WO2020083057A1 - 指示和确定预编码向量的方法以及通信装置 - Google Patents

指示和确定预编码向量的方法以及通信装置 Download PDF

Info

Publication number
WO2020083057A1
WO2020083057A1 PCT/CN2019/110939 CN2019110939W WO2020083057A1 WO 2020083057 A1 WO2020083057 A1 WO 2020083057A1 CN 2019110939 W CN2019110939 W CN 2019110939W WO 2020083057 A1 WO2020083057 A1 WO 2020083057A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
weighting coefficients
frequency
units
coefficient
Prior art date
Application number
PCT/CN2019/110939
Other languages
English (en)
French (fr)
Inventor
金黄平
王潇涵
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19876470.6A priority Critical patent/EP3866347A4/en
Priority to JP2021523305A priority patent/JP7248793B2/ja
Priority to BR112021007889-4A priority patent/BR112021007889A2/pt
Publication of WO2020083057A1 publication Critical patent/WO2020083057A1/zh
Priority to US17/241,165 priority patent/US20210250076A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps

Definitions

  • the present application relates to the field of wireless communication, and more specifically, to a method and communication device for indicating and determining a precoding vector.
  • Massive MIMO massive multiple-input multiple-output
  • network equipment can reduce interference between multiple users and interference between multiple signal streams of the same user through precoding. It is conducive to improving signal quality, realizing space division multiplexing, and improving spectrum utilization.
  • the terminal device may determine the precoding vector by way of channel measurement, for example, and hopes that through feedback, the network device obtains the same or similar precoding vector as the precoding vector determined by the terminal device.
  • the terminal device may indicate the precoding vector to the network device through a two-stage feedback method of broadband feedback and subband feedback. Specifically, the terminal device may indicate the selected beam vector and the quantized value of the broadband amplitude coefficient of each beam vector through wideband feedback based on each transmission layer, and may indicate the quantization of the combined coefficients available for each subband through subband feedback Value, where the combination coefficient may include, for example, a sub-band amplitude coefficient and a sub-band phase coefficient.
  • the network device can synthesize the broadband feedback information and the subband feedback information to recover the precoding vector corresponding to each subband.
  • the terminal device can indicate the precoding vector to the network device through the two-level feedback method of broadband feedback and subband feedback. Refer to the type II (type II) codebook feedback method defined in the new radio (NR) protocol TS 38.214 .
  • the present application provides a method and a communication device for indicating and determining a precoding vector, in order to reduce feedback overhead.
  • a method for indicating a precoding vector is provided.
  • the method may be executed by a terminal device, or may be executed by a chip configured in the terminal device.
  • the method includes: generating a channel state information CSI report, where the CSI report is used to indicate M space-frequency units and weighting coefficients of some or all of the M space-frequency units, and the M space-frequency units Each space-frequency unit corresponds to a beam vector and a frequency-domain vector.
  • the weighted sum of some or all of the space-frequency units in the M space-frequency units is used to determine the precoding vector for one or more frequency-domain units; the CSI is sent report.
  • a method for determining a precoding vector is provided.
  • the method may be executed by a network device, or may be executed by a chip configured in the network device.
  • the method includes: receiving a channel state information CSI report, where the CSI report is used to indicate M space-frequency units and weighting coefficients of some or all of the space-frequency units in the M space-frequency units, and among the M space-frequency units Each space frequency unit corresponds to a beam vector and a frequency domain vector, and the weighted sum of some or all of the space frequency units in the M space frequency units is used to determine the precoding vector of one or more frequency domain units; according to the CSI Report to determine the precoding vector of one or more frequency domain units.
  • the frequency domain vector is used to describe the change law of the channel in the frequency domain, and the linear superposition of one or more frequency domain vectors is used to simulate the change of the channel in the frequency domain. Relationship. By using the continuity of the frequency domain, fewer frequency domain vectors are used to describe the changing law of multiple frequency domain units.
  • the terminal device indicates one or more beam vectors, one or more frequency domain vectors and their corresponding weighting coefficients to the network device, or indicates one or more space frequency units and their corresponding weighting coefficients to the terminal device, in order to facilitate
  • the network device recovers the precoding vector with a high degree of approximation.
  • there is no need to independently report weighting coefficients based on each frequency domain unit and when the number of frequency domain units increases, the feedback overhead does not increase exponentially. Therefore, the feedback overhead can be greatly reduced on the basis of ensuring approximate accuracy.
  • the CSI report includes a first part and a second part, the second part includes an indication of a normalized space frequency unit, and the M space frequency units Among the corresponding M weighting coefficients, quantization information of each weighting coefficient except the normalization coefficient, the normalized space-frequency unit corresponds to the normalization coefficient.
  • the first part of the CSI report may not include any information related to PMI. Since the normalized space-frequency unit corresponds to the normalized coefficient, the normalized coefficient can be indicated by indicating the normalized space-frequency unit.
  • the CSI report includes a first part and a second part, and the second part includes each weighting of the M weighting coefficients corresponding to the M space-frequency units Quantization information of coefficients.
  • the first part of the CSI report may not include any information related to PMI.
  • the CSI report includes a first part and a second part, and the first part includes M weighting coefficients corresponding to the M space-frequency units divided by one Indication of the number of weighting coefficients with a non-zero amplitude other than the normalization coefficient, or indication of the number of weighting coefficients with an amplitude other than the normalization coefficient among the M weighting coefficients; the second part includes normalization The indication of the space frequency unit, the quantization information of the amplitude of each weighting coefficient among the M weighting coefficients except the normalization coefficient, and the quantization information of the phase of the weighting coefficient whose amplitude is non-zero except the normalization coefficient, The normalized space frequency unit corresponds to the normalized coefficient.
  • the CSI report includes a first part and a second part, and the first part includes M weighting coefficients corresponding to the M space-frequency units that have non-zero amplitudes Indicates the number of weighting coefficients of, or the number of weighting coefficients whose amplitude is zero among the M weighting coefficients; the second part includes quantization information on the magnitude of each weighting coefficient in the M weighting coefficients and The quantization information of the phase of the weighting coefficient of zero.
  • the CSI report includes a first part and a second part, and the first part includes M weighting coefficients corresponding to the M space-frequency units divided by one Quantization information of the amplitudes of the weighting coefficients other than the normalization coefficient; the second part includes the indication of the normalized space frequency unit, and the phases of the weighting coefficients of the M weighting coefficients other than the normalization coefficient whose amplitude is non-zero Quantization information, the normalized space-frequency unit corresponds to the normalized coefficient.
  • the CSI report includes a first part and a second part, and the first part includes each of the M weighting coefficients corresponding to the M space-frequency units Quantization information of the amplitude of the; the second part includes the quantization information of the phase of the weighting coefficients of each non-zero amplitude in the M weighting coefficients.
  • the CSI report includes a first part and a second part, the first part includes a bitmap, and the bitmap is used to indicate correspondence with the M space-frequency units The number and position of weighting coefficients with non-zero amplitude among the M weighting coefficients except for the normalization coefficient; the second part includes an indication of the normalized space frequency unit, and the M weighting coefficients except the normalization
  • the quantized information of weighting coefficients with non-zero amplitudes other than the coefficients, the normalized space-frequency unit corresponds to the normalized coefficients.
  • the CSI report includes a first part and a second part, the first part includes a bitmap, and the bitmap is used to indicate correspondence with the M space-frequency units The number and position of the weighting coefficients with non-zero amplitude among the M weighting coefficients of the; the second part includes quantization information of the weighting coefficients with non-zero amplitude among the M weighting coefficients.
  • the CSI report includes a first part and a second part, the first part includes a bitmap, and the bitmap is used to indicate correspondence with the M space-frequency units The number and position of weighting coefficients with non-zero amplitude among the M weighting coefficients other than the normalization coefficient, and the number of quantization bits of each weighting coefficient except the normalization coefficient; the second part includes normalization The indication of the normalized space frequency unit and the quantization information of the weighting coefficients of the M weighting coefficients other than the normalization coefficient with non-zero amplitudes.
  • the normalized space frequency unit corresponds to the normalization coefficient.
  • multiple bits are used to indicate the number of quantization bits for different weighting coefficients. It is possible to allocate more quantization bits for the weighting coefficients of the stronger space-frequency components and less quantization for the weighting coefficients of the weaker space-frequency components The number of bits. Therefore, more overhead can be used on the stronger space-frequency component, which is beneficial to improve the approximation accuracy.
  • the CSI report includes a first part and a second part, the first part includes a bitmap, and the bitmap is used to indicate correspondence with the M space-frequency units The number and position of weighting coefficients with non-zero amplitude among M weighting coefficients, and the number of quantization bits of each weighting coefficient; the second part includes quantization information of weighting coefficients with non-zero amplitude among the M weighting coefficients.
  • multiple bits are used to indicate the number of quantization bits of different weighting coefficients. It is possible to allocate more quantization bits to the weighting coefficients of the stronger space-frequency components and less quantization to the weighting coefficients of the weaker space-frequency components. The number of bits. Therefore, more overhead can be used on the stronger space-frequency component, which is beneficial to improve the approximation accuracy.
  • the second part further includes indications of the M space-frequency units.
  • the second part may also include indications of M space-frequency units.
  • the indication of the M space-frequency units may be, for example, an indication of several (eg, L) beam vectors and several (eg, K) frequency-domain vectors, or an indication of M space-frequency component matrices, or may also be The indication of M space frequency component vectors, or may also be an indication of L beam vectors, K frequency domain vectors, and M space frequency units among L ⁇ K space frequency units.
  • the CSI report includes a first part and a second part, the first part includes a bitmap, and the bitmap is used to indicate division among L ⁇ K weighting coefficients The number and position of weighting coefficients with non-zero amplitude other than the normalization coefficient; the second part includes the indication of the normalized space frequency unit and the quantization of weighting coefficients with non-zero amplitude other than the normalization coefficient Information; wherein, the normalized space-frequency unit corresponds to the normalization coefficient, the L ⁇ K weighting coefficients correspond to L ⁇ K space-frequency units, and some of the L ⁇ K space-frequency units Is used to determine the precoding vector of one or more frequency domain units, L ⁇ K ⁇ M.
  • the magnitude of the weighting coefficients corresponding to the space-frequency units other than M space-frequency units among the L ⁇ K weighting coefficients is zero, by using the bitmap in the first part to indicate that the L ⁇ K weighting coefficients are divided by normalization Whether the amplitude of each weighting coefficient other than the coefficient is zero can implicitly indicate the number and position of weighting coefficients with a non-zero amplitude other than the normalization coefficient.
  • the number and position of weighting coefficients with non-zero amplitudes other than normalization coefficients can be determined, and in the second part, only the magnitude and phase of weighting coefficients with non-zero amplitude other than normalization coefficients can be indicated, and No additional overhead is required to indicate the selected space frequency units among the L ⁇ K space frequency units, so that the feedback overhead can be further reduced.
  • the number of space frequency units selected from L ⁇ K space frequency units may be M, or may be less than M. This application does not limit this.
  • the number of weighting coefficients whose amplitude is zero may be L ⁇ K-M, or may be larger than L ⁇ K-M.
  • the number of selected space frequency units may be less than M.
  • the terminal device can indicate several space-frequency units used as weighted summation to determine the precoding vector through the bitmap of the first part. In the following, for the sake of brevity, the description of the same or similar cases is omitted.
  • the CSI report includes a first part and a second part, the first part includes a bitmap, and the bitmap is used to indicate the magnitude of the L ⁇ K weighting coefficients The number and position of non-zero weighting coefficients; the second part includes quantization information of non-zero weighting coefficients; wherein, the L ⁇ K weighting coefficients correspond to L ⁇ K space-frequency units, and the L ⁇ K The weighted sum of the partial space-frequency units in each space-frequency unit is used to determine the precoding vector of one or more frequency-domain units, L ⁇ K ⁇ M.
  • the bitmap is used to indicate the weighting coefficients of the L ⁇ K weighting coefficients in the first part. Whether the amplitude is zero can implicitly indicate the number and position of weighting coefficients with non-zero amplitude. Therefore, the number and position of weighting coefficients with non-zero amplitude can be determined. In the second part, only the amplitude and phase of weighting coefficients with non-zero amplitude can be indicated, and no additional overhead is required to indicate L ⁇ K space-frequency units Selected several space-frequency units, which can further reduce feedback overhead.
  • the CSI report includes a first part and a second part, the first part includes a bitmap, and the bitmap is used to indicate division among L ⁇ K weighting coefficients The number and position of weighting coefficients with non-zero amplitude other than the normalization coefficient, and the number of quantization bits of each weighting coefficient other than the normalization coefficient; the second part includes the indication of the normalized space frequency unit, Quantization information of weighting coefficients with non-zero amplitudes other than the normalization coefficient; wherein, the normalized space-frequency unit corresponds to the normalization coefficient, and the L ⁇ K weighting coefficients and L ⁇ K empty spaces Corresponding to the frequency unit, the weighted sum of the partial space frequency units in the L ⁇ K space frequency units is used to determine the precoding vector of one or more frequency domain units, L ⁇ K ⁇ M.
  • the magnitude of the weighting coefficients corresponding to the space-frequency units other than M space-frequency units among the L ⁇ K weighting coefficients is zero, by using the bitmap in the first part to indicate that the L ⁇ K weighting coefficients are divided by normalization Whether the amplitude of each weighting coefficient other than the coefficient is zero can implicitly indicate the number and position of weighting coefficients with a non-zero amplitude other than the normalization coefficient.
  • the number and position of weighting coefficients with non-zero amplitudes other than normalization coefficients can be determined, and in the second part, only the magnitude and phase of weighting coefficients with non-zero amplitude other than normalization coefficients can be indicated, and No additional overhead is required to indicate the selected space frequency units among the L ⁇ K space frequency units, so that the feedback overhead can be further reduced.
  • multiple bits are used to indicate the number of quantization bits of different weighting coefficients. It is possible to allocate more quantization bits to the weighting coefficients of the stronger space-frequency components and less quantization to the weighting coefficients of the weaker space-frequency components. The number of bits. Therefore, more overhead can be used on the stronger space-frequency component, which is beneficial to improve the approximation accuracy.
  • the CSI report includes a first part and a second part, the first part includes a bitmap, and the bitmap is used to indicate the magnitude of the L ⁇ K weighting coefficients The number and position of non-zero weighting coefficients, and the quantization level to which each weighting coefficient belongs; the second part includes quantization information of the weighting coefficients with non-zero amplitudes; wherein, the L ⁇ K weighting coefficients and L ⁇ K Corresponding to the space frequency unit, the weighted sum of the partial space frequency units among the L ⁇ K space frequency units is used to determine the precoding vector of one or more frequency domain units, L ⁇ K ⁇ M.
  • the bitmap is used to indicate the weighting coefficients of the L ⁇ K weighting coefficients in the first part. Whether the amplitude is zero can implicitly indicate the number and position of weighting coefficients with non-zero amplitude. Therefore, the number and position of weighting coefficients with non-zero amplitude can be determined. In the second part, only the amplitude and phase of weighting coefficients with non-zero amplitude can be indicated, and no additional overhead is required to indicate L ⁇ K space-frequency units Selected several space-frequency units, which can further reduce feedback overhead.
  • multiple bits are used to indicate the number of quantization bits of different weighting coefficients. It is possible to allocate more quantization bits to the weighting coefficients of the stronger space-frequency components and less quantization to the weighting coefficients of the weaker space-frequency components. The number of bits. Therefore, more overhead can be used on the stronger space-frequency component, which is beneficial to improve the approximation accuracy.
  • the second part further includes indications of the L ⁇ K space-frequency units.
  • the second part may further include indications of L ⁇ K space frequency units.
  • the indication of L ⁇ K space frequency units may be, for example, an indication of L beam vectors and K frequency domain vectors, or an indication of L ⁇ K space frequency component matrices, or may be L ⁇ K space frequencies.
  • the indication of the component vector does not limit this.
  • a communication device including various modules or units for performing the method in any possible implementation manner of the first aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any possible implementation manner of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input / output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a communication device including various modules or units for performing the method in any possible implementation manner of the second aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any possible implementation manner of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver or an input / output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive an input signal through the input circuit and output a signal through the output circuit so that the processor performs the first aspect or the second aspect and any possible implementation of the first aspect or the second aspect The way in the way.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, the receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit at different times, respectively.
  • the embodiments of the present application do not limit the specific implementation manner of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter to perform the first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect Methods.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor are provided separately.
  • the memory may be non-transitory (non-transitory) memory, such as read-only memory (read only memory, ROM), which may be integrated with the processor on the same chip, or may be set in different On the chip, the embodiments of the present application do not limit the type of memory and the manner of setting the memory and the processor.
  • non-transitory memory such as read-only memory (read only memory, ROM)
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the eighth aspect may be one or more chips, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc .;
  • the processor When implemented by software, the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, and may be located outside the processor and exist independently.
  • a computer program product includes: a computer program (also referred to as code or instructions) that, when the computer program is executed, causes the computer to perform the first aspect or the above The method in the second aspect and any possible implementation manner of the first aspect or the second aspect.
  • a computer program also referred to as code or instructions
  • a computer-readable medium that stores a computer program (also may be referred to as code or instructions) that when executed on a computer, causes the computer to perform the first aspect or the above
  • a computer program also may be referred to as code or instructions
  • a communication system including the foregoing network device and terminal device.
  • FIG. 1 is a schematic diagram of a communication system applicable to the method for indicating and determining a precoding vector provided by an embodiment of the present application;
  • FIG. 2 is a schematic flowchart of a method for indicating and determining a precoding vector provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the first part of the CSI report provided by the embodiment of the present application.
  • 4 to 7 are schematic diagrams of the second part of the CSI report provided by the embodiments of the present application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • global interconnected microwave access worldwide interoperability for microwave access, WiMAX
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for a method of indicating a precoding vector according to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 can communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals. Therefore, the communication devices in the communication system 100, such as the network device 110 and the terminal device 120, can communicate through multi-antenna technology.
  • the network device in the communication system may be any device with wireless transceiver function.
  • the network equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC) ), Base transceiver station (BTS), home base station (eg, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WiFi) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc.
  • 5G such as, NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) of the base station in the 5G system, or it can also be a network node that constitutes a gNB or transmission point ,
  • NR gNB
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of gNB, and the DU implements some functions of gNB.
  • CU implements the functions of radio resource control (RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer
  • DU implements radio link control (radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements radio link control (radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements radio link control (radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RLC radio link
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the radio access network (RAN), and can also be divided into network devices in the core network (CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal devices in the embodiments of the present application may be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality (VR) terminal devices, and augmented reality (AR) terminals Wireless terminals in equipment, industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding and examples.
  • the communication system 100 may further include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the processing procedure of the downlink signal at the physical layer before sending may be performed by a network device, or may be performed by a chip configured in the network device. For ease of explanation, they are collectively referred to as network devices below.
  • Network devices can process codewords on physical channels.
  • the codeword may be coded bits that have been coded (eg, including channel coding).
  • the scrambling of the codeword generates scrambling bits.
  • the scrambled bits undergo modulation mapping to obtain modulation symbols.
  • the modulation symbols are mapped to multiple layers (layers) through layer mapping, or transmission layers.
  • the modulation symbols after layer mapping are subjected to precoding to obtain a precoded signal.
  • the pre-encoded signal is mapped to multiple REs after being mapped to resource elements (RE). These REs are then orthogonally multiplexed (orthogonal frequency division multiplexing, OFDM) modulated and transmitted through the antenna port.
  • OFDM orthogonally multiplexed
  • the network device can process the signal to be transmitted with the help of a precoding matrix that matches the channel resource when the channel state is known, so that the precoded signal to be transmitted is adapted to the channel, thereby Reduces the complexity of the receiving device to eliminate the influence between channels. Therefore, through the precoding process of the signal to be transmitted, the received signal quality (for example, signal to interference plus noise ratio (SINR), etc.) can be improved. Therefore, by using precoding technology, transmission devices and multiple receiving devices can be transmitted on the same time-frequency resources, that is, multiple users, multiple inputs, and multiple outputs (MU-MIMO).
  • SINR signal to interference plus noise ratio
  • the sending device may also perform precoding in other ways. For example, when channel information (such as but not limited to a channel matrix) cannot be obtained, pre-coding is performed using a pre-coding matrix or a weighting processing method set in advance. For the sake of brevity, the specific content of this article will not be repeated here.
  • Channel state information (CSI) report In a wireless communication system, the channel attributes used by the receiving end (such as terminal equipment) to the sending end (such as network equipment) to describe the communication link are described Information.
  • the CSI report may include, for example but not limited to, precoding matrix indicator (precoding matrix indicator (PMI), rank indicator (RI), channel quality indicator (channel quality indicator (CQI), channel state information reference signal (channel Qstate) information, reference, CSI-RS resource indicator (CSI-RS resource indicator, CRI), layer indicator (LI), etc.
  • PMI precoding matrix indicator
  • RI rank indicator
  • CQI channel quality indicator
  • channel Qstate channel state information reference signal
  • CSI-RS resource indicator CSI-RS resource indicator
  • CRI channel state information reference signal
  • LI layer indicator
  • the terminal device may report one or more CSI reports within a time unit (such as a slot), and each CSI report may correspond to a configuration condition for CSI reporting.
  • the configuration condition of the CSI reporting can be determined by, for example, CSI reporting configuration (CSI reporting setting).
  • the CSI reporting configuration may be used to indicate the time domain behavior, bandwidth, and format corresponding to the reporting quantity of the CSI reporting.
  • the time-domain behavior includes periodic, semi-persistent, and aperiodic, for example.
  • the terminal device may generate a CSI report based on a CSI reporting configuration.
  • the terminal device reporting one or more CSI reports within a time unit may be referred to as a CSI report.
  • the terminal device when generating the CSI report, may divide the first indication information used to indicate the precoding vector into two parts.
  • the CSI report may include a first part and a second part.
  • the first part and the second part may be independently coded.
  • the size of the payload of the first part may be predefined, and the size of the payload of the second part may be determined according to the information carried in the first part.
  • the network device may decode the first part according to the pre-defined payload size of the first part to obtain the information carried in the first part.
  • the network device may determine the payload size of the second part according to the information obtained from the first part, and then decode the second part to obtain the information carried in the second part.
  • first part and the second part may be understood as part 1 (part 1) and part 2 (part 2) of CSI defined in NR protocol TS38.214 version 15 (release 15, R15).
  • the embodiments of the present application mainly relate to the reporting of PMI
  • the enumeration of the contents in the first part and the second part of the CSI report in the following embodiments only relates to PMI related information, and does not involve others.
  • this should not constitute any limitation on this application.
  • the first part of the CSI report may also include one or more of RI, CQI, and LI, or, Other information that can predefine the feedback cost may be included, and the second part of the CSI report may also include other information. This application does not limit this.
  • Precoding matrix indicator can be used to indicate the precoding matrix.
  • the precoding matrix may be, for example, a precoding matrix determined by the terminal device based on the channel matrix of each frequency domain unit (eg, subband).
  • the channel matrix may be determined by the terminal device through channel estimation or the like or based on channel reciprocity.
  • the specific method for the terminal device to determine the precoding matrix is not limited to the above, and the specific implementation may refer to the existing technology. For brevity, it is not listed here one by one.
  • the precoding matrix can be obtained by singular value decomposition (SVD) of the channel matrix or the covariance matrix of the channel matrix, or it can also be obtained by eigenvalue decomposition (eigenvalue) of the channel matrix covariance matrix decopomsition, EVD).
  • SVD singular value decomposition
  • eigenvalue eigenvalue
  • EVD channel matrix covariance matrix decopomsition
  • the terminal device may indicate the precoding matrix of each frequency domain unit to the network device through the PMI, so that the network device determines the precoding matrix that is the same as or similar to the precoding matrix determined by the terminal device according to the PMI.
  • the network device may directly determine the precoding matrix of each frequency domain unit according to the PMI, or determine the precoding matrix of each frequency domain unit according to the PMI and then perform further processing, such as orthogonalizing the precoding matrix of different users Processing to determine the final precoding matrix used. Therefore, the network device can determine a precoding matrix suitable for the channel of each frequency domain unit to perform precoding processing on the signal to be transmitted.
  • the specific method for the network device to determine the finally used precoding matrix according to the PMI can refer to the prior art, which is only an example for ease of understanding, and should not constitute any limitation to this application.
  • the precoding matrix determined by the terminal device can be understood as the precoding matrix to be fed back.
  • the terminal device may indicate the precoding matrix to be fed back through the PMI, so that the network device can recover the precoding matrix based on the PMI. It can be understood that the precoding matrix recovered by the network device based on the PMI may be the same as or similar to the precoding matrix to be fed back.
  • the following shows a simple example of a precoding matrix through two-stage feedback when the rank is 1.
  • W represents a transmission layer, a subband (that is, an example of a frequency domain unit), and a precoding matrix to be fed back in two polarization directions.
  • W 1 can be fed back through broadband
  • W 2 can be fed back through subband.
  • v 0 to v 3 are beam vectors included in W 1 , and the plurality of beam vectors may be indicated by an index of a combination of the plurality of beam vectors, for example.
  • the beam vectors in the two polarization directions are the same, and beam vectors v 0 to v 3 are used.
  • a 0 to a 7 are the broadband amplitude coefficients included in W 1 , and can be indicated by the quantized value of the broadband amplitude coefficients.
  • c 0 to c 7 are the sub-band coefficients included in W 2 , and each sub-band coefficient may include a sub-band amplitude coefficient and a sub-band phase coefficient.
  • c 0 to c 7 may include subband amplitude coefficients p 0 to p 7 and subband phase coefficients, respectively to And can respectively pass the quantized values of the sub-band amplitude coefficients p 0 to p 7 and the sub-band phase coefficients to Quantized value to indicate. It can be seen that the precoding matrix to be fed back can be regarded as a weighted sum of multiple beam vectors.
  • the precoding matrix shown above is obtained based on feedback from one transmission layer, and therefore may also be referred to as a precoding vector.
  • the terminal device may separately feedback based on each transmission layer.
  • the precoding vectors fed back from each transmission layer can be constructed to obtain a subband precoding matrix.
  • the number of transmission layers is 4, and the precoding matrix may include 4 precoding vectors, respectively corresponding to 4 transmission layers.
  • the feedback overhead of the terminal equipment also increases. For example, when the number of transmission layers is 4, the feedback overhead of a 0 to a 7 and c 0 to c 7 will be at most 4 times that when the number of transmission layers is 1. That is to say, if the terminal device performs broadband feedback and subband feedback as described above based on each transmission layer, as the number of transmission layers increases, the feedback overhead caused will increase exponentially. The greater the number of subbands, the greater the increase in feedback overhead. Therefore, it is desirable to provide a method that can reduce the feedback overhead of PMI.
  • the manner of feeding back the precoding matrix through PMI listed above is only an example, and should not constitute any limitation to this application.
  • the terminal device may also feed back the channel matrix to the network device through PMI.
  • the network device may determine the channel matrix according to the PMI, and then determine the precoding matrix, which is not limited in this application.
  • the precoding vector may be determined by a vector in the precoding matrix, for example, a column vector.
  • the precoding matrix may include one or more column vectors, and each column vector may be used to determine a precoding vector.
  • the precoding matrix may also be called a precoding vector.
  • the precoding matrix may be determined by precoding vectors of one or more transmission layers, and each vector in the precoding matrix may correspond to a transmission layer. Assuming that the dimension of the precoding vector can be N 1 ⁇ 1, if the number of transmission layers is R (R is a positive integer), the dimension of the precoding matrix can be N 1 ⁇ R.
  • the number of transmission layers may be indicated by a rank indicator (RI), N 1 may represent the number of antenna ports, and N 1 is a positive integer.
  • the precoding vector may also refer to the components of the precoding matrix in one transmission layer and one polarization direction. Assuming that the number of polarization directions is P (P is a positive integer) and the number of antenna ports in one polarization direction is N 2 , then the dimension of the precoding vector corresponding to one transmission layer is (P ⁇ N 2 ) ⁇ 1, then one The dimension of the precoding vector in the polarization direction may be N 2 ⁇ 1, and N 2 is a positive integer.
  • the precoding vector may correspond to one transmission layer, may also correspond to one polarization direction on one transmission layer, and may also correspond to other parameters. This application does not limit this.
  • Antenna port can be referred to as port. It can be understood as a transmitting antenna recognized by the receiving device, or a transmitting antenna that can be distinguished in space.
  • One antenna port can be configured for each virtual antenna, each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to a reference signal, therefore, each antenna port can be referred to as a reference signal port For example, CSI-RS port, sounding reference signal (SRS) port, etc.
  • SRS sounding reference signal
  • Beam can be understood as the distribution of signal strength formed in a certain direction in space.
  • the technique of forming a beam may be a beam forming (or beamforming) technique or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital / analog beamforming technology.
  • the beam may be formed by digital beamforming technology.
  • the beam vector may correspond to the beam, may be a precoding vector in a precoding matrix, or may be a beam forming vector.
  • Each element in the beam vector may represent the weight of each antenna port.
  • the weighted signals of each antenna port are superimposed on each other to form an area with strong signal strength.
  • the beam vector may also be referred to as a spatial domain vector.
  • the length (or dimension) of the beam vector is the number of antenna ports in one polarization direction.
  • the beam vector may be a column vector with a dimension of N s ⁇ 1, or a row vector with a dimension of 1 ⁇ N s . This application does not limit this.
  • Frequency domain unit A unit of frequency domain resources, which can represent different frequency domain resource granularities.
  • the frequency domain unit may include, for example but not limited to, subband, resource block (resource block (RB), subcarrier, resource block group (RBG) or precoding resource block group (PRG), etc. .
  • Frequency domain vector a vector used in the embodiment of the present application to represent the change rule of the channel in the frequency domain.
  • the frequency domain vector can specifically be used to represent the change rule of the weighting coefficient of each beam vector on each frequency domain unit. This change may be related to multipath delay. Because the signal is transmitted through the wireless channel, there may be different transmission delays on different propagation paths. Therefore, different frequency domain vectors can be used to characterize the change law of the channel in the frequency domain caused by the delay on different propagation paths.
  • the dimension of the frequency domain vector may be the number of frequency domain units that require CSI measurement. Since the number of frequency domain units that need to perform CSI measurement at different times may be different, the dimension of the frequency domain vector may also change. In other words, the dimension of the frequency domain vector is variable.
  • the length (or dimension) of the frequency domain vector is the number of frequency domain units included in the frequency domain occupied bandwidth of the CSI measurement resource.
  • the frequency domain occupied bandwidth of the CSI measurement resource may be the bandwidth used for transmission of the reference signal, and the reference signal mentioned herein may be a reference signal used for channel measurement, such as CSI-RS.
  • the frequency domain occupied bandwidth of the CSI measurement resource may be, for example, less than or equal to the pilot transmission bandwidth (or measurement bandwidth).
  • the frequency domain occupied bandwidth used to indicate the CSI measurement resource may be, for example, the CSI occupied bandwidth range (CSI-Frequency Occupation).
  • the length of the frequency domain vector is the length of signaling used to indicate the position and number of frequency domain units to be reported.
  • the signaling used to indicate the position and number of frequency domain units to be reported may be reporting bandwidth (reporting bandwidth).
  • the signaling can indicate the position and number of frequency domain units to be reported in the form of a bitmap. Therefore, the dimension of the frequency domain vector can be the number of bits in the bitmap.
  • the length of the frequency domain vector is the number of frequency domain units to be reported.
  • the number of frequency domain units to be reported can be indicated by the above-mentioned signaling reporting bandwidth, for example.
  • the number of frequency domain units to be reported may be all frequency domain units in the frequency domain occupied bandwidth of the CSI measurement resource, or part of the frequency domain units in the bandwidth occupied by the frequency domain of the CSI measurement resource; or, to be reported
  • the number of frequency domain units can be the same as the signaling length of the reported bandwidth, or it can be less than the signaling length of the reported bandwidth. This application does not limit this.
  • the indication information for the length of the frequency domain vector is recorded as the fifth indication information.
  • the fifth indication information may be the above-mentioned signaling used to indicate the frequency domain occupied bandwidth of the CSI measurement resource, may also be used to indicate the location and number of frequency domain units to be reported, or may be the future
  • the newly added signaling in the protocol is not limited in this application.
  • the frequency domain vector may be a column vector with a dimension of N f ⁇ 1, or a row vector with a dimension of 1 ⁇ N f . This application does not limit this.
  • Space frequency matrix and space frequency vector The precoding vectors on different frequency domain units of the same transmission layer can be constructed to obtain a space frequency matrix or space frequency vector corresponding to the transmission layer.
  • the space-frequency matrix or space-frequency vector may be collectively referred to as space-frequency information in the following.
  • the number of polarization directions of the transmitting antenna is 1 as an example to explain the space-frequency information. If the number of polarization directions of the transmitting antenna is 1, then precoding vectors on different frequency domain units on one transmission layer can be constructed to obtain space-frequency information in the polarization direction.
  • the terminal device may determine the precoding matrix to be fed back on each frequency domain unit by, for example, channel measurement, and perform the precoding matrix to be fed back on each frequency domain unit. After processing, a space-frequency matrix corresponding to each transmission layer can be obtained. For example, a space frequency matrix can be obtained by combining precoding vectors to be fed back on each frequency domain unit on the same transmission layer.
  • the space-frequency matrix may be called a space-frequency matrix to be fed back.
  • the terminal device determines the space-frequency vector in the same manner as the space-frequency matrix.
  • the elements in the precoding vectors of the frequency domain units on the same transmission layer that is, corresponding to the elements in each column vector in the space-frequency matrix) in sequence are connected, and the resulting vector is the space-frequency vector.
  • the space-frequency vector may be called a space-frequency vector to be fed back.
  • the space-frequency matrix may be a matrix of dimension N s ⁇ N f . That is, the space-frequency matrix may include N f column vectors of length N s .
  • the N f column vectors may correspond to N f frequency domain units, and each column vector may be used to determine the corresponding precoding vector of the frequency domain unit.
  • the space-frequency matrix can be written as H, for example, Among them, w 0 to Are N f column vectors corresponding to N f frequency domain units, and the length of each column vector can be N s .
  • the N f column vectors can be used to determine the precoding vectors of N f frequency domain units, respectively.
  • the space frequency vector may be a vector of dimension (N s ⁇ N f ) ⁇ 1.
  • the space-frequency vector may include a column vector or a row vector of length N s ⁇ N f .
  • the space-frequency vector can also be called, or, alternatively, a space-frequency matrix. In the embodiments of the present application, it is only for convenience of distinction, and it is called a space-frequency vector.
  • the space frequency vector may be a vector obtained by connecting precoding vectors or organizing elements in the precoding vectors according to a predetermined rule.
  • the space-frequency vector can be written as h, The meaning of each vector in the formula has been described in detail above, and for the sake of brevity, it will not be repeated here.
  • the space-frequency vector is not necessarily limited to a precoding vector as the basic unit, which is connected end to end, and may also be arranged according to a fixed rule.
  • the elements in the precoding vector can be refined, for example, the first element of each vector constitutes a new vector, and so on.
  • the above only illustrates several possible forms of space-frequency information with the number of polarization directions being 1, for example, a space-frequency matrix with a dimension of N s ⁇ N f or a length of N s ⁇ N f Space frequency vector, but this should not constitute any limitation to this application.
  • the number of polarization directions is greater than 1, the space-frequency information can still be expressed in several forms as listed above.
  • the dimensions of the space-frequency matrix and the space-frequency vector may also be different depending on the number of polarization directions.
  • the space-frequency information can be represented as a space-frequency matrix with a dimension of 2N s ⁇ N f or a space-frequency vector with a length of 2N s ⁇ N f .
  • 2 indicates two polarization directions.
  • a space frequency basic unit can be uniquely determined by a beam vector and a frequency domain vector.
  • the basic unit of space frequency may be referred to as a space frequency unit.
  • the beam vector can be taken from a predefined set of beam vectors
  • the frequency domain vector can be taken from a predefined set of frequency domain vectors.
  • the space frequency unit can also be taken from a predefined set of space frequency units.
  • Each space-frequency unit in the set of space-frequency units may be uniquely determined by a beam vector and a frequency-domain vector. Therefore, the above beam vector set, frequency domain vector set and space frequency unit set can be converted to each other.
  • the space-frequency unit may be, for example, a space-frequency component matrix, a space-frequency component vector, or a pair of space-frequency vectors.
  • the space frequency component matrix may be a matrix of dimension N s ⁇ N f .
  • a space frequency component matrix may be the product of the conjugate transpose of a beam vector and a frequency domain vector; when the beam vector is a column vector and the frequency domain vector is a row
  • a space frequency component matrix can also be the product of a beam vector and a frequency domain vector.
  • the above-mentioned space-frequency matrix may be approximated as a weighted sum of one or more space-frequency component matrices.
  • the terminal device may indicate the above-mentioned space-frequency matrix to be fed back through a weighted sum of one or more space-frequency component matrices.
  • the space-frequency component vector may be a vector of length N s ⁇ N f .
  • a space-frequency component vector can be the Kronecker product of a beam vector and a frequency domain vector, or it can be the gram of a frequency domain vector and a beam vector Roneck product.
  • the above-mentioned space-frequency vector may be approximated as a weighted sum of one or more space-frequency component vectors.
  • the terminal device may indicate the above-mentioned space-frequency vector to be fed back through a weighted sum of one or more space-frequency component vectors.
  • the space-frequency component vector can also be called, or, alternatively, a space-frequency component matrix.
  • the space-frequency component vector it is only for convenience of distinction, and it is called a space-frequency component vector.
  • the space-frequency vector determined by the weighted sum of multiple space-frequency component vectors may be sequentially composed of N f column vectors of length N s Connected.
  • the N f column vectors may correspond to N f frequency domain units, and each column vector may be used to determine the corresponding precoding vector of the frequency domain unit.
  • the space-frequency vector determined by the weighted sum of multiple space-frequency component vectors may be sequentially composed of N s column vectors of length N f Connected.
  • N f elements in each column vector may correspond to N f frequency domain units.
  • the n f elements in each column vector of the N s column vectors are connected in sequence to obtain a vector of length N s , which can be used to determine the precoding vector of the n f frequency domain unit.
  • N s N f
  • the above-mentioned space-frequency component matrix and space-frequency component vector may be obtained by the operation of one beam vector and one frequency domain vector. If no operation is performed on the beam vector and the frequency domain vector, a space frequency vector pair may also be determined by one beam vector and one frequency domain vector, and the space frequency vector pair may include one beam vector and one frequency domain vector. It can be understood that the above-mentioned space-frequency component matrix, space-frequency component vector and space-frequency component pair can be converted to each other, and all can be determined by the same beam vector and the same frequency domain vector, and these three can be considered equivalent.
  • the space frequency unit may correspond to one polarization direction.
  • the weighted sum of the basic units can be spliced into a plurality of polarization frequency space-frequency matrices or space-frequency vectors. Therefore, the space-frequency information in each polarization direction can be represented by the weighted sum of multiple space-frequency units. In other words, the space frequency information in each polarization direction can be approximated as a weighted sum of multiple space frequency units.
  • Multiple space-frequency units for different polarization directions may be the same, or in other words, multiple polarization directions may share the same multiple space-frequency units.
  • the space-frequency matrix or space-frequency vector of multiple polarization directions on the same transmission layer can be constructed by the same set of beam vectors and the same set of frequency domain vectors.
  • the weighting coefficients of each space-frequency component matrix or space-frequency component vector in different polarization directions may be different.
  • the spatial frequency component matrix is the product of the conjugate transpose of the beam vector and the frequency domain vector
  • the spatial frequency component vector is the Kronecker product of the frequency domain vector and the beam vector.
  • the form specifies the specific process in which the terminal device instructs the precoding vector and the network device determines the precoding vector. But this should not constitute any limitation on this application. Based on the same conception, those skilled in the art can perform equivalent deformation or replacement on the above-mentioned space-frequency component matrix or space-frequency component vector, and these equivalent deformations and replacements should all fall within the protection scope of the present application.
  • the beam vector set may include multiple beam vectors.
  • the length of each beam vector may be N s , and N s may represent the number of antenna ports in each polarization direction.
  • the set of beam vectors may include N s beam vectors, and the N s beam vectors may be orthogonal to each other.
  • Each beam vector in the set of beam vectors can be taken from a two-dimensional (2dimension, 2D) -DFT matrix.
  • 2D can represent two different directions, such as a horizontal direction and a vertical direction.
  • the N s beam vectors can be written as The N s beam vectors can construct a matrix B s ,
  • the set of beam vectors may be expanded to O s ⁇ N s beam vectors by an oversampling factor O s .
  • the beam vector set may comprise O s subsets, each subset may include a beam vectors of N s.
  • the N s beam vectors in each subset can be orthogonal to each other.
  • Each beam vector in the set of beam vectors can be taken from an oversampled 2D-DFT matrix.
  • the N s beam vectors in the o s (0 ⁇ o s ⁇ O s -1 and o s are integers) subsets of the beam vector set can be written as Then a matrix can be constructed based on the N s beam vectors in the o s subset
  • the set of frequency domain vectors may include multiple frequency domain vectors.
  • the length of each frequency domain vector can be recorded as N f .
  • the meaning of N f has been explained in detail above, for the sake of brevity, it will not be repeated here.
  • the set of frequency domain vectors may include N f frequency domain vectors.
  • the N f frequency domain vectors may be orthogonal to each other.
  • Each frequency domain vector in the set of frequency domain vectors can be taken from a DFT matrix.
  • the N f frequency domain vectors can be written as The N f frequency domain vectors can construct a matrix B f ,
  • the frequency-domain vector set can be extended oversampling factor O f O f ⁇ N f is the frequency-domain vectors.
  • the frequency-domain vector set may comprise O f subsets, each subset may include N f frequency-domain vectors.
  • N f frequency domain vectors in each subset can be orthogonal to each other.
  • Each frequency domain vector in the set of frequency domain vectors can be taken from an oversampled DFT matrix.
  • the oversampling factor O f is a positive integer.
  • the N f frequency domain vectors in the o f (0 ⁇ o f ⁇ O f -1 and o s are integers) subsets of the frequency domain vector set can be written as O f based on the first sub-set of N s matrix beam vectors can be constructed
  • the set of space frequency units may include, for example, a set of space frequency component matrices or a set of space frequency component vectors.
  • the space frequency component matrix set may include multiple space frequency component matrices.
  • Each space frequency component matrix may be a matrix of dimension N s ⁇ N f .
  • the space frequency component matrix set may include N s ⁇ N f space frequency component matrices.
  • Each space-frequency component matrix in the set of space-frequency component matrices can be uniquely determined by one beam vector in the set of beam vectors and one frequency-domain vector in the set of frequency domain vectors. Therefore, the set of beam vectors and the set of frequency domain vectors can be converted to and from the space-frequency component matrix.
  • N s beam vectors in the beam vector set are respectively written as:
  • the N f frequency domain vectors in the frequency domain vector set are respectively written as:
  • the beam vector set and the frequency domain vector set may construct a space frequency component matrix set, and the space frequency component matrix set may include N s ⁇ N f space frequency component matrices.
  • the arrangement order of the N s ⁇ N f space frequency component matrices can be defined in advance.
  • each frequency domain vector -1 in the range of 0 through N f it is possible to traverse each frequency domain vector -1 in the range of 0 through N f, then the beams traverse the vectors in the range of 0 - 1 through N s, N s ⁇ N f to give Matrix of space-frequency components.
  • each space-frequency component matrix is the product of the conjugate transpose of a beam vector and a frequency-domain vector
  • the arrangement order of the space-frequency component matrices in the space-frequency component matrix set can be expressed as follows:
  • each space frequency component matrix is a Kronecker product of a frequency domain vector and a beam vector
  • the arrangement order of each space frequency component matrix in the space frequency component matrix set can be expressed as follows:
  • each space-frequency component matrix is the product of the conjugate transpose of a beam vector and a frequency-domain vector
  • the arrangement order of the space-frequency component matrices in the space-frequency component matrix set can be expressed as follows:
  • the frequency domain vector set can also be derived, or, when the space frequency component matrix set and the frequency domain vector set are determined, A set of beam vectors can be derived.
  • the set of space-frequency component matrices may include O c ⁇ N s ⁇ N f space-frequency component matrices. That is, the set of space-frequency component matrices can be expanded to O c subsets by the oversampling factor O c .
  • O c may be O s or O f , or may be O s ⁇ O f .
  • the value of O c may be related to whether the beam vector set and the frequency domain vector set used to construct the space-frequency component matrix are oversampled.
  • the oversampling factor of the space-frequency component matrix set may be O f ; if the frequency domain vector set is oversampled, the beam vector set is not When oversampling, the oversampling factor of the space-frequency component matrix set can be O s ; if both the beam vector set and the frequency-domain vector set are oversampled, the oversampling factor of the space-frequency component vector set can be O s ⁇ O f .
  • Each space-frequency component matrix in the set of space-frequency component matrices can be uniquely determined by one beam vector in the set of beam vectors and one frequency-domain vector in the set of frequency domain vectors. Therefore, the beam vector set and the frequency domain vector set can be converted to and from the space-frequency component matrix.
  • the space frequency component vector set may include multiple space frequency component vectors.
  • Each space frequency component vector may be a vector of length N s ⁇ N f .
  • the set of space-frequency component vectors may include N s ⁇ N f space-frequency component vectors; in another possible design, the set of space-frequency component vectors is expanded by an oversampling factor O c to O c ⁇ N s ⁇ N f space frequency component vectors.
  • each space frequency component vector is a Kronecker product of a frequency domain vector and a beam vector
  • the arrangement order of each space frequency component matrix in the space frequency component matrix set can be expressed as follows:
  • Each space-frequency component vector in the space-frequency component vector set can be uniquely determined by one beam vector in the beam vector set and one frequency domain vector in the frequency domain vector set. Therefore, the set of beam vectors and the set of frequency domain vectors can be converted to and from the space-frequency component matrix.
  • Weighting coefficient, amplitude and phase The weighting coefficient is used to indicate the weight of each space-frequency unit when it is used for weighted summation.
  • the space frequency matrix described above may be approximated as a weighted sum of multiple space frequency component matrices, and the weighting coefficient may represent the weight of each space frequency component matrix in the plurality of space frequency component matrices.
  • Each weighting factor may include amplitude and phase.
  • a is the amplitude and ⁇ is the phase.
  • the amplitude (or modulo) of some weighting coefficients may be zero, or close to zero.
  • the quantized value may be zero.
  • a weighting coefficient that quantizes the amplitude by quantizing the value zero can be called a weighting coefficient with zero amplitude.
  • some weighting coefficients have larger amplitudes.
  • the quantized value is not zero, and the weighting coefficient to quantize the amplitude by the non-zero quantizing value may be called a non-zero amplitude weighting coefficient.
  • the plurality of weighting coefficients are composed of one or more weighting coefficient coefficients with non-zero amplitude and one or more weighting coefficients with zero amplitude.
  • the weighting coefficient may be indicated by a quantized value, or by an index of a quantized value, or may be indicated by a non-quantized value.
  • the indication method of the weighting coefficient is not limited in this application, as long as the peer knows the weighting coefficient.
  • the information indicating the weighting coefficient is referred to as quantization information of the weighting coefficient.
  • the quantization information may be, for example, a quantization value, an index, or any other information that can be used to indicate a weighting coefficient.
  • each weighting coefficient can be normalized.
  • the weighting coefficient used as the normalization reference may be a weighting coefficient with the largest amplitude (or modulus length) among the plurality of weighting coefficients.
  • the weighting coefficient as the normalization reference may be called a normalization coefficient.
  • the normalization coefficient Before quantizing the weighting coefficient, the normalization coefficient can be normalized to 1. For example, the magnitude of the normalization coefficient may be normalized to 1, the phase to 0 or 2 ⁇ , and other weighting coefficients may be expressed as relative values with respect to the normalization coefficient before normalization processing. After that, the weighting coefficients other than the normalization coefficients can be quantized. In other words, the quantized value of the amplitude of the weighting coefficient may be the same as or close to the phase relative value of the normalization coefficient of the phase of the weighting coefficient relative to the normalization coefficient before normalization processing. The quantized value of the phase of the weighting coefficient may be the same as or close to the relative value of the phase of the weighting coefficient relative to the phase of the normalization coefficient before the normalization process.
  • weighting coefficients For amplitude, other weighting coefficients can range from 0 to 1; for phase, other weighting coefficients can range from 0 to 2 ⁇ , or - ⁇ to ⁇ .
  • the vector corresponding to the normalization coefficient may be called a normalization vector. That is, the weighting coefficient of the normalized vector is 1. It can be understood that the value or value range here may be a value or value range in decimal.
  • One normalization coefficient may correspond to one space frequency unit, and the space frequency unit corresponding to the normalization coefficient is called a normalization space frequency unit.
  • the normalized space-frequency unit may be, for example, a normalized space-frequency component matrix, a normalized space-frequency component vector, or a normalized space-frequency vector equivalent. This application does not limit this.
  • the normalization coefficient may be a weighting coefficient of the corresponding normalized space frequency unit.
  • the normalization may be to determine the maximum weighting coefficient in units of one polarization direction, or may be based on one transmission layer (for example, one or more polarization directions on one transmission layer) as The maximum weighting coefficient is determined in units, and the maximum weighting coefficient may also be determined in units of all transport layers. Therefore, normalization can be performed in different ranges for each polarization direction, each transmission layer, or all transmission layers. It should be understood that the normalized units are not limited to those listed above, and this application does not limit them.
  • the terminal device may indicate the precoding vector of each frequency domain unit based on multiple transmission layers and multiple polarization directions.
  • the indication information for indicating the precoding vectors of the frequency domain units in one polarization direction on one transmission layer is referred to as first indication information.
  • the terminal device may generate one or more first indication information based on one or more polarization directions.
  • the common information of the plurality of first indication information may be generated and sent only once, for example, it may be carried in only one of the plurality of first indication information.
  • the proprietary information may be carried in the first indication information corresponding to each polarization direction.
  • the one or more first indication information corresponding to one transmission layer may be referred to as indication information corresponding to the transmission layer.
  • the indication information may be indication information corresponding to the first transmission layer; corresponding to division of the second transmission, the indication information may be indication information corresponding to the second transmission layer; and so on, I will not list them one by one here.
  • the common information of multiple indication information corresponding to multiple transmission layers may be generated and sent only once, for example, may be carried only in the indication information corresponding to a certain transmission layer.
  • the proprietary information can be carried in the indication information corresponding to each transport layer.
  • network devices can transmit data to terminal devices through multiple transmission layers.
  • the overhead caused by the terminal device performing feedback based on each transmission layer will also increase exponentially.
  • this application provides a method for indicating and determining a precoding vector, in order to reduce the feedback overhead of PMI.
  • M the number of weighting coefficients, or the number of space-frequency component matrices (or space-frequency component vectors) used as weighted sums
  • S the number of weighting coefficients with non-zero amplitude, S is a positive integer
  • T the number of normalization coefficients, T is a positive integer, T ⁇ S;
  • L the number of beam vectors selected from the beam vector set
  • K the number of frequency domain vectors selected from the frequency domain vector set
  • x the number of quantization bits of the amplitude of a weighting coefficient
  • y the number of quantization bits of the phase of a weighting coefficient.
  • the R transmission layers may include the 0th transmission layer to the R-1th transmission layer
  • the L beam vectors may include the 0th beam vector to the L-1th beam vector, and so on.
  • the specific implementation is not limited to this, for example, it may be consecutively numbered starting from 1. It should be understood that the foregoing descriptions are all settings that are convenient for describing the technical solutions provided by the embodiments of the present application, and are not intended to limit the scope of the present application.
  • the beam vector and the frequency domain vector are both column vectors as an example to illustrate the embodiment provided by this application, but this should not constitute any limitation to this application. Based on the same conception, those skilled in the art can also think of other possible expressions.
  • the embodiments of the present application relate to the Kronecker product operation of the matrix.
  • the Kronecker product operation is available Said.
  • the Kronecker product of matrices A and B can be expressed as
  • the Kronecker product is a block matrix formed by multiplying all elements in a matrix by another matrix.
  • the product of the Kronecker product of the matrix A of dimension k ⁇ l dimension and the matrix B of dimension p ⁇ q dimension is kp ⁇ ql dimension matrix, as follows:
  • a number of projections involve vectors.
  • projecting vector a onto vector b can be understood as finding the inner product of vector a and vector b.
  • "for indicating” may include both for direct indication and for indirect indication.
  • certain indication information for indicating information I it may include that the indication information directly indicates I or indirectly indicates I, but does not mean that the indication information must carry I.
  • the information indicated by the indication information is called information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself Indication index etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the arrangement order of various information pre-agreed (such as stipulated in a protocol), thereby reducing the indication overhead to a certain extent.
  • the precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same part in terms of composition or other attributes.
  • the specific indication method may also be various existing indication methods, such as, but not limited to, the above indication methods and various combinations thereof.
  • the specific details of the various indication methods can refer to the prior art, and will not be repeated here. It can be seen from the foregoing that, for example, when multiple information of the same type needs to be indicated, there may be cases where different information is indicated in different ways.
  • the required indication method can be selected according to specific needs. The embodiments of the present application do not limit the selected indication method. In this way, the indication methods involved in the embodiments of the present application should be understood as covering Fang learns various methods of the information to be indicated.
  • row vectors can be expressed as column vectors
  • a matrix can be represented by the transposed matrix of the matrix
  • a matrix can also be expressed in the form of a vector or an array, which is a vector or an array It can be formed by connecting the row vectors or column vectors of the matrix to each other.
  • the Kronecker product of two vectors can also be expressed in the form of the product of one vector and the transposed vector of another vector.
  • the information to be indicated may be sent together as a whole, or may be divided into multiple sub-information and sent separately, and the sending period and / or sending timing of these sub-information may be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and / or sending timing of these sub-information may be pre-defined, for example, pre-defined according to the protocol, or may be configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example but not limited to, radio resource control signaling, such as RRC signaling, MAC layer signaling, such as MAC-CE signaling, and physical layer signaling, such as downlink control information (DCI).
  • RRC signaling such as RRC signaling
  • MAC layer signaling such as MAC-CE signaling
  • DCI downlink control information
  • pre-acquisition may include signaling indication or pre-defined by network equipment, for example, protocol definition.
  • pre-defined can be achieved by pre-storing corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including terminal devices and network devices), and this application does not do specific implementation limited.
  • "save” referred to in the embodiments of the present application may refer to being saved in one or more memories.
  • the one or more memories may be set separately, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly set separately and partly integrated in a decoder, processor, or communication device.
  • the type of memory may be any form of storage medium, which is not limited in this application.
  • the "protocol" referred to in the embodiments of the present application may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not limited in this application .
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And / or” describing the relationship of related objects, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • the character "/” generally indicates that the related object is a "or” relationship.
  • “At least one of the following” or a similar expression refers to any combination of these items, including any combination of single items or plural items.
  • At least one (a) of a, b, and c may represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B and c.
  • a, b and c may be a single or multiple.
  • the method provided by the embodiments of the present application may be applied to a system that communicates through multi-antenna technology, for example, the communication system 100 shown in FIG. 1.
