WO2020125510A1 - 一种信道测量方法和通信装置 - Google Patents

一种信道测量方法和通信装置 Download PDF

Info

Publication number
WO2020125510A1
WO2020125510A1 PCT/CN2019/124505 CN2019124505W WO2020125510A1 WO 2020125510 A1 WO2020125510 A1 WO 2020125510A1 CN 2019124505 W CN2019124505 W CN 2019124505W WO 2020125510 A1 WO2020125510 A1 WO 2020125510A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
delay
precoding
vectors
angle
Prior art date
Application number
PCT/CN2019/124505
Other languages
English (en)
French (fr)
Inventor
种稚萌
金黄平
尹海帆
毕晓艳
范利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19899982.3A priority Critical patent/EP3883135A4/en
Publication of WO2020125510A1 publication Critical patent/WO2020125510A1/zh
Priority to US17/347,903 priority patent/US11689256B2/en
Priority to US17/982,239 priority patent/US11811471B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of wireless communication, and more specifically, to a channel measurement method and a communication device.
  • massive multiple-input multiple-input massive MIMO
  • network equipment can reduce interference between multiple users and interference between multiple signal streams of the same user through precoding. It is beneficial to improve signal quality, realize space division multiplexing, and improve spectrum utilization.
  • the terminal device may determine the precoding matrix based on downlink channel measurement, for example, and hopes that through feedback, the network device obtains a precoding matrix that is the same as or similar to the precoding matrix determined by the terminal device. Specifically, for example, the terminal device may indicate the precoding matrix by feeding back one or more beam vectors and their weighting coefficients.
  • the feedback of the terminal device please refer to the type II (type II) codebook feedback method defined in the new radio (NR) protocol TS38.214.
  • the present application provides a channel measurement method and a communication device, with a view to reducing feedback overhead.
  • a channel measurement method is provided.
  • the method may be executed by the terminal device, or may be executed by a chip configured in the terminal device.
  • the method includes: receiving a precoding reference signal, which is obtained by precoding the reference signal based on K angle vectors and L delay vectors; generating first indication information, which is used to Indicating P weighting coefficients corresponding to P angle delay pairs, the P weighting coefficients being determined by the precoding reference signal, the P angle delay pairs and their corresponding P weighting coefficients are used to determine the precoding matrix;
  • Each angular delay pair of the P angular delay pairs includes an angular vector of K angular vectors and a delay vector of L delay vectors, and P, K, and L are all positive integers; send this The first instruction.
  • the network device may precode the downlink reference signal based on the predetermined angle and delay, so that the terminal device performs downlink channel measurement according to the precoded reference signal. Since the network device pre-codes the reference signal based on the predetermined angle and delay, the terminal device does not need to feed back the vectors in the spatial and frequency domains (such as the above-mentioned angle vectors and delay vectors), and only needs to feedback the delays of each angle. The corresponding weighting coefficient greatly reduces the feedback overhead of the terminal device. In addition, by precoding the reference signal, it is equivalent to predetermining the vectors in the space and frequency domains that can be used to construct the precoding matrix, which simplifies the downlink channel measurement process of the terminal device and reduces the terminal device's channel measurement process.
  • the precoding matrix is constructed by linearly superimposing multiple vectors in the space and frequency domains, so that the precoding matrix determined by the network device can be adapted to the downlink channel, thereby reducing feedback overhead while still ensuring high Accuracy of feedback.
  • the number of ports of the reference signal can be reduced, thereby reducing pilot overhead.
  • the method further includes: receiving second indication information, where the second indication information is used to configure one or more reference signal resources, and the one or more reference signals The resources are used to carry precoded reference signals; wherein the precoded reference signals carried on the same reference signal resource correspond to one or more ports, and in the case where the second indication information configures multiple reference signal resources, each reference signal resource The angular delay pairs corresponding to the precoded reference signals carried on the channel are different from each other, and the reference signal resources do not overlap with each other in the frequency domain and/or time domain.
  • the network device may configure one or more reference signal resources based on the existing configuration method of reference signal resources.
  • the reference signals carried on the one or more reference resources can be used for channel measurement.
  • the number of ports corresponding to the precoded reference signal carried on each reference signal resource may be calculated in units of RB. Therefore, the precoded reference signals carried on different reference signal resources may correspond to different angle vectors and/or delay vectors.
  • the port numbers corresponding to the precoding reference signals carried on different reference signal resources may be the same or different, which is not limited in this application.
  • the method further includes: receiving third indication information, where the third indication information is used to configure a reference signal resource, and the reference signal resource is used to carry a precoding reference Signals, and the port numbers corresponding to the precoded reference signals carried on at least two resource blocks (RBs) in the reference signal resources are different.
  • the third indication information is used to configure a reference signal resource
  • the reference signal resource is used to carry a precoding reference Signals
  • the port numbers corresponding to the precoded reference signals carried on at least two resource blocks (RBs) in the reference signal resources are different.
  • the network device may also adopt a different reference resource configuration manner from the existing one, and configure one reference signal resource for the precoding reference signals corresponding to multiple angle vectors and multiple delay vectors.
  • the number of ports corresponding to the precoded reference signal carried on the reference signal resource may be calculated across RBs. Therefore, at least two pre-coded reference signals carried by RBs on the same reference signal resource may correspond to different delay vectors and/or angle vectors. On the same reference signal resource, different delay vectors and/or angle vectors can be distinguished by different port numbers.
  • the method further includes: receiving fourth indication information, where the fourth indication information is used to indicate the number M of frequency domain groups, and each of the M frequency domain groups
  • the frequency domain group includes multiple RBs, and the pre-coded reference signals of the same port carried on any two RBs of the same frequency domain group correspond to the same angular delay pair; M>1 and an integer.
  • different angle vectors and/or delay vectors can be loaded onto different frequency domain groups, thereby reducing the number of ports corresponding to the precoded reference signals carried on each RB.
  • the pilot overhead can be reduced.
  • a channel measurement method is provided.
  • the method may be executed by a network device, or may be executed by a chip configured in the network device.
  • the method includes: sending a precoding reference signal, which is obtained by precoding the reference signal based on K angle vectors and L delay vectors; receiving first indication information, which is used to Indicating P weighting coefficients corresponding to P angle delay pairs, the P weighting coefficients being determined by the precoding reference signal, the P angle delay pairs and their corresponding P weighting coefficients are used to determine the precoding matrix;
  • Each angular delay pair in the P angular delay pairs includes an angular vector in K angular vectors and a delay vector in L delay vectors, and P, K, and L are positive integers; according to this
  • the first indication information determines the precoding matrix.
  • the network device may precode the downlink reference signal based on the predetermined angle and delay, so that the terminal device performs downlink channel measurement according to the precoded reference signal. Since the network device pre-codes the reference signal based on the predetermined angle and delay, the terminal device does not need to feed back the vectors in the spatial and frequency domains (such as the above-mentioned angle vectors and delay vectors), and only needs to feedback the delays of each angle. The corresponding weighting coefficient greatly reduces the feedback overhead of the terminal device. In addition, by precoding the reference signal, it is equivalent to predetermining the vectors in the space and frequency domains that can be used to construct the precoding matrix, which simplifies the downlink channel measurement process of the terminal device and reduces the terminal device's channel measurement process.
  • the precoding matrix is constructed by linearly superimposing multiple vectors in the space and frequency domains, so that the precoding matrix determined by the network device can be adapted to the downlink channel, thereby reducing feedback overhead while still ensuring high Accuracy of feedback.
  • the number of ports of the reference signal can be reduced, thereby reducing pilot overhead.
  • the method further includes: sending second indication information, where the second indication information is used to configure one or more reference signal resources, and the one or more reference signals The resources are used to carry precoded reference signals; where the precoded reference signals carried on the same reference signal resource correspond to one or more ports, and in the case where the second indication information configures multiple reference signal resources, each reference signal resource The angular delay pairs corresponding to the precoded reference signals carried on the channel are different from each other, and the reference signal resources do not overlap with each other in the frequency domain and/or time domain.
  • the network device may configure one or more reference signal resources based on the existing configuration method of reference signal resources.
  • the reference signals carried on the one or more reference resources can be used for channel measurement.
  • the number of ports corresponding to the precoded reference signal carried on each reference signal resource may be calculated in units of RB. Therefore, the precoded reference signals carried on different reference signal resources may correspond to different angle vectors and/or delay vectors.
  • the port numbers corresponding to the precoding reference signals carried on different reference signal resources may be the same or different, which is not limited in this application.
  • the method further includes: sending third indication information, where the third indication information is used to configure a reference signal resource, and the reference signal resource is used to carry a precoding reference Signals, and the ports corresponding to the precoding reference signals carried on at least two RBs in the reference signal resource are different.
  • the network device may also adopt a different reference resource configuration manner from the existing one, and configure one reference signal resource for the precoding reference signals corresponding to multiple angle vectors and multiple delay vectors.
  • the number of ports corresponding to the precoded reference signal carried on the reference signal resource may be calculated across RBs. Therefore, at least two pre-coded reference signals carried by RBs on the same reference signal resource may correspond to different delay vectors and/or angle vectors. On the same reference signal resource, different delay vectors and/or angle vectors can be distinguished by different port numbers.
  • the method further includes: sending fourth indication information, where the fourth indication information is used to indicate the number M of frequency domain groups, and each of the M frequency domain groups
  • the frequency domain group includes multiple RBs, and the pre-coded reference signals of the same port carried on any two RBs of the same frequency domain group correspond to the same angular delay pair; M>1 and an integer.
  • different angle vectors and/or delay vectors can be loaded onto different frequency domain groups, thereby reducing the number of ports corresponding to the precoded reference signals carried on each RB.
  • the pilot overhead can be reduced.
  • each of the P weighting coefficients is based on an angle vector and a delay vector precoded precoded reference signal on multiple RBs The sum of multiple estimates obtained by channel estimation.
  • Each angular delay pair of the P angular delay pairs may include an angular vector of K angular vectors and a delay vector of L delay vectors.
  • the terminal device may perform channel estimation on multiple RBs based on the precoding reference signals corresponding to one angle vector and one delay vector, and sum the estimated multiple channel estimates to determine the angle vector and the delay vector.
  • the weighting coefficient is the weighting coefficient of the angle delay pair composed of the angle vector and the delay vector.
  • the K angle vectors and the L delay vectors are determined based on uplink channel measurement.
  • the network device By utilizing the reciprocity of the uplink and downlink channels, the network device loads the reciprocal angle and delay into the downlink reference signal to precompensate the downlink channel, so that the terminal device determines that it does not have a precoding reference signal based on the received Reciprocity of downlink channel information. Therefore, the measurement process of the downlink channel by the terminal device is simplified, and the calculation complexity of the terminal device in the channel measurement process is reduced.
  • a channel measurement method is provided.
  • the method may be executed by the terminal device, or may be executed by a chip configured in the terminal device.
  • the method includes: receiving a precoding reference signal that is obtained by precoding the reference signal based on L delay vectors; generating fifth indication information, where the fifth indication information is used to indicate corresponding to P P weighting coefficients of antenna delay pairs, the P weighting coefficients are determined by the precoding reference signal, the P antenna delay pairs and their corresponding P weighting coefficients are used to determine the precoding matrix; the P antenna time Each antenna delay pair in the delay pair includes one of the T transmit antenna ports and one of the L delay vectors, P, T, and L are all positive integers; the fifth Instructions.
  • the network device may precode the downlink reference signals on each transmit antenna port based on the predetermined delay, so that the terminal device performs downlink channel measurement according to the precoded reference signal. Since the network device pre-codes the reference signal based on the predetermined delay, the terminal device does not need to feed back the frequency domain vector (such as the above delay vector), but only needs to feed back the weighting coefficients corresponding to each antenna delay pair, greatly reducing The feedback overhead of the terminal equipment is reduced.
  • precoding the reference signal it is equivalent to determining the frequency domain vector that can be used to construct the precoding matrix in advance, which simplifies the downlink channel measurement process of the terminal device and reduces the calculation complexity of the terminal device in the channel measurement process degree.
  • the precoding matrix is constructed by linear superposition of multiple vectors in the frequency domain, so that the precoding matrix determined by the network device can be adapted to the downlink channel, thereby reducing feedback overhead while still ensuring high feedback Precision.
  • the method further includes: receiving second indication information, where the second indication information is used to configure one or more reference signal resources, and the one or more reference signals The resource is used to carry the precoding reference signal; wherein, the precoding reference signal carried on the same reference signal resource corresponds to one or more ports, and in the case where the second indication information configures multiple reference signal resources, each reference signal
  • the antenna delay pairs corresponding to the precoded reference signals carried on the resources are different from each other, and the reference signal resources do not overlap with each other in the frequency domain and/or time domain.
  • the network device may configure one or more reference signal resources based on the existing configuration method of reference signal resources.
  • the reference signals carried on the one or more reference resources can be used for channel measurement.
  • the number of ports corresponding to the precoded reference signal carried on each reference signal resource may be calculated in units of RB. Therefore, the precoded reference signals carried on different reference signal resources may correspond to different transmit antenna ports and/or delay vectors.
  • the port numbers corresponding to the precoding reference signals carried on different reference signal resources may be the same or different, which is not limited in this application.
  • the method further includes: receiving third indication information, where the third indication information is used to configure a reference signal resource, and the reference signal resource is used to carry a precoding reference Signal, and the port number corresponding to the precoding reference signal carried on at least two RBs in the reference signal resource is different.
  • the network device may also adopt a different reference resource configuration manner from the existing one, and configure one reference signal resource for the precoding reference signals corresponding to multiple angle vectors and multiple delay vectors.
  • the number of ports corresponding to the precoded reference signal carried on the reference signal resource may be calculated across RBs. Therefore, at least two RBs carrying precoded reference signals on the same reference signal resource may correspond to different transmit antenna ports and/or delay vectors. On the same reference signal resource, different transmit antenna ports and/or delay vectors can be distinguished by different port numbers.
  • the method further includes: receiving fourth indication information, where the fourth indication information is used to indicate the number M of frequency domain groups, and each of the M frequency domain groups
  • the frequency domain group includes multiple RBs, and the pre-coded reference signals of the same port carried on any two RBs of the same frequency domain group correspond to the same angular delay pair; M>1 and an integer.
  • a channel measurement method is provided.
  • the method may be executed by a network device, or may be executed by a chip configured in the network device.
  • the method includes: sending a precoding reference signal, which is obtained by precoding the reference signal based on L delay vectors; receiving the fifth indication information, where the fifth indication information is used to indicate that the corresponding P weighting coefficients of P antenna delay pairs, the P weighting coefficients are determined by the precoding reference signal, the P antenna delay pairs and their corresponding P weighting coefficients are used to determine the precoding matrix; the P antennas Each antenna delay pair in the delay pair includes one of the T transmit antenna ports and one of the L delay vectors. P, T, and L are all positive integers; Five instructions determine the precoding matrix.
  • the network device may precode the downlink reference signals on each transmit antenna port based on the predetermined delay, so that the terminal device performs downlink channel measurement according to the precoded reference signal. Since the network device pre-codes the reference signal based on the predetermined delay, the terminal device does not need to feed back the frequency domain vector (such as the above delay vector), but only needs to feed back the weighting coefficients corresponding to each antenna delay pair, greatly reducing The feedback overhead of the terminal equipment is reduced.
  • precoding the reference signal it is equivalent to determining the frequency domain vector that can be used to construct the precoding matrix in advance, which simplifies the downlink channel measurement process of the terminal device and reduces the calculation complexity of the terminal device in the channel measurement process degree.
  • the precoding matrix is constructed by linear superposition of multiple vectors in the frequency domain, so that the precoding matrix determined by the network device can be adapted to the downlink channel, thereby reducing feedback overhead while still ensuring high feedback Precision.
  • the method further includes: sending second indication information, where the second indication information is used to configure one or more reference signal resources, and the one or more reference signals The resources are used to carry precoded reference signals; where the precoded reference signals carried on the same reference signal resource correspond to one or more ports, and in the case where the second indication information configures multiple reference signal resources, each reference signal resource
  • the antenna delay pairs corresponding to the precoded reference signals carried on the network are different from each other, and the reference signal resources do not overlap each other in the frequency domain and/or time domain.
  • the network device may configure one or more reference signal resources based on the existing configuration method of reference signal resources.
  • the reference signals carried on the one or more reference resources can be used for channel measurement.
  • the number of ports corresponding to the precoded reference signal carried on each reference signal resource may be calculated in units of RB. Therefore, the precoded reference signals carried on different reference signal resources may correspond to different transmit antenna ports and/or delay vectors.
  • the port numbers corresponding to the precoding reference signals carried on different reference signal resources may be the same or different, which is not limited in this application.
  • the method further includes: sending third indication information, where the third indication information is used to configure a reference signal resource, and the reference signal resource is used to carry a precoding reference Signal, and the port number corresponding to the precoding reference signal carried on at least two RBs in the reference signal resource is different.
  • the network device may also adopt a different reference resource configuration manner from the existing one, and configure one reference signal resource for the precoding reference signals corresponding to multiple angle vectors and multiple delay vectors.
  • the number of ports corresponding to the precoded reference signal carried on the reference signal resource may be calculated across RBs. Therefore, at least two RBs carrying precoded reference signals on the same reference signal resource may correspond to different transmit antenna ports and/or delay vectors. On the same reference signal resource, different transmit antenna ports and/or delay vectors can be distinguished by different port numbers.
  • the method further includes: sending fourth indication information, where the fourth indication information is used to indicate the number M of frequency domain groups, and each of the M frequency domain groups
  • the frequency domain group includes multiple RBs, and the pre-coded reference signals of the same port carried on any two RBs of the same frequency domain group correspond to the same angular delay pair; M>1 and an integer.
  • each of the P weighting coefficients is based on a precoding reference signal sent by a transmit antenna port and obtained based on a delay vector precoding. The sum of multiple estimated values obtained by performing channel estimation on multiple RBs.
  • Each antenna delay pair in the P antenna delay pairs may include one transmission antenna port among T transmission antenna ports and one delay vector among L delay vectors.
  • the terminal device may perform channel estimation on multiple RBs based on the precoded reference signal corresponding to one transmit antenna port and one delay vector, and sum the multiple estimated channel estimates to determine the sum time with the transmit antenna port
  • the weighting coefficient corresponding to the extension vector is the weighting coefficient of the antenna delay pair composed of the transmitting antenna port and the delay vector.
  • the L delay vectors are determined by uplink channel measurement.
  • the reciprocal delay is loaded into the downlink reference signal to pre-compensate the downlink channel, so that the terminal device determines the non-reciprocal based on the received precoding reference signal Downstream channel information. Therefore, the measurement process of the downlink channel by the terminal device is simplified, and the calculation complexity of the terminal device in the channel measurement process is reduced.
  • the P weighting coefficients correspond to one receiving antenna.
  • the above first indication information and fifth indication information may be based on receiving antenna feedback.
  • the terminal device may feed back P weighting coefficients corresponding to each receiving antenna based on the received precoding reference signal.
  • the network device may reconstruct the downlink channel according to the weighting coefficient corresponding to each receiving antenna, and then determine the precoding matrix.
  • the P weighting coefficients correspond to one transmission layer.
  • the above-mentioned first indication information and fifth indication information may be feedback based on the transport layer.
  • the terminal device may determine the transmission layer based on the received precoding reference signal, and feed back P weighting coefficients based on each transmission layer.
  • the network device may directly determine the precoding matrix according to the weighting coefficient corresponding to each transmission layer.
  • a communication device including various modules or units for performing the method in the first aspect or the third aspect and any possible implementation manner of the first aspect or the third aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the first aspect or the third aspect and the method in any possible implementation manner of the first aspect or the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including various modules or units for performing the method in any one of the second aspect or the fourth aspect and any possible implementation manner of the second aspect or the fourth aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory, and may be used to execute instructions in the memory to implement the second aspect or the fourth aspect and the method in any possible implementation manner of the second aspect or the fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes any of the first aspect to the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect The method.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to a receiver
  • the signal output by the output circuit may be, for example but not limited to, output to and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit at different times, respectively.
  • the embodiments of the present application do not limit the specific implementation manner of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter to perform any of the first aspect to the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect Methods.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor are provided separately.
  • the memory may be non-transitory (non-transitory) memory, such as read-only memory (read only memory (ROM), which may be integrated with the processor on the same chip, or may be set in different On the chip, the embodiments of the present application do not limit the type of memory and the manner of setting the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processor may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the above tenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • a computer program product includes: a computer program (also may be referred to as code or instructions), which, when the computer program is executed, causes the computer to perform the first aspect to The method in the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect.
  • a computer program also may be referred to as code or instructions
  • a computer-readable medium that stores a computer program (also may be referred to as code or instructions) that when executed on a computer, causes the computer to perform the first aspect to The method in the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect.
  • a computer program also may be referred to as code or instructions
  • a communication system including the aforementioned network device and terminal device.
  • FIG. 1 is a schematic diagram of a communication system suitable for a channel measurement method according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a channel measurement method provided by an embodiment of the present application.
  • 3 to 7 are schematic diagrams of precoding reference signals carrying multiple ports on multiple RBs provided by embodiments of the present application;
  • FIG. 8 is a schematic flowchart of a channel measurement method according to another embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for a method of indicating a precoding vector according to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 can communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals. Therefore, the communication devices in the communication system 100, such as the network device 110 and the terminal device 120, can communicate through multi-antenna technology.
  • the network device in the communication system may be any device with a wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), wireless Network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., Home evolved NodeB , Or Home Node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node in wireless fidelity (WIFI) system, Transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR, gNB in the system, or, transmission point (TRP or TP), base station in 5G system
  • One or a group of antenna panels may be a network node that constitutes a gNB
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions, DU implements wireless chain Road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain Road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, or the CU may be divided into network devices in the core network (CN), which is not limited herein.
  • terminal equipment in the communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, and an augmented reality (augmented reality, AR) terminal Wireless terminals in equipment, industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( Wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding and examples.
  • the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the processing procedure of the downlink signal at the physical layer before transmission may be performed by a network device, or may be performed by a chip configured in the network device. For ease of explanation, they are collectively referred to as network devices below.
  • Network devices can process codewords on physical channels.
  • the codeword may be coded bits that have been coded (eg, including channel coding).
  • the codeword is scrambling to generate scrambling bits.
  • the scrambling bits undergo modulation mapping to obtain modulation symbols.
  • the modulation symbols are mapped to multiple layers (layers) through layer mapping, or transmission layers.
  • the modulation symbols after layer mapping are pre-coded to obtain pre-coded signals.
  • the pre-encoded signal is mapped to multiple REs after being mapped to resource elements (RE). These REs are then orthogonally multiplexed (orthogonal frequency division multiplexing, OFDM) modulated and transmitted through the antenna port.
  • OFDM orthogonally multiplexed
  • the network device can process the signal to be transmitted by means of a precoding matrix matching the channel state when the channel state is known, so that the precoded signal to be transmitted is adapted to the channel, thereby Reduce the complexity of the receiving device to eliminate the impact of the channel. Therefore, through the precoding process of the signal to be transmitted, the quality of the received signal (such as signal to interference plus noise ratio (SINR), etc.) can be improved. Therefore, by using precoding technology, transmission devices and multiple receiving devices can be transmitted on the same time-frequency resources, that is, multiple users, multiple inputs, and multiple outputs (MU-MIMO).
  • SINR signal to interference plus noise ratio
  • the sending device may also perform precoding in other ways. For example, when channel information (such as, but not limited to, channel matrix) cannot be obtained, pre-coding is performed using a pre-coding matrix or a weighting method set in advance. For the sake of brevity, the specific content of this article will not be repeated here.
  • channel information such as, but not limited to, channel matrix
  • TDD time division duplexing
  • the uplink and downlink channels transmit signals on different time domain resources on the same frequency domain resources.
  • the network device can measure the uplink channel according to the uplink reference signal, such as sounding reference signal (SRS).
  • SRS sounding reference signal
  • the downlink channel can be estimated according to the uplink channel, so that the precoding matrix used for downlink transmission can be determined.
  • the upstream and downstream channels do not have complete reciprocity.
  • the upstream channel is used to determine the downlink transmission.
  • the precoding matrix may not be able to adapt to the downlink channel.
  • the uplink and downlink channels in FDD mode still have partial reciprocity, for example, angle reciprocity and delay reciprocity. Therefore, angle and delay can also be called reciprocity parameters.
  • the transmitting antenna can pass through multiple paths to reach the receiving antenna.
  • Multipath delay causes frequency selective fading, which is the change of frequency domain channel.
  • Time delay is the transmission time of a wireless signal on different transmission paths. It is determined by the distance and speed, and has no relationship with the frequency domain of the wireless signal. When signals are transmitted on different transmission paths, there are different transmission delays due to different distances. Therefore, the uplink and downlink channels in FDD mode can be considered to be the same, or reciprocal.
  • the angle may refer to the angle of arrival (AOA) of the signal reaching the receiving antenna via the wireless channel, or the angle of departure (AOD) of the signal transmitted through the transmitting antenna.
  • the angle may refer to the angle of arrival of the uplink signal to the network device, or the angle of departure of the network device to transmit the downlink signal. Due to the reciprocity of the transmission paths of the upstream and downstream channels on different frequencies, the arrival angle of the upstream reference signal and the departure angle of the downstream reference signal can be considered to be reciprocal.
  • each angle can be characterized by an angle vector.
  • Each delay can be characterized by a delay vector. Therefore, in the embodiment of the present application, one angle vector may represent one angle, and one delay vector may represent one delay.
  • Reference signal reference signal
  • RS reference signal
  • pre-coded reference signal The reference signal may also be called a pilot, reference sequence, etc.
  • the reference signal may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (CSI-RS) for downlink channel measurement, or a sounding reference signal (SRS) for uplink channel measurement.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • the precoded reference signal may be a reference signal obtained by precoding the reference signal.
  • the precoding may specifically include beamforming and/or phase rotation.
  • the beamforming may be implemented by, for example, precoding the downlink reference signal based on one or more angle vectors
  • the phase rotation may be implemented, for example, by precoding the downlink reference signal by one or more delay vectors.
  • the reference signal obtained through precoding is called a precoding reference signal; the reference signal without precoding is simply referred to as a reference signal .
  • pre-coding the downlink reference signal based on one or more angle vectors may also be referred to as loading one or more angle vectors onto the downlink reference signal to achieve beamforming.
  • Precoding the downlink reference signal based on one or more delay vectors may also be referred to as loading one or more delay vectors onto the downlink reference signal to achieve phase rotation.
  • a port may refer to a transmitting antenna port.
  • the reference signal of each port may be a reference signal that has not been pre-encoded, or may be a pre-coded reference signal that is pre-encoded based on a delay vector.
  • Coded reference signal; port can also refer to the reference signal port after beamforming, for example, the reference signal of each port can be a precoded reference signal obtained by precoding the reference signal based on an angle vector, or it can be based on A precoded reference signal obtained by precoding the reference signal with an angle vector and a delay vector.
  • the signal of each port can be transmitted through one or more RBs.
  • the transmitting antenna port may refer to an actual independent transmitting unit (TxRU). It can be understood that, if the spatial domain precoding is performed on the reference signal, the number of ports may refer to the number of reference signal ports, and the number of reference signal ports may be smaller than the number of transmitting antenna ports.
  • TxRU transmitting unit
  • the transmit antenna port when referring to the transmit antenna port, it may refer to the number of ports that are not pre-coded in the spatial domain. That is, it is the actual number of independent transmission units.
  • ports when referring to ports, in different embodiments, it may refer to a transmit antenna port or a reference signal port. The specific meaning expressed by the port may be determined according to specific embodiments.
  • Angle vector It can be understood as a precoding vector used for beamforming the reference signal. Through beamforming, the transmitted reference signal can have a certain spatial directivity. Therefore, the process of precoding the reference signal based on the angle vector can also be regarded as a process of precoding in the spatial domain (or simply, spatial domain).
  • the number of ports of the precoded reference signal obtained after precoding the reference signal based on one or more angle vectors is the same as the number of angle vectors.
  • the number K of the angle vectors is smaller than the number T of the transmitting antennas, dimensionality reduction of the antenna ports can be achieved through spatial domain precoding, thereby reducing pilot overhead.
  • the length of the angle vector may be T, T is the number of transmit antenna ports in one polarization direction, T ⁇ 1, and T is an integer.
  • the angle vector is taken from a Discrete Fourier Transform (DFT) matrix.
  • DFT Discrete Fourier Transform
  • I 1 is the number of antenna ports in the same polarization direction included in each column (or row) in the antenna array
  • I 2 is the number of antenna ports in the same polarization direction included in each row (or column) in the antenna array.
  • T I 1 ⁇ I 2 .
  • O 1 and O 2 are oversampling factors. i 1 and i 2 satisfy 0 ⁇ i 1 ⁇ (O 1 ⁇ I 1 -1), 0 ⁇ i 2 ⁇ (O 2 ⁇ I 2 -1).
  • the angle vector is a uniform linear array (ULA) guide vector.
  • ULA uniform linear array
  • the steering vector can represent the phase difference of the angle of arrival of a path in the response of different antennas.
  • the angle vector is a uniform plane array (UPA) steering vector.
  • the steering vector may be, for example, a steering vector containing horizontal angle and pitch angle information.
  • ⁇ k is the horizontal angle, Is the pitch angle
  • u k is the unit spherical base vector corresponding to the k-th angle:
  • the transmitting antenna is a single-polarized antenna, and the number of transmitting antennas is T; the number of frequency domain units is N, N ⁇ 1, and N is an integer.
  • the channel may be a matrix with a dimension of N ⁇ T. If the reference signal is spatially precoded based on an angle vector, the angle vectors can be loaded onto the reference signal separately. Since the dimension of the angle vector is T ⁇ 1, for a receiving antenna, the dimension of the channel after precoding may be N ⁇ 1. That is, the received precoding reference signal may be expressed as a matrix of dimension N ⁇ 1.
  • the channel measured by the terminal device according to the received precoding reference signal is equivalent to the channel loaded with the angle vector.
  • loading the angle vector a( ⁇ k ) into the downlink channel V can be expressed as Va( ⁇ k ).
  • the dimension of the channel estimated based on the precoded reference signal may be 1 ⁇ 1.
  • angle vector is a form for representing an angle proposed in this application.
  • the angle vector is only named for the convenience of distinguishing from the delay vector, and should not constitute any limitation to this application. This application does not exclude the possibility of defining other names to mean the same or similar meanings in future agreements.
  • Delay vector The vector proposed in this application can be used to represent the changing law of the channel in the frequency domain. As mentioned earlier, multipath delay causes frequency selective fading. It can be known from the Fourier transform that the time delay of the signal in the time domain can be equivalent to the phase gradation in the frequency domain.
  • the signal can be transformed into the frequency domain by Fourier transform:
  • the signal can be transformed into the frequency domain by Fourier transform:
  • is the frequency variable, the phase rotation corresponding to different frequencies is different;
  • t and tt 0 represent time delay.
  • the law of the phase change of the channel in each frequency domain unit can be represented by a delay vector.
  • the delay vector can be used to represent the delay characteristics of the channel.
  • Precoding the reference signal based on the delay vector can essentially refer to the phase rotation of each frequency domain unit in the frequency domain based on the elements in the delay vector to pre-encode the frequency caused by the multipath delay by precoding the reference signal Select characteristics for pre-compensation. Therefore, the process of precoding the reference signal based on the delay vector can be regarded as the process of frequency domain precoding.
  • Precoding the reference signal based on different delay vectors is equivalent to performing phase rotation on each frequency domain unit of the channel based on different delay vectors. Moreover, the angle of phase rotation of the same frequency domain unit may be different. In order to distinguish different delays, the network device may pre-code the reference signal based on each of the L delay vectors.
  • each frequency domain unit includes only one RB for carrying a reference signal.
  • each frequency domain unit may include one or more RBs for carrying reference signals.
  • the network device may load the delay vector onto the multiple RBs for carrying reference signals in each frequency domain unit.
  • the length of the delay vector is N, and N is the number of RBs used to carry reference signals (for example, the precoding reference signals in this embodiment) in the frequency domain occupied bandwidth of the CSI measurement resource, N ⁇ 1, and N is an integer.
  • the delay vector is taken from the DFT matrix.
  • Each vector in the DFT matrix may be called a DFT vector.
  • O f is the over-sampling factor, O f ⁇ 1; k is the DFT vector index and satisfies 0 ⁇ k ⁇ O f ⁇ N-1 or 1-O f ⁇ N ⁇ k ⁇ 0.
  • the vector u k in b( ⁇ l ) and the DFT matrix can satisfy:
  • the delay vector is denoted as b( ⁇ l ).
  • the bandwidth occupied by the CSI measurement resource in the frequency domain may be understood as a bandwidth used for transmitting a reference signal, and the reference signal may be a reference signal used for channel measurement, such as CSI-RS.
  • the signaling for indicating the frequency domain occupied bandwidth of the CSI measurement resource may be, for example, a CSI occupied bandwidth range (CSI-Frequency Occupation).
  • the bandwidth occupied by the CSI measurement resource in the frequency domain may also be called a pilot transmission bandwidth or a measurement bandwidth.
  • the frequency domain occupied bandwidth of the CSI measurement resource is simply referred to as the measurement bandwidth.
  • the length of the delay vector N is only a possible design, and should not constitute any limitation to this application.
  • the lengths of different delay vectors will be defined below in combination with different embodiments. For the time being, detailed descriptions thereof will be omitted.
  • the transmitting antenna is a single-polarized antenna
  • the number of transmitting antennas is T; the number of RBs is N.
  • the downlink channel can be expressed as a matrix of dimension N ⁇ T. If the reference signal is pre-coded in the frequency domain based on the delay vector, the N elements in the delay vector may be respectively loaded on the reference signals carried on the N RBs.
  • the channel measured by the terminal device according to the received precoding reference signal is equivalent to the channel loaded with the delay vector.
  • loading the nth element in the delay vector onto the channel V (n) on the nth RB can be expressed as It should be noted that the frequency domain precoding of the reference signal based on the delay vector may be performed before resource mapping or may be performed after resource mapping, which is not limited in this application.
  • the delay vector is a form for expressing delay proposed in this application.
  • the delay vector is named only for the convenience of distinguishing it from the angle vector, and should not constitute any limitation to this application. This application does not exclude the possibility of defining other names to mean the same or similar meanings in future agreements.
  • Frequency domain unit A unit of frequency domain resources, which can represent different frequency domain resource granularities.
  • the frequency domain unit may include, for example but not limited to, a subband (subband), a resource block (RB), a resource block group (RBG), a precoding resource block group (precoding resource block (PRG), etc.).
  • the network device may determine the precoding matrix corresponding to each frequency domain unit based on the feedback of the terminal device.
  • Angle delay pair It can be a combination of an angle vector and a delay vector.
  • Each angular delay pair may include an angle vector and a delay vector.
  • the angle vector and/or delay vector included in any two angular delay pairs are different.
  • each angular delay pair can be uniquely determined by an angle vector and a delay vector.
  • the angular delay pair can be understood as the expression form of the basic unit of space frequency determined by an angle vector and a delay vector, but it is not necessarily the only expression form. For example, it can also be expressed as a space-frequency component matrix, a space-frequency component vector, etc. described below.
  • Space frequency component matrix A space frequency component matrix can be determined by an angle delay pair. In other words, a space frequency component matrix can be uniquely determined by an angle vector and a delay vector. A space frequency component matrix and an angular delay pair can be converted to each other.
  • a space frequency component matrix can be determined by, for example, the product of the conjugate transpose of an angle vector and a delay vector, for example, a( ⁇ k ) ⁇ b( ⁇ l ) H , and its dimension can be T ⁇ N.
  • the space-frequency component matrix can be understood as another manifestation of the basic unit of space-frequency determined by an angle vector and a delay vector.
  • the space-frequency basic unit can also be represented as a space-frequency component vector, which is determined by the Kronecker product of an angle vector and a delay vector, for example.
  • the space frequency matrix is an intermediate quantity used to determine the precoding matrix.
  • the precoding matrix can usually be a matrix of dimension T ⁇ Z.
  • Z represents the number of transmission layers, Z ⁇ 1 and an integer.
  • the space frequency matrix may be determined based on each receiving antenna, or may be determined based on each transmission layer.
  • the space frequency matrix may be called a space frequency matrix corresponding to the receiving antenna.
  • the space frequency matrix corresponding to the receiving antenna can be used to construct the downlink channel matrix of each frequency domain unit, and then the precoding matrix corresponding to each frequency domain unit can be determined.
  • the channel matrix corresponding to a certain frequency domain unit may be, for example, a conjugate transpose of a matrix constructed from column vectors corresponding to the same frequency domain unit in the space frequency matrix corresponding to each receiving antenna.
  • the nth column vector in the space-frequency matrix corresponding to each receiving antenna is extracted, and the matrix with dimensions T ⁇ R can be obtained from the left to the right according to the order of receiving antennas, R represents the number of receiving antennas, R ⁇ 1 and an integer.
  • the channel matrix V (n) of the n-th frequency domain unit can be obtained. The relationship between the channel matrix and the space-frequency matrix will be described in detail below, and the detailed description of the relationship between the two will be omitted here for the time being.
  • the space frequency matrix may be called a space frequency matrix corresponding to the transmission layer.
  • the space frequency matrix corresponding to the transmission layer can be directly used to determine the precoding matrix corresponding to each frequency domain unit.
  • the precoding matrix corresponding to a certain frequency domain unit may be constructed by, for example, a column vector corresponding to the same frequency domain unit in the space frequency matrix corresponding to each transmission layer. For example, the n-th column vector in the space-frequency matrix corresponding to each transmission layer is extracted, and arranged in the order of the transmission layer from left to right to obtain a matrix of dimension T ⁇ Z, Z represents the number of transmission layers, Z ⁇ 1 and an integer. This matrix can be used as the precoding matrix W (n) of the n-th frequency domain unit.
  • the precoding matrix determined by the channel measurement method provided by the embodiment of the present application may be a precoding matrix directly used for downlink data transmission; or may undergo some beamforming methods, for example, including zero forcing (ZF) ), minimum mean square error (MMSE), maximum signal-to-leakage-and-noise (SLNR), etc. to obtain a precoding matrix that is ultimately used for downlink data transmission.
  • ZF zero forcing
  • MMSE minimum mean square error
  • SLNR maximum signal-to-leakage-and-noise
  • the precoding matrices involved in the following may all refer to the precoding matrix determined based on the channel measurement method provided in this application.
  • the space-frequency matrix may be determined by one or more angular delay pairs.
  • the space frequency matrix may be a weighted sum of one or more space frequency component matrices.
  • the space-frequency matrix can also be converted into a space-frequency vector, and the space-frequency vector can also be a weighted sum of one or more space-frequency component vectors.
  • the type II (type II) codebook feedback method is defined in NR protocol TS38.214.
  • the following shows an example of feedback through the type II codebook feedback method when the rank is 1:
  • W represents a transmission layer, a subband, and a precoding matrix to be fed back in two polarization directions.
  • W 1 can be fed back through broadband
  • W 2 can be fed back through subband.
  • v 0 to v 3 are beam vectors included in W 1 , and the plurality of beam vectors may be indicated by an index of a combination of the plurality of beam vectors, for example.
  • the precoding matrix shown above the beam vectors in the two polarization directions are the same, and the beam vectors v 0 to v 3 are used.
  • a 0 to a 7 are the broadband amplitude coefficients included in W 1 , and can be indicated by the quantized value of the broadband amplitude coefficients.
  • each sub-band coefficient may include a sub-band amplitude coefficient and a sub-band phase coefficient
  • c 0 to c 7 may include sub-band amplitude coefficients ⁇ 0 to ⁇ 7 and sub-band With phase coefficient to And can respectively pass the quantized values of sub-band amplitude coefficients ⁇ 0 to ⁇ 7 and the sub-band phase coefficients to Quantized value to indicate.
  • the terminal device feeds back the amplitude coefficient and the phase coefficient based on each subband, it brings a large feedback overhead. Therefore, based on the continuity of the frequency domain, and multipath delay leads to frequency selective fading, a feedback method that describes the change law of the frequency domain through a delay vector is proposed.
  • the delay vector can also be understood as a vector representing the delay characteristics of the channel.
  • the above-mentioned space-frequency matrix is also an intermediate quantity proposed for constructing a precoding matrix based on the continuity in the frequency domain.
  • H DL SC DL F H. Therefore, in the embodiment of the present application, the coefficient matrix C DL corresponding to the downlink channel is determined and fed back through the downlink channel measurement, so that the precoding matrix suitable for the downlink channel can be determined.
  • H DL H is a space frequency matrix determined by a real channel
  • H DL H S is a real channel after spatial domain precoding.
  • Each element of C DL in the coefficient matrix can be determined by multiplying a row in (H DL H S) H and a column in F.
  • each element in the matrix coefficient C DL can be obtained by multiplying the conjugate transpose of the real channel H DL H S (H DL H S) by a row in H and a column in F, or is The conjugate transpose of a column of channels H DL H S is multiplied by the column of F.
  • the space-frequency matrix H DL determined based on the weighting coefficient of each angle delay pair fed back by the terminal device may be obtained by conjugate transposition of the real channel.
  • the space-frequency matrix in the embodiment of the present application may also be obtained by the conjugate transpose of the real channel V (ie, V H ).
  • the space-frequency component matrix is defined as determined by a( ⁇ k ) ⁇ b( ⁇ l ) H , from which the dimension of the space-frequency matrix H DL can be determined as:
  • the number of antennas ⁇ the number of frequency domain units, the dimension of the space frequency matrix corresponding to the following channel is T ⁇ N.
  • the space-frequency matrix refers to the matrix H DL with the dimension T ⁇ N mentioned above without special description.
  • the real channel may be the conjugate transpose of the channel matrix determined by the above-mentioned space frequency matrix H DL .
  • the downlink channel matrix determined by the space frequency matrix H DL may be the conjugate transpose of the real channel.
  • the precoding matrix can be determined from the space frequency matrix H DL .
  • the precoding matrix of the nth frequency domain unit may be constructed by the nth column vector in the space frequency matrix corresponding to each transmission layer.
  • the SVD of the channel matrix V can obtain the conjugate transpose of the precoding matrix. If the channel matrix and the conjugate of SVD done after transposition, i.e., SVD made of V H, the precoding matrix can be obtained exactly. Therefore, in the embodiment of the present application, the space frequency matrix H DL determined by the conjugate transposition of the real channel can be directly determined to obtain the precoding matrix corresponding to each frequency domain unit.
  • the relationship between the real channel and the space frequency matrix H DL is not fixed. Different definitions of the space-frequency matrix and the space-frequency component matrix may cause the relationship between the real channel and the space-frequency matrix H DL to change.
  • the space frequency matrix H DL can be obtained by the conjugate transpose of the real channel, or by the transpose of the real channel.
  • the operations performed by the network device when loading the delay and angle are also different, and the operations performed by the terminal device when performing channel measurement and feedback also change accordingly .
  • this is only the implementation behavior of the terminal device and the network device, and should not constitute any limitation to this application.
  • the embodiments of the present application are only for ease of understanding, and show that the space-frequency matrix is obtained by conjugate transposition of real channels. This application does not limit the definition of the channel matrix, the dimension and definition of the space-frequency matrix, and the conversion relationship between the two. Similarly, the application does not limit the conversion relationship between the space-frequency matrix and the precoding matrix.
  • Antenna delay pair it can be a combination of a transmit antenna port and a delay vector.
