向量可以对应S个相同频域向量,在具体实现时,针对第二空域向量集,可以仅上报S个频域向量,或者,针对第二空域向量集,可以仅上报每一个空域向量对应的宽带幅度值。
场景3传输层的个数为4,N的取值为3。
在本申请实施例中,可以将4个传输层记为传输层#1、传输层#2、传输层#3与传输层#4,此时,N的取值可以为3,N个空域向量集包括第一空域向量集、第二空域向量集与第三空域向量集,N个频域向量集包括第一频域向量集、第二频域向量集与第三频域向量集,N个空频合并系数集包括第一空频合并系数集、第二空频合并系数集与第三空频合并系数集,此时,终端设备生成的第一指示信息中还包括第三空域向量集对应的信息,并且终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数。进一步地,终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数。
终端设备可以从传输层#1对应的空域向量与传输层#2对应的空域向量中确定第一空域向量集与第二空域向量集,终端设备可以从传输层#3对应的空域向量与传输层#4对应的空域向量中确定第三空域向量集。
例如,终端设备可以将传输层#1对应的空域向量中的部分向量与传输层#2对应的空域向量中的部分向量确定为第一空域向量集,将传输层#1对应的空域向量中的另一部分向量与传输层#2对应的空域向量中的另一部分向量确定为第二空域向量集,将传输层#3对应的全部空域向量与传输层#4对应的全部空域向量确定为第三空域向量集。
终端设备可以根据场景1中描述的方法将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,将传输层#2对应的空域向量按照空域向量的强弱划分为两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量与传输层#2对应的较弱的一组空 域向量合并为第二空域向量集,将传输层#3对应的全部空域向量与传输层#4对应的全部空域向量确定为第三空域向量集。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集、第二空域向量集与第三空域向量集中包括的空域向量。此外,终端设备可以从传输层#1对应的空域向量与传输层#2对应的空域向量中确定第一空域向量集,从传输层#1对应的空域向量、传输层#2对应的空域向量、传输层#3对应的空域向量与传输层#4对应的空域向量中确定第二空域向量集,从传输层#3对应的空域向量与传输层#4对应的空域向量中确定第三空域向量集。
例如,终端设备可以将传输层#1对应的空域向量中的部分向量与传输层#2对应的空域向量中的部分向量确定为第一空域向量集,将传输层#1对应的空域向量中的另一部分向量、传输层#2对应的空域向量中的另一部分向量、传输层#3对应的空域向量中的部分向量与传输层#4对应的空域向量中的部分向量确定为第二空域向量集,将传输层#3对应的空域向量中的另一部分向量与传输层#4对应的空域向量中的另一部分向量确定为第三空域向量集。
终端设备可以根据场景1中描述的方法将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,将传输层#2对应的空域向量按照空域向量的强弱划分为两部分,将传输层#3对应的空域向量按照空域向量的强弱划分为两部分,将传输层#4对应的空域向量按照空域向量的强弱划分为两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组空域向量、传输层#2对应的较弱的一组空域向量、传输层#3对应的较弱的一组空域向量与传输层#4对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的较强的一组空域向量与传输层#4对应的较强的一组空域向量确定为第三空域向量集。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集、第二空域向量集与第三空域向量集中包括的空域向量的数量的总和。
对于确定的第一空域向量集、第二空域向量集与第三空域向量集,终端设备可以为第一空域向量集确定P 1个频域向量,为第二空域向量集确定第二频域向量集包括的P 2个频域向量,为第三空域向量集确定P 3个频域向量,P 1个频域向量构成该第一频域向量集,P 2个频域向量构成该第二频域向量集,P 3个频域向量构成该第三频域向量集。此时,前面提到的终端设备向网络设备上报的P个频域向量就是第一频域向量集、第二频域向量集与第三频域向量集中包括的频域向量。
为了使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空域向量集确定较多数量的频域向量,为第二空域向量集分配较少数量的频域向量,为第三空域向量集分配的频域向量的数量介于为第一空域向量集分配的频域向量的数量与为第二空域向量集分配的频域向量的数量之间,即P 3大于P 2,且小于P 1,第一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,且小于第一指示信息中所指示的第一频域向量集中的频域向量的个数。
例如,第一指示信息中携带有第一频域向量集中包括的频域向量的索引号、第二频域向量集中包括的频域向量的索引号与第三频域向量集中的包括的频域向量的索引号,则第 一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,且小于第一指示信息中所指示的第一频域向量集中的频域向量的个数意味着:第一指示信息中携带的第三频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第二频域向量集中包括的频域向量的索引号的数量,且小于第一指示信息中携带的第一频域向量集中包括的频域向量的索引号的数量,从而使得第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的频域向量的索引号)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数,且小于承载该第一空域向量集对应的信息(例如,第一空域向量集对应的频域向量的索引号)的比特数。
除此之外,对于确定的第一空域向量集、第二空域向量集与第三空域向量集,终端设备可以为第一空域向量集确定K 1个空频合并系数,为第二空域向量集确定K 2个空频合并系数,为第三空域向量集确定K 3个空频合并系数,K 1个空频合并系数构成第一空频合并系数集,K 2个空频合并系数构成第二空频合并系数集,K 3个空频合并系数构成第三空频合并系数集。此时,前面提到的终端设备向网络设备上报的K个空频合并系数就是第一空频合并系数集、第二空频合并系数集与第二空频合并系数集中包括的空频合并系数。
为了使得第一指示信息中承载第三空域向量集对应的信息的比特数小于承载第一空域向量集对应的信息的比特数,且大于承载第二空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集确定较多数量的空频合并系数,为第二空频合并系数集确定较多数量的空频合并系数,为第三空频合并系数集确定的空频合并系数的数量介于为第一空频合并系数集确定的空频合并系数的数量与为第二空频合并系数集确定的空频合并系数的数量,即K 3大于K 2,且K 3小于K 1,第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,且小于第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数。
例如,第一指示信息中携带有第一空频合并系数中包括的空频合并系数的量化信息、第二空频合并系数集中的包括的空频合并系数的量化信息与第三空频合并系数集中的包括的空频合并系数的量化信息,则第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,且小于第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数意味着:第一指示信息中携带的第三空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第二空频合并系数集中包括的空频合并系数的量化信息的数量,且小于第一指示信息中携带的第一空频合并系数集中包括的空频合并系数的量化信息的数量,从而使得第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,且小于第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数。
除此之外,对于确定的第一空频合并系数集、第二空频合并系数集与第三空频合并系数集,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合 并系数集中的每个空频合并系数确定较大数目的量化比特,为第二空频合并系数集中的每个空频合并系数确定较小数目的量化比特,为第三空频合并系数集中的每个空频合并系数确定的量化比特数介于为第一空频合并系数集中的每个空频合并系数确定的量化比特数与为第二空频合并系数集中的每个空频合并系数确定的量化比特数之间,即第三空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数,且小于该第一空频合并系数集中的每个空频合并系数的量化比特数,从而使得第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,且小于承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)。
需要说明的是,上述第二空域向量集中的每个空域向量可以对应S个相同的频域向量,在具体实现时,针对第二空域向量集,可以仅上报S个频域向量,或者,针对第二空域向量集,可以仅上报每一个空域向量对应的宽带幅度值。
场景4传输层的个数为4,N的取值为4。
在本申请实施例中,可以将4个传输层记为传输层#1、传输层#2、传输层#3与传输层#4,此时,N的取值可以为4,N个空域向量集包括第一空域向量集、第二空域向量集、第三空域向量集与第四空域向量集,N个频域向量集包括第一频域向量集、第二频域向量集、第三频域向量集与第四频域向量集,N个空频合并系数集包括第一空频合并系数集、第二空频合并系数集、第三空频合并系数集与第四空频合并系数集,此时,终端设备生成的第一指示信息中还包括第三空域向量集对应的信息与第四空域向量集对应的信息,并且终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,且小于承载第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,且小于承载第三空域向量集对应的信息的比特数。
终端设备可以从传输层#1对应的空域向量与传输层#2对应的空域向量中确定第一空域向量集与第二空域向量集,终端设备可以从传输层#3对应的空域向量与传输层#4对应的空域向量中确定第三空域向量集与第四空域向量集。
例如,终端设备可以将传输层#1对应的空域向量中的部分向量与传输层#2对应的空域向量中的部分向量确定为第一空域向量集,将传输层#1对应的空域向量中的另一部分向量与传输层#2对应的空域向量中的另一部分向量确定为第二空域向量集,可以将传输层#3对应的空域向量中的部分向量与传输层#4对应的空域向量中的部分向量确定为第三空域向量集,将传输层#3对应的空域向量中的另一部分向量与传输层#4对应的空域向量中的另一部分向量确定为第四空域向量集。
终端设备可以根据场景1中描述的方法将传输层#1对应的空域向量按照空域向量的强弱划分为两部分,将传输层#2对应的空域向量按照空域向量的强弱划分为两部分,将传输层#3对应的空域向量按照空域向量的强弱划分为两部分,将传输层#4对应的空域向量按照空域向量的强弱划分为两部分,并将传输层#1对应的较强的一组空域向量与传输层#2对应的较强的一组空域向量合并为第一空域向量集,将传输层#1对应的较弱的一组 空域向量、传输层#2对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3对应的较强的一组空域向量与传输层#4对应的较强的一组空域向量确定为第三空域向量集,将传输层#3对应的较弱的一组空域向量与传输层#4对应的较弱的一组空域向量合并为第四空域向量集。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集、第二空域向量集、第三空域向量集与第四空域向量集中包括的空域向量的数量的总和。
对于确定的第一空域向量集、第二空域向量集、第三空域向量集与第四空域向量集,终端设备可以为第一空域向量集确定P 1个频域向量,为第二空域向量集确定P 2个频域向量,为第三空域向量集确定P 3个频域向量,为第三空域向量集确定P 4个频域向量,P 1个频域向量构成该第一频域向量集,P 2个频域向量构成该第二频域向量集,P 3个频域向量构成该第三频域向量集,P 4个频域向量构成该第四频域向量集。此时,前面提到的终端设备向网络设备上报的P个频域向量就是第一频域向量集、第二频域向量集、第三频域向量集与第四频域向量集中包括的频域向量。
为了使得第一指示信息中承载第一空域向量集对应的信息的比特数大于承载第三空域向量集对应的信息的比特数,且承载第三空域向量集对应的信息的比特数大于承载第二空域向量集对应的信息的比特数,且承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空域向量集确定的频域向量的个数大于为第三空域向量集确定的频域向量的个数,为第三空域向量集确定的频域向量的个数大于为第二空域向量集确定的频域向量的个数,为第二空域向量集确定的频域向量的个数大于为第四空域向量集确定的频域向量的个数,即P 1大于P 3,P 3大于P 2,P 2大于P 4,第一指示信息中所指示的第一频域向量集中的频域向量的个数大于第一指示信息中所指示的第三频域向量集中的频域向量的个数,第一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,第一指示信息中所指示的第二频域向量集中的频域向量的个数大于第一指示信息中所指示的第四频域向量集中的频域向量的个数。
例如,第一指示信息中携带有第一频域向量集中包括的频域向量的索引号、第二频域向量集中包括的频域向量的索引号、第三频域向量集中的包括的频域向量的索引号与第四频域向量集中的包括的频域向量的索引号,则第一指示信息中所指示的第一频域向量集中的频域向量的个数大于第一指示信息中所指示的第三频域向量集中的频域向量的个数,第一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,第一指示信息中所指示的第二频域向量集中的频域向量的个数大于第一指示信息中所指示的第四频域向量集中的频域向量的个数意味着:第一指示信息中携带的第一频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第三频域向量集中包括的频域向量的索引号的数量,第一指示信息中携带的第三频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第二频域向量集中包括的频域向量的索引号的数量,第一指示信息中携带的第二频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第四频域向量集中包括的频域向量的索引号的数量,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如, 第一空域向量集对应的频域向量的索引号)的比特数大于承载该第三空域向量集对应的信息(例如,第三空域向量集对应的频域向量的索引号)的比特数,第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的频域向量的索引号)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数,第一指示信息中承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数大于承载该第四空域向量集对应的信息(例如,第四空域向量集对应的频域向量的索引号)的比特数。