  • the communication system may include at least one network device and at least one terminal device.
  • Multi-antenna technology can communicate between network equipment and terminal equipment.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiments of the present application, as long as the program that records the code of the method provided by the embodiments of the present application can be executed to
  • the method provided in the embodiment of the application may be used for communication.
  • the execution body of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • FIG. 2 is a schematic flowchart of a method 200 for indicating and determining a precoding vector provided by an embodiment of the present application from the perspective of device interaction. As shown, the method 200 may include steps 210 to 230. The steps of the method 200 are described in detail below.
  • the terminal device is first described in detail based on one of the one or more transmission layers and one of the one or more polarization directions on the transmission, indicating the precoding vector and the network device to determine the precoding Vector specific process. It should be understood that the application does not limit the number of transmission layers and the number of polarization directions of the transmitting antenna.
  • One transmission layer illustrated in the following examples may be any one of one or more transmission layers, and one polarization direction may be any one of one or more polarization directions.
  • step 210 the terminal device generates a CSI report, which is used to indicate M space-frequency units and weighting coefficients of some or all of the M space-frequency units.
  • the weighting coefficients of the M space-frequency units and some or all of the space-frequency units in the M space-frequency units can be used to determine the precoding vector of each frequency domain unit. It should be understood that the M space-frequency units and the weighting coefficients of some or all of the M space-frequency units may be used to determine the precoding vector in one polarization direction of a transmission layer.
  • the information indicating the weighting coefficients of the M space-frequency units and some or all of the space-frequency units in the M space-frequency units is called first indication information.
  • the CSI report may include multiple first indication information corresponding to multiple polarization directions.
  • the CSI report may include indication information corresponding to multiple transmission layers.
  • the indication information corresponding to each transmission layer may include one or more first indication information corresponding to one or more polarization directions.
  • the first indication information may be a PMI or a part of cells in the PMI, which is not limited in this application.
  • PMI is only a name used to indicate the information of the precoding matrix, and should not constitute any limitation to this application. This application does not exclude the possibility of defining other names that can be used to implement the same or similar functions in the future agreement instead of PMI.
  • the information that can be used to indicate the precoding vector involved in this application is collectively referred to as PMI.
  • the terminal device may determine the precoding matrix of each frequency domain unit in advance, and then determine the precoding vector of each frequency domain unit on the same transmission layer.
  • the terminal device may determine the space frequency unit and the weighting coefficient that can be used to indicate the precoding vector of each frequency domain unit according to the precoding vector of each frequency domain unit that is predetermined and to be fed back, An instruction is indicated to the network device.
  • the specific method for the terminal device to determine the precoding matrix of each frequency domain unit and the precoding vector of each frequency domain unit on the same transmission layer can refer to the prior art, and several possible specific methods have been listed above in order to Concise, I wo n’t go into details here.
  • the terminal device may indicate the precoding vector of each frequency domain unit based on multiple possible implementation manners.
  • the indication information of the precoding vector may be different.
  • the terminal device may determine the indication information of the precoding vector based on different implementation manners, and then send the indication information of the precoding vector to the network device through CSI.
  • the terminal device may indicate the precoding vector of each frequency domain unit based on any one of the implementation manners listed below:
  • Implementation method 1 The terminal device indicates the selected L beam vectors, K frequency domain vectors, and part or all of the space frequency vectors in the L ⁇ K space frequency vector pair determined by the L beam vectors and the K frequency domain vectors The weighting coefficient of the pair;
  • Implementation method 2 The terminal device instructs the selected M space-frequency component matrices and the weighting coefficients with some or all of the space-frequency component matrices in the M space-frequency component matrices; And weighting coefficients with some or all of the M space-frequency component vectors; or,
  • Implementation method 3 The terminal device instructs the selected L beam vectors, K frequency domain vectors, and M space frequency vector pairs among the L ⁇ K space frequency vector pairs determined by the L beam vectors and the K frequency domain vectors And the weighting coefficients of some or all of the space-frequency vector pairs in the M space-frequency vector pairs.
  • the terminal device may determine precoding vectors of each frequency domain unit on the transmission layer in advance, and determine space-frequency information (eg, space-frequency matrix or space-frequency vector) corresponding to the transmission layer.
  • space-frequency information eg, space-frequency matrix or space-frequency vector
  • the space frequency information can be regarded as space frequency information to be fed back.
  • the terminal device may determine the vector or matrix to be fed back and the corresponding weighting coefficient from the pre-saved vector set or matrix set based on the three implementation manners listed above.
  • the space frequency information is introduced here only to explain the specific process of determining weighting coefficients of the M space frequency units and part or all of the space frequency units by the terminal device.
  • the space frequency information may be an intermediate quantity in the process of determining the above information by the terminal device. However, this should not constitute any limitation to this application.
  • the terminal device may not generate or determine the space frequency information, but directly determine M space frequency units according to the precoding vectors of each frequency domain unit. And the weighting coefficients of some or all of the space-frequency units. This application does not limit this.
  • the vector set or matrix set pre-stored by the terminal device may be, for example, a beam vector set and a frequency domain vector set, or a space frequency component matrix set, or a space frequency component matrix set and a beam vector set, or a space frequency component matrix and frequency Domain collection, etc.
  • the beam vector set and the frequency domain vector set and the space frequency unit set can be converted to each other.
  • the frequency domain vector set may also be derived, or, when the space frequency unit set and the frequency domain vector set are determined, the beam vector set may also be derived. Therefore, the present application does not limit the specific form of the set previously saved by the terminal device.
  • the network device may also save the beam vector set and the frequency domain vector set in advance, or the space frequency unit set, or the space frequency unit set and the beam vector set, or the space frequency unit matrix and the frequency domain vector set, etc. .
  • the collection form stored in advance by the network device and the terminal device may be the same or different, which is not limited in this application.
  • the terminal device may determine the strong L beam vectors, the strong K frequency domain vectors, and the corresponding weighting coefficients according to the beam vector set, the frequency domain vector set, and the space-frequency matrix to be fed back.
  • the terminal device may further determine L beam vectors and K frequency domain vectors that can be used to construct the space-frequency matrix H.
  • the values of L and K can be configured by the network device, or can be defined in advance, or can also be determined by the terminal device and reported to the network device. This application does not limit this.
  • the method further includes: the terminal device receives second indication information, where the second indication information is used to indicate the value of L.
  • the network device sends the second indication information.
  • the second indication information may be carried in higher layer signaling, such as a radio resource control (radio resource control, RRC) message.
  • RRC radio resource control
  • the method further includes: the terminal device sends second indication information, where the second indication information is used to indicate the value of L. Accordingly, the network device receives the second indication information.
  • the second indication information may be carried in uplink control information (uplink control information, UCI), such as CSI.
  • uplink control information uplink control information, UCI
  • CSI uplink control information
  • the method further includes: the terminal device receives third indication information, where the third indication information is used to indicate the value of K.
  • the network device sends the third indication information.
  • the third indication information may be carried in higher layer signaling, such as RRC messages.
  • the method further includes: the terminal device sends third indication information, where the third indication information is used to indicate the value of K.
  • the network device receives the third indication information.
  • the third indication information is carried in UCI, such as CSI.
  • each beam vector of the L beam vectors and each frequency domain vector of the K frequency domain vectors are combined in twos to obtain L ⁇ K space frequency units. For example, first traverse the L beam vectors in the range from 0th to L-1, and then traverse the K frequency domain vectors in the range from 0th to K-1, to obtain L ⁇ K Space frequency unit; for another example, now traverse the K frequency domain vectors in the range of 0th to K-1th, and then traverse the L beam vectors in the range of 0th to L-1th. This application does not limit this.
  • the beam vector set may include N s beam vectors as described above, and the constructed matrix is B s ; the frequency domain vector set may include For the N f frequency domain vectors described above, the constructed matrix is B f .
  • the dimension of the matrix W may be N s ⁇ N f .
  • the matrix W of N s rows can set of N s beam vectors corresponding to (or set by the beam vector construction matrix B s) in the beam vector; N f columns of the matrix W may be a vector in the frequency domain N f frequency domain vectors in the set (or matrix B f constructed from the set of frequency domain vectors) correspond.
  • Each element in the matrix W may correspond to a beam vector in N s beam vectors and a frequency domain vector in N f frequency domain vectors, or in other words, each element in the matrix W may correspond to A space-frequency unit determined by a beam vector of N s beam vectors and a frequency domain vector of N f frequency domain vectors.
  • the terminal device can take the modulus of the N s rows in the matrix W respectively, and determine L rows with larger modulus according to the size of the modulus of each row.
  • the row number of the L rows in the matrix W may be the number (or number) of the stronger L beam vectors in the beam vector set or the column number in B s .
  • the terminal device may also take the modulus of the N f columns in the matrix W respectively, and determine K columns with a larger modulus according to the magnitude of each column.
  • the column numbers of the K columns in the matrix W may be the numbers of the strong K frequency domain vectors in the frequency domain vector set or the column numbers in B f .
  • elements in L rows with a large modulus and elements in K columns with a large modulus in the matrix W can be constructed to obtain a matrix with a dimension of L ⁇ K.
  • This matrix may be called a weighting coefficient matrix W c .
  • the weighting coefficient matrix W c may be as follows, for example:
  • the weighting coefficient matrix may include L ⁇ K elements, and each element may correspond to one beam vector of L beam vectors and one frequency domain vector of K frequency domain vectors, or each It may correspond to a space frequency unit determined by one beam vector of L beam vectors and one frequency domain vector of K frequency domain vectors.
  • the weighting coefficients cl, k may correspond to the lth beam vector of the L beam vectors and the kth frequency domain vector of the K frequency domain vectors.
  • each weighting coefficient may include amplitude and phase.
  • the weighting coefficient c l, k includes amplitude a l, k and phase Among them, 0 ⁇ l ⁇ L-1, 0 ⁇ k ⁇ K-1, and both l and k are integers.
  • the terminal device may first determine L ⁇ K weighting coefficients corresponding to L ⁇ K space-frequency units. As described above, some weighting coefficients may have zero amplitude after quantization. In this case, the weighting coefficient with zero amplitude may not be reported, or the phase of the weighting coefficient with zero amplitude may not be reported. Therefore, the terminal device may indicate the weighting coefficients of some or all of the L ⁇ K space-frequency units in the first indication information. In the following, for the sake of brevity, descriptions of the same or similar cases are omitted.
  • the above method for determining L beam vectors and K frequency domain vectors through matrix operations is only one possible implementation manner shown for ease of understanding, and does not mean that the terminal device is determining L beam vectors
  • This matrix W must be generated during the process of summing K frequency domain vectors.
  • the matrix W may be an ordered array obtained by sequentially connecting elements of each row (or each column), or may be an ordered array obtained by sequentially arranging the elements of the matrix W in a predefined order Array.
  • the terminal device can also determine the strong L beam vectors by projecting the precoding vectors of each frequency domain unit to each beam vector in the beam vector set, and can weight the L beam vectors The method of projecting coefficients to each frequency domain vector in the frequency domain vector set determines strong K frequency domain vectors.
  • the method for determining L beam vectors by the terminal device can refer to the type II codebook feedback method defined in NR protocol TS38.214 R15.
  • K frequency domains can be determined vector.
  • the specific method for the terminal device to determine the strong L beam vectors from the beam vector set and the strong K frequency domain vectors from the frequency domain vector set can refer to the prior art. For the sake of brevity, no detailed description will be given here.
  • the method for determining the weighting coefficient of the matrix W obtained by matrix operation described above is only one possible implementation manner shown for ease of understanding, and does not mean that the terminal device must generate in the process of determining the weighting coefficient
  • the above-mentioned weighting coefficient matrix W c and matrix W are obtained.
  • the matrix W may be represented as an array set composed of multiple elements
  • the weighted coefficient matrix W c may also be represented as an array set composed of multiple elements.
  • Each element in the array set may be the weighted coefficient Elements of each row (or each column) in the matrix are connected in sequence, or may be arranged in sequence in a predetermined order.
  • the vectors contained in the beam vector set and the frequency domain vector set may have the following three possible situations:
  • the beam vector set is expanded to O s ⁇ N s beam vectors by the oversampling factor O s
  • the frequency domain vector set is expanded to O f ⁇ N f frequency domain vectors by the oversampling factor O f ;
  • Case 2 The beam vector set is expanded to O s ⁇ N s beam vectors by an oversampling factor O s , and the frequency domain vector set includes N f frequency domain vectors;
  • beam vector set includes beams vectors of N s, the frequency domain vector by a set of extended oversampling factor O f O f ⁇ N f is the frequency-domain vectors.
  • the processing manner of the terminal device may be the same.
  • the specific process of determining the weighting coefficients of the L beam vectors, the K frequency domain vectors, and the L ⁇ K weighting coefficients corresponding to the L ⁇ K space frequency units by the terminal device will be described in detail below using Case 1.
  • the beam vector set may include O s before the subsets o s based on the first matrix subset is constructed
  • Frequency-domain vector set may comprise O f subsets described above, based on o f the matrix subset is constructed
  • Terminal equipment can pass To determine the matrix
  • the matrix Corresponds to the o s subset and the o f subset.
  • the matrix The dimension of can be N s ⁇ N f .
  • the matrix Of N s rows may be set in the first beam vector subset o s (or by constructing a first matrix subset o s ) Corresponding to N s beam vectors; the matrix The N f columns in can be the same as the f th subset in the frequency domain vector set (or the matrix constructed from the f th subset ) Corresponds to N f frequency domain vectors.
  • the matrix Each element in may correspond to a beam vector in the N s beam vectors in the o s subset and a frequency domain vector in the N f frequency domain vectors in the o f subset, or in other words, the matrix Each element of may correspond to a space-frequency unit determined by a beam vector and a frequency domain vector.
  • the terminal device can determine the stronger L beam vectors, the stronger K frequency domain vectors, and the corresponding weighting coefficients from one of the O s ⁇ O f matrices. That is, the terminal device may determine the strong beams L a vector from a set of sub-O s O f and subsets of strong K frequency-domain coefficients and the weighting vector corresponds. Which specific subset is selected to determine the above-mentioned strong L beam vectors, strong K frequency domain vectors, and corresponding weighting coefficients may be predefined, which is not limited in this application.
  • the terminal device may also be determined in the L strong beam vectors based on the O s ⁇ O f matrices, K a strong frequency-domain coefficients and the weighting vector corresponds. For example, according to the sum of modulus lengths, a matrix with the largest sum of modulus lengths can be selected from the O s ⁇ O f matrices to determine L beam vectors, K frequency domain vectors, and corresponding weighting coefficients.
  • the modulus lengths of the strong L rows in each matrix among the O s ⁇ O f matrices can be summed, and the L beam vectors and K frequency domain vectors determined according to the matrix with the largest sum of modulus lengths And the corresponding weighting coefficient; or, the beam lengths of the strongest K columns in each of the O s ⁇ O f matrices can be summed, and the L beams determined according to the matrix with the largest sum of the mold lengths Vectors and K frequency domain vectors and corresponding weighting coefficients.
  • the specific method by which the terminal device determines the weighting coefficient according to the selected matrix may be the same as the specific method without considering the oversampling rate, and for the sake of brevity, no further description is provided here.
  • the above method for determining L beam vectors and K frequency domain vectors through matrix operations is only one possible implementation manner shown for ease of understanding, and does not mean that the terminal device is determining L beam vectors And the above matrix must be generated during the process of K frequency domain vectors
  • the matrix It can also be an ordered array obtained by sequentially connecting the elements of each row (or each column), or it can be a matrix The elements in the array are arranged in order according to the predefined order.
  • the specific methods of determining the strong L beam vectors from the set of beam vectors and the strong K frequency domain vectors from the set of frequency domain vectors in consideration of the oversampling rate are not limited to Enumeration.
  • the specific implementation method can refer to the existing technology, such as the type II codebook feedback method defined in NR protocol TS38.214 R15. For brevity, I will not list them here.
  • the terminal device can determine L beam vectors, K frequency domain vectors, and L ⁇ K weighting coefficients.
  • the indication information of the precoding vector may include the L beam vectors, K frequency domain vectors, and L ⁇ K weighting coefficients corresponding to L ⁇ K space frequency units.
  • the terminal device may first select L beam vectors, and then select K frequency domain vectors for each beam vector, and may further determine each beam vector and its corresponding Weighting coefficients corresponding to frequency domain vectors, that is, a total of L ⁇ K weighting coefficients.
  • the first indication information is specifically used to indicate each of the L beam vectors and the frequency domain vector corresponding to each beam vector.
  • This possible design can be applied to scenarios where at least two beam vectors of the selected L beam vectors correspond to different frequency domain vectors, and in particular can be applied to at least two beam vectors of the selected L beam vectors.
  • the frequency domain vector is different, and the selected beam vector is less, or that is, the L value is small (that is, the spatial sparsity is better) in the scene.
  • the first indication information is also used to indicate the number of frequency domain vectors corresponding to each beam vector.
  • the terminal device may first select K frequency domain vectors, and then select L beam vectors for each frequency domain vector, and may further determine each frequency domain vector and its corresponding The weighting coefficient corresponding to each beam vector, that is, a total of L ⁇ K weighting coefficients.
  • the first indication information is specifically used to indicate each of the K frequency domain vectors and the beam vector corresponding to each frequency domain vector.
  • This possible design can be applied to the scenario where at least two frequency domain vectors of the selected K frequency domain vectors correspond to different beam vectors, and in particular can be applied to at least two frequency domains of the selected K frequency domain vectors.
  • the beam vectors corresponding to the domain vectors are different, and the selected frequency domain vectors are fewer, or in other words, the K value is small (that is, the frequency domain has better sparsity) in the scene.
  • the first indication information is also used to indicate the number of beam vectors corresponding to each frequency domain vector.
  • the L beam vectors and K frequency domain vectors may be used to determine L ⁇ K (that is, M) space frequency component matrices or space frequency component vectors, and therefore, M space frequency component matrices or M A space frequency component vector to indicate.
  • the positions of the M space-frequency component matrices (or space-frequency component vectors) in the space-frequency component matrix set (or space-frequency component vector set) may correspond to those used to determine the M space-frequency component matrices (Or space-frequency component vector) the position of L beam vectors in the beam vector set and the position of K frequency domain vectors in the frequency domain vector set.
  • the information used to indicate L beam vectors and K frequency domain vectors and the information used to indicate the M space frequency component matrices or M space frequency component vectors may be considered equivalent of.
  • the L ⁇ K weighting coefficients corresponding to the L beam vectors and K frequency domain vectors are the weighting coefficients corresponding to the M space-frequency component matrices or M space-frequency component vectors.
  • the M space-frequency component matrices may be selected from a set of pre-defined space-frequency component matrices. Each space-frequency component matrix in the set of space-frequency component matrices may correspond to a one-dimensional index.
  • the M space-frequency component matrices corresponding to L beam vectors and K frequency-domain vectors in the beam vector set can be regarded as two-dimensional indexes of the M space-frequency component matrices.
  • the space frequency component matrix set may include N s ⁇ N f space frequency component matrices.
  • the N s ⁇ N f space frequency component matrices may be determined by N s beam vectors in the beam vector set and N f frequency domain vectors in the frequency domain vector set.
  • n s is the index of the beam vector in the beam vector set, 0 ⁇ n s ⁇ N s -1, and n s is an integer;
  • n f is the index of the frequency domain vector in the frequency domain vector set, 0 ⁇ n f ⁇ N f -1, and n f is an integer.
  • the corresponding relationship between m, n s and n f may be related to the arrangement order of each space-frequency component matrix in the space-frequency component matrix set.
  • N f frequency-domain vectors of frequency-domain vectors 0 through N f -1 and frequency-domain vectors are vectors of N s beams of beam vectors 0 N f determined by the frequency component matrix may be null corresponding to one-dimensional index of 0 to N f -1; N f frequency-domain vectors of frequency-domain vectors 0 through N f -1 frequency-domain vectors are determined with the vectors of N s beams in a first beam vectors the N f frequency component empty matrix may correspond to a one-dimensional index N f 2N f -1; and so on, N f frequency-domain vectors of frequency-domain vectors 0 through N f -1, respectively, and frequency-domain vectors beamforming vector of N s n s th beam of the determined vectors N f null frequency component corresponding to the one-dimensional matrix may lead to n s ⁇ N f (n s +1) ⁇ N f -1.
  • this number n s ⁇ N
  • n s mod (m, N f ). Indicates rounding down, and mod () indicates modulo.
  • a beam of n f frequency-domain vectors of n s th beam vectors and frequency-domain vector set vector set in the The formed space-frequency component matrix can be indicated by the m-th space-frequency component matrix.
  • m n f + n s ⁇ N f .
  • vector 0 N f frequency-domain frequency-domain vectors respectively a vector of N s beams of beam vectors 0 to N s -1 beams of vectors Kronecker product of the determined N s
  • One space-frequency component matrix can correspond to one-dimensional index 0 to N s -1; the first frequency domain vector among N f frequency domain vectors and the 0th beam vector to N s -1 among N s beam vectors, respectively
  • the m-th (0 ⁇ m ⁇ N s ⁇ N f -1) space-frequency component matrix can pass the n-th in the beam vector set
  • the space-frequency component matrix of can be indicated by the m-th space-frequency component matrix.
  • the terminal device and the network device may number each space-frequency component matrix in the space-frequency component matrix set according to a predetermined rule. The correspondence relationship between each space-frequency component matrix and index defined by the network device and the terminal device is consistent.
  • the terminal device may determine the strong M space-frequency component matrices and corresponding weighting coefficients according to the space-frequency component matrix set and the predetermined space-frequency matrix to be fed back; or, the terminal device may also determine the space-frequency component vector set and The predetermined space-frequency vector to be fed back determines the strong M space-frequency component vectors and the corresponding weighting coefficients.
  • the value of M may be configured by the network device, or may be defined in advance, such as a protocol definition, or may be determined by the terminal device and reported to the network device.
  • the method further includes: the terminal device receives fourth indication information, where the fourth indication information is used to indicate the value of M.
  • the network device sends the fourth indication information.
  • the fourth indication information may be carried in higher layer signaling, such as RRC messages.
  • the method further includes: the terminal device sends fourth indication information, where the fourth indication information is used to indicate the value of M.
  • the network device receives the fourth indication information.
  • the fourth indication information is carried in UCI, such as CSI.
  • the terminal device may determine the space frequency vector h according to the precoding vectors of N f frequency domain units, Or, the space-frequency matrix H,
  • the space-frequency component vector in the space-frequency component vector set can be a vector of length N s ⁇ N f (case a), and the space-frequency component matrix in the space-frequency component matrix set can be of dimension N s ⁇ The matrix of N f (case b).
  • the terminal device may determine M space-frequency component vectors and corresponding weighting coefficients according to a predetermined set of space-frequency vectors and space-frequency component vectors to be fed back.
  • the space frequency component vector set may include N s ⁇ N f space frequency component vectors as described above.
  • the arrangement order of the N s ⁇ N f space frequency component vectors in the space frequency component vector set may be defined in advance.
  • the N s ⁇ N f space-frequency component vectors can be traversed by each beam vector in the range of 0th to N s -1, and then in the range of 0th to N f -1 traversing the respective frequency domain vector obtained; may be by first traversing each frequency domain vector in the range of 0 - 1 through N f, then each traversal in the range of 0 - 1 through N s Beam vector is obtained.
  • the terminal device may project the space-frequency vector to be fed back onto each space-frequency component vector in the above-mentioned space-frequency component vector set to obtain N s ⁇ N f projection values.
  • the terminal device may determine the strong M projection values according to the modulus lengths of the N s ⁇ N f projection values.
  • the modulus length of any one of the strong M projection values is greater than or equal to the remaining N s ⁇ N f- the modulus length of any one of the M projection values.
  • the space frequency component vector used to generate the stronger M projection values may be determined as the stronger M space frequency component vectors.
  • the terminal device can determine the positions of the selected M space-frequency component vectors in the space-frequency component vector set.
  • each space frequency component vector may correspond to a weighting coefficient.
  • the weighting coefficient corresponding to each space-frequency component vector may be the projection value obtained by projecting the space-frequency vector onto the space-frequency component vector.
  • the set of space-frequency component vectors can be expanded into O c ⁇ N s ⁇ N f space-frequency component vectors by the oversampling factor O c .
  • the set of space-frequency component vectors may include O c subsets.
  • the terminal device may separately project the space-frequency vectors to be fed back onto each subset of the space-frequency component vector set to obtain O c sets of projection values.
  • the terminal device can determine M projection values with larger modulus lengths from each group of projection values, and can determine the sum of the module lengths from the O c group projection values according to the sum of the module lengths of the M projection values of each group The largest set of projection values.
  • the M space-frequency component vectors used to generate the set of projection values with the largest sum of the module lengths can be determined as the stronger M space-frequency component vectors. It can be understood that the M space-frequency component vectors belong to the same subset.
  • the terminal device can determine the positions of the selected M space-frequency component vectors in the space-frequency component vector set.
  • the M projection values in the set of projection values with the largest sum of modulus lengths can be used as weighting coefficients for the M space-frequency component vectors.
  • Each space frequency component vector may correspond to a weighting coefficient.
  • the weighting coefficient corresponding to each space-frequency component vector may also be the projection value obtained from the space-frequency component vector, which is the projection value of the space-frequency vector.
  • the terminal device can determine M space-frequency component vectors and M weighting coefficients.
  • the terminal device may first determine M weighting coefficients corresponding to the M space-frequency component vectors. As described above, some weighting coefficients may have zero amplitude after quantization. In this case, the weighting coefficient with zero amplitude may not be reported, or the phase of the weighting coefficient with zero amplitude may not be reported. Therefore, the terminal device may indicate the weighting coefficients of part or all of the space-frequency component vectors in the M space-frequency component vectors in the first indication information. For the sake of brevity, the description of the same or similar cases is omitted below.
  • the terminal device may also determine M space-frequency component vectors by means of matrix operations.
  • the terminal device may determine M space-frequency component matrices and corresponding weighting coefficients according to the predetermined space-frequency matrix and space-frequency component matrix set to be fed back.
  • the space frequency component matrix set may include N s ⁇ N f space frequency component matrices.
  • the arrangement order of the N s ⁇ N f space frequency component matrices in the space frequency component matrix set may be defined in advance.
  • the N s ⁇ N f space frequency component matrices may be obtained by traversing each beam vector in the range of 0th to N s -1 first, and then in the range of 0th to N f -1 traversing the respective frequency domain vector obtained; may be by first traversing each frequency domain vector in the range of 0 - 1 through N f, then each traversal in the range of 0 - 1 through N s Beam vector is obtained.
  • the terminal device may separately sum the product of the conjugate of each element in each space-frequency component matrix and the corresponding element in the predetermined space-frequency matrix to be fed back to obtain correspondence with N s ⁇ N f space-frequency component matrices N s ⁇ N f values.
  • N s ⁇ N f space-frequency component matrices in the space-frequency component matrix can obtain N s ⁇ N f values.
  • the N s ⁇ N f values can be regarded as N s ⁇ N f weighting coefficients.
  • the above steps can be implemented by matrix operations.
  • the above N s ⁇ N f values can be obtained by finding the trace of the product of the conjugate transpose of each space-frequency component matrix and the space-frequency matrix.
  • the terminal device may determine M values with a larger modulus length from the N s ⁇ N f values.
  • the modulus length of any one of the M values is greater than or equal to the remaining N s ⁇ N f- the modulus length of any one of the M values.
  • the M space-frequency component matrices used to generate the M values with a larger modulus can be determined to be stronger M space-frequency component matrices.
  • the terminal device can determine the positions of the selected M space-frequency component matrices in the space-frequency component matrix.
  • the M values with larger modulus lengths can be used as weighting coefficients for the selected M space-frequency component matrices.
  • Each space-frequency component matrix can correspond to a weighting coefficient.
  • the weighting coefficient corresponding to each space-frequency component matrix may also be a value obtained by the space-frequency matrix to be fed back and the space-frequency component matrix obtained through the above calculation.
  • the space frequency component matrix set can be expanded to O c ⁇ N s ⁇ N f space frequency component matrices by the oversampling factor O c .
  • the set of space-frequency component vectors may include O c subsets.
  • the terminal device may determine the set of values O c O c subsets corresponding to the method described above based on each set of values comprising N s ⁇ N f values.
  • the terminal device can select M values with a larger modulus length from each group value according to the modulus length of each group value.
  • the terminal device may further determine a set of values with the largest sum of modulus lengths from the O c set of values according to the sum of the modulus lengths of the larger M values in each set of values.
  • the M space-frequency component matrices used to generate the set of values with the largest sum of modulus lengths can be determined as the stronger M space-frequency component matrices. It can be understood that the M space-frequency component matrices belong to the same subset.
  • the terminal device can determine the positions of the selected M space-frequency component matrices in the space-frequency component matrix set.
  • the set of values with the largest sum of the module lengths can be used as the weighting coefficients of the selected M space-frequency component matrices.
  • Each space-frequency component matrix can correspond to a weighting coefficient.
  • the weighting coefficient corresponding to each space-frequency component matrix may also be a value obtained by the space-frequency matrix to be fed back and the space-frequency component matrix obtained through the above calculation.
  • the terminal device may determine M space-frequency component matrices and M weighting coefficients.
  • the M space frequency component matrices or space frequency component vectors may also be indicated by several beam vectors and several frequency domain vectors. Since the space-frequency component matrix and the space-frequency component vector can be converted to each other, or equivalently, the space-frequency component matrix is taken as an example to illustrate. As described above, each space-frequency component matrix may be determined by one beam vector in the set of beam vectors and one frequency domain vector in the set of frequency domain vectors. For example, it can be the product of the conjugate transpose of a beam vector and a frequency domain vector, or it can also be the Kronecker product of a frequency domain vector and a beam vector. . Therefore, the M space frequency component matrices can be determined by several beam vectors and several frequency domain vectors.
  • the positions of the M space-frequency component matrices in the space-frequency component matrix may correspond to the positions of the foregoing beam vectors in the beam vector set and the positions of the frequency domain vectors in the frequency domain vector set. Therefore, the information used to indicate the M space frequency component matrices and the information used to indicate several beam vectors and several frequency domain vectors can be regarded as equivalent.
  • the M space-frequency component matrices are selected from the set of space-frequency component matrices with strong M space-frequency component matrices, but not necessarily the traversal of the beam vectors and Frequency domain vectors are obtained in combination. That is, in the second implementation manner, the relationship between M and the number of beam vectors and the number of frequency domain vectors is not limited.
  • the terminal device may determine the strong L beam vectors and the strong K frequency domain vectors from the beam vector set and the frequency domain vector set according to the predetermined space-frequency matrix or space-frequency vector to be fed back, and the L beams The vector and the K frequency domain vectors can be combined two by two to obtain L ⁇ K space-frequency vector pairs (method a).
  • the terminal device may also determine strong L ⁇ K space frequency component matrices from the space frequency component matrix set, or determine strong L ⁇ K space frequency component vectors from the space frequency component vector set (mode b).
  • the above L ⁇ K space frequency vector pairs, L ⁇ K space frequency component matrixes and L ⁇ K space frequency component vectors are all specific forms of L ⁇ K space frequency units.
  • the values of L, K, and M can be configured by the network, or can be defined in advance, or can be determined by the terminal device and reported to the network device. This application does not limit this. If the values of L, K, and M are respectively indicated by signaling, the values of L and K can be indicated by, for example, the second indication information and the third indication information as described in Implementation 1, and the value of M For example, it can be indicated by the fourth indication information as described in the second implementation manner.
  • the indication methods for the values of L, K, and M have been described above, and for the sake of brevity, they are not described here again.
  • the second indication information, the third indication information, and the fourth indication information used to indicate the values of L, K, and M, respectively may be carried in the same signaling or may be carried in different In the signaling, this application does not limit this.
  • the L beam vectors may be partial beam vectors in the beam vector set or all beam vectors in the beam vector set;
  • the K frequency domain vectors may be partial frequency domain vectors in the frequency domain vector set or may be All frequency domain vectors in the frequency domain vector set.
  • the L beam vectors and the K frequency domain vectors do not simultaneously take the full set of the beam vector set and the frequency domain vector set, respectively.
  • L beam vectors are partial beam vectors in the set of beam vectors
  • / or K frequency domain vectors are partial frequency vectors in the set of frequency domain vectors.
  • the L beam vectors When L beam vectors are the full set of beam vector sets, the L beam vectors may not be indicated; when K frequency domain vectors are the full set of frequency domain vector sets, the K frequency domain vectors may not be indicated.
  • the first indication information when used to indicate L beam vectors and K frequency domain vectors, it may indicate only L beam vectors, or only indicate K frequency domain vectors, or indicate L beam vectors and K Frequency domain vectors.
  • the terminal device may determine the space frequency matrix H according to the precoding vectors of N f frequency domain units, The terminal device may determine strong L beam vectors from the beam vector set according to the space frequency matrix H, and determine strong K frequency domain vectors from the frequency domain vector set.
  • the beam vector set may include N s beam vectors as described above, and the constructed matrix is B s ; the frequency domain vector set may include For the N f frequency domain vectors described above, the constructed matrix is B f .
  • the dimension of the matrix W may be N s ⁇ N f .
  • the matrix W of N s rows can set of N s beam vectors corresponding to (or set by the beam vector construction matrix B s) in the beam vector; N f columns of the matrix W may be a vector in the frequency domain N f frequency domain vectors in the set (or matrix B f constructed from the set of frequency domain vectors) correspond.
  • Each element in the matrix W may correspond to a beam vector in N s beam vectors and a frequency domain vector in N f frequency domain vectors, or in other words, each element in the matrix W may correspond to A space-frequency unit determined by a beam vector of N s beam vectors and a frequency domain vector of N f frequency domain vectors.
  • the terminal device can select L rows with larger modulus according to the modulus length of each row in the matrix W; and can select K columns with larger modulus according to the modulus length of each column in the matrix W. Based on the positions of the L rows and the positions of the K columns, the strong L beam vectors are determined from the beam vector set, and the strong K beam vectors are determined from the frequency domain vector set. At the same time, L rows with a large modulus and K columns with a large modulus in the matrix W can be constructed to obtain a matrix W c with a dimension of L ⁇ K.
  • the matrix W c contains L ⁇ K elements, which respectively correspond to L ⁇ K space-frequency units determined by the L beam vectors and K frequency domain vectors.
  • the terminal device can still determine the stronger L beam vectors and the stronger K frequency according to the method described in Implementation Mode 1. Domain vector and weighting coefficients corresponding to L ⁇ K space-frequency units determined by the L beam vectors and K frequency domain vectors.
  • the specific method for the terminal device to determine the strong L beam vectors and the strong K frequency domain vectors according to the space frequency matrix, beam vector set, and frequency domain vector set may be the same as the method described in the first implementation manner above. Concise, no more detailed description here.
  • the terminal device may determine strong M space frequency units among the L ⁇ K space frequency units corresponding to the L beam vectors and the K frequency domain vectors.
  • the terminal device may traverse the L beam vectors and K frequency domain vectors respectively in a predefined order to obtain L ⁇ K space frequency units.
  • the L beam vectors selected in the beam vector set are denoted as
  • the K frequency domain vectors selected in the frequency domain vector set are denoted as
  • the terminal device may obtain L ⁇ K space-frequency units in the order of traversing L beam vectors and then K frequency domain vectors. That is, for each frequency domain vector, the L beam vectors are traversed from the 0th beam vector to the L-1th beam vector, and K is traversed in order from the 0th frequency domain vector to the K-1th frequency domain vector. Frequency domain vectors to obtain L ⁇ K space-frequency units.
  • L ⁇ K space frequency component matrices can be obtained as follows:
  • the terminal device may obtain L ⁇ K space-frequency units in the order of traversing K frequency domain vectors first and then traversing L beam vectors. That is, for each beam vector, K frequency domain vectors are traversed from the 0th frequency domain vector to the K-1th frequency domain vector, and L is traversed in order from the 0th beam vector to the L-1th beam vector. Beam vectors to obtain L ⁇ K space-frequency units.
  • L ⁇ K space frequency component matrices can be obtained as follows:
  • L ⁇ K space frequency component vectors can also be obtained by the Kronecker product of frequency domain vectors and beam vectors, or any vector operation, combination L ⁇ K space-frequency vector pairs can also be obtained.
  • the terminal device may determine strong M space-frequency units from the L ⁇ K space-frequency units.
  • the stronger M space-frequency units may be space-frequency units corresponding to elements with larger modulus lengths among the weighting coefficients of L ⁇ K space-frequency units (that is, L ⁇ K elements contained in W c above) .
  • the M elements with a larger modulus in the matrix W c may be the weighting coefficients of the M space-frequency units. That is, the modulus length of the weighting coefficient of any one of the selected M space-frequency units is greater than or equal to the modulus length of the weighting coefficient of any one of the remaining L ⁇ KM space-frequency units.
  • the terminal device can determine L beam vectors, K frequency domain vectors, M space frequency units among L ⁇ K space frequency units determined by L beam vectors and K frequency domain vectors and their corresponding Weighting factor.
  • the L beam vectors and the K frequency domain vectors may be used to determine L ⁇ K space frequency component matrices or space frequency component vectors. Therefore, L ⁇ K space frequencies may also be used. It is indicated by a component matrix or L ⁇ K space-frequency component vectors.
  • the position of the L beam vectors in the beam vector set and the position of the K frequency domain vectors in the frequency domain vector set can be converted into L ⁇ K space frequency component matrices in the space frequency component matrix set Position, or, the position of L ⁇ K space-frequency component vectors in the set of space-frequency component vectors.
  • the specific conversion method has been described in detail in the first implementation manner above, and for the sake of brevity, it will not be repeated here.
  • the terminal device may determine the space frequency matrix H according to the precoding vectors of N f frequency domain units, Or, the space-frequency vector h,
  • the terminal device determines the space-frequency vector h in advance, it can determine strong L ⁇ K space-frequency component vectors from the set of space-frequency component vectors according to the space-frequency vector h, and further from the L ⁇ K space-frequency components Stronger M space-frequency component vectors are determined in the vector.
  • the terminal device may project the space-frequency vector h onto N s ⁇ N f space-frequency component vectors in the space-frequency component set to obtain N s ⁇ N f projection values.
  • the arrangement order of the N s ⁇ N f projection values corresponds to the arrangement order of the N s ⁇ N f space-frequency component vectors in the space-frequency component vector set.
  • the terminal device may set a N s ⁇ N f space-frequency component of the vector in the order based on the space frequency component of the vector, the N s ⁇ N f projection values are arranged in order of a predetermined dimension is the N s ⁇ N f matrix.
  • the terminal device may start from the first projection value of the N s ⁇ N f projection values, and every N f consecutive projection values serve as one row, and N s rows may be obtained, and each row includes N f projection values. Arrange the N s rows in order from top to bottom to obtain a matrix W with dimensions N s ⁇ N f .
  • the terminal device may start from the first projected value of the N s ⁇ N f projected values, and every N s consecutive projected values serve as one column, and N f columns may be obtained, and each column includes N s projected values .
  • the terminal device may separately take the modulus of the N s rows in the matrix W, and determine L rows with larger modulus according to the size of the modulus of each row.
  • the L rows with larger modulus are the stronger L rows.
  • the terminal device may also take the modulus of the N f columns in the matrix W respectively, and determine K columns with larger modulus according to the size of the modulus of each column.
  • the K columns with larger modulus are the stronger K columns.
  • the terminal device can convert the set of beam vectors and the set of frequency domain vectors into a set of space-frequency component vectors according to the positions of the stronger L rows and the stronger K columns in the matrix W,
  • the strong L ⁇ K space-frequency component vectors are determined from the set of space-frequency component vectors.
  • the terminal device may also determine strong L ⁇ K space-frequency component vectors from the set of space-frequency component vectors based on the similar method described above.
  • each space frequency component vector in the set of space frequency component vectors can be determined by each beam vector in the beam vector set and each frequency domain vector in the frequency domain vector set.
  • the L ⁇ K space-frequency component vectors may be determined by the L beam vectors stronger in the beam vector set and the K frequency domain vectors stronger in the frequency domain vector set.
  • the row numbers of the stronger L rows in the matrix W determined above can be the numbers of the stronger L beam vectors in the beam vector set, and the column numbers of the stronger K columns in the matrix W can be The number of the stronger K frequency domain vectors in the frequency domain vector set.
  • the terminal device may determine the strong M space-frequency component vectors and the corresponding weighting coefficients among the L ⁇ K space-frequency component vectors according to the method described in manner a.
  • the terminal device determines the space-frequency matrix H in advance, it can determine strong L ⁇ K space-frequency component matrices according to the space-frequency matrix H and the space-frequency component matrix set, and further from the L ⁇ K space-frequency component matrix Determine the stronger M space-frequency component matrices.
  • the terminal device may combine the conjugate of each element in each space-frequency component matrix of the N s ⁇ N f space-frequency component matrices in the space-frequency component matrix set with the corresponding element in the space-frequency matrix H the sum of products, to obtain a component matrix corresponding to values of f and N s ⁇ N f frequency of empty N s ⁇ N.
  • the elements in the space-frequency matrix are denoted as b p, q , then the product of the conjugate of each element in each space-frequency component matrix and the corresponding element in the space-frequency matrix can be expressed as among them, Represents the conjugation of elements a p, q .
  • N s ⁇ N f space-frequency component matrices in the space-frequency component matrix can obtain N s ⁇ N f values.
  • the N s ⁇ N f values correspond to N s ⁇ N f space frequency component matrices.
  • the terminal device may also determine strong L ⁇ K space frequency component matrices from the space frequency component matrix set based on the similar method described above.
  • the terminal device may set a matrix N s ⁇ N f number of the order space frequency components of the matrix in accordance with space-frequency component, the N s ⁇ N f values are arranged in order of a predetermined dimension is the N s ⁇ N f Matrix W.
  • the terminal device arranges the N s ⁇ N f values into a matrix W having a dimension of N s ⁇ N f according to a predetermined order, and can determine strong L ⁇ K space frequency component matrices according to the matrix W.
  • the terminal device may further determine the stronger M space-frequency component matrices and their corresponding weighting coefficients from the L ⁇ K space-frequency component matrices.
  • the terminal equipment determines the strong L ⁇ K space-frequency component matrices, and determines the strong M space-frequency component matrices and their weighting coefficients from the L ⁇ K space-frequency component matrices
  • the specific process The process of determining L ⁇ K space-frequency component vectors and determining the strong M space-frequency component vectors and their weighting coefficients from L ⁇ K space-frequency component vectors is similar. The process has been described in detail above, and for the sake of brevity, it will not be repeated here.
  • the number of space frequency units selected from L ⁇ K space frequency units may be M or less than M.
  • This application does not limit this. That is to say, among the L ⁇ K weighting coefficients, the number of weighting coefficients whose amplitude is zero may be L ⁇ K-M, or may be larger than L ⁇ K-M.
  • the number of selected space frequency units may be less than M.
  • the terminal device when the terminal device indicates M space-frequency units, it may indicate only a few space-frequency units with non-zero amplitude; or it may also indicate M space-frequency units, but the terminal device may further determine by weighting coefficient indication Some of the space-frequency units have zero weighting coefficients. For convenience of explanation, it is assumed that the number of space frequency units selected from L ⁇ K space frequency units is M. However, it should be understood that this should not constitute any limitation on this application.
  • the terminal device can determine L beam vectors, K frequency domain vectors, M space frequency units among L ⁇ K space frequency units determined by L beam vectors and K frequency domain vectors and their corresponding Weighting factor.
  • the terminal device may generate the CSI report according to the determined information indicating the precoding vector.
  • the terminal device can report one or more CSI reports within a time unit (such as a slot).
  • Each CSI report may be generated based on a CSI reporting configuration.
  • the CSI report may include the above-mentioned first indication information.
  • the terminal device may carry part of the information in the first indication information in the first part of the CSI report, and carry the other part of the information in the first indication information in the CSI report.
  • the second part of the CSI report may carry part of the information in the first indication information in the first part of the CSI report.
  • the information used in the first indication information to indicate a vector (for example, including a space-frequency component vector, a beam vector, or a frequency domain vector) and a matrix (for example, including a space-frequency component matrix) may be carried in the second part of the CSI report.
  • the second part may carry information indicating L beam vectors and K frequency domain vectors determined in the first implementation mode, or L ⁇ K space frequency component matrices or space frequency component vectors equivalent thereto.
  • the second part may carry information indicating the M space-frequency component matrices or space-frequency component vectors determined in the second implementation mode, or its equivalent beam vectors and frequency Domain vector information; for another example, the second part may carry information indicating L beam vectors, K frequency domain vectors, and M space-frequency units of L ⁇ K determined in Implementation Mode 3, Or the information of L ⁇ K space frequency units and M space frequency units equivalent to it.
  • the information listed above for indicating vectors (for example, including space-frequency component vectors, beam vectors, or frequency domain vectors) and matrices (for example, including space-frequency component matrices) is collectively referred to as component information.
  • the information indicating the weighting coefficient corresponding to each vector or matrix described above is called coefficient information.
  • the above component information may include one of the following enumerations:
  • the protocol may define which way to indicate the precoding vector.
  • the bit overhead used can be determined.
  • the component information when the component information is information a), it is assumed that there are L beam vectors and K frequency domain vectors. Then, the component information may be information for indicating L beam vectors in the beam vector set and K frequency domain vectors in the frequency domain vector set.
  • the beam vector set may include N s beam vectors, and the frequency domain vector set may include N f frequency domain vectors. Then, when the first indication information indicates the L beam vectors, it may be used to indicate the index of the combination of the L beam vectors in the beam vector set, and its overhead may be Bits; it can also be used to indicate the index of the L beam vectors in the beam vector set, and the overhead can be Bits.
  • the first indication information indicates the K frequency domain vectors
  • it may be used to indicate the index of the combination of the K frequency domain vectors in the beam vector set, and its overhead may be Bits; it can also be used to indicate the index of the K frequency domain vectors in the frequency domain vector set, and the overhead can be Bits.
  • the beam vector set may include O s subsets, and each subset may include N s beam vectors; the frequency domain vector set may include O f subsets, each subset N f subsets may be included.
  • the first indication information may be used to indicate the subset to which the L beam vectors belong, and the position of the L beam vectors in the subset. Bits, or, Bits.
  • the first indication information indicates the K frequency domain vectors, it may be used to indicate the subset to which the K frequency domain vectors belong, and the position of the K frequency domain vectors in the subset, the overhead may be Bits, or, Bits.
  • L beam vectors and K frequency domain vectors can also be indicated by the methods listed above, respectively, and the overhead can also be based on the above The listed calculation formula is determined. For brevity, no more examples are given here.
  • the component information may be information indicating M space-frequency component matrices in the space-frequency component matrix set, or indicating M space-frequency components in the space-frequency component vector set Vector information.
  • the space frequency component matrix set may include N s ⁇ N f space frequency component matrices.
  • the first indication information indicates M space-frequency component matrices, it can be used to indicate the index of the combination of the M space-frequency component matrices in the space-frequency component matrix set, and its overhead may be Bits; it can also be used to indicate the index of the M space-frequency component matrices in the set of space-frequency component matrices, and its overhead can be Bits.
  • the space frequency component matrix set may include O c subsets, and each subset may include N s ⁇ N f space frequency component matrices.
  • the first indication information may be used to indicate the subset to which the M space-frequency component matrices belong, and the position of the M space-frequency component matrices in the subset, the overhead may be Bits, or Bits.
  • the component information may be information indicating the relative positions of L beam vectors, K frequency domain vectors, and M space frequency units in L ⁇ K space frequency units.
  • the relative position among the L ⁇ K space-frequency units can be indicated in any of the following ways:
  • Method 1 Indicate M space frequency units among L ⁇ K space frequency units through a bitmap
  • Method 2 Indicate the index of the combination of M space-frequency units in L ⁇ K space-frequency units
  • Method 3 Indicate the index of M space frequency units in L ⁇ K space frequency units respectively;
  • Manner 4 Indicate the position of the beam vector corresponding to each space frequency unit in the M space frequency units in the L beam vectors and the position of the frequency domain vector in the K frequency domain vectors.
  • the M space-frequency units can be indicated by a bitmap with a length of L ⁇ K bits.
  • Each bit in the bitmap may correspond to a space frequency unit among L ⁇ K space frequency units.
  • Each bit can be used to indicate whether the corresponding space-frequency unit belongs to the M space-frequency units, that is, whether it is selected for feedback. For example, when a bit is set to "0", it means that the corresponding space-frequency unit does not belong to the M space-frequency units; when a bit is set to "1", it means that the corresponding space-frequency unit belongs to the M space-time units Frequency unit.
  • the corresponding relationship between L ⁇ K bits and L ⁇ K space frequency units in the bitmap corresponds to the combination mode of the beam vector and the frequency domain vector in the L ⁇ K space frequency units.
  • the L ⁇ K space frequency units corresponding to the L ⁇ K bits may be arranged in the order of traversing K frequency domain vectors first and then traversing L beam vectors.
  • the L ⁇ K bits in the bitmap correspond one-to-one with the above L ⁇ K space frequency units.
  • L ⁇ K bits in the bitmap correspond one-to-one with the above L ⁇ K space frequency units.
  • space frequency component matrix above is taken as an example to illustrate the correspondence between L ⁇ K bits and L ⁇ K space frequency units in the bitmap, but this should not constitute any limitation to this application.
  • the correspondence between L ⁇ K bits in the bitmap and L ⁇ K space-frequency component vectors or pairs of space-frequency vectors is similar. For the sake of brevity, we will not list them one by one here.
  • L ⁇ K bits and L ⁇ K space-frequency units listed above is only an example, and should not constitute any limitation to this application.
  • This application does not limit the correspondence between L ⁇ K bits and L ⁇ K space-frequency units.
  • the present application is not limited to the arrangement of L ⁇ K a space-frequency unit, the convenience of description only one relationship L ⁇ K bits and empty frequency units M 1 above, and is shown with L ⁇ K
  • the terminal device may indicate the M space-frequency units by the index of the combination of the M space-frequency units in the L ⁇ K space-frequency units. That is to say, the terminal device can pre-determine multiple combinations of multiple space frequency units according to the L ⁇ K space frequency units obtained by combining the L beam vectors and K frequency domain vectors, and each combination can correspond to an index.
  • the M space-frequency units may be one of the multiple combinations, or close to one of the multiple combinations.
  • the terminal device can pass Bits to indicate M space frequency units among the L ⁇ K space frequency units.
  • the terminal device may indicate the M space-frequency units through the indexes of the M space-frequency units in the L ⁇ K space-frequency units, respectively. For example, the terminal device may renumber the L ⁇ K space frequency units, and indicate the index in the L ⁇ K space frequency units for each space frequency unit in the M space frequency units. Therefore, the terminal device can pass Bits to indicate M space frequency units among the L ⁇ K space frequency units.
  • the terminal device may respectively indicate the positions of the M beam vectors and the M frequency domain vectors used to obtain the M space frequency units in the L beam vectors and the positions in the K frequency domain vectors, respectively. .
  • the M space-frequency units are M space-frequency vector pairs, and the M beam vectors and M frequency-domain vectors may form the M space-frequency vector pairs.
  • the terminal device can pass The bits indicate the positions of the beam vectors and frequency domain vectors contained in this space-frequency vector pair in L beam vectors and the positions in K frequency domain vectors. Then the terminal device can pass Bits to indicate M space frequency units among the L ⁇ K space frequency units.
  • the terminal device uses the relative positions of the M space frequency units in the L ⁇ K space frequency units (for example, relative index or relative number, etc.) To indicate the M space frequency units, or to indicate the M space frequency unit pairs by the relative positions of the M space frequency units in the L beam vectors and the K frequency domain vectors (for example, relative index or relative number, etc.) .
  • the terminal device when the terminal device indicates the M space frequency units, it may indicate the local position of the M space frequency units among the L ⁇ K space frequency units. Since the selection range is narrowed, the overhead for indicating M space frequency units is also reduced.
  • the component information may be used to indicate L ⁇ K space-frequency units (such as L ⁇ K space-frequency component matrices in the space-frequency component matrix set, or, in the space-frequency component vector set L ⁇ K space-frequency component vectors) and the relative position information of M space-frequency units in L ⁇ K space-frequency units.
  • L ⁇ K space-frequency units such as L ⁇ K space-frequency component matrices in the space-frequency component matrix set, or, in the space-frequency component vector set L ⁇ K space-frequency component vectors
  • the method and overhead of the terminal device indicating M space frequency component matrices or M space frequency component vectors have been explained.
  • the terminal device instructs L ⁇ K space-frequency component matrices or L ⁇ K space-frequency component vectors, and the calculation method and overhead are also similar, and for the sake of brevity, they are not repeated here.
  • the positions of the M space-frequency units in the L ⁇ K space-frequency units can be at least indicated by any one of the above-listed methods, and for the sake of brevity, they are not described here again.
  • the coefficient information is explained in detail below.
  • the coefficient information may be entirely carried in the second part of the CSI report, may also partially carry the first part of the CSI report, and the other part may be carried in the second part of the CSI report. Since this embodiment provides multiple implementations for indicating the precoding vector, the information indicated is different for different implementations. The method for indicating coefficient information will be described in detail in conjunction with the three implementations listed above.
  • the terminal device may determine M weighting coefficients corresponding to M space-frequency units based on the method described above.
  • the M weighting coefficients can be indicated by any design as shown in Table 1:
  • the information indicated in the first part is not listed, which does not mean that the first part does not carry any information.
  • the first part can carry other information than PMI, for example, the first part can carry one or more of RI, CQI and LI .
  • the second part may also include one of the component information a) or b) listed above. For brevity, they are not listed in Table 1.
  • the number of normalization coefficients in the table may be one or multiple, which is not limited in this application. Since normalization and normalization processing have been described in detail in the foregoing, for the sake of brevity, they will not be repeated here. For ease of explanation, it is assumed that the number of normalization coefficients is T, and T is a positive integer.
  • the number of normalization coefficients can be related to the unit of normalization processing. Since the unit of normalization processing can be defined in advance, the terminal device and the network device can determine the number of normalization coefficients in advance.
  • the position of the normalization coefficient may refer to the position of the T normalization coefficients among the M weighting coefficients respectively.
  • the number of quantization bits used for quantizing the amplitude is x
  • the number of quantization bits used for quantizing the phase is y.
  • the number of weighting coefficients with non-zero amplitude is S
  • the number of weighting coefficients with non-zero amplitude other than the normalization coefficient is S-T.
  • the second part may also include an indication of a normalized space-frequency unit, and quantization information of each weighting coefficient among the M weighting coefficients except the normalization coefficient.
  • the normalized space frequency unit may be a space frequency unit corresponding to each normalization coefficient among the M weighting coefficients.
  • the indication of each normalized space-frequency unit can be indicated by referring to the method of indicating the normalized vector defined in the type II codebook in the NR protocol TS38.214 R15, for example.
  • the position of the normalized space-frequency unit in M normalized space-frequency units may be indicated.
  • Each normalized space-frequency unit can, for example, pass To indicate. This application does not limit the indication method of the normalized space frequency unit.
  • the terminal device may separately indicate the magnitude and phase of each of the M weighting coefficients except the normalization coefficient.
  • the quantization information of each weighting coefficient may include amplitude quantization information and phase quantization information.
  • the quantization information of the amplitude of each weighting coefficient may be an index of the quantization value of the amplitude of each weighting coefficient, respectively.
  • the quantization information of the phase of each weighting coefficient may be an index of the quantization value of the phase of each weighting coefficient.
  • the protocol may predefine the number of quantization bits used to separately quantize the amplitude and phase of the weighting coefficients. Therefore, among the M weighting coefficients, the number of quantization bits of the amplitude and phase of the M-T weighting coefficients other than the normalization coefficient can be determined.
  • the number of quantized bits of the magnitude of MT weighting coefficients other than normalization coefficients among the M weighting coefficients may be (MT) ⁇ x bits, and MT of the M weighting coefficients other than normalization coefficients
  • the number of quantization bits of the phase of the weighting coefficient may be (MT) ⁇ y bits.
  • the second part may also include quantization information of the amplitude and phase quantization information of each of the M weighting coefficients.
  • the normalization coefficients are not excluded, and the quantization information of amplitude and phase is indicated for all weighting coefficients, respectively. Therefore, the number of amplitude quantization bits and the number of phase quantization bits of the M weighting coefficients can be determined.
  • the number of quantization bits of the amplitude of the M weighting coefficients may be M ⁇ x bits, and the number of quantization bits of the phase of the M weighting coefficients may be M ⁇ y bits.
  • the first part of the CSI report may include an indication of the number of weighting coefficients with non-zero amplitude among the M weighting coefficients other than the normalization coefficient, or the magnitude among the M weighting coefficients other than the normalization coefficient is The indication of the number of zero weighting coefficients.
  • the second part may also include an indication of the normalized space-frequency unit, and quantization information of the magnitude of each weighting coefficient among the M weighting coefficients except the normalized coefficient And the quantization information of the phase of the weighting coefficient whose amplitude is non-zero except for the normalization coefficient.