  • Each antenna delay pair may include a transmit antenna port and a delay vector. Any two antenna delay pairs contain different transmit antenna ports and/or delay vectors. In other words, each antenna delay pair can be uniquely determined by a transmit antenna port and a delay vector. It should be understood that the antenna delay pair can be understood as the expression form of the basic unit of space frequency determined by one transmit antenna port and one delay vector, but it must not be the only form of expression. The form of combination is not limited.
  • Reference signal resource can be used to configure the transmission properties of the reference signal, for example, time-frequency resource location, port mapping relationship, power factor, and scrambling code. For details, refer to the existing technology.
  • the transmitting end device may transmit the reference signal based on the reference signal resource, and the receiving end device may receive the reference signal based on the reference signal resource.
  • One reference signal resource may include one or more RBs.
  • the reference signal resource may be a CSI-RS resource, for example.
  • pilot density the reference signal of each port, such as the pre-coded reference signal in this application, is the ratio of the occupied resource particles (resources, element) to the total RB number of the occupied bandwidth.
  • the pilot density of the reference signal of a port is 1, which can indicate that in the bandwidth occupied by the reference signal of this port, each RB has an RE for carrying the reference signal of this port; for example, a certain
  • the pilot density of the reference signal of the port is 0.5, which can indicate that in the bandwidth occupied by the reference signal of this port, one of every two RBs includes the RE carrying the reference signal of this port, or is used to carry
  • the reference signal of this port is separated by an RB between adjacent RBs.
  • P the number of angular delay pairs, P ⁇ 1 and an integer
  • N the number of frequency domain units, N ⁇ 1 and an integer
  • T the number of transmit antenna ports in one polarization direction, T ⁇ 1 and an integer
  • K number of angle vectors, K ⁇ 1 and an integer
  • L number of delay vectors, L ⁇ 1 and an integer
  • R the number of receiving antennas, R ⁇ 1 and an integer
  • Z the number of transmission layers, Z ⁇ 1 and an integer
  • J the number of polarization directions of the transmitting antenna, J ⁇ 1 and an integer
  • M the number of frequency domain groups, M>1 and an integer.
  • serial numbering may start from 1.
  • the L angle vectors may include the first angle vector to the Lth angle vector; the K delay vectors may include the first delay vector to the Kth delay vector.
  • the specific implementation is not limited to this. For example, it can be numbered consecutively from 0.
  • the angle vector and the delay vector are both column vectors as an example to illustrate the embodiment provided by this application, but this should not constitute any limitation to this application. Based on the same concept, those skilled in the art can also think of other possible expressions.
  • for indicating may include both for direct indication and for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but does not mean that the indication information must carry A.
  • the information indicated by the indication information is called information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the Indication index etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the arrangement order of various information pre-agreed (for example, stipulated in a protocol), thereby reducing the indication overhead to a certain extent.
  • the precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same part in terms of composition or other attributes.
  • the specific indication method may also be various existing indication methods, such as, but not limited to, the above indication methods and various combinations thereof.
  • the specific details of the various indication methods can refer to the prior art, and will not be repeated here. It can be seen from the foregoing that, for example, when multiple information of the same type needs to be indicated, situations in which different information may be indicated in different ways may occur.
  • the required indication method can be selected according to specific needs. The embodiments of the present application do not limit the selected indication method. In this way, the indication methods involved in the embodiments of the present application should be understood as covering Fang learned various methods of the information to be indicated.
  • row vectors can be expressed as column vectors
  • a matrix can be represented by the transposed matrix of the matrix
  • a matrix can also be expressed in the form of vectors or arrays
  • the vectors or arrays It can be formed by connecting the row vectors or column vectors of the matrix to each other, etc.
  • the information to be indicated may be sent together as a whole, or may be divided into multiple sub-information and sent separately, and the sending period and/or sending timing of these sub-information may be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be pre-defined, for example, pre-defined according to the protocol, or may be configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example but not limited to, one or a combination of at least two of radio resource control signaling, media access control (MAC) layer signaling, and physical layer signaling.
  • the radio resource control signaling includes packet radio resource control (RRC) signaling;
  • the MAC layer signaling includes MAC control elements (CE);
  • the physical layer signaling includes downlink control information (downlink control). information, DCI).
  • pre-acquisition may include signaling indication or pre-defined by the network device, for example, protocol definition.
  • pre-defined can be achieved by pre-storing corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including terminal devices and network devices), and this application does not do for its specific implementation limited.
  • “save” involved in the embodiments of the present application may refer to being saved in one or more memories.
  • the one or more memories may be set separately or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly set separately and partly integrated in a decoder, processor, or communication device.
  • the type of memory may be any form of storage medium, which is not limited in this application.
  • the “protocol” referred to in the embodiments of the present application may refer to a standard protocol in the communication field, and may include, for example, the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • the character "/” generally indicates that the related object is a "or” relationship.
  • At least one of the following" or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one of a, b, and c may represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B and c.
  • a, b and c may be a single or multiple.
  • the method provided by the embodiments of the present application may be applied to a system that communicates through multi-antenna technology, for example, the communication system 100 shown in FIG. 1.
  • the communication system may include at least one network device and at least one terminal device.
  • Multi-antenna technology can communicate between network equipment and terminal equipment.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the present application, as long as the program that records the code of the method provided in the embodiments of the present application can be executed to
  • the method provided in the embodiment of the application may be used for communication.
  • the execution body of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the interaction between the network device and the terminal device will be used as an example to describe in detail the channel measurement method provided by the embodiment of the present application.
  • the network device may precode the downlink reference signal based on the predetermined angle and delay, so that the terminal device estimates and feeds back corresponding to multiple angle delay pairs based on the received precoded reference signal Multiple weighting factors.
  • the network device may determine the precoding matrix adapted to the downlink channel based on multiple angle delay pairs and multiple weighting coefficients fed back by the terminal device.
  • the network device may precode the downlink reference signal based on a predetermined delay, so that the terminal device estimates and feeds back the corresponding multiple antenna delay pairs based on the received precoded reference signal Multiple weighting factors.
  • the network device may determine the precoding matrix adapted to the downlink channel based on multiple antenna delay pairs and multiple weighting coefficients fed back by the terminal device.
  • the embodiment shown below first uses a polarization direction as an example to describe in detail the channel measurement method 200 provided by the embodiment of the present application.
  • the polarization direction may be any one of one or more polarization directions of the transmitting antenna configured by the network device.
  • the terminal device may perform channel measurement based on the method 200 provided in the embodiment of the present application, and the network device may also use the method 200 provided in the embodiment of the present application. Determine the precoding matrix.
  • the number of polarization directions of the transmitting antenna is not limited in this application, for example, it may be one, that is, a single polarization direction; it may also be multiple, such as a dual polarization direction.
  • FIG. 2 is a schematic flowchart of a channel measurement method 200 provided by an embodiment of the present application from the perspective of device interaction. As shown, the method 200 may include steps 210 to 240. The steps of the method 200 are described in detail below.
  • the terminal device receives a precoding reference signal, which is obtained by precoding the reference signal based on K angle vectors and L delay vectors.
  • the network device sends a precoding reference signal.
  • K ⁇ 1, L ⁇ 1, and K and L are integers.
  • the network device may pre-code the reference signal based on K angle vectors and L delay vectors. From the K angle vectors and L delay vectors, various combinations of angle vectors and delay vectors can be obtained. The angle vector and/or delay vector in any two combinations are different. The angle vector and delay vector in each combination can be used to pre-code the reference signal to obtain a pre-coded reference signal corresponding to a port. Therefore, the precoding reference signal obtained by the network device precoding based on K angle vectors and L delay vectors may correspond to one or more ports, and the precoding reference signal for each port may be based on one of the K angle vectors The angle vector and one of the L delay vectors are obtained by precoding the reference signal. In other words, the precoded reference signal of each port may be obtained by precoding the reference signal based on a combination of an angle vector and a delay vector.
  • the network device may traverse K angle vectors and L delay vectors to obtain K ⁇ L angle vector and delay vector combinations, or K ⁇ L angle delay pairs. That is, the network device may pre-code the reference signal based on each of the K angle vectors and each of the L delay vectors.
  • the network device When the network device precodes the reference signal based on the kth (1 ⁇ k ⁇ K, k is an integer) angle vector of the K angle vectors, the network device can traverse each of the L delay vectors to reference The signal is pre-coded; alternatively, the network device may traverse the K angle vectors when precoding the reference signal based on the lth (1 ⁇ l ⁇ L, l is an integer) delay vector among the L delay vectors
  • Each angle vector of is used to pre-code the reference signal.
  • the K angle vectors can be considered common to each delay vector
  • the L delay vectors can also be considered common to each angle vector.
  • the K angle vectors and the L delay vectors are shared with each other.
  • the delay vectors corresponding to at least two angle vectors are different.
  • the network device precodes the reference signal based on the kth angle vector of the K angle vectors, it can traverse the Lk (1 ⁇ L k ⁇ L, L k is an integer) time corresponding to the kth angle vector
  • L in the above L delay vectors can satisfy:
  • the delay vectors corresponding to at least two angle vectors are different, which may mean that at least two angle vectors corresponding to the K angle vectors have different delay vectors, and other angle vectors may correspond to the same delay vectors, or It can be different, and this application does not limit it. In other words, the delay vectors corresponding to the angle vectors are partially or completely different.
  • the delay vectors corresponding to the two angle vectors are different, it may mean that the delay vectors corresponding to the two angle vectors are completely different, that is, the delay vectors corresponding to the two angle vectors are not repeated, or there is no intersection.
  • the delay vector corresponding to the angle vector a( ⁇ 1 ) includes b( ⁇ 2 )
  • the delay vector corresponding to the angle vector a( ⁇ 2 ) includes b( ⁇ 1 ) and b( ⁇ 3 ).
  • the delay vectors corresponding to the two angle vectors are different.
  • the delay vectors corresponding to the two angle vectors are partially different, that is, the delay vectors corresponding to the two angle vectors are partially repeated, but are not exactly the same, or ,
  • the delay vectors corresponding to the two angle vectors have an intersection, but they are not exactly the same.
  • the delay vector corresponding to a( ⁇ 1 ) includes b( ⁇ 2 ) and b( ⁇ 3 )
  • the delay vector corresponding to the angle vector a( ⁇ 2 ) includes b( ⁇ 1 ) and b( ⁇ 3 ).
  • the network device can obtain the above K angle vectors and L delay vectors to obtain A combination of angle vectors and delay vectors.
  • At least two delay vectors correspond to different angle vectors.
  • the network device precodes the reference signal based on the lth delay vector among the L delay vectors, it can traverse K l corresponding to the lth delay vector (1 ⁇ K l ⁇ K, K l is an integer )
  • K l is an integer
  • Each of the angle vectors pre-codes the reference signal.
  • K in the above K angle vectors can satisfy:
  • At least two delay vectors correspond to different angle vectors, which may mean that at least two of the delay vectors correspond to different angle vectors, and other delay vectors may correspond to the same angle vector, It can also be different, which is not limited in this application. In other words, the angle vectors corresponding to the respective delay vectors are partially or completely different.
  • the angle vectors corresponding to the two delay vectors are different, it may mean that the angle vectors corresponding to the two delay vectors are completely different, that is, the angle vectors corresponding to the two delay vectors are not repeated, or there is no intersection.
  • the angle vector corresponding to the delay vector b( ⁇ 1 ) includes a( ⁇ 2 )
  • the angle vector corresponding to the delay vector b( ⁇ 2 ) includes a( ⁇ 1 ).
  • the angle vectors corresponding to the two delay vectors are different.
  • the angle vectors corresponding to the two delay vectors are partially different, that is, the angle vectors corresponding to the two delay vectors are partially repeated, but are not exactly the same, or ,
  • the angle vectors corresponding to the two delay vectors have an intersection, but they are not exactly the same.
  • the angle vector corresponding to the delay vector b( ⁇ 1 ) includes a( ⁇ 2 )
  • the angle vector corresponding to the delay vector b( ⁇ 2 ) includes a( ⁇ 1 ) and a( ⁇ 2 ).
  • the network device can obtain the above K angle vectors and L delay vectors to obtain A combination of angle vectors and delay vectors.
  • the K angle vectors and the L delay vectors can be determined based on the uplink channel measurement.
  • the network device may determine K (K ⁇ 1 and K is an integer) angles and L (L ⁇ 1 and L is an integer) delays according to the pre-estimated uplink channel matrix.
  • the K angles can be characterized by K angle vectors.
  • the L delays can be characterized by L delay vectors.
  • the uplink channel matrix may be a weighted sum of K ⁇ L space frequency matrices determined by the K angle vectors and L delay vectors.
  • P K ⁇ L
  • P be a positive integer.
  • the K angle vectors may be, for example, strong K angle vectors determined from a predefined set of angle vectors.
  • the K angle vectors may be determined jointly for L delay vectors, or may be determined separately for each of the L delay vectors. This application does not limit this.
  • each angle vector in the set of angle vectors is taken from a DFT matrix.
  • the K angle vectors can be determined by, for example, DFT the uplink channel matrix.
  • each angle vector in the set of angle vectors is a steering vector.
  • the L delay vectors may be, for example, stronger L delay vectors determined from a predefined set of delay vectors.
  • the L delay vectors may be determined jointly for K angle vectors, or may be determined separately for each of the K angle vectors. This application does not limit this.
  • each delay vector in the set of delay vectors is taken from a DFT matrix.
  • the L delay vectors can be determined by, for example, DFT the uplink channel matrix.
  • the network device may, for example, use the joint angle and delay estimation (JADE) algorithm in the prior art to determine the K angle vectors and the stronger one or more delays corresponding to each angle vector vector.
  • the estimation algorithm may be, for example, multiple signal classification algorithm (MUSIC), Bartlett algorithm or rotation invariant subspace algorithm (estimation of signals, parameters, via rotation, variation in technology, ESPRIT), etc.
  • MUSIC multiple signal classification algorithm
  • Bartlett algorithm or rotation invariant subspace algorithm (estimation of signals, parameters, via rotation, variation in technology, ESPRIT), etc.
  • the network device can also determine K angle vectors and L delay vectors by DFT the space-frequency matrix determined based on the uplink channel measurement. This application does not limit the specific method by which the network device determines the K angle vectors and L delay vectors.
  • the pre-defined angle vector set may be, for example, a vector set composed of multiple vectors in the spatial DFT matrix.
  • the pre-defined delay vector set may be, for example, a vector set composed of multiple vectors in the frequency domain DFT matrix.
  • the network device may determine the uplink channel through channel estimation, and then determine the space frequency matrix H UL of the uplink channel.
  • C UL U s H H UL U f .
  • the dimension of the space channel matrix H UL of the uplink channel is consistent with the dimension H DL of the space channel matrix of the downlink channel.
  • the dimension of the space frequency matrix of the downlink channel and the relationship with the downlink channel have been described above.
  • the dimension of the space frequency matrix H UL determined by the uplink channel may be N ⁇ T.
  • the dimensions of the spatial frequency matrix H UL of the uplink channel shown here and the calculation formula for determining the coefficient matrix C UL are only examples, and should not constitute any limitation to this application.
  • the space frequency matrix H UL defines different dimensions, and the calculation formula for determining the coefficient matrix C UL is also different.
  • the network device can determine the strong K rows from the coefficient matrix C UL .
  • the stronger K rows can be used to determine K angle vectors.
  • the network device may determine K rows with a larger sum of squares of the modulus according to the magnitude of the sum of squares of the elements of each row element in the coefficient matrix C UL .
  • K rows with larger square sum of the modulus can be used to determine K angle vectors.
  • the positions of the K rows in the coefficient matrix C UL can be used to determine the positions of the K angle vectors in the above-mentioned angle vector set.
  • the row number of the K rows in the coefficient matrix C UL may be the column number of the K angle vectors in the angle vector set. From this, K angle vectors can be determined.
  • the K angle vectors are also angle vectors selected from the set of angle vectors for precoding the downlink reference signal.
  • the network device may determine L columns with a larger sum of squares according to the magnitude of the sum of squares of the elements of each column element in the coefficient matrix C UL .
  • the L columns with a larger sum of squares of the modulus can be used to determine L delay vectors.
  • the positions of the L columns in the coefficient matrix C UL can be used for the positions of the L delay vectors in the above set of delay vectors.
  • the column numbers of the L columns in the coefficient matrix C UL may be the column numbers of the L delay vectors in the set of delay vectors. From this, L delay vectors can be determined.
  • the L delay vectors are delay vectors selected from the set of delay vectors for precoding the downlink reference signal.
  • the network device may also determine one or more strong delay vectors according to each of the strong K rows in the coefficient matrix C UL . For example, for the k-th row among the K rows, the network device may determine one or more elements whose modulus square is greater than a preset value according to the square of the modulus of each element, for example, L k .
  • the preset value may be a predefined value, for example. For example, it can be 80% of the sum of the squares of the modulus of the elements in this column. L k elements whose squared modulus is greater than a preset value can be used to determine L k delay vectors.
  • the column of L k elements whose coefficient square is greater than a preset value in the coefficient matrix C UL may be used to determine the position of the L k delay vectors in the set of pre-defined delay vectors.
  • the column number of the L k elements in the coefficient matrix C UL may be the column number of the L k delay vectors in the set of delay vectors.
  • the total number of delay vectors may be L.
  • the L delay vectors are the selected delay vectors in the set of delay vectors.
  • the uplink channel matrix may be, for example, estimated by the network device according to the pre-received uplink reference signal, such as SRS, or obtained from the correctly decoded data signal, which is not limited in this application.
  • the specific method for the network device to estimate the uplink channel matrix according to the uplink reference signal can refer to the prior art. For brevity, the detailed description of the specific method is omitted here.
  • the angle and delay of the uplink and downlink channels are reciprocal, so the K angle vectors and L delay vectors measured by the uplink channel can be loaded into the downlink reference signal, so that the terminal device can base on the received Encode the reference signal for downlink channel measurement.
  • the K angle vectors measured by the uplink channel may also be loaded to the downlink reference signal, or the L delay vectors measured by the uplink channel may also be loaded to the downlink reference signal.
  • This embodiment mainly describes the case of loading K angle vectors and L delay vectors to a downlink reference signal in detail.
  • K angle vectors and L delay vectors may be defined in advance, for example, as defined in a protocol; or may be determined by the network device based on one or more previous downlink channel measurement statistics. This application does not limit the acquisition method of K angle vectors and L delay vectors.
  • the K angle vectors and L delay vectors are not necessarily determined based on uplink channel measurement.
  • the K angle vectors and L delay vectors may be predefined, as defined by the protocol; or, the K angle vectors and L delay vectors may be fed back based on one or more previous downlink channel measurements The results are statistically determined. This application does not limit the determination method of K angle vectors and L delay vectors.
  • the network device may pre-code the downlink reference signal, such as CSI-RS, based on the K angle vectors and L delay vectors to obtain a pre-coded reference signal.
  • the network device may also transmit the pre-coded reference signal through a pre-configured reference signal resource.
  • the method 200 further includes: the terminal device receives second indication information, where the second indication information is used to configure one or more reference signal resources.
  • the network device sends the second indication information.
  • One or more reference signal resources configured by the second indication information may be used to carry pre-coded reference signals.
  • the precoding reference signal carried on the same reference signal resource may correspond to one or more ports.
  • the angle delay pairs corresponding to the precoded reference signals carried on each reference signal resource may be different from each other, and each reference signal resource is in the frequency domain and/or There is no overlap in the time domain.
  • the precoded reference signal of each port corresponds to an angle vector and a delay vector, or to say, an angle delay pair.
  • the angle delay pair corresponding to the precoding reference signal may refer to the angle vector and the delay vector used for precoding the reference signal.
  • the angle delay pairs corresponding to the precoding reference signals carried on each reference signal resource are different from each other, that is, the precoding reference signals carried on any two reference signal resources are precoded based on different combinations of angle vectors and delay vectors get.
  • the angular delay pairs corresponding to the precoded reference signals carried on the above reference signal resources are different from each other, and may include one or more of the following cases: the precoded reference signals carried on the two reference signal resources may be Based on the same angle vector and different delay vector precoding, the precoded reference signals carried on the two reference signal resources may be obtained based on the same delay vector and different angle vector precoding, and the two reference signals The precoding reference signal carried on the resource may be obtained by precoding based on different angle vectors and different delay vectors.
  • the precoding reference signals carried on any two reference signal resources may be obtained by precoding pairs based on different angle delays, and the angle vectors and/or delay vectors included in each angle delay pair are different. That is to say, the delay vector corresponding to the precoding reference signal carried on different reference signal resources may be repeated, or the angle vector corresponding to the precoding reference signal carried on different reference signal resources may be repeated, but the angle formed The delay is not repeated.
  • the second indication information may be, for example, high-level signaling, such as RRC message. This application does not limit this.
  • the second indication information may pass high-level parameters, such as CSI resource configuration (CSI-ResourceConfig) and non-zero power (NZP) CSI-RS resource set (NZP-CSI-RS -ResourceSet) Configure CSI-RS resources (CSI-RS resources, that is, an example of reference signal resources).
  • the high-level parameters can be configured with, for example, the number of ports, time-frequency resources, and pilot density for each CSI-RS resource. Therefore, the terminal device may determine the number of ports corresponding to the precoding reference signal carried in each RB based on the high-layer parameters.
  • the number of ports may refer to the number of ports corresponding to the precoded reference signals carried on each RB.
  • the network device may map the precoded reference signals of one or more ports to multiple RBs in the measurement bandwidth, and the precoded reference signals carried on each RB may correspond to the above one or more ports.
  • the terminal device may receive the precoding reference signal of the one or more ports on each RB of multiple RBs measuring bandwidth.
  • one reference signal resource may include one or more RBs.
  • the precoding reference signal carried by each RB may correspond to the same one or more ports.
  • the precoding reference signal carried on each RB may be precoded based on the same one or more delay vectors and one or more angle vectors.
  • the network device may traverse the P combinations of the angle vector and the delay vector to pre-code the reference signal to obtain a pre-coded reference signal.
  • P can be K ⁇ L, or or
  • the reference signal resource used to transmit the precoded reference signal may be pre-configured by the network device through high-layer signaling, such as the foregoing second indication information.
  • the reference signal resource may include one or more RBs, such as N, N ⁇ 1 and an integer.
  • the precoding reference signal carried on each RB may be obtained by precoding based on K angle vectors and L delay vectors.
  • FIG. 3 below shows an example of precoding reference signals carrying multiple ports on multiple RBs.
  • the network device may configure a reference signal resource for the terminal device in advance.
  • the precoding reference signal carried on each RB in the reference signal resource may correspond to P ports.
  • the precoded reference signal of each port may be obtained by precoding the reference signal based on a delay vector among L delay vectors and an angle vector among K angle vectors.
  • the precoded reference signal carried on each RB in the reference signal resource may correspond to the same angular delay pair, or to say, the same angle vector and delay vector.
  • the network device may configure a lower pilot density through higher layer signaling, such as the above-mentioned second indication information, to reduce pilot overhead.
  • the network device may allocate the combination of the aforementioned P angle vectors and delay vectors to different RBs, so that the angle delay pairs corresponding to the precoding reference signals carried on different RBs are different, In other words, the angle vectors and/or delay vectors corresponding to the precoding reference signals carried on different RBs are made different.
  • the network device can traverse each of the K angle vectors to precode the reference signal, and precode the reference signal based on the L delay vectors , And the precoding reference signals obtained based on different delay vector precoding can be mapped to different RBs.
  • the precoding reference signal carried on each RB may be obtained by precoding a partial delay vector among K angle vectors and L delay vectors.
  • the precoding reference signals carried by at least two RBs are obtained by precoding based on different delay vectors. 4 and 5 below show an example of precoding reference signals carrying multiple ports on multiple RBs.
  • the network device may pre-code the reference signal based on different combinations of angle vectors and delay vectors (or different angle delay pairs), and based on the angle vectors and time
  • the precoding reference signals obtained by precoding different combinations of delay vectors can be mapped onto different RBs.
  • the precoding reference signal carried on each RB may be obtained by precoding based on one or more angle vectors of the K angle vectors and the corresponding delay vector.
  • the precoding reference signals carried by at least two RBs are obtained by precoding based on different combinations of angle vectors and delay vectors. 6 and 7 below show two examples of precoding reference signals carrying multiple ports on multiple RBs.
  • the network device may precode the reference signal based on different combinations of angle vectors and delay vectors (or different angle delay pairs), and based on the angle vectors and time
  • the precoding reference signals obtained by precoding different combinations of delay vectors can be mapped onto different RBs.
  • the precoding reference signal carried on each RB may be precoded based on one or more angle vectors in the L delay vectors and the corresponding angle vectors.
  • the precoding reference signals carried by at least two RBs are obtained by precoding based on different combinations of angle vectors and delay vectors.
  • the network device may configure multiple reference signal resources for the terminal device in advance through high-layer signaling, such as the above-mentioned second indication information.
  • Each reference signal resource in the plurality of reference signal resources may include one or more RBs.
  • the precoded reference signal carried in each reference signal resource may correspond to one or more ports, and the number of ports corresponding to the precoded reference signal carried in each reference signal resource may be different or the same. In a case where the number of ports corresponding to the precoding reference signals carried by each reference signal resource is the same, the port numbers corresponding to the precoding reference signals carried by each reference signal resource may be the same or different.
  • the angle delay pair corresponding to the precoding reference signals carried by the reference signal resources may be different, or the precoding references carried by the reference signal resources
  • the delay vector and/or angle vector corresponding to the signal may be different.
  • the precoded reference signal of each port may be obtained by precoding the reference signal based on a delay vector among L delay vectors and an angle vector among K angle vectors.
  • the reference signal resources do not overlap with each other in the frequency domain and/or time domain.
  • the reference signal resources are staggered in the frequency domain. Therefore, precoding reference signals obtained by precoding based on different combinations of angle vectors and delay vectors can be carried by different time-frequency resources.
  • the number of ports corresponding to the precoded reference signals carried on each RB may be less than P.
  • the precoding reference signals carried on each RB may correspond to K ports, and at least two RBs carry precoding reference signals corresponding to different ports .
  • the network device may group multiple RBs to obtain multiple frequency domain groups.
  • the precoding reference signal carried on the RB in each frequency domain group may be obtained by precoding based on the same delay vector or the same angle vector (or, the same angle delay pair).
  • the two different implementations listed above can be distinguished by grouping RBs.
  • the network device may not group RBs, and one or more ports corresponding to the precoding reference signals carried on each RB may be the same.
  • the network device may group RBs, and the ports corresponding to the precoding reference signals carried on each RB are different from each other.
  • the frequency domain group may be a logical concept, and does not necessarily make a real division of the RB.
  • RB is only one possible form of the frequency domain unit, and the frequency domain unit may also be, for example, subband, PRB, RBG, and so on. This application does not limit this. No matter what form the frequency domain unit is, it may include one or more RBs.
  • the RB shown in the drawings may be a frequency domain unit, or may be an RB used to carry a precoding reference signal in the frequency domain unit, which is not limited in this application.
  • each frequency domain unit may have one RB for carrying a precoding reference signal, or there may be multiple RBs for carrying a precoding reference signal. No matter whether the number of RBs carrying the precoding reference signal in the frequency domain unit is one or more, the number of ports corresponding to the precoding reference signal carried by each RB is unchanged. It can be understood that when each frequency domain unit contains multiple RBs for carrying precoded reference signals, the ports corresponding to the precoded reference signals carried on each RB in the same frequency domain unit may be the same or different, this application There is no restriction on this.
  • the drawings mentioned below are only schematics, and show two examples of precoding reference signals carrying multiple ports on multiple RBs.
  • the precoded reference signal is not necessarily carried on each RB of the measurement bandwidth, nor on multiple consecutive RBs.
  • the terminal device may not necessarily receive the pre-coded reference signals of the multiple ports on each RB of the measurement bandwidth.
  • the network device does not necessarily map the precoding reference signal to each RB of the measurement bandwidth.
  • the RBs used to carry the downlink reference signal may be distributed discretely in the measurement bandwidth. For example, one RB carries a downlink reference signal every several RBs. The distribution of RB in the measurement bandwidth may be determined by the pilot density described above, for example. This application does not limit this.
  • RB#1, RB#2, RB#3, and RB#4 in FIG. 3 are not necessarily continuous in the frequency domain. For example, they can be located in four consecutive subbands to be measured, but between each other. , Such as between RB#1 and RB#2, between RB#2 and RB#3, and between RB#3 and RB#4, there may be one or more RBs apart.
  • FIG. 3 shows an example of precoding reference signals carrying multiple ports on multiple RBs.
  • the figure shows an example where the number of RBs is 4.
  • the precoding reference signal carried on each RB may correspond to 4 ports.
  • the four RBs may be an example of the reference signal resource described above.
  • the 4 RBs may belong to the same reference signal resource. It should be understood that the figure is only an example, and shows four RBs as an example of reference signal resources. This should not constitute any limitation on this application.
  • the reference signal resource may include more or fewer RBs, and the number of RBs included in the reference signal resource is not limited in this application.
  • the REs occupied by the precoding reference signals of the same port in each RB are the same, or the relative positions of the resources occupied by the precoding reference signals of the same port in the RBs are the same.
  • the REs occupied by the precoded reference signals of different ports in the same RB can be different, for example, they can be distinguished by frequency division multiplexing (FDM) or time division multiplexing (TDM); different ports
  • the REs occupied by the precoding reference signals in the same RB may also be the same, for example, they can be distinguished by code division multiplexing (code division multiplexing, CDM).
  • CDM code division multiplexing
  • FIG. 3 is only an example for ease of understanding, and does not completely show all REs in one RB.
  • the present application does not limit the number of REs in each RB.
  • the present application does not limit the number of ports corresponding to the precoded reference signals carried on each RB and the specific manner of multiplexing resources between the precoded reference signals of each port.
  • the precoding reference signal carried on each RB may be obtained by precoding the reference signal by traversing P combinations of delay vectors and angle vectors (or P angle delay pairs).
  • the length of the delay vector is the number of RBs used to carry the reference signal in the frequency domain occupied bandwidth of the CSI measurement resource.
  • the length of the delay vector is N
  • N is the number of RBs
  • N is a positive integer.
  • the N elements in the delay vector corresponding to each port may correspond to the N RBs one-to-one.
  • the positions of the REs corresponding to the same port in the four RBs in the figure may be the same.
  • the four elements in the delay vector may correspond to the values of the precoding reference signals of the same port on different RBs, respectively.
  • the precoding reference signal carried on RB#1 may be at least element-based Obtained by precoding the reference signal;
  • the precoded reference signal carried on RB#2 can be at least element-based It is obtained by precoding the reference signal;
  • the precoding reference signal carried on RB#3 can be at least element-based It is obtained by precoding the reference signal;
  • the precoded reference signal carried on RB#4 may be at least element-based It is obtained by precoding the reference signal.
  • the precoded reference signal may be at least based on elements in the delay vector b( ⁇ l ) It is obtained by precoding the reference signal. For example, based on the elements in the delay vector b( ⁇ l ) Precoding the reference signal, the channel measured by the terminal device based on the received precoding reference signal can be expressed as For another example, based on the elements in the delay vector b( ⁇ l ) And an angle vector, such as a( ⁇ 1 ), precoding the reference signal, then the channel measured by the terminal device based on the received precoding reference signal can be expressed as The precoding reference signals carried on other RBs can also be precoded based on the same method. For brevity, I will not list them here.
  • the precoded reference signal carried on the nth (1 ⁇ n ⁇ N, n is a positive integer) RB among the N RBs (such as the RB shown in FIG. 3) can be at least determined by the corresponding delay vector
  • the nth element is determined.
  • the precoded reference signal carried on the first RB (ie, RB#1) of the four RBs is determined by at least the first element in the corresponding delay vector.
  • the precoding reference signal carried on RB#1 may be obtained based on the delay vector precoding only, or may be obtained based on the delay vector and angle vector precoding.
  • the number of delay vectors may be one or multiple, which is not limited in this application.
  • the network device can pre-code the reference signal based on the method described above.
  • the precoding reference signal carried on the RB#1 may be obtained by precoding based on L delay vectors and K angle vectors.
  • the precoded reference signal carried in each frequency domain group can be a partial combination of P combinations based on angle vectors and delay vectors, such as a delay vector and its corresponding
  • the angle vector of, or, an angle vector and its corresponding delay vector, or, a delay vector and an angle vector, are obtained by precoding. This can greatly reduce the pilot overhead.
  • N RBs may be divided into multiple frequency domain groups, such as M frequency domain groups, M>1 and an integer.
  • Each frequency domain group can include RB. If N is not divisible by M, the number of RBs in the last frequency domain group may be the number of remaining RBs. That is, the number of RBs included in the Mth frequency domain group may be less Pcs.
  • the precoding reference signals carried in each frequency domain group may be obtained by precoding one or more delay vectors out of K angle vectors and L delay vectors, or, each The precoded reference signals carried in each frequency domain group may be obtained by precoding one or more angle vectors out of L delay vectors and K angle vectors.
  • the network device may group N RBs based on different delay vectors.
  • the precoding reference signal carried in each frequency domain group may be obtained by precoding based on K angle vectors and L/M delay vectors. Therefore, the number of ports corresponding to the precoding reference signal carried on each RB may be K ⁇ L/M.
  • the precoding reference signals carried on any two RBs in the same frequency domain group may correspond to the same one or more delay vectors. In other words, the precoding reference signals of the same port carried on any two RBs in the same frequency domain group may correspond to the same delay vector.
  • the precoding reference signals carried by different frequency domain groups correspond to different delay vectors.
  • each frequency domain group can include The RB included in the lth frequency domain group of the L frequency domain groups may be the lth, l+Lth, l+2Lth through Nth RBs up to the Pcs.
  • the lth frequency domain group of the L frequency domain groups includes the l+(i-1) ⁇ L RB of N RBs,
  • the lth RB in the N RBs may be the first RB in the lth frequency domain group, and the l+Lth RB in the N RBs may be the second RB in the lth frequency domain group RB, the 1st+2Lth RB of N RBs may be the 3rd RB in the 1st frequency domain group, and the 1st RB in N RBs may be the 3rd RB in the 1st frequency domain group RB.
  • the l+(n-1) ⁇ L RBs out of the N RBs may be the nth RBs in the lth frequency domain group.
  • the network device may refer to the reference signal carried by each RB in the lth frequency domain group of the L frequency domain groups based on the lth delay vector among the L delay vectors (understandably, the reference signal may have passed
  • the spatial domain precoding reference signal performs frequency domain precoding.
  • Each frequency domain group may correspond to a delay vector
  • the RB in each frequency domain group may correspond to an element in the delay vector.
  • the number of ports corresponding to the precoding reference signal carried on each RB may be K.
  • the RB number is.
  • the precoding reference signal carried on each RB may correspond to a delay vector.
  • the 16 RBs can be divided into 4 frequency domain groups. For example, RB#1, RB#5, RB#9 and RB#13 can be classified as frequency domain group #1, RB#2, RB#6, RB#10 and RB#14 can be classified as frequency domain group #2, RB#3, RB#7, RB#11 and RB#15 can be classified as frequency domain group #3, and RB#4, RB#8, RB#12 and RB#16 can be classified as frequency domain group #4.
  • the 16 RBs may belong to four reference signal resources, respectively.
  • Each frequency domain group may belong to a reference signal resource.
  • the precoding reference signals carried in the same frequency domain group may be obtained by precoding based on K angle vectors and a delay vector.
  • K angle vectors may include, for example, a( ⁇ 1 ), a( ⁇ 2 ), a( ⁇ 3 ), and a( ⁇ 4 );
  • L delay vectors may include, for example, b( ⁇ 1 ), b( ⁇ 2 ), b( ⁇ 3 ) and b( ⁇ 4 ).
  • the precoding reference signals carried on RB#1, RB#5, RB#9, and RB#13 can be obtained by precoding based on the same K angle vectors and the same delay vector, such as by a( ⁇ 1 ), a( ⁇ 2 ), a( ⁇ 3 ) and a( ⁇ 4 ) are combined with b( ⁇ 1 ) to obtain four angle vectors and delay vectors, such as: (a( ⁇ 1 ),b( ⁇ 1 )), (a( ⁇ 2 ),b( ⁇ 1 )), (a( ⁇ 3 ),b( ⁇ 1 )) and (a( ⁇ 4 ),b( ⁇ 1 )); RB#2, RB
  • the pre-coded reference signals carried on #6, RB#10 and RB#14 can be pre-coded based on the same K angle vectors and the same delay vector, such as a( ⁇ 1 ), a( ⁇ 2 ), a ( ⁇ 3 ) and a( ⁇ 4 ) are combined with b( ⁇ 2 ) to obtain four angle
  • the precoding reference signals carried on any two RBs in the same frequency domain group correspond to the same delay vector.
  • frequency domain group #1 may correspond to delay vector b( ⁇ 1 )
  • frequency domain group #2 may correspond to delay vector b( ⁇ 2 )
  • frequency domain group #3 may correspond to delay vector b( ⁇ 3 )
  • the frequency domain group #4 may correspond to the delay vector b( ⁇ 4 ). It should be understood that the specific manner of loading the delay vector onto each RB in the frequency domain group has been exemplified above in conjunction with FIG. 3, and for the sake of brevity, no further description is provided here.
  • the precoding reference signal carried on each RB is precoded based on 4 angle vectors and one delay vector.
  • the figure is only an example, and the delay vector is not shown.
  • the four angle vectors may be, for example, a( ⁇ 1 ), a( ⁇ 2 ), a( ⁇ 3 ), and a( ⁇ 4 ).
  • the REs occupied by the precoding reference signals obtained based on the same angle vector precoding in the same RB are the same.
  • Precoding reference signals obtained by precoding based on different angle vectors can be distinguished by, for example, FDM, TDM, and CDM.
  • the precoding reference signals obtained by precoding one angle vector and one delay vector in the same frequency domain group may correspond to the same port.
  • the precoded reference signal that is precoded based on (a( ⁇ 1 ),b( ⁇ 1 )) in frequency domain group #1 can correspond to port #1; the frequency domain group #1 is based on (a( ⁇ 2 ), b( ⁇ 1 ))
  • the precoded reference signal for precoding can correspond to port #2; the precoded reference signal for precoding based on (a( ⁇ 3 ),b( ⁇ 1 )) in frequency domain group #1 can correspond to Port #4; the precoded reference signal that is precoded based on (a( ⁇ 4 ), b( ⁇ 1 )) in frequency domain group #1 may correspond to port #4.
  • the precoding reference signals obtained by precoding the same angle vector and different delay vectors in different frequency domain groups may correspond to different delay vectors.
  • the port numbers corresponding to the precoding reference signals carried in different frequency domain groups may be the same or different.
  • the precoded reference signal pre-coded based on (a( ⁇ 1 ),b( ⁇ 1 )) in frequency domain group #1 can correspond to port #1; the (a( ⁇ 1 ), based on (a( ⁇ 1 ), b( ⁇ 2 ))
  • the precoded reference signal for precoding can correspond to port #1 or port #5; the frequency domain group #3 is precoded based on (a( ⁇ 1 ), b( ⁇ 3 ))
  • the precoded reference signal can correspond to port #1 or port #9; the precoded reference signal pre-coded based on (a( ⁇ 1 ), b( ⁇ 4 )) in frequency domain group #4 can correspond to port #1 1, can also correspond to port #13.
  • each frequency domain group and port number is only an example, and should not constitute any limitation to this application. This application does not limit the correspondence between each frequency domain group and port number.
  • the precoded reference signal carried on each RB shown in the figure may correspond to 4 ports.
  • the pre-coded reference signals of the four ports can be obtained by pre-coding based on four angle vectors and one delay vector, for example.
  • the number of ports corresponding to the precoding reference signal carried on each RB shown in FIG. 4 may be K.
  • loading a delay vector for each frequency domain group is only an example for ease of understanding. This application does not limit the number of delay vectors loaded in each frequency domain group. The number of delay vectors loaded in each frequency domain group may be less than L.
  • the precoding reference signals carried on each RB shown in the figure may correspond to more ports, for example, 8 ports.
  • the pre-coded reference signals of 8 ports can be obtained by pre-coding based on 4 angle vectors and 2 delay vectors, for example.
  • the precoding reference signals carried on any two RBs in the same frequency domain group may correspond to two delay vectors, and the delay vectors corresponding to the precoding reference signals carried on any two RBs are the same.
  • the precoding reference signals carried on any two RBs in frequency domain group #1 correspond to delay vectors b( ⁇ 1 ) and b( ⁇ 2 ).
  • the number of ports corresponding to the precoding reference signal carried on each RB may be 2K.
  • FIG. 5 is only an example for ease of understanding, and does not completely show all REs in one RB.
  • the present application does not limit the number of REs in each RB.
  • the present application does not limit the port corresponding to the precoded reference signal carried on each RB and the specific way of multiplexing resources between the reference signals of each port.
  • the length of the delay vector is In the delay vector corresponding to each port Elements can be compared with One RB corresponds to each other.
  • the value of the precoded reference signal of each port in the mth frequency domain group of the mth frequency domain group (1 ⁇ m ⁇ M, m is an integer) on the nth RB of the frequency domain group is at least determined by the mth of the M delay vectors
  • the nth element in a delay vector is determined.
  • the length of the delay vector is In the delay vector corresponding to each port Elements can be compared with One RB corresponds to each other. Therefore, the value of the precoded reference signal of each port on the nth RB in the lth frequency domain group of the L frequency domain groups (1 ⁇ l ⁇ L, l is an integer) is at least determined by the L delay vectors. The nth element in the lth delay vector is determined.
  • the first RB of the 16 RBs (that is, RB#1), that is, the first RB in the frequency domain group #1, carries the precoding reference signal at least corresponding to b( ⁇ 1 )
  • the first element in the delay vector is determined;
  • the fifth RB of the 16 RBs (ie, RB#5), that is, the second RB in frequency domain group #1, carries the precoded reference signal Determined by at least the second element in b( ⁇ 1 );
  • the ninth RB of the 16 RBs (ie, RB#9), that is, the third RB in frequency domain group #1, carried
  • the precoded reference signal is determined by at least the 3rd element in b( ⁇ 1 );
  • the 13th RB of the 16 RBs ie, RB#14), that is, the 4th in the frequency domain group #1 RB
  • the precoded reference signal carried is determined by at least the fourth element in b( ⁇ 1 ).
  • the length of the L delay vectors determined by the network device based on the uplink channel measurement may be N.
  • the length of the delay vector used for precoding the reference signal is The network device may extract a part of elements from each delay vector to form new L delay vectors based on the L delay vectors determined by the uplink channel measurement.
  • the L delay vectors determined by the uplink channel measurement are called L original delay vectors.
  • N RBs are divided into L frequency domain groups.
  • the lth frequency domain group in the L frequency domain groups corresponds to the lth original delay vector in the L original delay vectors, and the first, second, and second in the lth frequency domain group No. 3 to No. RB and the lth, l+L, l+2L in the lth original delay vector up to the Elements.
  • the n-th RB in the l-th frequency domain group may correspond to the l+(n-1) ⁇ L elements in the l-th original delay vector.
  • the original delay vector is defined.
  • the original delay vector is not involved.
  • the delay vectors involved in the following embodiments can be understood as delay vectors used for frequency domain precoding of reference signals.
  • the length of the delay vector can be N or it can be
  • the network device may group N RBs based on different angle vectors.