除此之外,对于确定的第一空域向量集、第二空域向量集与第三空域向量集,终端设备可以为第一空域向量集确定K 1个空频合并系数,为第二空域向量集确定K 2个空频合并系数,为第三空域向量集确定K 3个空频合并系数,为第四空域向量集确定K 4个空频合并系数,K 1个空频合并系数构成第一空频合并系数集,K 2个空频合并系数构成第二空频合并系数集,K 3个空频合并系数构成第三空频合并系数集,K 4个空频合并系数构成第四空频合并系数集。此时,前面提到的终端设备向网络设备上报的K个空频合并系数就是第一空频合并系数集、第二空频合并系数集、第三空频合并系数集与第四空频合并系数集中包括的空频合并系数。
为了使得第一指示信息中承载第一空域向量集对应的信息的比特数大于承载第三空域向量集对应的信息的比特数,且承载第三空域向量集对应的信息的比特数大于承载第二空域向量集对应的信息的比特数,且承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集确定的空频合并系数的个数大于为第三空频合并系数集确定的空频合并系数的个数,为第三空频合并系数集确定的空频合并系数的个数大于为第二空频合并系数集确定的空频合并系数的个数,为第二空频合并系数集确定的空频合并系数的个数大于为第四空频合并系数集确定的空频合并系数的个数。即K 1大于K 3,K 3大于K 2,K 2大于K 4,第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第四空频合并系数集中的空频合并系数的个数。
例如,第一指示信息中携带有第一空频合并系数中包括的空频合并系数的量化信息、第二空频合并系数集中的包括的空频合并系数的量化信息、第三空频合并系数集中的包括的空频合并系数的量化信息与第四空频合并系数集中的包括的空频合并系数的量化信息,则第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第四空频合并系数集中的空频合并系数的个数意味着:第一指示信息中携带的第一空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第三空频合并系数集中包括的空频合并系数的量 化信息的数量,第一指示信息中携带的第三空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第二空频合并系数集中包括的空频合并系数的量化信息的数量,第一指示信息中携带的第二空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第四空频合并系数集中包括的空频合并系数的量化信息的数量,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第四空域向量集对应的信息(例如,第四空域向量集对应的空频合并系数的量化信息)的比特数。
除此之外,对于确定的第一空频合并系数集、第二空频合并系数集与第三空频合并系数集与第四空频合并系数集,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集中的每个空频合并系数确定的量化比特数大于为第三空频合并系数集中的每个空频合并系数确定的量化比特数,为第三空频合并系数集中的每个空频合并系数确定的量化比特数大于为第二空频合并系数集中的每个空频合并系数确定的量化比特数,为第二空频合并系数集中的每个空频合并系数确定的量化比特数大于为第四空频合并系数集中的每个空频合并系数确定的量化比特数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第四空域向量集对应的信息(例如,第四空域向量集对应的空频合并系数的量化信息)的比特数。
需要说明的是,上述第二空域向量集中的每个空域向量可以对应S个相同的频域向量,在具体实现时,针对第二空域向量集,可以仅上报S个频域向量,或者,针对第二空域向量集,可以仅上报每一个空域向量对应的宽带幅度值。
还需要说明的是,在场景1至场景4中,将一个传输层对应的空域向量按照空域向量的强弱划分为至少两部分空域向量时,任意两部分空域向量中包括的空域向量的个数可以不相等,即将一个传输层对应的空域向量按照空域向量的强弱划分为至少两部分空域向量时,可以不对传输层对应的全部空域向量进行等分
还需要说明的是,上述仅以传输层的最大数量为4为例,对本申请实施例提供的指示预编码向量的方法进行说明,但这并不对本申请实施例构成任何限定,本申请实施例提供的指示预编码向量的方法还可以适用于传输层的数量大于4的场景中。
还需要说明的是,上述列举的传输层的数量以及从多个传输层对应的空域向量中确定的N个空域向量集的数量仅为示例性说明,并不对本申请实施例构成任何限定。
在本申请实施例中,还可以以极化方向为粒度,将传输层对应的空域向量集划分为两部分,例如,对于一个传输层,可以将该传输层的一个极化方向对应的空域向量确定为某一个空域向量集中的空域向量,将该传输层的另一个极化方向对应的空域向量确定为另一个空域向量集中的空域向量。
例如,对于每个传输层,传输层的每个极化方向对应一个合并系数量化参考幅度,当一个极化方向对应的合并系数量化参考幅度值越大时,代表该极化方向对应的空域向量越强,当一个极化方向对应的合并系数量化参考幅度值越小时,代表该极化方向对应的空域向量越弱。每个极化方向对应的合并系数量化参考幅度可以是该极化方向对应的空频合并系数的最大幅度值,较强空域向量所对应的合并系数量化参考幅度值大于或等于较弱空域向量所对应的合并系数量化参考幅度值。较强空域向量所对应的合并系数量化参考幅度值可以被归一化为1。
终端设备还可以将每个传输层在每个极化方向对应的空域向量按照空域向量对应的空频合并系数的最大幅度值或幅度值的平方之和的大小关系进行排序,当一个极化方向对应的空域向量所对应的空频合并系数的最大幅度值或者幅度值的平方和越大时,代表该极化方向对应的空域向量越强,当一个极化方向对应的空域向量所对应的空频合并系数的最大幅度值或者幅度值的平方和越小时,代表该极化方向对应的空域向量越弱。
在具体划分时,可以将较强的一组空域向量(即,一个极化方向对应的空域向量)确定为某一个空域向量集中的空域向量,将将较弱的一组空域向量(即,另一个极化方向对应的空域向量)确定为另一个空域向量集中的空域向量。
下面针对不同场景,对上述技术方案进行详细说明。
场景5传输层的个数为3,N的取值为4。
在本申请实施例中,可以将3个传输层记为传输层#1、传输层#2与传输层#3,此时,N的取值可以为4,N个空域向量集包括第一空域向量集、第二空域向量集、第三空域向量集与第四空域向量集,N个频域向量集包括第一频域向量集、第二频域向量集、第三频域向量集与第四频域向量集,N个空频合并系数集包括第一空频合并系数集、第二空频合并系数集、第三空频合并系数集与第四空频合并系数集,此时,终端设备生成的第一指示信息中还包括第三空域向量集对应的信息与第四空域向量集对应的信息,并且终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,且小于承载第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第二空域向量集对应的信息的比特数大于或等于承载第四空域向量集对应的信息的比特数,且小于承载第三空域向量集对应的信息的比特数。
若每个传输层均存在两个极化方向,终端设备可以从传输层#1对应的空域向量中确定第一空域向量集与第二空域向量集,终端设备可以从传输层#2对应的空域向量与传输层#3对应的空域向量中确定第三空域向量集。例如,终端设备可以将传输层#1在第一极化方向所对应的L 1个空域向量确定为第一空域向量集,将传输层#1在第二极化方向所对应的L 1个空域向量确定为第二空域向量集,将传输层#2在第一极化方向所对应的L 2个空域向量、传输层#3在第一极化方向所对应的L 3个空域向量确定为第三空域向量集,将传输层#2在第二极化方向所对应的L 2个空域向量、传输层#3在第二极化方向所对应的L 3 个空域向量确定为第四空域向量集。
终端设备可以将传输层#1在两个极化方向(例如,第一极化方向与第二极化方向)对应的空域向量以极化方向为粒度划分为两部分,每部分包含一个极化方向对应的L 1个空域向量,将传输层#2在两个极化方向对应的空域向量以极化方向为粒度划分为两部分,每部分包含一个极化方向对应的L 2个空域向量,将传输层#3在两个极化方向对应的空域向量以极化方向为粒度划分为两部分,每部分包含一个极化方向对应的L 3个空域向量。
将传输层#1的某一极化方向(例如,第一极化方向)对应的较强的一组空域向量确定为第一空域向量集,将传输层#1的另一极化方向(例如,第二极化方向)对应的较弱的一组空域向量确定为第二空域向量集,将传输层#2的某一极化方向(例如,第一极化方向)对应的较强的一组空域向量与传输层#3的某一极化方向(例如,第一极化方向)对应的较强的一组空域向量合并为第三空域向量集,将传输层#2的另一极化方向(例如,第二极化方向)对应的较弱的一组空域向量与传输层#3的另一极化方向(例如,第二极化方向)对应的较弱的一组空域向量合并为第四空域向量集。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集、第二空域向量集与第三空域向量集中包括的空域向量的数量的总和。
为了使得第一指示信息中承载第一空域向量集对应的信息的比特数大于承载第三空域向量集对应的信息的比特数,且承载第三空域向量集对应的信息的比特数大于承载第二空域向量集对应的信息的比特数,且承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空域向量集确定的频域向量的个数大于为第三空域向量集确定的频域向量的个数,为第三空域向量集确定的频域向量的个数大于为第二空域向量集确定的频域向量的个数,为第二空域向量集确定的频域向量的个数大于为第四空域向量集确定的频域向量的个数,即P 1大于P 3,P 3大于P 2,P 2大于P 4,第一指示信息中所指示的第一频域向量集中的频域向量的个数大于第一指示信息中所指示的第三频域向量集中的频域向量的个数,第一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,第一指示信息中所指示的第二频域向量集中的频域向量的个数大于第一指示信息中所指示的第四频域向量集中的频域向量的个数。
对于第一空域向量集,可以为第一空域向量集中每个传输层对应的每个空域向量均确定相同数目的频域向量(S 1个频域向量);对于第二空域向量集,可以为第二空域向量集中每个传输层对应的每个空域向量均确定相同数目的频域向量(S 2个频域向量);对于第三空域向量集,可以为第三空域向量集中每个传输层对应的每个空域向量均确定相同数目的频域向量(S 3个频域向量);对于第四空域向量集,可以为第四空域向量集中每个传输层对应的每个空域向量均确定相同数目的频域向量(S 4个频域向量)。终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空域向量集确定的频域向量的个数大于为第三空域向量集确定的频域向量的个数,为第三空域向量集确定的频域向量的个数大于为第二空域向量集确定的频域向量的个数,为第二空域向量集确定的频域向量的个数大于为第四空域向量集确定的频域向量的个数,即S 1大于S 3,S 3大于S 2,S 2大于S 4
例如,第一指示信息中携带有第一频域向量集中包括的频域向量的索引号、第二频域 向量集中包括的频域向量的索引号、第三频域向量集中的包括的频域向量的索引号与第四频域向量集中的包括的频域向量的索引号,则第一指示信息中所指示的第一频域向量集中的频域向量的个数大于第一指示信息中所指示的第三频域向量集中的频域向量的个数,第一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,第一指示信息中所指示的第二频域向量集中的频域向量的个数大于第一指示信息中所指示的第四频域向量集中的频域向量的个数意味着:第一指示信息中携带的第一频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第三频域向量集中包括的频域向量的索引号的数量,第一指示信息中携带的第三频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第二频域向量集中包括的频域向量的索引号的数量,第一指示信息中携带的第二频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第四频域向量集中包括的频域向量的索引号的数量,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的频域向量的索引号)的比特数大于承载该第三空域向量集对应的信息(例如,第三空域向量集对应的频域向量的索引号)的比特数,第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的频域向量的索引号)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数,第一指示信息中承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数大于承载该第四空域向量集对应的信息(例如,第四空域向量集对应的频域向量的索引号)的比特数。
此外,为了使得第一指示信息中承载第一空域向量集对应的信息的比特数大于承载第三空域向量集对应的信息的比特数,且承载第三空域向量集对应的信息的比特数大于承载第二空域向量集对应的信息的比特数,且承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空域向量集中的每个空域向量确定的频域向量的个数大于为第三空域向量集中的每个空域向量确定的频域向量的个数,为第三空域向量集中的每个空域向量确定的频域向量的个数大于为第二空域向量集中的每个空域向量确定的频域向量的个数,为第二空域向量集中的每个空域向量确定的频域向量的个数大于为第四空域向量集中的每个空域向量确定的频域向量的个数。
除此之外,对于确定的第一空域向量集、第二空域向量集与第三空域向量集,终端设备可以为第一空域向量集确定K 1个空频合并系数,为第二空域向量集确定K 2个空频合并系数,为第三空域向量集确定K 3个空频合并系数,为第四空域向量集确定K 4个空频合并系数,K 1个空频合并系数构成第一空频合并系数集,K 2个空频合并系数构成第二空频合并系数集,K 3个空频合并系数构成第三空频合并系数集,K 4个空频合并系数构成第四空频合并系数集。此时,前面提到的终端设备向网络设备上报的K个空频合并系数就是第一空频合并系数集、第二空频合并系数集、第三空频合并系数集与第四空频合并系数集中包括的空频合并系数。
为了使得第一指示信息中承载第一空域向量集对应的信息的比特数大于承载第三空域向量集对应的信息的比特数,且承载第三空域向量集对应的信息的比特数大于承载第二空域向量集对应的信息的比特数,且承载第二空域向量集对应的信息的比特数大于承载第 四空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集确定的空频合并系数的个数大于为第三空频合并系数集确定的空频合并系数的个数,为第三空频合并系数集确定的空频合并系数的个数大于为第二空频合并系数集确定的空频合并系数的个数,为第二空频合并系数集确定的空频合并系数的个数大于为第四空频合并系数集确定的空频合并系数的个数。即K 1大于K 3,K 3大于K 2,K 2大于K 4,第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第四空频合并系数集中的空频合并系数的个数。