  • the sum M of the weighting coefficients with non-zero amplitude and the weighting coefficient with zero amplitude does not change.
  • the M weighting coefficients the number of weighting coefficients with non-zero amplitude other than the normalization coefficient and the number of M weighting coefficients with the amplitude of zero except the normalization coefficient can be mutually converted.
  • the first part can be used to indicate the number of weighting coefficients with a non-zero amplitude other than the normalization coefficient among the M weighting coefficients.
  • the information may be an indication of the number of weighting coefficients with non-zero amplitude among the M weighting coefficients listed above except the normalization coefficient, or a weighting with zero amplitude other than the normalization coefficient out of the M weighting coefficients
  • the number of weighting coefficients of the coefficient is indicated, or may be other information. This application does not limit this.
  • the protocol can predefine that the first part is specifically used to indicate the number of weighting coefficients with non-zero amplitudes other than the normalization coefficients among the M weighting coefficients, or whether to indicate the amplitudes other than the normalization coefficients among the M weighting coefficients The number of zero-weighted coefficients. However, regardless of whether the protocol defines that the first part is specifically used for the former or the latter, it is possible to determine the number of weighting coefficients with non-zero amplitudes other than the normalization coefficient among the M weighting coefficients. In addition, the protocol can further define the number of bits of this information.
  • the normalized space-frequency unit and the magnitude of each weighting coefficient can also be indicated through the second part.
  • the second part may include quantization information of the magnitude of each weighting coefficient among the M weighting coefficients except the normalization coefficient.
  • the arrangement order of the weighting coefficients may be defined in advance.
  • the network device and the terminal device may respectively indicate and analyze the quantized values of the weighting coefficients based on the same arrangement order. Therefore, the position of the weighting coefficient with non-zero amplitude can be implicitly indicated by indicating the amplitude of each weighting coefficient.
  • the second part may indicate the quantization information of the phases of the weighting coefficients other than the normalization coefficients among the M weighting coefficients, so that the network device determines the phase of the weighting coefficients whose amplitude is non-zero according to the quantization information of the weighting coefficients.
  • the terminal device may only indicate the phase of the weighting coefficient whose amplitude is non-zero in the second part. And since the position of the weighting coefficient with non-zero amplitude is implicitly indicated in the second part by indicating the magnitude of each weighting coefficient, the network device can determine which phase the second phase corresponds to according to the magnitude of each weighting coefficient Weighting factor.
  • the second part includes the quantization bits of the amplitude of the MT weighting coefficients other than the normalization coefficient.
  • the number of quantization bits of the phase of the ST weighting coefficients with non-zero amplitudes other than the normalization coefficients can also be determined separately.
  • the number of quantized bits of the amplitude of the MT weighting coefficients other than the normalization coefficient among the M weighting coefficients may be (MT) ⁇ x bits, and the ST amplitudes other than the normalization coefficient among the M weighting coefficients are
  • the number of quantization bits of the phase of the weighting coefficient of zero may be (ST) ⁇ y bits.
  • the first part of the CSI report may include an indication of the number of weighting coefficients with a non-zero amplitude among the M weighting coefficients, or an indication of the number of weighting coefficients with an amplitude of zero among the M weighting coefficients, except for the second part
  • quantization information of the magnitude of each weighting coefficient among the M weighting coefficients and quantization information of the phase of weighting coefficients having non-zero amplitudes may also be included.
  • the sum M of the weighting coefficients with non-zero amplitude and the weighting coefficient with zero amplitude does not change.
  • the number of weighting coefficients with non-zero amplitude among the weighting coefficients and the number of weighting coefficients with zero amplitude among the M weighting coefficients can be converted to each other.
  • the first part can be used to indicate the number of weighting coefficients with non-zero amplitude among the M weighting coefficients.
  • the information may be the number of weighting coefficients with non-zero amplitude among the M weighting coefficients listed above, or the number of weighting coefficients with zero amplitude among the M weighting coefficients, or other information, this application There is no restriction on this.
  • the protocol may predefine whether the first part is specifically used to indicate the number of weighting coefficients with non-zero amplitude among the M weighting coefficients or whether to indicate the number of weighting coefficients with zero amplitude among the M weighting coefficients. However, regardless of whether the protocol defines that the first part is specifically used to indicate the former or the latter, the number of weighting coefficients with non-zero amplitude among the M weighting coefficients can be determined separately. In addition, the protocol can further define the number of bits of this information.
  • the amplitude of each weighting coefficient can also be indicated through the second part.
  • the magnitudes of the M weighting coefficients can be used to implicitly indicate the position of weighting coefficients with non-zero magnitudes. Therefore, the second part may further indicate the phase of each weighting coefficient whose amplitude is non-zero.
  • the number of quantization bits for the amplitude of the M weighting coefficients and the phase quantization bits for the phases of the S weighting coefficients with non-zero amplitude The number can also be determined separately.
  • the number of quantization bits of the amplitude of the M weighting coefficients may be M ⁇ x bits, and the number of quantization bits of the phase of the S weighting coefficients with non-zero amplitudes may be S ⁇ y bits.
  • the first part of the CSI report may include quantized information of the magnitude of each weighting coefficient among the M weighting coefficients except the normalization coefficient; the second part may include the normalized space-frequency unit in addition to the component information , The quantization information of the phases of the weighting coefficients with non-zero amplitudes other than the normalization coefficients among the M weighting coefficients.
  • the protocol can predefine the number of quantization bits of amplitude, the number of quantization bits of the M-T weighting coefficients other than the normalization coefficient among the M weighting coefficients can be determined.
  • the number of quantization bits of the amplitude of the M-T weighting coefficients other than the normalization coefficient may be (M-T) ⁇ x bits.
  • the protocol can predefine the number of phase quantization bits
  • the number of phase quantization bits of S-T weighting coefficients with non-zero amplitudes other than normalization coefficients among the M weighting coefficients can also be determined.
  • the number of quantization bits of the phases of the S-T weighting coefficients with non-zero amplitude other than the normalization coefficient may be (S-T) ⁇ y bits.
  • the first part of the CSI report may include quantized information on the magnitude of each weighting coefficient in the M weighting coefficients; in addition to the component information, the second part may also include weighting coefficients with non-zero amplitudes among the M weighting coefficients. Quantified information of the phase.
  • the number and position of weighting coefficients with non-zero amplitude among the M weighting coefficients can be implicitly indicated, or, the M weighting coefficients can be determined Whether the amplitude of each weighting coefficient is zero. Since the protocol can predefine the amplitude quantization bit number, the amplitude quantization bit number of the M weighting coefficients can be determined. The sum of the number of quantization bits of the magnitude of the M weighting coefficients may be M ⁇ x bits.
  • the protocol can define the number of phase quantization bits in advance, the number of phase quantization bits of the S weighting coefficients with non-zero amplitude among the M weighting coefficients can also be determined.
  • the sum of the phase quantization bit numbers of the S weighting coefficients whose amplitude is non-zero may be S ⁇ y bits.
  • the first part of the CSI report may be a bitmap to indicate the number and position of weighting coefficients with non-zero amplitudes other than normalization coefficients among the M weighting coefficients; in addition to component information, the second part It may include an indication of the normalized space-frequency unit, and quantization information of the weighting coefficients of each of the M weighting coefficients except for the normalized coefficient whose amplitude is non-zero.
  • the length of the bitmap may be M-T bits.
  • the M-T bits may correspond to M-T weighting coefficients with non-zero amplitudes other than normalization coefficients, and each bit may be used to indicate whether the amplitude of the corresponding weighting coefficient is zero. For example, when the bit is set to "1", it can indicate that the amplitude of the corresponding weighting coefficient is non-zero, and when the bit is set to "0,” it can indicate that the amplitude of the corresponding weighting coefficient is zero. Therefore, the number and position of weighting coefficients with non-zero amplitude among M-T weighting coefficients other than the normalization coefficient, or the number and position of weighting coefficients with zero amplitude can be indicated.
  • the bitmap is used to indicate the number and position of weighting coefficients with non-zero amplitudes other than normalization coefficients among the M weighting coefficients, and each bit in the bitmap is used to indicate the corresponding Whether the amplitude of the weighting coefficient is zero or not, the two can be equivalent, or alternatively.
  • the quantization information of each weighting coefficient may include amplitude quantization information and phase quantization information. Since the protocol can predefine the number of amplitude quantization bits and the number of phase quantization bits, among the M weighting coefficients, in addition to the normalization coefficient, the ST quantization bit numbers of the non-zero amplitude weighting coefficients and the phase quantization The number of bits can be determined. Among the M weighting coefficients, the number of quantized bits of the amplitude of the ST non-zero weighting coefficients other than the normalization coefficient may be (ST) ⁇ x bits, and the phase quantization of the ST non-zero amplitude weighting coefficients The number of bits may be (ST) ⁇ y bits.
  • the first part of the CSI report may be a bitmap to indicate the number and position of weighting coefficients with non-zero amplitude among the M weighting coefficients; the second part may include M weighting coefficients in addition to component information Quantization information of weighting coefficients with non-zero amplitudes.
  • the length of the bitmap may be M bits.
  • the M bits may correspond to the M weighting coefficients one by one, and each bit may be used to indicate whether the amplitude of the corresponding weighting coefficient is zero. Therefore, it is possible to indicate the number and position of weighting coefficients with non-zero amplitude among the M weighting coefficients, or the number and position of weighting coefficients with zero amplitude. That is, the bitmap is used to indicate the number and position of weighting coefficients with non-zero amplitude among the M weighting coefficients, and each bit in the bitmap is used to indicate whether the amplitude of the corresponding weighting coefficient is zero, The two can be equivalent, or alternatively.
  • the quantization information of each weighting coefficient may include amplitude quantization information and phase quantization information. Since the protocol can predefine the amplitude quantization bit number and the phase quantization bit number, the amplitude quantization bit number and the phase quantization bit number of the S weighting coefficients with non-zero amplitude among the M weighting coefficients can be determined.
  • the number of quantization bits of the amplitude of the S non-zero weighting coefficients other than the normalization coefficient may be S ⁇ x bits
  • the number of quantization bits of the phase of the S non-zero amplitude weighting coefficients It may be S ⁇ y bits.
  • the first part of the CSI report may be a bitmap to indicate the number and location of the weighting coefficients with non-zero amplitudes among the M weighting coefficients and the weighting coefficients with non-zero amplitudes Quantization level; in addition to component information, the second part may also include an indication of a normalized space-frequency unit, and quantization information of weighting coefficients of non-zero amplitudes among the M weighting coefficients other than the normalized coefficients.
  • the length of the bitmap may be (M-T) ⁇ k bits.
  • the (M-T) ⁇ k bits may correspond to M-T weighting coefficients other than the normalization coefficient, and every k bits may be used to indicate whether the amplitude of the corresponding weighting coefficient is zero.
  • the bitmap is used to indicate the number and position of weighting coefficients with non-zero amplitudes other than normalization coefficients among the M weighting coefficients, and each k bits in the bitmap are used to indicate the corresponding Whether the magnitude of the weighting coefficient is zero, the two can be equivalent, or, alternatively.
  • the value of k may be greater than 1, for example, it may be 2. Then every k bits can be further used to indicate the number of quantization bits of the corresponding weighting coefficient.
  • the number of quantization bits of each weighting coefficient may correspond to the quantization level.
  • Each k bits in the above bitmap can be used to indicate the quantization level to which the corresponding weighting coefficient belongs, so that the number of quantization bits of the weighting coefficient can be indirectly indicated.
  • the number of quantization bits of the weighting coefficient can be divided into multiple quantization levels. For example, it can be divided according to the magnitude or other information, which is not limited in this application. Every k bits can be used to indicate 2 k quantization levels. Each quantization level may correspond to a configuration of the number of quantization bits. In each configuration of the number of quantization bits, the number of amplitude quantization bits and the number of phase quantization bits can be configured separately. The configuration of the number of quantization bits corresponding to at least two quantization levels is different.
  • the plurality of quantization levels may include at least a first level, a second level, and a third level.
  • the bit when the bit is set to "00", it can indicate that the corresponding weighting coefficient belongs to the first level, when the bit is set to "11,” it can indicate that the corresponding weighting coefficient belongs to the third level, and when the bit is set to "10" or "01" It can be indicated that the corresponding weighting coefficient belongs to the second level.
  • the first level may correspond to a weighting coefficient whose amplitude is zero
  • the third level may correspond to a weighting coefficient whose amplitude is one
  • the second level may correspond to a weighting coefficient whose amplitude is non-zero and not one.
  • this second level is only defined to facilitate the distinction between the first level and the third level, and should not constitute any limitation to this application.
  • the above is just to facilitate understanding that the weighting coefficient is divided into three levels, which should not constitute any limitation to this application.
  • the value of k is 2, it can also be used to indicate four quantization levels.
  • the weighting coefficients of non-zero and non-one amplitudes can be divided into more quantization levels according to the magnitude of the amplitude, which is not limited in this application.
  • the above is for ease of understanding only, and shows the correspondence between the bits in the bitmap and the quantization level, but this should not constitute any limitation to this application. This application does not limit the correspondence between the bits in the bitmap and the quantization level.
  • Table 2 shows an example of different quantization levels.
  • Quantization level Bits in bitmap Quantization bit number Phase quantization bit number First level 00 x 1 y 1 Second level 01 or 10 x 2 y 2 Third level 11 x 3 y 3
  • the weighting coefficient (including amplitude and phase) of the first level may not be indicated, that is, y 1 may be 0.
  • This application does not limit the size relationship between the number of quantization bits at each level. As long as at least one of the quantization bit number of the amplitude or the phase quantization bit number of the at least two quantization levels is different, it should fall within the protection scope of the present application.
  • the second part may also include a position indication of the normalization coefficient.
  • the first part indicates the number and position of weighting coefficients with non-zero amplitudes other than the normalization coefficients, and according to the normalized space frequency unit indicated in the second part, the STs other than the normalization coefficients can be determined The position of weighting coefficients with non-zero amplitude.
  • the protocol may define the quantization level in advance, and may define the number of quantization bits corresponding to each quantization level, and may specifically include the quantization bit number of the amplitude and the phase quantization bit number. Therefore, the number of quantization bits of the amplitude and the number of quantization bits of the phase of the S-T weighting coefficients with non-zero amplitude other than the normalization coefficient indicated in the second part can be determined.
  • the first part of the CSI report may be a bitmap to indicate the number and position of weighting coefficients with non-zero amplitude among the M weighting coefficients, and may indicate the number of quantization bits of weighting coefficients with non-zero amplitude; the second part In addition to the component information, it may also include quantization information of the weighting coefficients with non-zero amplitudes other than the normalization coefficients among the M weighting coefficients.
  • the length of the bitmap may be M ⁇ k bits.
  • the M ⁇ k bits may correspond to M weighting coefficients, and each k bits may be used to indicate whether the amplitude of the corresponding weighting coefficient is zero. That is to say, the bitmap is used to indicate the number and position of weighting coefficients with non-zero amplitude among the M weighting coefficients, and every k bits in the bitmap are used to indicate whether the amplitude of the corresponding weighting coefficient is zero , The two can be equivalent, or alternatively.
  • the value of k may be greater than 1, for example, it may be 2. Then every k bits can be further used to indicate the number of quantization bits of the corresponding weighting coefficient. The number of quantization bits of each weighting coefficient may correspond to the quantization level. Each k bits in the above bitmap can be used to indicate the quantization level to which the corresponding weighting coefficient belongs, so that the number of quantization bits of the weighting coefficient can be indirectly indicated.
  • the amplitude and phase of the S weighting coefficients with non-zero amplitudes can be indicated in the second part. According to the predefined correspondence between the quantization level and the number of quantization bits, the number of quantization bits of the amplitude and the number of phase quantization bits of the S weighting coefficients with non-zero amplitude indicated in the second part may be determined.
  • the terminal device may determine M weighting coefficients corresponding to M space-frequency units based on the method described above.
  • the M weighting coefficients can be indicated by any design as shown in Table 3.
  • the information indicated in the first part is not listed, which does not mean that the first part does not carry any information.
  • the first part can carry other information than PMI, for example, the first part can carry one or more of RI, CQI and LI .
  • the second part may also include one of the component information c) or d) listed above.
  • the second part may also include one of the component information a) or b) listed above. For brevity, they are not listed in Table 2.
  • the first part of the CSI report may be a bitmap to indicate the number and position of the K ⁇ L weighting coefficients except for the normalization coefficients and the weighting coefficients with non-zero amplitude; the second part includes component information , May also include an indication of the normalized space-frequency unit, and quantization information of weighting coefficients with non-zero amplitudes other than the normalized coefficients.
  • the length of the bitmap may be L ⁇ K-T bits.
  • the L ⁇ K-T bits may correspond to L ⁇ K-T weighting coefficients other than the normalization coefficient, and each bit may be used to indicate whether the amplitude of the corresponding weighting coefficient is zero. That is to say, the bitmap is used to indicate the number and position of weighting coefficients with non-zero amplitudes other than normalization coefficients among the M weighting coefficients, and each bit in the bitmap is used to indicate the corresponding Whether the amplitude of the weighting coefficient is zero or not, the two can be equivalent, or alternatively.
  • L ⁇ K weighting coefficients are weighting coefficients corresponding to L ⁇ K space-frequency units described in the third implementation manner. Since the terminal device can further select M space frequency units from the L ⁇ K space frequency units, the L ⁇ KM space frequencies of the L ⁇ K space frequency units except the selected M space frequency units The amplitude of the weighting coefficient of the unit can be set to zero. Therefore, it can be indicated whether the amplitude of each weighting coefficient is zero, that is, it can further indicate the position of the selected M space-frequency units in the L ⁇ K space-frequency units. Designs 12 to 14 listed below can also indicate the positions of the selected M space-frequency units among the L ⁇ K space-frequency units based on the same manner.
  • the number of space frequency units selected from L ⁇ K space frequency units may be M, or may be less than M.
  • the number of weighting coefficients whose amplitude is zero may be L ⁇ K-M, or may be larger than L ⁇ K-M.
  • the number of selected space frequency units may be less than M.
  • the terminal device can indicate several space-frequency units used as weighted summation to determine the precoding vector through the bitmap of the first part. In the following, for the sake of brevity, the description of the same or similar cases is omitted.
  • the second part of the CSI report may not necessarily indicate that the selected space-frequency units are in L ⁇ K positions in the space frequency unit.
  • the terminal device may indicate the position of the normalization coefficient in the second part, so that the network device determines the position of the weighting coefficient with a non-zero amplitude other than the normalization coefficient.
  • the terminal device may also indicate the amplitude and phase of weighting coefficients whose amplitudes are non-zero except for the normalization coefficient in the second part.
  • the quantization information of each weighting coefficient may include amplitude quantization information and phase quantization information. Since the quantization level is not distinguished in Design 11, the number of quantization bits of the amplitude of the ST weighting coefficients other than the normalization coefficient can be (ST) ⁇ x bits, and the number of phase quantization bits can be (ST ) ⁇ y bits.
  • the first part of the CSI report may be a bitmap to indicate the number and position of the weighting coefficients with non-zero amplitude among the L ⁇ K weighting coefficients; in addition to the component information, the second part may also include each amplitude non-zero Quantization information of zero weighting coefficients.
  • the length of the bitmap may be L ⁇ K bits.
  • the L ⁇ K bits may correspond to L ⁇ K weighting coefficients, and each bit may be used to indicate whether the amplitude of the corresponding weighting coefficient is zero. That is, the bitmap is used to indicate the number and position of weighting coefficients with non-zero amplitude among the M weighting coefficients, and each bit in the bitmap is used to indicate whether the amplitude of the corresponding weighting coefficient is zero, The two can be equivalent, or alternatively.
  • the second part may only indicate the amplitude and phase of each non-zero weighting coefficient. Since the quantization level is not distinguished in design 12, the number of quantization bits of the amplitude of the S weighting coefficients with non-zero amplitude may be S ⁇ x bits, and the number of phase quantization bits may be S ⁇ y bits.
  • the first part of the CSI report may be a bitmap to indicate the number and position of weighting coefficients with non-zero amplitudes among the K ⁇ L weighting coefficients, and the weighting coefficients with non-zero amplitudes
  • the quantization level to which it belongs; the second part can include the indication of the normalized space frequency unit and the quantization information of the weighting coefficients with non-zero amplitudes other than the normalization coefficient in addition to the component information.
  • the length of the bitmap may be (L ⁇ K-T) ⁇ k bits.
  • the (L ⁇ K-T) ⁇ k bits may correspond to L ⁇ K-T weighting coefficients other than the normalization coefficient, and each k bits may be used to indicate whether the amplitude of the corresponding weighting coefficient is zero. That is to say, the bitmap is used to indicate the number and position of weighting coefficients with non-zero amplitudes other than the normalization coefficients among the K ⁇ L weighting coefficients, and every k bits in the bitmap are used to indicate Whether the amplitude of the corresponding weighting coefficient is zero, the two may be equivalent, or alternatively.
  • Each k bits further indicates the number of quantization bits of the corresponding weighting coefficient.
  • the number of quantization bits of each weighting coefficient may correspond to the quantization level.
  • Each k bits in the above bitmap can be used to indicate the quantization level to which the corresponding weighting coefficient belongs, so that the number of quantization bits of the weighting coefficient can be indirectly indicated.
  • the terminal device may indicate the normalized space frequency unit in the second part, so that the network device determines the positions of the weighting coefficients with non-zero amplitudes other than the normalization coefficient.
  • the terminal device may also indicate the amplitude and phase of weighting coefficients whose amplitudes are non-zero except for the normalization coefficient in the second part.
  • the quantization information of each weighting coefficient may include amplitude quantization information and phase quantization information, and specifically may include amplitude quantization bit number and phase quantization bit number. Since design 13 can indicate the quantization level by k bits, according to the correspondence between the predefined quantization level and the number of quantization bits, the amplitude and phase Quantize the number of bits.
  • the first part of the CSI report may be a bitmap to indicate the number and position of weighting coefficients with non-zero amplitude among L ⁇ K weighting coefficients, and the quantization level to which the weighting coefficients with non-zero amplitudes belong;
  • the two parts may also include quantization information of weighting coefficients with non-zero amplitudes.
  • the length of the bitmap may be L ⁇ K ⁇ k bits.
  • the L ⁇ K ⁇ k bits may correspond to L ⁇ K weighting coefficients, and each k bits may be used to indicate whether the amplitude of the corresponding weighting coefficient is zero. That is, the bitmap is used to indicate the number and position of weighting coefficients with non-zero amplitude among the K ⁇ L weighting coefficients, and each k bits in the bitmap are used to indicate whether the amplitude of the corresponding weighting coefficient is Is zero, the two can be equivalent, or, alternatively.
  • Each k bit in the bitmap further indicates the corresponding quantization bit number of the weighting coefficient, which may specifically include the amplitude quantization bit number and the phase quantization bit number.
  • the number of quantization bits of each weighting coefficient may correspond to the quantization level.
  • Each k bits in the above bitmap can be used to indicate the quantization level to which the corresponding weighting coefficient belongs, so that the number of quantization bits of the weighting coefficient can be indirectly indicated.
  • the amplitude and phase of the S weighting coefficients with non-zero amplitudes can be indicated in the second part. Since design 14 can indicate the quantization level by k bits, according to the corresponding relationship between the predefined quantization level and the number of quantization bits, the quantization bits of the amplitude of the S weighted coefficients with non-zero amplitude indicated in the second part can be determined Number and phase quantization bit number.
  • the design of the CSI report is not limited to the above enumeration.
  • the second part of design 4 can use the information in the second part of design 3; the second part of design 6 can adopt the Information; the second part of design 8 can follow the information in the second part of design 7; the second part of design 10 can also use the information in the second part of design 9, the second part of design 12 also The information in the second part of design 11 can be used; the second part in design 14 can also use the information in the second part of design 13 and so on.
  • the protocol can define the design of the CSI report, the terminal device can generate the CSI report based on the design, and the network device can also parse the CSI report based on the design.
  • the CSI report is not limited to the information listed above, and this application does not limit other information contained in the CSI report.
  • step 220 the terminal device sends the CSI report. Accordingly, in step 220, the network device receives the CSI report.
  • the terminal device may send the first indication information to the network device through physical uplink resources, such as a physical uplink shared channel (physical uplink shared channel (PUSCH) or physical uplink control channel (PUCCH), for example, to facilitate the network device
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the specific method for the terminal device to send the first indication information to the network device through the physical uplink resource may be the same as that in the prior art. For brevity, a detailed description of the specific process is omitted here.
  • the terminal device may send one or more CSI reports to the network device through time-frequency resources pre-configured by the network device.
  • the specific process of the terminal device sending the CSI report to the network device can refer to the prior art. For the sake of brevity, the detailed description of the specific process is omitted in this application.
  • step 230 the network device determines the precoding vectors of one or more frequency domain units according to the PMI report.
  • the network device may determine the space-frequency matrix (or space-frequency vector) according to the first indication information.
  • the space frequency matrix (or space frequency vector) is the same as or similar to the space frequency matrix (or space frequency vector) determined by the terminal device described in step 210 above.
  • the network device may also determine the precoding vector of each frequency domain unit according to the first indication information and a predefined formula.
  • the network device can calculate the L ⁇ K space frequency units corresponding to the L beam vectors and the K frequency domain vectors by calculating the L beam vectors, the K frequency domain vectors, and the corresponding weighting coefficients. Weighted sum to determine the space-frequency matrix.
  • Each column vector in the space frequency matrix can be used to determine the corresponding precoding vector of the frequency domain unit. For example, by performing normalization processing on each column vector in the space frequency matrix, a precoding vector corresponding to each frequency domain unit can be obtained.
  • the N s elements in each column can be multiplied by a normalization coefficient, so that the sum of the powers of the elements in this column is equal to 1.
  • the normalization coefficient may be, for example, the reciprocal of the square root of the sum of the modulus lengths of N s elements in this column. This application does not limit the specific method of normalization processing.
  • Network devices may be uncertain space-frequency matrix, n f is determined in the first unit a corresponding frequency-domain precoding vector directly according to the following formula
  • ⁇ 1 is the normalization coefficient, ⁇ 1 >0; Represents the lth beam vector among L beam vectors; Represents the k-th frequency domain vector of the K frequency domain vectors The n fth element in Yes Conjugation of; cl, k represents the weighting coefficient corresponding to the l-th beam vector and the k-th frequency domain vector.
  • the network device may calculate the weighted sum of the M space-frequency component matrices or the space-frequency component vectors and their corresponding weighting coefficients to determine the space-frequency matrix. Each column vector in the space frequency matrix can be used to determine the corresponding precoding vector of the frequency domain unit.
  • the network device may also calculate the weighted sum of each space-frequency component vector according to the M space-frequency component vectors and their corresponding weighting coefficients to determine the space-frequency vector.
  • the column vectors formed by sequentially connecting elements corresponding to the same frequency domain unit in the space-frequency vector can be used for the precoding vector of the frequency domain unit.
  • the vector space frequency of the n f ⁇ n s th to (n f +1) ⁇ n s -1 elements The precoding vector that can correspond to the nfth frequency domain unit.
  • Network devices may be uncertain or space-frequency matrix vector space frequency, it is determined in the first unit n f corresponding frequency-domain precoding vector directly according to the following formula
  • ⁇ 2 is the normalization coefficient, ⁇ 2 >0;
  • C m represents the m-th frequency component space or space-frequency matrix component of the vector corresponding to the weighting coefficient.
  • the network device may calculate the weighted sum of the M space frequency units according to the L beam vectors, the K frequency domain vectors, and the M space frequency units among the LK space frequency units and their corresponding weighting coefficient To determine the space-frequency matrix or space-frequency vector.
  • Each column vector in the space frequency matrix can be used to determine the corresponding precoding vector of the frequency domain unit.
  • the column vectors formed by sequentially connecting elements corresponding to the same frequency domain unit in the space-frequency vector can be used for the precoding vector of the frequency domain unit.
  • Network devices may be uncertain or space-frequency matrix vector space frequency, it is determined in the first unit n f corresponding frequency-domain precoding vector directly according to the following companies of
  • ⁇ 3 represents the normalization coefficient, ⁇ 3 >0; Represents the beam vector corresponding to the mth space-frequency unit among the M space-frequency units; for The conjugate of Represents the frequency domain vector corresponding to the mth space-frequency unit of M space-frequency units.
  • the n fth element in Cm represents the weighting coefficient corresponding to the mth space frequency unit among the M space frequency units.
  • the network device may determine the precoding vectors of one or more frequency domain units on the transmission layer.
  • the length N f of the frequency domain vector may be the number of frequency domain units included in the frequency domain occupied bandwidth of the CSI measurement resource allocated to the terminal device, or the signaling length of the reporting band, Or, the number of frequency domain units to be reported.
  • the length of the frequency domain vector is the number of frequency domain units included in the frequency domain occupied bandwidth of the CSI measurement resource allocated to the terminal device or the signaling length of the reporting band
  • the number of frequency domain units to be reported may be less than or equal to N f 's. Therefore, the network device may determine the precoding vector of each frequency domain unit according to the position of the frequency domain unit to be reported indicated by the reporting band or other signaling.
  • the length of the frequency domain vector is determined according to the number of frequency domain units included in the frequency domain occupied bandwidth of the CSI measurement resource or the signaling length of the reporting band, and the change rule of the channel on multiple consecutive frequency domain units can be passed The frequency domain vector is reflected.
  • the number of frequency domain units in the frequency domain occupied bandwidth of the CSI measurement resource or reporting information The frequency domain vector determined by the length can more accurately reflect the changing law of the channel in the frequency domain, and the precoding vector recovered based on the feedback can also be more adapted to the channel.
  • the network device listed above and n f the specific method of precoding vectors corresponding to the unit of the frequency domain are merely examples according to the first indication information, not constitute any limitation on the present application deal with. This application does not exclude a network device according to the first indication information, other means of determining a precoding vector corresponding to the second sub-band may be n f.
  • the specific process in which the terminal device indicates a precoding vector on a transmission layer and a polarization direction and the network device determines the precoding vector is explained in detail above in conjunction with FIG. 2. However, it should be understood that this method is not only applicable to the case where the transmission layer is 1 or the number of polarization directions is 1, but is also applicable to the case of multiple transmission layers or multiple polarization directions.
  • the terminal device device may indicate the precoding vectors of the frequency domain units in multiple polarization directions through multiple first indication information.
  • first indication information corresponding to one or more polarization directions, respectively
  • the transmission layer Corresponding instructions one or more first indication information (corresponding to one or more polarization directions, respectively) used to indicate the precoding vectors of each frequency domain unit on a transmission layer.
  • the component information in the plurality of polarization directions may be the same or different; the coefficient information in the plurality of polarization directions may be different.
  • the multiple polarization directions may share the same component information, and the multiple first indication information may indicate the component information only once.
  • the component information can be regarded as public information.
  • the common information is referred to as common information between polarization directions hereinafter.
  • the common information between the polarization directions can be regarded as a common part of the plurality of first indication information.
  • the multiple first indication information may be based on the multiple polarization direction indication component information, respectively.
  • the component information can be regarded as proprietary information.
  • the multiple first indication information may be based on the multiple polarization direction indication coefficient information, respectively.
  • the coefficient information can be regarded as proprietary information.
  • multiple polarization directions can share several beam vectors and several frequency domain vectors.
  • the information used to indicate the above-mentioned several beam vectors and several frequency domain vectors can all be common information between polarization directions.
  • Multiple polarization directions may also share only a few beam vectors or only a few frequency domain vectors.
  • it is used to indicate that the above-mentioned shared beam vectors or frequency domain vectors may be common among polarization directions.
  • the information used to indicate that several frequency domain vectors or several beam vectors that are not shared may be proprietary information.
  • multiple polarization directions may share M space-frequency component matrices or space-frequency component vectors, and the information used to indicate the M space-frequency component matrices or space-frequency component units may be common information between polarization directions .
  • multiple polarization directions can share L beam vectors, K frequency domain vectors, and M space frequency units.
  • the information used to indicate L beam vectors, K frequency domain vectors, and M space frequency units may all be common information between polarization directions.
  • the multiple polarization directions may share only L beam vectors and K frequency domain vectors.
  • the information used to indicate L beam vectors and K frequency domain vectors may be common information between polarization directions, and the information used to indicate M space-frequency units may be proprietary information.
  • the multiple polarization directions may share only L beam vectors.
  • the information used to indicate L beam vectors may be common information between polarization directions, and the information used to indicate K frequency domain vectors and M space frequency units may be proprietary information.
  • Multiple polarization directions may share only K frequency domain vectors.
  • the information indicating K frequency domain vectors may be common information between polarization directions, and the information indicating L beam vectors and M space frequency units may be proprietary information.
  • multiple polarization directions can share L ⁇ K space frequency units and M space frequency units.
  • the information used to indicate L ⁇ K space frequency units and M space frequency units may be common information between polarization directions.
  • the multiple polarization directions may share only L ⁇ K space-frequency units.
  • the information used to indicate the L ⁇ K space frequency units may be common information between polarization directions, and the information used to indicate the M space frequency units may be proprietary information.
  • the component information that is the common information is called common component information
  • the component information that is the proprietary information is called proprietary component information.
  • the terminal device and the network device can generate and parse the information in the CSI report based on the same rules.
  • the common information between polarization directions may be located at the forefront of the corresponding position of the CSI report.
  • the common information between the polarization directions may be the common component information enumerated above, then the common component information may be located at the forefront of the second part of the CSI report, or the position used for carrying PMI in the second part At the front of it.
  • the proprietary information corresponding to each polarization direction can be put in sequence separately. In other words, the priority of public information between polarization directions may be higher than that of proprietary information.
  • component information can be shared among multiple polarization directions, but the weighting coefficients between the polarization directions are different from each other.
  • the terminal device may determine 2M weighting coefficients corresponding to the two polarization directions based on the method described above.
  • the 2M weighting coefficients can be indicated by any design as shown in Table 4:
  • the information indicated in the first part is not listed, which does not mean that the first part does not carry any information.
  • the first part can carry other information than PMI, for example, the first part can carry one or more of RI, CQI and LI .
  • the second part may also include one of the component information a) or b) listed above. For brevity, they are not listed in Table 4.
  • the normalization coefficient in the table may be determined based on each polarization direction separately, or may be determined based on two polarization directions, which is not limited in this application.
  • the terminal device may determine 2M weighting coefficients corresponding to the two polarization directions based on the method described above.
  • the 2M weighting coefficients can be indicated by any design as shown in Table 5.
  • the information indicated in the first part is not listed, which does not mean that the first part does not carry any information.
  • the first part can carry other information than PMI, for example, the first part can carry one or more of RI, CQI and LI .
  • the second part may also include one of the component information c) or d) listed above.
  • the second part may also include one of the component information a) or b) listed above. For brevity, they are not listed in Table 5.
  • bit overheads of the parts listed in Table 4 and Table 5 above can be calculated with reference to the calculation methods provided in Table 1 and Table 2 above in the case of the single polarization direction above.
  • the difference is that the total number of weighting coefficients in the two-polarization direction may be twice that in the single-polarization direction.
  • 2M, 2L ⁇ K, etc . the number of normalization coefficients may be doubled or may not change, which is related to the unit of normalization processing.
  • the terminal device may generate indication information corresponding to the transmission layer for each transmission layer.
  • the indication information may be the indication information corresponding to the first transmission layer; for the second transmission layer, the indication information may be the indication information corresponding to the second transmission layer; and so on, here No longer list them one by one.
  • the component information on multiple transmission layers may be the same or different; the coefficient information on multiple transmission layers may be different.
  • the multiple transmission layers may share the same component information, and the component information may be indicated only once in the multiple indication information corresponding to the multiple transmission layers.
  • the component information can be regarded as public information.
  • the common information is referred to as inter-transport common information hereinafter.
  • the common information between the transmission layers may be regarded as a common part of multiple indication information corresponding to multiple transmission layers.
  • the indication information corresponding to multiple transport layers may generate component information based on the multiple transport layers respectively.
  • the component information can be regarded as proprietary information.
  • the first indication information may indicate coefficient information based on the multiple transmission layers, respectively.
  • the coefficient information can be regarded as proprietary information.
  • the terminal device may also use part or all of the component information as common information based on the above description, and for the sake of brevity, no more details are provided here.
  • the proprietary information in the multiple indication information corresponding to multiple transmission layers is transmitted according to The order of the layers is in order.
  • the priority of public information between transmission layers may be higher than that of proprietary information.
  • the inter-transport layer common information when there is inter-transport layer common information among multiple indication information corresponding to multiple transport layers, the inter-transport layer common information may be located at the forefront of the corresponding part of the CSI report. In other words, in a CSI report, the common information between transmission layers may be located before the proprietary information.
  • the component information can be shared among multiple transmission layers, but the weighting coefficients of the respective transmission layers are different from each other.
  • the first part of each CSI report may include part of proprietary information corresponding to multiple transmission layers
  • the second part of each CSI report may include common information between transmission layers and the information corresponding to multiple transmission layers Another part of proprietary information.
  • the proprietary information that can be used as the first part of the CSI report and the proprietary information of the second part can be determined based on one of the various designs in Table 4 or Table 5 above, and can be used as the second part of the CSI report
  • the common information of may be, for example, the common component information corresponding to the first part in the component information a), b), c) or d) above.
  • the second part of the CSI report may also include proprietary component information.
  • FIG. 3 shows a schematic diagram of the first part of the CSI report provided by the embodiment of the present application.
  • the terminal device may sequentially arrange the proprietary information corresponding to each transmission layer that can be used as the first part of the CSI report in the order of the transmission layer.
  • the common information may be located at the forefront of the second part in the CSI report, or at the forefront of the location for carrying PMI in the second part.
  • the proprietary information corresponding to each transport layer may be put in sequence, for example, may include proprietary component information and coefficient information.
  • the terminal device may sequentially arrange the proprietary information corresponding to each transmission layer that can be used as the second part of the CSI report in the order of the transmission layer.
  • the priority of the proprietary component information is higher than the priority of the coefficient information.
  • the component information may precede the coefficient information.
  • the proprietary component information may be located before the coefficient information, as shown in FIG. 4.
  • the proprietary component information corresponding to multiple transmission layers may be located before the coefficient information corresponding to multiple transmission layers, as shown in FIG. 5 Show.
  • the priority of coefficient information with a larger number of quantized bits is higher than that of coefficient information with a smaller number of quantized bits.
  • the first level of coefficient information may be located before the second level of coefficient information, and the second level of coefficient information may be located before the third level of coefficient information.
  • the second part of the CSI report shown in FIGS. 4 and 5 is further extended.
  • the proprietary component information may be located before the coefficient information, and the first-level coefficient information is located in the Before the second-level coefficient information, the second-level coefficient information is located before the third-level coefficient information, and the second part of the CSI report shown in FIGS. 6 and 7 can be obtained.
  • the exclusive information of the 0th transport layer, the 1st transport layer to the R-1th transport layer is arranged in the order of the transport layers.
  • the proprietary information of each transport layer is arranged in order from proprietary component information, coefficient information of the first level, coefficient information of the second level to coefficient information of the third level.
  • the 0th transport layer is arranged in order from the proprietary component information, the first level coefficient information, the second level coefficient information to the third level coefficient information Proprietary information; then arrange the proprietary information of the first transport layer in order from the proprietary component information, the first level coefficient information, the second level coefficient information to the third level coefficient information; and so on Finally, the exclusive information of the R-1th transmission layer is arranged in order from the exclusive component information, the coefficient information of the first level, the coefficient information of the second level to the coefficient information of the third level.
  • the figure only shows some information related to PMI in the first part and the second part of the CSI report for ease of understanding, but not all are shown. Therefore, the information shown in the figure should not constitute any limitation on this application.
  • the first part of the CSI report may also include one or more of RI, CQI and LI, for example, it may be located before or after the PMI, which is not limited in this application.
  • the second part of the CSI report may not include the proprietary component information of each transmission layer. In this case, the coefficient information of each transmission layer may be located after the common information between the transmission layers; or, the second part of the CSI report may not include the transmission Common information between layers.
  • the proprietary component information and coefficient information of each transmission layer may be arranged in order according to the priority order shown in FIGS. 4 to 7; the second part of the CSI report may also include other information, such as It can be located before or after PMI, which is not limited in this application.
  • the arrangement order of the information shown in the figure can be understood as the order of the corresponding bit sequence in the bit sequence generated by one CSI report.
  • the terminal device may encode the corresponding bit sequence according to the arrangement order of the information listed above.
  • the network device may also decode the corresponding bit sequence according to the arrangement order of the information listed above.
  • the above-listed designs for multiple polarization directions and the arrangement order of information in multiple transmission layers are only a few possible examples provided by the embodiments of the present application, and should not constitute any limitation to the present application.
  • the common information between polarization directions may be located at the forefront of the corresponding part of the CSI report.
  • instruction information corresponding to each transmission layer may be put in sequence.
  • the common information between the polarization directions is placed at the forefront, followed by the proprietary information corresponding to each polarization direction.
  • the priority of common information between transmission layers is higher than that of common information between polarization directions, and the priority of common information between polarization directions may be higher than that of proprietary information.
  • the terminal device may send one or more CSI reports in one CSI report.
  • the terminal device may generate the bit sequence of the first part of each CSI report and the bit sequence of the second part of each CSI report according to the predefined priority order of the CSI report.
  • the bit sequence generated by the first parts of multiple CSI reports may be recorded as the first sequence, and the order of the first parts of the multiple CSI reports in the first sequence may be the priority order of the CSI reports described above;
  • the bit sequence generated by the second parts of multiple CSI reports may be recorded as the second sequence, and the order of the second parts of the multiple CSI reports in the second sequence may be the priority of the CSI report described above order.
  • the terminal device may separately encode the arrangement order of the bit sequences in the first sequence and the second sequence.
  • the network device can also decode according to the arrangement order of the bit sequences in the first sequence and the second sequence, respectively.
  • the priority order of the CSI report can be determined, for example, according to the CSI reporting identifier (CSI reporting ID) configured by the network device. That is, multiple CSI reports can be sorted according to the order of the CSI reporting ID of each CSI report.
  • the terminal device and the network device can encode and decode based on the same order.
  • FIGS. 8 to 12 are schematic diagrams of multiple CSI reports provided by embodiments of the present application. Specifically, FIGS. 8 to 12 respectively show the first part and the second part of J (J> 1, and a positive integer) CSI reports.
  • the J CSI reports may include CSI report # 0, CSI report # 1 to CSI report # J-1, respectively. Among them, FIG. 8 shows the first part of the J CSI reports. 9 to 12 show the second part of the J CSI reports.
  • the number of reported transmission layers is not necessarily the same.
  • the number of transmission layers may be R 0 ;
  • the number of transmission layers may be R 1 ; and so on, for CSI report # J-1, the number of transmission layers may be R J-1 .
  • R 0 and R 1 to R J-1 are all positive integers, and any two of R 0 and R 1 to R J-1 may be the same or different, which is not limited in this application.
  • the figure is for convenience only, and shows an example in which multiple CSI reports are generated in the arrangement order shown in FIGS. 3 to 7. But this should not constitute any limitation on this application.
  • the length of each piece of information of any two CSI reports with the same name may be the same or different, and this application does not limit it.
  • the bit length of the common information between transmission layers in CSI report # 0 and the common information between transmission layers in CSI report # 1 in FIGS. 9 to 12 may be the same or different.
  • the bit length of the 0th transport layer proprietary information in CSI report # 1 in FIG. 8 and the bit length of the 0th transport layer proprietary information in CSI report # J-1 may be the same or different of. For brevity, no more examples are given here.
  • FIG. 8 shows that the first part of the CSI report includes RI, CQI, LI, and PMI, but this should not constitute any limitation to this application.
  • the CSI report may include only one or more of them, which is not limited in this application.
  • the first part of the CSI report may include only one or more of RI, CQI, LI, and PMI.
  • the drawings are arranged in descending order of priority from left to right.
  • the protocol may predefine the priority order of each information, for example, it may be one of FIG. 4 to FIG. 7 and FIG. 9 to FIG. 12, so that the terminal device generates a CSI report corresponding to the priority order based on the priority order The second part.
  • the terminal device may discard the second part of the CSI report in order from low to high priority Part or all of the information in the PMI.
  • the network device may determine the precoding matrix corresponding to each frequency domain unit based on the PMI in the CSI report.
  • the first network device based on the instruction information corresponding to each of the same polarization direction as a transport layer, and determines a precoding vector n f transport layer of cells corresponding to frequency domain.
  • Network device may be further based on the instruction information corresponding to the plurality of the transport layer, the transport layer is determined first for each n f units corresponding frequency-domain precoding vector, and to determine the number n f of the corresponding precoding matrix.
  • the network device can determine the precoding vector of the n fth frequency domain unit according to the following formula
  • ⁇ 1 is the normalization coefficient, ⁇ 1 >0;
  • c l, k represents the weighting coefficient corresponding to the lth beam vector and the kth frequency domain vector in the first polarization direction;
  • c l + L, k represents the second polarization direction Weighting coefficients corresponding to the l-th beam vector and the k-th frequency domain vector.
  • the first network device may determine the r th transport layer precoding vector f n frequency-domain units according to the following formula
  • ⁇ 1 is the normalization coefficient, ⁇ 1 >0;
  • c r, l, k denotes a first polarization direction r th transport layer and the l-th beam k-vectors and frequency-domain vectors corresponding weighting coefficient;
  • c r, l + L, k represents the weighting coefficient corresponding to the l-th beam vector and the k-th frequency domain vector in the second polarization direction of the r-th transmission layer.
  • the network device can determine the precoding vector of the n fth frequency domain unit according to the following formula
  • ⁇ 2 is the normalization coefficient, ⁇ 2 >0;
  • the elements corresponding to the elements in the f frequency domain are connected in sequence;
  • c m represents the weighting coefficient corresponding to the m-th space-frequency component matrix or space-frequency component vector in the first polarization direction, and
  • c m + M represents the second polarization
  • the first network device may determine the r th transport layer precoding vector f n frequency-domain units according to the following formula
  • ⁇ 2 is the normalization coefficient, ⁇ 2 >0; It represents a component of the vector on the r th transport layer M null frequency component matrix to m-th space frequency component matrix with M empty on the first n f frequency domain unit corresponding to the vector, or the r-th transport layer frequency in n f of the frequency domain corresponding to the unit vectors obtained sequentially connected elements; c r, m denotes a first polarization direction r th transport layer and the m-th matrix or space-frequency components of the frequency component of the vector space corresponding weighting
  • the coefficient, cr, m + M represents the weighting coefficient corresponding to the m-th space-frequency component matrix or space-frequency component vector in the second polarization direction of the r-th transmission layer.
  • the network device can determine the precoding vector of the n fth frequency domain unit according to the following formula
  • ⁇ 3 is the normalization coefficient, ⁇ 3 >0;
  • the first network device may determine the r th transport layer precoding vector f n frequency-domain units according to the following formula
  • ⁇ 3 is the normalization coefficient, ⁇ 3 >0;
  • c r, m represents the weighting coefficient corresponding to the m th space frequency unit in the first polarization direction of the r th transmission layer,
  • c r, m + M represents the th The weighting coefficient corresponding to the m-th space-frequency unit in the polarization direction.
  • the first network device may also transmit the respective layers precoding vector f n frequency domain units, f n is determined in the first frequency-domain pre-coding matrix corresponding to the cell as follows:
  • the frequency domain vector is used to describe the change law of the channel in the frequency domain, and the linear superposition of one or more frequency domain vectors is used to simulate the change of the channel in the frequency domain. Relationship. By using the continuity of the frequency domain, fewer frequency domain vectors are used to describe the changing law of multiple frequency domain units.
  • the terminal device indicates one or more beam vectors, one or more frequency domain vectors and their corresponding weighting coefficients to the network device, or indicates one or more space frequency units and their corresponding weighting coefficients to the terminal device, in order to facilitate
  • the network device recovers the precoding vector with a high degree of approximation.
  • there is no need to independently report weighting coefficients based on each frequency domain unit and when the number of frequency domain units increases, the feedback overhead does not increase exponentially. Therefore, the feedback overhead can be greatly reduced on the basis of ensuring approximate accuracy.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application .
  • the communication device 1000 may include a communication unit 1100 and a processing unit 1200.
  • the communication device 1000 may correspond to the terminal device in the foregoing method embodiment, for example, it may be a terminal device, or a chip configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 200 according to an embodiment of the present application, and the communication device 1000 may include a unit for performing the method performed by the terminal device in the method 200 in FIG. 2.
  • each unit in the communication device 1000 and the other operations and / or functions described above are respectively for implementing the corresponding flow of the method 200 in FIG. 2.
  • the communication unit 1100 can be used to perform step 220 in the method 200
  • the processing unit 1200 can be used to perform step 210 in the method 200. It should be understood that the specific process of each unit performing the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, no further description is provided here.
  • the communication unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 14, and the processing unit 1200 in the communication device 1000 may This corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 14.
  • the communication unit 1100 in the communication device 1000 may be an input / output interface.
  • the communication device 1000 may correspond to the network device in the foregoing method embodiment, for example, it may be a network device, or a chip configured in the network device.
  • the communication device 1000 may correspond to the network device in the method 200 according to an embodiment of the present application, and the communication device 1000 may include a unit for performing the method performed by the network device in the method 200 in FIG. 2.
  • each unit in the communication device 1000 and the other operations and / or functions described above are respectively for implementing the corresponding flow of the method 200 in FIG. 2.
  • the communication unit 1100 can be used to perform step 220 in the method 200
  • the processing unit 1200 can be used to perform step 230 in the method 200.
  • the communication unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 15, and the processing unit 1200 in the communication device 1000 may This corresponds to the processor 3100 in the network device 3000 shown in FIG. 15.
  • the communication unit 1100 in the communication device 1000 may be an input / output interface.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the above method embodiments.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002 and the memory 2030 can communicate with each other through an internal connection path to transfer control and / or data signals.
  • the memory 2030 is used to store a computer program, and the processor 2010 is used from the memory 2030 Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for sending uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the processor 2010 and the memory 2030 may be combined into a processing device.
  • the processor 2010 is used to execute the program code stored in the memory 2030 to implement the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 13.
  • the above-mentioned transceiver 2020 may correspond to the communication unit in FIG. 13 and may also be called a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 14 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2.
  • the operations and / or functions of each module in the terminal device 2000 are respectively to implement the corresponding processes in the above method embodiments.
  • the above-mentioned processor 2010 may be used to perform the actions described in the foregoing method embodiments that are internally implemented by the terminal device, and the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the terminal device 2000 may further include a power supply 2050, which is used to provide power to various devices or circuits in the terminal device.
  • a power supply 2050 which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 2000 may further include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, a sensor 2100, etc.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiments.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also called a distributed unit (DU) )) 3200.
  • RRU remote radio unit
  • BBU baseband units
  • DU distributed unit
  • the RRU 3100 may be called a transceiver unit, which corresponds to the communication unit 1200 in FIG. 13.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiving unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the RRU 3100 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal devices.
  • the BBU 3200 part is mainly used for baseband processing and controlling the base station.
  • the RRU 3100 and the BBU 3200 may be physically arranged together, or may be physically separated, that is, distributed base stations.
  • the BBU 3200 is the control center of the base station, and may also be referred to as a processing unit, which may correspond to the processing unit 1100 in FIG. 13 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation flow on the network device in the above method embodiment, for example, to generate the above instruction information.
  • the BBU 3200 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may support different access standards respectively. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be provided with necessary circuits.
  • the base station 3000 shown in FIG. 15 can implement various processes involving network devices in the method embodiment of FIG. 2.
  • the operations and / or functions of each module in the base station 3000 are to implement the corresponding processes in the above method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the foregoing method embodiments that are internally implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • An embodiment of the present application further provides a processing device, including a processor and an interface; the processor is used to execute the method in any of the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system chip (SoC), or It is a central processor (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller
  • MCU microcontroller
  • PLD programmable logic device
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they are not described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct RAMbus RAM direct RAMbus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on the computer, the computer is caused to execute the embodiment shown in FIG. 2 The method of any one of the embodiments.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer is caused to execute the embodiment shown in FIG. 2 The method of any one of the embodiments.
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • the network device in each of the above device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding steps are performed by the corresponding modules or units, for example, the communication unit (transceiver) performs the receiving or The steps of sending, other than sending and receiving, can be executed by the processing unit (processor).
  • the function of the specific unit can refer to the corresponding method embodiment. There may be one or more processors.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program, and / or a computer.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process and / or thread of execution, and a component can be localized on one computer and / or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the component may, for example, be based on a signal having one or more data packets (eg, data from two components that interact with another component between the local system, the distributed system, and / or the network, such as the Internet that interacts with other systems through signals) Communicate through local and / or remote processes.
  • data packets eg, data from two components that interact with another component between the local system, the distributed system, and / or the network, such as the Internet that interacts with other systems through signals
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (programs) are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (eg, floppy disk, hard disk, magnetic tape), optical medium (eg, DVD), or semiconductor medium (eg, solid state disk (SSD)), or the like.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请提供一种指示和确定预编码向量的方法和通信装置,以减少反馈开销。该方法包括:终端设备生成并发送CSI,网络设备根据该CSI确定一个或多个频域单元的预编码向量。其中,该CSI报告用于指示M个空频单元以及该M个空频单元中部分或全部空频单元的加权系数,该M个空频单元中的每个空频单元对应一个波束向量和一个频域向量,该M个空频单元中部分或全部空频单元的加权和用于确定一个或多个频域单元的预编码向量。