  • the precoding reference signal carried in each frequency domain group may be obtained by precoding based on L delay vectors and K/M angle vectors. Therefore, the number of ports corresponding to the precoding reference signal carried on each RB may be L ⁇ K/M.
  • the angle vectors corresponding to the precoding reference signals carried by different frequency domain groups are different.
  • each frequency domain group can include RB.
  • the precoding reference signal carried on the RB included in the lth frequency domain group among the L frequency domain groups is determined based on at least the lth angle vector among the L angle vectors.
  • the number of ports corresponding to the precoding reference signal carried on each RB may be L.
  • the N RBs are grouped based on different angle vectors, and the correspondence between the precoded reference signals carried on each frequency domain group and the angle vector and the delay vector is the same as the different delay vectors described above in conjunction with FIGS. 4 and 5
  • the correspondence between the precoding reference signals carried on each frequency domain group and the angle vector and the delay vector is similar.
  • the angle vector in the drawings (including FIGS. 4 and 5) is replaced with a delay vector, and the delay vector is replaced with an angle vector.
  • the k-th angle vector may correspond to L k delay vectors.
  • the network device may group N RBs based on different angle vectors.
  • the precoding reference signal carried in each frequency domain group may be obtained by precoding based on the partial angle vectors of the K angle vectors and their corresponding delay vectors.
  • the K angle vectors may include, for example, a( ⁇ 1 ), a( ⁇ 2 ), a( ⁇ 3 ), and a( ⁇ 4 );
  • L 1 delay vectors corresponding to a( ⁇ 1 ) may include, for example, b( ⁇ 2 );
  • L 2 delay vectors corresponding to a( ⁇ 2 ) may include, for example, b( ⁇ 1 ), b( ⁇ 2 ), and b( ⁇ 3 );
  • the three delay vectors may include, for example, b( ⁇ 1 ), b( ⁇ 2 ), and b( ⁇ 4 );
  • the L 4 delay vectors corresponding to a( ⁇ 4 ) may include, for example, b( ⁇ 2 ) and b ( ⁇ 3 ).
  • FIG. 6 shows another example of precoding reference signals carrying multiple ports on multiple RBs.
  • the number of RBs is 16.
  • the precoding reference signal carried on each RB may correspond to two angle vectors.
  • the 16 RBs can be divided into 2 frequency domain groups. For example, RB#1, RB#3, RB#5, RB#7, RB#9, RB#11, RB#13, and RB#15 can be classified as frequency domain group #1, RB#2, RB#4, RB#6, RB#8, RB#10, RB#12, RB#14 and RB#16 can be classified as frequency domain group #2.
  • the 16 RBs may belong to two reference signal resources, respectively. Each frequency domain group may belong to a reference signal resource.
  • the precoding reference signals carried in the same frequency domain group may be obtained by precoding based on the same angle vector and delay vector.
  • the K angle vectors may include, for example, a( ⁇ 1 ), a( ⁇ 2 ), a( ⁇ 3 ), and a( ⁇ 4 );
  • the L delay vectors corresponding to the angle vector may include, for example, b( ⁇ 1 ) , B( ⁇ 2 ), b( ⁇ 3 ) and b( ⁇ 4 ).
  • the delay vector corresponding to the angle vector a( ⁇ 1 ) may include b( ⁇ 2 ); for example, the delay vector corresponding to the angle vector a( ⁇ 2 ) may include b( ⁇ 1 ), b( ⁇ 2 ) and b( ⁇ 3 ); the delay vector corresponding to the angle vector a( ⁇ 3 ) may include, for example, b( ⁇ 1 ), b( ⁇ 2 ) and b( ⁇ 4 ); the delay corresponding to the angle vector a( ⁇ 4 )
  • the vector may include, for example, b( ⁇ 2 ) and b( ⁇ 3 ).
  • the precoded reference signals carried on RB#1, RB#3, RB#5, RB#7, RB#9, RB#11, RB#13, and RB#15 can be based on 2 angle vectors and their corresponding delays
  • Vector precoding such as (a( ⁇ 1 ),b( ⁇ 2 )) obtained by combining a( ⁇ 1 ) and its corresponding delay vector b( ⁇ 2 ), and a( ⁇ 2 ) and its corresponding B( ⁇ 1 ), b( ⁇ 2 ), and b( ⁇ 3 ) are obtained by combining (a( ⁇ 2 ), b( ⁇ 1 )), (a( ⁇ 2 ), b( ⁇ 2 )) and (a( ⁇ 2 ),b( ⁇ 3 ));
  • the reference signal can be precoded based on the other two angle vectors and their corresponding delay vectors,
  • the number of ports corresponding to the precoding reference signals carried on each RB in different frequency domain groups may be different.
  • the precoded reference signal carried on each RB in frequency domain group #1 may correspond to 4 ports
  • the precoded reference signal carried on each RB in frequency domain group #2 may correspond to 5 ports.
  • FIG. 7 shows yet another example of precoding reference signals carrying multiple ports on multiple RBs. As shown in the figure, the number of RBs is still 16. In the 16 RBs shown in FIG. 7, the precoding reference signal carried on each RB may still correspond to two angle vectors. The 16 RBs can be divided into 3 frequency domain groups.
  • RB#1, RB#4, RB#7, RB#10, RB#13 and RB#16 can be grouped into frequency domain group #1, RB#2, RB#5, RB#8, RB#11 and RB#14 can be classified as frequency domain group #2, and RB#3, RB#6, RB#9, RB#12, and RB#15 can be classified as frequency domain group #3.
  • the 16 RBs may belong to three reference signal resources, respectively. Each frequency domain group may belong to a reference signal resource.
  • the angle vectors and their corresponding delay vectors can be listed as above, and for the sake of brevity, they will not be repeated here. Based on each angle vector and its corresponding delay vector, nine different combinations of angle vector and delay vector can be obtained.
  • the network device can evenly distribute the 9 combinations into 3 frequency domain groups.
  • the precoding reference signals carried on RB#1, RB#4, RB#7, RB#10, RB#13, and RB#16 may be based on the angle vector a( ⁇ 1 ) and its corresponding delay vector b( ⁇ 2 ) (a( ⁇ 1 ), b( ⁇ 2 )), and the angle vector a( ⁇ 2 ) and its corresponding delay vectors b( ⁇ 1 ) and b( ⁇ 2 ) a( ⁇ 2 ), b( ⁇ 1 )) and (a( ⁇ 2 ), b( ⁇ 2 )) are pre-coded; on RB#2, RB#5, RB#8, RB#11 and RB#14
  • the precoded reference signal carried can be based on the combination of the angle vector a( ⁇ 3 ) and its corresponding delay vectors b( ⁇ 1 ) and b( ⁇ 2 ) (a( ⁇ 3 ), b( ⁇ 1 )) and (a( ⁇ 3 ),b( ⁇ 2 )), and the angle vector
  • the number of ports corresponding to the precoding reference signals carried on each RB in different frequency domain groups may be the same.
  • the precoding reference signal carried on each RB in each frequency domain group shown in FIG. 7 above may correspond to 3 ports.
  • the network device may group N RBs based on different delay vectors.
  • the precoding reference signal carried in each frequency domain group may be obtained by precoding based on a part of the delay vectors and their corresponding angle vectors among the L delay vectors.
  • Group N RBs based on different delay vectors, and the correspondence between the precoded reference signals carried on each frequency domain group and the angle vector and the delay vector is based on different delays as described above in conjunction with FIGS. 6 and 7
  • the correspondence between the precoding reference signals carried on each frequency domain group and the angle vector and the delay vector is similar.
  • the angle vector in the drawings (including FIGS. 6 and 7) is replaced with a delay vector, and the delay vector is replaced with an angle vector.
  • the above definition of the number of ports based on each RB is only one possible implementation manner, and should not constitute any limitation to this application.
  • This application also proposes a method for defining the number of ports, that is, the number of ports may refer to the number of ports corresponding to the precoded reference signals carried on each reference signal resource. In other words, the number of ports can be defined across RB.
  • the method 200 further includes: the terminal device receives third indication information, where the third indication information is used to configure a reference signal resource.
  • the network device sends the third indication information.
  • the reference signal resource configured by the third indication information may be used to carry a precoding reference signal, and the precoding reference signal carried by the reference signal resource may be a reference signal obtained by precoding based on the above K angle vectors and L delay vectors .
  • the precoding reference signal carried by the reference signal resource may be a reference signal obtained by precoding based on the above K angle vectors and L delay vectors .
  • at least two pre-coded reference signals carried on the RBs are obtained by precoding based on different angle delays.
  • at least two pre-coded reference signals carried on RBs correspond to different port numbers. Therefore, in the same reference signal resource, the ports corresponding to the precoded reference signals carried on each RB are not necessarily the same.
  • the reference signal resource may include, for example, the 16 RBs described above with reference to any one of FIGS. 4 to 7, that is, it may include multiple frequency domain groups.
  • the precoded reference signal carried in the reference signal resource may correspond to P ports.
  • the network device may configure multiple references based on the second indication information
  • the signal resource is used to transmit the precoding reference signal, and the precoding reference signal may also be transmitted based on one reference signal resource configured in the third indication information, which is not limited in this application.
  • step 220 the terminal device generates first indication information, which may be used to indicate P weighting coefficients corresponding to P angular delay pairs.
  • the P angular delay pairs and corresponding P weighting coefficients can be used to determine the precoding matrix.
  • the P angular delay pairs may be used to determine P space-frequency component matrices or space-frequency component vectors, and the weighted sum of the P space-frequency component matrices or space-frequency component vectors may be used to determine a precoding matrix.
  • each angular delay pair may include an angle vector among the K angle vectors and a delay vector among the L delay vectors.
  • each angle delay pair is uniquely determined by one of the K angle vectors and one of the L delay vectors. The angle vectors and/or delay vectors contained in any two angular delay pairs are different.
  • the pth angle delay pair in the P angle delay pairs is composed of the kth angle vector in the K angle vectors and the lth delay vector in the L delay vectors.
  • 1 ⁇ p ⁇ P, 1 ⁇ k ⁇ K, 1 ⁇ l ⁇ L, and p, k and l are all integers.
  • the terminal device may perform downlink channel estimation according to the received precoding reference signal to determine the weighting coefficient of each angular delay pair in the P angular delay pairs according to the channel estimation values on multiple RBs.
  • the terminal device when determining the P weighting coefficients corresponding to the P angle delay pairs, the terminal device does not necessarily need to generate or determine the P angle delay pairs.
  • the terminal device may perform channel estimation on multiple RBs based on the received precoding reference signal to obtain channel estimation values corresponding to each port on each RB.
  • the terminal device when the terminal device receives the precoded reference signal from the network device, it can determine the time-frequency resource of the precoded reference signal of each port according to the predefined pilot pattern, and can Receive precoded reference signals for each port.
  • the terminal device can recognize the port corresponding to the precoding reference signal. Therefore, the terminal device can perform channel estimation based on each port according to the received precoding reference signal.
  • the dimension of the downlink channel may be N ⁇ T.
  • the dimension of the downlink channel received on each RB of one receiving antenna may be 1 ⁇ T. Since the network device pre-codes the reference signal based on the angle vector and the delay vector, the dimension of each angle vector may be T ⁇ 1, after the angle vector and the delay vector pre-code the reference signal, the terminal device A receiving antenna and the dimension of the downlink channel received on each RB may be 1 ⁇ 1.
  • the downlink channel with the dimension of 1 ⁇ 1 is the channel estimation value obtained by performing channel estimation on a RB based on the precoding reference signal.
  • the precoded reference signal carried by each RB may correspond to one or more ports.
  • the precoding reference signal carried by each RB may correspond to P ports.
  • the precoding reference signal corresponding to the pth port among the P ports may be obtained by precoding the reference signal based on the kth angle vector and the lth delay vector, for example.
  • the precoding reference signal corresponding to the pth port can be used to determine the weighting coefficient of the angle vector pair formed by the kth angle vector and the lth delay vector, that is, it can be used to determine the pth angle
  • the weighting coefficient of the extension pair Therefore, P ports may have a one-to-one correspondence with P angular delay pairs.
  • the terminal device may determine the weighting coefficient of the p-th angle delay pair based on the N 1 ⁇ 1 downlink channels received on the N RBs.
  • the weighting coefficient of the p-th angle delay pair can be obtained by superimposing and summing N channel estimation values on N RBs.
  • the weighting coefficient of the p-th angle delay pair is determined by the precoding reference signal obtained by precoding based on the k-th angle vector and the l-th delay vector.
  • the terminal device can separately determine P weighting coefficients corresponding to the P angle delay pairs according to the received P-coded pre-coded reference signals.
  • the dimension of H DL may be T ⁇ N; the angle vectors may be K, and the length of each angle vector may be T, then the dimension of S may be T ⁇ K; each delay vector may be For L number, the length of each delay vector can be N, then the dimension of F can be N ⁇ L.
  • H H S is the elapsed real precoded spatial channel.
  • each element of C DL in the coefficient matrix can be determined by multiplying a row in (H DL H S) H and a column in F.
  • each element in the matrix coefficient C DL can be obtained by multiplying a row of the conjugate transpose of the real channel H DL H S and a column in F.
  • elements of the coefficient matrix C DL in the first l columns of the k-th row (H DL H S) H l in the first row and the k column F is multiplied.
  • the elements of the lth row and kth column in the coefficient matrix C DL are the weighting coefficients corresponding to the kth angle vector and the lth delay vector.
  • each row vector in H includes the same number of elements as each column vector in F includes.
  • the number of elements included in each row vector in (H DL H S) H and the number of elements included in each column vector in F may be N.
  • each element in the row vector such as the nth element, n traversing values in 1 to N
  • the corresponding element in the column vector such as the nth element, n
  • the traversal values in 1 to N are multiplied and then summed, and the N elements in each row of (H DL H S) H correspond to N frequency domain units (such as RB, subbands, etc.).
  • the network device cannot know the correlation between the downlink channels in each frequency domain unit (such as RB) in advance, so it cannot complete the (H DL H S) H F calculation on the network device side, but merely delays each time.
  • the elements in the vector are loaded on each RB of the downlink channel.
  • H DL ' represents the space frequency matrix determined by the real downlink channel. Since the real channel dimension is R ⁇ T, the dimension of H DL ' is N ⁇ T. This may include N row vectors with a dimension of 1 ⁇ T, for example, including h 1 to h N , respectively corresponding to the 1st to Nth RBs in N RBs (that is, an example of frequency domain units).
  • the channel observed by the terminal device can be expressed as:
  • the matrix The n-th row in can represent the channel estimation value obtained by performing channel estimation on the n-th RB based on the received precoding reference signals of multiple ports.
  • matrix Each row in may include K ⁇ L elements, which may correspond to K ⁇ L ports, or K ⁇ L angular delay pairs, respectively.
  • the correlation of the downlink channel between each RB can be known, and the above summation operation can be completed. That is, the matrix Each column element in the sum is summed separately. That is, will Summing the elements corresponding to the same delay vector and the same angle vector in, we can get: (b( ⁇ 1 ) H H DL 'S...b( ⁇ L ) H H DL 'S) H. This operation can be understood as summing the full-band channel estimates.
  • the kth element in the row vector may correspond to the kth angle vector in the K angle vectors. Therefore, the k-th element in b( ⁇ l ) H H DL 'S may correspond to the estimated value of the downlink channel obtained by performing channel estimation based on the precoding reference signal of the p-th port described above
  • the coefficient matrix C DL with dimension K ⁇ L can be obtained.
  • the elements of the k-th row and the l-th column in the coefficient matrix C DL correspond to the k-th angle vector and the l-th delay vector, that is, the elements corresponding to the k-th angle vector and the l-th delay vector.
  • the terminal device can determine the weighting coefficient corresponding to each angle delay pair obtained by combining each angle vector and the delay vector by summing the full-band channel estimation values.
  • each element in the coefficient matrix C DL is a weighting coefficient corresponding to each angle delay pair when determining the space frequency matrix H DL ', It is not a weighting coefficient corresponding to each angle delay pair when determining the space frequency matrix H DL .
  • the estimated value obtained when the terminal device performs channel based on the received precoding reference signal It can be used as the weighting coefficient for determining the p-th angular delay pair in the space-frequency matrix H DL '.
  • the number of ports corresponding to the precoding reference signals carried by each RB may be less than P.
  • the terminal device can still perform channel estimation based on the precoded reference signal of each port to determine P weighting coefficients corresponding to P angle delay pairs.
  • the P weighting coefficients may be determined by the precoding reference signals carried on each frequency domain group.
  • the terminal device does not perceive the angle vector and the delay vector used by the network device for precoding the reference signal, nor does it perceive the correspondence between each frequency domain group and the combination of the angle vector and the delay vector.
  • the terminal device only needs to perform channel estimation according to the precoding reference signals received on each frequency domain group based on a predefined grouping rule.
  • RB#1, RB#5, RB#9, and RB#13 can be classified as frequency domain group #1; RB#2, RB#6, RB#10, and RB# 14 can be classified as frequency domain group #2: RB#3, RB#7, RB#11 and RB#15 can be classified as frequency domain group #3; RB#4, RB#8, RB#12 and RB#16 Can be classified as frequency domain group #4.
  • the terminal device may determine the weighting coefficients of the K angular delay pairs based on the precoding reference signals received on RB#1, RB#5, RB#9, and RB#13.
  • K angle delay pairs composed of delay vectors corresponding to the delay vector b( ⁇ 1 ) respectively; the terminal device can be based on the received RB#2, RB#6, RB#10 and RB#14
  • the precoding reference signal determines the weighting coefficients of K angular delay pairs, that is, K angular delay pairs, that is, K angular times composed of K delay vectors corresponding to the delay vectors b( ⁇ 2 ) respectively Delay pair; the terminal device can determine the weighting coefficients of K angular delay pairs based on the precoding reference signals received on RB#3, RB#7, RB#11, and RB#15.
  • the K angular delay pairs are also K angle delay pairs consisting of K angle vectors and delay vectors corresponding to the delay vector b( ⁇ 3 ); the terminal device can receive based on RB#4, RB#8, RB#12 and RB#16
  • the obtained precoding reference signal determines the weighting coefficients of K angular delay pairs, that is, K angular delay pairs, which are K delay vectors composed of K angular vectors and delay vectors b( ⁇ 4 ), respectively. Angle delay is right.
  • the network device Since the network device groups the RBs, the terminal device needs to know the number of frequency domain groups in advance. Therefore, the network device may notify the terminal device of the number of frequency domain groups in advance through signaling.
  • the method further includes: the terminal device receives fourth indication information, where the fourth indication information is used to indicate the number of frequency domain groups.
  • the network device sends the fourth indication information.
  • the network device can configure the number of ports in advance through high-level signaling. Therefore, the terminal device may determine the number of ports corresponding to the precoding reference signal carried on each RB based on existing signaling. When the network device groups the RBs, the network device may further indicate the number of frequency domain groups through fourth indication information. The terminal device can determine the RB in each frequency domain group based on the same grouping rule, and then estimate the downlink channel of each port, and determine the weighting coefficient of each angle delay pair.
  • the terminal device and the network device may pre-agreed the grouping rules. Both parties can group RBs according to a predefined grouping rule, so that the number of RBs included in each frequency domain group determined by both parties and the positions of RBs in each frequency domain group in frequency domain resources are consistent.
  • the number of frequency domain groups may be the number of delay vectors.
  • the terminal device may generate first indication information to indicate the P weighting coefficients.
  • the terminal device may be indicated by a normalized manner, for example.
  • the terminal device may determine the weighting coefficient with the largest modulus from the P weighting coefficients (for example, referred to as the maximum weighting coefficient), and indicate the position of the maximum weighting coefficient among the P weighting coefficients.
  • the terminal device may further indicate the relative value of the remaining P-1 weighting coefficients with respect to the maximum weighting coefficient.
  • the terminal device may indicate the above P-1 weighting coefficients by the quantization index of each relative value.
  • the network device and the terminal device may predefine a one-to-one correspondence between multiple quantization values and multiple indexes, and the terminal device may feedback the relative value of each weighting coefficient relative to the maximum weighting coefficient to the network based on the one-to-one correspondence equipment. Since the terminal equipment quantizes each weighting coefficient, the quantized value may be the same as or close to the real value, so it is called the quantized value of the weighting coefficient.
  • the terminal device When the terminal device indicates P weighting coefficients through the first indication information, it may construct a matrix of dimension K ⁇ L according to K angle vectors and L delay vectors.
  • the elements in the k-th row and l-th column of the matrix may be weighting coefficients corresponding to the k-th angle vector and the l-th delay vector, that is, the k-th angle vector and the l-th delay vector. Weighting coefficients for p angular delay pairs.
  • the network device can recover the P weighting coefficients corresponding to the P angle delay pairs based on the same method.
  • the terminal device may also construct a matrix of dimension L ⁇ K according to L delay vectors and K angle vectors.
  • the corresponding relationship between each element in the matrix and the angle delay pair is similar to that described above.
  • the element in the lth row and kth column of the matrix may be a weighting coefficient corresponding to the lth delay vector and the kth angle vector, that is, the first coefficient composed of the lth delay vector and the kth angle vector Weighting coefficients for p angular delay pairs.
  • the network device can recover the P weighting coefficients corresponding to the P angle delay pairs based on the same method.
  • the terminal device may also sequentially indicate P weighting coefficients in a predetermined order, for example, according to a method of traversing L delay vectors first and then traversing K angle vectors, or traversing K angle vectors first and then traversing L
  • P angle delay pairs corresponding to the P weighting coefficients are arranged into an ordered array, so that the network device determines the position of each weighting coefficient in the ordered array.
  • the network device can recover the P weighting coefficients corresponding to the P angle delay pairs based on the same method.
  • the normalization mentioned above may determine the maximum weighting coefficient in units of each receiving antenna, so as to perform normalization within the range of quantization information corresponding to each receiving antenna.
  • the terminal device may also determine the maximum weighting coefficient in units of multiple receiving antennas, one polarization direction, multiple polarization directions, or one port, so that Normalized within the range of quantization information corresponding to directions, multiple polarization directions, or a port.
  • the first indication information when used to indicate P weighting coefficients, it may be indicated in a direct or indirect manner. For example, for the largest weighting coefficient, its position among P weighting coefficients may be indicated; for another example, for a weighting coefficient whose quantization value is zero, its position among P weighting coefficients may also be indicated. In other words, the first indication information does not necessarily indicate each of the P weighting coefficients. As long as the network device can recover P weighting coefficients according to the first indication information.
  • the specific process of generating the first indication information by the terminal device is described in detail above by taking one polarization direction and one receiving antenna as examples.
  • the above P weighting coefficients may be determined based on the precoding reference signal sent by one transmit antenna in the polarization direction and received on one receive antenna.
  • the one receiving antenna described by way of example above may be any one of the multiple receiving antennas configured for the terminal device.
  • the terminal device may determine P weighting coefficients for each receiving antenna based on the method described above.
  • one polarization direction described in the above example may be any one of the multiple polarization directions. That is, the terminal device may determine P weighting coefficients based on the precoding reference signal sent by the transmit antenna in each polarization direction based on the method described above.
  • the first indication information may be used to indicate R sets of weighting coefficients corresponding to R receiving antennas, and each set of weighting coefficients may include P weighting coefficients.
  • P weighting coefficients corresponding to one receiving antenna that is, P weighting coefficients determined based on the precoding reference signal received on this receiving antenna.
  • the first indication information includes R sets of indication information, and each set of indication information corresponds to a receiving antenna.
  • Each set of indication information is used to indicate P weighting coefficients corresponding to one receiving antenna.
  • the terminal device may use each receiving antenna as a unit to indicate the P weighting coefficients corresponding to each receiving antenna in a normalized manner.
  • the first indication information when used to indicate the R ⁇ P weighting coefficients on the R receiving antennas, it may also be indicated in a normalized manner in units of multiple receiving antennas.
  • a maximum weighting coefficient may be determined among R ⁇ P weighting coefficients corresponding to a plurality of receiving antennas, indicating the position of the maximum weighting coefficient.
  • the terminal device may further determine the relative values of the remaining R ⁇ P-1 weighting coefficients with respect to the maximum weighting coefficient, and indicate the above R ⁇ P-1 weighting coefficients through the quantization index of each relative value.
  • the specific method for the terminal device to perform normalization within the range of the quantization information of multiple receiving antennas is the same as the normalization within the range of the quantization information of one receiving antenna.
  • the terminal device when the terminal device indicates the weighting coefficients of the multiple receiving antennas in a normalized manner, it may be sequentially indicated according to a predetermined order.
  • the weighting coefficients other than the normalization coefficients may be sequentially indicated in accordance with the pre-defined indication sequence of R receiving antennas.
  • This application does not limit the order in which the terminal device indicates the weighting coefficients, as long as the network device can recover R ⁇ P weighting coefficients corresponding to the R receiving antennas according to the first indication information.
  • the first indication information may be used to indicate J sets of weighting coefficients corresponding to J polarization directions, and each set of weighting coefficients may include P weighting coefficients.
  • P weighting coefficients corresponding to one polarization direction that is, P weighting coefficients determined based on the precoding reference signal transmitted in this polarization direction.
  • the first indication information includes J sets of indication information, and each set of indication information corresponds to a polarization direction.
  • Each set of indication information is used to indicate P weighting coefficients corresponding to one polarization direction.
  • the terminal device may use each polarization direction as a unit to indicate the P weighting coefficients corresponding to each polarization direction in a normalized manner.
  • the first indication information when used to indicate J ⁇ P weighting coefficients in J polarization directions, it may also be indicated in a normalized manner using J polarization directions as a unit.
  • a maximum weighting coefficient may be determined among J ⁇ P weighting coefficients corresponding to a plurality of polarization directions, indicating the position of the maximum weighting coefficient.
  • the terminal device may further determine the relative values of the remaining J ⁇ P-1 weighting coefficients with respect to the maximum weighting coefficient, and indicate the above J ⁇ P-1 weighting coefficients by the quantization index of each relative value.
  • the terminal device when the terminal device indicates the weighting coefficients of multiple polarization directions in a normalized manner, it may be sequentially indicated according to a predetermined order.
  • the weighting coefficients other than the normalization coefficients may be sequentially indicated in accordance with the pre-defined indication order of the J polarization directions.
  • This application does not limit the order in which the terminal device indicates the weighting coefficients, as long as the network device can recover J ⁇ P weighting coefficients corresponding to the J polarization directions according to the first indication information.
  • the first indication information may be used to indicate J ⁇ R ⁇ P weighting coefficients corresponding to J polarization directions and R receiving antennas.
  • the weighting coefficient corresponding to one polarization direction and one receiving antenna may refer to a weighting coefficient determined based on a precoding reference signal transmitted by a transmitting antenna of one polarization direction and received on one receiving antenna.
  • the first indication information is used to indicate the J ⁇ R ⁇ P weighting coefficients corresponding to the J polarization directions and the R receiving antennas, and may be taken in units of J polarization directions and the R receiving antennas. Normalized way to indicate.
  • the first indication information is used to indicate the J ⁇ R ⁇ P weighting coefficients corresponding to the J polarization directions and the R receiving antennas, and the normalization method may also be used in units of one polarization direction and R receiving antennas.
  • the first indication information includes J sets of indication information, and each set of indication information corresponds to one polarization direction and R receiving antennas.
  • Each group of indication information is used to indicate R ⁇ P weighting coefficients corresponding to one polarization direction and R receiving antennas.
  • the first indication information is used to indicate J polarization directions and J ⁇ R ⁇ P weighting coefficients corresponding to R receiving antennas, and may also be based on J polarization directions and one receiving antenna as a unit. Normalized way to indicate.
  • the first indication information includes R sets of indication information, and each set of indication information corresponds to a receiving antenna and J polarization directions.
  • Each group of indication information is used to indicate J ⁇ P weighting coefficients corresponding to one reception day and J polarization directions.
  • the first indication information is used to indicate J polarization directions and J ⁇ R ⁇ P weighting coefficients corresponding to R receiving antennas, and may also use one polarization direction and one receiving antenna as a unit to One way to indicate.
  • the first indication information includes J ⁇ R group indication information, and each set of indication information corresponds to a polarization direction.
  • Each set of indication information is used to indicate P weighting coefficients corresponding to one polarization direction and one receiving antenna.
  • the terminal device when the terminal device indicates the weighting coefficients of multiple polarization directions and multiple receiving antennas in a normalized manner, it may be sequentially indicated in a predetermined order.
  • the weighting coefficients other than the normalization coefficients may be sequentially indicated in the order of the pre-defined J polarization directions and R receiving antennas.
  • the network device can recover J ⁇ R ⁇ P weighting coefficients with J polarization directions and R receiving antennas according to the first instruction information.
  • the terminal device may further indicate the number of receiving antennas.
  • the method 200 further includes: the terminal device sends seventh indication information, where the seventh indication information is used to indicate the number of receiving antennas.
  • the network device receives the seventh indication information.
  • the seventh indication information and the first indication information may be carried in the same signaling and sent, such as a precoding matrix indicator (procoding matrix indicator, PMI) or CSI; or may be sent through different signaling, and this application does not make this limited.
  • the number of receiving antennas of the terminal device may also be defined in advance, such as the protocol definition. In this case, the terminal device may not indicate the number of receiving antennas through additional signaling.
  • the feedback of the measurement results of the downlink channel by the terminal device is not limited to feedback based on each receiving antenna, and the terminal device may also feedback the measurement results of the downlink channel based on the transmission layer.
  • the terminal device may further process the weighting coefficient to obtain a weighting coefficient based on each transmission layer feedback.
  • the terminal device may construct a coefficient matrix based on J ⁇ R ⁇ P weighting coefficients corresponding to J polarization directions and R receiving antennas.
  • the coefficient matrix may be a matrix of J ⁇ P rows and R columns, and the element of each column may be a J ⁇ P weighting coefficient corresponding to a receiving antenna.
  • the first row to the Pth row in the coefficient matrix can be composed of weighting coefficients corresponding to one polarization direction, ⁇ p,r can represent the pth angular delay pair and the rth receiving antenna in the first polarization direction Corresponding weighting factor.
  • the P+1th to 2Pth rows in the coefficient matrix can be composed of weighting coefficients corresponding to the other polarization direction, ⁇ P+p,r can represent the pth angular delay pair in the second polarization direction, The weighting coefficient corresponding to the r-th receiving antenna.
  • the terminal device may perform singular value decomposition (SVD) on the coefficient matrix to obtain a weighting coefficient based on the feedback of the transmission layer.
  • SVD singular value decomposition
  • the weighting coefficients based on the transmission layer feedback may include Z ⁇ P weighting coefficients.
  • the terminal device may indicate the above Z ⁇ P weighting coefficients in a normalized manner.
  • the terminal device may use a normalization method to indicate the P weighting coefficients corresponding to each transmission layer in units of one transmission layer; the terminal device may also use the normalization method to indicate in Z transmission layers.
  • the terminal device may further indicate the number of transmission layers.
  • the method 200 further includes: the terminal device sends eighth indication information, where the eighth indication information is used to indicate the number of transmission layers.
  • the network device receives the eighth instruction information.
  • the eighth indication information is a rank indicator (RI).
  • RI is only an example of the eighth instruction information, and should not constitute any limitation to this application. This application does not limit the specific form of the sixth instruction information.
  • the eighth indication information and the first indication information may be carried in the same signaling and sent, such as CSI, or may be sent through different signaling, which is not limited in this application.
  • step 230 the terminal device sends the first indication information.
  • the network device receives the first indication information.
  • the first indication information may be, for example, CSI, or some information elements in the CSI, or other information. This application does not limit this.
  • the first indication information may be carried in one or more messages in the prior art and sent by the terminal device to the network device, or may be carried in one or more newly designed messages and sent by the terminal device to the network device.
  • the terminal device may send the first indication information to the network device through physical uplink resources, such as a physical uplink shared channel (physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH), to facilitate the network device
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the specific method for the terminal device to send the first indication information to the network device through the physical uplink resource may be the same as that in the prior art. For brevity, a detailed description of the specific process is omitted here.
  • step 240 the network device determines the precoding matrix according to the first indication information.
  • the terminal device may feedback the weighting coefficients based on the receiving antenna, or may feedback the weighting coefficients based on the transmission layer.
  • the network device may determine the precoding matrix based on the first indication information based on different feedback granularities.
  • the weighting coefficient indicated by the first indication information may include weighting coefficients corresponding to one or more receiving antennas.
  • the network device may reconstruct the downlink channel based on the weighting coefficient corresponding to each receiving antenna and the angle delay pair corresponding to each weighting coefficient, and then determine the precoding matrix of each RB.
  • the network device may construct a space frequency matrix corresponding to each receiving antenna based on the P weighting coefficients corresponding to each receiving antenna and the angle vector and the delay vector included in each angular delay pair in the P angular delay pairs.
  • the space frequency matrix corresponding to the r-th receiving antenna can be determined by P angular delay pairs and P weighting coefficients corresponding to the r-th receiving antenna.
  • P angular delay pairs can be used to construct P space-frequency component matrices.
  • the space-frequency component matrix a( ⁇ can be constructed from the kth angle vector a( ⁇ k ) in the K angle vectors and the lth delay vector b( ⁇ l ) in the L delay vectors k ) ⁇ b( ⁇ l ) H.
  • Space-frequency matrix corresponding to the r-th receiving antenna It may be a weighted sum of P space-frequency component matrices. which is, Represents the weighting coefficient corresponding to the k-th angle vector and the l-th delay vector based on the r-th receiving antenna feedback.
  • the dimension of the space frequency matrix may be T ⁇ N.
  • the specific process of determining the space-frequency matrix corresponding to the receiving antenna has been explained by taking one polarization direction of the transmitting antenna as an example. However, this should not constitute any limitation on this application.
  • the network device can still determine the space-frequency matrix corresponding to each receiving antenna based on the method described above.
  • the space-frequency matrix corresponding to the r-th receiving antenna can be determined by the following calculation formula:
  • the space-frequency matrix defined above for the two polarization directions The calculation formula of is only an example, and should not constitute any limitation to this application.
  • the number of delay vectors and/or angle vectors loaded in different polarization directions may be the same or different, and the delay vectors and/or angle vectors loaded in different polarization directions may be the same or different .
  • the network device may determine the space-frequency matrix based on the P weighting coefficients corresponding to each receiving antenna, respectively to Thus, the network device can determine the downlink channel matrix corresponding to each RB.
  • the network device may determine the conjugate transpose (V (n) ) H of the downlink channel matrix corresponding to the nth RB.
  • the matrix (V (n) ) H may be the R space-frequency matrices respectively determined based on the R receiving antennas to The n-th column vector in each space-frequency matrix in is determined.
  • the nth column in is the first column of the matrix (V (n) ) H
  • the nth column in is used as the 2nd column of the matrix (V (n) ) H ; and so on.
  • the nth column in is the rth column of the matrix (V (n) ) H.
  • a downlink channel matrix corresponding to each RB can be determined.
  • the network device may further determine the precoding matrix of each RB according to the downlink channel matrix of each RB. For example, the network device can determine the precoding matrix by performing SVD on the downlink channel matrix or the covariance matrix of the channel matrix, or it can also perform eigenvalue decomposition (EVD) on the covariance matrix of the downlink channel matrix. The way is determined.
  • SVD SVD on the downlink channel matrix or the covariance matrix of the channel matrix
  • EVD eigenvalue decomposition
  • the specific method for the network device to determine the precoding matrix according to the channel matrix may refer to the prior art, and this application does not limit the determination method of the precoding matrix.
  • the network device determines the downlink channel matrix based on the space frequency matrix, and then determines the precoding matrix.
  • the network device can also directly determine the precoding matrix according to the space frequency matrix.
  • the weighting coefficient indicated by the first indication information may include weighting coefficients of one or more transmission layers.
  • the network device may determine the space-frequency matrix corresponding to the transmission layer based on the weighting coefficient corresponding to each transmission layer and the angle delay pair corresponding to each weighting coefficient, and then determine the precoding matrix of each RB.
  • the network device may construct a precoding vector corresponding to the transmission layer based on the P weighting coefficients corresponding to each transmission layer and the angle vector and the delay vector included in each angle delay pair in the P angle delay pairs.
  • the space-frequency matrix corresponding to the z-th transmission layer It can be determined by P angular delay pairs and P weighting coefficients corresponding to the z-th transmission layer.
  • P angular delay pairs can be used to construct P space-frequency component matrices.
  • the precoding vector corresponding to the z-th transmission layer may be a weighted sum of P space-frequency component matrices. which is, Represents the weighting coefficient corresponding to the k-th angle vector and the l-th delay vector based on the r-th receiving antenna feedback.
  • the dimension of the space frequency matrix may be T ⁇ N.
  • the specific process of determining the space-frequency matrix corresponding to the receiving antenna has been described by taking one polarization direction of the transmitting antenna as an example. However, this should not constitute any limitation on this application.
  • the network device can still determine the space-frequency matrix corresponding to each receiving antenna based on the method described above.
  • the space-frequency matrix corresponding to the r-th receiving antenna can be determined by the following calculation formula:
  • the space-frequency matrix defined above for the two polarization directions The calculation formula of is only an example, and should not constitute any limitation to this application.
  • the number of delay vectors and/or angle vectors loaded in different polarization directions may be the same or different, and the delay vectors and/or angle vectors loaded in different polarization directions may be the same or different .
  • the network device can determine the space-frequency matrix corresponding to each transmission layer based on the P weighting coefficients corresponding to each transmission layer to Thereby, the network device can determine the precoding matrix W (n) corresponding to each RB.
  • the precoding matrix W (n) corresponding to the nth RB may be Z space-frequency matrices respectively determined based on the Z transmission layers described above to The n-th column vector in each space-frequency matrix is constructed.
  • the nth column in is the first column of the downlink channel matrix W (n)
  • the nth column in is used as the second column of the downlink channel matrix W (n) ;
  • the nth column in is the zth column of the downlink channel matrix W (n) .
  • the precoding matrix corresponding to each RB can be determined.
  • the network device may also determine P space-frequency component vectors based on P angular delay pairs, and then determine the precoding matrix.
  • P basic units of space frequency in different forms based on P angular delay pairs, and then determine a precoding matrix.
  • the P space frequency basic units of different forms constructed based on P angle delay pairs, and the method of determining the precoding matrix based on the weighted sum of the P space frequency basic units should all fall within the protection scope required by the present application.
  • the above is only an example and shows a possible implementation manner in which the network device determines the precoding matrix according to the first indication information, but this should not constitute any limitation to this application.
  • This application does not limit the specific implementation manner of the network device determining the precoding matrix according to the first indication information. Based on the same concept, those skilled in the art transform or equivalently replace the matrix operations listed above, and the method for determining the precoding matrix should fall within the protection scope of the present application.
  • the precoding matrix determined above is a precoding matrix corresponding to RB.
  • RB is an example of a frequency domain unit.
  • the precoding matrix corresponding to the RB may refer to the precoding matrix determined based on the channel matrix corresponding to the RB at the granularity of the RB, or the precoding matrix determined based on the precoding reference signal received on the RB, available Yu pre-codes the data transmitted through the RB.
  • the downlink channel corresponding to the RB may refer to a downlink channel determined based on the precoding reference signal received on the RB, and may be used to determine the precoding matrix corresponding to the RB.
  • the network device may determine the precoding matrix corresponding to the frequency domain unit according to the precoding matrix corresponding to each RB in each frequency domain unit.
  • each frequency domain unit includes an RB for carrying a reference signal
  • the network device may use the precoding matrix corresponding to the RB as the corresponding precoding matrix corresponding to the frequency domain unit.
  • the network device may, for example, average the correlation matrices of the precoding matrices corresponding to multiple RBs in the same frequency domain unit and perform SVD to determine the frequency The precoding matrix corresponding to the domain unit; for example, the network device may use the average of the precoding matrix corresponding to multiple RBs in the same frequency domain unit as the precoding matrix corresponding to the frequency domain unit, and so on.
  • the specific method for the network device to determine the precoding matrix of the frequency domain unit according to the precoding matrix corresponding to multiple RBs in the frequency domain unit may refer to the technology, and is not limited to the above. This application does not limit the specific method for determining the precoding matrix of the frequency domain unit by the precoding matrix corresponding to multiple RBs in the frequency domain unit of the network device.
  • the weighting coefficients corresponding to a certain angle vector and a certain delay vector mentioned in the description above that is, the weighting coefficients corresponding to the angle delay pair composed of a certain angle vector and a certain delay vector .
  • the weighting coefficient corresponding to the k-th angle vector and the l-th delay vector that is, the weighting coefficient corresponding to the angular delay pair composed of the k-th angle vector and the l-th delay vector.
  • the network device pre-codes the downlink reference signal based on the angle and delay determined by the uplink channel measurement, so that the terminal device performs downlink channel measurement according to the pre-coded reference signal. Since the network device pre-codes the reference signal based on the reciprocity angle and delay of the uplink and downlink channels, the information of the downlink channel detected by the terminal device is information that does not have reciprocity. Therefore, the terminal device does not need to feed back the vectors in the space and frequency domains (such as the above-mentioned angle vector and delay vector), and only needs to feed back the weighting coefficients corresponding to the angle delay pairs, which greatly reduces the feedback overhead of the terminal device.
  • the precoding matrix is constructed by linearly superimposing multiple vectors in the space and frequency domains, so that the precoding matrix determined by the network device can be adapted to the downlink channel, thereby reducing feedback overhead while still ensuring high Accuracy of feedback.
  • the number of ports of the reference signal can be reduced, thereby reducing pilot overhead.
  • the embodiments of the present application are only for ease of understanding, and show the specific process of measuring and determining the precoding matrix in the downlink channel when the space-frequency matrix is obtained by the conjugate transpose of the real channel.
  • the relationship between the real channel and the space frequency matrix H DL is not fixed. Different definitions of the space-frequency matrix and the space-frequency component matrix may cause the relationship between the real channel and the space-frequency matrix H DL to change.
  • the space frequency matrix H DL can be obtained by the conjugate transpose of the real channel, or by the transpose of the real channel.
  • the network device may also precode the reference signal based on the delay vector only, so that the terminal device performs downlink channel measurement based on the precoded reference signal.
  • the embodiment shown below first uses a polarization direction as an example to describe in detail the channel measurement method 300 provided by the embodiment of the present application.
  • the polarization direction may be any one of one or more polarization directions of the transmitting antenna configured by the network device.
  • the terminal device may perform channel measurement based on the method 300 provided in the embodiment of the present application, and the network device may also use the method 300 provided in the embodiment of the present application. Determine the precoding matrix.
  • the number of polarization directions of the transmitting antenna is not limited in this application, for example, it may be one, that is, a single polarization direction; it may also be multiple, such as a dual polarization direction.
  • FIG. 8 is a schematic flowchart of a channel measurement method 300 provided by an embodiment of the present application from the perspective of device interaction. As shown, the method 300 may include steps 310 to 340. The steps of the method 300 are described in detail below.
  • the terminal device receives a precoded reference signal, which is obtained by precoding the reference signal based on L delay vectors.
  • the network device sends a precoding reference signal.
  • L ⁇ 1, and L is an integer.
  • the network device may pre-code the reference signal based on L delay vectors. Since the reference signal is not pre-coded in the spatial domain, before the reference signal is pre-coded based on the delay vector, the reference signal may correspond to T transmit antenna ports. T is the number of transmit antenna ports in one polarization direction, T ⁇ 1, and T is an integer.
  • the obtained precoding reference signal may correspond to one or more groups of ports.
  • Each group of ports may correspond to a precoded reference signal obtained by precoding reference signals of T transmit antenna ports based on the same delay vector.