例如,第一指示信息中携带有第一空频合并系数中包括的空频合并系数的量化信息、第二空频合并系数集中的包括的空频合并系数的量化信息、第三空频合并系数集中的包括的空频合并系数的量化信息与第四空频合并系数集中的包括的空频合并系数的量化信息,则第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第四空频合并系数集中的空频合并系数的个数意味着:第一指示信息中携带的第一空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第三空频合并系数集中包括的空频合并系数的量化信息的数量,第一指示信息中携带的第三空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第二空频合并系数集中包括的空频合并系数的量化信息的数量,第一指示信息中携带的第二空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第四空频合并系数集中包括的空频合并系数的量化信息的数量,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第四空域向量集对应的信息(例如,第四空域向量集对应的空频合并系数的量化信息)的比特数。
除此之外,对于确定的第一空频合并系数集、第二空频合并系数集与第三空频合并系数集与第四空频合并系数集,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集中的每个空频合并系数确定的量化比特数大于为第三空频合并系数集中的每个空频合并系数确定的量化比特数,为第三空频合并系数集中的每个空频合并系数确定的量化比特数大于为第二空频合并系数集中的每个空频合并系数确定的量化比特数,为第二空频合并系数集中的每个空频合并系数确定的量化比特数大于为第四 空频合并系数集中的每个空频合并系数确定的量化比特数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第四空域向量集对应的信息(例如,第四空域向量集对应的空频合并系数的量化信息)的比特数。空频合并系数对应的量化比特数包含幅度量化比特和相位量化比特。其中幅度量化比特可以是用于指示该空频合并系数的幅度值相对该空频合并系数所在极化方向对应的量化参考幅度的差分幅度值的比特(可以是3比特)。其中相位量化比特可以是用于指示该空频合并系数的相位值的比特(可以是3比特或4比特)。
需要说明的是,上述第二空域向量集中的每个空域向量可以对应S个相同频域向量,在具体实现时,针对第二空域向量集,可以仅上报S个频域向量,或者,针对第二空域向量集,可以仅上报每一个空域向量对应的宽带幅度值。
场景6传输层的个数为4,N的取值为4。
在本申请实施例中,可以将4个传输层记为传输层#1、传输层#2、传输层#3与传输层#4,此时,N的取值可以为4,N个空域向量集包括第一空域向量集、第二空域向量集、第三空域向量集与第四空域向量集,N个频域向量集包括第一频域向量集、第二频域向量集、第三频域向量集与第四频域向量集,N个空频合并系数集包括第一空频合并系数集、第二空频合并系数集、第三空频合并系数集与第四空频合并系数集,此时,终端设备生成的第一指示信息中还包括第三空域向量集对应的信息与第四空域向量集对应的信息,并且终端设备生成的第一指示信息中承载第三空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,且小于承载第一空域向量集对应的信息的比特数。
进一步地,终端设备生成的第一指示信息中承载第二空域向量集对应的信息的比特数大于或等于承载第四空域向量集对应的信息的比特数,且小于承载第三空域向量集对应的信息的比特数。
若每个传输层均存在两个极化方向,终端设备可以从传输层#1对应的空域向量与传输层#2对应的空域向量中确定第一空域向量集与第二空域向量集,终端设备可以从传输层#3对应的空域向量与传输层#4对应的空域向量中确定第三空域向量集与第四空域向量集。例如,终端设备可以将传输层#1在第一极化方向所对应的L 1个空域向量与传输层#2在第一极化方向所对应的L 2个空域向量确定为第一空域向量集,将传输层#1在第二极化方向所对应的L 1个空域向量与传输层#2在第二极化方向所对应的L 2个空域向量确定为第二空域向量集,将传输层#3在第一极化方向所对应的L 3个空域向量与传输层#4在第一极化方向所对应的L 4个空域向量确定为第三空域向量集,将传输层#3在第二极化方向所对应的L 3个空域向量与传输层#4在第二极化方向所对应的L 4个空域向量确定为第四空域向量集。
终端设备可以将传输层#1在两个极化方向(例如,第一极化方向与第二极化方向) 对应的空域向量以极化方向为粒度划分为两部分,每部分包含一个极化方向对应的L 1个空域向量,将传输层#2在两个极化方向对应的空域向量以极化方向为粒度划分为两部分,每部分包含一个极化方向对应的L 2个空域向量,将传输层#3在两个极化方向对应的空域向量以极化方向为粒度划分为两部分,每部分包含一个极化方向对应的L 3个空域向量,将传输层#4在两个极化方向对应的空域向量以极化方向为粒度划分为两部分,每部分包含一个极化方向对应的L 4个空域向量。
将传输层#1的某一极化方向(例如,第一极化方向)对应的较强的一组空域向量与传输层#2的某一极化方向(例如,第一极化方向)对应的较强的一组空域向量合并为第一空域向量集,将传输层#1的某一极化方向(例如,第二极化方向)对应的较弱的一组空域向量与传输层#2的某一极化方向(例如,第二极化方向)对应的较弱的一组空域向量合并为第二空域向量集,将传输层#3的某一极化方向(例如,第一极化方向)对应的较强的一组空域向量与传输层#4的某一极化方向(例如,第一极化方向)对应的较强的一组空域向量合并为第三空域向量集,将传输层#3的某一极化方向(例如,第二极化方向)对应的较弱的一组空域向量与传输层#4的某一极化方向(例如,第二极化方向)对应的较弱的一组空域向量合并为第四空域向量集。此时,前面提到的终端设备向网络设备上报的Q个空域向量就是第一空域向量集、第二空域向量集与第三空域向量集中包括的空域向量的数量的总和。
为了使得第一指示信息中承载第一空域向量集对应的信息的比特数大于承载第三空域向量集对应的信息的比特数,且承载第三空域向量集对应的信息的比特数大于承载第二空域向量集对应的信息的比特数,且承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空域向量集确定的频域向量的个数大于为第三空域向量集确定的频域向量的个数,为第三空域向量集确定的频域向量的个数大于为第二空域向量集确定的频域向量的个数,为第二空域向量集确定的频域向量的个数大于为第四空域向量集确定的频域向量的个数,即P 1大于P 3,P 3大于P 2,P 2大于P 4,第一指示信息中所指示的第一频域向量集中的频域向量的个数大于第一指示信息中所指示的第三频域向量集中的频域向量的个数,第一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,第一指示信息中所指示的第二频域向量集中的频域向量的个数大于第一指示信息中所指示的第四频域向量集中的频域向量的个数。对于第一空域向量集,可以为第一空域向量集中每个传输层对应的每个空域向量均确定相同数目的频域向量(S 1个频域向量);对于第二空域向量集,可以为第二空域向量集中每个传输层对应的每个空域向量均确定相同数目的频域向量(S 2个频域向量);对于第三空域向量集,可以为第三空域向量集中每个传输层对应的每个空域向量均确定相同数目的频域向量(S 3个频域向量);对于第四空域向量集,可以为第四空域向量集中每个传输层对应的每个空域向量均确定相同数目的频域向量(S 4个频域向量)。终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空域向量集确定的频域向量的个数大于为第三空域向量集确定的频域向量的个数,为第三空域向量集确定的频域向量的个数大于为第二空域向量集确定的频域向量的个数,为第二空域向量集确定的频域向量的个数大于为第四空域向量集确定的频域向量的个数,即S 1大于S 3,S 3大于S 2,S 2大于S 4
例如,第一指示信息中携带有第一频域向量集中包括的频域向量的索引号、第二频域向量集中包括的频域向量的索引号、第三频域向量集中的包括的频域向量的索引号与第四频域向量集中的包括的频域向量的索引号,则第一指示信息中所指示的第一频域向量集中的频域向量的个数大于第一指示信息中所指示的第三频域向量集中的频域向量的个数,第一指示信息中所指示的第三频域向量集中的频域向量的个数大于第一指示信息中所指示的第二频域向量集中的频域向量的个数,第一指示信息中所指示的第二频域向量集中的频域向量的个数大于第一指示信息中所指示的第四频域向量集中的频域向量的个数意味着:第一指示信息中携带的第一频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第三频域向量集中包括的频域向量的索引号的数量,第一指示信息中携带的第三频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第二频域向量集中包括的频域向量的索引号的数量,第一指示信息中携带的第二频域向量集中包括的频域向量的索引号的数量大于第一指示信息中携带的第四频域向量集中包括的频域向量的索引号的数量,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的频域向量的索引号)的比特数大于承载该第三空域向量集对应的信息(例如,第三空域向量集对应的频域向量的索引号)的比特数,第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的频域向量的索引号)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数,第一指示信息中承载该第二空域向量集对应的信息(例如,第二空域向量集对应的频域向量的索引号)的比特数大于承载该第四空域向量集对应的信息(例如,第四空域向量集对应的频域向量的索引号)的比特数。
此外,为了使得第一指示信息中承载第一空域向量集对应的信息的比特数大于承载第三空域向量集对应的信息的比特数,且承载第三空域向量集对应的信息的比特数大于承载第二空域向量集对应的信息的比特数,且承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空域向量集中的每个空域向量确定的频域向量的个数大于为第三空域向量集中的每个空域向量确定的频域向量的个数,为第三空域向量集中的每个空域向量确定的频域向量的个数大于为第二空域向量集中的每个空域向量确定的频域向量的个数,为第二空域向量集中的每个空域向量确定的频域向量的个数大于为第四空域向量集中的每个空域向量确定的频域向量的个数。
除此之外,对于确定的第一空域向量集、第二空域向量集与第三空域向量集,终端设备可以为第一空域向量集确定K 1个空频合并系数,为第二空域向量集确定K 2个空频合并系数,为第三空域向量集确定K 3个空频合并系数,为第四空域向量集确定K 4个空频合并系数,K 1个空频合并系数构成第一空频合并系数集,K 2个空频合并系数构成第二空频合并系数集,K 3个空频合并系数构成第三空频合并系数集,K 4个空频合并系数构成第四空频合并系数集。此时,前面提到的终端设备向网络设备上报的K个空频合并系数就是第一空频合并系数集、第二空频合并系数集、第三空频合并系数集与第四空频合并系数集中包括的空频合并系数。
为了使得第一指示信息中承载第一空域向量集对应的信息的比特数大于承载第三空域向量集对应的信息的比特数,且承载第三空域向量集对应的信息的比特数大于承载第二 空域向量集对应的信息的比特数,且承载第二空域向量集对应的信息的比特数大于承载第四空域向量集对应的信息的比特数,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集确定的空频合并系数的个数大于为第三空频合并系数集确定的空频合并系数的个数,为第三空频合并系数集确定的空频合并系数的个数大于为第二空频合并系数集确定的空频合并系数的个数,为第二空频合并系数集确定的空频合并系数的个数大于为第四空频合并系数集确定的空频合并系数的个数。即K 1大于K 3,K 3大于K 2,K 2大于K 4,第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第四空频合并系数集中的空频合并系数的个数。
例如,第一指示信息中携带有第一空频合并系数中包括的空频合并系数的量化信息、第二空频合并系数集中的包括的空频合并系数的量化信息、第三空频合并系数集中的包括的空频合并系数的量化信息与第四空频合并系数集中的包括的空频合并系数的量化信息,则第一指示信息中所指示的第一空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第三空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数,第一指示信息中所指示的第二空频合并系数集中的空频合并系数的个数大于第一指示信息中所指示的第四空频合并系数集中的空频合并系数的个数意味着:第一指示信息中携带的第一空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第三空频合并系数集中包括的空频合并系数的量化信息的数量,第一指示信息中携带的第三空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第二空频合并系数集中包括的空频合并系数的量化信息的数量,第一指示信息中携带的第二空频合并系数集中包括的空频合并系数的量化信息的数量大于第一指示信息中携带的第四空频合并系数集中包括的空频合并系数的量化信息的数量,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第四空域向量集对应的信息(例如,第四空域向量集对应的空频合并系数的量化信息)的比特数。
除此之外,对于确定的第一空频合并系数集、第二空频合并系数集与第三空频合并系数集与第四空频合并系数集,终端设备可以基于网络设备发送的第二指示信息或者基于预先配置,为第一空频合并系数集中的每个空频合并系数确定的量化比特数大于为第三空频合并系数集中的每个空频合并系数确定的量化比特数,为第三空频合并系数集中的每个空频合并系数确定的量化比特数大于为第二空频合并系数集中的每个空频合并系数确定的 量化比特数,为第二空频合并系数集中的每个空频合并系数确定的量化比特数大于为第四空频合并系数集中的每个空频合并系数确定的量化比特数,从而使得第一指示信息中承载该第一空域向量集对应的信息(例如,第一空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第三空域向量集对应的信息(例如,第三空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数,第一指示信息中承载该第二空域向量集对应的信息(例如,第二空域向量集对应的空频合并系数的量化信息)的比特数大于承载该第四空域向量集对应的信息(例如,第四空域向量集对应的空频合并系数的量化信息)的比特数。空频合并系数对应的量化比特数包含幅度量化比特和相位量化比特。其中幅度量化比特可以是用于指示该空频合并系数的幅度值相对该空频合并系数所在极化方向对应的量化参考幅度的差分幅度值的比特(可以是3比特)。其中相位量化比特可以是用于指示该空频合并系数的相位值的比特(可以是3比特或4比特)。
需要说明的是,上述第二空域向量集中的每个空域向量可以对应S个相同频域向量,在具体实现时,针对第二空域向量集,可以仅上报S个频域向量,或者,针对第二空域向量集,可以仅上报每一个空域向量对应的宽带幅度值。
对于场景5与场景6,表1中列出了为不同的传输层、不同的极化方向配置的空域向量的数量与频域向量的数量。
表1
Figure PCTCN2020073714-appb-000038
Figure PCTCN2020073714-appb-000039