Description

指示和确定预编码向量的方法以及通信装置
本申请要求于2018年10月27日提交中国专利局、申请号为201811263110.1、申请名称为“指示和确定预编码向量的方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及指示和确定预编码向量的方法以及通信装置。
背景技术
在大规模多输入多输出(massive multiple-input multiple-output,Massive MIMO)技术中,网络设备可通过预编码减小多用户之间的干扰以及同一用户的多个信号流之间的干扰,有利于提高信号质量,实现空分复用,提高频谱利用率。
终端设备例如可以通过信道测量等方式确定预编码向量,并希望通过反馈,使得网络设备获得与终端设备确定的预编码向量相同或者相近的预编码向量。在一种实现方式中,终端设备可以通过宽带反馈和子带反馈的两级反馈方式来向网络设备指示预编码向量。具体地,终端设备可以基于每个传输层,通过宽带反馈指示被选择的波束向量以及各波束向量的宽带幅度系数的量化值,并可以通过子带反馈指示可用于各个子带的组合系数的量化值,其中组合系数例如可包括子带幅度系数和子带相位系数。网络设备可以综合宽带反馈的信息和子带反馈的信息恢复出各子带对应的预编码向量。终端设备通过宽带反馈和子带反馈的两级反馈方式来向网络设备指示预编码向量的具体方法可以参考新无线(new radio,NR)协议TS 38.214中定义的类型II(type II)码本反馈方式。
然而,随着传输层数的增加,上述反馈模式所带来的反馈开销会成倍增加。而子带数量越多,反馈开销增加的幅度也越大。
发明内容
本申请提供一种指示和确定预编码向量的方法以及通信装置,以期减小反馈开销。
第一方面,提供了一种指示预编码向量的方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
具体地,该方法包括:生成信道状态信息CSI报告,该CSI报告用于指示M个空频单元以及该M个空频单元中部分或全部空频单元的加权系数,该M个空频单元中的每个空频单元对应一个波束向量和一个频域向量,该M个空频单元中部分或全部空频单元的加权和用于确定一个或多个频域单元的预编码向量;发送该CSI报告。
第二方面,提供了一种确定预编码向量的方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。
具体地,该方法包括:接收信道状态信息CSI报告,该CSI报告用于指示M个空频单元以及该M个空频单元中部分或全部空频单元的加权系数,该M个空频单元中的每个空频单元对应一个波束向量和一个频域向量,该M个空频单元中部分或全部空频单元的加权和用于确定一个或多个频域单元的预编码向量;根据该CSI报告,确定一个或多个频域单元的预编码向量。
因此,本申请实施例通过频域向量来描述信道在频域上的变化规律,并通过一个或多个频域向量的线性叠加来模拟信道在频域上的变化,充分挖掘了频域单元之间的关系。通过利用频域的连续性,使用较少的频域向量来描述多个频域单元的变化规律。终端设备通过向网络设备指示一个或多个波束向量、一个或多个频域向量及其对应的加权系数,或者,向终端设备指示一个或多个空频单元及其对应的加权系数,以便于网络设备恢复近似度较高的预编码向量。相比与现有技术而言,无需基于每个频域单元独立地上报加权系数,在频域单元数量增加的情况下,并不会造成反馈开销的成倍增加。因此,可以在保证近似精度的基础上大大减小反馈开销。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第二部分包括归一化空频单元的指示、与该M个空频单元对应的M个加权系数中除该归一化系数之外各加权系数的量化信息,该归一化空频单元与该归一化系数对应。
其中,该CSI报告的第一部分可以不包括任何与PMI相关的信息。由于归一化空频单元与归一化系数对应,可通过指示归一化空频单元来指示归一化系数。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第二部分包括与该M个空频单元对应的M个加权系数中各加权系数的量化信息。
其中,该CSI报告的第一部分可以不包括任何与PMI相关的信息。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括与该M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数指示,或,该M个加权系数中除该归一化系数之外幅度为零的加权系数的个数指示;该第二部分包括归一化空频单元的指示、该M个加权系数中除该归一化系数之外各加权系数的幅度的量化信息以及除该归一化系数之外的幅度非零的加权系数的相位的量化信息,该归一化空频单元与该归一化系数对应。
由于对于幅度为零的加权系数来说,指示相位是没有必要的。通过在第一部分指示除归一化系数之外幅度非零的加权系数的个数,并在第二部分指示除归一化系数之外的各加权系数的幅度来隐式指示幅度非零的加权系数的位置,因此,在第二部分中可以仅指示除归一化系数之外幅度非零的加权系数的相位,以减少反馈开销。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括与该M个空频单元对应的M个加权系数中幅度非零的加权系数的个数指示,或,该M个加权系数中幅度为零的加权系数的个数指示;该第二部分包括该M个加权系数中各加权系数的幅度的量化信息以及各幅度非零的加权系数的相位的量化信息。
由于对于幅度为零的加权系数来说,指示相位是没有必要的。通过在第一部分指示幅 度非零的加权系数的个数,并在第二部分指示各加权系数的幅度来隐式指示幅度非零的加权系数的位置,因此,在第二部分中可以仅指示幅度非零的加权系数的相位,以减少反馈开销。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括与该M个空频单元对应的M个加权系数中除归一化系数之外各加权系数的幅度的量化信息;该第二部分包括归一化空频单元的指示、该M个加权系数中除该归一化系数之外各幅度非零的加权系数的相位的量化信息,该归一化空频单元与该归一化系数对应。
由于对于幅度为零的加权系数来说,指示相位是没有必要的。通过在第一部分指示除归一化系数之外的各加权系数的幅度,可以隐式地指示除归一化系数之外的幅度非零的加权系数的个数和位置,因此,在第二部分中可以仅指示幅度非零的加权系数的相位,以减少反馈开销。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括与该M个空频单元对应的M个加权系数中各加权系数的幅度的量化信息;该第二部分包括该M个加权系数中各幅度非零的加权系数的相位的量化信息。
由于对于幅度为零的加权系数来说,指示相位是没有必要的。通过在第一部分指示各加权系数的幅度,可以隐式地指示幅度非零的加权系数的个数和位置,因此,在第二部分中可以仅指示幅度非零的加权系数的相位,以减少反馈开销。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括位图,该位图用于指示与该M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;该第二部分包括归一化空频单元的指示、该M个加权系数中除该归一化系数之外各幅度非零的加权系数的量化信息,该归一化空频单元与该归一化系数对应。
由于对于幅度为零的加权系数来说,指示相位是没有必要的。通过在第一部分用位图来指示除归一化系数之外的各加权系数的幅度是否为零,可以隐式地指示除归一化系数之外的幅度非零的加权系数的个数和位置。因此,在第二部分可以仅指示除归一化系数之外幅度非零的加权系数的幅度和相位,以减少反馈开销。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括位图,该位图用于指示与该M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置;该第二部分包括该M个加权系数中各幅度非零的加权系数的量化信息。
由于对于幅度为零的加权系数来说,指示相位是没有必要的。通过在第一部分用位图来指示各加权系数的幅度是否为零,可以隐式地指示幅度非零的加权系数的个数和位置。因此,在第二部分可以仅指示幅度非零的加权系数的幅度和相位,以减少反馈开销。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括位图,该位图用于指示与该M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除该归一化系数之外的各加权系数的量化比特数;该第二部分包括归一化空频单元的指示、该M个加权系数中除该归一化系数之外各幅度非零的加权系数的量化信息,该归一化空频单元与该归一化系数对 应。
由于对于幅度为零的加权系数来说,指示相位是没有必要的。通过在第一部分用位图来指示除归一化系数之外的各加权系数的幅度是否为零,可以隐式地指示除归一化系数之外的幅度非零的加权系数的个数和位置。因此,在第二部分可以仅指示除归一化系数之外幅度非零的加权系数的幅度和相位,以减少反馈开销。
此外,通过多个比特来指示不同加权系数的量化比特数,可以为较强的空频分量的加权系数分配较多的量化比特数,为较弱的空频分量的加权系数分配较少的量化比特数。从而可以将更多的开销用在较强的空频分量上,有利于提高近似精度。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括位图,该位图用于指示与该M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数的量化比特数;该第二部分包括该M个加权系数中各幅度非零的加权系数的量化信息。
由于对于幅度为零的加权系数来说,指示相位是没有必要的。通过在第一部分用位图来指示各加权系数的幅度是否为零,可以隐式地指示幅度非零的加权系数的个数和位置。因此,在第二部分可以仅指示幅度非零的加权系数的幅度和相位,以减少反馈开销。
此外,通过多个比特来指示不同加权系数的量化比特数,可以为较强的空频分量的加权系数分配较多的量化比特数,为较弱的空频分量的加权系数分配较少的量化比特数。从而可以将更多的开销用在较强的空频分量上,有利于提高近似精度。
结合第一方面或第二方面,在某些可能的实现方式中,该第二部分还包括该M个空频单元的指示。
在上述列举的几种CSI报告的可能的设计中,第二部分还可以包括M个空频单元的指示。该M个空频单元的指示例如可以是若干个(例如L个)波束向量和若干个(例如K个)频域向量的指示,也可以是M个空频分量矩阵的指示,或者还可以是M个空频分量向量的指示,或者还可以是L个波束向量、K个频域向量以及L×K个空频单元中的M个空频单元的指示。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括位图,该位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;该第二部分包括归一化空频单元的指示、除该归一化系数之外的各幅度非零的加权系数的量化信息;其中,该归一化空频单元与该归一化系数对应,该L×K个加权系数与L×K个空频单元对应,该L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
由于L×K个加权系数中与除M个空频单元之外的空频单元对应的加权系数的幅度为零,通过在第一部分用位图来指示L×K个加权系数中除归一化系数之外各加权系数的幅度是否为零,可以隐式地指示除归一化系数之外幅度非零的加权系数的个数和位置。因此,可以确定除归一化系数之外幅度非零的加权系数的个数和位置,在第二部分中可以仅指示除归一化系数之外幅度非零的加权系数的幅度和相位,并且不需要额外的开销去指示L×K个空频单元中被选择的若干个空频单元,从而可以进一步减少反馈开销。
需要说明的是,从L×K个空频单元中选择的空频单元数可以是M个,也可能少于M个。本申请对此不作限定。也就是说,L×K个加权系数中,幅度为零的加权系数的个数 可能为L×K-M,也可能大于L×K-M。当幅度为零的加权系数的个数大于L×K-M时,被选择的空频单元数可以少于M个。此情况下,终端设备指示的M个空频单元中,对应于幅度为零的那部分空频单元可以是不需要的,即加权系数为零。因此,终端设备可通过第一部分的位图来指示若干个用作加权求和以确定预编码向量的空频单元。后文中为了简洁,省略对相同或相似情况的说明。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括位图,该位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置;该第二部分包括各幅度非零的加权系数的量化信息;其中,该L×K个加权系数与L×K个空频单元对应,该L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
由于L×K个加权系数中与除M个空频单元之外的空频单元对应的加权系数的幅度为零,通过在第一部分用位图来指示L×K个加权系数中各加权系数的幅度是否为零,可以隐式地指示幅度非零的加权系数的个数和位置。因此,可以确定幅度非零的加权系数的个数和位置,在第二部分中可以仅指示幅度非零的加权系数的幅度和相位,并且不需要额外的开销去指示L×K个空频单元中被选择的若干个空频单元,从而可以进一步减少反馈开销。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括位图,该位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除该归一化系数之外的各加权系数的量化比特数;该第二部分包括归一化空频单元的指示、除该归一化系数之外的各幅度非零的加权系数的量化信息;其中,该归一化空频单元与该归一化系数对应,该L×K个加权系数与L×K个空频单元对应,该L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
由于L×K个加权系数中与除M个空频单元之外的空频单元对应的加权系数的幅度为零,通过在第一部分用位图来指示L×K个加权系数中除归一化系数之外各加权系数的幅度是否为零,可以隐式地指示除归一化系数之外幅度非零的加权系数的个数和位置。因此,可以确定除归一化系数之外幅度非零的加权系数的个数和位置,在第二部分中可以仅指示除归一化系数之外幅度非零的加权系数的幅度和相位,并且不需要额外的开销去指示L×K个空频单元中被选择的若干个空频单元,从而可以进一步减少反馈开销。
此外,通过多个比特来指示不同加权系数的量化比特数,可以为较强的空频分量的加权系数分配较多的量化比特数,为较弱的空频分量的加权系数分配较少的量化比特数。从而可以将更多的开销用在较强的空频分量上,有利于提高近似精度。
结合第一方面或第二方面,在某些可能的实现方式中,该CSI报告包括第一部分和第二部分,该第一部分包括位图,该位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数所属的量化级别;该第二部分包括各幅度非零的加权系数的量化信息;其中,该L×K个加权系数与L×K个空频单元对应,该L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
由于L×K个加权系数中与除M个空频单元之外的空频单元对应的加权系数的幅度为零,通过在第一部分用位图来指示L×K个加权系数中各加权系数的幅度是否为零,可以 隐式地指示幅度非零的加权系数的个数和位置。因此,可以确定幅度非零的加权系数的个数和位置,在第二部分中可以仅指示幅度非零的加权系数的幅度和相位,并且不需要额外的开销去指示L×K个空频单元中被选择的若干个空频单元,从而可以进一步减少反馈开销。
此外,通过多个比特来指示不同加权系数的量化比特数,可以为较强的空频分量的加权系数分配较多的量化比特数,为较弱的空频分量的加权系数分配较少的量化比特数。从而可以将更多的开销用在较强的空频分量上,有利于提高近似精度。
结合第一方面或第二方面,在某些可能的实现方式中,该第二部分还包括该L×K个空频单元的指示。
在上述列举的几种CSI报告的可能的设计中,第二部分还可以包括L×K个空频单元的指示。该L×K个空频单元的指示例如可以是L个波束向量和K个频域向量的指示,也可以是L×K个空频分量矩阵的指示,或者还可以是L×K个空频分量向量的指示。本申请对此不作限定。
第三方面,提供了一种通信装置,包括用于执行第一方面任一种可能实现方式中的方法的各个模块或单元。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第五方面,提供了一种通信装置,包括用于执行第二方面任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收输入信号,并通过所述输出电路输出信号,使得所述处理器执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可 以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个或多个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例提供的指示和确定预编码向量的方法的通信系统的示意图;
图2是本申请实施例提供的指示和确定预编码向量的方法的示意性流程图;
图3是本申请实施例提供的CSI报告的第一部分的示意图;
图4至图7是本申请实施例提供的CSI报告的第二部分的示意图;
图8至图12是本申请实施例提供的多个CSI报告的示意图;
图13是本申请实施例提供的通信装置的示意性框图;
图14是本申请实施例提供的终端设备的结构示意图;
图15是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的指示预编码向量的方法的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,如网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的, 或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了便于理解本申请实施例,下面简单说明下行信号在发送之前在物理层的处理过程。应理解,下文所描述的对下行信号的处理过程可以由网络设备执行,也可以由配置于网络设备中的芯片执行。为方便说明,下文统称为网络设备。
网络设备在物理信道可对码字(code word)进行处理。其中,码字可以为经过编码(例如包括信道编码)的编码比特。码字经过加扰(scrambling),生成加扰比特。加扰比特经过调制映射(modulation mapping),得到调制符号。调制符号经过层映射(layer mapping),被映射到多个层(layer),或者称,传输层。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发射出去。
应理解,上文所描述的对下行信号的处理过程仅为示例性描述,不应对本申请构成任何限定。对下行信号的处理过程具体可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。
1、预编码技术:网络设备可以在已知信道状态的情况下,借助与信道资源相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应注意,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、信道状态信息(channel state information,CSI)报告(report):在无线通信系统中,由接收端(如终端设备)向发送端(如网络设备)上报的用于描述通信链路的信道属性的信息。CSI报告中例如可以包括但不限于,预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)、信道质量指示(channel quality indicator,CQI)、信道状态信息参考信号(channel state information reference signal,CSI-RS资源指示(CSI-RS resource indicator,CRI)以及层指示(layer indicator,LI)等。应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请构成任何限定。CSI可以包括上文所列举的一项或多项,也可以包括除上述列举之外的其他用于表征CSI的信息,本申请对此不作限定。
以终端设备向网络设备上报CSI为例。
终端设备可以在一个时间单元(如时隙(slot))内上报一个或多个CSI报告,每个CSI报告可以对应一种CSI上报的配置条件。该CSI上报的配置条件例如可以由CSI上报配置(CSI reporting setting)来确定。该CSI上报配置可用于指示CSI上报的时域行为、带宽、与上报量(report quantity)对应的格式等。其中,时域行为例如包括周期性(periodic)、半持续性(semi-persistent)和非周期性(aperiodic)。终端设备可以基于一个CSI上报配置生成一个CSI报告。
终端设备在一个时间单元内上报一个或多个CSI报告可以称为一次CSI上报。
在本申请实施例中,终端设备在生成CSI报告时,可以将用于指示预编码向量的第一指示信息分为两部分。例如,CSI报告可以包括第一部分和第二部分。第一部分和第二部分可以是独立编码的。其中,第一部分的净荷(payload)大小(size)可以是预先定义的,第二部分的净荷大小可以根据第一部分中所携带的信息来确定。
网络设备可以根据预先定义的第一部分的净荷大小解码第一部分,以获取第一部分中携带的信息。网络设备可以根据从第一部分中获取的信息确定第二部分的净荷大小,进而解码第二部分,以获取第二部分中携带的信息。
应理解,该第一部分和第二部分可以理解为NR协议TS38.214版本15(release 15,R15)中定义的CSI的部分1(part 1)和部分2(part 2)。
还应理解,由于本申请实施例主要涉及PMI的上报,下文实施例中对CSI报告的第一部分和第二部分中内容的列举仅涉及PMI的相关信息,而未涉及其他。但应理解,这不应对本申请构成任何限定。除了在下文实施例中所列举的CSI报告的第一部分和第二部分所包含或指示的信息外,CSI报告的第一部分还可以包括RI、CQI和LI中的一项或多项,或者,还可以包括其他可预先定义反馈开销的信息,CSI报告的第二部分也可以包括其他信息。本申请对此不作限定。
3、预编码矩阵指示(PMI):可用于指示预编码矩阵。其中,该预编码矩阵例如可以是终端设备基于各个频域单元(如,子带)的信道矩阵确定的预编码矩阵。该信道矩阵可以是终端设备通过信道估计等方式或者基于信道互易性确定。但应理解,终端设备确定预编码矩阵的具体方法并不限于上文所述,具体实现方式可参考现有技术,为了简洁,这里不再一一列举。
例如,预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decopomsition,EVD)的方式获得。本申请对此不作 限定。应理解,上文中列举的预编码矩阵的确定方式仅为示例,不应对本申请构成任何限定。预编码矩阵的确定方式可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
终端设备可以通过PMI向网络设备指示每个频域单元的预编码矩阵,以便于网络设备根据PMI确定出与终端设备所确定的预编码矩阵相同或相近的预编码矩阵。例如,网络设备可以根据PMI直接确定每个频域单元的预编码矩阵,也可以根据PMI确定每个频域单元的预编码矩阵后通过进一步的处理,如将不同用户的预编码矩阵做正交化处理等,以确定最终使用的预编码矩阵。因此,网络设备能够确定出与每个频域单元的信道相适配的预编码矩阵来对待发送信号进行预编码处理。应理解,网络设备根据PMI确定最终使用的预编码矩阵的具体方法可以参考现有技术,这里仅为便于理解而示例,不应对本申请构成任何限定。
综上,终端设备所确定的预编码矩阵可以理解为待反馈的预编码矩阵。终端设备可以通过PMI指示待反馈的预编码矩阵,以便于网络设备基于PMI恢复出该预编码矩阵。可以理解,网络设备基于PMI恢复出的预编码矩阵可以与上述待反馈的预编码矩阵相同或相近。
下文示出了秩(rank)为1时通过两级反馈的预编码矩阵的简单示例。
Figure PCTCN2019110939-appb-000001
其中,W表示一个传输层、一个子带(即,频域单元的一例)、两个极化方向上待反馈的预编码矩阵。W 1可以通过宽带反馈,W 2可以通过子带反馈。v 0至v 3为W 1中包含的波束向量,该多个波束向量例如可通过该多个波束向量的组合的索引来指示。在上文中示出的预编码矩阵中,两个极化方向上的波束向量是相同的,均使用了波束向量v 0至v 3。a 0至a 7为W 1中包含的宽带幅度系数,可通过宽带幅度系数的量化值来指示。c 0至c 7为W 2中包含的子带系数,每个子带系数可以包括子带幅度系数和子带相位系数。如c 0至c 7可以分别包括子带幅度系数p 0至p 7以及子带相位系数
Figure PCTCN2019110939-appb-000002
Figure PCTCN2019110939-appb-000003
并可分别通过子带幅度系数p 0至p 7的量化值和子带相位系数
Figure PCTCN2019110939-appb-000004
Figure PCTCN2019110939-appb-000005
的量化值来指示。可以看到,该待反馈的预编码矩阵可以视为多个波束向量的加权和。
应理解,上文示出的预编码矩阵基于一个传输层的反馈得到,因此也可以称为预编码向量。当传输层数增加时,终端设备可以基于每个传输层分别反馈。由每个传输层反馈而得到的预编码向量可以构建得到一个子带的预编码矩阵。例如传输层数为4,该预编码矩阵可以包括4个预编码向量,分别与4个传输层对应。
随着传输层数的增加,终端设备的反馈开销也会增加。例如传输层数为4时,a 0至a 7以及c 0至c 7的反馈开销最多将达到传输层数为1时的4倍。也就是说,如果终端设备基于每个传输层进行如上所述的宽带反馈和子带反馈,则随着传输层数的增加,所带来的反馈开销会成倍增加。而子带数量越多,反馈开销增加的幅度也越大。因此,希望提供一种方法,能够降低PMI的反馈开销。
应理解,上文所列举的通过PMI反馈预编码矩阵的方式仅为示例,而不应对本申请构成任何限定。例如,终端设备也可以通过PMI来向网络设备反馈信道矩阵,网络设备可以根据PMI确定信道矩阵,进而确定预编码矩阵,本申请对此不作限定。
4、预编码向量:在本申请实施例中,预编码向量可以由预编码矩阵中的一个向量确定,如,列向量。换句话说,预编码矩阵可以包括一个或多个列向量,每个列向量可用于确定一个预编码向量。当预编码矩阵仅包括一个列向量时,该预编码矩阵也可以称为预编码向量。
预编码矩阵可以是由一个或多个传输层的预编码向量确定,预编码矩阵中的每个向量可以对应于一个传输层。假设预编码向量的维度可以为N 1×1,若传输层数为R(R为正整数),则预编码矩阵的维度可以为N 1×R。其中,传输层数可以由秩指示(rank indicator,RI)来指示,N 1可以表示天线端口数,N 1为正整数。
当发射天线被配置多个极化方向时,预编码向量还可以是指预编码矩阵在一个传输层、一个极化方向上的分量。假设极化方向数为P(P为正整数),一个极化方向上天线端口数为N 2,则与一个传输层对应的预编码向量的维度为(P×N 2)×1,则一个极化方向上的预编码向量的维度可以为N 2×1,N 2为正整数。
因此,预编码向量可以与一个传输层对应,也可以与一个传输层上的一个极化方向对应,还可以与其他参量对应。本申请对此不作限定。
5、天线端口:可简称端口。可以理解为被接收设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号对应,因此,每个天线端口可以称为一个参考信号的端口,例如,CSI-RS端口、探测参考信号(sounding reference signal,SRS)端口等。
6、波束与波束向量:波束可以理解为在空间某一方向上形成的信号强度的分布。形成波束的技术可以是波束赋形(或者称,波束成形)技术或者其他技术。波束成形技术具体可以是数字波束赋形技术、模拟波束赋形技术以及混合数字/模拟波束赋形技术。在本申请实施例中,波束可以通过数字波束赋形技术形成。
波束向量可以与波束对应,可以是预编码矩阵中的预编码向量,也可以是波束赋形向量。波束向量中的各个元素可以表示各个天线端口的权重。各个天线端口经加权后的信号相互叠加,可以形成一个信号强度较强的区域。
在本申请实施例中,波束向量也可以称为空域向量。可选地,该波束向量的长度(或者说,维度)是一个极化方向上的天线端口数。
假设该波束向量的长度为N s。波束向量可以是维度为N s×1的列向量,也可以是维度为1×N s的行向量。本申请对此不做限定。
7、频域单元:频域资源的单位,可表示不同的频域资源粒度。频域单元例如可以包 括但不限于,子带、资源块(resource block,RB)、子载波、资源块组(resource block group,RBG)或预编码资源块组(precoding resource block group,PRG)等。
8、频域向量:本申请实施例中提出的用于表示信道在频域的变化规律的向量。频域向量具体可用于表示各波束向量的加权系数在各个频域单元上的变化规律。这种变化规律可能与多径时延相关。由于信号在经过无线信道传输时,在不同的传播路径可能上存在不同的传输时延。因此可以通过不同的频域向量来表征不同传播路径上时延导致的信道在频域上的变化规律。
频域向量的维度可以是需要进行CSI测量的频域单元的数量。由于在不同的时刻需要进行CSI测量的频域单元的数量可能不同,因此,频域向量的维度也可能会变化。换句话说,频域向量的维度是可变的。
可选地,该频域向量的长度(或者说,维度)是CSI测量资源的频域占用带宽中包含的频域单元数量。
其中,CSI测量资源的频域占用带宽CSI测量资源的频域占用带宽可以是用于传输参考信号的带宽,这里所说的参考信号可以为用作信道测量的参考信号,如CSI-RS。CSI测量资源的频域占用带宽例如可以小于或等于导频传输带宽(或者称,测量带宽)。在NR中,用于指示CSI测量资源的频域占用带宽例如可以是CSI占用带宽范围(CSI-Frequency Occupation)。
应理解,CSI测量资源的频域占用带宽仅为便于描述而命名,不应对本申请构成任何限定,本申请并不排除通过其他命名来表达相同含义的可能。
可选地,该频域向量的长度是用于指示待上报的频域单元的位置及个数的信令的长度。
在NR中,用于指示待上报的频域单元的位置及个数的信令可以是上报带宽(reporting band)。该信令例如可以通过位图的形式来指示待上报的频域单元的位置及个数。因此,频域向量的维度可以为该位图的比特数。应理解,reporting band仅为该信令的一种可能的命名,不应对本申请构成让任何限定。本申请并不排除通过其他名称来命名该信令以实现相同或相似功能的可能。
可选地,频域向量的长度是待上报的频域单元数。
其中,待上报的频域单元数例如可以通过上述上报带宽这一信令指示。待上报的频域单元数可以为该CSI测量资源的频域占用带宽中的全部频域单元,或者,也可以为该CSI测量资源的频域占用带宽中的部分频域单元;或者,待上报的频域单元数可以与上报带宽的信令长度相同,或者,也可以小于上报带宽的信令长度。本申请对此不作限定。
当协议定义了频域向量的长度为上述列举的某一项时,用于指示上述CSI测量资源的频域占用带宽的信令或用于指示待上报的频域单元的位置及个数的信令中的某一项可以认为隐式地指示了频域向量的长度。为便于区分和说明,将用于频域向量的长度的指示信息记作第五指示信息。该第五指示信息可能是上述用于指示上述CSI测量资源的频域占用带宽的信令,也可能是用于指示待上报的频域单元的位置及个数的信令,或者还可能是未来协议中新增的信令,本申请对此不作限定。
假设该频域向量的长度为N f,则频域向量可以是维度为N f×1的列向量,也可以是维度为1×N f的行向量。本申请对此不做限定。
9、空频矩阵与空频向量:同一传输层的不同频域单元上的预编码向量可以构建得到与该传输层对应的空频矩阵或空频向量。为方便说明,下文可将该空频矩阵或空频向量统称为空频信息。
为方便理解和说明,这里首先以发射天线的极化方向数为1为例来说明空频信息。若发射天线的极化方向数为1,则由一个传输层上不同频域单元上的预编码向量可以构建得到该极化方向上的空频信息。
以空频矩阵为例,在本申请实施例中,终端设备例如可以通过信道测量等方式确定各频域单元上待反馈的预编码矩阵,对该各频域单元上待反馈的预编码矩阵进行处理,可以得到与每个传输层对应的空频矩阵。例如,将同一个传输层上各频域单元上待反馈的预编码向量组合可以得到空频矩阵。该空频矩阵可以称为待反馈的空频矩阵。
终端设备确定空频向量的方式与确定空频矩阵的方式相同。将同一传输层上各频域单元的预编码向量中的元素(也就对应于空频矩阵中的每个列向量中的元素)按照顺序依次连接所得到的向量即为空频向量。该空频向量可以称为待反馈的空频向量。
具体地,空频矩阵可以是维度为N s×N f的矩阵。即,该空频矩阵可以包括N f个长度为N s的列向量。该N f个列向量可以与N f个频域单元对应,每个列向量可用于确定所对应的频域单元的预编码向量。
空频矩阵例如可以记作H,
Figure PCTCN2019110939-appb-000006
其中,w 0
Figure PCTCN2019110939-appb-000007
是与N f个频域单元对应的N f个列向量,各列向量的长度均可以为N s。该N f个列向量可分别用于确定N f个频域单元的预编码向量。
空频向量可以是维度为(N s×N f)×1的向量。也就是说,该空频向量可以包括一个长度为N s×N f的列向量或行向量。此情况下,由于向量也可以视为矩阵的一种表现形式,因此空频向量也可以称为,或者,替换为,空频矩阵。本申请实施例中仅为便于区分,将其称为空频向量。
空频向量可以是按照预定的规则连接预编码向量或组织预编码向量中的元素而得到的向量。
在一种可能的设计中,空频向量可以记作h,
Figure PCTCN2019110939-appb-000008
式中各向量所表示的含义在上文中已经做了详细说明,为了简洁,这里不再赘述。
应理解,上文示例的空频向量仅为示例。空频向量并不一定局限于一预编码向量为基本单位依次首尾相接,也可以按照固定的规则排列。例如,可以细化到预编码向量中的元素,如每个向量的第一个元素构成一个新的向量,等等。
还应理解,上文仅为便于理解说明了极化方向数为1时空频信息的几种可能的形式,如,维度为N s×N f的空频矩阵或长度为N s×N f的空频向量,但这不应对本申请构成任何限定。当极化方向数大于1时,空频信息仍然可以通过上文所列举的几种形式来表示,只是极化方向数的不同,空频矩阵和空频向量的维度也可能不同。例如,当极化方向数为2时,空频信息可以表现为维度为2N s×N f的空频矩阵,也可以表现为长度为2N s×N f的空频向量。其中,2表示两个极化方向。
10、空频单元:通过一个波束向量和一个频域向量可唯一地确定一个空频基本单位。在本申请实施例中,可将该空频基本单位称为空频单元。其中,该波束向量可以取自预先定义的波束向量集合,该频域向量可以取自预先定义的频域向量集合。空频单元也可以取 自预先定义的空频单元集合。该空频单元集合中的每个空频单元均可以是由一个波束向量和一个频域向量唯一确定。因此,上述波束向量集合、频域向量集合和空频单元集合可以相互转换。
在本申请实施例中,空频单元例如可以是空频分量矩阵、空频分量向量或者空频向量对。
其中,空频分量矩阵可以是维度为N s×N f的矩阵。例如,当波束向量和频域向量均为列向量时,一个空频分量矩阵可以是一个波束向量和一个频域向量的共轭转置的乘积;当波束向量为列向量、频域向量为行向量时,一个空频分量矩阵也可以是一个波束向量和一个频域向量的乘积。上述空频矩阵可以近似为一个或多个空频分量矩阵的加权和。终端设备可以通过一个或多个空频分量矩阵的加权和来指示上述待反馈的空频矩阵。
空频分量向量可以是长度为N s×N f的向量。例如,当波束向量和频域向量均为列向量时,一个空频分量向量可以是一个波束向量和一个频域向量的克罗内克积,也可以是一个频域向量与一个波束向量的克罗内克积。上述空频向量可以近似为一个或多个空频分量向量的加权和。终端设备可以通过一个或多个空频分量向量的加权和来指示上述待反馈的空频向量。此外,由于向量也可以视为矩阵的一种表现形式,因此空频分量向量也可以称为,或者,替换为,空频分量矩阵。本申请实施例中仅为便于区分,将其称为空频分量向量。
若空频分量向量由频域向量和波束向量的克罗内克积确定,由多个空频分量向量的加权和所确定的空频向量可以是由N f个长度为N s的列向量依次连接而成。该N f个列向量可以与N f个频域单元对应,每个列向量可用于确定所对应的频域单元的预编码向量。
若空频分量向量由波束向量和频域向量的克罗内克积确定,由多个空频分量向量的加权和所确定的空频向量可以是由N s个长度为N f的列向量依次连接而成。每个列向量中的N f个元素可以与N f个频域单元对应。该N s个列向量的每个列向量中的第n f个元素依次连接可以得到长度为N s的向量,该向量可用于确定第n f个频域单元的预编码向量。其中,0≤n f≤N f-1,且n f为整数。
上述空频分量矩阵和空频分量向量可以是由一个波束向量和一个频域向量的运算得到。若不对该波束向量和频域向量做运算,也可以通过一个波束向量和一个频域向量确定一个空频向量对,该空频向量对可以包括一个波束向量和一个频域向量。可以理解,上述空频分量矩阵、空频分量向量以及空频分量对之间可以相互转换,并且均可以由同一个波束向量和同一个频域向量确定,可以认为这三者是等价的。
在本申请实施例中,空频单元可以对应一个极化方向。并且,该基本单元的加权和可以拼接出多个极化方向的空频矩阵或空频向量。因此,对于每个极化方向上的空频信息,可以分别由多个空频单元加权求和来表示。或者说,每个极化方向上的空频信息可以近似表示为多个空频单元的加权和。用于不同极化方向的多个空频单元可以是相同的,或者说,多个极化方向可以共用相同的多个空频单元。换句话说,同一传输层上多个极化方向的空频矩阵或空频向量可以由同一组波束向量和同一组频域向量来构建。但不同极化方向上各空频分量矩阵或空频分量向量的加权系数可能不同。
应理解,空频矩阵和空频向量的具体形式并不限于上文所列举,为了简洁,这里不再一一举例说明。在下文示出的实施例中,分别结合空频分量矩阵为波束向量和频域向量的 共轭转置的乘积以及空频分量向量为频域向量和波束向量的克罗内克积这两种形式,详细说明了终端设备指示预编码向量和网络设备确定预编码向量的具体过程。但这不应对本申请构成任何限定。本领域的技术人员基于相同的构思,可以对上述空频分量矩阵或空频分量向量进行等价的变形或替换,这些等价的变形和替换均应落入本申请的保护范围内。
11、波束向量集合、频域向量集合和空频单元集合
波束向量集合可以包括多个波束向量。每个波束向量的长度可以为N s,N s可以表示每个极化方向上的天线端口数。
在一种可能的设计中,该波束向量集合可以包括N s个波束向量,该N s个波束向量之间可以两两相互正交。该波束向量集合中的每个波束向量可以取自二维(2dimension,2D)-DFT矩阵。其中,2D可以表示两个不同的方向,如,水平方向和垂直方向。
该N s个波束向量例如可以记作
Figure PCTCN2019110939-appb-000009
该N s个波束向量可以构建矩阵B s
Figure PCTCN2019110939-appb-000010
在另一种可能的设计中,该波束向量集合可以通过过采样因子O s扩展为O s×N s个波束向量。此情况下,该波束向量集合可以包括O s个子集,每个子集可以包括N s个波束向量。每个子集中的N s个波束向量之间可以两两相互正交。该波束向量集合中的每个波束向量可以取自过采样2D-DFT矩阵。其中,过采样因子O s为正整数。具体地,O s=O 1×O 2,O 1可以是水平方向的过采样因子,O 2可以是垂直方向的过采样因子。O 1≥1,O 2≥1,O 1、O 2不同时为1,且均为整数。
该波束向量集合中的第o s(0≤o s≤O s-1且o s为整数)个子集中的N s个波束向量例如可以分别记作
Figure PCTCN2019110939-appb-000011
则基于该第o s个子集中的N s个波束向量可以构造矩阵
Figure PCTCN2019110939-appb-000012
频域向量集合可以包括多个频域向量。每个频域向量的长度可以记作N f。N f的含义在上文中已经做了详细说明,为了简洁,这里不再赘述。
在一种可能的设计中,该频域向量集合可以包括N f个频域向量。该N f个频域向量之间可以两两相互正交。该频域向量集合中的每个频域向量可以取自DFT矩阵。
该N f个频域向量例如可以记作
Figure PCTCN2019110939-appb-000013
该N f个频域向量可以构建矩阵B f
Figure PCTCN2019110939-appb-000014
在另一种可能的设计中,该频域向量集合可以通过过采样因子O f扩展为O f×N f个频域向量。此情况下,该频域向量集合可以包括O f个子集,每个子集可以包括N f个频域向量。每个子集中的N f个频域向量之间可以两两相互正交。该频域向量集合中的每个频域向量可以取自过采样DFT矩阵。其中,过采样因子O f为正整数。
频域向量集合中的第o f(0≤o f≤O f-1且o s为整数)个子集中的N f个频域向量例如可以分别记作
Figure PCTCN2019110939-appb-000015
则基于该第o f个子集中的N s个波束向量可以构造矩阵
Figure PCTCN2019110939-appb-000016
空频单元集合例如可以包括空频分量矩阵集合或空频分量向量集合。
其中,空频分量矩阵集合可以包括多个空频分量矩阵。每个空频分量矩阵可以是维度为N s×N f的矩阵。
在一种可能的设计中,该空频分量矩阵集合可以包括N s×N f个空频分量矩阵。该空频分量矩阵集合中的每个空频分量矩阵可以由波束向量集合中的一个波束向量和频域向量集合中的一个频域向量唯一确定。因此,波束向量集合和频域向量集合可以与空频分量矩阵之间相互转换。
具体地,假设波束向量集合中的N s个波束向量分别记作:
Figure PCTCN2019110939-appb-000017
频域向量集合中的N f个频域向量分别记作:
Figure PCTCN2019110939-appb-000018
则该波束向量集合和频域向量集合可以构建空频分量矩阵集合,该空频分量矩阵集合可以包括N s×N f个空频分量矩阵。
该N s×N f个空频分量矩阵的排列顺序可以预先定义。
例如,可以先在第0个至第N f-1个的范围内遍历各频域向量,再在第0个至第N s-1个的范围内遍历各波束向量,得到N s×N f个空频分量矩阵。
若每个空频分量矩阵为一个波束向量与一个频域向量的共轭转置的乘积,则该空频分量矩阵集合中各空频分量矩阵的排列顺序可以表示如下:
Figure PCTCN2019110939-appb-000019
Figure PCTCN2019110939-appb-000020
若每个空频分量矩阵为一个频域向量与一个波束向量的克罗内克积,则该空频分量矩阵集合中各空频分量矩阵的排列顺序可以表示如下:
Figure PCTCN2019110939-appb-000021
Figure PCTCN2019110939-appb-000022
可以先在第0个至第N s-1个的范围内遍历各波束向量,再在第0个至第N f-1个的范围内遍历各频域向量,得到N s×N f个空频分量矩阵。
若每个空频分量矩阵为一个波束向量与一个频域向量的共轭转置的乘积,则该空频分量矩阵集合中各空频分量矩阵的排列顺序可以表示如下:
Figure PCTCN2019110939-appb-000023
Figure PCTCN2019110939-appb-000024
由此可以看到,在确定了空频分量矩阵集合和波束向量矩阵的情况下,也可以推出频域向量集合,或者,在确定了空频分量矩阵集合和频域向量集合的情况下,也可以推出波束向量集合。
在另一种可能的设计中,该空频分量矩阵集合可以包括O c×N s×N f个空频分量矩阵。即,该空频分量矩阵集合可以通过过采样因子O c扩展为O c个子集。其中,O c可以为O s,也可以为O f,还可以为O s×O f。O c的取值可以与用于构建该空频分量矩阵的波束向量集合和频域向量集合是否过采样有关。例如,若波束向量集合未做过采样,频域向量集合做了过采样,则该空频分量矩阵集合的过采样因子可以为O f;若频域向量集合做了过采样,波束向量集合未做过采样,则该空频分量矩阵集合的过采样因子可以为O s;若波束向量集合和频域向量集合均做了过采样,则该空频分量向量集合的过采样因子可以为O s×O f
该空频分量矩阵集合中的每个空频分量矩阵可以由波束向量集合中的一个波束向量和频域向量集合中的一个频域向量唯一确定。因此,波束向量集合和频域向量集合可以与 空频分量矩阵之间相互转换。
上文中已经结合未考虑过采样率的情况,对波束向量集合和频域向量集合与空频分量矩阵集合之间的转换关系在上文中已经做了详细说明。在考虑过采样率的情况下,波束向量集合和频域向量集合与空频分量矩阵集合之间的转换关系是相似的,为了简洁,这里不再赘述。
与空频分量矩阵相似地,空频分量向量集合可以包括多个空频分量向量。每个空频分量向量可以是长度为N s×N f的向量。
在一种可能的设计中,该空频分量向量集合可以包括N s×N f个空频分量向量;在另一种可能的设计中,该空频分量向量集合通过过采样因子O c扩展为O c×N s×N f个空频分量向量。
若每个空频分量向量为一个频域向量与一个波束向量的克罗内克积,则该空频分量矩阵集合中各空频分量矩阵的排列顺序可以表示如下:
Figure PCTCN2019110939-appb-000025
Figure PCTCN2019110939-appb-000026
由于空频分量向量集合中的每个空频分量向量可以由波束向量集合中的一个波束向量和频域向量集合中的一个频域向量唯一确定。因此,波束向量集合和频域向量集合可以与空频分量矩阵之间相互转换。
由于上文中已经对空频分量矩阵以及与波束向量集合、频域向量集合之间的关系做了详细说明,为了简洁,这里省略对空频分量向量集合的详细说明。
12、加权系数、幅度和相位:加权系数用于表示各空频单元在用于加权求和时的权重。例如,上文所述的空频矩阵可以近似为多个空频分量矩阵的加权和,该加权系数可以表示该多个空频分量矩阵中每个空频分量矩阵的权重。
每个加权系数可以包括幅度和相位。例如,加权系数ae 中,a为幅度,θ为相位。
在与多个空频单元对应的多个加权系数中,有些加权系数的幅度(或者说,模)可能为零,或者接近零。在对这些幅值为零或近似为零的加权系数的幅度进行量化时,其量化值可以是零。通过量化值零来量化幅度的加权系数可以称为幅度为零的加权系数。相对应地,有些加权系数的幅度较大。在对这些幅度较大的加权系数的幅度进行量化时,其量化值不为零,通过非零的量化值来量化幅度的加权系数可以称为幅度非零的加权系数。换句话说,该多个加权系数由一个或多个幅度非零的加权系数系数以及一个或多个幅度为零的加权系数组成。
应理解,加权系数可以通过量化值指示,也可以通过量化值的索引指示,或者也可以通过非量化值指示,本申请对于加权系数的指示方式不作限定,只要让对端知道加权系数即可。下文中,为方便说明,将用于指示加权系数的信息称为加权系数的量化信息。该量化信息例如可以是量化值、索引或者其他任何可用于指示加权系数的信息。
13、归一化、归一化系数和归一化空频单元:在量化加权系数之前,可以对各加权系数进行归一化处理。作为归一化基准的加权系数可以是多个加权系数中幅度(或者说,模长)最大的加权系数。作为归一化基准的加权系数可以称为归一化系数。
在对加权系数进行量化前,可以将归一化系数归为1。例如,可以将归一化系数的幅度归为1,相位归为0或2π,并可将其他加权系数表示为相对于归一化处理之前归一化系 数的相对值。此后,可以对除归一化系数之外的其他加权系数进行量化。换句话说,加权系数的幅度的量化值可以与该加权系数的相位相对于归一化处理之前归一化系数在相位相对值相同或相近。加权系数的相位的量化值可以与该加权系数的相位相对于归一化处理之前归一化系数的相位的相对值相同或相近。
对于幅度而言,其他加权系数的取值范围可以是0至1;对于相位而言,其他加权系数的取值范围可以是0至2π,或者,-π至π。与归一化系数对应的向量可以称为归一化向量。也就是说,归一化向量的加权系数为1。可以理解的是,这里的取值或取值范围可以是十进制下的取值或取值范围。
一个归一化系数可对应一个空频单元,与归一化系数对应的空频单元称为归一化空频单元。归一化空频单元例如可以是归一化空频分量矩阵、归一化空频分量向量或归一化空频向量对等。本申请对此不作限定。归一化系数可以是所对应的归一化空频单元的加权系数。
在本申请实施例中,归一化空频单元的指示方式可以有很多种。例如可以参考NR协议TS38.214 R15中type II码本中定义的用于指示归一化向量的方式来指示。为了简洁,本申请中不作详细说明。
在下文示出的实施例中,归一化可以是以一个极化方向为单位来确定最大加权系数,也可以是以一个传输层(例如一个传输层上的一个或多个极化方向)为单位来确定最大加权系数,还可以是以所有传输层为单位来确定最大加权系数。因此,可以在每个极化方向、每个传输层或所有传输层等不同的范围内进行归一化。应理解,归一化的单位并不仅限于上文所列举,本申请对此不作限定。
14、公共(common)信息和专有(specific)信息:在下文示出的方法200中,以一个或多个传输层中的一个传输层、一个或多个极化方向中的一个极化方向为例,详细说明了终端设备生成第一指示信息的具体过程。事实上,终端设备可能基于多个传输层、多个极化方向指示各频域单元的预编码向量。
在本申请实施例中,将用于指示一个传输层上一个极化方向上的各频域单元的预编码向量的指示信息称为第一指示信息。对于一个传输层,终端设备可以基于一个或多个极化方向,生成一个或多个第一指示信息。对于多个第一指示信息而言,它们之间可能存在公共信息和专有信息。多个第一指示信息的公共信息可以仅生成并发送一次,例如,可以仅在多个第一指示信息中的某一个第一指示信息中携带。而专有信息可以分别在与各个极化方向对应的第一指示信息中携带。
与一个传输层对应的一个或多个第一指示信息可以称为与传输层对应的指示信息。例如,与第一传输层对应,该指示信息可以为与第一传输层对应的指示信息;与第二传输除对应,该指示信息可以为与第二传输层对应的指示信息;以此类推,这里不再一一列举。
与多个传输层对应的多个指示信息之间也可能存在公共信息和专有信息。与多个传输层对应的多个指示信息的公共信息可以仅生成并发送一次,例如,可以仅在与某一个传输层对应的指示信息中携带。而专有信息可以分别在与各个传输层对应的指示信息中携带。
如前所述,在下行信道测量中,网络设备根据PMI确定出的预编码矩阵与终端设备所确定的预编码矩阵的近似度越高,其确定出的用于数据传输的预编码矩阵也就越能够与信道状态相适配,因此也就能够提高信号的接收质量。
为了提高频谱资源的利用率,提高通信系统的数据传输能力,网络设备可以通过多个传输层向终端设备传输数据。然而,当传输层数增加时,终端设备基于每个传输层进行反馈所带来的开销也会成倍增加。而频域单元(如子带)数量越多,反馈开销增加的幅度也会越大。因此,希望提供一种方法,能够降低反馈开销。
有鉴于此,本申请提供一种指示和确定预编码向量的方法,以期降低PMI的反馈开销。
为了便于理解本申请实施例,作出以下几点说明。
第一,为方便理解和说明,首先对本申请中涉及到的主要参数分别说明如下:
M:加权系数的个数,或者,用作加权求和的空频分量矩阵(或空频分量向量)的个数;
S:幅度非零的加权系数的个数,S为正整数;
T:归一化系数的个数,T为正整数,T<S;
R:幅度为零的加权系数的个数,M=S+R;
L:从波束向量集合中选择的波束向量的个数;
K:从频域向量集合中选择的频域向量的个数;
x:一个加权系数的幅度的量化比特数;
y:一个加权系数的相位的量化比特数。
第二,在本实施例中,为便于描述,在涉及编号时,可以从0开始连续编号。例如,R个传输层可以包括第0个传输层至第R-1个传输层,L个波束向量可以包括第0个波束向量至第L-1个波束向量,以此类推,这里不再一一举例说明。当然,具体实现时不限于此,例如,也可以从1开始连续编号。应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
第三,在本申请实施例中,多处涉及矩阵和向量的变换。为便于理解,这里做统一说明。上角标T表示转置,如A T表示矩阵(或向量)A的转置;上角标*表示共轭转置,如,A *表示矩阵(或向量)A的共轭转置。后文中为了简洁,省略对相同或相似情况的说明。
第四,在下文示出的实施例中,以波束向量和频域向量均为列向量为例来说明本申请提供的实施例,但这不应对本申请构成任何限定。基于相同的构思,本领域的技术人员还可以想到其他更多可能的表现方式。
第五,本申请实施例涉及矩阵的克罗内克(Kronecker)积运算。在本申请实施例中,克罗内克积运算可用
Figure PCTCN2019110939-appb-000027
表示。例如,矩阵A和B的克罗内克积可表示为
Figure PCTCN2019110939-appb-000028
克罗内克积是一个矩阵中的所有元素分别乘以另一矩阵组成的分块矩阵。例如,维度为k×l维的矩阵A和p×q维的矩阵B的克罗内克尔积乘积得到kp×ql维的矩阵,具体如下:
Figure PCTCN2019110939-appb-000029
其中,
Figure PCTCN2019110939-appb-000030
有关克罗内克积的具体定义可参考现有技术。为了简洁,本文不再赘述。
第六,本申请实施例中多处涉及向量间的投影。例如,将向量a投影至向量b,可以理解为求向量a与向量b的内积。
第七,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示。例如,当描述某一指示信息用于指示信息I时,可以包括该指示信息直接指示I或间接指示I,而并不代表该指示信息中一定携带有I。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如行向量可以表现为列向量,一个矩阵可以通过该矩阵的转置矩阵来表示,一个矩阵也可以表现为向量或者数组的形式,该向量或者数组可以由该矩阵的各个行向量或者列向量相互连接而成,两个向量的克罗内克尔积也可以通过一个向量与另一个向量的转置向量的乘积等形式来表现等。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令,例如RRC信令、MAC层信令,例如MAC-CE信令和物理层信令,例如下行控制信息(downlink control information,DCI)中的一种或者至少两种的组合。
第八,本申请对很多特性(例如克罗内克积、PMI、频域单元、波束、波束向量以及波束向量的加权系数等)所列出的定义仅用于以举例方式来解释该特性的功能,其详细内容可以参考现有技术。
第九,在下文示出的实施例中第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息、不同的传输层等。
第十,在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设 备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第十一,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第十二,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第十三,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
下面将结合附图详细说明本申请实施例提供的指示和确定预编码向量的方法。
应理解,本申请实施例提供的方法可以应用于通过多天线技术通信的系统,例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备。网络设备和终端设备之间可通过多天线技术通信。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的指示和确定预编码向量的方法。
图2是从设备交互的角度示出的本申请实施例提供的指示和确定预编码向量的方法200的示意性流程图。如图所示,该方法200可以包括步骤210至步骤230。下面详细说明方法200中的各步骤。
为便于理解,首先详细说明终端设备基于一个或多个传输层中的一个传输层、该传输上的一个或多个极化方向中的一个极化方向,指示预编码向量和网络设备确定预编码向量的具体过程。应理解,本申请对于传输层数以及发射天线的极化方向数并不做限定。下文所示例说明的一个传输层可以为一个或多个传输层中的任意一个传输层,一个极化方向可以为一个或多个极化方向中的任意一个极化方向。
在步骤210中,终端设备生成CSI报告,该CSI报告用于指示M个空频单元以及该M个空频单元中部分或全部空频单元的加权系数。
其中,该M个空频单元以及该M个空频单元中部分或全部空频单元的加权系数可用于确定各频域单元的预编码向量。应理解,该M个空频单元以及该M个空频单元中部分 或全部空频单元的加权系数可用于确定一个传输层的一个极化方向上的预编码向量。为便于区分和说明,本实施例中将用于指示上述M个空频单元以及该M个空频单元中部分或全部空频单元的加权系数的信息称为第一指示信息。当极化方向数为多个时,该CSI报告可以包括与多个极化方向对应的多个第一指示信息。当传输层数为多个时,该CSI报告可以包括与多个传输层对应的指示信息。其中,与每个传输层对应的指示信息可以包括与一个或多个极化方向对应的一个或多个第一指示信息。
应理解,该第一指示信息可以是PMI,也可以是PMI中的部分信元,本申请对此不作限定。应理解,PMI仅为一种用于指示预编码矩阵的信息的名称,而不应对本申请构成任何限定。本申请并不排除在未来协议中定义其他可用于实现其相同或相似功能的名称来代替PMI的可能。下文中为方便说明,将本申请中涉及的可用于指示预编码向量的信息均统称为PMI。
为方便理解,首先详细说明终端设备确定第一指示信息的具体过程。
具体地,终端设备可以预先确定各频域单元的预编码矩阵,进而确定同一传输层上各频域单元的预编码向量。在本实施例中,终端设备可以根据预先确定的、待反馈的、各频域单元的预编码向量,确定可用于指示各频域单元的预编码向量的空频单元和加权系数,以通过第一指示信息指示给网络设备。其中,终端设备确定各频域单元的预编码矩阵以及同一传输层上各频域单元的预编码向量的具体方法可以参考现有技术,并且上文中也已经列举了几种可能的具体方法,为了简洁,这里不再赘述。在本实施例中,终端设备可以基于多种可能的实现方式来指示各频域单元的预编码向量。在不同的实现方式中,预编码向量的指示信息有可能不同。终端设备可以基于不同的实现方式来确定预编码向量的指示信息,然后通过CSI将该预编码向量的指示信息发送给网络设备。