  • Each group of ports may include at most T ports, and the T ports may correspond to the T transmit antenna ports described above. Therefore, the precoded reference signal for each port may correspond to a delay vector and a transmit antenna port. In other words, each port can be a combination of a delay vector and a transmit antenna port.
  • the network device may traverse L delay vectors to obtain T ⁇ L different combinations, or T ⁇ L antenna delay pairs. Since spatial precoding is not involved, each combination can correspond to a delay vector. In other words, by loading L delay vectors on the reference signals of different transmit antenna ports, a total of T ⁇ L combinations of delay vectors and different transmit antenna ports can be obtained.
  • At least two transmit antenna ports have different delay vectors.
  • the reference signal transmitted by the network device at the t (1 ⁇ t ⁇ T) transmit antenna port among the T transmit antenna ports may be based on L t (1 ⁇ L k ⁇ L, L k is an integer) delay vector Encoded.
  • L in the above L delay vectors can satisfy:
  • At least two transmit antenna ports correspond to different delay vectors, which may mean that at least two of the T transmit antenna ports correspond to different delay vectors, and the other transmit antenna ports respectively correspond to delay vectors. It may be the same or different, and this application does not limit it. In other words, the delay vectors corresponding to each transmit antenna port are partially or completely different.
  • the delay vectors corresponding to the two transmit antenna ports are different, which may mean that the delay vectors corresponding to the two transmit antenna ports are completely different, that is, the delay vectors corresponding to the two transmit antenna ports are not repeated, or, there is no Intersection.
  • the delay vector corresponding to the transmitting antenna port #1 includes b( ⁇ 2 )
  • the delay vector corresponding to the transmitting antenna port #2 includes b( ⁇ 1 ) and b( ⁇ 3 ).
  • the delay vectors corresponding to the two transmit antenna ports are different. It may also mean that the delay vectors corresponding to the two transmit antenna ports are partially different, that is, the delay vectors corresponding to the two transmit antenna ports are partially repeated, but not completely the same.
  • the delay vectors corresponding to the two transmit antenna ports have intersections, but they are not exactly the same.
  • the delay vector corresponding to the transmitting antenna port #1 includes b( ⁇ 2 )
  • the delay vector corresponding to the transmitting antenna port #2 includes b( ⁇ 1 ), b( ⁇ 2 ), and b( ⁇ 3 ).
  • the network device can obtain the above T transmit antenna ports and L delay vectors to obtain A combination of angle vectors and delay vectors.
  • the L delay vectors can all be determined based on uplink channel measurements. Since the method 200 above has described in detail the specific method by which the network device determines the L strong delays based on the uplink channel measurement, for the sake of brevity, it will not be repeated here.
  • L delay vectors based on uplink channel measurement is not the only implementation.
  • the L delay vectors may be, for example, predefined, as defined by a protocol; or may be based on one or more previous downlink channels.
  • the results of measurement and feedback are statistically determined. This application does not limit this.
  • the delays of the uplink and downlink channels are reciprocal, so the L delay vectors measured by the uplink channel can be loaded into the downlink reference signal, so that the terminal device can measure the downlink channel based on the received precoding reference signal .
  • the network device may pre-code the downlink reference signal, such as CSI-RS, based on the L delay vectors to obtain a pre-coded reference signal.
  • the network device may transmit the precoded reference signal through a pre-configured reference signal resource.
  • the method 300 further includes: the terminal device receives second indication information, where the second indication information is used to configure one or more reference signal resources.
  • the network device sends the second indication information.
  • One or more reference signal resources configured by the second indication information may be used to carry pre-coded reference signals.
  • the precoding reference signals carried on the same reference signal resource may correspond to the same port or ports.
  • the antenna delay pairs corresponding to the precoded reference signals carried on each reference signal resource may be different from each other, and each reference signal resource is in the frequency domain and/or There is no overlap in the time domain.
  • the precoded reference signal of each port corresponds to one transmit antenna port and one delay vector.
  • the antenna delay pair corresponding to the precoding reference signal may include a delay vector used for precoding the reference signal and a transmitting antenna port transmitting the reference signal.
  • the antenna delay pairs corresponding to the precoded reference signals carried on each reference signal resource are different, which may mean that the transmit antenna ports and/or delay vectors corresponding to the precoded reference signals carried on each reference signal resource are different.
  • precoding reference signals carried on two reference signal resources may be precoded based on different delay vectors and transmitted through the same transmit antenna port, and those carried on two reference signal resources
  • the precoded reference signals can be precoded based on the same delay vector and transmitted through different transmit antenna ports, and the precoded reference signals carried on the two reference signal resources can be obtained based on different delay vector precodes and passed different The transmitting antenna port transmits.
  • the antenna delay pairs corresponding to the precoding reference signals carried on the above reference signal resources are different from each other, and may include one or more of the following cases: the precoding reference signals carried on the two reference signal resources may be based on Different delay vectors are precoded and transmitted through the same transmit antenna port.
  • the precoded reference signals carried on the two reference signal resources can be obtained based on the same delay vector precoded and transmitted through different transmit antenna ports, and, The precoding reference signals carried on the two reference signal resources can be precoded based on different delay vectors and transmitted through different transmit antenna ports.
  • the precoded reference signals carried on any two reference signal resources may correspond to different antenna delay pairs. That is, the transmit antenna ports and/or delay vectors corresponding to the precoded reference signals carried on any two reference signal resources are different. That is to say, the delay vector corresponding to the precoded reference signals carried by different reference signal resources may be repeated, or the transmit antenna ports corresponding to the precoded reference signals carried on different reference signal resources may be repeated, but the structure Antenna delay pairs are different.
  • the network device may traverse each of the L delay vectors to precode the reference signal on each transmit antenna port to obtain a precoded reference signal.
  • the reference signal resource used to transmit the precoded reference signal may be pre-configured by the network device through high-layer signaling, such as the foregoing second indication information.
  • the reference signal resource may include one or more RBs, such as N. The precoding reference signal carried on each RB is obtained by precoding based on the same L delay vectors.
  • the network device may configure a reference signal resource for the terminal device in advance.
  • the precoding reference signal carried on each RB in the reference signal resource may correspond to P ports.
  • the precoded reference signal of each port may be obtained by precoding a reference signal of a transmitting antenna port based on a delay vector among L delay vectors. In other words, the precoded reference signal of each port may correspond to an antenna delay pair.
  • the network device may configure a lower pilot density through higher layer signaling, such as the above-mentioned second indication information, to reduce pilot overhead.
  • the network device may pre-code the reference signal based on L delay vectors.
  • the precoding reference signals obtained based on different delay vector precoding can be mapped onto different RBs.
  • the precoding reference signal carried on each RB may be obtained by precoding a partial delay vector among L delay vectors.
  • the precoding reference signals carried by at least two RBs are obtained by precoding based on different delay vectors.
  • the network device may configure multiple reference signal resources for the terminal device in advance through high-layer signaling, such as the above-mentioned second indication information.
  • Each reference signal resource in the plurality of reference signal resources may include one or more RBs.
  • the precoded reference signals carried in each reference signal resource may correspond to one or more ports, and the antenna delay pairs corresponding to the precoded reference signals carried in each reference signal resource are different.
  • the precoding reference signal of each port may be obtained by precoding a reference signal of a transmitting antenna port based on one delay vector among L delay vectors.
  • the reference signal resources do not overlap each other in the frequency domain and/or the time domain. For example, the reference signal resources are staggered in the frequency domain. Therefore, the precoding reference signals obtained based on different delay vector precoding can be carried by different time-frequency resources.
  • the number of ports corresponding to the precoded reference signals carried on each RB may be less than P.
  • the precoding reference signal carried on each RB may correspond to T ports, and the precoding reference signals carried on at least two RBs correspond to different delay vectors.
  • the above definition of the number of ports based on each RB is only one possible implementation manner, and should not constitute any limitation to this application.
  • This application also proposes a method for defining the number of ports, that is, the number of ports may refer to the number of ports corresponding to the precoded reference signals carried on each reference signal resource. In other words, the number of ports can be defined across RB.
  • the method 300 further includes: the terminal device receives third indication information, where the third indication information is used to configure a reference signal resource.
  • the network device sends the third indication information.
  • the reference signal resource configured by the third indication information may be used to carry a precoding reference signal, and the precoding reference signal carried by the reference signal resource may be a reference signal obtained by precoding based on the L delay vectors.
  • the precoding reference signal carried by the reference signal resource may be a reference signal obtained by precoding based on the L delay vectors.
  • at least two pre-coded reference signals carried on RBs may be pre-coded based on different delay vectors, and/or at least two pre-coded reference signals carried on RBs may be different The transmitting antenna port transmits.
  • the correspondence between the precoding reference signals and ports carried on each RB in each reference signal resource is similar, except that the angle vector in the above embodiment is replaced with the transmit antenna port.
  • the angle vector in the above embodiment is replaced with the transmit antenna port.
  • step 320 the terminal device generates fifth indication information, which may be used to indicate P weighting coefficients corresponding to P antenna delay pairs.
  • the P antenna delay pairs may be determined by each of the T transmit antenna ports and one or more delay vectors corresponding to the precoded reference signal sent on each transmit antenna port.
  • Each antenna delay pair may include one of the T transmit antenna ports and one of the L delay vectors.
  • the P weighting coefficients corresponding to the P antenna delay pairs can also be understood as corresponding to the P delay vectors used to form the P antenna delay pairs P weighting coefficients. Therefore, in this embodiment, P antenna ports and their corresponding P weighting coefficients can be used to determine the precoding matrix, that is, the weighted sum of the P delay vectors can be used to determine the precoding matrix. It can be understood that the P delay vectors may include one or more repeated delay vectors.
  • the terminal device may perform downlink channel estimation according to the received precoding reference signal to determine the weighting coefficient of each antenna delay pair in the P antenna delay pairs according to the channel estimation values on multiple RBs.
  • the terminal device when the terminal device receives the precoded reference signal from the network device, it can determine the time-frequency resource of the precoded reference signal of each port according to the predefined pilot pattern, and can Receive precoded reference signals for each port.
  • the dimension of the downlink channel may be N ⁇ T.
  • the dimension of the downlink channel received on one receiving antenna and one RB may be 1 ⁇ T. Since the network device pre-codes the reference signal based on the delay vector, the dimension of the downlink channel received by the terminal device on each receiving antenna may be 1 ⁇ P.
  • the downlink channel with the dimension of 1 ⁇ P is the channel estimation value obtained by performing channel estimation on the RB based on the precoding reference signal.
  • the P elements in the downlink channel may correspond to P antenna delay pairs.
  • the p-th element may represent a channel estimation value obtained by performing channel estimation on the corresponding precoding reference signal on the p-th antenna delay on one RB.
  • the precoding reference signal carried by each RB may correspond to one or more ports.
  • the precoding reference signal of each RB may correspond to P ports.
  • the precoding reference signal corresponding to the pth port among the P ports may be based on a delay vector, such as the lth delay vector, for precoding the reference signal and passing through a transmit antenna port, such as the t (1 ⁇ t ⁇ T, and t is an integer) transmit antenna ports, the precoding reference signal sent.
  • the precoding reference signal corresponding to the p-th port can be used to determine the weighting coefficient of the antenna delay pair composed of the l-th delay vector and the t-th transmit antenna port, that is, it can be used to determine the p-th The weighting coefficient of the antenna delay pair.
  • the terminal device may determine the weighting coefficient of the p-th antenna delay pair based on the downlink channels received on the N RBs.
  • the weighting coefficient of the p-th antenna delay pair may be the p-th element in the 1 ⁇ P channel estimation value obtained by superimposing and summing the N channel estimation values on the N RBs.
  • the estimated value of the downlink channel obtained by the terminal device performing channel estimation based on the precoding reference signal of the p-th port is written as Then, the sum of multiple estimates obtained by the terminal device performing channel estimation on the N RBs based on the precoding reference signals of P ports can be expressed as It may be a vector with a dimension of 1 ⁇ P, and the vector includes P weighting coefficients corresponding to P antenna delay pairs. It can be understood that the p-th element in the vector is the weighting coefficient of the p-th antenna delay pair, and the weighting coefficient of the p-th antenna delay pair is precoded based on the l-th delay vector and transmitted through the t-th The precoding reference signal transmitted by the antenna port is determined.
  • the P weighting coefficients can be understood as L sets of weighting coefficients corresponding to L delay vectors.
  • Each set of weighting coefficients may include T weighting coefficients corresponding to at most T transmit antenna ports.
  • each group of weighting coefficients in the L group of weighting coefficients may include T weighting coefficients.
  • the P weighting coefficients may be expressed in the form of a matrix with dimensions T ⁇ L or L ⁇ T, for example.
  • the weighting coefficients corresponding to the t-th transmitting antenna port and the l-th delay vector can be written as ⁇ t,l .
  • the transmit antenna ports corresponding to at least two delay vectors will also be different.
  • there are L t delay vectors corresponding to the t th transmit antenna port, and the weight coefficients corresponding to the t th transmit antenna port and the l t delay vector can be written as
  • the terminal device can separately determine P weighting coefficients corresponding to the P antenna delay pairs according to the received P-coded precoded reference signals.
  • the method 200 above has explained in detail the principle of determining the weighting coefficient corresponding to the P angular delay pairs by summing the channel estimates over the entire band.
  • the terminal device can also determine Weighting coefficients corresponding to P antenna delay pairs. For brevity, I will not repeat them here.
  • the number of ports corresponding to the precoding reference signals carried by each RB may be less than P.
  • the terminal device can still perform channel estimation based on the precoded reference signal of each port to determine P weighting coefficients corresponding to P antenna delay pairs.
  • the P weighting coefficients may be determined by the precoding reference signals carried on each frequency domain group.
  • the terminal device does not perceive the delay vector used by the network device to pre-code the reference signal, nor does it perceive the correspondence between each frequency domain group and the combination of the transmit antenna port and the delay vector.
  • the terminal device only needs to perform channel estimation according to the precoding reference signals received on each frequency domain group based on a predefined grouping rule.
  • RB#1, RB#5, RB#9, and RB#13 can be classified as frequency domain group #1; RB#2, RB#6, RB#10, and RB #14 can be classified as frequency domain group #2:; RB#3, RB#7, RB#11 and RB#15 can be classified as frequency domain group #3; RB#4, RB#8, RB#12 and RB# 16 can be classified as frequency domain group #4.
  • the terminal device may determine the weighting coefficients of T antenna delay pairs based on the precoded reference signals received on RB#1, RB#5, RB#9, and RB#13. T antenna delay pairs composed of delay vectors corresponding to the delay vector b( ⁇ 1 ) of the transmitting antenna port; the terminal device may be based on the received on RB#2, RB#6, RB#10 and RB#14
  • the precoding reference signal determines the weighting coefficients of T antenna delay pairs, that is, T antenna delay pairs, that is, T antennas composed of delay vectors respectively corresponding to the delay vector b( ⁇ 2 ) of the T transmit antenna ports Delay pair; the terminal device can determine the weighting coefficients of T antenna delay pairs based on the precoding reference signals received on RB#3, RB#7, RB#11, and RB#15.
  • the T antenna delay pairs also That is, T antenna delay pairs composed of T transmit antenna ports and delay vectors corresponding to the delay vector b( ⁇ 3 ) respectively; the terminal device may be based on RB#4, RB#8, RB#12, and RB#16
  • the precoding reference signal received on the above determines the weighting coefficients of T antenna delay pairs, which are composed of T delay antenna ports respectively corresponding to the delay vector b( ⁇ 4 ). T antenna delay pairs.
  • the network device Since the network device groups the RBs, the terminal device needs to know the number of frequency domain groups in advance. Therefore, the network device may notify the terminal device of the number of frequency domain groups in advance through signaling.
  • the method further includes: the terminal device receives fourth indication information, where the fourth indication information is used to indicate the number of frequency domain groups.
  • the network device sends the fourth indication information.
  • the network device can configure the number of ports in advance through high-level signaling. Therefore, the terminal device may determine the number of ports corresponding to the precoding reference signal carried on each RB based on existing signaling. When the network device groups the RBs, the network device may further indicate the number of frequency domain groups through fourth indication information. The terminal device may determine the RB in each frequency domain group based on the same grouping rule, and then estimate the downlink channel of each port, and determine the weighting coefficient of each antenna delay pair.
  • the terminal device and the network device may pre-agreed the RB grouping rule. Both parties can group RBs according to a predefined grouping rule, so that the RBs included in each frequency domain group determined by both parties are consistent.
  • the number of frequency domain groups may be the number of delay vectors.
  • the terminal device may generate fifth indication information to indicate the P weighting coefficients.
  • the terminal device indicates P weighting coefficients through the fifth indication information.
  • the method in which the terminal device indicates the P weighting coefficients through the fifth indication information may be similar, and for the sake of brevity, details are not described here.
  • the specific process of generating the fifth indication information by the terminal device is described in detail above by taking one polarization direction and one receiving antenna as an example.
  • the above P weighting coefficients may be determined based on the precoding reference signal sent by one transmit antenna in the polarization direction and received on one receive antenna.
  • the one receiving antenna described by way of example above may be any one of the multiple receiving antennas configured for the terminal device.
  • the terminal device may determine P weighting coefficients for each receiving antenna based on the method described above.
  • the one polarization direction described by way of example above may be any one of the multiple polarization directions. That is, the terminal device may determine P weighting coefficients based on the precoding reference signal sent by the transmit antenna in each polarization direction based on the method described above.
  • the fifth indication information may be used to indicate R sets of weighting coefficients corresponding to R receiving antennas, and each set of weighting coefficients may include P weighting coefficients.
  • P weighting coefficients corresponding to one receiving antenna that is, P weighting coefficients determined based on the precoding reference signal received on this receiving antenna.
  • the specific content in the first indication information in this case has been described in detail in the method 200 above.
  • the specific content contained in the fifth indication information may be similar to the first indication information, and for the sake of brevity, no further description is provided here.
  • the fifth indication information may be used to indicate J sets of weighting coefficients corresponding to J polarization directions, and each set of weighting coefficients may include P weighting coefficients.
  • P weighting coefficients corresponding to one polarization direction that is, P weighting coefficients determined based on the precoding reference signal transmitted in this polarization direction.
  • the specific content in the first indication information in this case has been described in detail in the method 200 above.
  • the specific content included in the fifth indication information may be similar to the first indication information, and for the sake of brevity, details are not described here.
  • the fifth indication information may be used to indicate J ⁇ R ⁇ P weighting coefficients corresponding to J polarization directions and R receiving antennas.
  • the specific content in the first indication information in this case has been described in detail in the method 200 above.
  • the specific content included in the fifth indication information may be similar to the first indication information, and for the sake of brevity, details are not described here.
  • the terminal device may further indicate the number of receiving antennas.
  • the method 200 further includes: the terminal device sends seventh indication information, where the seventh indication information is used to indicate the number of receiving antennas.
  • the network device receives the seventh indication information.
  • the seventh indication information and the first indication information may be carried in the same signaling, such as PMI or CSI, or may be sent through different signaling, which is not limited in this application.
  • the number of receiving antennas of the terminal device may also be defined in advance, such as the protocol definition. In this case, the terminal device may not indicate the number of receiving antennas through additional signaling.
  • the feedback of the measurement results of the downlink channel by the terminal device is not limited to feedback based on each receiving antenna, and the terminal device may also feedback the measurement results of the downlink channel based on the transmission layer.
  • the terminal device may further process the weighting coefficient to obtain feedback based on each transmission layer Weighting factor.
  • the method 200 above has described in detail the specific method by which the terminal device determines the P weighting coefficients corresponding to each transmission layer, it also specifies the specific method by which the terminal device indicates the weighting coefficients corresponding to each transmission layer through the first indication information .
  • the specific method for the terminal device to determine the P weighting coefficients corresponding to each transmission layer and the specific method for indicating the P weighting coefficients corresponding to each transmission layer through the fifth indication information may be similar to them. For brevity, I will not repeat them here.
  • the terminal device may further indicate the number of transmission layers.
  • the method 200 further includes: the terminal device sends eighth indication information, where the eighth indication information is used to indicate the number of transmission layers.
  • the network device receives the eighth instruction information.
  • the eighth indication information is RI.
  • RI is only an example of the eighth instruction information, and should not constitute any limitation to this application. This application does not limit the specific form of the sixth instruction information.
  • the eighth indication information and the first indication information may be carried in the same signaling and sent, such as CSI, or may be sent through different signaling, which is not limited in this application.
  • step 330 the terminal device sends fifth indication information. Accordingly, the network device receives the fifth instruction information.
  • step 330 is the same as that of step 230 in method 200. Since step 230 has been described in detail in method 200 above, for the sake of brevity, it will not be repeated here.
  • step 340 the network device determines the precoding matrix according to the fifth indication information.
  • the terminal device may feedback the weighting coefficients based on the receiving antenna, or may feedback the weighting coefficients based on the transmission layer.
  • the network device may determine the precoding matrix based on the fifth indication information based on different feedback granularities.
  • the weighting coefficient indicated by the fifth indication information may include weighting coefficients corresponding to one or more receiving antennas.
  • the network device may reconstruct the downlink channel based on the weighting coefficient corresponding to each receiving antenna and the antenna delay pair corresponding to each weighting coefficient, and then determine the precoding matrix of each RB.
  • the network device may construct based on P weighting coefficients corresponding to each receiving antenna and one or more delay vectors corresponding to each transmitting antenna port in the P antenna delay pairs Based on the space-frequency matrix corresponding to each receiving antenna, the downlink channel matrix corresponding to each RB is reconstructed based on the space-frequency matrix corresponding to each receiving antenna, and then the precoding matrix corresponding to each RB is determined.
  • the P weighting coefficients since the P weighting coefficients have a one-to-one correspondence with the P antenna delay pairs, the P weighting coefficients also have a one-to-one correspondence with each delay vector included in the P antenna delay pairs.
  • the delay vector corresponding to the t th transmit antenna port among the T transmit antenna ports is L t
  • Space-frequency matrix corresponding to the r-th receiving antenna It can be a matrix of dimension T ⁇ N, where the t-th row of the space-frequency matrix can be a space-frequency vector
  • the space-frequency matrix corresponding to the r-th receiving antenna can be obtained: among them, It represents a weighting coefficient based on the t-th transmit antenna ports and L t th delay vectors corresponding to the r th receiving antenna feedback.
  • the space frequency vector It can be expressed as: among them, Represents the weighting coefficient corresponding to the t-th transmit antenna port and the l-th delay vector.
  • the specific process of determining the space-frequency matrix corresponding to the receiving antenna has been described by taking one polarization direction of the transmitting antenna as an example. However, this should not constitute any limitation on this application.
  • the network device can still determine the space-frequency matrix corresponding to each receiving antenna based on the method described above.
  • each space-frequency vector in the space-frequency matrix in the first polarization direction corresponding to the r-th receiving antenna can be calculated by the formula It is determined that each space-frequency vector in the space-frequency matrix in the first polarization direction corresponding to the r-th receiving antenna can be calculated by the formula determine.
  • the space-frequency vectors defined above for the two polarization directions with The calculation formula of is only an example, and should not constitute any limitation to this application.
  • the number of delay vectors and/or angle vectors loaded in different polarization directions may be the same or different, and the delay vectors and/or angle vectors loaded in different polarization directions may be the same or different .
  • the network device may determine the space-frequency matrix based on the P weighting coefficients corresponding to each receiving antenna, respectively to Thus, the network device can determine the downlink channel matrix corresponding to each RB.
  • the channel matrix determined by the space-frequency matrix obtained by the weighted sum of the delays at various angles is the conjugate transpose of the real channel matrix.
  • the network device may further determine the precoding matrix of each RB according to the downlink channel matrix corresponding to each RB. For example, the network device can determine the precoding matrix by performing SVD on the downlink channel matrix or the covariance matrix of the channel matrix, or it can also perform eigenvalue decomposition (EVD) on the covariance matrix of the downlink channel matrix. The way is determined.
  • SVD SVD on the downlink channel matrix or the covariance matrix of the channel matrix
  • EVD eigenvalue decomposition
  • the specific method for the network device to determine the precoding matrix according to the channel matrix may refer to the prior art, and this application does not limit the determination method of the precoding matrix.
  • the network device determines the downlink channel matrix based on the space frequency matrix, and then determines the precoding matrix.
  • the network device can also directly determine the precoding matrix according to the space frequency matrix.
  • the matrix V (n) can be determined based on the space frequency matrix, and the network device can determine the precoding matrix by performing SVD on (V (n) ) * (V (n) ) T and then taking the right eigenvector.
  • the weighting coefficient indicated by the fifth indication information may include weighting coefficients of one or more transport layers.
  • the network device may determine the space frequency matrix corresponding to the transmission layer based on the weighting coefficient corresponding to each transmission layer and the antenna delay pair corresponding to each weighting coefficient, and then determine the precoding matrix of each RB.
  • the network device may construct a space-frequency matrix corresponding to the transmission layer based on the P weighting coefficients corresponding to each transmission layer and one or more delay vectors corresponding to each transmit antenna port in the P antenna delay pairs.
  • the delay vector corresponding to the t th transmit antenna port among the T transmit antenna ports is L t
  • Space-frequency matrix corresponding to the z-th transmission layer It can be a matrix of dimension T ⁇ N, where the t-th row of the space-frequency matrix can be a space-frequency vector
  • the space-frequency matrix corresponding to the z-th transmission layer can be obtained: among them, It represents a weighting coefficient based on the t-th transmit antenna ports and L t th time delay z-th vector corresponding to the transport layer feedback.
  • the space frequency vector It can be expressed as: among them, Represents the weighting coefficient corresponding to the t-th transmit antenna port and the l-th delay vector based on the z-th transmission layer feedback.
  • the specific process of determining the space-frequency matrix corresponding to the receiving antenna has been described by taking one polarization direction of the transmitting antenna as an example. However, this should not constitute any limitation on this application.
  • the network device can still determine the space-frequency matrix corresponding to each receiving antenna based on the method described above.
  • each space-frequency vector in the space-frequency matrix in the first polarization direction corresponding to the z-th transmission layer can be calculated by the formula It is determined that each space-frequency vector in the space-frequency matrix in the first polarization direction corresponding to the z transmission layers can be calculated by the formula determine.
  • the space-frequency vectors defined above for the two polarization directions with The calculation formula of is only an example, and should not constitute any limitation to this application.
  • the number of delay vectors and/or angle vectors loaded in different polarization directions may be the same or different, and the delay vectors and/or angle vectors loaded in different polarization directions may be the same or different .
  • the network device can determine the space-frequency matrix corresponding to each transmission layer based on the P weighting coefficients corresponding to each transmission layer to Thus, the network device can determine the precoding matrix corresponding to each RB. It should be understood that the specific process in which the network device determines the precoding matrix corresponding to each RB according to the space-frequency matrix corresponding to each transmission layer has been described in detail in the above method 200, and for the sake of brevity, no further description is provided here.
  • the precoding matrix determined above is a precoding matrix corresponding to RB.
  • RB is an example of a frequency domain unit.
  • the precoding matrix corresponding to the RB may refer to the precoding matrix determined based on the channel matrix corresponding to the RB at the granularity of the RB, or the precoding matrix determined based on the precoding reference signal received on the RB, available Yu pre-codes the data transmitted through the RB.
  • the downlink channel corresponding to the RB may refer to a downlink channel determined based on the precoding reference signal received on the RB, and may be used to determine the precoding matrix corresponding to the RB.
  • the network device may determine the precoding matrix corresponding to the frequency domain unit according to the precoding matrix corresponding to each RB in each frequency domain unit. Since the method 200 above has described in detail the specific method by which the network device determines the precoding matrix corresponding to the frequency domain unit according to the precoding matrix corresponding to each RB in each frequency domain unit, for the sake of brevity, no further description is provided here.
  • weighting coefficients corresponding to a certain transmit antenna port and a certain delay vector that is, the weighting coefficients corresponding to an antenna delay pair composed of a certain transmit antenna port and a certain delay vector.
  • the weighting coefficient corresponding to the t-th transmitting antenna port and the l-th delay vector that is, the weighting coefficient corresponding to the antenna delay pair composed of the t-th transmitting antenna port and the l-th delay vector.
  • the network device pre-codes the downlink reference signal based on the delay determined by the uplink channel measurement, so that the terminal device performs downlink channel measurement according to the pre-coded reference signal. Because the network device precodes the reference signal based on the reciprocal delay of the uplink and downlink channels, the information of the downlink channel detected by the terminal device is information that does not have reciprocity. Therefore, the terminal device does not need to feed back the vectors in the air and frequency domains (such as the above-mentioned transmit antenna port and delay vector), and only needs to feed back the weighting coefficients corresponding to each antenna delay pair, which greatly reduces the feedback overhead of the terminal device.
  • the precoding matrix is constructed by linearly superimposing multiple vectors in the space and frequency domains, so that the precoding matrix determined by the network device can be adapted to the downlink channel, thereby reducing feedback overhead while still ensuring high Accuracy of feedback.
  • the embodiments of the present application are only for ease of understanding, and show the specific process of measuring and determining the precoding matrix in the downlink channel when the space-frequency matrix is obtained by the conjugate transpose of the real channel.
  • the relationship between the real channel and the space frequency matrix H DL is not fixed. Different definitions of the space-frequency matrix and the space-frequency component matrix may cause the relationship between the real channel and the space-frequency matrix H DL to change.
  • the space frequency matrix H DL can be obtained by the conjugate transpose of the real channel, or by the transpose of the real channel.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and inherent logic, and should not constitute any implementation process of the embodiments of the present application. limited.
  • the communication device 1000 may include a communication unit 1100 and a processing unit 1200.
  • the communication device 1000 may correspond to the terminal device in the foregoing method embodiment, for example, it may be a terminal device, or a chip configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 200 or the method 300 according to an embodiment of the present application.
  • the communication device 1000 may include the method 200 in FIG. 2 or the method 300 in FIG. 8.
  • the unit of the method performed by the terminal device is to implement the corresponding flow of the method 200 in FIG. 2 or the method 300 in FIG. 8, respectively.
  • the communication unit 1100 can be used to perform steps 210 and 230 in the method 200
  • the processing unit 1200 can be used to perform step 220 in the method 200.
  • the communication unit 1100 may be used to perform steps 310 and 330 in the method 300, and the processing unit 1200 may be used to perform step 340 in the method 300.
  • the communication unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 10, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 10.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • the communication device 1000 may correspond to the network device in the foregoing method embodiment, for example, it may be a network device, or a chip configured in the network device.
  • the communication device 1000 may correspond to the network device in the method 200 or the method 300 according to an embodiment of the present application.
  • the communication device 1000 may include the method 200 in FIG. 2 or the method 300 in FIG. 8. A unit of a method performed by a network device.
  • each unit in the communication device 1000 and the other operations and/or functions described above are to implement the corresponding flow of the method 200 in FIG. 2 or the method 300 in FIG. 8, respectively.
  • the communication unit 1100 can be used to perform steps 210 and 230 in the method 200, and the processing unit 1200 can be used to perform step 240 in the method 200.
  • the communication unit 1100 may be used to perform steps 310 and 330 in the method 300, and the processing unit 1200 may be used to perform step 340 in the method 300.
  • the communication unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 11, and the processing unit 1200 in the communication device 1000 may correspond to The processor 3100 in the network device 3000 shown in FIG. 11.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the above method embodiments.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002 and the memory 2030 can communicate with each other through an internal connection channel to transfer control and/or data signals.
  • the memory 2030 is used to store a computer program, and the processor 2010 is used from the memory 2030 Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for sending uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the processor 2010 and the memory 2030 may be combined into a processing device.
  • the processor 2010 is used to execute the program code stored in the memory 2030 to implement the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 9.
  • the above-mentioned transceiver 2020 may correspond to the communication unit in FIG. 9 and may also be called a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 10 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2 or FIG. 8.
  • the operations and/or functions of each module in the terminal device 2000 are respectively for implementing the corresponding processes in the above method embodiments.
  • the above-mentioned processor 2010 may be used to perform the actions described in the foregoing method embodiments that are internally implemented by the terminal device, and the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the terminal device 2000 may further include a power supply 2050, which is used to provide power to various devices or circuits in the terminal device.
  • a power supply 2050 which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 2000 may further include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, a sensor 2100, etc.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, may be a structural schematic diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiments.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also called a distributed unit (DU) )) 3200.
  • RRU 3100 may be called a transceiver unit, which corresponds to the communication unit 1200 in FIG. 9.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiving unit 3100 may include a receiving unit and a transmitting unit.
  • the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the RRU 3100 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal devices.
  • the BBU 3200 part is mainly used for baseband processing and controlling the base station.
  • the RRU 3100 and the BBU 3200 may be physically arranged together, or may be physically separated, that is, distributed base stations.
  • the BBU 3200 is the control center of the base station, and may also be referred to as a processing unit, which may correspond to the processing unit 1100 in FIG. 9 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation flow on the network device in the above method embodiment, for example, to generate the above instruction information.
  • the BBU 3200 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may support different access standards respectively. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be equipped with necessary circuits.
  • the base station 3000 shown in FIG. 11 can implement various processes involving network devices in the method embodiment of FIG. 2 or FIG. 8.
  • the operations and/or functions of each module in the base station 3000 are respectively for implementing the corresponding processes in the above method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the foregoing method embodiments that are internally implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • An embodiment of the present application further provides a processing device, including a processor and an interface; the processor is used to perform the communication method in any of the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system chip (SoC), or It is a central processor (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller
  • MCU microcontroller
  • PLD programmable logic device
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they are not described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous RAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • the present application further provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on the computer, the computer is caused to execute the operations shown in FIGS. 2 and 8 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code is run on a computer, the computer is caused to execute the operations shown in FIGS. 2 and 8. The method of any one of the embodiments is shown.
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disc
  • the network device in each of the above device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding steps are performed by corresponding modules or units, for example, the communication unit (transceiver) performs the receiving or The steps of sending, other than sending and receiving, can be executed by the processing unit (processor).