其中,L表示每个传输层,每个极化方向对应的空域向量的数目,L的取值可以是网络设备配置的。M 0表示rank 1和rank 2情况下,每个传输层,每个空域向量对应的频域向量的数目。M 0的取值可以是网络设备配置的。此外,M 0的取值可以是基于网络设备配置参数p与预设规则确定的,其中
Figure PCTCN2020073714-appb-000040
p的取值可以为1/2或1/4,N 3表示频域单元的数目,且N 3=R N SB。N SB表示频域子带的数目,R的取值可以为1或2。M r,l,p表示为rank为r时,索引为l的传输层,索引为p的极化方向网络设备配置的或终端设备上报的频域向量的数目。以N SB=13,R=1,基站配置rank=1或rank=2时p=1/2为例,对于rank=1或rank=2,每个传输层每个空域向量对应的频域向量的数目均为M 0=7。对于rank 3,M 3,0,0=7,M 3,0,1=4,M 3,1,0=M 3,2,0=6,M 3,1,1=M 3,2,1=3。即对于传输层1,第一极化方向对应的每一个空域向量对应7个频域向量,对于传输层1,第二极化方向对应的每一个空域向量对应4个频域向量,对于传输层2,第一极化方向对应的每一个空域向量对应6个频域向量,对于传输层2,第二极化方向对应的每一个空域向量对应3个频域向量,对于传输层3,第一极化方向对应的每一个空域向量对应6个频域向量,对于传输层3,第二极化方向对应的每一个空域向量对应3个频域向量。其中对于每一个传输层,第一极化方向对应的合并系数量化参考幅度值大于或等于第一极化方向对应的合并系数量化参考幅度值。对于rank 4:M 4,0,0=M 4,1,0=6,M 4,0,1=M 4,1,1=3,M 4,2,0=M 4,3,0=4,M 4,2,1=M 4,3,1=2。即对于传输层1,第一极化方向对应的每一个空域向量对应6个频域向量,对于传输层1,第二极化方向对应的每一个空域向量对应3个频域向量,对于传输层2,第一极化方向对应的每一个空域向量对应6个频域向量,对于传输层2,第二极化方向对应的每一个空域向量对应3个频域向量,对于传输层3,第一极化方向对应的每一个空域向量对应4个频域向量,对于传输层3,第二极化方向对应的每一个空域向量对应2个频域向量,对于传输层4,第一极化方向对应的每一个空域向量对应4个频域向量,对于传输层4,第二极化方向对应的每一个空域向量对应2个频域向量。其中对于每一个传输层,第一极化方向对应的合并系数量化参考幅度值大于或等于第一极化方向对应的合并系数量化参考幅度值。M p,r,l的取值同样可以基于网络设备配置参数v r,l,p与预设规则确定的,其中
Figure PCTCN2020073714-appb-000041
以上,结合图1至图2详细说明了本申请实施例提供的指示预编码向量与确定预编码向量的方法。以下,结合图3至图6细说明本申请实施例提供的通信装置。
图3示出了根据本申请实施例的指示预编码向量的装置300的示意性框图。所述装置300用于执行前文方法实施例中终端设备执行的方法。可选地,所述装置300的具体形态可以是终端设备中的芯片。本申请实施例对此不作限定。所述装置300包括:
处理模块301,用于生成第一指示信息,该第一指示信息用于指示P个频域向量与K个空频合并系数,该P个频域向量属于N个频域向量集,该K个空频合并系数属于N个空频合并系数集,该N个频域向量集与N个空域向量集一一对应,该N个空频合并系数集与该N个空域向量集一一对应,该N个空域向量集中至少包括第一空域向量集和第二 空域向量集,且该N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,该第一指示信息中包括该第一空域向量集对应的信息与该第二空域向量集对应的信息,该第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数。
收发模块302,用于发送该第一指示信息。
可选地,该N个频域向量集包括第一频域向量集与第二频域向量集,该P个频域向量包括该第一频域向量集中的P 1个频域向量和该第二频域向量集中的P 2个频域向量,该第一频域向量集与该第一空域向量集对应,该第二频域向量集与该第二空域向量集对应,P 1大于P 2,且P 2大于或等于1。
可选地,该N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,该第一空频合并系数集与该第一空域向量集对应,该第二空频合并系数集与该第二空域向量集对应,该第一空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数。
可选地,该第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;该第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
可选地,该第一指示信息还用于指示Q个空域向量,Q大于或等于2,该Q个空域向量包括该第一空域向量集中的Q 1个空域向量和该第二空域向量集中的Q 2个空域向量,其中,该第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,该第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
可选地,收发模块302,还用于接收第二指示信息,该第二指示信息用于指示以下至少一项:该第一空域向量集中的空域向量的个数Q 1、该第二空域向量集中的空域向量的个数Q 2、该第一频域向量集中的频域向量的个数P 1、该第二频域向量集中的频域向量的个数P 2、该第一空频合并系数集中的空频合并系数的个数与该第二空频合并系数集中的空频合并系数的个数。
可选地,该第一空频合并系数集中的空频合并系数的个数大于该第二空频合并系数集中的空频合并系数的个数。
可选地,该第一空域向量集中的Q 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的Q 2个空域向量包括该第一传输层对应的部分向量与该第二传输层对应的部分向量。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为4,该N个空域向量集还包括第三空域向量集与第四空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,该第四空域向量集中的空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息与该第四空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数大于承载该第四空域向量集对应的信息的比特数,且小于承载该第一空域向量集对应的信息的比特数。
可选地,该N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量、第三传输层对应的部分向量与第四传输层对应的部分向量,该第三空域向量集中空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量与第三传输层对应的部分向量,该第三空域向量集中的空域向量包括该第三传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,该第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
可选地,该N个空频合并系数集还包括第三空频合并系数集与第四空频合并系数集,该第三空频合并系数集与该第三空域向量集对应,该第四空频合并系数集与该第四空域向量集对应,该第三空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中该传输层的最小值大于或等于该第四空频合并系数集中的空频合并系数的幅度值中的最大值,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
可选地,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向 对应的空域向量。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化方向对应的空域向量、所述第二传输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量, 所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
可选地,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
可选地,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
可选地,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
可选地,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
可选地,所述N个空域向量集还包括第三频域向量集与第四频域向量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
应理解,根据本申请实施例的指示预编码向量的装置300可对应于根据本申请实施例的方法200实施例中的终端设备,装置300可以包括用于执行图2中的方法200实施例中的终端设备执行的方法的模块。并且装置300中的各个模块的上述和其它操作和/或功能分别为了实现图2中的方法200实施例中由终端设备执行的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置300中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置300是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到装置300可以采用图4所示的形式。处理模块301可以通过图4所示的处理器401和存储器402来实现。收发模块302可以通过图4所示的收发器403来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置300是芯片时,那么收发模块302的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,如图4所示的存储器402。
图4示出了根据本申请实施例的指示预编码向量的装置400的示意性结构图。如图4所示,所述装置400包括:处理器401。
在一种可能的实现方式中,所述处理器401用于:生成第一指示信息,该第一指示信息用于指示P个频域向量与K个空频合并系数,该P个频域向量属于N个频域向量集,该K个空频合并系数属于N个空频合并系数集,该N个频域向量集与N个空域向量集一一对应,该N个空频合并系数集与该N个空域向量集一一对应,该N个空域向量集中至少包括第一空域向量集和第二空域向量集,且该N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,该第一指示信息中包括该第一空域向量集对应的信息与该第二空域向量集对应的信息,该第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数。
所述处理器401还用于调用接口执行以下动作:发送该第一指示信息。
可选地,该N个频域向量集包括第一频域向量集与第二频域向量集,该P个频域向量包括该第一频域向量集中的P 1个频域向量和该第二频域向量集中的P 2个频域向量,该第一频域向量集与该第一空域向量集对应,该第二频域向量集与该第二空域向量集对应,P 1大于P 2,且P 2大于或等于1。
可选地,该N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,该第一空频合并系数集与该第一空域向量集对应,该第二空频合并系数集与该第二空域向量集对应,该第一空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数。
可选地,该第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;该第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
可选地,该第一指示信息还用于指示Q个空域向量,Q大于或等于2,该Q个空域向量包括该第一空域向量集中的Q 1个空域向量和该第二空域向量集中的Q 2个空域向量,其中,该第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,该第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
可选地,所述处理器401还用于调用接口执行以下动作:接收第二指示信息,该第二指示信息用于指示以下至少一项:该第一空域向量集中的空域向量的个数Q 1、该第二空域向量集中的空域向量的个数Q 2、该第一频域向量集中的频域向量的个数P 1、该第二频域向量集中的频域向量的个数P 2、该第一空频合并系数集中的空频合并系数的个数与该第二空频合并系数集中的空频合并系数的个数。
可选地,该第一空频合并系数集中的空频合并系数的个数大于该第二空频合并系数集中的空频合并系数的个数。
可选地,该第一空域向量集中的Q 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的Q 2个空域向量包括该第一传输层对应的部分向量与该第二传输层对应的部分向量。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为4,该N个空域向量集还包括第三空域向量集与第四空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,该第四空域向量集中的空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息与该第四空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数大于承载该第四空域向量集对应的信息的比特数,且小于承载该第一空域向量集对应的信息的比特数。
可选地,该N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量、第三传输层对应的部分向量与第四传输层对应的部分向量,该第三空域向量集中空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量与第三传输层对应的部分向量,该第三空域向量集中的空域向量包括该第三传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,该第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第一空频合并系数集中的空频合并系数对应的幅度值中每一个传输层对应的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
可选地,该N个空频合并系数集还包括第三空频合并系数集与第四空频合并系数集,该第三空频合并系数集与该第三空域向量集对应,该第四空频合并系数集与该第四空域向量集对应,该第三空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或 等于该第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
可选地,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向对应的空域向量。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化方向对应的空域向量、所述第二传输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一 空域向量集对应的信息的比特数。