具体地,终端设备可以基于以下列举的任意一种实现方式来指示各频域单元的预编码向量:
实现方式一、终端设备指示被选择的L个波束向量、K个频域向量以及由该L个波束向量和K个频域向量确定的L×K个空频向量对中部分或全部空频向量对的加权系数;
实现方式二、终端设备指示被选择的M个空频分量矩阵以及与M个空频分量矩阵中部分或全部空频分量矩阵的加权系数;或,终端设备指示被选择的M个空频分量向量以及与M个空频分量向量中部分或全部空频分量向量的加权系数;或者,
实现方式三、终端设备指示被选择的L个波束向量、K个频域向量、由L个波束向量和K个频域向量确定的L×K个空频向量对中的M个空频向量对以及与M个空频向量对中部分或全部空频向量对的加权系数。
终端设备可以预先确定的该传输层上各个频域单元的预编码向量,确定与该传输层对应的空频信息(如,空频矩阵或空频向量)。该空频信息可以视为待反馈的空频信息。终端设备可以基于如上文所列举的三种实现方式,从预先保存的向量集合或矩阵集合中确定需要反馈的向量或矩阵以及所对应的加权系数。
应理解,这里仅为便于理解,引入空频信息来说明终端设备确定M个空频单元及部分或全部空频单元的加权系数的具体过程。该空频信息可能是终端设备在确定上述信息过程中的一个中间量。但这不应对本申请构成任何限定,终端设备在确定上述信息的过程中,也可能并未生成或确定该空频信息,而是根据各个频域单元的预编码向量直接确定M个 空频单元及部分或全部空频单元的加权系数。本申请对此不作限定。
终端设备预先保存的向量集合或矩阵集合例如可以是波束向量集合和频域向量集合,或者,空频分量矩阵集合,或者,空频分量矩阵集合和波束向量集合,或者,空频分量矩阵和频域集合等。
如前所述,波束向量集合和频域向量集合与空频单元集合之间可以相互转换。在确定了空频单元集合和波束向量集合的情况下,也可以推出频域向量集合,或者,在确定了空频单元集合和频域向量集合的情况下,也可以推出波束向量集合。因此,本申请对于终端设备预先保存的集合的具体形式并不做限定。
与此对应地,网络设备也可以预先保存波束向量集合和频域向量集合,或者,空频单元集合,或者,空频单元集合和波束向量集合,或者,空频单元矩阵和频域向量集合等。
并且,网络设备与终端设备预先保存的集合形式可以是相同的,也可以是不同的,本申请对此不作限定。
下面就结合上述几种可能的实现方式来详细说明终端设备确定预编码向量的指示信息的具体过程。
实现方式一、
终端设备可以根据波束向量集合、频域向量集合和待反馈的空频矩阵,确定较强的L个波束向量、较强的K个频域向量以及所对应的加权系数。
假设终端设备所确定的N f个频域单元的预编码向量分别记作
Figure PCTCN2019110939-appb-000031
该N f个频域单元的预编码向量可以构建空频矩阵H,
Figure PCTCN2019110939-appb-000032
终端设备可以进一步确定可用于构建该空频矩阵H的L个波束向量和K个频域向量。
其中,L和K的取值均可以由网络设备配置,也可以预先定义,或者还可以由终端设备确定后上报网络设备。本申请对此不作限定。
若L的取值由网络设备配置,则可选地,该方法还包括:终端设备接收第二指示信息,该第二指示信息用于指示L的取值。相应地,网络设备发送该第二指示信息。
可选地,该第二指示信息可以携带在高层信令中,如无线资源控制(radio resource control,RRC)消息等。
若L的取值由终端设备确定,则可选地,该方法还包括:终端设备发送第二指示信息,该第二指示信息用于指示L的取值。相应地,网络设备接收第二指示信息。
可选地,该第二指示信息可以携带在上行控制信息(uplink control information,UCI)中,如CSI等。
若K的取值由网络设备配置,则可选地,该方法还包括:终端设备接收第三指示信息,该第三指示信息用于指示K的取值。相应地,网络设备发送该第三指示信息。
可选地,该第三指示信息可以携带在高层信令中,如RRC消息等。
若K的取值由终端设备确定,则可选地,该方法还包括:终端设备发送第三指示信息,该第三指示信息用于指示K的取值。相应地,网络设备接收该第三指示信息。
可选地,该第三指示信息携带在UCI中,如CSI等。
应理解,上文列举的用于携带第二指示信息和第三指示信息的信令仅为示例,而不应对本申请构成任何限定。本申请对于携带第二指示信息和第三指示信息的具体信令不作限定。
还应理解,上述第二指示信息和第三指示信息可以携带在同一信令中,也可以携带在不同的信令中,本申请对此不作限定。
在实现方式一中,将L个波束向量中的每个波束向量和K个频域向量的每个频域向量两两组合,可以得到L×K个空频单元。例如,先在第0个至第L-1个的范围内遍历该L个波束向量,再在第0个至第K-1个的范围内遍历该K个频域向量,得到L×K个空频单元;又例如,现在第0个至第K-1个的范围内遍历该K个频域向量,再在第0个至第L-1个的范围内遍历该L个波束向量。本申请对此不作限定。
该L×K个空频单元可以是L×K个空频向量对,也可以是L×K个空频分量矩阵,还可以是L×K个空频分量向量。即,在实现方式一中,M=L×K。
下面详细说明确定该L个波束向量、K个频域向量及加权系数的具体过程。
若波束向量集合和频域向量集合均不考虑过采样率,则波束向量集合可以包括如前所述的N s个波束向量,所构建的矩阵为B s;频域向量集合可以包括如前所述的N f个频域向量,所构建的矩阵为B f。终端设备可以通过W=B s *HB f来确定矩阵W。该矩阵W的维度可以是N s×N f。其中,矩阵W中的N s个行可以与波束向量集合(或者由波束向量集合构建的矩阵B s)中的N s个波束向量对应;该矩阵W中的N f个列可以与频域向量集合(或者由频域向量集合构建的矩阵B f)中的N f个频域向量对应。该矩阵W中的每个元素可对应于N s个波束向量中的一个波束向量和N f个频域向量中的一个频域向量,或者说,该矩阵W中的每个元素可对应于由N s个波束向量中的一个波束向量和N f个频域向量中的一个频域向量所确定的一个空频单元。
终端设备可以对该矩阵W中的N s个行分别取模,根据各行的模长大小,确定模较大的L个行。该L个行在矩阵W中的行序号可以为较强的L个波束向量在波束向量集合中的序号(或者说编号)或在B s中的列序号。终端设备还可以对该矩阵W中的N f个列分别取模,根据各列的模长大小,确定模较大的K个列。该K个列在矩阵W中的列序号可以为较强的K个频域向量在频域向量集合的序号或在B f中的列序号。
此外,该矩阵W中模较大的L个行中的元素和模较大的K个列中的元素可以构建得到维度为L×K的矩阵。该矩阵可以称为加权系数矩阵W c。该加权系数矩阵W c例如可以如下所示:
Figure PCTCN2019110939-appb-000033
可以看到,该加权系数矩阵可以包括L×K个元素,每个元素可对应于L个波束向量中的一个波束向量和K个频域向量中的一个频域向量,或者说,每个元素可对应于L个波束向量中的一个波束向量和K个频域向量中的一个频域向量所确定的一个空频单元。具体地,加权系数c l,k可对应于L个波束向量中的第l个波束向量和K个频域向量中的第k个频域向量。并且,每个加权系数可以包括幅度和相位。如,加权系数c l,k包括幅度a l,k和相位
Figure PCTCN2019110939-appb-000034
其中,0≤l≤L-1,0≤k≤K-1,且l和k均为整数。
需要说明的是,终端设备可以先确定与L×K个空频单元对应的L×K个加权系数。由于在上文中已经说明,某些加权系数在量化后可能为幅度为零,此时可以对该幅度为零 的加权系数不作上报,或者对该幅度为零的加权系数的相位不作上报。因此,终端设备在第一指示信息中可以指示该L×K个空频单元中部分或全部空频单元的加权系数。后文中,为了简洁,省略对相同或相似情况的说明。
应理解,上文所述的通过矩阵运算确定L个波束向量和K个频域向量的方法仅为便于理解而示出的一种可能的实现方式,并不代表终端设备在确定L个波束向量和K个频域向量的过程中一定生成了该矩阵W。例如,该矩阵W也可以是由各行(或各列)的元素依次连接而得到的有序数组,或者,也可以是将该矩阵W中的各元素按照预先定义的顺序依次排列得到的有序数组。
还应理解,上文所描述的终端设备从波束向量集合中确定较强的L个波束向量、从频域向量集合中确定较强的K个频域向量的具体方法仅为便于理解而示例,不应对本申请构成任何限定。例如,终端设备还可以通过将各频域单元的预编码向量分别投影至波束向量集合中的各个波束向量的方式来确定较强的L个波束向量,并可以通过将该L个波束向量的加权系数投影至频域向量集合中的各个频域向量的方式来确定较强的K个频域向量。又例如,终端设备确定L个波束向量的方法可以参考NR协议TS38.214 R15中定义的type II码本反馈方式。通过同一个层、一个极化方向上各个频域单元的预编码向量的至少一个组成元素(例如但不限于构成该预编码向量的波束向量的加权系数等)进行比较,可以确定K个频域向量。终端设备从波束向量集合中确定较强的L个波束向量、从频域向量集合中确定较强的K个频域向量的具体方法可以参考现有技术,为了简洁,这里不做详细说明。
还应理解,上文所述的通过矩阵运算所得的矩阵W确定加权系数的方法仅为便于理解而示出的一种可能的实现方式,并不代表终端设备在确定加权系数的过程中一定生成了上述加权系数矩阵W c和矩阵W。如上所述,该矩阵W有可能表现为多个元素组成的数组集合,该加权系数矩阵W c也有可能表现为多个元素组成的数组集合,该数组集合中的各元素例如可以是该加权系数矩阵中的各行(或各列)的元素依次连接而成,或者,也可以是按照预先预定的顺序依次排列而成。
若考虑过采样率,则波束向量集合和频域向量集合所包含的向量可能存在如下三种可能的情况:
情况1、波束向量集合通过过采样因子O s扩展为O s×N s个波束向量,频域向量集合通过过采样因子O f扩展为O f×N f个频域向量;
情况2、波束向量集合通过过采样因子O s扩展为O s×N s个波束向量,频域向量集合包括N f个频域向量;以及
情况3、波束向量集合包括N s个波束向量,频域向量集合通过过采样因子O f扩展为O f×N f个频域向量。
对于上述三种可能的情况,终端设备处理的方式可以是相同的。下面就以情况1为例详细说明终端设备确定L个波束向量、K个频域向量以及与L×K个空频单元对应的L×K个加权系数的加权系数的具体过程。
若波束向量集合通过过采样因子O s扩展为O s×N s个波束向量,频域向量集合通过过采样因子O f扩展为O f×N f个频域向量,则波束向量集合可以包括如前所述的O s个子集,基于第o s个子集所构建的矩阵为
Figure PCTCN2019110939-appb-000035
频域向量集合可以包括如前所述的O f个子集,基于第o f个子集所构建的矩阵为
Figure PCTCN2019110939-appb-000036
终端设备可以通过
Figure PCTCN2019110939-appb-000037
来确定矩阵
Figure PCTCN2019110939-appb-000038
该矩阵
Figure PCTCN2019110939-appb-000039
与第o s个子集、第o f个子集对应。该矩阵
Figure PCTCN2019110939-appb-000040
的维度可以是N s×N f。其中,矩阵
Figure PCTCN2019110939-appb-000041
中的N s个行可以与波束向量集合中的第o s个子集(或者由第o s个子集构建的矩阵
Figure PCTCN2019110939-appb-000042
)中的N s个波束向量对应;该矩阵
Figure PCTCN2019110939-appb-000043
中的N f个列可以与频域向量集合中的第o f个子集(或者由第o f个子集构建的矩阵
Figure PCTCN2019110939-appb-000044
)中的N f个频域向量对应。该矩阵
Figure PCTCN2019110939-appb-000045
中的每个元素可对应于第o s个子集中的N s个波束向量中的一个波束向量和第o f个子集中的N f个频域向量中的一个频域向量,或者说,该矩阵中的每个元素可对应于由一个波束向量和一个频域向量确定的空频单元。
终端设备可以从该O s×O f个矩阵中的某一个矩阵来确定较强的L个波束向量、较强的K个频域向量以及所对应的加权系数。也就是说,终端设备可以根据O s个子集中的一个和O f个子集中的一个来确定较强的L个波束向量、较强的K个频域向量以及所对应的加权系数。具体选择哪个子集来确定上述较强的L个波束向量、较强的K个频域向量以及所对应的加权系数可以是预先定义的,本申请对此不作限定。
终端设备也可以根据该O s×O f个矩阵来确定较强的L个波束向量、较强的K个频域向量以及所对应的加权系数。例如,可以根据模长之和,从O s×O f个矩阵中选择一个模长之和最大的矩阵来确定L个波束向量、K个频域向量以及所对应的加权系数。具体地,可以对该O s×O f个矩阵中每个矩阵中较强的L个行的模长求和,根据模长之和最大的矩阵确定的L个波束向量、K个频域向量以及对应的加权系数;或者,也可以对对该O s×O f个矩阵中每个矩阵中较强的K个列的模长求和,根据模长之和最大的矩阵确定的L个波束向量和K个频域向量以及对应的加权系数。
终端设备根据选择的矩阵确定加权系数的具体方法与未考虑过采样率的具体方法可以是相同的,为了简洁,这里不再赘述。
应理解,上文所述的通过矩阵运算确定L个波束向量和K个频域向量的方法仅为便于理解而示出的一种可能的实现方式,并不代表终端设备在确定L个波束向量和K个频域向量的过程中一定生成了上述矩阵
Figure PCTCN2019110939-appb-000046
例如,该矩阵
Figure PCTCN2019110939-appb-000047
也可以是由各行(或各列)的元素依次连接而得到的有序数组,或者,也可以是将该矩阵
Figure PCTCN2019110939-appb-000048
中的各元素按照预先定义的顺序依次排列得到的有序数组。
还应理解,在考虑过采样率的情况下从波束向量集合中确定较强的L个波束向量、从频域向量集合中确定较强的K个频域向量的具体方法并不仅限于上文所列举。其具体实现方式可参考现有技术,如NR协议TS38.214 R15中定义的type II码本反馈方式。为了简洁,这里不再一一列举。
基于上文描述,终端设备可以确定L个波束向量、K个频域向量和L×K个加权系数。在这种实现方式中,预编码向量的指示信息可以包括该L个波束向量、K个频域向量以及与L×K个空频单元对应的L×K个加权系数。
应理解,上文所描述的用于确定L个波束向量和K个频域向量的方法仅为示例,而不应对本申请构成任何限定。
例如,在一种可能的设计中,终端设备可以先选择L个波束向量,然后对每个波束向量分别选择K个频域向量,并可以进一步确定与每个波束向量及其所对应的每个频域向量对应的加权系数,即,共L×K个加权系数。
此情况下,该第一指示信息具体用于指示L个波束向量中的每个波束向量和每个波束 向量对应的频域向量。该可能的设计可以应用于被选择的L个波束向量中至少有两个波束向量对应的频域向量不同的场景中,尤其可以应用于被选择的L个波束向量中至少有两个波束向量对应的频域向量不同,且被选择的波束向量较少,或者说,L值较小(即空域稀疏性较好)的场景中。可选地,该第一指示信息还用于指示每个波束向量对应的频域向量的个数。
在另一种可能的设计中,终端设备也可以先选择K个频域向量,然后对每个频域向量分别选择L个波束向量,并可以进一步确定与每个频域向量及其所对应的每个波束向量对应的加权系数,即,共L×K个加权系数。
此情况下,该第一指示信息具体用于指示K个频域向量中的每个频域向量和每个频域向量对应的波束向量。该可能的设计可以应用于被选择的K个频域向量中至少有两个频域向量对应的波束向量不同的场景中,尤其可以应用于被选择的K个频域向量中至少有两个频域向量对应的波束向量不同,且被选择的频域向量较少,或者说,K值较小(即频域稀疏性较好)场景中。可选地,该第一指示信息还用于指示每个频域向量对应的波束向量的个数。
还应理解,该L个波束向量和K个频域向量可用于确定L×K(即为M)个空频分量矩阵或空频分量向量,因此,也可以通过M个空频分量矩阵或M个空频分量向量来指示。在实现方式一中,该M个空频分量矩阵(或空频分量向量)在空频分量矩阵集合(或空频分量向量集合)中的位置可对应于用于确定该M个空频分量矩阵(或空频分量向量)的L个波束向量在波束向量集合中的位置和K个频域向量在频域向量集合中的位置。换句话说,在实现方式一中,用于指示L个波束向量和K个频域向量的信息和用于指示该M个空频分量矩阵或M个空频分量向量的信息可以认为是等价的。相对应地,与该L个波束向量和K个频域向量对应的L×K个加权系数也就是与该M个空频分量矩阵或M个空频分量向量对应的加权系数。
具体地,以空频分量矩阵为例,该M个空频分量矩阵可以是从预先定义的空频分量矩阵集合中选择的。该空频分量矩阵集合中的每个空频分量矩阵可以对应一个一维索引。与此相对应地,该M个空频分量矩阵对应于波束向量集合中的L个波束向量和K个频域向量可视为该M个空频分量矩阵的二维索引。
若该空频分量矩阵不考虑过采样率,则该空频分量矩阵集合可以包括N s×N f个空频分量矩阵。该N s×N f个空频分量矩阵可以是由波束向量集合中的N s个波束向量和频域向量集合中的N f个频域向量确定。
假设m为空频分量矩阵集合中的空频分量矩阵的索引,0≤m≤N s×N f-1且m为整数;n s为波束向量集合中的波束向量的索引,0≤n s≤N s-1,且n s为整数;n f为频域向量集合中的频域向量的索引,0≤n f≤N f-1,且n f为整数。则m与n s、n f的对应关系可以与空频分量矩阵集合中各空频分量矩阵的排列顺序相关。
例如,N f个频域向量中第0个频域向量至第N f-1个频域向量分别与N s个波束向量中的第0个波束向量所确定的N f个空频分量矩阵可对应一维索引0至N f-1;N f个频域向量中第0个频域向量至第N f-1个频域向量分别与N s个波束向量中的第1个波束向量所确定的N f个空频分量矩阵可对应一维索引N f至2N f-1;以此类推,N f个频域向量中第0个频域向量至第N f-1个频域向量分别与N s个波束向量中的第n s个波束向量所确定的N f 个空频分量矩阵可对应一维索引n s×N f至(n s+1)×N f-1。为方便区分和说明,可以将这种编号规则记作规则一。
因此,对于空频分量矩阵集合中的N s×N f个空频分量矩阵,假设第m个空频分量矩阵可通过波束向量集合中的第n s个波束向量和频域向量集合中的第n f个频域向量指示。其中,
Figure PCTCN2019110939-appb-000049
n s=mod(m,N f)。
Figure PCTCN2019110939-appb-000050
表示向下取整,mod()表示求模。
对于波束向量集合中的N s个波束向量和频域向量集合中的N s个波束向量,波束向量集合中的第n s个波束向量和频域向量集合中的第n f个频域向量所构成的空频分量矩阵可以通过第m个空频分量矩阵指示。其中,m=n f+n s×N f
又例如,N f个频域向量中第0个频域向量分别与N s个波束向量中的第0个波束向量至第N s-1个波束向量的克罗内克积所确定的N s个空频分量矩阵可对应一维索引0至N s-1;N f个频域向量中第1个频域向量分别与N s个波束向量中的第0个波束向量至第N s-1个波束向量的克罗内克积所确定的N s个空频分量矩阵可对应一维索引N s至2N s-1;以此类推,N f个频域向量中第n f个频域向量分别与N s个波束向量中的第0个波束向量至第N s-1个波束向量的克罗内克积所确定的N s个空频分量矩阵可对应一维索引n f×N s至(n f+1)×N s-1。为方便区分和说明,可以将这种编号规则记作规则二。
因此,对于空频分量矩阵集合中的N s×N f个空频分量矩阵,第m(0≤m≤N s×N f-1)个空频分量矩阵可通过波束向量集合中的第n s个波束向量和频域向量集合中的第n f个频域向量指示。其中,
Figure PCTCN2019110939-appb-000051
n f=mod(m,N s)。
对于波束向量集合中的N s个波束向量和频域向量集合中的N s个波束向量,波束向量集合中的n s个波束向量和频域向量集合中的第n f个频域向量所构成的空频分量矩阵可以通过第m个空频分量矩阵指示。其中,m=n s+n f×N s
应理解,上文列举的空频分量矩阵集合中各空频分量矩阵的两种编号方式仅为示例,不应对本申请构成任何限定。终端设备和网络设备可以根据预先约定的规则对空频分量矩阵集合中的各空频分量矩阵编号。网络设备和终端设备所定义的各空频分量矩阵与索引的对应关系是一致的。
实现方式二、
终端设备可以根据空频分量矩阵集合和预先确定的待反馈的空频矩阵,确定较强的M个空频分量矩阵以及所对应的加权系数;或者,终端设备也可以根据空频分量向量集合和预先确定的待反馈的空频向量,确定较强的M个空频分量向量以及所对应的加权系数。
其中,M的取值可以由网络设备配置,或者,也可以预先定义,如协议定义,或者,还可以由终端设备确定后上报给网络设备。
若该M的取值由网络设备配置,则可选地,该方法还包括:终端设备接收第四指示信息,该第四指示信息用于指示M的取值。相应地,网络设备发送该第四指示信息。
可选地,该第四指示信息可以携带在高层信令中,如RRC消息等。
若M的取值由终端设备确定,则可选地,该方法还包括:终端设备发送第四指示信息,该第四指示信息用于指示M的取值。相应地,网络设备接收该第四指示信息。
可选地,该第四指示信息携带在UCI中,如CSI等。
应理解,上文列举的用于携带第四指示信息的信令仅为示例,而不应对本申请构成任何限定。本申请对于携带第四指示信息的具体信令不作限定。
在实现方式二中,终端设备可以根据N f个频域单元的预编码向量确定空频向量h,
Figure PCTCN2019110939-appb-000052
或,空频矩阵H,
Figure PCTCN2019110939-appb-000053
如前所述,空频分量向量集合中的空频分量向量可以是长度为N s×N f的向量(情况a),空频分量矩阵集合中的空频分量矩阵可以是维度为N s×N f的矩阵(情况b)。下面将结合这两种不同的情况详细说明终端设备确定M个空频分量向量及其加权系数或M个空频分量矩阵及其加权系数的具体过程。
情况a、
终端设备可以根据预先确定的待反馈的空频向量和空频分量向量集合确定M个空频分量向量以及所对应的加权系数。
若空频分量向量集合不考虑过采样率,则空频分量向量集合可以包括如前所述的N s×N f个空频分量向量。该N s×N f个空频分量向量在空频分量向量集合中的排列顺序可以预先定义。例如,该N s×N f个空频分量向量可以是通过先在第0个至第N s-1个的范围内遍历各波束向量,再在第0个至第N f-1个的范围内遍历各频域向量得到;也可以是通过先在第0个至第N f-1个的范围内遍历各频域向量,再在第0个至第N s-1个的范围内遍历各波束向量得到。上文中结合这两种可能的排列方式已经做了详细说明,为了简洁,这里不再赘述。
终端设备可以将待反馈的空频向量投影至上述空频分量向量集合中的各个空频分量向量上,以得到N s×N f个投影值。终端设备可以根据该N s×N f个投影值的模长,确定较强的M个投影值。该较强的M个投影值中任意一个投影值的模长大于或等于剩余的N s×N f-M个投影值中任意一个投影值的模长。用于生成该较强的M个投影值的空频分量向量可以被确定为较强的M个空频分量向量。由此,终端设备可以确定被选择的M个空频分量向量在空频分量向量集合中的位置。并且,上述较强的M个投影值也就可以作为被选择的M个空频分量向量的加权系数。每个空频分量向量可对应一个加权系数。每个空频分量向量所对应的加权系数也就可以是将空频向量投影至这个空频分量向量上得到的投影值。
若考虑过采样率,则该空频分量向量集合可通过过采样因子O c扩展为O c×N s×N f个空频分量向量。该空频分量向量集合可以包括O c个子集。终端设备可以将待反馈的空频向量分别投影至空频分量向量集合的各个子集上,以得到O c组投影值。终端设备可以分别从每组投影值中确定模长较大的M个投影值,并可根据每组的M个投影值的模长之和,从该O c组投影值中确定模长之和最大的一组投影值。用于生成该模长之和最大的一组投影值的M个空频分量向量可以被确定为较强的M个空频分量向量。可以理解,该M个空频分量向量属于同一子集。由此,终端设备可以确定被选择的M个空频分量向量在空频分量向量集合中的位置。并且,上述模长之和最大的一组投影值中的M个投影值可以作为该M个空频分量向量的加权系数。每个空频分量向量可对应一个加权系数。每个空频分量向量所对应的加权系数也就可以是将空频向量投影值这个空频分量向量上得到的投影值。
基于上文描述,终端设备可以确定M个空频分量向量和M个加权系数。
需要说明的是,终端设备可以先确定与M个空频分量向量对应的M个加权系数。由于在上文中已经说明,某些加权系数在量化后可能为幅度为零,此时可以对该幅度为零的 加权系数不作上报,或者对该幅度为零的加权系数的相位不作上报。因此,终端设备在第一指示信息中可以指示该M个空频分量向量中部分或全部空频分量向量的加权系数。下文中为了简洁,省略对相同或相似情况的说明。
应理解,上文所述的通过投影的方式确定M个空频分量向量的方法仅为便于理解而示出的一种可能的实现方式,而不应对本申请构成任何限定。例如,终端设备还可以通过矩阵运算的方式来确定M个空频分量向量。
情况b、
终端设备可以根据预先确定的待反馈的空频矩阵和空频分量矩阵集合确定M个空频分量矩阵以及所对应的加权系数。
若不考虑过采样率,则空频分量矩阵集合可以包括N s×N f个空频分量矩阵。该N s×N f个空频分量矩阵在空频分量矩阵集合中的排列顺序可以预先定义。例如,该N s×N f个空频分量矩阵可以是通过先在第0个至第N s-1个的范围内遍历各波束向量,再在第0个至第N f-1个的范围内遍历各频域向量得到;也可以是通过先在第0个至第N f-1个的范围内遍历各频域向量,再在第0个至第N s-1个的范围内遍历各波束向量得到。上文中结合这两种可能的排列方式已经做了详细说明,为了简洁,这里不再赘述。
终端设备可以分别将每个空频分量矩阵中的各元素的共轭与预先确定的待反馈的空频矩阵中的相应元素的乘积求和,得到与N s×N f个空频分量矩阵对应的N s×N f个值。具体地,空频分量矩阵中的一个空频分量矩阵中的元素例如可以记作
Figure PCTCN2019110939-appb-000054
(n s=0,1,……,N s-1;n f=0,1,……,N f-1),空频矩阵中的元素例如可以记作
Figure PCTCN2019110939-appb-000055
则将每个空频分量矩阵中的各元素的共轭与该空频矩阵中的相应元素的乘积求和可以表示为
Figure PCTCN2019110939-appb-000056
其中,
Figure PCTCN2019110939-appb-000057
表示的元素
Figure PCTCN2019110939-appb-000058
的共轭。对空频分量矩阵中的N s×N f个空频分量矩阵重复执行该步骤,可以得到N s×N f个值。该N s×N f个值可视为N s×N f个加权系数。
上述步骤可以通过矩阵运算来实现。例如,可以通过求每个空频分量矩阵的共轭转置与空频矩阵的乘积的迹,来得到上述N s×N f个值。
此后,终端设备可以从该N s×N f个值中确定模长较大的M个值。该M个值中任意一个值的模长大于或等于剩余的N s×N f-M个值中任意一个值的模长。用于生成上述模长较大的M个值的M个空频分量矩阵可以被确定为较强的M个空频分量矩阵。由此,终端设备可以确定被选择的M个空频分量矩阵在空频分量矩阵中的位置。并且,上述模长较大的M个值也就可以作为被选择的M个空频分量矩阵的加权系数。每个空频分量矩阵可对应一个加权系数。每个空频分量矩阵所对应的加权系数也就可以是待反馈的空频矩阵与这个空频分量矩阵通过上述运算所得的值。
若考虑过采样率,则该空频分量矩阵集合可以通过过采样因子O c扩展为O c×N s×N f个空频分量矩阵。该空频分量向量集合可以包括O c个子集。
终端设备可以基于上文所描述的方法确定与O c个子集对应的O c组值,每组值包括N s×N f个值。终端设备可以根据各组值的模长大小,分别从每组值中选择模长较大的M个值。终端设备可以进一步根据每组值中较大的M个值的模长之和,从该O c组值中确定模长之和最大的一组值。用于生成该模长之和最大的一组值的M个空频分量矩阵可以被 确定为较强的M个空频分量矩阵。可以理解,该M个空频分量矩阵属于同一子集。由此,终端设备可以确定被选择的M个空频分量矩阵在空频分量矩阵集合中的位置。并且,上述模长之和最大的一组值可以作为被选择的M个空频分量矩阵的加权系数。每个空频分量矩阵可对应一个加权系数。每个空频分量矩阵所对应的加权系数也就可以是待反馈的空频矩阵与这个空频分量矩阵通过上述运算所得的值。
应理解,上文所列举的根据空频矩阵确定M个空频分量矩阵的方法仅为便于理解而示例,不应对本申请构成任何限定。
基于上文描述,终端设备可以确定M个空频分量矩阵以及M个加权系数。
应理解,该M个空频分量矩阵或空频分量向量也可以通过若干个波束向量以及若干个频域向量来指示。由于空频分量矩阵和空频分量向量之间是可以相互转换的,或者说,等价的,这里以空频分量矩阵为例来说明。如前所述,每个空频分量矩阵可以是由波束向量集合中的一个波束向量和频域向量集合中的一个频域向量确定。例如,可以是一个波束向量和一个频域向量的共轭转置的乘积,或者,也可以是一个频域向量和一个波束向量的克罗内克积等,为了简洁,这里不再一一列举。因此,该M个空频分量矩阵可以由若干个波束向量和若干个频域向量确定。该M个空频分量矩阵在空频分量矩阵中的位置可对应于上述若干个波束向量在波束向量集合中的位置和若干个频域向量在频域向量集合中的位置。因此,用于指示M个空频分量矩阵的信息和用于指示若干个波束向量和若干个频域向量的信息可以认为是等价的。
需要说明的是,在实现方式二中,该M个空频分量矩阵从空频分量矩阵集合中选择的较强的M个空频分量矩阵,而并不一定是遍历该若干个波束向量和若干个频域向量而两两组合得到。即,在实现方式二中,并不限定M与波束向量的数量和频域向量的数量间的关系。
实现方式三、
终端设备可以根据预先确定的待反馈的空频矩阵或空频向量,从波束向量集合和频域向量集合中确定较强的L个波束向量和较强的K个频域向量,该L个波束向量和K个频域向量可以两两组合得到L×K个空频向量对(方式a)。或者,终端设备也可以从空频分量矩阵集合确定较强的L×K个空频分量矩阵,或从空频分量向量集合中确定较强的L×K个空频分量向量(方式b)。上述L×K个空频向量对、L×K个空频分量矩阵和L×K个空频分量向量均为L×K个空频单元的具体形式。
其中,L、K和M的取值均可以由网络配置,也可以预先定义,或者还可以由终端设备确定后上报网络设备。本申请对此不作限定。若L、K和M的取值分别由信令指示,则L和K的取值例如可以分别通过如实现方式一中所述的第二指示信息和第三指示信息来指示,M的取值例如可以通过如实现方式二中所述的第四指示信息来指示。关于L、K和M的取值的指示方式在上文中已经做了说明,为了简洁,这里不再赘述。
应理解,在实现方式三中,分别用于指示L、K和M的取值的第二指示信息、第三指示信息和第四指示信息可以携带在同一信令中,也可以携带在不同的信令中,本申请对此不作限定。
需要说明的是,与实现方式一所不同,在实现方式三中,L×K≥M。
其中,L个波束向量可以是波束向量集合中的部分波束向量,也可以是波束向量集合 中的全部波束向量;K个频域向量可以是频域向量集合中的部分频域向量,也可以是频域向量集合中的全部频域向量。但该L个波束向量和K个频域向量并不同时分别取波束向量集合和频域向量集合的全集。换句话说,L个波束向量为波束向量集合中的部分波束向量,和/或,K个频域向量为频域向量集合中的部分频域向量。
当L个波束向量为波束向量集合的全集时,该L个波束向量可以不指示;当K个频域向量为频域向量集合的全集时,该K个频域向量可以不指示。换句话说,该第一指示信息在用于指示L个波束向量和K个频域向量时,可以仅指示L个波束向量,或仅指示K个频域向量,或指示L个波束向量和K个频域向量。
下面分别结合方式a和方式b详细说明终端设备确定L个波束向量、K个频域向量、L×K个空频单元中的M个空频单元及其对应的加权系数的具体过程。
在方式a中,首先,终端设备可以根据N f个频域单元的预编码向量确定空频矩阵H,
Figure PCTCN2019110939-appb-000059
终端设备可以根据该空频矩阵H,从波束向量集合中确定较强的L个波束向量,从频域向量集合中确定较强的K个频域向量。
若波束向量集合和频域向量集合均不考虑过采样率,则波束向量集合可以包括如前所述的N s个波束向量,所构建的矩阵为B s;频域向量集合可以包括如前所述的N f个频域向量,所构建的矩阵为B f。终端设备可以通过W=B s *HB f来确定矩阵W。该矩阵W的维度可以是N s×N f。其中,矩阵W中的N s个行可以与波束向量集合(或者由波束向量集合构建的矩阵B s)中的N s个波束向量对应;该矩阵W中的N f个列可以与频域向量集合(或者由频域向量集合构建的矩阵B f)中的N f个频域向量对应。该矩阵W中的每个元素可对应于N s个波束向量中的一个波束向量和N f个频域向量中的一个频域向量,或者说,该矩阵W中的每个元素可对应于由N s个波束向量中的一个波束向量和N f个频域向量中的一个频域向量所确定的一个空频单元。
终端设备可以根据该矩阵W中各行的模长大小,选择模较大的L个行;并可以根据该矩阵W中各列的模长大小,选择模较大的K个列。基于该L个行的位置和K个列的位置分别从波束向量集合中确定较强的L个波束向量,从频域向量集合中确定较强的K个波束向量。同时,可以将该矩阵W中模较大的L个行和模较大的K个列构建得到维度为L×K的矩阵W c。该矩阵W c中包含L×K个元素,分别与该L个波束向量和K个频域向量所确定的L×K个空频单元对应。
若波束向量集合和频域向量集合中的至少一项考虑过采样率,则终端设备仍然可以按照如实现方式一中所述的方法来确定较强的L个波束向量和较强的K个频域向量以及与该L个波束向量和K个频域向量所确定的L×K个空频单元对应的加权系数。
终端设备根据空频矩阵、波束向量集合和频域向量集合确定较强的L个波束向量和较强的K个频域向量的具体方法可以与上文实现方式一中所描述的方法相同,为了简洁,这里不再做详细说明。
此后,终端设备可以在该L个波束向量和K个频域向量所对应的L×K个空频单元中确定较强的M个空频单元。
终端设备可以按照预定义的顺序分别遍历该L个波束向量和K个频域向量以得到L×K个空频单元。
为方便说明,这里假设波束向量集合中被选择的L个波束向量记作
Figure PCTCN2019110939-appb-000060
频域向量集合中被选择的K个频域向量记作
Figure PCTCN2019110939-appb-000061
例如,终端设备可以按照先遍历L个波束向量、再遍历K个频域向量的顺序来得到L×K个空频单元。即,对于每个频域向量按照第0个波束向量至第L-1个波束向量遍历L个波束向量,并按照从第0个频域向量至第K-1个频域向量的顺序遍历K个频域向量,以得到L×K个空频单元。
以空频分量矩阵的形式为例,若按照上文所述的方式遍历L个波束向量和K个频域向量,可以得到L×K个空频分量矩阵如下:
Figure PCTCN2019110939-appb-000062
Figure PCTCN2019110939-appb-000063
又例如,终端设备可以按照先遍历K个频域向量、再遍历L个波束向量的顺序来得到L×K个空频单元。即,对于每个波束向量按照第0个频域向量至第K-1个频域向量遍历K个频域向量,并按照从第0个波束向量至第L-1个波束向量的顺序遍历L个波束向量,以得到L×K个空频单元。
仍以空频分量矩阵的形式为例,若按照上文所述的方式遍历K个频域向量和L个波束向量,可以得到L×K个空频分量矩阵如下:
Figure PCTCN2019110939-appb-000064
Figure PCTCN2019110939-appb-000065
应理解,上文列举的空频分量矩阵的形式仅为示例,而不应对本申请构成任何限定。基于上述遍历L个波束向量和K个频域向量的方式,通过频域向量和波束向量的克罗内克积的方式也可以得到L×K个空频分量向量,或者,任何向量运算,组合也可以得到L×K个空频向量对。
终端设备可以从该L×K个空频单元中确定较强的M个空频单元。该较强的M个空频单元可以是L×K个空频单元的加权系数(即,上文W c中包含的L×K个元素)中的模长较大元素所对应的空频单元。矩阵W c中模长较大的M个元素可以是该M个空频单元的加权系数。即,被选择的M个空频单元中任意一个空频单元的加权系数的模长大于或等于剩余L×K-M个空频单元中任意一个空频单元的加权系数的模长。
基于上文描述,终端设备可以确定L个波束向量、K个频域向量、由L个波束向量和K个频域向量确定的L×K个空频单元中的M个空频单元及其对应的加权系数。
应理解,如实现方式一中所述,该L个波束向量和K个频域向量可用于确定L×K个空频分量矩阵或空频分量向量,因此,也可以通过L×K个空频分量矩阵或L×K个空频分量向量来指示。
如前所述,该L个波束向量在波束向量集合中的位置和K个频域向量在频域向量集合中的位置可以转换为L×K个空频分量矩阵在空频分量矩阵集合中的位置,或,L×K个空频分量向量在空频分量向量集合中的位置。具体的转换方式在上文实现方式一中已经做了详细说明,为了简洁,这里不再赘述。
在方式b中,首先,终端设备可以根据N f个频域单元的预编码向量确定空频矩阵H,
Figure PCTCN2019110939-appb-000066
或者,空频向量h,
Figure PCTCN2019110939-appb-000067
若终端设备预先确定空频向量h,则可以根据该空频向量h从空频分量向量集合中确定较强的L×K个空频分量向量,并可进一步从该L×K个空频分量向量中确定较强的M个空频分量向量。
若不考虑过采样率,终端设备可以将该空频向量h投影至空频分量集合中的N s×N f个空频分量向量上,以得到N s×N f个投影值。该N s×N f个投影值的排列顺序与空频分量向量集合中N s×N f个空频分量向量的排列顺序相对应。
终端设备可以根据该空频分量向量集合中N s×N f个空频分量向量的排列顺序,将该N s×N f个投影值按照预先规定的顺序排列成维度为N s×N f的矩阵。
例如,终端设备可以从该N s×N f个投影值的首个投影值开始,每N f个连续的投影值作为一行,可以得到N s个行,每个行包括N f个投影值。将该N s个行按照从上至下的顺序排列,可以得到维度为N s×N f的矩阵W。又例如,终端设备可以从该N s×N f个投影值的首个投影值开始,每N s个连续的投影值作为一列,可以得到N f个列,每个列包括N s个投影值。将该N f个列按照从左至右的顺序排列,可以得到维度为N s×N f的矩阵W。该维度为N s×N f的矩阵W中的N s×N f个元素与空频分量向量集合中的N s×N f个空频分量向量对应。
终端设备可以分别对该矩阵W中的N s个行分别取模,根据各行的模长大小,确定模较大的L个行。该模较大的L个行即为较强的L个行。终端设备还可以分别对该矩阵W中的N f个列取模,根据各列的模长大小,确定模较大的K个列。该模较大的K个列即为较强的K个列。终端设备可以根据该较强的L个行和较强的K个列在矩阵W中的位置,以及如前文所述的由波束向量集合和频域向量集合转换为空频分量向量集合的方式,从空频分量向量集合中确定较强的L×K个空频分量向量。
若考虑过采样率,终端设备也可以基于上文所述相似的方法从空频分量向量集合中确定出较强的L×K个空频分量向量。
由于上文中已经结合考虑过采样率或不考虑过采样率这两种情况,分别详细说明了确定较强的L个波束向量和较强的K个频域向量的具体过程。在方式b中,终端设备从空频分量向量集合中确定较强的L×K个空频分量向量的具体过程与其相似,为了简洁,这里不再赘述。
事实上,该空频分量向量集合中的各空频分量向量可以由波束向量集合中的各波束向量和频域向量集合中的各频域向量确定。该L×K个空频分量向量可以是由波束向量集合中较强的L个波束向量和频域向量集合中较强的K个频域向量确定。上文所确定的较强的L个行在矩阵W中的行序号可以为较强的L个波束向量在波束向量集合中的序号,较强的K个列在矩阵W中的列序号可以为较强的K个频域向量在频域向量集合的序号。
应理解,上文所描述的终端设备通过矩阵W确定较强的L个行和较强的K个列、进而确定较强的L×K个空频分量向量的具体方法仅为便于理解而示例,不应对本申请构成任何限定。本申请并不排除终端设备采用其他方式来确定较强的L×K个空频分量向量的可能。只要终端设备所确定出的较强的L×K个空频分量向量可以由L个波束向量和K个频域向量构建,均应落入本申请的保护范围内。
此后,终端设备可以按照如方式a中所述的方法,在L×K个空频分量向量中确定较强的M个空频分量向量以及所对应的加权系数。
若终端设备预先确定空频矩阵H,则可以根据该空频矩阵H和空频分量矩阵集合确定较强的L×K个空频分量矩阵,并可进一步从该L×K个空频分量矩阵中确定较强的M个空频分量矩阵。
若不考虑过采样率,终端设备可以将空频分量矩阵集合中N s×N f个空频分量矩阵的每个空频分量矩阵中的各元素的共轭与空频矩阵H中的相应元素的乘积求和,以得到与N s×N f个空频分量矩阵对应的N s×N f个值。例如,空频分量矩阵中的一个空频分量矩阵中的元素记作a p,q(p=0,1,……,N s-1;q=0,1,……,N f-1),空频矩阵中的元素记作b p,q,则将每个空频分量矩阵中的各元素的共轭与该空频矩阵中的相应元素的乘积求和可以表示为
Figure PCTCN2019110939-appb-000068
其中,
Figure PCTCN2019110939-appb-000069
表示的元素a p,q的共轭。对空频分量矩阵中的N s×N f个空频分量矩阵重复执行该步骤,可以得到N s×N f个值。该N s×N f个值与N s×N f个空频分量矩阵对应。
若考虑过采样率,终端设备也可以基于上文所述相似的方法从空频分量矩阵集合中确定出较强的L×K个空频分量矩阵。
由于上文中已经结合考虑过采样率或不考虑过采样率这两种情况,分别详细说明了确定较强的L个波束向量和较强的K个频域向量的具体过程。在方式b中,终端设备从空频分量矩阵集合中确定较强的L×K个空频分量矩阵的具体过程与其相似,为了简洁,这里不再赘述。
此后,终端设备可以根据空频分量矩阵集合中N s×N f个空频分量矩阵的排列顺序,将该N s×N f个值按照预先规定的顺序排列成维度为N s×N f的矩阵W。终端设备根据预先规定的顺序将该N s×N f个值排列成维度为N s×N f的矩阵W,并可以根据该矩阵W确定较强的L×K个空频分量矩阵。终端设备可以进一步根据从该L×K个空频分量矩阵中确定较强的M个空频分量矩阵及其对应的加权系数。
由于终端设备确定较强的L×K个空频分量矩阵,并从L×K个空频分量矩阵中确定较强的M个空频分量矩阵及其加权系数的具体过程,与上文中终端设备确定L×K个空频分量向量,并从L×K个空频分量向量中确定较强的M个空频分量向量及其加权系数的具体过程相似。上文已经对此过程做了详细说明,为了简洁,这里不再赘述。
事实上,从L×K个空频单元中选择的空频单元数可以是M个,也可以少于M个。本申请对此不作限定。也就是说,L×K个加权系数中,幅度为零的加权系数的个数可能为L×K-M,也可能大于L×K-M。当幅度为零的加权系数的个数大于L×K-M时,被选择的空频单元数可以少于M个。此情况下,终端设备在指示M个空频单元时,可以仅指示幅度非零的若干个空频单元;或者也可以指示M个空频单元,但终端设备可进一步通过加权系数的指示进一步确定其中的部分空频单元的加权系数为零。下文中为方便说明,假设从L×K个空频单元中选择的空频单元数为M。但应理解,这不应对本申请构成任何限定。
基于上文描述,终端设备可以确定L个波束向量、K个频域向量、由L个波束向量和K个频域向量确定的L×K个空频单元中的M个空频单元及其对应的加权系数。
上文结合实现方式一至实现方式三详细说明了终端设备指示预编码向量的具体方式。终端设备可以根据所确定的用于指示预编码向量的信息,生成CSI报告。
如前所述,终端设备可以在一个时间单元(如时隙(slot))内上报一个或多个CSI报告。每个CSI报告可以是基于一个CSI上报配置而生成。
在本实施例中,CSI报告可以包括上述第一指示信息。具体地,终端设备可以根据对 CSI报告中第一部分和第二部分的设计,将第一指示信息中的部分信息承载在CSI报告的第一部分,将第一指示信息中的另一部分信息承载在该CSI报告的第二部分。
具体地,该第一指示信息中用于指示向量(例如包括空频分量向量、波束向量或频域向量)和矩阵(例如包括空频分量矩阵)的信息可以承载在CSI报告的第二部分。例如,该第二部分中可以承载用于指示实现方式一中所确定的L个波束向量和K个频域向量的信息,或与其等价的L×K个空频分量矩阵或空频分量向量的信息;又例如,该第二部分中可以承载用于指示实现方式二中所确定的M个空频分量矩阵或空频分量向量的信息,或与其等价的若干个波束向量和若干个频域向量的信息;再例如,该第二部分中可以承载用于指示实现方式三中所确定的L个波束向量、K个频域向量和L×K个中的M个空频单元的信息,或与其等价的L×K个空频单元和M个空频单元的信息。为方便说明,下文中将上述列举的用于指示向量(例如包括空频分量向量、波束向量或频域向量)和矩阵(例如包括空频分量矩阵)的信息统称为分量信息。与之对应地,将用于指示与上述各向量或矩阵对应的加权系数的信息称为系数信息。
具体地,上述分量信息可包括以下列举中的一项:
信息a)若干个波束向量和若干个频域向量(包括L个波束向量和K个波束向量);或
信息b)M个空频分量矩阵或M个空频分量向量;或
信息c)L个波束向量、K个频域向量以及由L个波束向量和K个频域向量对应的L×K个空频单元中的M个空频单元;或
信息d)L×K个空频单元以及L×K个空频单元中的M个空频单元。
应理解,协议可以定义采用哪一种方式来指示预编码向量。当指示预编码向量的具体方式确定时,所使用的比特开销是可以确定的。
具体地,当分量信息为信息a)时,假设波束向量为L个,频域向量为K个。则该分量信息可以是用于指示波束向量集合中的L个波束向量和频域向量集合中的K个频域向量的信息。
若对波束向量集合和频域向量集合均不考虑过采样,波束向量集合可包括N s个波束向量,频域向量集合可以包括N f个频域向量。则该第一指示信息在指示该L个波束向量时,可用于指示该L个波束向量的组合在波束向量集合中的索引,其开销可以为
Figure PCTCN2019110939-appb-000070
个比特;也可用于指示该L个波束向量分别在波束向量集合中的索引,其开销可以为
Figure PCTCN2019110939-appb-000071
个比特。该第一指示信息在指示该K个频域向量时,可用于指示该K个频域向量的组合在波束向量集合中的索引,其开销可以为
Figure PCTCN2019110939-appb-000072
个比特;也可用于指示该K个频域向量分别在频域向量集合中的索引,其开销可以为
Figure PCTCN2019110939-appb-000073
个比特。
若对波束向量集合和频域向量集合均考虑过采样,波束向量集合可包括O s个子集,每个子集可以包括N s个波束向量;频域向量集合可包括O f个子集,每个子集可以包括N f个子集。该第一指示信息在指示该L个波束向量时,可用于指示该L个波束向量所属的子集,以及该L个波束向量在该子集中的位置,其开销可以为
Figure PCTCN2019110939-appb-000074
个比特,或,
Figure PCTCN2019110939-appb-000075
个比特。该第一指示信息在指示该K个频域向量时,可用于指示该K个频域向量所属的子集,以及该K个频域向量在该子集中的位置,其开销可以 为
Figure PCTCN2019110939-appb-000076
个比特,或,
Figure PCTCN2019110939-appb-000077
个比特。
若对波束向量集合和频域向量集合中的某一个集合考虑过采样,也可以分别通过上文所列举的方式来指示L个波束向量和K个频域向量,其开销也可以基于上文所列举的计算式来确定。为了简洁,这里不再一一举例说明。
当分量信息为信息b)时,该分量信息可以是用于指示空频分量矩阵集合中的M个空频分量矩阵的信息,或者是用于指示空频分量向量集合中的M个空频分量向量的信息。
若不考虑过采样,该空频分量矩阵集合可以包括N s×N f个空频分量矩阵。该第一指示信息在指示M个空频分量矩阵时,可用于指示该M个空频分量矩阵的组合在空频分量矩阵集合中的索引,其开销可以为
Figure PCTCN2019110939-appb-000078
个比特;也可用于指示该M个空频分量矩阵分别在空频分量矩阵集合中的索引,其开销可以为
Figure PCTCN2019110939-appb-000079
个比特。
若考虑过采样率,该空频分量矩阵集合可以包括O c个子集,每个子集可以包括N s×N f个空频分量矩阵。该第一指示信息在指示M个空频分量矩阵时,可用于指示该M个空频分量矩阵所属的子集,以及该M个空频分量矩阵在该子集中的位置,其开销可以为
Figure PCTCN2019110939-appb-000080
个比特,或
Figure PCTCN2019110939-appb-000081
个比特。
上文中以M个空频分量矩阵在空频分量矩阵集合中的位置为例说明了指示该M个空频分量矩阵的具体方式和开销。M个空频分量向量在空频分量向量集合中的位置的指示方式和开销与之相似,为了简洁,这里不再赘述。
当分量信息为c)时,该分量信息可以是用于指示L个波束向量、K个频域向量以及M个空频单元在L×K个空频单元中的相对位置的信息。
上文中在信息a)的描述中已经对指示L个波束向量和K个频域向量的方法和开销做了说明,为了简洁,这里不再赘述。
对于该M个空频单元,可以通过以下任意一种方式来指示其在L×K个空频单元中的相对位置:
方式1、通过位图(bitmap)来指示L×K个空频单元中的M个空频单元;
方式2、指示M个空频单元的组合在L×K个空频单元中的索引;
方式3、指示M个空频单元分别在L×K个空频单元中的索引;或
方式4、指示M个空频单元中每个空频单元所对应的波束向量在L个波束向量中的位置和频域向量在K个频域向量中的位置。
在方式1中,该M个空频单元可以通过长度为L×K个比特的位图来指示。该位图中的每个比特可对应于L×K个空频单元中的一个空频单元。每个比特可用于指示所对应的空频单元是否被属于上述M个空频单元,也就是,是否被选择用来反馈。例如,当某一比特置“0”时,表示所对应的空频单元不属于该M个空频单元;当某一比特置“1”时,表示所对应的空频单元属于该M个空频单元。
其中,位图中L×K个比特与L×K个空频单元的对应关系与L×K个空频单元中波束向量和频域向量的组合方式相对应。例如,该L×K个比特所对应的L×K个空频单元可以按照先遍历K个频域向量、再遍历L个波束向量的顺序排列。例如,
Figure PCTCN2019110939-appb-000082
Figure PCTCN2019110939-appb-000083
Figure PCTCN2019110939-appb-000084
该位图中的L×K个比特与上述L×K个空频单元一一对应。
又例如,也可以按照先遍历L个波束向量、再遍历K个频域向量的顺序排列,例如,
Figure PCTCN2019110939-appb-000085
Figure PCTCN2019110939-appb-000086
该位图中的L×K个比特与上述L×K个空频单元一一对应。
应理解,上文空频分量矩阵为例来说明了位图中的L×K个比特与L×K个空频单元的对应关系,但这不应对本申请构成任何限定。位图中的L×K个比特与L×K个空频分量向量或空频向量对的对应关系与之相似。为了简洁,这里不再一一列举说明。
还应理解,上文列举的L×K个比特与L×K个空频单元的一一对应关系仅为示例,不应对本申请构成任何限定。本申请对于L×K个比特与L×K个空频单元的对应关系并不做限定。此外,本申请并不限定L×K个空频单元的排列方式,上文仅为便于说明L×K个比特与M 1个空频单元的一一对应关系,而示出了与L×K个比特一一对应的L×K个空频单元的两种可能的排列方式。
在方式2中,终端设备可以通过该M个空频单元的组合在L×K个空频单元中的索引来指示该M个空频单元。也就是说,终端设备可以根据上述L个波束向量和K个频域向量组合得到的L×K个空频单元预先确定多个空频单元的多种组合,每种组合可对应一个索引。该M个空频单元可以为该多种组合中的一种,或者,接近该多种组合中的一种。该第一指示信息信息指示该M个空频单元时,可以通过指示该M个空频单元组合的索引的方式来指示该M个空频单元。因此,该终端设备可以通过
Figure PCTCN2019110939-appb-000087
个比特来指示该L×K个空频单元中的M个空频单元。
在方式3中,终端设备可以通过该M个空频单元分别在L×K个空频单元中的索引来指示该M个空频单元。例如,终端设备可以对该L×K个空频单元重新编号,对M个空频单元中的每个空频单元,指示其在该L×K个空频单元中的索引。因此,终端设备可以通过
Figure PCTCN2019110939-appb-000088
个比特来指示该L×K个空频单元中的M个空频单元。
在方式4中,终端设备可以分别指示用于组合得到该M个空频单元的M个波束向量和M个频域向量分别在L个波束向量中的位置和在K个频域向量中的位置。此方式中,M个空频单元为M个空频向量对,该M个波束向量和M个频域向量可以组成该M个空频向量对。对于每个空频向量对,终端设备可以通过
Figure PCTCN2019110939-appb-000089
个比特指示这个空频向量对包含的波束向量和频域向量在L个波束向量中的位置和在K个频域向量中的位置。则该终端设备可以通过
Figure PCTCN2019110939-appb-000090
个比特来指示该L×K个空频单元中的M个空频单元。
可以看到,上文列举的用于指示M个空频单元的方法中,终端设备通过该M个空频单元在L×K个空频单元中的相对位置(例如相对索引或相对编号等)来指示该M个空频单元,或者,通过该M个空频单元在L个波束向量和K个频域向量中的相对位置(例如相对索引或相对编号等)来指示M个空频单元对。换句话说,终端设备在指示该M个空频单元时,可以指示该M个空频单元在L×K个空频单元中的本地(local)位置。由于将选择的范围缩小了,用于指示M个空频单元而带来的开销也得以降低。
应理解,上文列举的用于指示M个空频单元的方法仅为示例,而不应对本申请构成任何限定。本申请对于指示该M个空频单元在L×K个空频单元中的位置的具体方法不作限定。
当分量信息为信息d)时,该分量信息可以是用于指示L×K个空频单元(如空频分量矩阵集合中的L×K个空频分量矩阵,或,空频分量向量集合中的L×K个空频分量向量)以及M个空频单元在L×K个空频单元中的相对位置的信息。
上文中在信息b)的描述中已经对终端设备指示M个空频分量矩阵或M个空频分量 向量的方法和开销做了说明。终端设备指示L×K个空频分量矩阵或L×K个空频分量向量的方法和开销的计算方式也与之相似,为了简洁,这里不再赘述。
M个空频单元在L×K个空频单元中的位置至少可以通过上文所列举的方式中的任意一种来指示,为了简洁,这里不再赘述。
基于上文描述可以看到,无论分量信息为上述列举的信息a)至信息d)中的哪一种,其带来的开销是可以确定的。
下面详细说明对系数信息。在本实施例中,系数信息可以全部承载在CSI报告的第二部分,也可以部分承载CSI报告的第一部分,另一部分承载在CSI报告的第二部分。由于本实施例中提供了多种指示预编码向量的实现方式,对于不同的实现方式,所指示的信息也有所不同。下面结合上文所列举的三种实现方式来详细说明系数信息的指示方法。
对应于实现方式一和实现方式二,终端设备可以基于前文所述的方法确定与M个空频单元对应的M个加权系数。该M个加权系数可以通过如表一中的任意一种设计来指示:
表一
Figure PCTCN2019110939-appb-000091
需要说明的是,设计1和设计2中,第一部分所指示的信息未列举,这并不代表该第 一部分不承载任何信息。事实上,在表一中所列举的设计1至设计10中,该第一部分均可以承载除PMI之外的其他信息,例如,该第一部分可以承载RI、CQI和LI中的一项或多项。
此外,表一中所列举的设计1至设计10中,第二部分还可以包括上文所列举的分量信息a)或b)中的一种。为了简洁,表一中未一一列举。
还需要说明的是,表中归一化系数的个数可以是1个,也可以是多个,本申请对此不作限定。由于前文中已经对归一化和归一化处理做了详细说明,为了简洁,这里不再赘述。下文中为方便说明,假设归一化系数的个数为T,T为正整数。归一化系数的个数可以与归一化处理的单位有关。由于归一化处理的单位可以预先定义,因此终端设备和网络设备可以预先确定归一化系数的个数。归一化系数的位置可以是指T个归一化系数分别在上述M个加权系数中的位置。
此外,下文中为方便说明,假设用于量化幅度的量化比特数为x,用于量化相位的量化比特数为y。幅度非零的加权系数的个数为S,除归一化系数之外的幅度非零的加权系数的个数则为S-T。
下面详细说明以上列举的几种可能的设计。
设计1、该第二部分除包括分量信息之外,还可以包括归一化空频单元的指示,M个加权系数中除归一化系数之外各加权系数的量化信息。
归一化空频单元可以是该M个加权系数中与各归一化系数对应的空频单元。各归一化空频单元的指示例如可以参考NR协议TS38.214 R15中type II码本中定义的指示归一化向量的方法来指示。如,可以指示归一化空频单元在M个归一化空频单元中的位置。每个归一化空频单元例如可以通过
Figure PCTCN2019110939-appb-000092
个比特来指示。本申请对于归一化空频单元的指示方式不作限定。
在确定了归一化空频向量的情况下,终端设备可以分别指示M个加权系数中除归一化系数之外各加权系数的幅度和相位。其中,各加权系数的量化信息可以包括幅度的量化信息和相位的量化信息。各加权系数的幅度的量化信息可以分别是各加权系数的幅度的量化值的索引。各加权系数的相位的量化信息也可以分别是各加权系数的相位的量化值的索引。
协议可以预先定义用于分别量化加权系数的幅度和相位的量化比特数。因此,该M个加权系数中除归一化系数之外的M-T个加权系数的幅度的量化比特数和相位的量化比特数均可以确定。该M个加权系数中除归一化系数之外的M-T个加权系数的幅度的量化比特数可以为(M-T)×x个比特,该M个加权系数中除归一化系数之外的M-T个加权系数的相位的量化比特数可以为(M-T)×y个比特。
设计2、该第二部分除包括分量信息之外,还可包括M个加权系数中各加权系数的幅度的量化信息和相位的量化信息。
即,在设计2中不排除归一化系数,对所有加权系数都分别指示幅度和相位的量化信息。因此该M个加权系数的幅度的量化比特数和相位的量化比特数均可以确定。该M个加权系数的幅度的量化比特数可以为M×x个比特,该M个加权系数的相位的量化比特数可以为M×y个比特。