  • the function of the specific unit can refer to the corresponding method embodiment. There may be one or more processors.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program, and/or a computer.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process and/or thread of execution, and a component can be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the component may, for example, be based on a signal having one or more data packets (for example, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • data packets for example, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供了一种信道测量方法和通信装置。该方法包括:终端设备接收预编码参考信号,该预编码参考信号是基于K个角度向量和L个时延向量对参考信号预编码得到;生成并发送第一指示信息,该第一指示信息用于指示对应于P个角度时延对的P个加权系数,该P个加权系数由预编码参考信号确定,该P个角度时延对及其对应的P个加权系数用于确定预编码矩阵,每个角度时延对包括K个角度向量中的一个角度向量和L个时延向量中的一个时延向量。该K个角度向量和L个时延向量基于上行信道测量确定。利用了上下行信道的互易性,基于上行信道测量确定的角度和向量对下行参考信号预编码,终端设备可以仅反馈用于构造预编码矩阵的加权系数,减小了反馈开销。

Description

一种信道测量方法和通信装置
本申请要求于2018年12月18日提交中国专利局、申请号为201811550306.9、申请名称为“一种信道测量方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种信道测量方法和通信装置。
背景技术
在大规模多输入多输出(massive multiple-input multiple-output,Massive MIMO)技术中,网络设备可通过预编码减小多用户之间的干扰以及同一用户的多个信号流之间的干扰,有利于提高信号质量,实现空分复用,提高频谱利用率。
终端设备例如可以基于下行信道测量来确定预编码矩阵,并希望通过反馈,使得网络设备获得与终端设备确定的预编码矩阵相同或相近的预编码矩阵。具体地,终端设备例如可以通过反馈一个或多个波束向量及其加权系数的方式来指示预编码矩阵。终端设备的反馈具体可参考新无线(new radio,NR)协议TS38.214中定义的类型II(type II)码本反馈方式。
然而,这种反馈方式带来了较大的反馈开销。
发明内容
本申请提供一种信道测量方法和通信装置,以期降低反馈开销。
第一方面,提供了一种信道测量方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
具体地,该方法包括:接收预编码参考信号,该预编码参考信号是基于K个角度向量和L个时延向量对参考信号预编码得到;生成第一指示信息,该第一指示信息用于指示对应于P个角度时延对的P个加权系数,该P个加权系数由预编码参考信号确定,该P个角度时延对及其对应的P个加权系数用于确定预编码矩阵;该P个角度时延对中的每个角度时延对包括K个角度向量中的一个角度向量和L个时延向量中的一个时延向量,且P、K和L均为正整数;发送该第一指示信息。
因此,网络设备可以基于预先确定的角度和时延,对下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于预先确定的角度和时延对参考信号进行了预编码,终端设备可以不必反馈空域和频域的向量(如上述角度向量和时延向量),仅需反馈与各角度时延对对应的加权系数,大大减小了终端设备的反馈开销。此外,通过对参考信号进行了预编码,相当于预先确定了可用于构建预编码矩阵的空域和频域的向量,使得终端设备下行信道测量过程得以简化,降低了终端设备在信道 测量过程中的计算复杂度。并且,通过空域和频域的多个向量的线性叠加来构建预编码矩阵,使得网络设备所确定的预编码矩阵能够与下行信道相适配,从而在减小反馈开销的同时仍能保证较高的反馈精度。再者,通过对下行参考信号进行空域预编码,可以减小参考信号的端口数,从而可以降低导频开销。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收第二指示信息,该第二指示信息用于配置一个或多个参考信号资源,该一个或多个参考信号资源用于承载预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在该第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
网络设备可以基于现有的参考信号资源的配置方式,配置一个或多个参考信号资源。该一个或多个参考资源上承载的参考信号均可用作信道测量。每个参考信号资源上承载的预编码参考信号对应的端口数可以以RB为单位计。因此,不同的参考信号资源上承载的预编码参考信号可以对应不同的角度向量和/或时延向量。不同的参考信号资源上承载的预编码参考信号对应的端口号可以相同,也可以不同,本申请对此不作限定。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收第三指示信息,该第三指示信息用于配置一个参考信号资源,该参考信号资源用于承载预编码参考信号,且该参考信号资源中的至少两个资源块(resource block,RB)上承载的预编码参考信号对应的端口号不同。
网络设备也可以采用与现有不同的参考资源的配置方式,为对应于多个角度向量和多个时延向量的预编码参考信号配置一个参考信号资源。该参考信号资源上承载的预编码参考信号对应的端口数可以跨RB计。因此,同一参考信号资源上至少有两个RB承载的预编码参考信号可对应不同的时延向量和/或角度向量。在同一参考信号资源上,不同的时延向量和/或角度向量可以通过不同的端口号来区分。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收第四指示信息,该第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
通过对多个RB分组,可以将不同的角度向量和/或时延向量加载到不同的频域组上,从而可以减小每个RB上承载的预编码参考信号所对应的端口数,也就可以减小导频开销。
第二方面,提供了一种信道测量方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。
具体地,该方法包括:发送预编码参考信号,该预编码参考信号是基于K个角度向量和L个时延向量对参考信号预编码得到;接收第一指示信息,该第一指示信息用于指示对应于P个角度时延对的P个加权系数,该P个加权系数由预编码参考信号确定,该P个角度时延对及其对应的P个加权系数用于确定预编码矩阵;该P个角度时延对中的每个角度时延对包括K个角度向量中的一个角度向量和L个时延向量中的一个时延向量,且P、K和L均为正整数;根据该第一指示信息确定预编码矩阵。
因此,网络设备可以基于预先确定的角度和时延,对下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于预先确定的角度 和时延对参考信号进行了预编码,终端设备可以不必反馈空域和频域的向量(如上述角度向量和时延向量),仅需反馈与各角度时延对对应的加权系数,大大减小了终端设备的反馈开销。此外,通过对参考信号进行了预编码,相当于预先确定了可用于构建预编码矩阵的空域和频域的向量,使得终端设备下行信道测量过程得以简化,降低了终端设备在信道测量过程中的计算复杂度。并且,通过空域和频域的多个向量的线性叠加来构建预编码矩阵,使得网络设备所确定的预编码矩阵能够与下行信道相适配,从而在减小反馈开销的同时仍能保证较高的反馈精度。再者,通过对下行参考信号进行空域预编码,可以减小参考信号的端口数,从而可以降低导频开销。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:发送第二指示信息,该第二指示信息用于配置一个或多个参考信号资源,该一个或多个参考信号资源用于承载预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在该第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
网络设备可以基于现有的参考信号资源的配置方式,配置一个或多个参考信号资源。该一个或多个参考资源上承载的参考信号均可用作信道测量。每个参考信号资源上承载的预编码参考信号对应的端口数可以以RB为单位计。因此,不同的参考信号资源上承载的预编码参考信号可以对应不同的角度向量和/或时延向量。不同的参考信号资源上承载的预编码参考信号对应的端口号可以相同,也可以不同,本申请对此不作限定。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:发送第三指示信息,该第三指示信息用于配置一个参考信号资源,该参考信号资源用于承载预编码参考信号,且该参考信号资源中的至少两个RB上承载的预编码参考信号对应的端口不同。
网络设备也可以采用与现有不同的参考资源的配置方式,为对应于多个角度向量和多个时延向量的预编码参考信号配置一个参考信号资源。该参考信号资源上承载的预编码参考信号对应的端口数可以跨RB计。因此,同一参考信号资源上至少有两个RB承载的预编码参考信号可对应不同的时延向量和/或角度向量。在同一参考信号资源上,不同的时延向量和/或角度向量可以通过不同的端口号来区分。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:发送第四指示信息,该第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
通过对多个RB分组,可以将不同的角度向量和/或时延向量加载到不同的频域组上,从而可以减小每个RB上承载的预编码参考信号所对应的端口数,也就可以减小导频开销。
结合第一方面或第二方面,在某些实现方式中,该P个加权系数中的每个加权系数是基于一个角度向量和一个时延向量预编码得到的预编码参考信号在多个RB上进行信道估计得到的多个估计值的和。
上述K个角度向量和L个时延向量可用于确定P个角度时延对。该P个角度时延对中的每个角度时延对可以包括K个角度向量中的一个角度向量和L个时延向量中的一个时延向量。终端设备可以基于对应于一个角度向量和一个时延向量的预编码参考信号在多个RB上进行信道估计,将估计得到的多个信道估计值求和,以确定与该角度向量和时延 向量对应的加权系数。该加权系数也就是由该角度向量和时延向量所构成的角度时延对的加权系数。
结合第一方面或第二方面,在某些实现方式中,该K个角度向量和该L个时延向量基于上行信道测量确定。
通过利用上下行信道的互易性,网络设备将可互易的角度和时延加载到下行参考信号,以对下行信道进行预补偿,以便终端设备基于接收到的预编码参考信号,确定不具有互易性的下行信道的信息。因此,简化了终端设备对下行信道的测量过程,降低了终端设备在信道测量过程中的计算复杂度。
第三方面,提供了一种信道测量方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
具体地,该方法包括:接收预编码参考信号,该预编码参考信号是基于L个时延向量对参考信号进行预编码得到;生成第五指示信息,该第五指示信息用于指示对应于P个天线时延对的P个加权系数,该P个加权系数由预编码参考信号确定,该P个天线时延对及其对应的P个加权系数用于确定预编码矩阵;该P个天线时延对中的每个天线时延对包括T个发射天线端口中的一个发射天线端口与该L个时延向量中的一个时延向量,P、T和L均为正整数;发送该第五指示信息。
因此,网络设备可以基于预先确定的时延,对各发射天线端口上的下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于预先确定的时延对参考信号进行了预编码,终端设备可以不必反馈频域的向量(如上述时延向量),仅需反馈与各天线时延对对应的加权系数,大大减小了终端设备的反馈开销。此外,通过对参考信号进行了预编码,相当于预先确定了可用于构建预编码矩阵的频域的向量,使得终端设备下行信道测量过程得以简化,降低了终端设备在信道测量过程中的计算复杂度。并且,通过频域的多个向量的线性叠加来构建预编码矩阵,使得网络设备所确定的预编码矩阵能够与下行信道相适配,从而在减小反馈开销的同时仍能保证较高的反馈精度。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收第二指示信息,该第二指示信息用于配置一个或多个参考信号资源,该一个或多个参考信号资源用于承载该预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在该第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的天线时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
网络设备可以基于现有的参考信号资源的配置方式,配置一个或多个参考信号资源。该一个或多个参考资源上承载的参考信号均可用作信道测量。每个参考信号资源上承载的预编码参考信号对应的端口数可以以RB为单位计。因此,不同的参考信号资源上承载的预编码参考信号可以对应不同的发射天线端口和/或时延向量。不同的参考信号资源上承载的预编码参考信号对应的端口号可以相同,也可以不同,本申请对此不作限定。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收第三指示信息,该第三指示信息用于配置一个参考信号资源,该参考信号资源用于承载预编码参考信号,且该参考信号资源中的至少两个RB上承载的预编码参考信号对应的端口号不同。
网络设备也可以采用与现有不同的参考资源的配置方式,为对应于多个角度向量和多个时延向量的预编码参考信号配置一个参考信号资源。该参考信号资源上承载的预编码参考信号对应的端口数可以跨RB计。因此,同一参考信号资源上至少有两个RB承载的预编码参考信号可对应不同的发射天线端口和/或时延向量。在同一参考信号资源上,不同的发射天线端口和/或时延向量可以通过不同的端口号来区分。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收第四指示信息,该第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
通过对多个RB分组,可以将不同的时延向量加载到不同的频域组上,从而可以减小每个RB上承载的预编码参考信号所对应的端口数,也就可以减小导频开销。
第四方面,提供了一种信道测量方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。
具体地,该方法包括:发送预编码参考信号,该预编码参考信号是基于L个时延向量对参考信号进行预编码得到;接收该第五指示信息,该第五指示信息用于指示对应于P个天线时延对的P个加权系数,该P个加权系数由预编码参考信号确定,该P个天线时延对及其对应的P个加权系数用于确定预编码矩阵;该P个天线时延对中的每个天线时延对包括T个发射天线端口中的一个发射天线端口与该L个时延向量中的一个时延向量,P、T和L均为正整数;根据该第五指示信息确定预编码矩阵。
因此,网络设备可以基于预先确定的时延,对各发射天线端口上的下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于预先确定的时延对参考信号进行了预编码,终端设备可以不必反馈频域的向量(如上述时延向量),仅需反馈与各天线时延对对应的加权系数,大大减小了终端设备的反馈开销。此外,通过对参考信号进行了预编码,相当于预先确定了可用于构建预编码矩阵的频域的向量,使得终端设备下行信道测量过程得以简化,降低了终端设备在信道测量过程中的计算复杂度。并且,通过频域的多个向量的线性叠加来构建预编码矩阵,使得网络设备所确定的预编码矩阵能够与下行信道相适配,从而在减小反馈开销的同时仍能保证较高的反馈精度。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:发送第二指示信息,该第二指示信息用于配置一个或多个参考信号资源,该一个或多个参考信号资源用于承载预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在该第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的天线时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
网络设备可以基于现有的参考信号资源的配置方式,配置一个或多个参考信号资源。该一个或多个参考资源上承载的参考信号均可用作信道测量。每个参考信号资源上承载的预编码参考信号对应的端口数可以以RB为单位计。因此,不同的参考信号资源上承载的预编码参考信号可以对应不同的发射天线端口和/或时延向量。不同的参考信号资源上承载的预编码参考信号对应的端口号可以相同,也可以不同,本申请对此不作限定。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:发送第三指示信息, 该第三指示信息用于配置一个参考信号资源,该参考信号资源用于承载预编码参考信号,且该参考信号资源中的至少两个RB上承载的预编码参考信号对应的端口号不同。
网络设备也可以采用与现有不同的参考资源的配置方式,为对应于多个角度向量和多个时延向量的预编码参考信号配置一个参考信号资源。该参考信号资源上承载的预编码参考信号对应的端口数可以跨RB计。因此,同一参考信号资源上至少有两个RB承载的预编码参考信号可对应不同的发射天线端口和/或时延向量。在同一参考信号资源上,不同的发射天线端口和/或时延向量可以通过不同的端口号来区分。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:发送第四指示信息,该第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
通过对多个RB分组,可以将不同的时延向量加载到不同的频域组上,从而可以减小每个RB上承载的预编码参考信号所对应的端口数,也就可以减小导频开销。
结合第三方面或第四方面,在某些实现方式中,该P个加权系数中的每个加权系数是基于由一个发射天线端口发送且基于一个时延向量预编码得到的预编码参考信号在多个RB上进行信道估计得到的多个估计值的和。
上述L个时延向量与每个极化方向上的T个发射天线端口可用于确定P个天线时延对。该P个天线时延对中的每个天线时延对可以包括T个发射天线端口中的一个发射天线端口和L个时延向量中的一个时延向量。终端设备可以基于对应于一个发射天线端口和一个时延向量的预编码参考信号在多个RB上进行信道估计,将估计得到的多个信道估计值求和,以确定与该发射天线端口和时延向量对应的加权系数。该加权系数也就是由该发射天线端口和时延向量所构成的天线时延对的加权系数。
结合第三方面或第四方面,在某些实现方式中,该L个时延向量由上行信道测量确定。
通过利用上下行信道的互易性,将可互易的时延加载到下行参考信号,以对下行信道进行预补偿,以便终端设备基于接收到的预编码参考信号,确定不具有互易性的下行信道的信息。因此,简化了终端设备对下行信道的测量过程,降低了终端设备在信道测量过程中的计算复杂度。
结合第一方面至第四方面中的任一方面,在某些实现方式中,该P个加权系数对应于一个接收天线。
即,上述第一指示信息和第五指示信息可以是基于接收天线反馈的。此情况下,终端设备可以基于接收到的预编码参考信号反馈每个接收天线对应的P个加权系数。网络设备可以根据每个接收天线对应的加权系数重构下行信道,进而确定预编码矩阵。
结合第一方面至第四方面中的任一方面,在某些实现方式中,该P个加权系数对应于一个传输层。
即,上述第一指示信息和第五指示信息可以是基于传输层反馈的。此情况下,终端设备可以基于接收到的预编码参考信号确定传输层,并基于每个传输层反馈P个加权系数。网络设备可以根据每个传输层对应的加权系数直接确定预编码矩阵。
第五方面,提供了一种通信装置,包括用于执行第一方面或第三方面以及第一方面或第三方面中任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第三方面以及第一方面或第三方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种通信装置,包括用于执行第二方面或第四方面以及第二方面或第四方面中任一种可能实现方式中的方法的各个模块或单元。
第八方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第四方面以及第二方面或第四方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第九方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置 在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的信道测量方法的通信系统的示意图;
图2是本申请实施例提供的信道测量方法的示意性流程图;
图3至图7本申请实施例提供的多个RB上承载多个端口的预编码参考信号的示意图;
图8是本申请另一实施例提供的信道测量方法的示意性流程图;
图9是本申请实施例提供的通信装置的示意性框图;
图10是本申请实施例提供的终端设备的结构示意图;
图11是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(NR)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的指示预编码向量的方法的通信系统100 的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,如网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(baseband Unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
还应理解,该通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了便于理解本申请实施例,下面简单说明下行信号在发送之前在物理层的处理过 程。应理解,下文所描述的对下行信号的处理过程可以由网络设备执行,也可以由配置于网络设备中的芯片执行。为方便说明,下文统称为网络设备。
网络设备在物理信道可对码字(code word)进行处理。其中,码字可以为经过编码(例如包括信道编码)的编码比特。码字经过加扰(scrambling),生成加扰比特。加扰比特经过调制映射(modulation mapping),得到调制符号。调制符号经过层映射(layer mapping),被映射到多个层(layer),或者称,传输层。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发射出去。
应理解,上文所描述的对下行信号的处理过程仅为示例性描述,不应对本申请构成任何限定。对下行信号的处理过程具体可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
为便于理解本申请实施例,首先对本申请中涉及的几个术语做简单说明。
1、预编码技术:网络设备可以在已知信道状态的情况下,借助与信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应理解,本文中有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、信道互易性:在时分双工(time division duplexing,TDD)模式下,上下行信道在相同的频域资源上不同的时域资源上传输信号。在相对较短的时间(如,信道传播的相干时间)之内,可以认为上、下行信道上的信号所经历的信道衰落是相同的。这就是上下行信道的互易性。基于上下行信道的互易性,网络设备可以根据上行参考信号,如探测参考信号(sounding reference signal,SRS),测量上行信道。并可以根据上行信道来估计下行信道,从而可以确定用于下行传输的预编码矩阵。
然而,在频分双工(frequency division duplexing,FDD)模式下,由于上下行信道的频带间隔远大于相干带宽,上下行信道不具有完整的互易性,利用上行信道来确定用于下行传输的预编码矩阵可能并不能够与下行信道相适配。但是,FDD模式下的上下行信道仍然具有部分的互易性,例如,角度的互易性和时延的互易性。因此,角度和时延也可以称为互易性参数。
由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。时延是无线信号在不同传输路径上的传输时间,由距离和速度决定,与无线信号的频域没有关系。信号在不同的传输路径上传输时,由于距离不同,存在不同的传输时延。因此,时延在FDD模式下的上下行信道可以认为是相同的,或者说,互易的。
此外,角度可以是指信号经由无线信道到达接收天线的到达角(angle of arrival,AOA),也可以是指通过发射天线发射信号的离开角(angle of departure,AOD)。在本申请实施例中,该角度可以是指上行信号到达网络设备的到达角,也可以是指网络设备发射下行信号的离开角。由于上下行信道在不同频率上的传输路径的互易,所以该上行参考信号的到达角和下行参考信号的离开角可以认为是互易的。
因此可以认为,时延和角度在FDD模式下的上下行信道具有互易性。在本申请实施例中,每个角度可以通过一个角度向量来表征。每个时延可通过一个时延向量来表征。因此,在本申请实施例中,一个角度向量可以表示一个角度,一个时延向量可以表示一个时延。
3、参考信号(reference signal,RS)与预编码参考信号:参考信号也可以称为导频(pilot)、参考序列等。在本申请实施例中,参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是用于下行信道测量的信道状态信息参考信号(channel state information reference signal,CSI-RS),也可以是用于上行信道测量的探测参考信号(sounding reference signal,SRS)。应理解,上文列举的参考信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
预编码参考信号可以是对参考信号进行预编码后得到的参考信号。其中,预编码具体可以包括波束赋形(beamforming)和/或相位旋转。其中,波束赋形例如可以通过基于一个或多个角度向量对下行参考信号进行预编码来实现,相位旋转例如可以通过将一个或多个时延向量对下行参考信号进行预编码来实现。
在本申请实施例中,为方便区分和说明,将经过预编码,如波束赋形和/或相位旋转,得到的参考信号称为预编码参考信号;未经过预编码的参考信号简称为参考信号。
在本申请实施例中,基于一个或多个角度向量对下行参考信号进行预编码,也可以称为,将一个或多个角度向量加载到下行参考信号上,以实现波束赋形。基于一个或多个时延向量对下行参考信号进行预编码,也可以称为将一个或多个时延向量加载到下行参考信号上,以实现相位旋转。
4、端口(port):可以理解为被接收设备所识别的虚拟天线。在本申请实施例中,端口可以是指发射天线端口,例如,每个端口的参考信号可以是未经过预编码的参考信号,也可以是基于一个时延向量对参考信号进行预编码得到的预编码参考信号;端口也可以是指经过波束赋形后的参考信号端口,例如,每个端口的参考信号可以是基于一个角度向量对参考信号进行预编码得到的预编码参考信号,也可以是基于一个角度向量和一个时延向量对参考信号进行预编码得到的预编码参考信号。每个端口的信号可以通过一个或者多个RB传输。
其中,发射天线端口,可以是指实际的独立发送单元(transceiver unit,TxRU)。可以理解的是,若对参考信号做了空域预编码,则端口数可以是指参考信号端口数,该参考信号端口数可以小于发射天线端口数。
在下文示出的实施例中,在涉及发射天线端口时,可以是指未进行空域预编码的端口数。即,是实际的独立发送单元数。在涉及端口时,在不同的实施例中,可以是指发射天线端口,也可以是指参考信号端口。端口所表达的具体含义可以根据具体实施例来确定。
5、角度向量:可以理解为用于对参考信号进行波束赋形的预编码向量。通过波束赋形,可以使得发射出来的参考信号具有一定的空间指向性。因此,基于角度向量对参考信号进行预编码的过程也可以视为是空间域(或简称,空域)预编码的过程。
基于一个或多个角度向量对参考信号进行预编码后得到的预编码参考信号的端口数与角度向量的个数相同。当角度向量的个数K小于发射天线数T时,可以通过空域预编码来实现天线端口的降维,从而减小导频开销。
角度向量的长度可以为T,T为一个极化方向上的发射天线端口数,T≥1,且T为整数。
可选地,角度向量取自离散傅里叶变换(Discrete Fourier Transform,DFT)矩阵。如
Figure PCTCN2019124505-appb-000001
Figure PCTCN2019124505-appb-000002
其中,I 1为天线阵列中每一列(或行)中包含的同一极化方向的天线端口数,I 2为天线阵列中每一行(或列)包含的同一极化方向的天线端口数。在本实施例中,T=I 1×I 2。O 1和O 2为过采样因子。i 1和i 2满足0≤i 1≤(O 1×I 1-1),0≤i 2≤(O 2×I 2-1)。
可选地,角度向量是均匀线阵(uniform linear array,ULA)的导向矢量。如,
Figure PCTCN2019124505-appb-000003
其中,θ k为角度,k=1,2,……,K。K表示角度向量的个数;λ为波长,d为天线间距。
其中,导向矢量可以表示一条径的到达角在不同天线的响应存在的相位差。导向矢量a(θ k)与DFT矩阵中的向量
Figure PCTCN2019124505-appb-000004
满足:
Figure PCTCN2019124505-appb-000005
可选地,该角度向量时是均匀面阵(uniform plane array,UPA)的导向矢量。该导向矢量例如可以是包含水平角和俯仰角信息的导向矢量。如,
Figure PCTCN2019124505-appb-000006
其中,θ k为水平角,
Figure PCTCN2019124505-appb-000007
为俯仰角;ρ t为第t个发射天线端口的三维坐标,t=1,2,……,T;u k为第k个角度对应的单位球基矢量:
Figure PCTCN2019124505-appb-000008
下文中为方便说明,将角度向量记作a(θ k)。
假设发射天线为单极化天线,发射天线数为T;频域单元数为N,N≥1,且N为整数。则对于一个接收天线来说,信道可以是一个维度为N×T的矩阵。若基于一个角度向 量对参考信号进行空域预编码,则可以将角度向量分别加载到参考信号上。由于角度向量的维度为T×1,故,对于一个接收天线来说,经过预编码后信道的维度可以为N×1。即,接收到的预编码参考信号可以表示成维度为N×1的矩阵。
由于加载了角度向量的参考信号可以通过下行信道传输至终端设备,因此,终端设备根据接收到的预编码参考信号测量的信道等效于加载了角度向量的信道。例如,将角度向量a(θ k)加载到下行信道V,可以表示为Va(θ k)。
因此,基于一个角度向量对参考信号进行空域预编码,则对于每个接收天线上的每个频域单元来说,基于预编码参考信号估计的信道的维度可以为1×1。
应理解,角度向量是本申请提出的用于表示角度的一种形式。角度向量仅为便于与时延向量区分而命名,而不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。
6、时延向量:本申请提出的可用于表示信道在频域的变化规律的向量。如前所述,多径时延导致频率选择性衰落。由傅里叶变换可知,信号在时域上的时间延迟,可以等效到频域的相位渐变。
例如,对于信号g(t),由傅里叶变换可以将该信号变换到频域上:
Figure PCTCN2019124505-appb-000009
对于信号g(t-t 0),由傅里叶变换可将该信号变换到频域上:
Figure PCTCN2019124505-appb-000010
其中,ω为频率变量,不同频率对应的相位旋转不同;t和t-t 0表示时延。
该两个时延的信号可以表示为x(t)=g(t)+g(t-t 0),由此可以得到频率变量的函数
Figure PCTCN2019124505-appb-000011
令g(ω)≡1,可以得到
Figure PCTCN2019124505-appb-000012
因此,两个不同时延的信号造成了频域选择性衰落。
由于信道在各频域单元的相位变化与时延相关,故可将信道在各频域单元的相位的变化规律通过时延向量来表示。换句话说,该时延向量可用于表示信道的时延特性。
基于时延向量对参考信号进行预编码,实质上可以是指基于时延向量中的元素对频域上各个频域单元进行相位旋转,以通过预编码参考信号来对多径时延造成的频选特性进行预补偿。因此,基于时延向量对参考信号进行预编码的过程可以视为频域预编码的过程。
基于不同的时延向量对参考信号进行预编码,就相当于基于不同的时延向量对信道各个频域单元进行相位旋转。且,同一个频域单元相位旋转的角度可以不同。为了区分不同的时延,网络设备可以基于L个时延向量中的每个时延向量分别对参考信号进行预编码。
在本申请实施例中,为便于理解,以RB作为频域单元的一例来说明对参考信号进行频域预编码的具体过程。当将RB作为频域单元的一例时,可以认为每个频域单元仅包括一个用于承载参考信号的RB。事实上,每个频域单元可以包括一个或多个用于承载参考信号的RB。当每个频域单元中包括多个用于承载参考信号的RB时,网络设备可以将时延向量加载到每个频域单元中用于承载参考信号的多个RB上。
可选地,时延向量的长度为N,N为CSI测量资源的频域占用带宽中用于承载参考信号(如,本实施例中的预编码参考信号)的RB数,N≥1,且N为整数。
可选地,L个时延向量中的第l个时延向量可以表示为b(τ l),
Figure PCTCN2019124505-appb-000013
其中,l=1,2,……,L;L可以表示时延向量的个数;f 1,f 2,……,f N分别表示第1个、第2个至第N个RB的载波频率。
可选地,时延向量取自DFT矩阵。如
Figure PCTCN2019124505-appb-000014
该DFT矩阵中的每个向量可以称为DFT向量。
其中,O f为过采样因子,O f≥1;k为DFT向量的索引,并满足0≤k≤O f×N-1或者1-O f×N≤k≤0。
例如,当k<0时,b(τ l)与DFT矩阵中的向量u k可以满足:
Figure PCTCN2019124505-appb-000015
其中
Figure PCTCN2019124505-appb-000016
Δf=f n-f n+1,1≤n≤N-1。
下文中为方便说明,将时延向量记作b(τ l)。
其中,CSI测量资源的频域占用带宽可以理解为用于传输参考信号的带宽,该参考信号可以是用于信道测量的参考信号,如CSI-RS。用于指示CSI测量资源的频域占用带宽的信令例如可以是CSI占用带宽范围(CSI-Frequency Occupation)。CSI测量资源的频域占用带宽也可以称为导频传输带宽或测量带宽。下文中为方便说明,将CSI测量资源的频域占用带宽简称为测量带宽。
应理解,时延向量的长度为N仅为一种可能的设计,不应对本申请构成任何限定。下文中会结合不同的实施例定义不同时延向量的长度。这里暂且省略对其的详细说明。
假设发射天线为单极化天线,发射天线数为T;RB数为N。则对于一个接收天线而言,下行信道可以表示为一个维度为N×T的矩阵。若基于时延向量对参考信号进行频域预编码,则可以将该时延向量中的N个元素分别加载到承载于N个RB上的参考信号上。
由于加载了时延向量的参考信号可以通过下行信道传输至终端设备,因此,终端设备根据接收到的预编码参考信号测量的信道等效于加载了时延向量的信道。例如,将时延向量中的第n个元素加载到第n个RB上的信道V (n)上,可以表示为
Figure PCTCN2019124505-appb-000017
需要说明的是,基于时延向量对参考信号进行频域预编码可以是在资源映射之前执行,也可以是在资源映射之后执行,本申请对此不作限定。
应理解,时延向量是本申请提出的用于表示时延的一种形式。时延向量仅为便于与角度向量区分而命名,而不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。
7、频域单元:频域资源的单位,可表示不同的频域资源粒度。频域单元例如可以包括但不限于,子带(subband)、资源块(RB)、资源块组(resource block group,RBG)、预编码资源块组(precoding resource block group,PRG)等。
在本申请实施例中,网络设备可以基于终端设备的反馈确定与各频域单元对应的预编码矩阵。
8、角度时延对:可以是一个角度向量和一个时延向量的组合。每个角度时延对可以包括一个角度向量和一个时延向量。任意两个角度时延对中所包含的角度向量和/或时延向量不同。换句话说,每个角度时延对可以由一个角度向量和一个时延向量唯一确定。应理解,角度时延对可以理解为由一个角度向量和一个时延向量确定的空频基本单位的表现形式,但它并不一定是唯一的表现形式。例如,还可以表现为下文所述的空频分量矩阵、空频分量向量等。
9、空频分量矩阵:通过一个角度时延对可以确定一个空频分量矩阵。或者说,通过一个角度向量和一个时延向量可唯一地确定一个空频分量矩阵。一个空频分量矩阵和一个角度时延对之间可以相互转换。
一个空频分量矩阵例如可以由一个角度向量和一个时延向量的共轭转置的乘积确定,例如为a(θ k)×b(τ l) H,其维度可以是T×N。
应理解,空频分量矩阵可以理解为由一个角度向量和一个时延向量确定的空频基本单位的另一种表现形式。空频基本单位例如还可以表现为空频分量向量,该空频分量向量例如由一个角度向量和一个时延向量的克罗内克(Kronecker)积确定。
还应理解,本申请对于空频基本单位的具体形式不作限定。本领域的技术人员基于相同的构思,由一个角度向量和一个时延向量确定的各种可能的形式均应落入本申请保护的范围内。此外,如果对角度向量和时延向量定义与上文列举不同的形式,空频分量矩阵与角度向量、时延向量的运算关系、空频分量向量与角度向量、时延向量的运算关系也可能不同。本申请对于空频分量矩阵与角度向量、时延向量间的运算关系,以及空频分量向量与角度向量、时延向量间的运算关系不作限定。
10、空频矩阵:在本申请实施例中,空频矩阵是用于确定预编码矩阵的一个中间量。对于每个频域单元来说,预编码矩阵通常可以是一个维度T×Z的矩阵。其中,Z表示传输层数,Z≥1且为整数。
在本申请实施例中,空频矩阵可以基于每个接收天线确定,也可以基于每个传输层确定。
若空频矩阵基于接收天线确定,则该空频矩阵可以称为与接收天线对应的空频矩阵。与接收天线对应的空频矩阵可用于构建各频域单元的下行信道矩阵,进而可确定与各频域单元对应的预编码矩阵。与某一频域单元对应的信道矩阵例如可以是由各个接收天线对应的空频矩阵中对应于同一频域单元的列向量构造而成的矩阵的共轭转置。如,将各接收天线对应的空频矩阵中的第n个列向量抽取出来,按照接收天线的顺序由左向右排布可得到维度为T×R的矩阵,R表示接收天线数,R≥1且为整数。该矩阵经过共轭转置后可以得到第n个频域单元的信道矩阵V (n)。下文中会详细说明信道矩阵与空频矩阵的关系,这里暂且省略对二者关系的详细说明。
若空频矩阵基于传输层确定,则该空频矩阵可以称为与与传输层对应的空频矩阵。与传输层对应的空频矩阵可直接用于确定与各频域单元对应的预编码矩阵。与某一频域单元对应的预编码矩阵例如可以是由各个传输层对应的空频矩阵中对应于同一频域单元的列向量构造而成。如,将各传输层对应的空频矩阵中的第n个列向量抽取出来,按照传输层的顺序由左到右排布可得到维度为T×Z的矩阵,Z表示传输层数,Z≥1且为整数。该矩阵可以作为第n个频域单元的预编码矩阵W (n)
下文实施例中会详细说明基于空频矩阵确定预编码矩阵的具体过程,这里暂且省略对该具体过程的详细描述。
需要说明的是,由本申请实施例提供的信道测量方法所确定的预编码矩阵可以是直接用于下行数据传输的预编码矩阵;也可以经过一些波束成形方法,例如包括迫零(zero forcing,ZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。下文中所涉及的预编码矩阵均可以是指基于本申请提供的信道测量方法确定的预编码矩阵。
在本申请实施例中,空频矩阵可以由一个或多个角度时延对确定。例如,空频矩阵可以是一个或多个空频分量矩阵的加权和。空频矩阵也可以转换为空频向量的形式,空频向量也可以是一个或多个空频分量向量的加权和。
在NR协议TS38.214中定义了类型II(type II)码本反馈方式。下文示出了秩(rank)为1时通过type II码本反馈方式反馈的一例:
Figure PCTCN2019124505-appb-000018
Figure PCTCN2019124505-appb-000019
其中,W表示一个传输层、一个子带、两个极化方向上待反馈的预编码矩阵。W 1可以通过宽带反馈,W 2可以通过子带反馈。v 0至v 3为W 1中包含的波束向量,该多个波束向量例如可通过该多个波束向量的组合的索引来指示。在上文中示出的预编码矩阵中,两个极化方向上的波束向量是相同的,均使用了波束向量v 0至v 3。a 0至a 7为W 1中包含的宽带幅度系数,可通过宽带幅度系数的量化值来指示。c 0至c 7为W 2中包含的子带系数,每个子带系数可以包括子带幅度系数和子带相位系数,如c 0至c 7可以分别包括子带幅度系数α 0至α 7以及子带相位系数
Figure PCTCN2019124505-appb-000020
Figure PCTCN2019124505-appb-000021
并可分别通过子带幅度系数α 0至α 7的量化值和子带相位系数
Figure PCTCN2019124505-appb-000022
Figure PCTCN2019124505-appb-000023
的量化值来指示。
由于终端设备基于每个子带反馈幅度系数和相位系数,带来了较大的反馈开销。因此,一种基于频域的连续性,而多径时延导致频率选择性衰落,通过时延向量描述频域变化规律的反馈方式被提出。时延向量也可以理解为用于表示信道的时延特性的向量。
上文所述的空频矩阵也就是基于频域的连续性而提出的用于构建预编码矩阵的中间量。空频矩阵H可满足:H=SCF H。其中,S表示一个或多个(例如,K个)角度向量构造的矩阵,例如S=[a(θ 1) a(θ 2) … a(θ K)],F表示一个或多个(例如,L个)时延向量构造的矩阵,例如F=[b(τ 1) b(τ 2) … b(τ L)],C表示与K个角度向量中的每个角度向量和L个时延向量中的每个时延向量对应的加权系数所构成的系数矩阵。
在FDD模式下,由于时延和角度的上下行信道互易性,由上行信道测量得到的空频矩阵H UL可以表示为H UL=SC ULF H,由下行信道测量得到的空频矩阵H DL可以表示为H DL=SC DLF H。因此,在本申请实施例中,通过下行信道测量来确定和反馈下行信道对应的系数矩阵C DL,便可以确定与下行信道相适配的预编码矩阵。
对上式H DL=SC DLF H进一步变形可以得到S HH DL=C DLF H,进一步可以得到(H DL HS) H=C DLF H,进一步变形可以得到系数矩阵C DL=(H DL HS) HF。其中,H DL H是由真 实信道确定的空频矩阵;H DL HS是经过空域预编码后的真实信道。该系数矩阵中C DL的各元素可以分别由(H DL HS) H中的一行与F中的一列相乘确定。换句话说,矩阵系数C DL中的各元素可以由真实信道H DL HS的共轭转置(H DL HS) H中的一行与F中的一列相乘得到,或者说,是由真实信道H DL HS的一列的共轭转置与F的一列相乘。
因此,在本申请实施例中,基于终端设备反馈的各角度时延对的加权系数而确定的空频矩阵H DL可以是由真实信道的共轭转置得到。反之,本申请实施例中的空频矩阵也可以是由真实的信道V的共轭转置(即,V H)得到。
从另一个角度来说,在本申请实施例中,空频分量矩阵被定义为由a(θ k)×b(τ l) H确定,由此可确定空频矩阵H DL的维度为:发射天线数×频域单元数,如下行信道对应的空频矩阵的维度为T×N。在下文实施例中,未作出特别说明的情况下,空频矩阵均是指上文所述的维度为T×N的矩阵H DL
然而这并不一定是由真实的信道确定的空频矩阵。在通常情况下,信道矩阵的维度被定义为接收天线数×发射天线数,如下行信道的维度为R×T。由信道矩阵确定的空频矩阵的维度为N×T,与上述空频矩阵H DL的维度T×N正好相反。因此,本申请实施例中,真实的信道可以是由上述空频矩阵H DL确定的信道矩阵的共轭转置。由空频矩阵H DL确定的下行信道矩阵可以是真实的信道的共轭转置。
进一步地,由空频矩阵H DL可以确定预编码矩阵。其中,第n个频域单元的预编码矩阵可以是各传输层对应的空频矩阵中的第n个列向量构建。
以对信道矩阵做SVD为例,由信道矩阵V做SVD可以得到预编码矩阵的共轭转置。而若将信道矩阵做共轭转置后再进行SVD,即,对V H做SVD,则正好可以得到预编码矩阵。因此,本申请实施例中由真实信道的共轭转置所确定的空频矩阵H DL可以直接确定得到与各频域单元对应的预编码矩阵。
后文实施例中会详细说明由空频矩阵H DL确定信道矩阵和预编码矩阵的详细过程,这里暂且省略对该具体过程的详细描述。
应理解,真实的信道与空频矩阵H DL的关系并不是固定不变的。对空频矩阵以及空频分量矩阵的不同定义,可能会使得真实的信道与空频矩阵H DL之间的关系发生变化。例如,空频矩阵H DL可以由真实的信道的共轭转置得到,也可以由真实的信道的转置得到。
当对空频矩阵以及空频分量矩阵的定义不同时,在加载时延和角度时网络设备所执行的操作也有所不同,终端设备在进行信道测量并反馈时所执行的操作也相应地发生变化。但这只是终端设备和网络设备的实现行为,不应对本申请构成任何限定。本申请实施例仅为便于理解,示出了空频矩阵由真实的信道的共轭转置得到的情况。本申请对于信道矩阵的定义、空频矩阵的维度及其定义以及二者间的转换关系不作限定。同理,本申请对于空频矩阵与预编码矩阵间的转换关系也不作限定。
11、天线时延对:可以是一个发射天线端口和一个时延向量的组合。每个天线时延对可以包括一个发射天线端口和一个时延向量。任意两个天线时延对中包含的发射天线端口和/或时延向量不同。换句话说,每个天线时延对可以由一个发射天线端口和一个时延向量唯一确定。应理解,天线时延对可以理解为由一个发射天线端口和一个时延向量确定的空频基本单位的表现形式,但并一定是唯一的表现形式,本申请对于发射天线端口与时延向量的组合的表现形式不作限定。
12、参考信号资源:参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等,具体可参考现有技术。发送端设备可基于参考信号资源发送参考信号,接收端设备可基于参考信号资源接收参考信号。一个参考信号资源可以包括一个或多个RB。
在本申请实施例中,参考信号资源例如可以是CSI-RS资源。
13、导频密度:每个端口的参考信号,如本申请中的预编码参考信号,占用的资源粒子(resource element,RE)与所占带宽的总RB数的比值。例如,某一端口的参考信号的导频密度为1,可以表示,这个端口的参考信号所占的带宽中,每个RB都有一个RE用于承载这个端口的参考信号;又例如,某一端口的参考信号的导频密度为0.5,可以表示,这个端口的参考信号所占的带宽中,每两个RB中有一个RB中包括承载这个端口的参考信号的RE,或者说,用于承载这个端口的参考信号的相邻RB之间隔了一个RB。
此外,为了便于理解本申请实施例,作出以下几点说明。
第一,为方便理解,下面对本申请中涉及到的主要参数做简单说明:
P:角度时延对的数量,P≥1且为整数;
N:频域单元数,N≥1且为整数;
T:一个极化方向上的发射天线端口数,T≥1且为整数;