可选地,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
可选地,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
可选地,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
可选地,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
可选地,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
可选地,所述N个空域向量集还包括第三频域向量集与第四频域向量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
应理解,所述处理器401可以调用接口执行上述接收动作,其中,调用的接口可以是逻辑接口或物理接口,本申请实施例对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置400还可以包括收发器403。
可选地,所述装置400还包括存储器402,存储器402中可以存储上述方法实施例中的程序代码,以便于处理器401调用。
具体地,若所述装置400包括处理器401、存储器402和收发器403,则处理器401、存储器402和收发器403之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器401、存储器402和收发器403可以通过芯片实现,处理器401、存储器402和收发器403可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器402可以存储程序代码,处理器401调用存储器402存储的程序代码,以实现装置400的相应功能。
应理解,所述装置400还可用于执行前文实施例中终端设备侧的其他步骤和/或操作,为了简洁,这里不作赘述。
图5示出了根据本申请实施例的确定预编码向量的装置500的示意性框图。所述装置500用于执行前文方法实施例中网络设备执行的方法。可选地,所述装置500的具体形态可以是网络设备中的芯片。本申请实施例对此不作限定。所述装置500包括:
收发模块501,用于接收第一指示信息,该第一指示信息用于指示P个频域向量与K个空频合并系数,该P个频域向量属于N个频域向量集,该K个空频合并系数属于N个空频合并系数集,该N个频域向量集与N个空域向量集一一对应,该N个空频合并系数集与该N个空域向量集一一对应,该N个空域向量集中至少包括第一空域向量集和第二空域向量集,且该N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,该第一指示信息中包括该第一空域向量集对应的信息与该第二空域向量集对应的信息,该第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数。
处理模块502,用于根据第一指示信息,确定预编码向量。
可选地,该N个频域向量集包括第一频域向量集与第二频域向量集,该P个频域向量包括该第一频域向量集中的P 1个频域向量和该第二频域向量集中的P 2个频域向量,该第一频域向量集与该第一空域向量集对应,该第二频域向量集与该第二空域向量集对应,P 1大于P 2,且P 2大于或等于1。
可选地,该N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,该第一空频合并系数集与该第一空域向量集对应,该第二空频合并系数集与该第二空域向量集对应,该第一空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数。
可选地,该第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;该第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
可选地,该第一指示信息还用于指示Q个空域向量,Q大于或等于2,该Q个空域向量包括该第一空域向量集中的Q 1个空域向量和该第二空域向量集中的Q 2个空域向量,其中,该第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,该第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
可选地,收发模块501,还用于发送第二指示信息,该第二指示信息用于指示以下至少一项:该第一空域向量集中的空域向量的个数Q 1、该第二空域向量集中的空域向量的个数Q 2、该第一频域向量集中的频域向量的个数P 1、该第二频域向量集中的频域向量的个数P 2、该第一空频合并系数集中的空频合并系数的个数与该第二空频合并系数集中的空频合并系数的个数。
可选地,该第一空频合并系数集中的空频合并系数的个数大于该第二空频合并系数集中的空频合并系数的个数。
可选地,该第一空域向量集中的L 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的L 2个空域向量包括该第一传输层对应的部分向量与该第二传输层对应的部分向量。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量 集中的空域向量包括第三传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为4,该N个空域向量集还包括第三空域向量集与第四空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,该第四空域向量集中的空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息与该第四空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数大于承载该第四空域向量集对应的信息的比特数,且小于承载该第一空域向量集对应的信息的比特数。
可选地,该N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量、第三传输层对应的部分向量与第四传输层对应的部分向量,该第三空域向量集中空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量与第三传输层对应的部分向量,该第三空域向量集中的空域向量包括该第三传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,该第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
可选地,该N个空频合并系数集还包括第三空频合并系数集与第四空频合并系数集,该第三空频合并系数集与该第三空域向量集对应,该第四空频合并系数集与该第四空域向量集对应,该第三空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第三 空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
可选地,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向对应的空域向量。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化 方向对应的空域向量、所述第二传输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
可选地,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
可选地,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
可选地,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
可选地,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
可选地,所述N个空域向量集还包括第三频域向量集与第四频域向量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
应理解,根据本申请实施例的确定预编码向量的装置500可对应于根据本申请实施例的方法200实施例中的网络设备,装置500可以包括用于执行图2中的方法200实施例中的网络设备执行的方法的模块。并且装置500中的各个模块的上述和其它操作和/或功能分别为了实现图2中的方法200实施例中由网络设备执行的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置500中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置500是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到装置500可以采用图6所示的形式。处理模块501可以通过图6所示的处理器 601和存储器602来实现。收发模块502可以通过图6所示的收发器603来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置500是芯片时,那么收发模块502的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,如图6所示的存储器602。
图6示出了根据本申请实施例的确定预编码向量的装置600的示意性结构图。如图6所示,所述装置600包括:处理器601。
在一种可能的实现方式中,所述处理器601用于调用接口执行以下动作:接收第一指示信息,该第一指示信息用于指示P个频域向量与K个空频合并系数,该P个频域向量属于N个频域向量集,该K个空频合并系数属于N个空频合并系数集,该N个频域向量集与N个空域向量集一一对应,该N个空频合并系数集与该N个空域向量集一一对应,该N个空域向量集中至少包括第一空域向量集和第二空域向量集,且该N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,该第一指示信息中包括该第一空域向量集对应的信息与该第二空域向量集对应的信息,该第一指示信息中承载该第一空域向量集对应的信息的比特数大于承载该第二空域向量集对应的信息的比特数。
所述处理器601还用于:根据该第一指示信息,确定预编码向量。
可选地,该N个频域向量集包括第一频域向量集与第二频域向量集,该P个频域向量包括该第一频域向量集中的P 1个频域向量和该第二频域向量集中的P 2个频域向量,该第一频域向量集与该第一空域向量集对应,该第二频域向量集与该第二空域向量集对应,P 1大于P 2,且P 2大于或等于1。
可选地,该N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,该第一空频合并系数集与该第一空域向量集对应,该第二空频合并系数集与该第二空域向量集对应,该第一空频合并系数集中的每个空频合并系数的量化比特数大于该第二空频合并系数集中的每个空频合并系数的量化比特数。
可选地,该第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;该第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
可选地,该第一指示信息还用于指示Q个空域向量,Q大于或等于2,该Q个空域向量包括该第一空域向量集中的Q 1个空域向量和该第二空域向量集中的Q 2个空域向量,其中,该第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,该第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
可选地,所述处理器601还用于调用接口执行以下动作:发送第二指示信息,该第二指示信息用于指示以下至少一项:该第一空域向量集中的空域向量的个数Q 1、该第二空域向量集中的空域向量的个数Q 2、该第一频域向量集中的频域向量的个数P 1、该第二频域向量集中的频域向量的个数P 2、该第一空频合并系数集中的空频合并系数的个数与该第二空频合并系数集中的空频合并系数的个数。
可选地,该第一空频合并系数集中的空频合并系数的个数大于该第二空频合并系数集 中的空频合并系数的个数。
可选地,该第一空域向量集中的L 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的L 2个空域向量包括该第一传输层对应的部分向量与该第二传输层对应的部分向量。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全部向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为4,该N个空域向量集还包括第三空域向量集与第四空域向量集,该第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,该第四空域向量集中的空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息与该第四空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数大于承载该第四空域向量集对应的信息的比特数,且小于承载该第一空域向量集对应的信息的比特数。
可选地,该N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量、第三传输层对应的部分向量与第四传输层对应的部分向量,该第三空域向量集中空域向量包括该第三传输层对应的部分向量与该第四传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,N的取值为3,该N个空域向量集还包括第三空域向量集,该第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,该第二空域向量集中的空域向量包括该第一传输层对应的部分向量、该第二传输层对应的部分向量与第三传输层对应的部分向量,该第三空域向量集中的空域向量包括该第三传输层对应的部分向量,该第一指示信息还包括该第三空域向量集对应的信息,该第一指示信息中承载该第三空域向量集对应的信息的比特数小于承载该第一空域向量集对应的信息的比特数。
可选地,该第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于 或等于该第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
可选地,该N个空频合并系数集还包括第三空频合并系数集与第四空频合并系数集,该第三空频合并系数集与该第三空域向量集对应,该第四空频合并系数集与该第四空域向量集对应,该第三空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,该第三空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于该第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
可选地,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向对应的空域向量。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一 空域向量集对应的信息的比特数。
可选地,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化方向对应的空域向量、所述第二传输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