设计3、该CSI报告的第一部分可包括M个加权系数中除归一化系数之外幅度非零的 加权系数的个数指示,或,M个加权系数中除归一化系数之外幅度为零的加权系数的个数指示,第二部分除了包括分量信息外,还可以包括归一化空频单元的指示、M个加权系数中除归一化系数之外各加权系数的幅度的量化信息以及除归一化系数之外幅度非零的加权系数的相位的量化信息。
其中,由于加权系数的总数M是一定的,加权系数中幅度非零的加权系数与幅度为零的加权系数的总和M不变。M个加权系数中除归一化系数之外幅度非零的加权系数的个数与M个加权系数中除归一化系数之外幅度为零的加权系数的个数之间可以相互转换。事实上,该第一部分可用于指示M个加权系数中除归一化系数之外幅度非零的加权系数的个数。该信息可以是上文所列举的M个加权系数中除归一化系数之外幅度非零的加权系数的个数指示,或M个加权系数中出归一化系数之外幅度为零的加权系数的加权系数的个数指示,或者也可以是其他信息。本申请对此不作限定。
协议可预先定义该第一部分具体用于指示M个加权系数中除归一化系数之外幅度非零的加权系数的个数,还是用于指示M个加权系数中除归一化系数之外幅度为零的加权系数的个数。但无论协议定义该第一部分具体用于前者还是后者,均可以确定M个加权系数中除归一化系数之外幅度非零的加权系数的个数。此外,协议还可进一步定义该信息的比特数。
在确定了M个加权系数中除归一化系数之外幅度非零的加权系数的个数之后,还可通过第二部分指示归一化空频单元和各加权系数的幅度。
其中,归一化空频单元的指示在设计1中已经做了详细说明,为了简洁,之类不做赘述。
该第二部分可以包括M个加权系数中除归一化系数之外各加权系数的幅度的量化信息。由于前文中已经说明,各加权系数的排列顺序可以是预先定义的。网络设备和终端设备可以基于相同的排列顺序分别指示和解析各加权系数的量化值。因此该幅度非零的加权系数的位置可以通过指示各加权系数的幅度的方式来隐式指示。该第二部分可以指示该M个加权系数中除归一化系数之外的各加权系数的相位的量化信息,以便网络设备根据各加权系数的量化信息确定幅度非零的加权系数的相位。
对于幅度为零的加权系数而言,对其上报相位是没有必要的。因此,终端设备可以在第二部分仅指示幅度非零的加权系数的相位。并且由于在第二部分中通过指示各加权系数的幅度来隐式指示了幅度非零的加权系数的位置,网络设备可以根据各加权系数的幅度确定第二部分中所指示的相位分别对应于哪个加权系数。
由于在第一部分指示了M个加权系数中除归一化系数之外幅度非零的加权系数的个数,该第二部分除归一化系数之外的M-T个加权系数的幅度的量化比特数和除归一化系数之外的S-T个幅度非零的加权系数的相位的量化比特数也可以分别确定。该M个加权系数中除归一化系数之外的M-T加权系数的幅度的量化比特数可以为(M-T)×x个比特,该M个加权系数中除归一化系数之外S-T个幅度非零的加权系数的相位的量化比特数可以为(S-T)×y个比特。
设计4、该CSI报告的第一部分可包括M个加权系数中幅度非零的加权系数的个数指示,或,M个加权系数中幅度为零的加权系数的个数指示,第二部分除了包括分量信息外,还可以包括M个加权系数中各加权系数的幅度的量化信息以及各幅度非零的加权系数的 相位的量化信息。
其中,由于加权系数的总数M是一定的,加权系数中幅度非零的加权系数与幅度为零的加权系数的总和M不变。加权系数中幅度非零的加权系数的个数与M个加权系数中幅度为零的加权系数的个数之间可以互相转换。事实上,该第一部分可用于指示M个加权系数中幅度非零的加权系数的个数。该信息可以是上文所列举的M个加权系数中幅度非零的加权系数的个数,或,M个加权系数中幅度为零的加权系数的个数,或者也可以是其他信息,本申请对此不作限定。
协议可预先定义该第一部分具体用于指示M个加权系数中幅度非零的加权系数的个数,还是用于指示M个加权系数中幅度为零的加权系数的个数。但无论协议定义该第一部分具体用于指示前者还是后者,均可以分别确定该M个加权系数中幅度非零的加权系数的个数。此外,协议还可进一步定义该信息的比特数。
在确定了M个加权系数中幅度非零的加权系数的个数之后,还可以通过第二部分指示各加权系数的幅度。如前所述,该M个加权系数的幅度可用于隐式地指示幅度非零的加权系数的位置。因此,该第二部分可进一步指示各幅度非零的加权系数的相位。
由于在第一部分指示了M个加权系数中幅度非零的加权系数的个数,该第二部分中M个加权系数的幅度的量化比特数和S个幅度非零的加权系数的相位的量化比特数也可以分别确定。该M个加权系数的幅度的量化比特数可以为M×x个比特,该S个幅度非零的加权系数的相位的量化比特数可以为S×y个比特。
应理解,设计3和设计4的第二部分中所指示的信息可以互换。
设计5、该CSI报告的第一部分可包括M个加权系数中除归一化系数之外各加权系数的幅度的量化信息;第二部分除包括分量信息外,还可以包括归一化空频单元的指示、M个加权系数中除归一化系数之外各幅度非零的加权系数的相位的量化信息。
通过在第一部分中指示M个加权系数中除归一化系数之外各加权系数的幅度,可以隐式地指示M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,或者说,可以确定除归一化系数之外的M-N个加权系数中,各加权系数的幅度是否为零。由于协议可以预先定义幅度的量化比特数,该M个加权系数中除归一化系数之外的M-T个加权系数的幅度的量化比特数可以确定。该M个加权系数中除归一化系数之外的M-T个加权系数的幅度的量化比特数可以为(M-T)×x个比特。
由于在第一部分中隐式地指示了M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,并通过在第二部分指示归一化空频单元,因此可以在第二部分中仅指示除归一化系数之外各幅度非零的加权系数的相位,并可以确定第二部分所指示的各相位分别对应于哪些加权系数。
由于协议可以预先定义相位的量化比特数,则该M个加权系数中除归一化系数之外的S-T个幅度非零的加权系数的相位的量化比特数也可以确定。该M个加权系数中除归一化系数之外的S-T个幅度非零的加权系数的相位的量化比特数可以为(S-T)×y个比特。
设计6、该CSI报告的第一部分可包括M个加权系数中各加权系数的幅度的量化信息;第二部分除包括分量信息外,还可以包括M个加权系数中各幅度非零的加权系数的相位的量化信息。
通过在第一部分中指示M个加权系数中各加权系数的幅度,可以隐式地指示M个加权系数中幅度非零的加权系数的个数和位置,或者说,可以确定该M个加权系数中各加权系数的幅度是否为零。由于协议可以预先定义幅度的量化比特数,该M个加权系数的幅度的量化比特数可以确定。该M个加权系数的幅度的量化比特数的总和可以为M×x个比特。
由于在第一部分中隐式地指示了M个加权系数中幅度非零的加权系数的个数和位置,因此可以在第二部分中仅指示各幅度非零的加权系数的相位,并可以确定第二部分所指示的各幅度非零的加权系数的相位分别对应于哪些加权系数。
由于协议可以预先的定义相位的量化比特数,则该M个加权系数中S个幅度非零的加权系数的相位的量化比特数也可以确定。该M个加权系数中S个幅度非零的加权系数的相位的量化比特数的总和可以为S×y个比特。
设计7、该CSI报告的第一部分可以为位图,以指示M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;第二部分除包括分量信息外,还可以包括归一化空频单元的指示、M个加权系数中除归一化系数之外各幅度非零的加权系数的量化信息。
具体地,该位图的长度可以为M-T个比特。该M-T个比特可以与除归一化系数之外的M-T个幅度非零的加权系数一一对应,每个比特可用于指示所对应的加权系数的的幅度是否为零。例如,比特置“1”时可以表示所对应的加权系数的幅度非零,比特置“0”时可以表示所对应的加权系数的幅度为零。从而可以指示除归一化系数之外的M-T个加权系数中幅度非零的加权系数的个数和位置,或者说,幅度为零的加权系数的个数和位置。也就是说,该位图用于指示M个加权系数中除归一化系数之外的幅度非零的加权系数的个数和位置,与该位图中的每个比特用于指示所对应的加权系数的幅度是否为零,这两者可以是等价的,或者说,可替换地。
应理解,上文仅为便于理解,示出了位图中的比特与所指示的信息的对应关系,但这不应对本申请构成任何限定。本申请对于位图中的比特与所指示的信息的对应关系不作限定。
由于在第一部分中指示了M个加权系数中除归一化系数之外的幅度非零的加权系数的个数和位置,并通过在第二部分指示归一化空频单元,因此可以在第二部分中仅指示除归一化系数之外各幅度非零的加权系数的幅度和相位,并可以确定第二部分所指示的各幅度和相位对应于哪些加权系数。
各加权系数的量化信息可以包括幅度的量化信息和相位的量化信息。由于协议可以预先定义幅度的量化比特数和相位的量化比特数,则该M个加权系数中除归一化系数之外的S-T个幅度非零的加权系数的幅度的量化比特数和相位的量化比特数均可以确定。该M个加权系数中除归一化系数之外的S-T个幅度非零的加权系数的幅度的量化比特数可以为(S-T)×x个比特,S-T个幅度非零的加权系数的相位的量化比特数可以为(S-T)×y个比特。
设计8、该CSI报告的第一部分可以是位图,以指示M个加权系数中幅度非零的加权系数的个数和位置;第二部分除包括分量信息外,还可以包括M个加权系数中各幅度非零的加权系数的量化信息。
具体地,该位图的长度可以是M个比特。该M个比特可以与M个加权系数一一对应, 每个比特可用于指示所对应的加权系数的幅度是否为零。从而可以指示M个加权系数中幅度非零的加权系数的个数和位置,或者说,幅度为零的加权系数的个数和位置。也就是说,该位图用于指示M个加权系数中幅度非零的加权系数的个数和位置,与该位图中的每个比特用于指示所对应的加权系数的幅度是否为零,这两者可以是等价的,或者说,可替换地。
由于在第一部分中指示了M个加权系数中幅度非零的加权系数的个数和位置,因此可以在第二部分中仅指示各幅度非零的加权系数的幅度和相位,并可以确定第二部分所指示的各幅度和相位对应于哪些加权系数。
各加权系数的量化信息可以包括幅度的量化信息和相位的量化信息。由于协议可以预先定义幅度的量化比特数和相位的量化比特数,则该M个加权系数中S个幅度非零的加权系数的幅度的量化比特数和相位的量化比特数均可以确定。该M个加权系数中除归一化系数之外的S个幅度非零的加权系数的幅度的量化比特数可以为S×x个比特,S个幅度非零的加权系数的相位的量化比特数可以为S×y个比特。
设计9、该CSI报告的第一部分可以为位图,以指示M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及各幅度非零的加权系数所属的量化级别;第二部分除包括分量信息外,还可以包括归一化空频单元的指示、M个加权系数中除归一化系数之外各幅度非零的加权系数的量化信息。
具体地,该位图的长度可以为(M-T)×k个比特。该(M-T)×k个比特可以与除归一化系数之外的M-T个加权系数对应,每k个比特可用于指示所对应的加权系数的幅度是否为零。也就是说,该位图用于指示M个加权系数中除归一化系数之外的幅度非零的加权系数的个数和位置,与该位图中的每k个比特用于指示所对应的加权系数的幅度是否为零,这两者可以是等价的,或者说,可替换地。
其中,k的取值可以大于1,例如,可以为2。则每k个比特可进一步用于指示所对应的加权系数的量化比特数。
各加权系数的量化比特数可以与量化级别对应。上述位图中的每k个比特可用于指示所对应的加权系数所属的量化级别,从而可以间接地指示该加权系数的量化比特数。
在本实施例中,加权系数的量化比特数可以划分为多个量化级别。例如,可以按照幅度大小或其他信息来划分,本申请对此不作限定。每k个比特可以用于指示2 k个量化级别。每个量化级别可对应于一种量化比特数的配置。每种量化比特数的配置中,可以分别配置幅度的量化比特数和相位的量化比特数。至少两个量化级别所对应的量化比特数的配置不同。
具体地,该多个量化级别至少可以包括第一级别、第二级别和第三级别。例如,例如,比特置“00”时可以表示所对应的加权系数属于第一级别,比特置“11”时可以表示所对应的加权系数属于第三级别,比特置“10”或“01”时可以表示所对应的加权系数属于第二级别。其中,第一级别可对应于幅度为零的加权系数,第三级别可对应于幅度为一的加权系数,第二级别可对应于幅度非零且非一的加权系数。应理解,该第二级别仅为便于区分第一级别和第三级别而定义,不应对本申请构成任何限定。上文仅为便于理解加权系数划分为三个级别,这不应对本申请构成任何限定。当k的取值为2时,也可用于指示四个量化级别。例如,可以根据幅度的大小将幅度非零和非一的加权系数分为更多个量化级别,本申请对 此不作限定。还应理解,上文仅为便于理解,示出了位图中的比特与量化级别的对应关系,但这不应对本申请构成任何限定。本申请对于位图中的比特与量化级别的对应关系不作限定。
表二示出了对不同的量化级别的一例。
表二
量化级别 位图中的比特 幅度的量化比特数 相位的量化比特数
第一级别 00 x 1 y 1
第二级别 01或10 x 2 y 2
第三级别 11 x 3 y 3
其中由于第一级别对应于幅度为零的加权系数,可以对第一级别的加权系数(包括幅度和相位)不作指示,即,y 1可以为0。
表示中各量化比特数例如可以满足:x 3>x 2>x 1,且y 3>y 2>y 1;或者,x 3+y 3>x 2+y 2>x 1+y 1;或者,x 3=x 2,x 2>x 1,且y 3=y 2,y 2>y 1;或者,x 3+y 3=x 2+y 2,且x 2+y 2>x 1+y 1等。本申请对于各级别的量化比特数之间的大小关系并不做限定。只要至少两个量化级别的幅度的量化比特数或相位的量化比特数中的至少一项不同,均应落入本申请的保护范围内。
此外,第二部分还可以包括归一化系数的位置指示。通过第一部分指示除归一化系数之外的幅度非零的加权系数的个数和位置,并根据第二部分所指示的归一化空频单元,可以确定除归一化系数之外的S-T个幅度非零的加权系数的位置。
协议可以预先定义量化级别,并可以定义各量化级别所对应的量化比特数,具体可以包括幅度的量化比特数和相位的量化比特数。因此,该第二部分中所指示的除归一化系数之外的S-T个幅度非零的加权系数的幅度的量化比特数和相位的量化比特数均可以确定。
设计10、该CSI报告的第一部分可以为位图,以指示M个加权系数中幅度非零的加权系数的个数和位置,并可指示幅度非零的加权系数的量化比特数;第二部分除包括分量信息外,还可以包括M个加权系数中除归一化系数之外各幅度非零的加权系数的量化信息。
具体地,该位图的长度可以为M×k个比特。该M×k个比特可以与M个加权系数对应,每k个比特可用于指示所对应的加权系数的幅度是否为零。也就是说,该位图用于指示M个加权系数中幅度非零的加权系数的个数和位置,与该位图中的每k个比特用于指示所对应的加权系数的幅度是否为零,这两者可以是等价的,或者说,可替换地。
其中,k的取值可以大于1,例如,可以为2。则每k个比特可进一步用于指示所对应的加权系数的量化比特数。各加权系数的量化比特数可以与量化级别对应。上述位图中的每k个比特可用于指示所对应的加权系数所属的量化级别,从而可以间接地指示该加权系数的量化比特数。
上文中已经对量化级别以及量化级别与量化比特数的对应关系做了说明,为了简洁,这里不再赘述。
由于在第一部分的位图中并未排除归一化空频单元,因此在第二部分中可以指示S个幅度非零的加权系数的幅度和相位。根据预先定义的量化级别与量化比特数的对应关系,可以确定该第二部分中所指示的S个幅度非零的加权系数的幅度的量化比特数和相位的 量化比特数。
对应于实现方式三,终端设备可以基于前文所述的方法确定与M个空频单元对应的M个加权系数。该M个加权系数可以通过如表三中的任意一种设计来指示。
表三
Figure PCTCN2019110939-appb-000093
Figure PCTCN2019110939-appb-000094
需要说明的是,设计1和设计2中,第一部分所指示的信息未列举,这并不代表该第一部分不承载任何信息。事实上,在表二中所列举的设计1至设计10中,该第一部分均可以承载除PMI之外的其他信息,例如,该第一部分可以承载RI、CQI和LI中的一项或多项。
此外,表二中所列举的设计1至设计10中,第二部分还可以包括上文所列举的分量信息c)或d)中的一种。设计11至设计14中,第二部分还可以包括上文所列举的分量信息a)或b)中的一种。为了简洁,表二中未一一列举。
上文中已经结合表一对设计1至设计10做了详细说明,为了简洁,这里不再赘述。下面详细说明设计11至设计14。
设计11、该CSI报告的第一部分可以为位图,以指示K×L个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;第二部分除包括分量信息外,还可以包括归一化空频单元的指示、除归一化系数之外各幅度非零的加权系数的量化信息。
具体地,该位图的长度可以为L×K-T个比特。该L×K-T个比特可以与除归一化系数之外的L×K-T个加权系数对应,每个比特可用于指示所对应的加权系数的幅度是否为零。也就是说,该位图用于指示M个加权系数中除归一化系数之外的幅度非零的加权系数的个数和位置,与该位图中的每个比特用于指示所对应的加权系数的幅度是否为零,这两者可以是等价的,或者说,可替换地。
其中,L×K个加权系数是与实现方式三中描述的L×K个空频单元对应的加权系数。由于终端设备可以从该L×K个空频单元中进一步选择M个空频单元,则该L×K个空频单元中除被选择的M个空频单元之外的L×K-M个空频单元的加权系数的幅度均可以设置为零。因此,可以指示各加权系数的幅度是否为零,也就可以进一步指示被选择的M个空频单元在L×K个空频单元中的位置。下文中列举的设计12至设计14也可基于相同的方式来指示被选择的M个空频单元在L×K个空频单元中的位置。
事实上,从L×K个空频单元中选择的空频单元数可以是M个,也可能少于M个。本申请对此不作限定。也就是说,L×K个加权系数中,幅度为零的加权系数的个数可能为L×K-M,也可能大于L×K-M。当幅度为零的加权系数的个数大于L×K-M时,被选择的空频单元数可以少于M个。此情况下,终端设备指示的M个空频单元中,对应于幅度为零的那部分空频单元可以是不需要的,即加权系数为零。因此,终端设备可通过第一部分的位图来指示若干个用作加权求和以确定预编码向量的空频单元。后文中为了简洁,省略对相同或相似情况的说明。
由于在第一部分中隐式指示了被选择的若干个空频单元在L×K个空频单元中的位置,该CSI报告的第二部分就可以不必指示被选择的若干个空频单元在L×K个空频单元中的位置。此外,终端设备可以在第二部分中指示归一化系数的位置,以便于网络设备确定除归一化系数之外各幅度非零的加权系数的位置。终端设备还可以在第二部分中指示除归一化系数之外各幅度非零的加权系数的幅度和相位。
各加权系数的量化信息可以包括幅度的量化信息和相位的量化信息。由于在设计11 中不区分量化级别,除归一化系数之外S-T个幅度非零的加权系数的幅度的量化比特数可以为(S-T)×x个比特,相位的量化比特数可以为(S-T)×y个比特。
设计12、该CSI报告的第一部分可以为位图,以指示L×K个加权系数中幅度非零的加权系数的个数和位置;第二部分除包括分量信息外,还可以包括各幅度非零的加权系数的量化信息。
具体地,该位图的长度可以为L×K个比特。该L×K个比特可以与L×K个加权系数对应,每个比特可用于指示所对应的加权系数的幅度是否为零。也就是说,该位图用于指示M个加权系数中幅度非零的加权系数的个数和位置,与该位图中的每个比特用于指示所对应的加权系数的幅度是否为零,这两者可以是等价的,或者说,可替换地。
由于在第一部分中通过与L×K个加权系数对应的L×K个比特隐式指示了被选择的若干个空频单元在L×K个空频单元中的位置,该CSI报告的第二部分就可以不必指示被选择的若干个空频单元在L×K个空频单元中的位置。
第二部分可以仅指示各幅度非零的加权系数的幅度和相位。由于在设计12中未区分量化级别,S个幅度非零的加权系数的幅度的量化比特数可以为S×x个比特,相位的量化比特数可以为S×y个比特。
设计13、该CSI报告的第一部分可以为位图,以指示K×L个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及各幅度非零的加权系数所属的量化级别;第二部分除包括分量信息外,还可以包括归一化空频单元的指示、除归一化系数之外各幅度非零的加权系数的量化信息。
具体地,该位图的长度可以为(L×K-T)×k个比特。该(L×K-T)×k个比特可以与除归一化系数之外的L×K-T个加权系数对应,每k个比特可用于指示所对应的加权系数的幅度是否为零。也就是说,该位图用于指示K×L个加权系数中除归一化系数之外的幅度非零的加权系数的个数和位置,与该位图中的每k个比特用于指示所对应的加权系数的幅度是否为零,这两者可以是等价的,或者说,可替换地。
每k个比特还进一步指示所对应的加权系数的量化比特数。各加权系数的量化比特数可以与量化级别对应。上述位图中的每k个比特可用于指示所对应的加权系数所属的量化级别,从而可以间接地指示该加权系数的量化比特数。
上文中已经对量化级别以及量化级别与量化比特数的对应关系做了说明,为了简洁,这里不再赘述。
由于在第一部分中通过与L×K-T个加权系数对应的(L×K-T)×k个比特隐式地指示了M个空频单元在L×K-T个空频单元中的位置,该CSI报告的第二部分就可以不必指示M个空频单元在L×K个空频单元中的位置。
此外,终端设备可以在第二部分中指示归一化空频单元,以便于网络设备确定除归一化系数之外各幅度非零的加权系数的位置。终端设备还可以在第二部分中指示除归一化系数之外各幅度非零的加权系数的幅度和相位。
各加权系数的量化信息可以包括幅度的量化信息和相位的量化信息,具体可包括幅度的量化比特数和相位的量化比特数。由于设计13可以通过k个比特来指示量化级别,根据预先定义的量化级别与量化比特数的对应关系,可以确定除归一化系数之外的S-T个幅度非零的加权系数的幅度和相位的量化比特数。
设计14、该CSI报告的第一部分可以为位图,以指示L×K个加权系数中幅度非零的加权系数的个数和位置,以及各幅度非零的加权系数所属的量化级别;该第二部分除包括分量信息外,还可以包括各幅度非零的加权系数的量化信息。
具体地,该位图的长度可以为L×K×k个比特。该L×K×k个比特可以与L×K个加权系数对应,每k个比特可用于指示所对应的加权系数的幅度是否为零。也就是说,该位图用于指示K×L个加权系数中幅度非零的加权系数的个数和位置,与该位图中的每k个比特用于指示所对应的加权系数的幅度是否为零,这两者可以是等价的,或者说,可替换地。
该位图中的每k个比特还进一步指示所对应的加权系数的量化比特数,具体可包括幅度的量化比特数和相位的量化比特数。各加权系数的量化比特数可以与量化级别对应。上述位图中的每k个比特可用于指示所对应的加权系数所属的量化级别,从而可以间接地指示该加权系数的量化比特数。
上文中已经对量化级别以及量化级别与量化比特数的对应关系做了说明,为了简洁,这里不再赘述。
由于在第一部分的位图中未排除归一化空频单元,因此在第二部分中可以指示S个幅度非零的加权系数的幅度和相位。由于设计14可以通过k个比特来指示量化级别,根据预先定义的量化级别与量化比特数的对应关系,可以确定该第二部分中所指示的S个幅度非零的加权系数的幅度的量化比特数和相位的量化比特数。
上文中为便于理解,列举了几种可能的CSI报告的设计,但这不应对本申请构成任何限定。CSI报告的设计并不仅限于上文所列举,例如,设计4中的第二部分可采用设计3中第二部分中的信息;设计6中的第二部分可采用设计5中第二部分中的信息;设计8中的第二部分可沿用设计7中的第二部分中的信息;设计10中的第二部分也可采用设计9中第二部分中的信息,设计12中的第二部分也可采用设计11中的第二部分中的信息;设计14中的第二部分也可采用设计13中的第二部分中的信息等。为了简洁,这里不再一一列举。协议可以定义对CSI报告的设计,终端设备可以基于该设计来生成CSI报告,网络设备也可以基于该设计来解析CSI报告。
应理解,CSI报告并不限于上文所列举的信息,本申请对于CSI报告中所包含的其他信息不作限定。
在步骤220中,终端设备发送该CSI报告。相应地,在步骤220中,网络设备接收该CSI报告。
终端设备例如可以通过物理上行资源,如物理上行共享信道(physical uplink share channel,PUSCH)或物理上行控制信道(physical uplink control channel,PUCCH),向网络设备发送该第一指示信息,以便于网络设备基于该第一指示信息恢复预编码向量。
终端设备通过物理上行资源向网络设备发送第一指示信息的具体方法可以与现有技术相同,为了简洁,这里省略对其具体过程的详细说明。
具体地,终端设备可以通过网络设备预先配置的时频资源,向网络设备发送一个或多个CSI报告。终端设备向网络设备发送CSI报告的具体过程可以参考现有技术,为了简洁,本申请中省略对其具体过程的详细说明。
在步骤230中,网络设备根据该PMI报告确定一个或多个频域单元的预编码向量。
网络设备可以根据第一指示信息,确定空频矩阵(或空频向量)。该空频矩阵(或空频向量)与上文中步骤210中所述的终端设备确定的空频矩阵(或空频向量)相同或者相近。
网络设备也可以根据第一指示信息以及预先定义的公式,确定各频域单元的预编码向量。
下面将结合上文所列举的三种实现方式下反馈的信息,分别说明网络设备确定预编码向量的具体过程。
与实现方式一对应,网络设备可以根据L个波束向量、K个频域向量以及对应的加权系数,通过计算该L个波束向量和K个频域向量所对应的L×K个空频单元的加权和,以确定空频矩阵。该空频矩阵中的每个列向量可用于确定所对应的频域单元的预编码向量。例如,对空频矩阵中的每个列向量进行归一化处理,可以得到与每个频域单元对应的预编码向量。
其中,归一化处理可以通过将每个列中的N s个元素分别乘以归一化系数,以使得这一列中各元素的功率之和等于1。该归一化系数例如可以是这一列中N s个元素的模长之和的平方根的倒数。本申请对于归一化处理的具体方法不做限定。
应理解,这里所说的归一化系数与前文中所述的归一化系数可能是不同的。
网络设备也可以不确定空频矩阵,直接根据以下公式确定与第n f个频域单元对应的预编码向量
Figure PCTCN2019110939-appb-000095
Figure PCTCN2019110939-appb-000096
其中,β 1为归一化系数,β 1>0;
Figure PCTCN2019110939-appb-000097
表示L个波束向量中的第l个波束向量;
Figure PCTCN2019110939-appb-000098
表示K个频域向量中的第k个频域向量
Figure PCTCN2019110939-appb-000099
中第n f个元素,
Figure PCTCN2019110939-appb-000100
Figure PCTCN2019110939-appb-000101
的共轭;c l,k表示与该第l个波束向量和第k个频域向量对应的加权系数。与实现方式二对应,网络设备可以根据M个空频分量矩阵或空频分量向量及其对应的加权系数,计算该M个空频分量矩阵的加权和,以确定空频矩阵。该空频矩阵中的每个列向量可用于确定所对应的频域单元的预编码向量。
或者,网络设备也可以根据M个空频分量向量及其对应的加权系数,计算该每个空频分量向量的加权和,以确定空频向量。该空频向量中与同一个频域单元对应的元素依次连接所构成的列向量可用于该频域单元的预编码向量。
例如,当空频分量向量由频域向量和波束向量的克罗内克积确定时,该空频向量中的第n f×n s个至第(n f+1)×n s-1个元素可对应于第n f个频域单元的预编码向量。
网络设备也可以不确定空频矩阵或空频向量,直接根据以下公式确定与第n f个频域单元对应的预编码向量
Figure PCTCN2019110939-appb-000102
其中,β 2为归一化系数,β 2>0;
Figure PCTCN2019110939-appb-000103
表示M个空频分量矩阵中的第m个空频分量矩阵中与第n f个频域单元对应的向量,或者,M个空频分量向量中的第m个空频分量向量中与第n f个频域单元对应的元素依次连接得到的向量;c m表示与第m个空频分量矩阵或空频分量向量对应的加权系数。与实现方式三对应,网络设备可以根据L个波束向量、K个频域向量以及LK个空频单元中的M个空频单元及其对应的加权系数,计算该M个 空频单元的加权和,以确定空频矩阵或空频向量。该空频矩阵中的每个列向量可用于确定所对应的频域单元的预编码向量。或者,该空频向量中与同一个频域单元对应的元素依次连接所构成的列向量可用于该频域单元的预编码向量。
网络设备也可以不确定空频矩阵或空频向量,直接根据以下公司化确定与第n f个频域单元对应的预编码向量
Figure PCTCN2019110939-appb-000104
Figure PCTCN2019110939-appb-000105
其中,β 3表示归一化系数,β 3>0;
Figure PCTCN2019110939-appb-000106
表示M个空频单元中第m个空频单元对应的波束向量;
Figure PCTCN2019110939-appb-000107
Figure PCTCN2019110939-appb-000108
的共轭,
Figure PCTCN2019110939-appb-000109
表示M个空频单元中第m个空频单元对应的频域向量
Figure PCTCN2019110939-appb-000110
中的第n f个元素;c m表示与M个空频单元中第m个空频单元对应的加权系数。
基于上文所列举的方法,网络设备可以确定该传输层上一个或多个频域单元的预编码向量。
需要说明的是,如前所述,频域向量的长度N f可以是配置给终端设备的CSI测量资源的频域占用带宽中包含的频域单元的数量,或,reporting band的信令长度,或,待上报的频域单元数。当频域向量的长度为配置给终端设备的CSI测量资源的频域占用带宽中包含的频域单元的数量或reporting band的信令长度时,待上报的频域单元数可以是小于或者等于N f的。因此,网络设备可以根据reporting band或者其他信令所指示的待上报的频域单元的位置,确定各频域单元的预编码向量。
其中,根据CSI测量资源的频域占用带宽中包含的频域单元的数量或reporting band的信令长度来确定频域向量的长度,可以将信道在多个连续的频域单元上的变化规律通过频域向量来体现,相比于根据待上报的频域单元数确定频域向量的长度这种方法而言,根据CSI测量资源的频域占用带宽中的频域单元的数量或reporting band的信令长度确定的频域向量更能够准确地反映信道在频域的变化规律,基于反馈所恢复的预编码向量也更能够与信道适配。
应理解,上文所列举的网络设备根据第一指示信息确定与第n f个频域单元对应的预编码向量的具体方法仅为示例,而不应对本申请构成任何限定。本申请并不排除网络设备根据该第一指示信息,采用其他方式确定与第n f个子带对应的预编码向量的可能。还应理解,上文结合图2详细说明了终端设备指示一个传输层上、一个极化方向上的预编码向量以及网络设备确定预编码向量的具体过程。但应理解,该方法并不仅仅适用于传输层为1或极化方向数为1的情况,对于多个传输层或多个极化方向的情况同样适用。
如前所述,对于同一个传输层,终端设备设备可以通过多个第一指示信息来分别指示多个极化方向上的各频域单元的预编码向量。为便于区分和说明,下文中将用于指示一个传输层上各频域单元的预编码向量的一个或多个第一指示信息(分别对应于一个或多个极化方向)称为与传输层对应的指示信息。
与多个极化方向对应的多个第一指示信息中,多个极化方向上的分量信息可以是相同的,也可以是不同的;多个极化方向上的系数信息可以是不同的。
若多个极化方向上的分量信息相同,则该多个极化方向可以共用同一分量信息,则该多个第一指示信息可以仅指示一次该分量信息。此情况下,该分量信息可以视为公共信息。为便于区分和说明,下文将该公共信息称为极化方向间公共信息。极化方向间公共信息可 以视为该多个第一指示信息的公共部分。
若多个极化方向方向上的分量信息不同,则该多个第一指示信息可以分别基于该多个极化方向指示分量信息。此情况下,可以将该分量信息视为专有信息。
若多个极化方向方向上的系数信息不同,则该多个第一指示信息可以分别基于该多个极化方向指示系数信息。此情况下,可以将该系数信息视为专有信息。
下面结合上文所列举的分量信息a)至d)详细说明。
对于分量信息a),多个极化方向可以共用若干个波束向量和若干个频域向量。此情况下,用于指示上述若干个波束向量和若干个频域向量的信息均可以为极化方向间公共信息。多个极化方向也可以仅共用若干个波束向量或仅共用若干个频域向量,此情况下,用于指示上述被共用的若干个波束向量或若干个频域向量可以为极化方向间公共信息,用于指示未被公用的若干个频域向量或若干个波束向量可以为专有信息。
对于分量信息b),多个极化方向可以共用M个空频分量矩阵或空频分量向量,用于指示该M个空频分量矩阵或空频分量单元的信息可以为极化方向间公共信息。
对于分量信息c),多个极化方向可以共用L个波束向量、K个频域向量和M个空频单元。此情况下,用于指示L个波束向量、K个频域向量和M个空频单元的信息均可以为极化方向间公共信息。
多个极化方向也可以仅共用L个波束向量和K个频域向量。此情况下,用于指示L个波束向量和K个频域向量的信息可以为极化方向间公共信息,用于指示M个空频单元的信息可以为专有信息。
多个极化方向也可以仅共用L个波束向量。此情况下,用于指示L个波束向量的信息可以为极化方向间公共信息,用于指示K个频域向量和M个空频单元的信息可以为专有信息。
多个极化方向也可以仅共用K个频域向量。此情况下,用于指示K个频域向量的信息可以为极化方向间公共信息,用于指示L个波束向量和M个空频单元的信息可以为专有信息。
对于分量信息d),多个极化方向可以共用L×K个空频单元和M个空频单元。此情况下,用于指示L×K个空频单元和M个空频单元的信息均可以为极化方向间公共信息。
多个极化方向也可以仅共用L×K个空频单元。此情况下,用于指示L×K个空频单元的信息可以为极化方向间公共信息,用于指示M个空频单元的信息可以为专有信息。
下文中为方便说明,将被作为公共信息的分量信息称为公共分量信息,将被作为专有信息的分量信息称为专有分量信息。
可以理解,将分量信息中的哪些信息作为公共信息以及哪些信息作为专有信息可以是预先定义的,如协议定义。终端设备和网络设备可以基于相同的规则生成和解析CSI报告中的信息。
当传输层数为1且多个第一指示信息存在极化方向间公共信息时,该极化方向间公共信息可以位于CSI报告相应位置的最前面。例如,该极化方向间公共信息可以是上文所列举的公共分量信息,则该公共分量信息可以位于该CSI报告的第二部分的最前面,或者,第二部分中用于承载PMI的位置的最前面。在此之后,可以分别依次放入与每个极化方向对应的专有信息。换句话说,极化方向间公共信息的优先级可以高于专有信息的优先级。
通常情况下,多个极化方向之间可以共用分量信息,但各极化方向间的加权系数彼此各不相同。
以2个极化方向为例,上文中关于CSI报告中系数信息的设计可以如下文中表四和表五所示。
对应于实现方式一和实现方式二,终端设备可以基于前文所述的方法确定与2个极化方向对应的2M个加权系数。该2M个加权系数可以通过如表四中的任意一种设计来指示:
表四
Figure PCTCN2019110939-appb-000111
需要说明的是,设计1和设计2中,第一部分所指示的信息未列举,这并不代表该第一部分不承载任何信息。事实上,在表四中所列举的设计1至设计10中,该第一部分均可以承载除PMI之外的其他信息,例如,该第一部分可以承载RI、CQI和LI中的一项或多项。
此外,表四中所列举的设计1至设计10中,第二部分还可以包括上文所列举的分量信息a)或b)中的一种。为了简洁,表四中未一一列举。
还需要说明的是,表中归一化系数可以是基于分别每个极化方向确定的,也可以是基于2个极化方向确定的,本申请对此不作限定。
对应于实现方式三,终端设备可以基于前文所述的方法确定与2个极化方向对应的2M个加权系数。该2M个加权系数可以通过如表五中的任意一种设计来指示。
表五
Figure PCTCN2019110939-appb-000112
Figure PCTCN2019110939-appb-000113
需要说明的是,设计1和设计2中,第一部分所指示的信息未列举,这并不代表该第一部分不承载任何信息。事实上,在表五中所列举的设计1至设计10中,该第一部分均可以承载除PMI之外的其他信息,例如,该第一部分可以承载RI、CQI和LI中的一项或多项。
此外,表五中所列举的设计1至设计10中,第二部分还可以包括上文所列举的分量信息c)或d)中的一种。设计11至设计14中,第二部分还可以包括上文所列举的分量信息a)或b)中的一种。为了简洁,表五中未一一列举。
应理解,上文中表四和表五中所列举的各部分的比特开销可以参考上文中单极化方向的情况下表一和表二中提供的计算方法来计算。所不同的是,2极化方向时的加权系数的总数可能为单极化方向时的2倍。如,2M,2L×K等;归一化系数的个数可能翻倍,也可能不变,这与归一化处理的单位有关。
还应理解,上文中表四和表五中所列举的CSI报告的第一部分和第二部分中包含的信息均可以视为专有信息。
由于上文中已经对一个极化方向的情况下的上述设计分别做了详细说明,对于2极化方向的情况,其具体的设计和开销与上文所述相似,为了简洁,这里不再赘述。
对于多个传输层而言,终端设备可以分别对每个传输层生成一个与传输层对应的指示信息。例如,对于对应传输层对应,该指示信息可以为与第一传输层对应的指示信息;与第二传输层对应,该指示信息可以为与第二传输层对应的指示信息;以此类推,这里不再一一列举。
与多个传输层对应的指示信息中个,多个传输层上的分量信息可以是相同的,也可以是不同的;多个传输层上的系数信息可以是不同的。
若多个传输层上的分量信息相同,则该多个传输层可以共用同一分量信息,该分量信息在与多个传输层对应的多个指示信息中可以仅指示一次。此情况下,可以将该分量信息视为公共信息。为便于与上文所述的极化方向间公共信息区分,下文将该公共信息称为传输层间公共信息。传输层间公共信息可以视为与多个传输层对应的多个指示信息的公共部分。
若多个传输层方向上的分量信息不同,则与多个传输层对应的指示信息可以基于该多个传输层分别生成分量信息。此情况下,可以将该分量信息视为专有信息。
若多个传输层方向上的系数信息不同,则该第一指示信息可以基于该多个传输层可以分别指示系数信息。此情况下,可以将该系数信息视为专有信息。
关于分量信息中的哪些信息可能作为公共信息的相关描述在上文中多个极化方向的相关部分做了详细说明。在多个传输层的情况下,终端设备也可以基于上文描述,将分量信息中的部分或全部信息作为公共信息,为了简洁,这里不再赘述。
可选地,在一个CSI报告中,当与多个传输层对应的多个指示信息间不存在传输层间公用信息时,与多个传输层对应的多个指示信息中的专有信息按照传输层的顺序依次排 列。
可选地,传输层间公共信息的优先级可以高于专有信息的优先级。
即,在一个CSI报告中,当与多个传输层对应的多个指示信息间存在传输层间公共信息时,该传输层间公共信息可以位于CSI报告相应部分的最前面。或者说,在一个CSI报告中,传输层间公共信息可以位于专有信息之前。
通常情况下,多个传输层间可以共用分量信息的部分或全部,但各传输层的加权系数彼此各不相同。在本实施例中,每个CSI报告的第一部分可以包括与多个传输层对应的部分专有信息,每个CSI报告的第二部分可以包括传输层间公共信息以及与多个传输层对应的另一部分专有信息。
其中,可作为CSI报告的第一部分的专有信息和第二部分的专有信息例如可以基于上文中表四或表五中的多种设计中的一种确定,可作为CSI报告的第二部分的公共信息例如可以是上文中分量信息a)、b)、c)或d)中与第一部分对应的公共分量信息。此外,CSI报告的第二部分还可以包括专有分量信息。
图3示出了本申请实施例提供的CSI报告的第一部分的示意图。如图3所示,终端设备可以按照传输层的顺序依次排列与各传输层对应的可作为CSI报告的第一部分的专有信息。
图4至图7示出了本申请实施例提供的CSI报告的第二部分的示意图。
如图所示,公共信息可以位于CSI报告中第二部分的最前面,或者,第二部分中用于承载PMI的位置的最前面。在此之后,可以分别依次放入与每个传输层对应的专有信息,例如可以包括专有分量信息和系数信息。终端设备可以按照传输层的顺序依次排列与各传输层对应的可作为CSI报告的第二部分的专有信息。
进一步可选地,专有分量信息的优先级高于系数信息的优先级。
即,在一个CSI报告中,与多个传输层对应的多个指示信息中的专有信息中,分量信息可以处于系数信息之前。
例如,在与各个传输层对应的指示信息中,专有分量信息可以位于系数信息之前,如图4所示。又例如,在同一个CSI报告所包括的与多个传输层对应的指示信息中,与多个传输层对应的专有分量信息可以位于与多个传输层对应的系数信息之前,如图5所示。
更进一步地,量化比特数较多的系数信息的优先级高于量化比特数较少的系数信息的优先级。
在本实施例中,第一级别的系数信息可以位于第二级别的系数信息之前,第二级别的系数信息可以位于第三级别的系数信息之前。
例如,对图4和图5所示的CSI报告的第二部分进一步扩展,在与各个传输层对应的指示信息中,专有分量信息可以位于系数信息之前,且第一级别的系数信息位于第二级别的系数信息之前,第二级别的系数信息位于第三级别的系数信息之前,可得到如图6和图7所示的CSI报告的第二部分。
图6示出的CSI报告的第二部分中,按照传输层的顺序对第0个传输层、第1个传输层至第R-1个传输层的专有信息依次排列。每个传输层的专有信息中,按照由专有分量信息、第一级别的系数信息、第二级别的系数信息至第三级别的系数信息的顺序依次排列。
图7示出的CSI报告的第二部分中,先按照由专有分量信息、第一级别的系数信息、 第二级别的系数信息至第三级别的系数信息的顺序依次排列第0个传输层的专有信息;再按照由专有分量信息、第一级别的系数信息、第二级别的系数信息至第三级别的系数信息的顺序依次排列第1个传输层的专有信息;以此类推,最后按照由专有分量信息、第一级别的系数信息、第二级别的系数信息至第三级别的系数信息的顺序依次排列第R-1个传输层的专有信息。
应理解,图中仅为便于理解而示出了CSI报告的第一部分和第二部分中的与PMI相关的部分信息,而并未全部示出。因此,图中示出的信息不应对本申请构成任何限定。CSI报告的第一部分还可以包括RI、CQI和LI中的一项或多项,例如可以位于PMI之前或之后,本申请对此不作限定。CSI报告的第二部分也可以不包括各传输层的专有分量信息,此时,各传输层的系数信息可位于传输层间共同信息之后;或者,CSI报告的第二部分也可以不包括传输层间公共信息,此时,各传输层的专有分量信息和系数信息可按照如图4至图7中所示的优先级顺序依次排列;CSI报告的第二部分还可以包括其他信息,例如可以位于PMI之前或之后,本申请对此不作限定。
还应理解,上文中结合附图详细说明了多个传输层的情况下CSI报告的第一部分和第二部分的具体设计。图中示出的各信息的排列顺序可理解为其对应的比特序列在由一个CSI报告生成的比特序列中的先后顺序。终端设备可以按照上述列举的各信息的排列顺序对相应的比特序列进行编码。相应地,网络设备也可以按照上述列举的各信息的排列顺序对相应的比特序列进行译码。
还应理解,上文列举的对于多个极化方向、多个传输层中各信息的排列顺序的设计仅为本申请实施例提供的几种可能的示例,而不应对本申请构成任何限定。例如,当与一个传输层对应的多个第一指示信息间存在极化方向间公共信息时,该极化方向间公共信息可以位于CSI报告相应部分的最前面。例如,在传输层间公共信息之后的各传输层的专有信息中,可以依次放入与各传输层对应的指示信息。在与一个传输层对应的指示信息中,将极化方向间公共信息放在最前面,随后放入与每个极化方向对应的专有信息。换句话说,传输层间公共信息的优先级高于极化方向间公共信息的优先级,且极化方向间公共信息的优先级可以高于专有信息的优先级。
如前所述,终端设备可以在一次CSI上报中发送一个或多个CSI报告。在上报多个CSI报告的情况下,终端设备可以按照预先定义的CSI报告的优先级顺序,分别生成各CSI报告的第一部分的比特序列和各CSI报告的第二部分的比特序列。由多个CSI报告的第一部分生成的比特序列可以记作第一序列,该多个CSI报告的第一部分在第一序列中的排列顺序即可以为上文所述的CSI报告的优先级顺序;由多个CSI报告的第二部分生成的比特序列可以记作第二序列,该多个CSI报告的第二部分在第二序列中的排列顺序即可以为上文所述的CSI报告的优先级顺序。终端设备可以分别对第一序列和第二序列中的比特序列的排列顺序进行编码。相应地,网络设备也可以分别根据第一序列和第二序列中的比特序列的排列顺序进行译码。
其中,CSI报告的优先级顺序例如可以根据网络设备配置的CSI上报标识(CSI reporting ID)确定。即,可以根据各CSI报告的CSI reporting ID的顺序对多个CSI报告进行排序。终端设备和网络设备可以基于相同的排序进行编码和译码。
应理解,基于多个CSI上报标识来确定多个CSI报告的优先级顺序仅为一种可能的实 现方式,不应对本申请构成任何限定。
图8至图12是本申请实施例提供的多个CSI报告的示意图。具体地,图8至图12分别示出了J(J>1,且为正整数)个CSI报告的第一部分和第二部分。该J个CSI报告可以分别包括CSI报告#0、CSI报告#1至CSI报告#J-1。其中,图8示出了该J个CSI报告的第一部分。图9至图12示出了该J个CSI报告的第二部分。
需要说明的是,该J个CSI报告中,所上报的传输层数并不一定相同,例如,对于CSI报告#0,传输层数可以是R 0;对于CSI报告#1,传输层数可以是R 1;以此类推,对于CSI报告#J-1,传输层数可以是R J-1。其中,R 0、R 1至R J-1均为正整数,R 0、R 1至R J-1中的任意两个可以相同,也可以不同,本申请对此不作限定。
应理解,图中仅为便于示意,示出了如图3至7中所示的排列顺序生成多个CSI报告的示例。但这不应对本申请构成任何限定。任意两个CSI报告的具有相同名称的各部分信息的长度可以相同,也可以不同,本申请对此不作限定。例如,图9至图12中CSI报告#0中传输层间公共信息和CSI报告#1中传输层间公共信息的比特长度可以是相同的,也可以是不同的。又例如,图8中CSI报告#1中第0个传输层专有信息的比特长度和CSI报告#J-1中第0个传输层专有信息的比特长度可以是相同的,也可以是不同的。为了简洁,这里不再一一举例说明。
此外,图8中为了示例,示出了CSI报告的第一部分包括RI、CQI、LI和PMI的情况,但这不应对本申请构成任何限定。该CSI报告可以仅包括其中的一项或多项,本申请对此不作限定。例如,该CSI报告的第一部分可以仅包括RI、CQI、LI和PMI中的一项或多项。
还应理解,图4至图7以及图9至图12示出的CSI报告的第二部分中,各附图按照从左到右的顺序优先级由高到低排列。协议可以预先定义各信息的优先级顺序,例如可以为图4至图7以及图9至图12中的一种,以便于终端设备基于该优先级顺序,生成与该优先级顺序相应的CSI报告的第二部分。
需要说明的是,当网络设备调度的上行资源,如PUCCH或PUSCH,不足而导致无法传输PMI中的所有信息,则终端设备可以按照优先级由低到高的顺序依次丢弃CSI报告的第二部分中的PMI的部分或全部信息。
应理解,有关编码和译码的具体过程可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
网络设备在接收到来自终端设备的CSI报告后,可以基于该CSI报告中的PMI,确定与各频域单元对应的预编码矩阵。
具体地,以确定第n f个频域单元的预编码矩阵为例。首先,网络设备可以基于与同一个传输层上每个极化方向对应的第一指示信息,确定与一个传输层中第n f个频域单元对应的预编码向量。网络设备可进一步基于多个传输层对应的指示信息,确定每个传输层上第n f个频域单元对应的预编码向量,进而确定与第n f个对应的预编码矩阵。
在本实施例中,假设极化方向数为2。2个极化方向可以共用相同的分量信息。
对应于实现方式一,网络设备可以根据以下公式确定第n f个频域单元的预编码向量
Figure PCTCN2019110939-appb-000114
Figure PCTCN2019110939-appb-000115
其中,γ 1为归一化系数,γ 1>0;
Figure PCTCN2019110939-appb-000116
表示L个波束向量中的第l个波束向量;
Figure PCTCN2019110939-appb-000117
Figure PCTCN2019110939-appb-000118
的共轭,
Figure PCTCN2019110939-appb-000119
表示K个频域向量中的第k个频域向量
Figure PCTCN2019110939-appb-000120
中的第n f个元素;c l,k表示第一极化方向上与第l个波束向量和第k个频域向量对应的加权系数;c l+L,k表示第二极化方向上与第l个波束向量和第k个频域向量对应的加权系数。
进一步地,网络设备可以根据以下公式确定第r个传输层上第n f个频域单元的预编码向量
Figure PCTCN2019110939-appb-000121
Figure PCTCN2019110939-appb-000122
其中,η 1为归一化系数,η 1>0;
Figure PCTCN2019110939-appb-000123
表示第r个传输层上L个波束向量中的第l个波束向量;
Figure PCTCN2019110939-appb-000124
Figure PCTCN2019110939-appb-000125
的共轭,
Figure PCTCN2019110939-appb-000126
表示第r个传输层上K个频域向量中的第k个频域向量
Figure PCTCN2019110939-appb-000127
中第n f个元素;c r,l,k表示第r个传输层的第一极化方向上与该第l个波束向量和第k个频域向量对应的加权系数;c r,l+L,k表示第r个传输层的第二极化方向上与该第l个波束向量和第k个频域向量对应的加权系数。
可以理解,当多个传输层共用相同的L个波束向量和K个频域向量时,上述波束向量
Figure PCTCN2019110939-appb-000128
可以简化为
Figure PCTCN2019110939-appb-000129
频域向量
Figure PCTCN2019110939-appb-000130
可以简化为
Figure PCTCN2019110939-appb-000131
对应于实现方式二,网络设备可以根据以下公式确定第n f个频域单元的预编码向量
Figure PCTCN2019110939-appb-000132
Figure PCTCN2019110939-appb-000133
其中,γ 2为归一化系数,γ 2>0;
Figure PCTCN2019110939-appb-000134
表示M个空频分量矩阵中的第m个空频分量矩阵中与第n f个频域单元对应的向量,或者,M个空频分量向量中的第m个空频分量向量中与第n f个频域单元对应的元素依次连接得到的向量;c m表示第一极化方向上与第m个空频分量矩阵或空频分量向量对应的加权系数,c m+M表示第二极化方向上与第m个空频分量矩阵或空频分量向量对应的加权系数。
进一步地,网络设备可以根据以下公式确定第r个传输层上第n f个频域单元的预编码向量
Figure PCTCN2019110939-appb-000135
Figure PCTCN2019110939-appb-000136
其中,η 2为归一化系数,η 2>0;
Figure PCTCN2019110939-appb-000137
表示第r个传输层上M个空频分量矩阵中的第m个空频分量矩阵中与第n f个频域单元对应的向量,或者,第r个传输层上M个空频分量向量中与第n f个频域单元对应的元素依次连接得到的向量;c r,m表示第r个传输层的第一极化方向上与第m个空频分量矩阵或空频分量向量对应的加权系数,c r,m+M表示第r个传输层的第二极化方向上与第m个空频分量矩阵或空频分量向量对应的加权系数。
对应于实现方式三,网络设备可以根据以下公式确定第n f个频域单元的预编码向量
Figure PCTCN2019110939-appb-000138
Figure PCTCN2019110939-appb-000139
其中,γ 3为归一化系数,γ 3>0;
Figure PCTCN2019110939-appb-000140
表示M个空频单元中的第m个空频单元对应的波束向量;
Figure PCTCN2019110939-appb-000141
Figure PCTCN2019110939-appb-000142
的共轭,
Figure PCTCN2019110939-appb-000143
表示M个空频单元中的第m个空频单元对应的频域向量
Figure PCTCN2019110939-appb-000144
中的第n f个元素;c m表示第一极化方向上与第m个空频单元对应的加权系数,c m+M表示第二极化方向上与第m个空频单元对应的加权系数。
进一步地,网络设备可以根据以下公式确定第r个传输层上第n f个频域单元的预编码向量
Figure PCTCN2019110939-appb-000145
Figure PCTCN2019110939-appb-000146
其中,η 3为归一化系数,η 3>0;
Figure PCTCN2019110939-appb-000147
表示第r个传输层上M个空频单元中的第m个空频单元对应的波束向量;
Figure PCTCN2019110939-appb-000148
Figure PCTCN2019110939-appb-000149
的共轭,
Figure PCTCN2019110939-appb-000150
表示第r个传输层上M个空频单元中的第m个空频单元中的频域向量
Figure PCTCN2019110939-appb-000151
中第n f个元素;c r,m表示第r个传输层的第一极化方向上与第m个空频单元对应的加权系数,c r,m+M表示第r个传输层的第二极化方向上与第m个空频单元对应的加权系数。
可以理解,当多个传输层共用相同的M个空频单元时,上述波束向量
Figure PCTCN2019110939-appb-000152
可以简化为
Figure PCTCN2019110939-appb-000153
频域向量
Figure PCTCN2019110939-appb-000154
可以简化为
Figure PCTCN2019110939-appb-000155
更进一步地,网络设备还可以根据各个传输层上第n f个频域单元的预编码向量,确定与第n f个频域单元对应的预编码矩阵如下:
Figure PCTCN2019110939-appb-000156
其中,μ为归一化系数,μ>0。
Figure PCTCN2019110939-appb-000157
表示与第r个传输层第n f个频域单元对应的预编码向量,r=0,1,……,R-1。
因此,本申请实施例通过频域向量来描述信道在频域上的变化规律,并通过一个或多个频域向量的线性叠加来模拟信道在频域上的变化,充分挖掘了频域单元之间的关系。通过利用频域的连续性,使用较少的频域向量来描述多个频域单元的变化规律。终端设备通过向网络设备指示一个或多个波束向量、一个或多个频域向量及其对应的加权系数,或者,向终端设备指示一个或多个空频单元及其对应的加权系数,以便于网络设备恢复近似度较高的预编码向量。相比与现有技术而言,无需基于每个频域单元独立地上报加权系数,在频域单元数量增加的情况下,并不会造成反馈开销的成倍增加。因此,可以在保证近似精度的基础上大大减小反馈开销。
应理解,上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图12详细说明了本申请实施例提供的指示和确定预编码向量的方法。以下,结合图13至图15详细说明本申请实施例提供的通信装置。
图13是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200中的终端设备,该通信装置1000可以包括用于执行图2中的方法200中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,通信单元1100可用于执行方法200中的步骤220,处理单元1200可用于执行方法200中的步骤210。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的通信单元1100可对应于图14中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图14中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200中的网络设备,该通信装置1000可以包括用于执行图2中的方法200中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
其中,当该通信装置1000用于执行图13中的方法300时,通信单元1100可用于执行方法200中的步骤220,处理单元1200可用于执行方法200中的步骤230。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应于图15中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200 可对应于图15中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
图14是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图13中的处理单元对应。
上述收发器2020可以与图13中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图14所示的终端设备2000能够实现图2所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图15是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元,与图13中的通信单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于 向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图13中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图15所示的基站3000能够实现图2的方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶 体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬 盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据 中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (80)