K:角度向量数,K≥1且为整数;
L:时延向量数,L≥1且为整数;
R:接收天线数,R≥1且为整数;
Z:传输层数,Z≥1且为整数;
J:发射天线的极化方向数,J≥1且为整数;
M:频域组数,M>1且为整数。
第二,在本申请中,为便于描述,在涉及编号时,可以从1开始连续编号。例如,L个角度向量可以包括第1个角度向量至第L个角度向量;K个时延向量可以包括第1个时延向量至第K个时延向量。当然,具体实现时不限于此。比如也可以从0开始连续编号。例如,L个角度向量可以包括第0个角度向量至第L-1个角度向量;K个时延向量可以包括第0个时延向量至第K-1个时延向量。
应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
第三,在本申请中,多处涉及矩阵和向量的变换。为便于理解,这里做同一说明。上角标T表示转置,如A T表示矩阵(或向量)A的转置;上角标*表示共轭,如,A *表示矩阵(或向量)A的共轭;上角标H表示共轭转置,如,A H表示矩阵(或向量)A的共轭转置。后文中为了简洁,省略对相同或相似情况的说明。
第四,在下文示出的实施例中,以角度向量和时延向量均为列向量为例来说明本申请提供的实施例,但这不应对本申请构成任何限定。基于相同的构思,本领域的技术人员还可以想到其他更多可能的表现方式。
第五,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如行向量可以表现为列向量,一个矩阵可以通过该矩阵的转置矩阵来表示,一个矩阵也可以表现为向量或者数组的形式,该向量或者数组可以由该矩阵的各个行向量或者列向量相互连接而成,等。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息(downlink control information,DCI)。
第六,本申请对很多特性(例如哈达马(Hadamard)积、Kronecker积、信道状态信息(channel state information,CSI)、RB、角度以及时延等)所列出的定义仅用于以举例方式来解释该特性的功能,其详细内容可以参考现有技术。
第七,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息等。
第八,在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第九,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理 器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第十,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第十一,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
下面将结合附图详细说明本申请实施例提供的信道测量方法。
应理解,本申请实施例提供的方法可以应用于通过多天线技术通信的系统,例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备。网络设备和终端设备之间可通过多天线技术通信。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的信道测量方法。
在一种实现方式中,网络设备可以基于预先确定的角度和时延,对下行参考信号进行预编码,以便于终端设备基于接收到的预编码参考信号估计并反馈与多个角度时延对对应的多个加权系数。网络设备可以基于多个角度时延对以及终端设备反馈的多个加权系数,确定与下行信道相适配的预编码矩阵。
在另一种实现方式中,网络设备可以基于预先确定的时延,对下行参考信号进行预编码,以便于终端设备基于接收到的预编码参考信号估计并反馈与多个天线时延对对应的多个加权系数。网络设备可以基于多个天线时延对以及终端设备反馈的多个加权系数,确定与下行信道相适配的预编码矩阵。
为便于理解,下文示出的实施例首先以一个极化方向为例来详细说明本申请实施例提供的信道测量方法200。应理解,该极化方向可以是网络设备所配置的发射天线的一个或多个极化方向中的任意一个极化方向。换句话说,对于任意一个极化方向的发射天线所发射的预编码参考信号,终端设备可以基于本申请实施例提供的方法200进行信道测量,网络设备也可以基于本申请实施例提供的方法200确定预编码矩阵。还应理解,本申请对于发射天线的极化方向数并不做限定,例如可以为一个,即,单极化方向;也可以为多个,如,双极化方向。
图2是从设备交互的角度示出的本申请实施例提供的信道测量方法200的示意性流程 图。如图所示,该方法200可以包括步骤210至步骤240。下面详细说明方法200中的各步骤。
在步骤210中,终端设备接收预编码参考信号,该预编码参考信号是基于K个角度向量和L个时延向量中对参考信号进行预编码得到。相应地,网络设备发送预编码参考信号。其中,K≥1,L≥1,且K和L均为整数。
在本实施例中,网络设备可以基于K个角度向量和L个时延向量对参考信号进行预编码。由该K个角度向量和L个时延向量,可以得到多种角度向量和时延向量的组合。任意两种组合中的角度向量和/或时延向量不同。每种组合中的角度向量和时延向量可用于对参考信号进行预编码,以得到对应于一个端口的预编码参考信号。因此,网络设备基于K个角度向量和L个时延向量预编码得到的预编码参考信号可以对应于一个或多个端口,每个端口的预编码参考信号可以是基于K个角度向量中的一个角度向量和L个时延向量中的一个时延向量对参考信号进行预编码得到。或者说,每个端口的预编码参考信号可以是基于一种角度向量和时延向量的组合对参考信号进行预编码得到。
在一种可能的实现方式中,网络设备可以遍历K个角度向量和L个时延向量,得到K×L种角度向量和时延向量的组合,或者说,K×L个角度时延对。也就是说,网络设备可以基于K个角度向量中的每个角度向量以及L个时延向量中的每个时延向量对参考信号进行预编码。网络设备在基于K个角度向量中的第k(1≤k≤K,k为整数)个角度向量对参考信号进行预编码时,可以遍历L个时延向量中的每个时延向量对参考信号进行预编码;或者,网络设备在基于L个时延向量中的第l(1≤l≤L,l为整数)个时延向量对参考信号进行预编码时,可以遍历K个角度向量中的每个角度向量对参考信号进行预编码。换句话说,该K个角度向量对每个时延向量来说可以认为是共用的,该L个时延向量对每个角度向量来说也可以认为是共用的。或者说,该K个角度向量和L个时延向量是相互共用的。
在另一种可能的实现方式中,至少两个角度向量对应的时延向量不同。网络设备在基于K个角度向量中的第k个角度向量对参考信号进行预编码时,可以遍历与第k个角度向量对应的L k(1≤L k≤L,L k为整数)个时延向量中的每个时延向量对参考信号进行预编码。上述L个时延向量中的L可以满足:
Figure PCTCN2019124505-appb-000024
这里,至少两个角度向量对应的时延向量不同,可以是指,K个角度向量中,至少有两个角度向量对应的时延向量不同,其他角度向量分别对应的时延向量可以相同,也可以不同,本申请对此不作限定。换句话说,各角度向量对应的时延向量部分或全部不同。
其中,两个角度向量对应的时延向量不同,可以是指,两个角度向量对应的时延向量完全不同,即,两个角度向量对应的时延向量没有重复,或者说,没有交集。例如,角度向量a(θ 1)对应的时延向量包括b(τ 2),角度向量a(θ 2)对应的时延向量包括b(τ 1)和b(τ 3)。两个角度向量对应的时延向量不同,也可以是指,两个角度向量对应的时延向量部分不同,即,两个角度向量对应的时延向量有部分重复,但不完全相同,或者说,两个角度向量对应的时延向量有交集,但不完全相同。例如,a(θ 1)对应的时延向量包括b(τ 2)和b(τ 3),角度向量a(θ 2)对应的时延向量包括b(τ 1)和b(τ 3)。
当K个角度向量中任意两个角度向量对应的时延向量互不重复时,
Figure PCTCN2019124505-appb-000025
当K 个角度向量中两个或两个以上的角度向量对应的时延向量中有部分重复时,
Figure PCTCN2019124505-appb-000026
因此,网络设备可以由上述K个角度向量和L个时延向量,得到
Figure PCTCN2019124505-appb-000027
种角度向量和时延向量的组合。
在又一种可能的实现方式中,至少两个时延向量对应的角度向量不同。网络设备在基于L个时延向量中的第l个时延向量对参考信号进行预编码时,可以遍历与第l个时延向量对应的K l(1≤K l≤K,K l为整数)个角度向量中的每个角度向量对参考信号进行预编码。上述K个角度向量中的K可以满足:
Figure PCTCN2019124505-appb-000028
这里,至少两个时延向量对应的角度向量不同,可以是指,L个时延向量中,至少有两个时延向量对应的角度向量不同,其他时延向量分别对应的角度向量可以相同,也可以不同,本申请对此不作限定。换句话说,各时延向量对应的角度向量部分或全部不同。
其中,两个时延向量对应的角度向量不同,可以是指,两个时延向量对应的角度向量完全不同,即,两个时延向量对应的角度向量没有重复,或者说,没有交集。例如,时延向量b(τ 1)对应的角度向量包括a(θ 2),时延向量b(τ 2)对应的角度向量包括a(θ 1)。两个时延向量对应的角度向量不同,也可以是指,两个时延向量对应的角度向量部分不同,即,两个时延向量对应的角度向量有部分重复,但不完全相同,或者说,两个时延向量对应的角度向量有交集,但不完全相同。例如,时延向量b(τ 1)对应的角度向量包括a(θ 2),时延向量b(τ 2)对应的角度向量包括a(θ 1)和a(θ 2)。当L个时延向量中任意两个时延向量对应的角度向量互不重复时,
Figure PCTCN2019124505-appb-000029
当L个时延向量中两个或两个以上时延向量对应的角度向量有部分重复时,
Figure PCTCN2019124505-appb-000030
因此,网络设备可以由上述K个角度向量和L个时延向量,得到
Figure PCTCN2019124505-appb-000031
种角度向量和时延向量的组合。
应理解,上文仅为便于理解,列举了角度向量与时延向量的对应关系,但这不应对本申请构成任何限定。本申请对于角度向量与时延向量的对应关系不作限定。
下文中为方便说明,将由K个角度向量和L个时延向量确定的角度向量和时延向量的组合数记作P。可以理解,在不同的实现方式中,P的值不同,例如,P=K×L,或者,
Figure PCTCN2019124505-appb-000032
或者,
Figure PCTCN2019124505-appb-000033
由于角度和时延具有上下行信道互易性,可选地,该K个角度向量和L个时延向量均可以是基于上行信道测量确定。
具体地,网络设备可以根据预先估计得到的上行信道矩阵,确定K(K≥1,且K为整数)个角度和L(L≥1,且L为整数)个时延。该K个角度可以通过K个角度向量来表征。该L个时延可以通过L个时延向量来表征。该上行信道矩阵可以是由该K个角度向量和L个时延向量所确定的K×L个空频矩阵的加权和。以下,为方便说明,令P=K×L,P为正整数。
其中,该K个角度向量例如可以是从预先定义的角度向量集合中确定的较强的K个角度向量。该K个角度向量可以是针对L个时延向量共同确定,也可以是针对L个时延 向量中的每个时延向量分别确定。本申请对此不作限定。可选地,该角度向量集合中的各角度向量取自DFT矩阵。该K个角度向量例如可通过对上行信道矩阵进行DFT确定。可选地,该角度向量集合中的各角度向量为导向矢量。
该L个时延向量例如可以是从预先定义的时延向量集合中确定的较强的L个时延向量。该L个时延向量可以是针对K个角度向量共同确定,也可以是针对K个角度向量中的每个角度向量分别确定。本申请对此不作限定。可选地,该时延向量集合中的各时延向量取自DFT矩阵。该L个时延向量例如可通过对上行信道矩阵进行DFT确定。
网络设备例如可以利用现有技术中的角度和时延联合估计(joint angle and delay estimation,JADE)算法来确定该K个角度向量和与每个角度向量对应的较强的一个或多个时延向量。具体地,该估计算法例如可以是多重信号分类算法(multiple signal classification algorithm,MUSIC)、巴特利特(Bartlett)算法或旋转不变子空间算法(estimation of signal parameters via rotation invariant technique algorithm,ESPRIT)等。网络设备也可以通过对基于上行信道测量确定的空频矩阵进行DFT来确定K个角度向量和L个时延向量。本申请对于网络设备确定该K个角度向量和L个时延向量的具体方法不作限定。
以对空频矩阵做DFT为例,假设该角度向量和时延向量均取自DFT矩阵。预先定义的角度向量集合例如可以是由空域DFT矩阵中的多个向量构成的向量集合。为便于区分,将该向量集合称为角度向量集合U s,U s=[u s,1 u s,2 … u s,T]。预先定义的时延向量集合例如可以是由频域DFT矩阵中的多个向量构成的向量集合。为便于区分,将该向量集合称为时延向量集合U f,U f=[u f,1 u f,2 … u f,N]。
网络设备可以通过信道估计确定上行信道,进而确定上行信道的空频矩阵H UL。网络设备可以将上行信道估计得到的空频矩阵H UL做空域和频域的DFT变换,得到系数矩阵C UL如下:C UL=U s HH ULU f。为方便理解,这里将上行信道的空频矩阵H UL的维度与下行信道的空频矩阵的维度H DL保持一致。前文中已经描述了下行信道的空频矩阵的维度以及与下行信道的关系,由上行信道确定的空频矩阵H UL的维度可以是N×T。
应理解,这里示出的上行信道的空频矩阵H UL的维度以及用于确定系数矩阵C UL的计算式仅为示例,不应对本申请构成任何限定。对于空频矩阵H UL定义不同的维度,用于确定系数矩阵C UL的计算式也不同。
网络设备可以从该系数矩阵C UL中确定较强的K个行。该较强的K个行可用于确定K个角度向量。例如,网络设备可以根据该系数矩阵C UL中各行元素的模的平方和的大小,确定模的平方和较大的K个行。该模的平方和较大的K个行可用于确定K个角度向量。该K个行在系数矩阵C UL中的位置可用于确定K个角度向量在上述角度向量集合中的位置。如,该K个行在系数矩阵C UL中的行序号可以是K个角度向量在角度向量集合中的列序号。由此可以确定K个角度向量。该K个角度向量也就是角度向量集合中被选择用来对下行参考信号做预编码的角度向量。网络设备可以根据该系数矩阵C UL中各列元素的模的平方和的大小,确定模的平方和较大的L个列。该模的平方和较大的L个列可用于确定L个时延向量。该L个列在系数矩阵C UL中的位置可用于L个时延向量在上述时延向量集合中的位置。如,该L个列在系数矩阵C UL中的列序号可以是L个时延向量在时延向量集合中的列序号。由此可以确定L个时延向量。该L个时延向量也就是时延向量集合中被 选择用来对下行参考信号做预编码的时延向量。
网络设备也可以根据系数矩阵C UL中较强的K个行中的每一行,确定较强的一个或多个时延向量。例如,对于该K个行中的第k个行,网络设备可以根据各元素的模的平方,确定模的平方大于预设值的一个或多个元素,例如,L k个。该预设值例如可以是预定义值。如,可以是此列元素的模的平方和的80%。模的平方大于预设值的L k个元素可用于确定L k个时延向量。例如,模的平方大于预设值的L k个元素在系数矩阵C UL中所处的列可用于确定L k个时延向量在预先定义的时延向量集合中的位置。如,该L k个元素在系数矩阵C UL中的列序号可以是L k个时延向量在时延向量集合中的列序号。对于K个角度向量,时延向量的总数可以为L。L个时延向量也就是时延向量集合中被选择的时延向量。
应理解,上文仅为便于理解,列举了可用于网络设备确定K个角度向量和L个时延向量的几种可能的方法。但这不应对本申请构成任何限定。本申请对于网络设备确定该K个角度向量和L个时延向量的具体实现方式不作限定。
此外,上行信道矩阵例如可以是由网络设备根据预先接收到的上行参考信号,如SRS,估计得到,或者根据正确解码之后的数据信号得到,本申请对此不作限定。网络设备根据上行参考信号估计上行信道矩阵的具体方法可以参考现有技术,为了简洁,这里省略对该具体方法的详细说明。由于在FDD模式下,上下行信道的角度和时延可互易,则可以将上行信道测量所得的K个角度向量和L个时延向量加载至下行参考信号,以便终端设备基于接收到的预编码参考信号进行下行信道测量。当然,也可以将上行信道测量所得的K个角度向量加载至下行参考信号,或者,也可以将上行信道测量所得的L个时延向量加载至下行参考信号。本实施例主要详细说明将K个角度向量和L个时延向量加载至下行参考信号的情况。
应理解,基于上行信道测量确定上述K个角度向量和L个时延向量并不是唯一的实现方式。该K个角度向量和L个时延向量例如可以是预先定义,如协议定义;或者,也可以是由网络设备基于此前的一次或多次下行信道测量统计确定。本申请对于K个角度向量和L个时延向量的获取方式不作限定。
还应理解,该K个角度向量和L个时延向量也并不一定基于上行信道测量确定。例如,该K个角度向量和L个时延向量可以是预定义的,如协议定义;或者,该K个角度向量和L个时延向量可以是基于此前的一次或多次下行信道测量而反馈的结果统计确定。本申请对于K个角度向量和L个时延向量的确定方式不作限定。
网络设备可以基于该K个角度向量和L个时延向量对下行参考信号,如CSI-RS,进行预编码,以得到预编码参考信号。网络设备还可以通过预先配置的参考信号资源传输该预编码参考信号。
可选地,该方法200还包括:终端设备接收第二指示信息,该第二指示信息用于配置一个或多个参考信号资源。相应地,网络设备发送该第二指示信息。
该第二指示信息所配置的一个或多个参考信号资源可用于承载预编码参考信号。其中,同一参考信号资源上承载的预编码参考信号可对应一个或多个端口。在第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的角度时延对可以是互不相同的,且各参考信号资源在频域和/或时域上互不重叠。在本实施例中,每个端口的预编码参考信号对应于一个角度向量和一个时延向量,或者说,对应一个角度时延对。
这里,预编码参考信号对应的角度时延对,可以是指用于对参考信号进行预编码所使用的角度向量和时延向量。各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,也就是,任意两个参考信号资源上承载的预编码参考信号是基于角度向量和时延向量的不同组合预编码得到。
具体来说,上述各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,可以包括以下一种或多种情况:两个参考信号资源上承载的预编码参考信号可以是基于相同的角度向量和不同的时延向量预编码得到,两个参考信号资源上承载的预编码参考信号可以是基于相同的时延向量和不同的角度向量预编码得到,以及,两个参考信号资源上承载的预编码参考信号可以是基于不同的角度向量和不同的时延向量预编码得到。
换句话说,任意两个参考信号资源上承载的预编码参考信号可以是基于不同的角度时延对预编码得到,各角度时延对中包含的角度向量和/或时延向量不同。也就是说,不同参考信号资源上承载的预编码参考信号对应的时延向量可能有重复,或者,不同参考信号资源上承载的预编码参考信号对应的角度向量可能有重复,但所构成的角度时延对不重复。其中,该第二指示信息例如可以是高层信令,如RRC消息。本申请对此不作限定。
在一种可能的设计中,该第二指示信息可以通过高层参数,如CSI资源配置(CSI-ResourceConfig)和非零功率(non-zero power,NZP)CSI-RS资源集(NZP-CSI-RS-ResourceSet)配置CSI-RS资源(CSI-RS resource,即,参考信号资源的一例)。该高层参数例如可以为每个CSI-RS资源配置端口数、时频资源以及导频密度等。因此,终端设备可以基于该高层参数确定每个RB中承载的预编码参考信号所对应的端口数。
需要说明的是,在当前协议中,如NR协议中,端口数可以是指每个RB上承载的预编码参考信号所对应的端口的个数。网络设备可以将一个或多个端口的预编码参考信号映射至测量带宽中的多个RB上,每个RB上承载的预编码参考信号可对应上述一个或多个端口。终端设备可以在测量带宽的多个RB的每个RB上接收到上述一个或多个端口的预编码参考信号。
如前所述,一个参考信号资源可以包括一个或多个RB。在第二指示信息所配置的每个参考信号资源中,各RB承载的预编码参考信号可以对应相同的一个或多个端口。或者说,同一个参考信号资源中,每个RB上承载的预编码参考信号可以是基于相同的一个或多个时延向量以及一个或多个角度向量预编码得到。
在一种可能的实现方式中,网络设备可以遍历上述角度向量和时延向量的P种组合对参考信号进行预编码,以得到预编码参考信号。如前所述,P可以为K×L,或
Figure PCTCN2019124505-appb-000034
Figure PCTCN2019124505-appb-000035
用于传输该预编码参考信号的参考信号资源可以由网络设备预先通过高层信令配置,如上述第二指示信息。该参考信号资源可以包括一个或多个RB,如N个,N≥1且为整数。每个RB上承载的预编码参考信号都可以是基于K个角度向量和L个时延向量进行预编码得到。下文中图3示出了多个RB上承载多个端口的预编码参考信号的一例。
在这种实现方式中,网络设备可以预先为终端设备配置一个参考信号资源。该参考信号资源中的每个RB上承载的预编码参考信号可以对应P个端口。每个端口的预编码参考信号均可以是基于L个时延向量中的一个时延向量和K个角度向量中的一个角度向量对 参考信号预编码得到。换句话说,该参考信号资源中的每个RB上承载的预编码参考信号可以对应相同的角度时延对,或者说,对应相同的角度向量和时延向量。
此外,由于将K个角度向量和L个时延向量加载到参考信号资源中的每个RB上,每个RB对应的端口数较大,可能带来较大的导频开销。因此,网络设备可以通过高层信令,如上述第二指示信息,配置较小的导频密度,以减小导频开销。
在另一种可能的实现方式中,网络设备可以将上述P种角度向量和时延向量的组合分配到不同的RB上,使得不同RB上承载的预编码参考信号对应的角度时延对不同,或者说,使得不同RB上承载的预编码参考信号对应的角度向量和/或时延向量不同。
若K个角度向量和L个时延向量是相互共用的,网络设备可以遍历K个角度向量中的每个角度向量对参考信号进行预编码,并基于L个时延向量对参考信号进行预编码,且基于不同的时延向量预编码所得到的预编码参考信号可以被映射至不同的RB上。每个RB上承载的预编码参考信号可以是基于K个角度向量和L个时延向量中的部分时延向量预编码得到。在多个RB中,至少有两个RB承载的预编码参考信号是基于不同的时延向量预编码得到。下文中图4和图5示出了多个RB上承载多个端口的预编码参考信号的一例。
若至少两个角度向量对应的时延向量不同,网络设备可以基于角度向量和时延向量的不同组合(或者说,不同的角度时延对)对参考信号进行预编码,且基于角度向量和时延向量的不同组合预编码所得到的预编码参考信号可以被映射至不同的RB上。每个RB上承载的预编码参考信号可以是基于K个角度向量中的一个或多个角度向量以及所对应的时延向量预编码得到。在多个RB中,至少有两个RB承载的预编码参考信号是基于角度向量和时延向量的不同组合预编码得到。下文中图6和图7示出了多个RB上承载多个端口的预编码参考信号的两例。
若至少两个时延向量对应的角度向量不同,网络设备可以基于角度向量和时延向量的不同组合(或者说,不同的角度时延对)对参考信号进行预编码,且基于角度向量和时延向量的不同组合预编码所得到的预编码参考信号可以被映射至不同的RB上。每个RB上承载的预编码参考信号可以是基于L个时延向量中的一个或多个角度向量以及所对应的角度向量预编码得到。在多个RB中,至少有两个RB承载的预编码参考信号是基于角度向量和时延向量的不同组合预编码得到。
在这种实现方式中,用于传输预编码参考信号的参考信号资源可以为多个。网络设备可以预先通过高层信令,如上述第二指示信息,为终端设备配置多个参考信号资源。该多个参考信号资源中的每个参考信号资源可以包括一个或多个RB。每个参考信号资源中承载的预编码参考信号可对应一个或多个端口,且各参考信号资源承载的预编码参考信号对应的端口的数量可以不同,也可以相同。在各参考信号资源承载的预编码参考信号对应的端口的数量相同的情况下,各参考信号资源承载的预编码参考信号对应的端口号可以相同,也可以不同。无论各参考信号资源承载的预编码参考信号对应的端口号相同还是不同,各参考信号资源承载的预编码参考信号对应的角度时延对可以不同,或者说,各参考信号资源承载的预编码参考信号对应的时延向量和/或角度向量可以不同。
可以理解的是,每个端口的预编码参考信号均可以是基于L个时延向量中的一个时延向量和K个角度向量中的一个角度向量对参考信号预编码得到。此外,各参考信号资源在 频域和/或时域上互不重叠。例如,各参考信号资源在频域上交错排布。因此,基于角度向量和时延向量的不同组合预编码得到的预编码参考信号可以通过不同的时频资源承载。
在这种实现方式中,每个RB上承载的预编码参考信号可以对应的端口数可能小于P。例如,每个RB上加载K个角度向量和一个时延向量,则每个RB上承载的预编码参考信号可以对应K个端口,且至少有两个RB承载的预编码参考信号对应不同的端口。
网络设备例如可以对多个RB进行分组,得到多个频域组。每个频域组中的RB上承载的预编码参考信号可以是基于相同的时延向量或相同的角度向量(或者说,相同的角度时延对)预编码得到。为便于区分,可以将上文中所列举的两种不同的实现方式通过是否对RB做分组来区分。在前一种实现方式中,网络设备可以不对RB进行分组,各RB上承载的预编码参考信号所对应的一个或多个端口可以是相同的。在后一种实现方式中,网络设备可以对RB进行分组,各RB上承载的预编码参考信号所对应的端口互不相同。应理解,对频域组可以是一个逻辑概念,并不一定对RB做了真实划分。
下文中为便于理解,结合附图来说明参考信号资源中每个RB上承载的预编码参考信号与端口的对应关系。应理解,RB仅为频域单元的一种可能的形式,频域单元例如还可以是子带、PRB、RBG等。本申请对此不作限定。无论频域单元是怎样的形式,都可以包括一个或多个RB。换句话说,附图(包括图3至图7)示出的RB可以是一个频域单元,也可以是频域单元中用于承载预编码参考信号的RB,本申请对此不作限定。
此外,本申请对于每个频域单元中用于承载预编码参考信号的RB数也不作限定。例如,每个频域单元中可以有一个用于承载预编码参考信号的RB,也可以有多个用于承载预编码参考信号的RB。无论频域单元中承载预编码参考信号的RB数为一个还是多个,每个RB承载的预编码参考信号所对应的端口数不变。可以理解的是,当每个频域单元中包含多个用于承载预编码参考信号的RB时,同一个频域单元中各RB上承载预编码参考信号对应的端口可以相同或不同,本申请对此不作限定。
下面结合附图详细说明上述两种实现方式中RB与端口的对应关系。
需要说明的是,下文提及的附图(包括图3至图7)仅为示意,示出了多个RB上承载多个端口的预编码参考信号的两例。但这不应对本申请构成任何限定。事实上,预编码参考信号并不一定承载在测量带宽的每个RB上,也不一定承载在连续的多个RB上。换句话说,终端设备并不一定在测量带宽的每个RB上都能接收到上述多个端口的预编码参考信号。也就是说,网络设备并不一定将预编码参考信号映射到测量带宽的每个RB上。用于承载下行参考信号的RB可以离散地分布在测量带宽中。例如,每隔若干个RB有一个RB承载有下行参考信号。RB在测量带宽中的分布例如可以由上文所述的导频密度决定。本申请对此不作限定。
例如,图3中的RB#1、RB#2、RB#3和RB#4在频域上并不一定是连续的,例如可以分别位于四个连续的待测量子带中,但彼此之间,如RB#1与RB#2之间,RB#2和RB#3之间,以及RB#3和RB#4之间,可能相隔了一个或多个RB。
图3示出了多个RB上承载多个端口的预编码参考信号的一例。图中示出了RB数为4的一例。图中示出的4个RB中,每个RB上承载的预编码参考信号可以对应4个端口。该4个端口的预编码参考信号例如可以基于1个时延向量和4个角度向量预编码得到,即,L=1、K=4;或者,也可以基于2个时延向量和2个角度向量预编码得到,即,L=2、K=2; 或者,还可以基于4个时延向量和1个角度向量预编码得到,即,L=4、K=1;或者,还可以基于2个角度向量和与每个角度向量对应的2个时延向量预编码得到,即,L=2,K 1=K 2=2;或者,还可以基于2个时延向量和与每个时延向量对应的2个角度向量预编码得到,即,K=2,L 1=L 2=2等等,本申请对此不作限定。换句话说,图3示出的每个RB上承载的预编码参考信号对应的端口数可以为P个。
该4个RB可以是上文所述的参考信号资源的一例。该4个RB可以属于同一参考信号资源。应理解,图中仅为示例,示出了4个RB作为参考信号资源的一例。这不应对本申请构成任何限定。该参考信号资源可以包括更多或更少的RB,本申请对于参考信号资源中包括的RB数目不做限定。
如图所示,同一端口的预编码参考信号在各RB中占用的RE相同,或者说,同一端口的预编码参考信号所占的资源在各RB中的相对位置相同。不同端口的预编码参考信号在同一RB中占用的RE可以不同,例如可以通过频分复用(frequency division multiplexing,FDM)或时分复用(time division multiplexing,TDM)的方式来区分;不同端口的预编码参考信号在同一RB中占用的RE也可以相同,例如可以通过码分复用(code division multiplexing,CDM)的方式来区分。图中仅为示例,示出了端口#1、端口#2与端口#3、端口#4通过FDM区分,端口#1、端口#3与端口#2、端口#4通过TDM区分的一例。
应理解,图3仅为便于理解而示例,并未完整地示出一个RB中的全部RE,本申请对于每个RB中的RE数不作限定。此外,本申请对于每个RB上承载的预编码参考信号所对应的端口数以及各端口的预编码参考信号之间复用资源的具体方式不作限定。
再看图3,每个RB上承载的预编码参考信号可以是遍历时延向量和角度向量的P种组合(或者说,P个角度时延对)对参考信号进行预编码得到的。可选地,时延向量的长度为CSI测量资源的频域占用带宽中用于承载参考信号的RB数。或者说,时延向量的长度为N,N为RB数,N为正整数。每个端口所对应的时延向量中的N个元素可以与N个RB一一对应。如图所示,图中4个RB中与同一端口对应的RE的位置可以是相同的。该时延向量中的4个元素可以分别对应于同一端口的预编码参考信号在不同RB上的值。
例如,与某一端口对应的时延向量
Figure PCTCN2019124505-appb-000036
则RB#1上承载的预编码参考信号至少可以是基于元素
Figure PCTCN2019124505-appb-000037
对参考信号预编码得到;RB#2上承载的预编码参考信号至少可以是基于元素
Figure PCTCN2019124505-appb-000038
对参考信号预编码得到;RB#3上承载的预编码参考信号至少可以是基于元素
Figure PCTCN2019124505-appb-000039
对参考信号预编码得到;RB#4上承载的预编码参考信号至少可以是基于元素
Figure PCTCN2019124505-appb-000040
对参考信号预编码得到。
以RB#1上承载的预编码参考信号为例,该预编码参考信号至少可以是基于时延向量b(τ l)中的元素
Figure PCTCN2019124505-appb-000041
对参考信号预编码得到。例如,基于时延向量b(τ l)中的元素
Figure PCTCN2019124505-appb-000042
对参考信号进行预编码,则终端设备基于接收到的预编码参考信号测量到的信道可表示为
Figure PCTCN2019124505-appb-000043
又例如,基于时延向量b(τ l)中的元素
Figure PCTCN2019124505-appb-000044
和一个角度向量,如a(θ 1),对参考信号进行预编码,则终端设备基于接收到的预编码参考信号测量到的信道可表示为
Figure PCTCN2019124505-appb-000045
其他RB上承载的预编码参考信号也可以基于相同的方式预编码得到。为 了简洁,这里不再一一列举。
因此,N个RB(如图3中所示的RB)中第n(1≤n≤N,n为正整数)个RB上承载的预编码参考信号至少可以由所对应的时延向量中的第n个元素确定。例如,该4个RB中的第1个RB(即,RB#1)上承载的预编码参考信号至少由所对应的时延向量中的第1个元素确定。例如,RB#1上承载的预编码参考信号可以仅基于时延向量预编码得到,也可以是基于时延向量和角度向量预编码得到。其中,时延向量的个数可以是1个,也可以是多个,本申请对此不作限定。对于每个时延向量,网络设备都可以基于上文所述的方法,对参考信号进行预编码。例如,在本实施例中,该RB#1上承载的预编码参考信号可以基于L个时延向量和K个角度向量预编码得到。
如果每个RB上的预编码参考信号均是遍历角度向量和时延向量的P种组合预编码得到,则在RB数较多的情况下,会带来较大的导频开销。为了节省导频开销,可以将RB做分组,每个频域组中承载的预编码参考信号可以是基于角度向量和时延向量的P种组合中的部分组合,例如一个时延向量及其对应的角度向量,或者,一个角度向量及其对应的时延向量,或者,一个时延向量和一个角度向量,预编码得到。由此可以大大降低导频开销。
在本实施例中,N个RB可以被划分为多个频域组,如M个频域组,M>1且为整数。每个频域组中可以包括
Figure PCTCN2019124505-appb-000046
个RB。如果N不能被M整除,则最后一个频域组中的RB数可以是剩余的RB数。即,第M个频域组中包含的RB数可能小于
Figure PCTCN2019124505-appb-000047
个。
在对RB做分组的情况下,每个频域组中承载的预编码参考信号可以是基于K个角度向量和L个时延向量中的一个或多个时延向量预编码得到,或者,每个频域组中承载的预编码参考信号可以是基于L个时延向量和K个角度向量中的一个或多个角度向量预编码得到。
举例而言,假设该K个角度向量和L个时延向量是共用的。作为一个实施例,网络设备可以基于不同的时延向量对N个RB分组。每个频域组承载的预编码参考信号可以是基于K个角度向量和L/M个时延向量预编码得到。因此,每个RB上承载的预编码参考信号对应的端口数可以是K×L/M。同一频域组中任意两个RB上承载的预编码参考信号可以对应相同的一个或多个时延向量。或者说,同一频域组中任意两个RB上承载的、同一端口的预编码参考信号可以对应的时延向量相同。不同频域组承载的预编码参考信号对应的时延向量不同。
可选地,M=L。即,频域组数可以等于时延向量的个数。则每个频域组中可以包括
Figure PCTCN2019124505-appb-000048
该L个频域组中的第l个频域组所包含的RB可以是N个RB中的第l个、第l+L个、第l+2L个直至第
Figure PCTCN2019124505-appb-000049
个。换句话说,该L个频域组中的第l个频域组包括N个RB中的第l+(i-1)×L个RB,
Figure PCTCN2019124505-appb-000050
其中,N个RB中的第l个RB可以是第l个频域组中的第1个RB,N个RB中的第l+L个RB可以是第l个频域组中的第2个RB,N个RB中的第l+2L个RB可以是第l个频域组中的第3个RB,N个RB中的第个RB可以是第l个频域组中的第
Figure PCTCN2019124505-appb-000051
个RB。以此类推,N个RB中的第l+(n-1)×L个RB可以是第l个频域组中的第n个RB。
网络设备可以基于L个时延向量中的第l个时延向量对该L个频域组中的第l个频域组中各RB承载的参考信号(可以理解,该参考信号可以是经过了空域预编码的参考信号) 进行频域预编码。每个频域组可对应于一个时延向量,且每个频域组中的RB可对应于时延向量中的一个元素。
此时,每个RB上承载的预编码参考信号对应的端口数可以是K。
图4和图5示出了多个RB上承载多个端口的预编码参考信号的另一例。如图所示,RB数为。图4示出的16个RB中,每个RB上承载的预编码参考信号可以对应于一个时延向量。该16个RB可以分为4个频域组。如,RB#1、RB#5、RB#9和RB#13可以归为频域组#1,RB#2、RB#6、RB#10和RB#14可以归为频域组#2,RB#3、RB#7、RB#11和RB#15可以归为频域组#3,RB#4、RB#8、RB#12和RB#16可以归为频域组#4。
该16个RB可以分别属于四个参考信号资源。每个频域组可以属于一个参考信号资源。同一个频域组承载的预编码参考信号可以是基于K个角度向量和一个时延向量预编码得到。例如,K=4,L=4。其中,K个角度向量例如可以包括a(θ 1),a(θ 2),a(θ 3)和a(θ 4);L个时延向量例如可以包括b(τ 1),b(τ 2),b(τ 3)和b(τ 4)。RB#1、RB#5、RB#9和RB#13上承载的预编码参考信号可以基于相同的K个角度向量和同一个时延向量预编码得到,如由a(θ 1),a(θ 2),a(θ 3)和a(θ 4)分别与b(τ 1)组合得到的四种角度向量和时延向量的组合,如包括:(a(θ 1),b(τ 1)),(a(θ 2),b(τ 1)),(a(θ 3),b(τ 1))和(a(θ 4),b(τ 1));RB#2、RB#6、RB#10和RB#14上承载的预编码参考信号可以基于相同的K个角度向量和同一个时延向量预编码得到,如由a(θ 1),a(θ 2),a(θ 3)和a(θ 4)分别与b(τ 2)组合得到的四种角度向量和时延向量的组合,如包括:(a(θ 1),b(τ 2)),(a(θ 2),b(τ 2)),(a(θ 3),b(τ 2))和(a(θ 4),b(τ 2));RB#3、RB#7、RB#11和RB#15上承载的预编码参考信号可以基于相同的K个角度向量和同一个时延向量预编码得到,如由a(θ 1),a(θ 2),a(θ 3)和a(θ 4)分别与b(τ 3)组合得到的四种角度向量和时延向量的组合,如包括:(a(θ 1),b(τ 3)),(a(θ 2),b(τ 3)),(a(θ 3),b(τ 3))和(a(θ 4),b(τ 3));RB#4、RB#8、RB#12和RB#16上承载的预编码参考信号可以基于相同的K个角度向量和同一个时延向量预编码得到,如由a(θ 1),a(θ 2),a(θ 3)和a(θ 4)分别与b(τ 4)组合得到的四种角度向量和时延向量的组合,如包括:(a(θ 1),b(τ 4)),(a(θ 2),b(τ 4)),(a(θ 3),b(τ 4))和(a(θ 4),b(τ 4))。
因此,图4示出的16个RB中,同一频域组中的任意两个RB上承载的预编码参考信号对应同一时延向量。例如,频域组#1可以对应于时延向量b(τ 1),频域组#2可以对应于时延向量b(τ 2),频域组#3可以对应于时延向量b(τ 3),频域组#4可以对应于时延向量b(τ 4)。应理解,将时延向量加载到频域组中各个RB上的具体方式在上文中已经结合图3举例说明,为了简洁,这里不再赘述。
再看图5,每个RB上承载的预编码参考信号基于4个角度向量和一个时延向量预编码得到。图中仅为示例,未示出时延向量。该4个角度向量例如可以分别是a(θ 1),a(θ 2),a(θ 3)和a(θ 4)。同一RB中基于同一角度向量预编码得到的预编码参考信号占用的RE相同。基于不同的角度向量预编码得到的预编码参考信号之间例如可以通过FDM、TDM和CDM方式来区分。
同一频域组中基于一个角度向量和一个时延向量预编码得到的预编码参考信号可对应同一端口。例如,频域组#1中基于(a(θ 1),b(τ 1))进行预编码的预编码参考信号可对应端口#1;频域组#1中基于(a(θ 2),b(τ 1))进行预编码的预编码参考信号可对应端口#2;频域组 #1中基于(a(θ 3),b(τ 1))进行预编码的预编码参考信号可对应端口#4;频域组#1中基于(a(θ 4),b(τ 1))进行预编码的预编码参考信号可对应端口#4。
不同频域组中基于同一角度向量和不同的时延向量预编码得到的预编码参考信号可对应不同的时延向量。不同频域组中承载的预编码参考信号对应的端口号可以相同,也可以不同。例如,频域组#1中基于(a(θ 1),b(τ 1))进行预编码的预编码参考信号可对应端口#1;频域组#2中基于(a(θ 1),b(τ 2))进行预编码的预编码参考信号可对应端口#1,也可以对应端口#5;频域组#3中基于(a(θ 1),b(τ 3))进行预编码的预编码参考信号可对应端口#1,也可以对应端口#9;频域组#4中基于(a(θ 1),b(τ 4))进行预编码的预编码参考信号可对应端口#1,也可以对应端口#13。
应理解,上文仅为便于理解,示例性地列举了各频域组上的预编码参考信号与端口的对应关系。各频域组与端口号的对应关系仅为示例,不应对本申请构成任何限定。本申请对各频域组与端口号的对应关系不作限定。
由图可以看到,图中示出的每个RB上承载的预编码参考信号可对应4个端口。该4个端口的预编码参考信号例如可以基于4个角度向量和1个时延向量预编码得到。其中,该1个时延向量可以是取自4个时延向量中的一个。即,K=4,L=4。换句话说,图4示出的每个RB上承载的预编码参考信号对应的端口数可以K个。
应理解,对每个频域组加载一个时延向量仅为便于理解而示例。本申请对每个频域组加载的时延向量个数不作限定。每个频域组加载的时延向量的个数可以小于L。
例如,图中示出的每个RB上承载的预编码参考信号可对应更多端口,例如8个。8个端口的预编码参考信号例如可以基于4个角度向量和2个时延向量预编码得到。此情况下,同一频域组中的任意两个RB上承载的预编码参考信号可以对应2个时延向量,且任意两个RB上承载的预编码参考信号对应的时延向量相同。例如,频域组#1中的任意两个RB上承载的预编码参考信号均对应于时延向量b(τ 1)和b(τ 2)。其中,该2个时延向量可以是取自8个时延向量中的两个。即,K=4,L=8。此时,每个RB上承载的预编码参考信号对应的端口数可以是2K。
应理解,上文列举的K和L的取值仅为示例,不应对本申请构成任何限定。本申请对于K和L的取值不作限定。还应理解,上文所列举的各频域组与时延向量、角度向量的对应关系仅为便于理解而示出,不应对本申请构成任何限定。本申请对于各频域组与时延向量、角度向量的对应关系不作限定。
可以理解的是,当每个频域组加载的时延向量的个数为L时,也就相当于没有对RB做分组。
应理解,图5仅为便于理解而示例,并未完整地示出一个RB中的全部RE,本申请对于每个RB中的RE数不作限定。此外,本申请对于每个RB上承载的预编码参考信号所对应的端口以及各端口的参考信号之间复用资源的具体方式不作限定。
进一步地,时延向量的长度为
Figure PCTCN2019124505-appb-000052
每个端口对应的时延向量中的
Figure PCTCN2019124505-appb-000053
个元素可以与
Figure PCTCN2019124505-appb-000054
个RB一一对应。每个端口的预编码参考信号在M个频域组的第m(1≤m≤M,m为整数)个频域组中第n个RB上的值至少由M个时延向量的第m个时延向量中的第n个元素确定。
可选地,时延向量的长度为
Figure PCTCN2019124505-appb-000055
每个端口对应的时延向量中的
Figure PCTCN2019124505-appb-000056
个元素可以 与
Figure PCTCN2019124505-appb-000057
个RB一一对应。因此,每个端口的预编码参考信号在L个频域组的第l(1≤l≤L,l为整数)个频域组中第n个RB上的值至少由L个时延向量的第l个时延向量中的第n个元素确定。
例如,该16个RB中的第1个RB(即,RB#1),也就是,频域组#1中的第1个RB,承载的预编码参考信号至少由b(τ 1)对应的时延向量中的第1个元素确定;该16个RB中的第5个RB(即,RB#5),也就是,频域组#1中的第2个RB,承载的预编码参考信号至少由b(τ 1)中的第2个元素确定;该16个RB中的第9个RB(即,RB#9),也就是,频域组#1中的第3个RB,承载的预编码参考信号至少由b(τ 1)中的第3个元素确定;该16个RB中的第13个RB(即,RB#14),也就是,频域组#1中的第4个RB,承载的预编码参考信号至少由b(τ 1)中的第4个元素确定。应理解,其他频域组#1中的各RB与时延向量中各元素的对应关系与之相似,为了简洁,这里就不一一列举。
需要说明的是,由于网络设备基于上行信道测量确定的L个时延向量的长度可能为N。而在对RB做了分组之后,用于对参考信号进行预编码的时延向量的长度为
Figure PCTCN2019124505-appb-000058
网络设备可以基于上行信道测量确定的L个时延向量,从每个时延向量中抽取出一部分元素形成新的L个时延向量。这里为方便区分和说明,将上行信道测量确定的L个时延向量称为L个原始时延向量。
具体地,若将N个RB分为L个频域组。该L个频域组中的第l个频域组对应于L个原始时延向量中的第l个原始时延向量,且该第l个频域组中的第1个、第2个、第3个直至第
Figure PCTCN2019124505-appb-000059
个RB分别与第l个原始时延向量中的第l个、第l+L个、第l+2L个直至第
Figure PCTCN2019124505-appb-000060
个元素对应。以此类推,第l个频域组中的第n个RB可以对应于第l个原始时延向量中的第l+(n-1)×L个元素。
应理解,上文仅为区分,定义了原始时延向量。在后文实施例中,并不涉及原始时延向量。后文实施例中所涉及的时延向量均可以理解为用于对参考信号进行频域预编码的时延向量。时延向量的长度可以为N,也可以为
Figure PCTCN2019124505-appb-000061
还应理解,上文仅为便于理解,结合附图详细说明了对N个RB分组以及基于L个时延向量对L个频域组上的参考信号进行频域预编码的过程。但这不应对本申请构成任何限定。本申请对于N个RB的分组方式不作限定。本申请对于每个频域组与时延向量的对应关系也不做限定。本申请对于每个频域组中各RB与时延向量中各元素的对应关系也不做限定。
作为另一个实施例,网络设备可以基于不同的角度向量对N个RB分组。例如,每个频域组承载的预编码参考信号可以是基于L个时延向量和K/M个角度向量预编码得到。因此,每个RB上承载的预编码参考信号对应的端口数可以是L×K/M。不同频域组承载的预编码参考信号对应的角度向量不同。
可选地,M=K。即,频域组数可以等于角度向量的个数。则每个频域组中可以包括
Figure PCTCN2019124505-appb-000062
个RB。该L个频域组中的第l个频域组所包含的RB上承载的预编码参考信号至少基于L个角度向量中的第l个角度向量确定。此时,每个RB上承载的预编码参考信号对应的端口数可以是L。
基于不同的角度向量对N个RB分组,以及各频域组上承载的预编码参考信号与角度向量和时延向量的对应关系与上文中结合图4和图5描述的基于不同的时延向量对N个RB分组时各频域组上承载的预编码参考信号与角度向量和时延向量的对应关系相似。例 如,将附图(包括图4和图5)中的角度向量替换为时延向量,时延向量替换为角度向量。为了简洁,这里不再结合附图做详细说明。
又例如,假设K个角度向量中至少两个角度向量对应的时延向量不同。第k个角度向量可以对应L k个时延向量。网络设备可以基于不同的角度向量对N个RB分组。每个频域组承载的预编码参考信号可以是基于K个角度向量中的部分角度向量及其对应的时延向量预编码得到。
例如,K=4,L 1=1,L 2=L 3=3,L 4=2。其中,K个角度向量例如可以包括a(θ 1),a(θ 2),a(θ 3)和a(θ 4);与a(θ 1)对应的L 1个时延向量例如可以包括b(τ 2);与a(θ 2)对应的L 2个时延向量例如可以包括b(τ 1),b(τ 2)和b(τ 3);与a(θ 3)对应的L 3个时延向量例如可以包括b(τ 1),b(τ 2)和b(τ 4);与a(θ 4)对应的L 4个时延向量例如可以包括b(τ 2)和b(τ 3)。
图6示出了多个RB上承载多个端口的预编码参考信号的另一例。如图所示,RB数为16。图6示出的16个RB中,每个RB上承载的预编码参考信号可以对应于两个角度向量。该16个RB可以分为2个频域组。如,RB#1、RB#3、RB#5、RB#7、RB#9、RB#11、RB#13和RB#15可以归为频域组#1,RB#2、RB#4、RB#6、RB#8、RB#10、RB#12、RB#14和RB#16可以归为频域组#2。该16个RB可以分别属于两个参考信号资源。每个频域组可以属于一个参考信号资源。