可选地,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
可选地,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
可选地,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
可选地,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
可选地,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
可选地,所述N个空域向量集还包括第三频域向量集与第四频域向量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
应理解,所述处理器601可以调用接口执行上述接收动作,其中,调用的接口可以是逻辑接口或物理接口,本申请实施例对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置600还可以包括收发器603。
可选地,所述装置600还包括存储器602,存储器602中可以存储上述方法实施例中的程序代码,以便于处理器601调用。
具体地,若所述装置600包括处理器601、存储器602和收发器603,则处理器601、存储器602和收发器603之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器601、存储器602和收发器603可以通过芯片实现,处理器601、存储器602和收发器603可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器602可以存储程序代码,处理器601调用存储器602存储的程序代码,以实现装置600的相应功能。
应理解,所述装置600还可用于执行前文实施例中终端设备侧的其他步骤和/或操作,为了简洁,这里不作赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (110)

  1. 一种指示预编码向量的方法,其特征在于,包括:
    生成第一指示信息,所述第一指示信息用于指示P个频域向量与K个空频合并系数,所述P个频域向量属于N个频域向量集,所述K个空频合并系数属于N个空频合并系数集,所述N个频域向量集与N个空域向量集一一对应,所述N个空频合并系数集与所述N个空域向量集一一对应,所述N个空域向量集中至少包括第一空域向量集和第二空域向量集,且所述N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,所述第一指示信息中包括所述第一空域向量集对应的信息与所述第二空域向量集对应的信息,所述第一指示信息中承载所述第一空域向量集对应的信息的比特数大于承载所述第二空域向量集对应的信息的比特数;
    发送所述第一指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述N个频域向量集包括第一频域向量集与第二频域向量集,所述P个频域向量包括所述第一频域向量集中的P 1个频域向量和所述第二频域向量集中的P 2个频域向量,所述第一频域向量集与所述第一空域向量集对应,所述第二频域向量集与所述第二空域向量集对应,P 1大于P 2,且P 2大于或等于1。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,所述第一空频合并系数集与所述第一空域向量集对应,所述第二空频合并系数集与所述第二空域向量集对应,所述第一空频合并系数集中的每个空频合并系数的量化比特数大于所述第二空频合并系数集中的每个空频合并系数的量化比特数。
  4. 根据权利要求3所述的方法,其特征在于,所述第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;
    所述第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述第一指示信息还用于指示Q个空域向量,Q大于或等于2,所述Q个空域向量包括所述第一空域向量集中的Q 1个空域向量和所述第二空域向量集中的Q 2个空域向量,
    其中,所述第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,所述第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示以下至少一项:
    所述第一空域向量集中的空域向量的个数Q 1、所述第二空域向量集中的空域向量的个数Q 2、所述第一频域向量集中的频域向量的个数P 1、所述第二频域向量集中的频域向量的个数P 2、所述第一空频合并系数集中的空频合并系数的个数与所述第二空频合并系数集中的空频合并系数的个数。
  7. 根据权利要求6所述的方法,其特征在于,所述第一空频合并系数集中的空频合 并系数的个数大于所述第二空频合并系数集中的空频合并系数的个数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一空域向量集中的L 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,所述第二空域向量集中的L 2个空域向量包括所述第一传输层对应的部分向量与所述第二传输层对应的部分向量。
  9. 根据权利要求8所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的全部向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  10. 根据权利要求8所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全部向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  11. 根据权利要求8所述的方法,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,所述第四空域向量集中的空域向量包括所述第三传输层对应的部分向量与所述第四传输层对应的部分向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  12. 根据权利要求1至7中任一项所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,所述第二空域向量集中的空域向量包括所述第一传输层对应的部分向量、所述第二传输层对应的部分向量与第三传输层对应的部分向量,所述第三空域向量集中的空域向量包括所述第三传输层对应的部分向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于所述第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,所述第一空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于所述第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,所述第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于所述第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
  15. 根据权利要求11所述的方法,其特征在于,所述N个空频合并系数集还包括第 三空频合并系数集与第四空频合并系数集,所述第三空频合并系数集与所述第三空域向量集对应,所述第四空频合并系数集与所述第四空域向量集对应,所述第三空频合并系数集中的每一个传输层对应的空频合并系数的幅度平方之和大于或等于所述第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,所述第三空频合并系数集中的每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于所述第四空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,所述第三空频合并系数集中的每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于所述第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
  16. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向对应的空域向量。
  17. 根据权利要求16所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  18. 根据权利要求16所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  19. 根据权利要求16所述的方法,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  20. 根据权利要求1至7中任一项所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  21. 根据权利要求1至7中任一项所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化方向对应的空域向量、所述第二传输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  22. 根据权利要求1至7中任一项所述的方法,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  23. 根据权利要求16至22中任一项所述的方法,其特征在于,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
  24. 根据权利要求17至22中任一项所述的方法,其特征在于,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
  25. 根据权利要求18或19所述的方法,其特征在于,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
  26. 根据权利要求16至19中任一项所述的方法,其特征在于,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
  27. 根据权利要求19所述的方法,其特征在于,所述N个空域向量集还包括第三频域向量集与第四频域向量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
  28. 一种确定预编码向量的方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示P个频域向量与K个空频合并系数,所述P个频域向量属于N个频域向量集,所述K个空频合并系数属于N个空频合并系数 集,所述N个频域向量集与N个空域向量集一一对应,所述N个空频合并系数集与所述N个空域向量集一一对应,所述N个空域向量集中至少包括第一空域向量集和第二空域向量集,且所述N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,所述第一指示信息中包括所述第一空域向量集对应的信息与所述第二空域向量集对应的信息,所述第一指示信息中承载所述第一空域向量集对应的信息的比特数大于承载所述第二空域向量集对应的信息的比特数;
    根据所述第一指示信息,确定预编码向量。
  29. 根据权利要求28所述的方法,其特征在于,所述N个频域向量集包括第一频域向量集与第二频域向量集,所述P个频域向量包括所述第一频域向量集中的P 1个频域向量和所述第二频域向量集中的P 2个频域向量,所述第一频域向量集与所述第一空域向量集对应,所述第二频域向量集与所述第二空域向量集对应,P 1大于P 2,且P 2大于或等于1。
  30. 根据权利要求28或29所述的方法,其特征在于,所述N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,所述第一空频合并系数集与所述第一空域向量集对应,所述第二空频合并系数集与所述第二空域向量集对应,所述第一空频合并系数集中的每个空频合并系数的量化比特数大于所述第二空频合并系数集中的每个空频合并系数的量化比特数。
  31. 根据权利要求30所述的方法,其特征在于,所述第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;
    所述第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
  32. 根据权利要求29至31中任一项所述的方法,其特征在于,所述第一指示信息还用于指示Q个空域向量,Q大于或等于2,所述Q个空域向量包括所述第一空域向量集中的Q 1个空域向量和所述第二空域向量集中的Q 2个空域向量,
    其中,所述第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,所述第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
  33. 根据权利要求29至32中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示以下至少一项:
    所述第一空域向量集中的空域向量的个数Q 1、所述第二空域向量集中的空域向量的个数Q 2、所述第一频域向量集中的频域向量的个数P 1、所述第二频域向量集中的频域向量的个数P 2、所述第一空频合并系数集中的空频合并系数的个数与所述第二空频合并系数集中的空频合并系数的个数。
  34. 根据权利要求33所述的方法,其特征在于,所述第一空频合并系数集中的空频合并系数的个数大于所述第二空频合并系数集中的空频合并系数的个数。
  35. 根据权利要求28至34中任一项所述的方法,其特征在于,所述第一空域向量集中的L 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,所述第二空域向量集中的L 2个空域向量包括所述第一传输层对应的部分向量与所述第二传输层对应的部分向量。
  36. 根据权利要求35所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的全部向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  37. 根据权利要求35所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全部向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  38. 根据权利要求35所述的方法,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,所述第四空域向量集中的空域向量包括所述第三传输层对应的部分向量与所述第四传输层对应的部分向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  39. 根据权利要求28至34中任一项所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,所述第二空域向量集中的空域向量包括所述第一传输层对应的部分向量、所述第二传输层对应的部分向量与第三传输层对应的部分向量,所述第三空域向量集中的空域向量包括所述第三传输层对应的部分向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  40. 根据权利要求28至39中任一项所述的方法,其特征在于,所述N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