  1. 一种指示预编码向量的方法,其特征在于,包括:
    生成信道状态信息CSI报告,所述CSI报告用于指示M个空频单元以及所述M个空频单元中部分或全部空频单元的加权系数,所述M个空频单元中的每个空频单元对应一个波束向量和一个频域向量,所述M个空频单元中部分或全部空频单元的加权和用于确定一个或多个频域单元的预编码向量;
    发送所述CSI报告。
  2. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第二部分包括归一化空频单元的指示、与所述M个空频单元对应的M个加权系数中除所述归一化系数之外各加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  3. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第二部分包括与所述M个空频单元对应的M个加权系数中各加权系数的量化信息。
  4. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数指示,或,所述M个加权系数中除所述归一化系数之外幅度为零的加权系数的个数指示;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各加权系数的幅度的量化信息以及除所述归一化系数之外的幅度非零的加权系数的相位的量化信息,所述归一化空频单元与所述归一化系数对应。
  5. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数指示,或,所述M个加权系数中幅度为零的加权系数的个数指示;所述第二部分包括所述M个加权系数中各加权系数的幅度的量化信息以及各幅度非零的加权系数的相位的量化信息。
  6. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中除归一化系数之外各加权系数的幅度的量化信息;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的相位的量化信息,所述归一化空频单元与所述归一化系数对应。
  7. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中各加权系数的幅度的量化信息;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的相位的量化信息。
  8. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  9. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的量化信息。
  10. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除所述归一化系数之外的各加权系数的量化比特数;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  11. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数的量化比特数;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的量化信息。
  12. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;所述第二部分包括归一化空频单元的指示、除所述归一化系数之外的各幅度非零的加权系数的量化信息;其中,所述归一化空频单元与所述归一化系数对应,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  13. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置;所述第二部分包括各幅度非零的加权系数的量化信息;其中,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  14. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除所述归一化系数之外的各加权系数的量化比特数;所述第二部分包括归一化空频单元的指示、除所述归一化系数之外的各幅度非零的加权系数的量化信息;其中,所述归一化空频单元与所述归一化系数对应,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  15. 如权利要求1所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数所属的量化级别;所述第二部分包括各幅度非零的加权系数的量化信息;其中,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  16. 如权利要求2至11中任一项所述的方法,其特征在于,所述第二部分还包括所述M个空频单元的指示。
  17. 如权利要求12至15中任一项所述的方法,其特征在于,所述第二部分还包括所述L×K个空频单元的指示。
  18. 一种确定预编码向量的方法,其特征在于,包括:
    接收信道状态信息CSI报告,所述CSI报告用于指示M个空频单元以及所述M个空频单元中部分或全部空频单元的加权系数,所述M个空频单元中的每个空频单元对应一个波束向量和一个频域向量,所述M个空频单元中部分或全部空频单元的加权和用于确定一个或多个频域单元的预编码向量;
    根据所述CSI报告,确定一个或多个频域单元的预编码向量。
  19. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第二部分包括归一化空频单元的指示、与所述M个空频单元对应的M个加权系数中除所述归一化系数之外各加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  20. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第二部分包括与所述M个空频单元对应的M个加权系数中各加权系数的量化信息。
  21. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数指示,或,所述M个加权系数中除所述归一化系数之外幅度为零的加权系数的个数指示;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各加权系数的幅度的量化信息以及除所述归一化系数之外的幅度非零的加权系数的相位的量化信息,所述归一化空频单元与所述归一化系数对应。
  22. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数指示,或,所述M个加权系数中幅度为零的加权系数的个数指示;所述第二部分包括所述M个加权系数中各加权系数的幅度的量化信息以及各幅度非零的加权系数的相位的量化信息。
  23. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中除归一化系数之外各加权系数的幅度的量化信息;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的相位的量化信息,所述归一化空频单元与所述归一化系数对应。
  24. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中各加权系数的幅度的量化信息;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的相位的量化信息。
  25. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的量化 信息,所述归一化空频单元与所述归一化系数对应。
  26. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的量化信息。
  27. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除所述归一化系数之外的各加权系数的量化比特数;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  28. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数的量化比特数;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的量化信息。
  29. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;所述第二部分包括归一化空频单元的指示、除所述归一化系数之外的各幅度非零的加权系数的量化信息;其中,所述归一化空频单元与所述归一化系数对应,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  30. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置;所述第二部分包括各幅度非零的加权系数的量化信息;其中,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  31. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除所述归一化系数之外的各加权系数的量化比特数;所述第二部分包括归一化空频单元的指示、除所述归一化系数之外的各幅度非零的加权系数的量化信息;其中,所述归一化空频单元与所述归一化系数对应,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  32. 如权利要求18所述的方法,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数所属的量化级别;所述第二部分包括各幅度非零的加权系数的量化信息;其中,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  33. 如权利要求19至28中任一项所述的方法,其特征在于,所述第二部分还包括所 述M个空频单元的指示。
  34. 如权利要求29至32中任一项所述的方法,其特征在于,所述第二部分还包括所述L×K个空频单元的指示。
  35. 一种通信装置,其特征在于,包括:
    处理单元,用于生成信道状态信息CSI报告,所述CSI报告用于指示M个空频单元以及所述M个空频单元中部分或全部空频单元的加权系数,所述M个空频单元中的每个空频单元对应一个波束向量和一个频域向量,所述M个空频单元中部分或全部空频单元的加权和用于确定一个或多个频域单元的预编码向量;
    通信单元,发送所述CSI报告。
  36. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第二部分包括归一化空频单元的指示、与所述M个空频单元对应的M个加权系数中除所述归一化系数之外各加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  37. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第二部分包括与所述M个空频单元对应的M个加权系数中各加权系数的量化信息。
  38. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数指示,或,所述M个加权系数中除所述归一化系数之外幅度为零的加权系数的个数指示;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各加权系数的幅度的量化信息以及除所述归一化系数之外的幅度非零的加权系数的相位的量化信息,所述归一化空频单元与所述归一化系数对应。
  39. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数指示,或,所述M个加权系数中幅度为零的加权系数的个数指示;所述第二部分包括所述M个加权系数中各加权系数的幅度的量化信息以及各幅度非零的加权系数的相位的量化信息。
  40. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中除归一化系数之外各加权系数的幅度的量化信息;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的相位的量化信息,所述归一化空频单元与所述归一化系数对应。
  41. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中各加权系数的幅度的量化信息;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的相位的量化信息。
  42. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;所述第二部分包括归一化空频 单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  43. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的量化信息。
  44. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除所述归一化系数之外的各加权系数的量化比特数;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  45. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数的量化比特数;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的量化信息。
  46. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;所述第二部分包括归一化空频单元的指示、除所述归一化系数之外的各幅度非零的加权系数的量化信息;其中,所述归一化空频单元与所述归一化系数对应,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  47. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置;所述第二部分包括各幅度非零的加权系数的量化信息;其中,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  48. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除所述归一化系数之外的各加权系数的量化比特数;所述第二部分包括归一化空频单元的指示、除所述归一化系数之外的各幅度非零的加权系数的量化信息;其中,所述归一化空频单元与所述归一化系数对应,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  49. 如权利要求35所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数所属的量化级别;所述第二部分包括各幅度非零的加权系数的量化信息;其中,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  50. 如权利要求36至45中任一项所述的装置,其特征在于,所述第二部分还包括所述M个空频单元的指示。
  51. 如权利要求46至49中任一项所述的装置,其特征在于,所述第二部分还包括所述L×K个空频单元的指示。
  52. 一种通信装置,其特征在于,包括:
    通信单元,用于接收信道状态信息CSI报告,所述CSI报告用于指示M个空频单元以及所述M个空频单元中部分或全部空频单元的加权系数,所述M个空频单元中的每个空频单元对应一个波束向量和一个频域向量,所述M个空频单元中部分或全部空频单元的加权和用于确定一个或多个频域单元的预编码向量;
    处理单元,用于根据所述CSI报告,确定一个或多个频域单元的预编码向量。
  53. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第二部分包括归一化空频单元的指示、与所述M个空频单元对应的M个加权系数中除所述归一化系数之外各加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  54. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第二部分包括与所述M个空频单元对应的M个加权系数中各加权系数的量化信息。
  55. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数指示,或,所述M个加权系数中除所述归一化系数之外幅度为零的加权系数的个数指示;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各加权系数的幅度的量化信息以及除所述归一化系数之外的幅度非零的加权系数的相位的量化信息,所述归一化空频单元与所述归一化系数对应。
  56. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数指示,或,所述M个加权系数中幅度为零的加权系数的个数指示;所述第二部分包括所述M个加权系数中各加权系数的幅度的量化信息以及各幅度非零的加权系数的相位的量化信息。
  57. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中除归一化系数之外各加权系数的幅度的量化信息;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的相位的量化信息,所述归一化空频单元与所述归一化系数对应。
  58. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括与所述M个空频单元对应的M个加权系数中各加权系数的幅度的量化信息;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的相位的量化信息。
  59. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系 数中除归一化系数之外幅度非零的加权系数的个数和位置;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  60. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的量化信息。
  61. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除所述归一化系数之外的各加权系数的量化比特数;所述第二部分包括归一化空频单元的指示、所述M个加权系数中除所述归一化系数之外各幅度非零的加权系数的量化信息,所述归一化空频单元与所述归一化系数对应。
  62. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示与所述M个空频单元对应的M个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数的量化比特数;所述第二部分包括所述M个加权系数中各幅度非零的加权系数的量化信息。
  63. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置;所述第二部分包括归一化空频单元的指示、除所述归一化系数之外的各幅度非零的加权系数的量化信息;其中,所述归一化空频单元与所述归一化系数对应,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  64. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置;所述第二部分包括各幅度非零的加权系数的量化信息;其中,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  65. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中除归一化系数之外幅度非零的加权系数的个数和位置,以及除所述归一化系数之外的各加权系数的量化比特数;所述第二部分包括归一化空频单元的指示、除所述归一化系数之外的各幅度非零的加权系数的量化信息;其中,所述归一化空频单元与所述归一化系数对应,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  66. 如权利要求52所述的装置,其特征在于,所述CSI报告包括第一部分和第二部分,所述第一部分包括位图,所述位图用于指示L×K个加权系数中幅度非零的加权系数的个数和位置,以及各加权系数所属的量化级别;所述第二部分包括各幅度非零的加权系数的量化信息;其中,所述L×K个加权系数与L×K个空频单元对应,所述L×K个空频 单元中的部分空频单元的加权和用于确定一个或多个频域单元的预编码向量,L×K≥M。
  67. 如权利要求53至62中任一项所述的装置,其特征在于,所述第二部分还包括所述M个空频单元的指示。
  68. 如权利要求63至66中任一项所述的装置,其特征在于,所述第二部分还包括所述L×K个空频单元的指示。
  69. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至17中任一项所述的方法。
  70. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求18至34中任一项所述的方法。
  71. 一种通信装置,其特征在于,所述装置用于实现如权利要求1至17中任一项所述的方法。
  72. 一种通信装置,其特征在于,所述装置用于实现如权利要求18至34中任一项所述的方法。
  73. 一种处理装置,其特征在于,包括:
    处理器,所述处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至17中任一项所述的方法。
  74. 一种处理装置,其特征在于,包括:
    处理器,所述处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求18至34中任一项所述的方法。
  75. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求1至17中任一项所述的方法。
  76. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求18至34中任一项所述的方法。
  77. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至17中任一项所述的方法。
  78. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求18至34中任一项所述的方法。
  79. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至17中任一项所述的方法。
  80. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求18至34中任一项所述的方法。
PCT/CN2019/110939 2018-10-27 2019-10-14 指示和确定预编码向量的方法以及通信装置 WO2020083057A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19876470.6A EP3866347A4 (en) 2018-10-27 2019-10-14 PROCESS FOR INDICATION AND DETERMINATION OF A PRECODING VECTOR AND COMMUNICATION DEVICE
JP2021523305A JP7248793B2 (ja) 2018-10-27 2019-10-14 プリコーディングベクトル指示方法、プリコーディングベクトル決定方法、および通信装置
BR112021007889-4A BR112021007889A2 (pt) 2018-10-27 2019-10-14 método de indicação de vetor de pré-codificação, método de determinação de vetor de pré-codificação, e aparelho de comunicações
US17/241,165 US20210250076A1 (en) 2018-10-27 2021-04-27 Precoding vector indication method, precoding vector determining method, and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811263110.1 2018-10-27
CN201811263110.1A CN111106857B (zh) 2018-10-27 2018-10-27 指示和确定预编码向量的方法以及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/241,165 Continuation US20210250076A1 (en) 2018-10-27 2021-04-27 Precoding vector indication method, precoding vector determining method, and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020083057A1 true WO2020083057A1 (zh) 2020-04-30