同一个频域组承载的预编码参考信号可以是基于相同的角度向量和时延向量预编码得到。例如,K=4,L=4。其中,K个角度向量例如可以包括a(θ 1),a(θ 2),a(θ 3)和a(θ 4);角度向量对应的L个时延向量例如可以包括b(τ 1),b(τ 2),b(τ 3)和b(τ 4)。其中,角度向量a(θ 1)对应的时延向量例如可以包括b(τ 2);角度向量a(θ 2)对应的时延向量例如可以包括b(τ 1),b(τ 2)和b(τ 3);角度向量a(θ 3)对应的时延向量例如可以包括b(τ 1),b(τ 2)和b(τ 4);角度向量a(θ 4)对应的时延向量例如可以包括b(τ 2)和b(τ 3)。
RB#1、RB#3、RB#5、RB#7、RB#9、RB#11、RB#13和RB#15上承载的预编码参考信号可以基于2个角度向量及其对应的时延向量预编码得到,如由a(θ 1)及其对应时延向量b(τ 2)组合得到的(a(θ 1),b(τ 2)),以及由a(θ 2)及其对应的b(τ 1),b(τ 2)和b(τ 3)分别组合得到的(a(θ 2),b(τ 1)),(a(θ 2),b(τ 2))和(a(θ 2),b(τ 3));RB#2、RB#4、RB#6、RB#8、RB#10、RB#12、RB#14和RB#16上承载的预编码参考信号可以基于另2个角度向量及其对应的时延向量预编码得到,如由a(θ 3)及其对应时延向量b(τ 1),b(τ 2)和b(τ 4)组合得到的(a(θ 3),b(τ 1)),(a(θ 3),b(τ 2))和(a(θ 3),b(τ 4)),以及由a(θ 4)及其对应的b(τ 2)和b(τ 3)分别组合得到的(a(θ 4),b(τ 2))和(a(θ 4),b(τ 3))。
由图可以看到,不同频域组中每个RB上承载的预编码参考信号对应的端口数可以不同。例如,频域组#1中各RB上承载的预编码参考信号可对应4个端口,频域组#2中各RB上承载的预编码参考信号可对应5个端口。
当然,网络设备也可以根据各角度向量对应的时延向量数量,将P个角度向量和时延向量的组合平均分配到各个频域组中。图7示出了多个RB上承载多个端口的预编码参考信号的再一例。如图所示,RB数仍为16。图7示出的16个RB中,每个RB上承载的预编码参考信号仍可以对应于两个角度向量。该16个RB可以分为3个频域组。如,RB#1、RB#4、RB#7、RB#10、RB#13和RB#16可以归为频域组#1,RB#2、RB#5、RB#8、RB#11 和RB#14可以归为频域组#2,RB#3、RB#6、RB#9、RB#12和RB#15可以归为频域组#3。该16个RB可以分别属于三个参考信号资源。每个频域组可以属于一个参考信号资源。
同一个频域组承载的预编码参考信号可以是基于相同的角度向量和时延向量预编码得到。例如,K=4,L=4。各角度向量及其对应的时延向量可以如上文所列举,为了简洁,这里不再赘述。由于基于各角度向量及其对应的时延向量,可以得到9种角度向量和时延向量的不同组合。网络设备可以将该9种组合平均分配到3个频域组中。
例如,RB#1、RB#4、RB#7、RB#10、RB#13和RB#16上承载的预编码参考信号可以基于角度向量a(θ 1)及其对应的时延向量b(τ 2)组合得到的(a(θ 1),b(τ 2)),以及角度向量a(θ 2)及其对应的时延向量b(τ 1)和b(τ 2)组合得到的(a(θ 2),b(τ 1))和(a(θ 2),b(τ 2))预编码得到;RB#2、RB#5、RB#8、RB#11和RB#14上承载的预编码参考信号可以基于角度向量a(θ 3)及其对应的时延向量b(τ 1)和b(τ 2)组合得到的(a(θ 3),b(τ 1))和(a(θ 3),b(τ 2)),以及角度向量a(θ 4)及其对应的时延向量b(τ 2)组合得到的(a(θ 4),b(τ 2))预编码得到;RB#3、RB#6、RB#9、RB#12和RB#15上承载的预编码参考信号可以基于角度向量a(θ 2)及其对应的时延向量b(τ 3)组合得到的(a(θ 2),b(τ 3)),角度向量a(θ 3)及其对应的时延向量b(τ 4)组合得到的(a(θ 3),b(τ 4)),以及角度向量a(θ 4)及其对应的时延向量b(τ 3)组合得到的(a(θ 4),b(τ 3))预编码得到。
由图可以看到,不同频域组中每个RB上承载的预编码参考信号对应的端口数可以相同。例如,上文图7中示出的各频域组中每个RB上承载的预编码参考信号均可对应3个端口。
又例如,L个时延向量中至少两个时延向量对应的角度向量不同。网络设备可以基于不同的时延向量对N个RB分组。每个频域组承载的预编码参考信号可以是基于L个时延向量中的部分时延向量及其对应的角度向量预编码得到。基于不同的时延向量对N个RB分组,以及各频域组上承载的预编码参考信号与角度向量和时延向量的对应关系与上文结合图6和图7描述的基于不同的时延向量对N个RB分组时各频域组上承载的预编码参考信号与角度向量和时延向量的对应关系相似。例如,将附图(包括图6和图7)中的角度向量替换为时延向量,时延向量替换为角度向量。为了简洁,这里不再结合附图做详细说明。
应理解,上文仅为便于理解,示出了对多个RB分组的几个示例。但这不应对本申请构成任何限定。本申请对于频域组数、各频域组中的RB数、每个RB承载的预编码参考信号对应的端口数以及对应的时延向量和角度向量均不做限定。
还应理解,上文仅为便于理解,列举了各个RB上承载的预编码参考信号与端口的对应关系,但这不应对本申请构成任何限定,本申请对于各个RB承载的预编码参考信号与时延、角度以及端口的对应关系不作限定。
还应理解,上文仅为便于理解,结合附图说明了基于多个角度向量和多个时延向量对参考信号进行预编码并映射到RB上的具体过程,但这不应对本申请构成任何限定。本申请对于RB数、时延向量数、角度向量数以及端口数均不做限定。本申请对于每个端口在各RB上对应的RE的位置也不做限定。或者说,本申请对于导频图样不作限定。
还应理解,上文中基于每个RB来定义端口数仅为一种可能的实现方式,而不应对本 申请构成任何限定。本申请另提出一种定义端口数的方法,即,端口数可以是指每个参考信号资源上承载的预编码参考信号所对应的端口的个数。换句话说,端口数可以跨RB定义。
这种定义端口数的方式可应用于对RB进行分组的情况。
可选地,该方法200还包括:终端设备接收第三指示信息,该第三指示信息用于配置一个参考信号资源。相应地,网络设备发送该第三指示信息。
该第三指示信息所配置的参考信号资源可用于承载预编码参考信号,且该参考信号资源承载的预编码参考信号可以是基于上述K个角度向量和L个时延向量预编码得到的参考信号。并且,该参考信号资源中,至少有两个RB上承载的预编码参考信号是基于不同的角度时延对预编码得到的。换句话说,至少有两个RB上承载的预编码参考信号对应不同的端口号。因此,在同一参考信号资源中,各RB上承载的预编码参考信号所对应的端口并不一定相同。
在本实施例中,该参考信号资源例如可以包括上文结合图4至图7中任一附图描述的16个RB,也就是可以包括多个频域组。该参考信号资源中承载的预编码参考信号可以对应P个端口。
需要说明的是,当网络设备对RB做了分组,以通过不同的时延向量来对不同的RB上承载的参考信号进行预编码时,网络设备可以基于上述第二指示信息配置的多个参考信号资源来传输预编码参考信号,也可以基于上述第三指示信息配置的一个参考信号资源来传输预编码参考信号,本申请对此不作限定。
在步骤220中,终端设备生成第一指示信息,该第一指示信息可用于指示对应于P个角度时延对的P个加权系数。
具体地,该P个角度时延对和对应的P个加权系数可用于确定预编码矩阵。例如,该P个角度时延对可用于确定P个空频分量矩阵或空频分量向量,该P个空频分量矩阵或空频分量向量的加权和可用于确定预编码矩阵。
其中,每个角度时延对可包括上述K个角度向量中的一个角度向量和L个时延向量中的一个时延向量。或者说,每个角度时延对由K个角度向量中的一个角度向量和L个时延向量中的一个时延向量唯一确定。任意两个角度时延对中包含的角度向量和/或时延向量不同。
为方便说明,下文中假设P个角度时延对中的第p个角度时延对由K个角度向量中的第k个角度向量以及L个时延向量中的第l个时延向量。其中,1≤p≤P,1≤k≤K,1≤l≤L,且p、k和l均为整数。
终端设备可以根据接收到的预编码参考信号进行下行信道估计,以根据多个RB上的信道估计值确定P个角度时延对中每个角度时延对的加权系数。
需要说明的是,终端设备在确定与P个角度时延对所对应的P个加权系数时,并不一定要生成或确定该P个角度时延对。终端设备可以在多个RB上基于接收到的预编码参考信号进行信道估计,以得到各个RB上对应于各个端口的信道估计值。
下面详细说明终端设备确定P个加权系数的具体过程。
需要说明的是,终端设备在接收到来自网络设备的预编码参考信号时,可以根据预先定义的导频图样确定各个端口的预编码参考信号的时频资源,并可在相应的时频资源上接 收各个端口的预编码参考信号。
由于终端设备能够识别的端口是与预编码参考信号对应的端口。因此,终端设备可以根据接收到的预编码参考信号,基于每个端口来进行信道估计。
若不考虑对参考信号做预编码,对于每个接收天线来说,下行信道的维度可以是N×T。在一个接收天线的每个RB上接收到的下行信道的维度可以是1×T。由于网络设备基于角度向量和时延向量对参考信号进行了预编码,每个角度向量的维度可以为T×1,则经过角度向量和时延向量对参考信号进行预编码后,终端设备在每个接收天线、每个RB上接收到的下行信道的维度可以是1×1。该维度为1×1的下行信道也就是在一个RB上基于预编码参考信号进行信道估计得到的信道估计值。
由于网络设备基于K个角度向量和L个时延向量对参考信号进行了预编码,则每个RB承载的预编码参考信号可以对应一个或多个端口。
若网络设备没有对RB做分组,则每个RB承载的预编码参考信号可对应P个端口。该P个端口中的第p个端口所对应的预编码参考信号例如可以是基于上述第k个角度向量和第l个时延向量对参考信号预编码得到。换句话说,第p个端口对应的预编码参考信号可以用于确定第k个角度向量和第l个时延向量构成的角度向量对的加权系数,也就是,可用于确定第p个角度时延对的加权系数。因此,P个端口可以与P个角度时延对具有一一对应关系。
对于该第p个端口的预编码参考信号,终端设备可以基于N个RB上接收到的N个1×1的下行信道确定第p个角度时延对的加权系数。该第p个角度时延对的加权系数可以由N个RB上的N个信道估计值叠加求和得到。
假设终端设备基于第p个端口的预编码参考信号进行信道估计所得的的下行信道的估计值记作
Figure PCTCN2019124505-appb-000063
则终端设备在N个RB上基于第p个端口的预编码参考信号进行信道估计得到的多个估计值的和可以表示为
Figure PCTCN2019124505-appb-000064
也就是第p个角度时延对的加权系数。可以理解,该第p个角度时延对的加权系数由基于第k个角度向量和第l个时延向量预编码得到的预编码参考信号确定。
基于上述方法,终端设备可以根据接收到的P个端口的预编码参考信号,分别确定出与P个角度时延对对应的P个加权系数。
如前所述,空频矩阵H DL满足H DL=SC DLF H。在本申请实施例中,H DL的维度可以是T×N;角度向量可以为K个,每个角度向量的长度可以是T,则S的维度可以是T×K;每个时延向量可以为L个,每个时延向量的长度可以是N,则F的维度可以是N×L。对上式变形可以得到:S HH DL=C DLF H,进一步可以得到(H DL HS) H=C DLF H。其中,H HS是经过空域预编码后的真实信道。在实施例中,其维度可以是N×K。进一步变形可以得到系数矩阵C DL=(H DL HS) HF。
当网络设备基于K个角度向量对下行参考信号进行空域预编码时,也就是将真实的信道右乘S,得到H DL HS。当网络设备基于L个时延向量对空域预编码后的参考信号做频域预编码时,可以通过(H DL HS) HF来表示。故该系数矩阵中C DL的各元素可以分别由(H DL HS) H中的一行与F中的一列相乘确定。换句话说,矩阵系数C DL中的各元素可以由真 实信道H DL HS的共轭转置的一行与F中的一列相乘得到。
如,系数矩阵C DL中的第l行第k列的元素为(H DL HS) H中的第l行和F中的第k列相乘得到。系数矩阵C DL中的第l行第k列的元素也就是与第k个角度向量和第l个时延向量对应的加权系数。
由矩阵乘法运算可以知道,(H DL HS) H中的每个行向量包括的元素数与F中每个列向量包括的元素数相同。在本实施例中,(H DL HS) H中的每个行向量包括的元素数与F中每个列向量包括的元素数均可以为N。当行向量与列向量相乘时,需要将行向量中的各元素(如第n个元素,n在1至N中遍历取值)分别与列向量中的相应元素(如第n个元素,n在1至N中遍历取值)相乘后再求和,而(H DL HS) H中的每一行中的N个元素与N个频域单元(如RB、子带等)对应。然而,网络设备并不能预先获知下行信道在各个频域单元(如RB)之间的相关性,故无法在网络设备侧完成(H DL HS) HF的运算,而仅仅是将各时延向量中的元素加载到下行信道的各个RB上。
为便于理解,这里假设K个角度向量和L个时延向量均被加载在N个RB中的每个RB上。将上文中C DL=(H DL HS) HF进一步变形可以得到:C DL=(F HH DL HS) H=(F HH DL'S) H。其中,H DL'表示由真实的下行信道确定的空频矩阵,由于真实的信道维度为R×T,故H DL'的维度为N×T。该可以包括N个维度为1×T的行向量,如包括h 1至h N,分别对应于N个RB(即,频域单元的一例)中的第1个至第N个RB。
可以理解,本申请实施例中定义的空频矩阵H DL与上文中由真实信道确定的空频矩阵H DL'间满足H DL'=H DL H。这是由于本申请中定义的空频矩阵H DL是由真实信道的共轭转置确定的。
在加载了角度和时延之后,终端设备观察到的信道可以表示为:
Figure PCTCN2019124505-appb-000065
其中,b(τ 1)至b(τ L)可以表示F中的L个时延向量;b(τ 1) n可以表示b(τ 1)中的N个元素中的第n个元素,b(τ L) n可以表示b(τ L)中的N个元素中的第n个元素,n=1,2,……,N;S可以表示由K个角度向量构造的维度为T×K的矩阵。因此,b(τ l) n Hh nS(n=1,2,……,N;l=1,2,……,L)可以是维度为1×K的行向量。
也就是说,矩阵
Figure PCTCN2019124505-appb-000066
中的第n行,可以表示在第n个RB上基于接收到多个端口的预编码参考信号进行信道估计得到的信道估计值。矩阵
Figure PCTCN2019124505-appb-000067
中的每行可以包括K×L个元素,可分别对应于K×L个端口,或者说,K×L个角度时延对。
由于终端设备接收到的预编码参考信号经历了下行信道,是能够获知下行信道在各个RB之间的相关性的,可以完成上述求和操作。即,将矩阵
Figure PCTCN2019124505-appb-000068
中的每一列元素分别求和。也就是,将
Figure PCTCN2019124505-appb-000069
中对应于同一时延向量和同一角度向量的元素求和,可以得到:(b(τ 1) HH DL'S…b(τ L) HH DL'S) H。该操作可以理解为对全带的信道估计值求和。
其中,b(τ l) HH DL'S(l=1,2,……,L)可以是一个维度为1×K的的行向量,对应于L个时延向量中的第l个时延向量。该行向量中的第k个元素可对应于K个角度向量中的第k个角度向量。因此,b(τ l) HH DL'S中的第k个元素可对应于上文所述的基于第p个端口的预编码参考信号进行信道估计得到的下行信道的估计值
Figure PCTCN2019124505-appb-000070
将(b(τ 1) HH DL'S…b(τ L) HH DL'S) H重排后便可以得到维度为K ×L的系数矩阵C DL
Figure PCTCN2019124505-appb-000071
该系数矩阵C DL中的第k行第l列的元素与第k个角度向量和第l个时延向量对应,也就是,对应于由第k个角度向量和第l个时延向量构成的角度时延对的加权系数。
因此,终端设备可以通过对全带的信道估计值求和,确定与各角度向量和时延向量组合得到的各角度时延对对应的加权系数。
需注意,由公式C DL=(F HH DL'S) H可知,该系数矩阵C DL中的各元素是用于确定空频矩阵H DL'时对应于各角度时延对的加权系数,而并不是用于确定空频矩阵H DL时对应于各角度时延对的加权系数。相反,终端设备在基于接收到的预编码参考信号进行信道时所得到的估计值
Figure PCTCN2019124505-appb-000072
可作为用于确定空频矩阵H DL'时第p个角度时延对的加权系数。
但可以理解的是,无论是空频矩阵H DL还是H DL',都可以由P个角度时延对加权求和得到。只是由于对空频矩阵的定义不同,网络设备和终端设备所执行的操作有所不同。
应理解,本文中示出的空频矩阵H DL与信道矩阵V以及H DL'的关系仅为示例。不同的定义方式会造成三者之间的不同关系。但无论怎样定义,都只是影响网络设备和终端设备的内部实现,因此都不应对本申请构成任何限定。本申请对于网络设备和终端设备的内部实现行为不作限定。
若网络设备对RB做了分组,则每个RB承载的预编码参考信号对应的端口数可能小于P。但终端设备仍然可以基于每个端口的预编码参考信号进行信道估计,以确定与P个角度时延对对应的P个加权系数。此情况下,该P个加权系数可以分别由各个频域组上承载的预编码参考信号确定。终端设备并不感知网络设备对参考信号预编码所使用的角度向量和时延向量,也不感知各频域组与角度向量和时延向量的组合的对应关系。终端设备只需基于预先定义的分组规则,根据各个频域组上接收到的预编码参考信号进行信道估计即可。
以图4中所示的分组方式为例,RB#1、RB#5、RB#9和RB#13可以归为频域组#1;RB#2、RB#6、RB#10和RB#14可以归为频域组#2:;RB#3、RB#7、RB#11和RB#15可以归为频域组#3;RB#4、RB#8、RB#12和RB#16可以归为频域组#4。
则终端设备可以基于RB#1、RB#5、RB#9和RB#13上接收到的预编码参考信号确定K个角度时延对的加权系数,该K个角度时延对也就是由K个角度向量分别与时延向量b(τ 1)对应的时延向量构成的K个角度时延对;终端设备可以基于RB#2、RB#6、RB#10和RB#14上接收到的预编码参考信号确定K个角度时延对的加权系数,该K个角度时延对也就是由K个角度向量分别与时延向量b(τ 2)对应的时延向量构成的K个角度时延对;终端设备可以基于RB#3、RB#7、RB#11和RB#15上接收到的预编码参考信号确定K个角度时延对的加权系数,该K个角度时延对也就是由K个角度向量分别与时延向量b(τ 3)对应的时延向量构成的K个角度时延对;终端设备可以基于RB#4、RB#8、RB#12和RB#16上接收到的预编码参考信号确定K个角度时延对的加权系数,该K个角度时延对也就是由K个角度向量分别与时延向量b(τ 4)对应的时延向量构成的K个角度时延对。
由于网络设备在对RB做了分组的情况下,终端设备需要预先知道频域组数,因此,网络设备可以预先通过信令通知终端设备频域组数。
可选地,该方法还包括:终端设备接收第四指示信息,该第四指示信息用于指示频域组数。相应地,网络设备发送该第四指示信息。
如前所述,网络设备可以预先通过高层信令配置端口数。因此,终端设备可以基于已有信令确定每个RB上承载的预编码参考信号对应的端口数。在网络设备对RB做了分组的情况下,网络设备可以进一步通过第四指示信息指示频域组数。终端设备可以基于相同的分组规则,确定每个频域组中的RB,进而估计每个端口的下行信道,确定每个角度时延对的加权系数。
需要说明的是,终端设备和网络设备可以预先约定分组规则。双方可以根据预先定义的分组规则对RB进行分组,以便于双方确定的各频域组中包括的RB数以及各频域组中的RB在频域资源中的位置是一致的。
在本实施例中,频域组数可以为时延向量数。可选地,该第四指示信息用于指示L的值。又由于P=K×L,在RB分组的情况下,每个RB上承载的预编码参考信号对应的端口数为K,则终端设备可以由P和K求出L。因此,该第四指示信息可直接指示L的值,也可以通过指示P的值来间接指示L的值。本申请对此不作限定。换句话说,该第四指示信息可用于指示L和P中的任意一项。
终端设备在确定了上述P个角度时延对对应的P个加权系数之后,便可以生成第一指示信息来指示该P个加权系数。
对于P个加权系数,终端设备例如可以通过归一化方式来指示。
例如,终端设备可以从该P个加权系数中确定模最大的加权系数(例如记作最大加权系数),并指示该最大加权系数在P个加权系数中所处的位置。终端设备可进一步指示其余的P-1个加权系数相对于该最大加权系数的相对值。终端设备可以通过各相对值的量化值索引来指示上述P-1个加权系数。例如,网络设备和终端设备可以预先定义多个量化值与多个索引的一一对应关系,终端设备可以基于该一一对应关系,将上述各加权系数相对于最大加权系数的相对值反馈给网络设备。由于终端设备对各加权系数进行了量化,量化 值与真实值可能相同或相近,故称为加权系数的量化值。
终端设备在通过第一指示信息指示P个加权系数时,可以按照K个角度向量和L个时延向量构造维度为K×L的矩阵。该矩阵中的第k行第l列的元素可以是与第k个角度向量和第l个时延向量对应的加权系数,也就是由第k个角度向量和第l个时延向量构成的第p个角度时延对的加权系数。网络设备可以基于相同的方式来恢复与P个角度时延对对应的P个加权系数。
当然,终端设备也可以按照L个时延向量和K个角度向量构造维度为L×K的矩阵。矩阵中各元素与角度时延对的对应关系与上文所述相似。该矩阵中的第l行第k列的元素可以是与第l个时延向量和第k个角度向量对应的加权系数,也就是由第l个时延向量和第k个角度向量构成的第p个角度时延对的加权系数。网络设备可以基于相同的方式来恢复与P个角度时延对对应的P个加权系数。
应理解,通过构造矩阵的方式来指示该P个加权系数,以便指示各加权系数与角度向量和时延向量的对应关系,仅为一种可能的实现方式,而不应对本申请构成任何限定。例如,终端设备也可以按照预先约定的顺序依次指示P个加权系数,如,按照先遍历L个时延向量、再遍历K个角度向量的方式,或按照先遍历K个角度向量、再遍历L个时延向量的方式,将P个角度时延对所对应的P个加权系数排列成一个有序数组,以便网络设备确定各加权系数在该有序数组中的位置。网络设备可以基于相同的方式来恢复与P个角度时延对对应的P个加权系数。
应理解,上文列举的通过归一化方式来指示各加权系数仅为一种可能的实现方式,而不应对本申请构成任何限定。本申请对于终端设备指示加权系数的具体方式不作限定。例如,也可以指示该L k个加权系数中每个加权系数的量化值索引。
需要说明的是,上文所提及的归一化,可以是以每个接收天线为单位来确定最大加权系数,从而在每个接收天线对应的量化信息的范围内进行归一化。但这不应对本申请构成任何限定。例如,在本实施例中,终端设备也可以以多个接收天线、一个极化方向、多个极化方向或一个端口为单位来确定最大加权系数,从而在多个接收天线、每个极化方向、多个极化方向或一个端口对应的量化信息的范围内进行归一化。
还应理解,该第一指示信息在用于指示P个加权系数时,可通过直接或间接的方式来指示。例如,对于最大加权系数,可以指示其在P个加权系数中的位置;又例如,对于量化值为零的加权系数,也可以指示其在P个加权系数中的位置。换句话说,该第一指示信息并不一定指示了P个加权系数中的每一个系数。只要网络设备可以根据第一指示信息恢复出P个加权系数即可。
需要说明的是,上文中以一个极化方向、一个接收天线为例详细说明了终端设备生成第一指示信息的具体过程。换句话说,上述P个加权系数可以是基于一个极化方向的发射天线发送且在一个接收天线上接收到的预编码参考信号确定的。但这不应对本申请构成任何限定。
当终端设备配置有多个接收天线时,上文举例描述的一个接收天线可以为终端设备配置的多个接收天线中的任意一个。也就是说,终端设备可以基于上文所述的方法,对每个接收天线分别确定P个加权系数。
当网络设备配置有多个极化方向的发射天线时,上文举例描述的一个极化方向可以是 多个极化方向中的任意一个极化方向。也就是说,终端设备可以基于上文所述的方法,基于每个极化方向的发射天线发送的预编码参考信号确定P个加权系数。
若极化方向数为1,接收天线数为R,R>1且为整数。该第一指示信息可用于指示与R个接收天线对应的R组加权系数,每组加权系数可以包括P个加权系数。这里,与一个接收天线对应的P个加权系数,也就是基于这个接收天线上接收到的预编码参考信号确定的P个加权系数。
可选地,该第一指示信息包括R组指示信息,每组指示信息对应于一个接收天线。每组指示信息用于指示与一个接收天线对应的P个加权系数。
终端设备可以以每个接收天线为单位,对每个接收天线对应的P个加权系数采用归一化方式指示。
可选地,该第一指示信息在用于指示R个接收天线上的R×P个加权系数时,也可以以多个接收天线为单位,采用归一化方式来指示。
即,可以在多个接收天线对应的R×P个加权系数中确定最大加权系数,指示该最大加权系数的位置。终端设备可进一步确定其余的R×P-1个加权系数相对于该最大加权系数的相对值,通过各相对值的量化值索引来指示上述R×P-1个加权系数。
应理解,终端设备在多个接收天线的量化信息的范围内进行归一化与在一个接收天线的量化信息的范围内进行归一化的具体方法相同,为了简洁,这里不再赘述。
还应理解,终端设备在通过归一化方式指示多个接收天线的加权系数时,可以按照预先约定的顺序依次指示。例如,可以按照预先定义的R个接收天线的指示顺序,依次指示除归一化系数之外的各个加权系数。本申请对于终端设备指示加权系数的顺序不作限定,只要网络设备能够根据第一指示信息恢复出与R个接收天线对应的R×P个加权系数即可。
若接收天线数为1,极化方向数为J,J>1且为整数。该第一指示信息可用于指示与J个极化方向对应的J组加权系数,每组加权系数可以包括P个加权系数。这里,与一个极化方向对应的P个加权系数,也就是基于这个极化方向发射的预编码参考信号确定的P个加权系数。
可选地,该第一指示信息包括J组指示信息,每组指示信息对应于一个极化方向。每组指示信息用于指示与一个极化方向对应的P个加权系数。
终端设备可以以每个极化方向为单位,对每个极化方向对应的P个加权系数采用归一化方式指示。
可选地,该第一指示信息在用于指示J个极化方向上的J×P个加权系数时,也可以以J个极化方向为单位,采用归一化方式来指示。
即,可以在多个极化方向对应的J×P个加权系数中确定最大加权系数,指示该最大加权系数的位置。终端设备可进一步确定其余的J×P-1个加权系数相对于该最大加权系数的相对值,通过各相对值的量化值索引来指示上述J×P-1个加权系数。
应理解,终端设备在多个极化方向的量化信息的范围内进行归一化与在一个极化方向的量化信息的范围内进行归一化的具体方法相同,为了简洁,这里不再赘述。
还应理解,终端设备在通过归一化方式指示多个极化方向的加权系数时,可以按照预先约定的顺序依次指示。例如,可以按照预先定义的J个极化方向的指示顺序,依次指示除归一化系数之外的各个加权系数。本申请对于终端设备指示加权系数的顺序不作限定, 只要网络设备能够根据第一指示信息恢复出与J个极化方向对应的J×P个加权系数即可。
若接收天线数为R,极化方向数为J,该第一指示信息可用于指示与J个极化方向、R个接收天线对应的J×R×P个加权系数。
与一个极化方向、一个接收天线对应的加权系数,可以是指,基于一个极化方向的发射天线发送并在一个接收天线上接收到的预编码参考信号确定的加权系数。
可选地,该第一指示信息在用于指示J个极化方向、R个接收天线对应的J×R×P个加权系数,可以以J个极化方向、R个接收天线为单位,采用归一化方式来指示。
该第一指示信息在用于指示J个极化方向、R个接收天线对应的J×R×P个加权系数,也可以以一个极化方向、R个接收天线为单位,采用归一化方式来指示。如,该第一指示信息包括J组指示信息,每组指示信息对应于一个极化方向和R个接收天线。每组指示信息用于指示与一个极化方向、R个接收天线对应的R×P个加权系数。
可选地,该第一指示信息在用于指示J个极化方向、R个接收天线对应的J×R×P个加权系数,还可以以J个极化方向、一个接收天线为单位,采用归一化方式来指示。如,该第一指示信息包括R组指示信息,每组指示信息对应于一个接收天线和J个极化方向。每组指示信息用于指示与一个接收天、J个极化方向对应的J×P个加权系数。
可选地,该第一指示信息在用于指示J个极化方向、R个接收天线对应的J×R×P个加权系数,还可以以一个极化方向、一个接收天线为单位,采用归一化方式来指示。如,该第一指示信息包括J×R组指示信息,每组指示信息对应于一个极化方向。每组指示信息用于指示与一个极化方向、一个接收天线对应的P个加权系数。
本申请对于归一化的单位以及具体的指示方式均不作限定。
应理解,终端设备采用归一化方式指示多个加权系数的具体方法在上文中已经做了详细说明,为了简洁,这里不再赘述。
还应理解,终端设备在通过归一化方式指示多个极化方向、多个接收天线的加权系数时,可以按照预先约定的顺序依次指示。例如,可以按照预先定义的J个极化方向、R个接收天线的指示顺序依次指示除归一化系数之外的各个加权系数。本申请你对于终端设备指示加权系数的顺序不作限定。只要网络设备能够根据第一指示信息恢复出与J个极化方向、R个接收天线的J×R×P个加权系数即可。
还应理解,通过归一化方式来指示加权系数仅为一种可能的实现方式,而不应对本申请构成任何限定。本申请对于第一指示信息指示加权系数的具体方式不作限定。
在基于接收天线反馈加权系数的情况下,终端设备还可以进一步指示接收天线数。可选地,该方法200还包括:终端设备发送第七指示信息,该第七指示信息用于指示接收天线数。相应地,网络设备接收该第七指示信息。
该第七指示信息和上述第一指示信息可以承载在同一个信令中发送,如预编码矩阵指示(procoding matrix indicator,PMI)或CSI;也可以通过不同的信令发送,本申请对此不作限定。
应理解,终端设备的接收天线数也可以预先定义,如协议定义。此情况下,终端设备可以不通过额外的信令指示接收天线数。
事实上,终端设备反馈下行信道的测量结果并不限于基于每个接收天线来反馈,终端设备也可以基于传输层来反馈下行信道的测量结果。
终端设备可以基于上文所述的方法确定每个极化方向、每个接收天线对应的加权系数之后,可以进一步对该加权系数进行处理,以得到基于每个传输层反馈的加权系数。
仍以极化方向数为J、接收天线数为R为例,终端设备可以基于与J个极化方向、R个接收天线对应的J×R×P个加权系数构造系数矩阵。该系数矩阵可以是J×P行R列的矩阵,每一列的元素可以是一个接收天线对应的J×P加权系数。
下文示出了系数矩阵的一例:
Figure PCTCN2019124505-appb-000073
其中,极化方向数J=2。该系数矩阵中的第一行至第P行可以由对应于一个极化方向的加权系数构成,α p,r可以表示第一极化方向上第p个角度时延对、第r个接收天线对应的加权系数。该系数矩阵中的第P+1行至第2P行可以由对应于另一个极化方向的加权系数构成,α P+p,r可以表示第二极化方向上第p个角度时延对、第r个接收天线对应的加权系数。其中,p=1,2,……,P;r=1,2,……,R。
终端设备可以对该系数矩阵进行奇异值分解(singular value decomposition,SVD)以得到基于传输层反馈的加权系数。
假设传输层数为Z,基于传输层反馈的加权系数可以包括Z×P个加权系数。
终端设备可以采用归一化方式指示上述Z×P个加权系数。例如,终端设备可以以一个传输层为单位,采用归一化方式来分别指示与各传输层对应的P个加权系数;终端设备也可以以Z个传输层为单位,采用归一化方式来指示与Z个传输层对应的Z×P个加权系数。
应理解,终端设备采用归一化方式指示多个加权系数的具体方法在上文中已经做了详细说明,为了简洁,这里不再赘述。
还应理解,通过归一化方式来指示加权系数仅为一种可能的实现方式,而不应对本申请构成任何限定。本申请对于第一指示信息指示加权系数的具体方式不作限定。
在基于传输层反馈加权系数的情况下,终端设备还可进一步指示传输层数。可选地,该方法200还包括:终端设备发送第八指示信息,该第八指示信息用于指示传输层数。相应地,网络设备接收该第八指示信息。
可选地,该第八指示信息为秩指示(rank indicator,RI)。
应理解,RI仅为第八指示信息的一例,不应对本申请构成任何限定。本申请对于第六指示信息的具体形式不作限定。
还应理解,该第八指示信息和上述第一指示信息可以承载在同一个信令中发送,如CSI;也可以通过不同的信令发送,本申请对此不作限定。
还应理解,上文列举的通过构造系数矩阵并对系数矩阵进行SVD确定各传输层对应的加权系数的方法仅为示例,不应对本申请构成任何限定。本申请对于确定各传输层的加权系数的具体方法不作限定。
在步骤230中,终端设备发送该第一指示信息。相应地,网络设备接收该第一指示信息。
具体地,该第一指示信息例如可以是CSI,也可以是CSI中的部分信元,还可以是其他信息。本申请对此不作限定。该第一指示信息可以携带在现有技术中的一个或者多个消息中由终端设备发送给网络设备,也可以携带在新设计的一个或者多个消息中由终端设备发送给网络设备。终端设备例如可以通过物理上行资源,如物理上行共享信道(physical uplink share channel,PUSCH)或物理上行控制信道(physical uplink control channel,PUCCH),向网络设备发送该第一指示信息,以便于网络设备基于该第一指示信息确定预编码矩阵。
终端设备通过物理上行资源向网络设备发送第一指示信息的具体方法可以与现有技术相同,为了简洁,这里省略对其具体过程的详细说明。
在步骤240中,网络设备根据第一指示信息确定预编码矩阵。
如前所述,终端设备可以基于接收天线反馈加权系数,也可以基于传输层反馈加权系数。网络设备可基于不同的反馈粒度,根据第一指示信息确定预编码矩阵。
若终端设备基于接收天线反馈加权系数,则该第一指示信息所指示的加权系数可以包括一个或多个接收天线对应的加权系数。网络设备可以基于每个接收天线所对应的加权系数,以及每个加权系数所对应的角度时延对,重构下行信道,进而确定各RB的预编码矩阵。
具体地,由于每个接收天线所对应的P个加权系数可以分别与P个角度时延对一一对应。网络设备可以基于每个接收天线对应的P个加权系数,以及P个角度时延对中每个角度时延对中包含的角度向量和时延向量,构造与各接收天线对应的空频矩阵。
在本实施例中,与第r个接收天线对应的空频矩阵可以通过P个角度时延对和与第r个接收天线对应的P个加权系数确定。其中,P个角度时延对可用于构造P个空频分量矩阵。如前所述,由K个角度向量中的第k个角度向量a(θ k)和L个时延向量中的第l个时延向量b(τ l)可以构造空频分量矩阵a(θ k)×b(τ l) H。与第r个接收天线对应的空频矩阵
Figure PCTCN2019124505-appb-000074
可以是P个空频分量矩阵的加权和。即,
Figure PCTCN2019124505-appb-000075
表示基于第r个接收天线反馈的与第k个角度向量和第l个时延向量对应的加权系数。该空频矩阵的维度可以是T×N。
上文示出的空频矩阵
Figure PCTCN2019124505-appb-000076
的计算式假设K个角度向量与L个时延向量是相互共用的。当至少两个角度向量对应的时延向量不同时,上式可以变形为:
Figure PCTCN2019124505-appb-000077
或者,当至少两个时延向量对应的角度向量不同时,上式可以变形为
Figure PCTCN2019124505-appb-000078
下文中为方便说明,均以
Figure PCTCN2019124505-appb-000079
为例来说明。可以理解,无论各角度向量对应的时延向量是否相同,或各时延向量对应的角度向量是否相同,对于预编码矩阵的确定没有影响。
需要说明的是,上文为方便理解,以发射天线的一个极化方向为例来说明了确定与接 收天线对应的空频矩阵的具体过程。但这不应对本申请构成任何限定。当发射天线的极化方向数大于1时,网络设备仍然可以基于如上所述的方法来确定与各接收天线对应的空频矩阵。
例如,极化方向数为2,与第r个接收天线对应的空频矩阵可以通过如下计算式确定:
Figure PCTCN2019124505-appb-000080
其中,
Figure PCTCN2019124505-appb-000081
表示基于第r个接收天线反馈的第一极化方向上与第k个角度向量和第l个时延向量对应的加权系数;
Figure PCTCN2019124505-appb-000082
表示基于第r个接收天线反馈的第二极化方向上与第k个角度向量和第l个时延向量对应的加权系数。
应理解,上文对于2个极化方向定义的空频矩阵
Figure PCTCN2019124505-appb-000083
的计算式仅为示例,不应对本申请构成任何限定。例如,在不同的极化方向上加载的时延向量和/或角度向量的数量可以相同也可以不同,在不同的极化方向上加载是时延向量和/或角度向量可以相同,也可以不同。
对于R个接收天线而言,网络设备可以分别基于每个接收天线对应的P个加权系数确定空频矩阵
Figure PCTCN2019124505-appb-000084
Figure PCTCN2019124505-appb-000085
由此,网络设备可确定与各RB对应的下行信道矩阵。
以N个RB中的第n个RB为例,网络设备可以确定与第n个RB对应的下行信道矩阵的共轭转置(V (n)) H。其中,矩阵(V (n)) H可以是由上述基于R个接收天线分别确定的R个空频矩阵
Figure PCTCN2019124505-appb-000086
Figure PCTCN2019124505-appb-000087
中每个空频矩阵中的第n个列向量确定。例如,将
Figure PCTCN2019124505-appb-000088
中的第n列作为矩阵(V (n)) H的第1列,将
Figure PCTCN2019124505-appb-000089
中的第n列作为矩阵(V (n)) H的第2列;以此类推,可以将
Figure PCTCN2019124505-appb-000090
中的第n列作为矩阵(V (n)) H的第r列。由此可以得到矩阵(V (n)) H,进而可以确定与第n个RB对应的下行信道矩阵V (n)
基于上述方法可以确定与各RB分别对应的下行信道矩阵。
网络设备可以进一步根据各RB的下行信道矩阵确定各RB的预编码矩阵。例如,网络设备可以通过对下行信道矩阵或信道矩阵的协方差矩阵进行SVD的方式确定预编码矩阵,或者,也可以通过对下行信道矩阵的协方差矩阵进行特征值分解(eigenvalue decomposition,EVD)的方式确定。
应理解,网络设备根据信道矩阵确定预编码矩阵的具体方式可以参考现有技术,本申请对于预编码矩阵的确定方式不作限定。
还应理解,上文中仅为便于理解,示出了网络设备基于空频矩阵确定下行信道矩阵,进而确定预编码矩阵的具体过程。但这不应对本申请构成任何限定。网络设备也可以根据空频矩阵直接确定预编码矩阵。
若终端设备基于传输层反馈加权系数,则该第一指示信息所指示的加权系数可以包括一个或多个传输层的加权系数。网络设备可以基于每个传输层对应的加权系数,以及每个加权系数所对应的角度时延对,确定与传输层对应的空频矩阵,进而确定各RB的预编码矩阵。
具体地,由于每个传输层对应的P个加权系数可以分别与P个角度时延对一一对应。网络设备可以基于每个传输层对应的P个加权系数,以及P个角度时延对中每个角度时延 对中包含的角度向量和时延向量,构造与传输层对应的预编码向量。
在本实施例中,与第z个传输层对应的空频矩阵
Figure PCTCN2019124505-appb-000091
可以通过P个角度时延对和与第z个传输层对应的P个加权系数确定。其中,P个角度时延对可用于构造P个空频分量矩阵。与第z个传输层对应的预编码向量可以是P个空频分量矩阵的加权和。即,
Figure PCTCN2019124505-appb-000092
表示基于第r个接收天线反馈的与第k个角度向量和第l个时延向量对应的加权系数。该空频矩阵的维度可以是T×N。
上文示出的空频矩阵
Figure PCTCN2019124505-appb-000093
的计算式假设K个角度向量与L个时延向量是相互共用的。当至少两个角度向量对应的时延向量不同时,上式可以变形为:
Figure PCTCN2019124505-appb-000094
或者,当至少两个时延向量对应的角度向量不同时,上式可以变形为
Figure PCTCN2019124505-appb-000095
下文中为方便说明,均以
Figure PCTCN2019124505-appb-000096
为例来说明。可以理解,无论各角度向量对应的时延向量是否相同,或各时延向量对应的角度向量是否相同,对于预编码矩阵的确定没有影响。
需要说明的是,上文为方便理解,以发射天线的一个极化方向为例来说明了确定与接收天线对应的空频矩阵的具体过程。但这不应对本申请构成任何限定。当发射天线的极化方向数大于1时,网络设备仍然可以基于如上所述的方法来确定与各接收天线对应的空频矩阵。
例如,极化方向数为2,与第r个接收天线对应的空频矩阵可以通过如下计算式确定:
Figure PCTCN2019124505-appb-000097
其中,
Figure PCTCN2019124505-appb-000098
表示基于第z个传输层反馈的第一极化方向上与第k个角度向量和第l个时延向量对应的加权系数;
Figure PCTCN2019124505-appb-000099
表示基于第z个传输层反馈的第二极化方向上与第k个角度向量和第l个时延向量对应的加权系数。
应理解,上文对于2个极化方向定义的空频矩阵
Figure PCTCN2019124505-appb-000100
的计算式仅为示例,不应对本申请构成任何限定。例如,在不同的极化方向上加载的时延向量和/或角度向量的数量可以相同也可以不同,在不同的极化方向上加载是时延向量和/或角度向量可以相同,也可以不同。
对于Z个传输层而言,网络设备可以分别基于每个传输层对应的P个加权系数确定与各传输层对应的空频矩阵
Figure PCTCN2019124505-appb-000101
Figure PCTCN2019124505-appb-000102
由此,网络设备可确定与各RB对应的预编码矩阵W (n)。其中,第n个RB对应的预编码矩阵W (n)可以是由上述基于Z个传输层分别确定的Z个空频矩阵
Figure PCTCN2019124505-appb-000103
Figure PCTCN2019124505-appb-000104
中每个空频矩阵中的第n个列向量构建。例如,将
Figure PCTCN2019124505-appb-000105
中的第n列作为下行信道矩阵W (n)的第一列,将
Figure PCTCN2019124505-appb-000106
中的第n列作为下行信道矩阵W (n)的第二列;以此类推,可以将
Figure PCTCN2019124505-appb-000107
中的第n列作为下行信道矩阵W (n)的第z列。基于上述方法可以确定与各RB分别对应的预编码矩阵。
应理解,上文仅为便于理解,以空频分量矩阵为例详细说明了网络设备确定预编码矩阵的具体过程。但这不应对本申请构成任何限定。网络设备也可以基于P个角度时延对确定P个空频分量向量,进而确定预编码矩阵。本领域的技术人员基于P个角度时延对可以构造不同形式的P个空频基本单位,进而确定预编码矩阵。基于P个角度时延对而构造的不同形式的P个空频基本单位,进而基于P个空频基本单位的加权和来确定预编码矩阵的方式均应落入本申请要求的保护范围内。
还应理解,上文仅为示例,示出了网络设备根据第一指示信息确定预编码矩阵的可能实现方式,但这不应对本申请构成任何限定。本申请对于网络设备根据第一指示信息确定预编码矩阵的具体实现方式不作限定。本领域的技术人员基于相同的构思,对上文列举的矩阵运算进行变换或者等价的替换,确定预编码矩阵的方法均应落入本申请的保护范围内。
还应理解,上文中确定的预编码矩阵是与RB对应的预编码矩阵。这里,RB为频域单元的一例。与RB对应的预编码矩阵,可以是指,以RB为粒度基于该RB对应的信道矩阵确定的预编码矩阵,或者说,基于该RB上接收到的预编码参考信号确定的预编码矩阵,可用于对通过该RB传输的数据做预编码。与RB对应的下行信道,可以是指,基于该RB上接收到的预编码参考信号确定的下行信道,可用于确定与该RB对应的预编码矩阵。
当频域单元的粒度较大,如频域单元为子带、PRG或者PRB时,网络设备可以根据每个频域单元中各RB对应的预编码矩阵确定与频域单元的预编码矩阵。
若每个频域单元包括一个用于承载参考信号的RB,则网络设备可以将该RB对应的预编码矩阵作为所属的频域单元对应的预编码矩阵。若每个频域单元包括多个用于承载参考信号的RB,则网络设备例如可以将同一个频域单元中与多个RB对应的预编码矩阵的相关矩阵求平均后进行SVD以确定该频域单元对应的预编码矩阵;网络设备又例如可以将同一个频域单元中与多个RB对应的预编码矩阵的平均作为该频域单元对应的预编码矩阵,等等。
应理解,网络设备根据频域单元中多个RB对应的预编码矩阵确定该频域单元的预编码矩阵的具体方法可以参考技术,而不限于上文所列举。本申请对于网络设备频域单元中多个RB对应的预编码矩阵确定该频域单元的预编码矩阵的具体方法不作限定。
还应理解,上文中在描述时提及的与某一角度向量和某一时延向量对应的加权系数,也就是,与某一角度向量和某一时延向量构成的角度时延对对应的加权系数。例如,与第k个角度向量和第l个时延向量对应的加权系数,也就是,与第k个角度向量和第l个时延向量构成的角度时延对对应的加权系数。为了简洁,这里不再一一举例说明。
在本申请实施例中,网络设备基于上行信道测量所确定的角度和时延,对下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于上下行信道可互易的角度和时延对参考信号进行了预编码,使得终端设备检测到的下行信道的信息是不具有互易性的信息。因此,终端设备可以不必反馈空域和频域的向量(如上述角度向量和时延向量),仅需反馈与各角度时延对对应的加权系数,大大减小了终端设备的反馈开销。此外,通过利用上下行信道的互易性,将终端设备对下行信道的测量过程简化,降低了终端设备在信道测量过程中的计算复杂度。并且,通过空域和频域的多个 向量的线性叠加来构建预编码矩阵,使得网络设备所确定的预编码矩阵能够与下行信道相适配,从而在减小反馈开销的同时仍能保证较高的反馈精度。再者,通过对下行参考信号进行空域预编码,可以减小参考信号的端口数,从而可以降低导频开销。
应理解,本申请实施例中仅为便于理解,示出了了空频矩阵由真实的信道的共轭转置得到的情况下,下行信道测量并确定预编码矩阵的具体过程。但这不应对本申请构成任何限定。真实的信道与空频矩阵H DL的关系并不是固定不变的。对空频矩阵以及空频分量矩阵的不同定义,可能会使得真实的信道与空频矩阵H DL之间的关系发生变化。例如,空频矩阵H DL可以由真实的信道的共轭转置得到,也可以由真实的信道的转置得到。
当对空频矩阵与信道矩阵间的关系的定义不同时,在加载时延和角度时网络设备所执行的操作也有所不同,终端设备在进行信道测量并反馈时所执行的操作也相应地发生变化。但这只是终端设备和网络设备的实现行为,不应对本申请构成任何限定。本申请对于信道矩阵的定义、空频矩阵的维度及其定义以及二者间的转换关系不作限定。同理,本申请对于空频矩阵与预编码矩阵间的转换关系也不作限定。
上文方法实施例中,以基于角度向量和时延向量对参考信号进行预编码为例,详细说明了本申请提供的信道测量方法。但这不应对本申请构成任何限定。网络设备也可以仅基于时延向量对参考信号进行预编码,以便于终端设备基于预编码参考信号进行下行信道测量。
为便于理解,下文示出的实施例首先以一个极化方向为例来详细说明本申请实施例提供的信道测量方法300。应理解,该极化方向可以是网络设备所配置的发射天线的一个或多个极化方向中的任意一个极化方向。换句话说,对于任意一个极化方向的发射天线所发射的预编码参考信号,终端设备可以基于本申请实施例提供的方法300进行信道测量,网络设备也可以基于本申请实施例提供的方法300确定预编码矩阵。还应理解,本申请对于发射天线的极化方向数并不做限定,例如可以为一个,即,单极化方向;也可以为多个,如,双极化方向。
图8是从设备交互的角度示出的本申请实施例提供的信道测量方法300的示意性流程图。如图所示,该方法300可以包括步骤310至步骤340。下面详细说明方法300中的各步骤。
在步骤310中,终端设备接收预编码参考信号,该预编码参考信号是基于L个时延向量对参考信号进行预编码得到。相应地,网络设备发送预编码参考信号。其中,L≥1,且L为整数。
在本实施例中,网络设备可以基于L个时延向量对参考信号进行预编码。由于该参考信号未经过空域预编码,在基于时延向量对参考信号做预编码之前,该参考信号可以与T个发射天线端口对应。T为一个极化方向上的发射天线端口数,T≥1,且T为整数。