  41. 根据权利要求35至40中任一项所述的方法,其特征在于,所述第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于所述第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,所述第一空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于所述第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,所述第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于所述第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
  42. 根据权利要求38所述的方法,其特征在于,所述N个空频合并系数集还包括第三空频合并系数集与第四空频合并系数集,所述第三空频合并系数集与所述第三空域向量集对应,所述第四空频合并系数集与所述第四空域向量集对应,所述第三空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于所述第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,所述第三空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于所述第四空频合并系数集 中该传输层的空频合并系数的幅度值中的最大值,或,所述第三空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于所述第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
  43. 根据权利要求28至34中任一项所述的方法,其特征在于,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向对应的空域向量。
  44. 根据权利要求43所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  45. 根据权利要求43所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  46. 根据权利要求43所述的方法,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  47. 根据权利要求28至34中任一项所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  48. 根据权利要求28至34中任一项所述的方法,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化方向对应的空域向量、所述第二传 输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  49. 根据权利要求28至34中任一项所述的方法,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  50. 根据权利要求43至49中任一项所述的方法,其特征在于,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
  51. 根据权利要求39至49中任一项所述的方法,其特征在于,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
  52. 根据权利要求45或46所述的方法,其特征在于,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
  53. 根据权利要求43至46中任一项所述的方法,其特征在于,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
  54. 根据权利要求46所述的方法,其特征在于,所述N个空域向量集还包括第三频域向量集与第四频域向量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
  55. 一种指示预编码向量的装置,其特征在于,包括:
    处理模块,用于生成第一指示信息,所述第一指示信息用于指示P个频域向量与K个空频合并系数,所述P个频域向量属于N个频域向量集,所述K个空频合并系数属于N个空频合并系数集,所述N个频域向量集与N个空域向量集一一对应,所述N个空频合并系数集与所述N个空域向量集一一对应,所述N个空域向量集中至少包括第一空域向量集和第二空域向量集,且所述N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,所述第一指示信息中包括所述第一空域向量集对应的信息与所述第二空域向量集对应的信息,所述第一指示信息中承载所述第一空域向量集对 应的信息的比特数大于承载所述第二空域向量集对应的信息的比特数;
    收发模块,用于发送所述第一指示信息。
  56. 根据权利要求55所述的装置,其特征在于,所述N个频域向量集包括第一频域向量集与第二频域向量集,所述P个频域向量包括所述第一频域向量集中的P 1个频域向量和所述第二频域向量集中的P 2个频域向量,所述第一频域向量集与所述第一空域向量集对应,所述第二频域向量集与所述第二空域向量集对应,P 1大于P 2,且P 2大于或等于1。
  57. 根据权利要求55或56所述的装置,其特征在于,所述N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,所述第一空频合并系数集与所述第一空域向量集对应,所述第二空频合并系数集与所述第二空域向量集对应,所述第一空频合并系数集中的每个空频合并系数的量化比特数大于所述第二空频合并系数集中的每个空频合并系数的量化比特数。
  58. 根据权利要求57所述的装置,其特征在于,所述第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;
    所述第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
  59. 根据权利要求56至58中任一项所述的装置,其特征在于,所述第一指示信息还用于指示Q个空域向量,Q大于或等于2,所述Q个空域向量包括所述第一空域向量集中的Q 1个空域向量和所述第二空域向量集中的Q 2个空域向量,
    其中,所述第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,所述第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
  60. 根据权利要求56至59中任一项所述的装置,其特征在于,所述收发模块,还用于:接收第二指示信息,所述第二指示信息用于指示以下至少一项:
    所述第一空域向量集中的空域向量的个数Q 1、所述第二空域向量集中的空域向量的个数Q 2、所述第一频域向量集中的频域向量的个数P 1、所述第二频域向量集中的频域向量的个数P 2、所述第一空频合并系数集中的空频合并系数的个数与所述第二空频合并系数集中的空频合并系数的个数。
  61. 根据权利要求60所述的装置,其特征在于,所述第一空频合并系数集中的空频合并系数的个数大于所述第二空频合并系数集中的空频合并系数的个数。
  62. 根据权利要求55至61中任一项所述的装置,其特征在于,所述第一空域向量集中的Q 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,所述第二空域向量集中的Q 2个空域向量包括所述第一传输层对应的部分向量与所述第二传输层对应的部分向量。
  63. 根据权利要求62所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的全部向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  64. 根据权利要求62所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全部向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  65. 根据权利要求62所述的装置,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,所述第四空域向量集中的空域向量包括所述第三传输层对应的部分向量与所述第四传输层对应的部分向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  66. 根据权利要求55至59中任一项所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,所述第二空域向量集中的空域向量包括所述第一传输层对应的部分向量、所述第二传输层对应的部分向量与第三传输层对应的部分向量,所述第三空域向量集中的空域向量包括所述第三传输层对应的部分向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  67. 根据权利要求55至66中任一项所述的装置,其特征在于,所述N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
  68. 根据权利要求62至67中任一项所述的装置,其特征在于,所述第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于所述第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,所述第一空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于所述第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,所述第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于所述第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
  69. 根据权利要求65所述的装置,其特征在于,所述N个空频合并系数集还包括第三空频合并系数集与第四空频合并系数集,所述第三空频合并系数集与所述第三空域向量集对应,所述第四空频合并系数集与所述第四空域向量集对应,所述第三空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于所述第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,所述第三空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于所述第四空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,所述第三空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于所述第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
  70. 根据权利要求55至61中任一项所述的装置,其特征在于,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化 方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向对应的空域向量。
  71. 根据权利要求70所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  72. 根据权利要求70所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  73. 根据权利要求70所述的装置,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  74. 根据权利要求55至61中任一项所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  75. 根据权利要求55至61中任一项所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化方向对应的空域向量、所述第二传输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  76. 根据权利要求55至61中任一项所述的装置,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域 向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  77. 根据权利要求70至76中任一项所述的装置,其特征在于,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
  78. 根据权利要求66至76中任一项所述的装置,其特征在于,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
  79. 根据权利要求72或73所述的装置,其特征在于,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
  80. 根据权利要求70至73中任一项所述的装置,其特征在于,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
  81. 根据权利要求73所述的装置,其特征在于,所述N个空域向量集还包括第三频域向量集与第四频域向量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
  82. 一种确定预编码向量的装置,其特征在于,包括:
    收发模块,用于接收第一指示信息,所述第一指示信息用于指示P个频域向量与K个空频合并系数,所述P个频域向量属于N个频域向量集,所述K个空频合并系数属于N个空频合并系数集,所述N个频域向量集与N个空域向量集一一对应,所述N个空频合并系数集与所述N个空域向量集一一对应,所述N个空域向量集中至少包括第一空域向量集和第二空域向量集,且所述N个空域向量集中的至少一个空域向量集与至少两个传输层对应,N、P、K大于或等于2,所述第一指示信息中包括所述第一空域向量集对应的信息与所述第二空域向量集对应的信息,所述第一指示信息中承载所述第一空域向量集对应的信息的比特数大于承载所述第二空域向量集对应的信息的比特数;
    处理模块,用于根据所述第一指示信息,确定预编码向量。
  83. 根据权利要求82所述的装置,其特征在于,所述N个频域向量集包括第一频域向量集与第二频域向量集,所述P个频域向量包括所述第一频域向量集中的P 1个频域向量和所述第二频域向量集中的P 2个频域向量,所述第一频域向量集与所述第一空域向量 集对应,所述第二频域向量集与所述第二空域向量集对应,P 1大于P 2,且P 2大于或等于1。
  84. 根据权利要求82或83所述的装置,其特征在于,所述N个空频合并系数集包括第一空频合并系数集与第二空频合并系数集,所述第一空频合并系数集与所述第一空域向量集对应,所述第二空频合并系数集与所述第二空域向量集对应,所述第一空频合并系数集中的每个空频合并系数的量化比特数大于所述第二空频合并系数集中的每个空频合并系数的量化比特数。