Family

ID=70331859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110939 WO2020083057A1 (zh) 2018-10-27 2019-10-14 指示和确定预编码向量的方法以及通信装置

Country Status (6)

Country Link
US (1) US20210250076A1 (zh)
EP (1) EP3866347A4 (zh)
JP (1) JP7248793B2 (zh)
CN (2) CN111106857B (zh)
BR (1) BR112021007889A2 (zh)
WO (1) WO2020083057A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839698A (zh) * 2021-09-24 2021-12-24 Oppo广东移动通信有限公司 一种量化方法及通信装置、存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070374B (zh) 2018-11-02 2024-04-16 中兴通讯股份有限公司 一种csi反馈及接收方法、装置、存储介质
EP4066534A4 (en) * 2020-06-24 2023-08-09 ZTE Corporation HANDLING CONFIGURATIONS FOR REPORTING CHANNEL STATE INFORMATION
CN114070436A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种信道测量方法和通信装置
WO2024026882A1 (zh) * 2022-08-05 2024-02-08 富士通株式会社 信道状态信息的反馈方法、数据发送方法、装置和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840907A (zh) * 2012-11-20 2014-06-04 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备
CN105322994A (zh) * 2014-08-05 2016-02-10 上海贝尔股份有限公司 一种进行3d波束成形的方法、装置和系统
US20170264414A1 (en) * 2015-10-23 2017-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic Precoding of Shared Reference Signals
CN107872253A (zh) * 2016-09-27 2018-04-03 华为技术有限公司 波束跟踪方法、设备及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835326B1 (ko) * 2010-09-26 2018-03-07 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 효율적인 피드백 방법 및 장치
US9094834B2 (en) * 2012-09-11 2015-07-28 Microsoft Technology Licensing, Llc White space utilization
CN104639218B (zh) * 2013-11-11 2018-06-22 南京中兴软件有限责任公司 一种信道信息获取的方法、装置
EP3197067A1 (en) * 2014-07-31 2017-07-26 Huawei Technologies Co. Ltd. Data transmission method and apparatus
EP3188393B1 (en) * 2014-09-19 2019-04-17 Huawei Technologies Co., Ltd. Multiplexing method for multiple users, base station, and user terminal
CN107005362A (zh) * 2015-09-25 2017-08-01 华为技术有限公司 一种信道状态信息上报的方法及装置和一种电子设备
KR102150316B1 (ko) * 2016-04-01 2020-09-01 후아웨이 테크놀러지 컴퍼니 리미티드 프리코딩 행렬 표시를 위한 피드백 방법 및 장치
CN108024375B (zh) * 2016-11-04 2020-12-15 华为技术有限公司 一种用于数据传输的方法和装置
EP3358756A1 (en) * 2017-02-02 2018-08-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beamforming codebook adaption to antenna array imperfections
US10256887B2 (en) * 2017-03-23 2019-04-09 Qualcomm Incorporated Differential channel state information (CSI) reporting for higher resolution CSI
CN108809372B (zh) * 2017-04-26 2021-05-11 华为技术有限公司 一种指示及确定预编码向量的方法和设备
WO2019028878A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated TECHNIQUES FOR NON-NULL POWER BEAMS IN WIRELESS SYSTEMS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840907A (zh) * 2012-11-20 2014-06-04 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备
CN105322994A (zh) * 2014-08-05 2016-02-10 上海贝尔股份有限公司 一种进行3d波束成形的方法、装置和系统
US20170264414A1 (en) * 2015-10-23 2017-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic Precoding of Shared Reference Signals
CN107872253A (zh) * 2016-09-27 2018-04-03 华为技术有限公司 波束跟踪方法、设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3866347A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839698A (zh) * 2021-09-24 2021-12-24 Oppo广东移动通信有限公司 一种量化方法及通信装置、存储介质
CN113839698B (zh) * 2021-09-24 2022-07-26 Oppo广东移动通信有限公司 一种量化方法及通信装置、存储介质

Also Published As

Publication number Publication date
JP2022511658A (ja) 2022-02-01
EP3866347A1 (en) 2021-08-18
CN115225125A (zh) 2022-10-21
CN111106857A (zh) 2020-05-05
EP3866347A4 (en) 2021-12-01
US20210250076A1 (en) 2021-08-12
CN111106857B (zh) 2022-05-24
JP7248793B2 (ja) 2023-03-29
BR112021007889A2 (pt) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2020038154A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020125510A1 (zh) 一种信道测量方法和通信装置
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
CN112636802B (zh) 指示预编码向量的方法和装置、通信装置及计算机可读存储介质
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
WO2020143577A1 (zh) 参数配置方法和通信装置
WO2020125511A1 (zh) 一种信道测量方法和通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
CN111757382B (zh) 指示信道状态信息的方法以及通信装置
WO2020244496A1 (zh) 一种信道测量方法和通信装置
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
CN110875767B (zh) 指示和确定预编码向量的方法和通信装置
CN113557684B (zh) 用于构建预编码向量的向量指示方法以及通信装置
WO2020073788A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020135101A1 (zh) 用于构建预编码向量的向量指示方法以及通信装置
WO2020078251A1 (zh) 指示和确定预编码向量的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021007889

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019876470

Country of ref document: EP

Effective date: 20210512

ENP Entry into the national phase

Ref document number: 112021007889

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210426