  85. 根据权利要求84所述的装置,其特征在于,所述第一空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种;
    所述第二空频合并系数集中的每个空频合并系数的量化比特包括幅度量化比特与相位量化比特中的至少一种。
  86. 根据权利要求83至85中任一项所述的装置,其特征在于,所述第一指示信息还用于指示Q个空域向量,Q大于或等于2,所述Q个空域向量包括所述第一空域向量集中的Q 1个空域向量和所述第二空域向量集中的Q 2个空域向量,
    其中,所述第一空域向量集中的每个空域向量与S个频域向量对应,P 1与S相等或P 1等于S与Q 1的乘积,S大于或等于1,所述第二空域向量集中的每个空域向量与R个频域向量对应,P 2与R相等或P 2等于R与Q 2的乘积,R大于或等于1。
  87. 根据权利要求83至86中任一项所述的装置,其特征在于,所述收发模块,还用于:发送第二指示信息,所述第二指示信息用于指示以下至少一项:
    所述第一空域向量集中的空域向量的个数Q 1、所述第二空域向量集中的空域向量的个数Q 2、所述第一频域向量集中的频域向量的个数P 1、所述第二频域向量集中的频域向量的个数P 2、所述第一空频合并系数集中的空频合并系数的个数与所述第二空频合并系数集中的空频合并系数的个数。
  88. 根据权利要求87所述的装置,其特征在于,所述第一空频合并系数集中的空频合并系数的个数大于所述第二空频合并系数集中的空频合并系数的个数。
  89. 根据权利要求82至88中任一项所述的装置,其特征在于,所述第一空域向量集中的L 1个空域向量包括第一传输层对应的部分向量与第二传输层对应的部分向量,所述第二空域向量集中的L 2个空域向量包括所述第一传输层对应的部分向量与所述第二传输层对应的部分向量。
  90. 根据权利要求89所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的全部向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  91. 根据权利要求89所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的全部向量与第四传输层对应的全部向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  92. 根据权利要求89所述的装置,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层对应的部分向量与第四传输层对应的部分向量,所述第四空域向量集中的空域向量包括所述第三传输层对应的部分向量与所述第四传输层对应的部分向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  93. 根据权利要求82至88中任一项所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层与第二传输层对应的部分向量,所述第二空域向量集中的空域向量包括所述第一传输层对应的部分向量、所述第二传输层对应的部分向量与第三传输层对应的部分向量,所述第三空域向量集中的空域向量包括所述第三传输层对应的部分向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  94. 根据权利要求82至93中任一项所述的装置,其特征在于,所述N个空域向量集中的空域向量的数量之和等于全部传输层对应的空域向量数量之和。
  95. 根据权利要求89至94中任一项所述的装置,其特征在于,所述第一空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于所述第二空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,所述第一空频合并系数集中每一个传输层对应的空频合并系数对应的幅度值中的最小值大于或等于所述第二空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,所述第一空频合并系数集中每一个传输层对应的空频合并系数对应的宽带幅度值中的最小值大于或等于所述第二空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
  96. 根据权利要求92所述的装置,其特征在于,所述N个空频合并系数集还包括第三空频合并系数集与第四空频合并系数集,所述第三空频合并系数集与所述第三空域向量集对应,所述第四空频合并系数集与所述第四空域向量集对应,所述第三空频合并系数集中每一个传输层对应的空频合并系数的幅度平方之和大于或等于所述第四空频合并系数集中该传输层的空频合并系数的幅度平方之和,或,所述第三空频合并系数集中每一个传输层对的空频合并系数对应的幅度值中的最小值大于或等于所述第四空频合并系数集中该传输层的空频合并系数的幅度值中的最大值,或,所述第三空频合并系数集中每一个传输层对的空频合并系数对应的宽带幅度值中的最小值大于或等于所述第四空频合并系数集中该传输层的空频合并系数的宽带幅度值中的最大值。
  97. 根据权利要求82至88中任一项所述的装置,其特征在于,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量与所述第二传输层的第二极化方向对应的空域向量。
  98. 根据权利要求97所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信 息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  99. 根据权利要求97所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量、所述第三传输层的第二极化方向对应的空域向量、第四传输层的第一极化方向对应的空域向量、所述第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  100. 根据权利要求97所述的装置,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第三空域向量集中的空域向量包括第三传输层的第一极化方向对应的空域向量与第四传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括所述第三传输层的第二极化方向对应的空域向量与第四传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  101. 根据权利要求82至88中任一项所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量与第二传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量、第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括所述第三传输层的第一极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  102. 根据权利要求82至88中任一项所述的装置,其特征在于,N的取值为3,所述N个空域向量集还包括第三空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量、第三传输层的第一极化方向对应的空域向量、所述第二传输层的第二极化方向对应的空域向量与所述第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数小于承载所述第一空域向量集对应的信息的比特数。
  103. 根据权利要求82至88中任一项所述的装置,其特征在于,N的取值为4,所述N个空域向量集还包括第三空域向量集与第四空域向量集,所述第一空域向量集中的空域向量包括第一传输层的第一极化方向对应的空域向量,所述第二空域向量集中的空域向量包括所述第一传输层的第二极化方向对应的空域向量,所述第三空域向量集中的空域向量包括第二传输层的第一极化方向对应的空域向量与第三传输层的第一极化方向对应的空域向量,所述第四空域向量集中的空域向量包括第二传输层的第二极化方向对应的空域向量与第三传输层的第二极化方向对应的空域向量,所述第一指示信息还包括所述第三空域 向量集对应的信息与所述第四空域向量集对应的信息,所述第一指示信息中承载所述第三空域向量集对应的信息的比特数大于承载所述第四空域向量集对应的信息的比特数,且小于承载所述第一空域向量集对应的信息的比特数。
  104. 根据权利要求97至103中任一项所述的装置,其特征在于,所述第一传输层的第一极化方向对应的参考幅度值大于所述第一传输层的第二极化方向对应的参考幅度值,所述第二传输层的第一极化方向对应的参考幅度值大于所述第二传输层的第二极化方向对应的参考幅度值。
  105. 根据权利要求93至103中任一项所述的装置,其特征在于,所述第三传输层的第一极化方向对应的参考幅度值大于所述第三传输层的第二极化方向对应的参考幅度值。
  106. 根据权利要求99或100所述的装置,其特征在于,所述第四传输层的第一极化方向对应的参考幅度值大于所述第四传输层的第二极化方向对应的参考幅度值。
  107. 根据权利要求97至100中任一项所述的装置,其特征在于,所述第二频域向量集中与所述第一传输层对应的频域向量是从所述第一频域向量集中与所述第一传输层对应的频域向量中确定的,所述第二频域向量集中与所述第二传输层对应的频域向量是从所述第一频域向量集中与所述第二传输层对应的频域向量中确定的。
  108. 根据权利要求100所述的装置,其特征在于,所述N个空域向量集还包括第三频域向量集与第四频域向量集,所述第三频域向量集与所述第三空域向量集对应,所述第四频域向量集与所述第四空域向量集对应,所述第四频域向量集中与所述第三传输层对应的频域向量是从所述第三频域向量集中与所述第三传输层对应的频域向量中确定的,所述第四频域向量集中与所述第四传输层对应的频域向量是从所述第三频域向量集中与所述第四传输层对应的频域向量中确定的。
  109. 一种计算机程序产品,其特征在于,包括:计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至27或权利要求28至54中任一项所述的方法。
  110. 一种计算机可读介质,其特征在于,所述计算机可读介质存储有计算机程序指令,当所述计算机程序指令在计算机上运行时,使得计算机执行如权利要求1至27或权利要求28至54中任一项所述的方法。
PCT/CN2020/073714 2019-02-15 2020-01-22 指示和确定预编码向量的方法以及通信装置 WO2020164387A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910118166 2019-02-15
CN201910118166.6 2019-02-15
CN201910182198.2A CN111585630B (zh) 2019-02-15 2019-03-11 指示和确定预编码向量的方法以及通信装置
CN201910182198.2 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020164387A1 true WO2020164387A1 (zh) 2020-08-20

Family

ID=72045454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073714 WO2020164387A1 (zh) 2019-02-15 2020-01-22 指示和确定预编码向量的方法以及通信装置

Country Status (1)

Country Link
WO (1) WO2020164387A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662811A (zh) * 2012-09-18 2015-05-27 Lg电子株式会社 在多天线无线通信系统中发送有效反馈的方法及其设备
CN108418612A (zh) * 2017-04-26 2018-08-17 华为技术有限公司 一种指示及确定预编码向量的方法和设备
CN109150270A (zh) * 2017-06-28 2019-01-04 华为技术有限公司 信道状态信息反馈和接收方法、发送端设备和接收端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662811A (zh) * 2012-09-18 2015-05-27 Lg电子株式会社 在多天线无线通信系统中发送有效反馈的方法及其设备
CN108418612A (zh) * 2017-04-26 2018-08-17 华为技术有限公司 一种指示及确定预编码向量的方法和设备
CN108809372A (zh) * 2017-04-26 2018-11-13 华为技术有限公司 一种指示及确定预编码向量的方法和设备
CN109150270A (zh) * 2017-06-28 2019-01-04 华为技术有限公司 信道状态信息反馈和接收方法、发送端设备和接收端设备

Similar Documents

Publication Publication Date Title
WO2020125510A1 (zh) 一种信道测量方法和通信装置
CN111342873B (zh) 一种信道测量方法和通信装置
EP3907918B1 (en) Parameter configuration method and communication apparatus
WO2020199964A1 (zh) 通信方法及装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
CN111342913B (zh) 一种信道测量方法和通信装置
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2020211681A1 (zh) 一种信道测量方法和通信装置
US11943014B2 (en) Channel measurement method and communications apparatus
CN111757382B (zh) 指示信道状态信息的方法以及通信装置
US11362707B2 (en) Precoding vector indicating and determining method and communications apparatus
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
CN111756422A (zh) 指示信道状态信息的方法以及通信装置
EP4274112A1 (en) Channel state information feedback method and communication apparatus
WO2020164387A1 (zh) 指示和确定预编码向量的方法以及通信装置
JP7371270B2 (ja) チャネル状態情報フィードバック方法及び通信装置
CN111585630B (zh) 指示和确定预编码向量的方法以及通信装置
WO2023165458A1 (zh) 信道状态信息的反馈方法和通信装置
WO2024093945A1 (zh) 一种信道参数上报方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755399

Country of ref document: EP

Kind code of ref document: A1