基于时延向量对参考信号进行预编码,具体地说是频域预编码,所得到的预编码参考信号可以对应一组或多组端口。每组端口可以与基于同一个时延向量对T个发射天线端口的参考信号预编码得到的预编码参考信号对应。每组端口可以包括最多T个端口,该T个端口可以与上述T个发射天线端口对应。因此,每个端口的预编码参考信号可以对应于一个时延向量和一个发射天线端口。换句话说,每个端口可以是一个时延向量和一个发射天线端口的组合。
在一种可能的实现方式中,网络设备可以遍历L个时延向量,得到T×L种不同的组合,或者说,T×L个天线时延对。由于未涉及空域预编码,每种组合可对应一个时延向量。换句话说,通过将L个时延向量加载在不同发送天线端口的参考信号上,可以得到时延向量与不同发射天线端口的组合共T×L种。
在另一种可能的实现方式中,至少两个发射天线端口对应的时延向量不同。网络设备在T个发射天线端口中的第t(1≤t≤T)个发射天线端口发射的参考信号可以是基于L t(1≤L k≤L,L k为整数)个时延向量预编码得到的。上述L个时延向量中的L可以满足:
Figure PCTCN2019124505-appb-000108
这里,至少两个发射天线端口对应的时延向量不同,可以是指,T个发射天线端口中,至少有两个发射天线端口对应的时延向量不同,其他发射天线端口分别对应的时延向量可以相同,也可以不同,本申请对此不作限定。换句话说,各发射天线端口对应的时延向量部分或全部不同。
其中,两个发射天线端口对应的时延向量不同,可以是指,两个发射天线端口对应的时延向量完全不同,即,两个发射天线端口对应的时延向量没有重复,或者说,没有交集。例如,发射天线端口#1对应的时延向量包括b(τ 2),发射天线端口#2对应的时延向量包括b(τ 1)和b(τ 3)。两个发射天线端口对应的时延向量不同,也可以是指,两个发射天线端口对应的时延向量部分不同,即,两个发射天线端口对应的时延向量有部分重复,但不完全相同,或者说,两个发射天线端口对应的时延向量有交集,但不完全相同。例如,发射天线端口#1对应的时延向量包括b(τ 2),发射天线端口#2对应的时延向量包括b(τ 1),b(τ 2)和b(τ 3)。当T个发射天线端口中任意两个发射天线端口对应的时延向量互不重复时,
Figure PCTCN2019124505-appb-000109
当T个发射天线端口中两个或两个以上的发射天线端口对应的时延向量中有部分重复时,
Figure PCTCN2019124505-appb-000110
因此,网络设备可以由上述T个发射天线端口和L个时延向量,得到
Figure PCTCN2019124505-appb-000111
种角度向量和时延向量的组合。
应理解,上文仅为便于理解,列举了发射天线端口与时延向量的对应关系,但这不应对本申请构成任何限定。本申请对于发射天线端口与时延向量的对应关系不作限定。
下文中为方便说明,将由T个发射天线端口和L个时延向量确定的发射天线端口和时延向量的组合数记作P。可以理解,在不同的实现方式中,P的值不同,例如,P=T×L,或者,
Figure PCTCN2019124505-appb-000112
由于时延具有上下行信道互易性,该L个时延向量均可以是基于上行信道测量确定。由于在上文方法200中已经详细说明了网络设备基于上行信道测量确定L个较强的时延的具体方法,为了简洁,这里不再赘述。
应理解,基于上行信道测量确定L个时延向量并不是唯一的实现方式,该L个时延向量例如可以是预先定义,如协议定义;或者,也可以是基于此前的一次或多次下行信道测量而反馈的结果统计确定。本申请对此不作限定。
由于在FDD模式下,上下行信道的时延可互易,则可以将上行信道测量所得的L个 时延向量加载至下行参考信号,以便终端设备基于接收到的预编码参考信号进行下行信道测量。
网络设备可以基于该L个时延向量对下行参考信号,如CSI-RS,进行预编码,以得到预编码参考信号。网络设备可以通过预先配置的参考信号资源传输该预编码参考信号。
可选地,该方法300还包括:终端设备接收第二指示信息,该第二指示信息用于配置一个或多个参考信号资源。相应地,网络设备发送该第二指示信息。
该第二指示信息所配置的一个或多个参考信号资源可用于承载预编码参考信号。其中,同一参考信号资源上承载的预编码参考信号可对应相同的一个或多个端口。在第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的天线时延对可以是互不相同的,且各参考信号资源在频域和/或时域上互不重叠。在本实施例中,每个端口的预编码参考信号对应于一个发射天线端口和一个时延向量。
这里,预编码参考信号对应的天线时延对,可以包括用于对参考信号进行预编码所使用的时延向量以及发射该参考信号的发射天线端口。各参考信号资源上承载的预编码参考信号对应的天线时延对不同,可以是指,各参考信号资源上承载的预编码参考信号对应的发射天线端口和/或时延向量不同。例如可以包括以下一种或多种情况:两个参考信号资源上承载的预编码参考信号可以基于不同的时延向量预编码得到并通过相同的发射天线端口发射,两个参考信号资源上承载的预编码参考信号可以基于相同的时延向量预编码得到并通过不同的发射天线端口发射,以及,两个参考信号资源上承载的预编码参考信号可以基于不同的时延向量预编码得到并通过不同的发射天线端口发射。
具体来说,上述各参考信号资源上承载的预编码参考信号对应的天线时延对互不相同,可以包括以下一种或多种情况:两个参考信号资源上承载的预编码参考信号可以基于不同的时延向量预编码得到并通过相同的发射天线端口发射,两个参考信号资源上承载的预编码参考信号可以基于相同的时延向量预编码得到并通过不同的发射天线端口发射,以及,两个参考信号资源上承载的预编码参考信号可以基于不同的时延向量预编码得到并通过不同的发射天线端口发射。
换句话说,任意两个参考信号资源上承载的预编码参考信号可以对应不同的天线时延对。即,任意两个参考信号资源上承载的预编码参考信号对应的发射天线端口和/或时延向量不同。也就是说,不同参考信号资源生承载的预编码参考信号对应的时延向量可能有重复,或者,不同参考信号资源上承载的预编码参考信号对应的发射天线端口可能有重复,但所构成的天线时延对不同。
由于上文中已经对该第二指示信息做了详细说明,为了简洁,这里不再赘述。
在一种实现方式中,网络设备可以遍历L个时延向量中的每个时延向量对每个发射天线端口上的参考信号进行预编码,以得到预编码参考信号。用于传输该预编码参考信号的参考信号资源可以由网络设备预先通过高层信令配置,如上述第二指示信息。该参考信号资源可以包括一个或多个RB,如N个。每个RB上承载的预编码参考信号都是基于相同的L个时延向量进行预编码得到。
在这种实现方式中,网络设备可以预先为终端设备配置一个参考信号资源。该参考信号资源中的每个RB上承载的预编码参考信号可以对应P个端口。每个端口的预编码参考信号,可以是基于L个时延向量中的一个时延向量对一个发射天线端口的参考信号进行预 编码得到。或者说,每个端口的预编码参考信号可以对应一个天线时延对。
此外,由于将L个时延向量加载到参考信号资源中的每个RB上,每个RB对应的端口数较大,可能带来较大的导频开销。因此,网络设备可以通过高层信令,如上述第二指示信息,配置较小的导频密度,以减小导频开销。
在另一种可能的实现方式中,网络设备可以基于L个时延向量对参考信号进行预编码。基于不同的时延向量预编码所得到的预编码参考信号可以被映射至不同的RB上。每个RB上承载的预编码参考信号可以是基于L个时延向量中的部分时延向量预编码得到。在多个RB中,至少有两个RB承载的预编码参考信号是基于不同的时延向量预编码得到。
在这种实现方式中,用于传输预编码参考信号的参考信号资源可以为多个。网络设备可以预先通过高层信令,如上述第二指示信息,为终端设备配置多个参考信号资源。该多个参考信号资源中的每个参考信号资源可以包括一个或多个RB。每个参考信号资源中承载的预编码参考信号可对应一个或多个端口,且各参考信号资源承载的预编码参考信号对应的天线时延对不同。每个端口的预编码参考信号均可以是基于L个时延向量中的一个时延向量对一个发射天线端口的参考信号进行预编码得到。此外,各参考信号资源在频域上和/或时域上互不重叠。例如,各参考信号资源在频域上交错排布。因此,基于不同的时延向量预编码得到的预编码参考信号可以通过不同的时频资源承载。
在这种实现方式中,每个RB上承载的预编码参考信号可以对应的端口数可能小于P。例如,每个RB上加载一个时延向量,则每个RB上承载的预编码参考信号可以对应T个端口,且至少有两个RB承载的预编码参考信号对应不同的时延向量。
应理解,上文中基于每个RB来定义端口数仅为一种可能的实现方式,而不应对本申请构成任何限定。本申请另提出一种定义端口数的方法,即,端口数可以是指每个参考信号资源上承载的预编码参考信号所对应的端口的个数。换句话说,端口数可以跨RB定义。
这种定义端口数的方式可应用于对RB进行分组的情况。
可选地,该方法300还包括:终端设备接收第三指示信息,该第三指示信息用于配置一个参考信号资源。相应地,网络设备发送该第三指示信息。
该第三指示信息所配置的参考信号资源可用于承载预编码参考信号,且该参考信号资源承载的预编码参考信号可以是基于上述L个时延向量预编码得到的参考信号。并且,该参考信号资源中,至少有两个RB上承载的预编码参考信号可以基于不同的时延向量预编码得到,和/或,至少有两个RB上承载的预编码参考信号可以通过不同的发射天线端口发射。换句话说,至少有两个RB上承载的预编码参考信号对应不同的端口。因此,在同一参考信号资源中,各RB上承载的预编码参考信号所对应的端口并不一定相同。
由于上文中已经结合图3至图7详细说明了对RB分组或不分组的情况下,各参考信号资源中每个RB上承载的预编码参考信号与端口的对应关系。本实施例中各参考信号资源中每个RB上承载的预编码参考信号与端口的对应关系与之相似,只是将上文实施例中的角度向量替换为发射天线端口。为了简洁,这里不再结合附图一一详细说明。
在步骤320中,终端设备生成第五指示信息,该第五指示信息可用于指示对应于P个天线时延对的P个加权系数。
具体地,该P个天线时延对可以由T个发射天线端口中的每个发射天线端口以及在每个发射天线端口上发送的预编码参考信号所对应的一个或多个时延向量确定。每个天线时 延对可以包括上述T个发射天线端口中的一个发射天线端口以及L个时延向量中的一个时延向量。
由于发射天线端口并未对参考信号做预编码,该与P个天线时延对对应的P个加权系数,也可以理解为,用于构成该P个天线时延对的P个时延向量对应的P个加权系数。因此,在本实施例中,P个天线端口及其对应的P个加权系数可用于确定预编码矩阵,也就是,P个时延向量的加权和可用于确定预编码矩阵。可以理解,该P个时延向量中可以包括重复的一个或多个时延向量。
在本实施例中,终端设备可以根据接收到的预编码参考信号进行下行信道估计,以根据多个RB上的信道估计值确定P个天线时延对中每个天线时延对的加权系数。
下面详细说明终端设备确定P个加权系数的具体过程。
需要说明的是,终端设备在接收到来自网络设备的预编码参考信号时,可以根据预先定义的导频图样确定各个端口的预编码参考信号的时频资源,并可在相应的时频资源上接收各个端口的预编码参考信号。
如前所述,若不考虑对参考信号做预编码,对于每个接收天线来说,下行信道的维度可以是N×T。在一个接收天线、一个RB上接收到的下行信道的维度可以是1×T。由于网络设备基于时延向量对参考信号进行了预编码,终端设备在每个接收天线上接收到的下行信道的维度可以是1×P。该维度为1×P的下行信道也就是在一个RB上基于预编码参考信号进行信道估计得到的信道估计值。该下行信道中的P个元素可对应于P个天线时延对。第p个元素可以表示在一个RB上第p个天线时延对对应的预编码参考信号进行信道估计得到的信道估计值。
由于预编码参考信号对应于P个天线时延对,则每个RB承载的预编码参考信号可以对应一个或多个端口。
若网络设备没有对RB做分组,则每个RB的预编码参考信号可对应P个端口。该P个端口中的第p个端口所对应的预编码参考信号例如可以是基于一个时延向量,如第l个时延向量,对参考信号做预编码并通过一个发射天线端口,如第t(1≤t≤T,且t为整数)个发射天线端口,发送的预编码参考信号。换句话说,第p个端口对应的预编码参考信号可以用于确定由第l个时延向量和第t个发射天线端口构成的天线时延对的加权系数,也就是可用于确定第p个天线时延对的加权系数。因此,P个端口与P个天线时延对具有一一对应关系。应理解,上文列举的第p个端口与第l个时延向量和第t个发射天线端口的对应关系仅为示例,不应对本申请构成任何限定。终端设备并不感知各端口与时延向量和发射天线端口的对应关系。终端设备仅需根据各端口对应的时频资源接收参考信号并进行信道估计即可。
对于该第p个端口的预编码参考信号,终端设备可以基于N个RB上接收到的下行信道确定第p个天线时延对的加权系数。该第p个天线时延对的加权系数可以是由N个RB上的N个信道估计值叠加求和得到的维度为1×P的信道估计值中的第p个元素。
假设终端设备基于第p个端口的预编码参考信号进行信道估计所得的下行信道的估计值记作
Figure PCTCN2019124505-appb-000113
则终端设备在N个RB上基于P个端口的预编码参考信号进行信道估计得到的多个估计值的和可以表示为
Figure PCTCN2019124505-appb-000114
可以是维度为1×P的向量,该向量也就 包括了与P个天线时延对对应的P个加权系数。可以理解,该向量中的第p个元素为第p个天线时延对的加权系数,该第p个天线时延对的加权系数由基于第l个时延向量预编码并通过第t个发射天线端口发射的预编码参考信号确定。
由于该P个端口包括对应于L个时延向量的L组端口,该P个加权系数可以理解为对应于L个时延向量的L组加权系数。每组加权系数中可以包括对应于最多T个发射天线端口的T个加权系数。
当每组端口包括T个端口,与T个发射天线端口对应时,该L组加权系数中的每组加权系数可以包括T个加权系数。此情况下,该P个加权系数例如可以表现为维度为T×L或L×T的矩阵的形式。该P个加权系数中与第t个发射天线端口和第l个时延向量对应的加权系数可以记作α t,l
当至少两个发射天线端口对应的时延向量不同时,至少两个时延向量对应的发射天线端口也会有不同。此情况下,每组加权系数中包括的加权系数最多为T个。此情况下,该P个加权系数中与第t个发射天线端口对应的时延向量为L t个,与第t个发射天线端口和第l t个时延向量对应的加权系数可以记作
Figure PCTCN2019124505-appb-000115
基于上述方法,终端设备可以根据接收到的P个端口的预编码参考信号,分别确定出与P个天线时延对对应的P个加权系数。
上文方法200中已经详细说明了通过对信道估计值全带求和来确定与P个角度时延对对应的加权系数的原理,在本实施例中,基于相同的原理,终端设备也可以确定与P个天线时延对对应的加权系数。为了简洁,这里不再赘述。
此外,系数矩阵C DL中各元素与信道估计值
Figure PCTCN2019124505-appb-000116
中各元素的对应关系与上文方法200中所述的系数矩阵C DL中各元素与信道估计值
Figure PCTCN2019124505-appb-000117
中各元素的对应关系相似,为了简洁,这里不再赘述。
若网络设备对RB做了分组,则每个RB承载的预编码参考信号对应的端口数可能小于P。但终端设备仍然可以基于每个端口的预编码参考信号进行信道估计,以确定与P个天线时延对对应的P个加权系数。此情况下,该P个加权系数可以分别由各个频域组上承载的预编码参考信号确定。终端设备并不感知网络设备对参考信号做预编码所使用的时延向量,也不感知各频域组与发射天线端口和时延向量的组合的对应关系。终端设备只需基于预先定义的分组规则,根据各个频域组上接收到的预编码参考信号进行信道估计即可。
仍以图4中所示的分组方式为例,RB#1、RB#5、RB#9和RB#13可以归为频域组#1;RB#2、RB#6、RB#10和RB#14可以归为频域组#2:;RB#3、RB#7、RB#11和RB#15可以归为频域组#3;RB#4、RB#8、RB#12和RB#16可以归为频域组#4。
终端设备可以基于RB#1、RB#5、RB#9和RB#13上接收到的预编码参考信号确定T个天线时延对的加权系数,该T个天线时延对也就是由T个发射天线端口分别与时延向量b(τ 1)对应的时延向量构成的T个天线时延对;终端设备可以基于RB#2、RB#6、RB#10和RB#14上接收到的预编码参考信号确定T个天线时延对的加权系数,该T个天线时延对也就是由T个发射天线端口分别与时延向量b(τ 2)对应的时延向量构成的T个天线时延对;终端设备可以基于RB#3、RB#7、RB#11和RB#15上接收到的预编码参考信号确定T个天线时延对的加权系数,该T个天线时延对也就是由T个发射天线端口分别与时延向量b(τ 3)对应的时延向量构成的T个天线时延对;终端设备可以基于RB#4、RB#8、RB#12 和RB#16上接收到的预编码参考信号确定T个天线时延对的加权系数,该T个天线时延对也就是由T个发射天线端口分别与时延向量b(τ 4)对应的时延向量构成的T个天线时延对。
由于网络设备在对RB做了分组的情况下,终端设备需要预先知道频域组数,因此,网络设备可以预先通过信令通知终端设备频域组数。
可选地,该方法还包括:终端设备接收第四指示信息,该第四指示信息用于指示频域组数。相应地,网络设备发送该第四指示信息。
如前所述,网络设备可以预先通过高层信令配置端口数。因此,终端设备可以基于已有信令确定每个RB上承载的预编码参考信号对应的端口数。在网络设备对RB做了分组的情况下,网络设备可以进一步通过第四指示信息指示频域组数。终端设备可以基于相同的分组规则,确定每个频域组中的RB,进而估计每个端口的下行信道,确定每个天线时延对的加权系数。
需要说明的是,终端设备和网络设备可以预先约定RB的分组规则。双方可以根据预先定义的分组规则对RB进行分组,以便于双方确定的各频域组中包括的RB是一致的。
在本实施例中,频域组数可以为时延向量数。可选地,该第四指示信息用于指示L的值。又由于P=T×L,在RB分组的情况下,每个RB上承载的预编码参考信号对应的端口数为K,则终端设备可以由P和T求出L。因此,该第四指示信息可直接指示L的值,也可以通过指示P的值来间接指示L的值。本申请对此不作限定。换句话说,该第四指示信息可用于指示L和P中的任意一项。
终端设备在确定了上述P个天线时延对对应的P个加权系数之后,便可以生成第五指示信息来指示该P个加权系数。
上文方法200中已经详细说明了终端设备通过第五指示信息指示P个加权系数的具体方法。本实施例中,终端设备通过第五指示信息指示P个加权系数的方法可以与之相似,为了简洁,这里不再赘述。
需要说明的是,上文中以一个极化方向、一个接收天线为例详细说明了终端设备生成第五指示信息的具体过程。换句话说,上述P个加权系数可以是基于一个极化方向的发射天线发送且在一个接收天线上接收到的预编码参考信号确定的。但这不应对本申请构成任何限定。
当终端设备配置有多个接收天线时,上文举例描述的一个接收天线可以为终端设备配置的多个接收天线中的任意一个。也就是说,终端设备可以基于上文所述的方法,对每个接收天线分别确定P个加权系数。
当网络设备配置有多个极化方向的发射天线时,上文举例描述的一个极化方向可以是多个极化方向中的任意一个极化方向。也就是说,终端设备可以基于上文所述的方法,基于每个极化方向的发射天线发送的预编码参考信号确定P个加权系数。
若极化方向数为1,接收天线数为R,R>1且为整数。该第五指示信息可用于指示与R个接收天线对应的R组加权系数,每组加权系数可以包括P个加权系数。这里,与一个接收天线对应的P个加权系数,也就是基于这个接收天线上接收到的预编码参考信号确定的P个加权系数。
由于上文方法200中已经对此情况下第一指示信息中的具体内容做了详细说明。第五 指示信息包含的具体内容可以与第一指示信息相似,为了简洁,这里不再赘述。
若接收天线数为1,极化方向数为J,J>1且为整数。该第五指示信息可用于指示与J个极化方向对应的J组加权系数,每组加权系数可以包括P个加权系数。这里,与一个极化方向对应的P个加权系数,也就是基于这个极化方向发射的预编码参考信号确定的P个加权系数。
由于上文方法200中已经对此情况下第一指示信息中的具体内容做了详细说明。第五指示信息包含的具体内容可以与第一指示信息相似,为了简洁,这里不再赘述。
若接收天线数为R,极化方向数为J,该第五指示信息可用于指示与J个极化方向、R个接收天线对应的J×R×P个加权系数。
由于上文方法200中已经对此情况下第一指示信息中的具体内容做了详细说明。第五指示信息包含的具体内容可以与第一指示信息相似,为了简洁,这里不再赘述。
此外,在基于接收天线反馈加权系数的情况下,终端设备还可以进一步指示接收天线数。可选地,该方法200还包括:终端设备发送第七指示信息,该第七指示信息用于指示接收天线数。相应地,网络设备接收该第七指示信息。
该第七指示信息和上述第一指示信息可以承载在同一个信令中发送,如PMI或CSI;也可以通过不同的信令发送,本申请对此不作限定。
应理解,终端设备的接收天线数也可以预先定义,如协议定义。此情况下,终端设备可以不通过额外的信令指示接收天线数。
事实上,终端设备反馈下行信道的测量结果并不限于基于每个接收天线来反馈,终端设备也可以基于传输层来反馈下行信道的测量结果。
在本实施例中,终端设备可以基于上文所述的方法确定每个极化方向、每个接收天线对应的加权系数之后,可以进一步对该加权系数进行处理,以得到基于每个传输层反馈的加权系数。
由于上文方法200中已经详细说明了终端设备确定每个传输层对应的P个加权系数的具体方法,也详细说明了终端设备通过第一指示信息指示每个传输层对应的加权系数的具体方法。本实施例中终端设备确定每个传输层对应的P个加权系数的具体方法和通过第五指示信息指示每个传输层对应的P个加权系数的具体方法可以与之相似。为了简洁,这里不再赘述。
在基于传输层反馈加权系数的情况下,终端设备还可进一步指示传输层数。
可选地,该方法200还包括:终端设备发送第八指示信息,该第八指示信息用于指示传输层数。相应地,网络设备接收该第八指示信息。
可选地,该第八指示信息为RI。
应理解,RI仅为第八指示信息的一例,不应对本申请构成任何限定。本申请对于第六指示信息的具体形式不作限定。
还应理解,该第八指示信息和上述第一指示信息可以承载在同一个信令中发送,如CSI;也可以通过不同的信令发送,本申请对此不作限定。
还应理解,上文列举的通过构造系数矩阵并对系数矩阵进行SVD确定各传输层对应的加权系数的方法仅为示例,不应对本申请构成任何限定。本申请对于确定各传输层的加权系数的具体方法不作限定。在步骤330中,终端设备发送第五指示信息。相应地,网络 设备接收该第五指示信息。
应理解,步骤330与方法200中的步骤230的具体过程相同,由于上文方法200中已经对步骤230做了详细说明,为了简洁,这里不再赘述。
在步骤340中,网络设备根据第五指示信息确定预编码矩阵。
如前所述,终端设备可以基于接收天线反馈加权系数,也可以基于传输层反馈加权系数。网络设备可基于不同的反馈粒度,根据第五指示信息确定预编码矩阵。
若终端设备基于接收天线反馈加权系数,则该第五指示信息所指示的加权系数可以包括一个或多个接收天线对应的加权系数。网络设备可以基于每个接收天线所对应的加权系数,以及每个加权系数所对应的天线时延对,重构下行信道,进而确定各RB的预编码矩阵。
具体地,由于每个接收天线所对应的P个加权系数可以分别与P个天线时延对一一对应。由于未对参考信号做空域预编码,网络设备可以基于每个接收天线对应的P个加权系数,以及P个天线时延对中与每个发射天线端口对应的一个或多个时延向量,构造与各接收天线对应的空频矩阵,基于各接收天线对应的空频矩阵重构与各RB对应的下行信道矩阵,进而确定与各RB对应的预编码矩阵。
可以理解的是,由于P个加权系数与P个天线时延对具有一一对应关系,P个加权系数与P个天线时延对中包含的每个时延向量也具有一一对应关系。
与T个发射天线端口中的第t个发射天线端口对应的时延向量为L t个,与第t个发射天线端口对应的时延向量记作
Figure PCTCN2019124505-appb-000118
l t=1,2,……,L t。与第r个接收天线对应的空频矩阵
Figure PCTCN2019124505-appb-000119
可以是维度为T×N的矩阵,其中该空频矩阵的第t行可以为空频向量
Figure PCTCN2019124505-appb-000120
Figure PCTCN2019124505-appb-000121
由此可以得到与第r个接收天线对应的空频矩阵:
Figure PCTCN2019124505-appb-000122
其中,
Figure PCTCN2019124505-appb-000123
表示基于第r个接收天线反馈的与第t个发射天线端口和第l t个时延向量对应的加权系数。
可以理解的是,若T个发射天线端口中的任意两个发射天线端口对应相同的L个时延向量,空频向量
Figure PCTCN2019124505-appb-000124
可以表示为:
Figure PCTCN2019124505-appb-000125
其中,
Figure PCTCN2019124505-appb-000126
表示与第t个发射天线端口和第l个时延向量对应的加权系数。
下文中为方便说明,均以
Figure PCTCN2019124505-appb-000127
为例来说明。可以理解,无论各发射天线端口对应的时延向量是否相同,对于预编码矩阵的确定没有影响。
需要说明的是,上文为方便理解,以发射天线的一个极化方向为例来说明了确定与接收天线对应的空频矩阵的具体过程。但这不应对本申请构成任何限定。当发射天线的极化方向数大于1时,网络设备仍然可以基于如上所述的方法来确定与各接收天线对应的空频矩阵。
例如,极化方向数为2,与第r个接收天线对应的第一极化方向上空频矩阵中的各空 频向量可由计算式
Figure PCTCN2019124505-appb-000128
确定,与第r个接收天线对应的第一极化方向上空频矩阵中的各空频向量可由计算式
Figure PCTCN2019124505-appb-000129
确定。
其中,
Figure PCTCN2019124505-appb-000130
表示基于第r个接收天线反馈的第一极化方向上的空频向量;
Figure PCTCN2019124505-appb-000131
表示基于第r个接收天线反馈的第一极化方向上与第t个发射天线端口和第l个时延向量对应的加权系数;
Figure PCTCN2019124505-appb-000132
表示基于第r个接收天线反馈的第二极化方向上的空频向量;
Figure PCTCN2019124505-appb-000133
表示基于第r个接收天线反馈的第二极化方向上与第t个发射天线端口和第l个时延向量对应的加权系数。
应理解,上文对于两个极化方向定义的空频向量
Figure PCTCN2019124505-appb-000134
Figure PCTCN2019124505-appb-000135
的计算式仅为示例,不应对本申请构成任何限定。例如,在不同的极化方向上加载的时延向量和/或角度向量的数量可以相同也可以不同,在不同的极化方向上加载是时延向量和/或角度向量可以相同,也可以不同。
对于R个接收天线而言,网络设备可以分别基于每个接收天线对应的P个加权系数确定空频矩阵
Figure PCTCN2019124505-appb-000136
Figure PCTCN2019124505-appb-000137
由此,网络设备可确定与各RB对应的下行信道矩阵。
应理解,网络设备根据各接收天线对应的空频矩阵确定与各RB对应的下行信道矩阵的具体过程在上文方法200中已经做了详细说明,为了简洁,这里不再赘述。
需要注意的是,如前所述,由各角度时延对加权求和得到的空频矩阵而确定的信道矩阵是真实的信道矩阵的共轭转置。
网络设备可以进一步根据与各RB对应的下行信道矩阵确定各RB的预编码矩阵。例如,网络设备可以通过对下行信道矩阵或信道矩阵的协方差矩阵进行SVD的方式确定预编码矩阵,或者,也可以通过对下行信道矩阵的协方差矩阵进行特征值分解(eigenvalue decomposition,EVD)的方式确定。
应理解,网络设备根据信道矩阵确定预编码矩阵的具体方式可以参考现有技术,本申请对于预编码矩阵的确定方式不作限定。
还应理解,上文中仅为便于理解,示出了网络设备基于空频矩阵确定下行信道矩阵,进而确定预编码矩阵的具体过程。但这不应对本申请构成任何限定。网络设备也可以根据空频矩阵直接确定预编码矩阵。例如,基于空频矩阵可以确定得到矩阵V (n),网络设备可以通过对(V (n)) *(V (n)) T进行SVD,然后取右特征向量的方式确定预编码矩阵。
若终端设备基于传输层反馈加权系数,则该第五指示信息所指示的加权系数可以包括一个或多个传输层的加权系数。网络设备可以基于每个传输层对应的加权系数,以及每个加权系数所对应的天线时延对,确定与传输层对应的空频矩阵,进而确定各RB的预编码矩阵。
具体地,由于每个传输层对应的P个加权系数可以分别与P个天线时延对一一对应。网络设备可以基于每个传输层对应的P个加权系数,以及P个天线时延对中与每个发射天线端口对应的一个或多个时延向量,构造与传输层对应的空频矩阵。
与T个发射天线端口中的第t个发射天线端口对应的时延向量为L t个,与第t个发射天线端口对应的时延向量记作
Figure PCTCN2019124505-appb-000138
l t=1,2,……,L t。与第z个传输层对应的空频矩阵
Figure PCTCN2019124505-appb-000139
可以是维度为T×N的矩阵,其中该空频矩阵的第t行可以为空频向量
Figure PCTCN2019124505-appb-000140
Figure PCTCN2019124505-appb-000141
由此可以得到与第z个传输层对应的空频矩阵:
Figure PCTCN2019124505-appb-000142
其中,
Figure PCTCN2019124505-appb-000143
表示基于第z个传输层反馈的与第t个发射天线端口和第l t个时延向量对应的加权系数。
可以理解的是,若T个发射天线端口中的任意两个发射天线端口对应相同的L个时延向量,空频向量
Figure PCTCN2019124505-appb-000144
可以表示为:
Figure PCTCN2019124505-appb-000145
其中,
Figure PCTCN2019124505-appb-000146
表示基于第z个传输层反馈的与第t个发射天线端口和第l个时延向量对应的加权系数。
下文中为方便说明,均以
Figure PCTCN2019124505-appb-000147
为例来说明。可以理解,无论各发射天线端口对应的时延向量是否相同,对于预编码矩阵的确定没有影响。
需要说明的是,上文为方便理解,以发射天线的一个极化方向为例来说明了确定与接收天线对应的空频矩阵的具体过程。但这不应对本申请构成任何限定。当发射天线的极化方向数大于1时,网络设备仍然可以基于如上所述的方法来确定与各接收天线对应的空频矩阵。
例如,极化方向数为2,与第z个传输层对应的第一极化方向上空频矩阵中的各空频向量可由计算式
Figure PCTCN2019124505-appb-000148
确定,与z个传输层对应的第一极化方向上空频矩阵中的各空频向量可由计算式
Figure PCTCN2019124505-appb-000149
确定。
其中,
Figure PCTCN2019124505-appb-000150
表示基于第z个传输层反馈的第一极化方向上的空频向量;
Figure PCTCN2019124505-appb-000151
表示基于第z个传输层反馈的第一极化方向上与第t个发射天线端口和第l个时延向量对应的加权系数;
Figure PCTCN2019124505-appb-000152
表示基于第z个传输层反馈的第二极化方向上的空频向量;
Figure PCTCN2019124505-appb-000153
表示基于第z个传输层反馈的第二极化方向上与第t个发射天线端口和第l个时延向量对应的加权系数。
应理解,上文对于两个极化方向定义的空频向量
Figure PCTCN2019124505-appb-000154
Figure PCTCN2019124505-appb-000155
的计算式仅为示例,不应对本申请构成任何限定。例如,在不同的极化方向上加载的时延向量和/或角度向量的数量可以相同也可以不同,在不同的极化方向上加载是时延向量和/或角度向量可以相同,也可以不同。
对于Z个传输层而言,网络设备可以分别基于每个传输层对应的P个加权系数确定与各传输层对应的空频矩阵
Figure PCTCN2019124505-appb-000156
Figure PCTCN2019124505-appb-000157
由此,网络设备可确定与各RB对应的预编码矩阵。应理解,网络设备根据各传输层对应的空频矩阵确定与各RB对应的预编码矩阵的具体过程在上文方法200中已经做了详细说明,为了简洁,这里不再赘述。
还应理解,上文仅为示例,示出了网络设备根据第五指示信息确定预编码矩阵的可能实现方式,但这不应对本申请构成任何限定。本申请对于网络设备根据第五指示信息确定预编码矩阵的具体实现方式不作限定。本领域的技术人员基于相同的构思,对上文列举的矩阵运算进行变换或者等价的替换,确定预编码矩阵的方法均应落入本申请的保护范围内。
还应理解,上文中确定的预编码矩阵是与RB对应的预编码矩阵。这里,RB为频域 单元的一例。与RB对应的预编码矩阵,可以是指,以RB为粒度基于该RB对应的信道矩阵确定的预编码矩阵,或者说,基于该RB上接收到的预编码参考信号确定的预编码矩阵,可用于对通过该RB传输的数据做预编码。与RB对应的下行信道,可以是指,基于该RB上接收到的预编码参考信号确定的下行信道,可用于确定与该RB对应的预编码矩阵。
当频域单元的粒度较大,如频域单元为子带、PRG或者PRB时,网络设备可以根据每个频域单元中各RB对应的预编码矩阵确定与频域单元的预编码矩阵。由于上文方法200中已经详细说明了网络设备根据每个频域单元中各RB对应的预编码矩阵确定与频域单元的预编码矩阵的具体方法,为了简洁,这里不再赘述。
还应理解,上文中提及的与某一发射天线端口和某一时延向量对应的加权系数,也就是,与某一发射天线端口和某一时延向量构成的天线时延对对应的加权系数。例如,与第t个发射天线端口和第l个时延向量对应的加权系数,也就是,与第t个发射天线端口和第l个时延向量构成的天线时延对对应的加权系数。为了简洁,这里不再一一举例说明。
在本申请实施例中,网络设备基于上行信道测量所确定的时延,对下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于上下行信道可互易的时延对参考信号进行了预编码,使得终端设备检测到的下行信道的信息是不具有互易性的信息。因此,终端设备可以不必反馈空域和频域的向量(如上述发射天线端口和时延向量),仅需反馈与各天线时延对对应的加权系数,大大减小了终端设备的反馈开销。此外,通过利用上下行信道的互易性,将终端设备对下行信道的测量过程简化,降低了终端设备在信道测量过程中的计算复杂度。并且,通过空域和频域的多个向量的线性叠加来构建预编码矩阵,使得网络设备所确定的预编码矩阵能够与下行信道相适配,从而在减小反馈开销的同时仍能保证较高的反馈精度。
应理解,本申请实施例中仅为便于理解,示出了了空频矩阵由真实的信道的共轭转置得到的情况下,下行信道测量并确定预编码矩阵的具体过程。但这不应对本申请构成任何限定。真实的信道与空频矩阵H DL的关系并不是固定不变的。对空频矩阵以及空频分量矩阵的不同定义,可能会使得真实的信道与空频矩阵H DL之间的关系发生变化。例如,空频矩阵H DL可以由真实的信道的共轭转置得到,也可以由真实的信道的转置得到。
当对空频矩阵与信道矩阵间的关系的定义不同时,在加载时延和角度时网络设备所执行的操作也有所不同,终端设备在进行信道测量并反馈时所执行的操作也相应地发生变化。但这只是终端设备和网络设备的实现行为,不应对本申请构成任何限定。本申请对于信道矩阵的定义、空频矩阵的维度及其定义以及二者间的转换关系不作限定。同理,本申请对于空频矩阵与预编码矩阵间的转换关系也不作限定。
还应理解,上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图8详细说明了本申请实施例提供的指示和确定预编码向量的方法。以下,结合图9至图11详细说明本申请实施例提供的通信装置。
图9是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200或方法300中的终端设备,该通信装置1000可以包括用于执行图2中的方法200或图8中的方法300中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200或图8中的方法300的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,通信单元1100可用于执行方法200中的步骤210和步骤230,处理单元1200可用于执行方法200中的步骤220。
当该通信装置1000用于执行图8中的方法300时,通信单元1100可用于执行方法300中的步骤310和步骤330,处理单元1200可用于执行方法300中的步骤340。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的通信单元1100可对应于图10中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图10中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200或方法300中的网络设备,该通信装置1000可以包括用于执行图2中的方法200或图8中的方法300中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200或图8中的方法300的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,通信单元1100可用于执行方法200中的步骤210和步骤230,处理单元1200可用于执行方法200中的步骤240。
当该通信装置1000用于执行图8中的方法300时,通信单元1100可用于执行方法300中的步骤310和步骤330,处理单元1200可用于执行方法300中的步骤340。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应于图11示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图11中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
图10是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过 无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图9中的处理单元对应。
上述收发器2020可以与图9中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图10所示的终端设备2000能够实现图2或图8所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图11是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元,与图9中的通信单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图9中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所 述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图11所示的基站3000能够实现图2或图8的方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只 读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2和图8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2和图8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。 此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (52)

  1. 一种信道测量方法,其特征在于,包括:
    接收预编码参考信号,所述预编码参考信号是基于K个角度向量和L个时延向量对参考信号预编码得到;
    生成第一指示信息,所述第一指示信息用于指示对应于P个角度时延对的P个加权系数,所述P个加权系数由所述预编码参考信号确定,所述P个角度时延对及其对应的P个加权系数用于确定预编码矩阵;所述P个角度时延对中的每个角度时延对包括所述K个角度向量中的一个角度向量和所述L个时延向量中的一个时延向量,且P、K和L均为正整数;
    发送所述第一指示信息。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于配置一个或多个参考信号资源,所述一个或多个参考信号资源用于承载所述预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在所述第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于配置一个参考信号资源,所述参考信号资源用于承载所述预编码参考信号,且所述参考信号资源中的至少两个资源块RB上承载的预编码参考信号对应的端口号不同。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    接收第四指示信息,所述第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述P个加权系数中的每个加权系数是基于一个角度向量和一个时延向量预编码得到的预编码参考信号在多个RB上进行信道估计得到的多个估计值的和。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述K个角度向量和所述L个时延向量基于上行信道测量确定。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述P个加权系数对应于一个接收天线或一个传输层。
  8. 一种信道测量方法,其特征在于,包括:
    发送预编码参考信号,所述预编码参考信号是基于K个角度向量和L个时延向量对参考信号预编码得到;
    接收第一指示信息,所述第一指示信息用于指示对应于P个角度时延对的P个加权系数,所述P个加权系数由所述预编码参考信号确定,所述P个角度时延对及其对应的P个加权系数用于确定预编码矩阵;所述P个角度时延对中的每个角度时延对包括所述K 个角度向量中的一个角度向量和所述L个时延向量中的一个时延向量,且P、K和L均为正整数;
    根据所述第一指示信息确定所述预编码矩阵。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于配置一个或多个参考信号资源,所述一个或多个参考信号资源用于承载所述预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在所述第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
  10. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    发送第三指示信息,所述第三指示信息用于配置一个参考信号资源,所述参考信号资源用于承载所述预编码参考信号,且所述参考信号资源中的至少两个资源块RB上承载的预编码参考信号对应的端口不同。
  11. 如权利要求8至10中任一项所述的方法,其特征在于,所述方法还包括:
    发送第四指示信息,所述第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
  12. 如权利要求8至11中任一项所述的方法,其特征在于,所述P个加权系数中的每个加权系数是基于一个角度向量和一个时延向量预编码得到的预编码参考信号在多个RB上进行信道估计得到的多个估计值的和。
  13. 如权利要求8至12中任一项所述的方法,其特征在于,所述K个角度向量和所述L个时延向量基于上行信道测量确定。
  14. 如权利要求8至13中任一项所述的方法,其特征在于,所述P个加权系数对应于一个接收天线或一个传输层。
  15. 一种通信装置,其特征在于,包括:
    通信单元,用于接收预编码参考信号,所述预编码参考信号是基于K个角度向量和L个时延向量对参考信号预编码得到;
    处理单元,用于生成第一指示信息,所述第一指示信息用于指示对应于P个角度时延对的P个加权系数,所述P个加权系数由所述预编码参考信号确定,所述P个角度时延对及其对应的P个加权系数用于确定预编码矩阵;所述P个角度时延对中的每个角度时延对包括所述K个角度向量中的一个角度向量和所述L个时延向量中的一个时延向量,且P、K和L均为正整数;
    所述通信单元还用于发送所述第一指示信息。
  16. 如权利要求15所述的装置,其特征在于,所述通信单元还用于接收第二指示信息,所述第二指示信息用于配置一个或多个参考信号资源,所述一个或多个参考信号资源用于承载所述预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在所述第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
  17. 如权利要求15所述的装置,其特征在于,所述通信单元还用于接收第三指示信息,所述第三指示信息用于配置一个参考信号资源,所述参考信号资源用于承载所述预编码参考信号,且所述参考信号资源中的至少两个资源块RB上承载的预编码参考信号对应的端口号不同。
  18. 如权利要求15至17中任一项所述的装置,其特征在于,所述通信单元还用于接收第四指示信息,所述第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
  19. 如权利要求15至18中任一项所述的装置,其特征在于,所述P个加权系数中的每个加权系数是基于一个角度向量和一个时延向量预编码得到的预编码参考信号在多个RB上进行信道估计得到的多个估计值的和。
  20. 如权利要求15至19中任一项所述的装置,其特征在于,所述K个角度向量和所述L个时延向量基于上行信道测量确定。
  21. 如权利要求15至20中任一项所述的装置,其特征在于,所述P个加权系数对应于一个接收天线或一个传输层。
  22. 一种通信装置,其特征在于,包括:
    通信单元,用于发送预编码参考信号,所述预编码参考信号是基于K个角度向量和L个时延向量对参考信号预编码得到;并用于接收第一指示信息,所述第一指示信息用于指示对应于P个角度时延对的P个加权系数,所述P个加权系数由所述预编码参考信号确定,所述P个角度时延对及其对应的P个加权系数用于确定预编码矩阵;所述P个角度时延对中的每个角度时延对包括所述K个角度向量中的一个角度向量和所述L个时延向量中的一个时延向量,且P、K和L均为正整数;
    处理单元,用于根据所述第一指示信息确定所述预编码矩阵。
  23. 如权利要求22所述的装置,其特征在于,所述通信单元还用于发送第二指示信息,所述第二指示信息用于配置一个或多个参考信号资源,所述一个或多个参考信号资源用于承载所述预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在所述第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
  24. 如权利要求22所述的装置,其特征在于,所述通信单元还用于发送第三指示信息,所述第三指示信息用于配置一个参考信号资源,所述参考信号资源用于承载所述预编码参考信号,且所述参考信号资源中的至少两个资源块RB上承载的预编码参考信号对应的端口不同。
  25. 如权利要求22至24中任一项所述的装置,其特征在于,所述通信单元还用于发送第四指示信息,所述第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
  26. 如权利要求22至25中任一项所述的装置,其特征在于,所述P个加权系数中的每个加权系数是基于一个角度向量和一个时延向量预编码得到的预编码参考信号在多个 RB上进行信道估计得到的多个估计值的和。
  27. 如权利要求22至26中任一项所述的装置,其特征在于,所述K个角度向量和所述L个时延向量基于上行信道测量确定。
  28. 如权利要求22至27中任一项所述的装置,其特征在于,所述P个加权系数对应于一个接收天线或一个传输层。
  29. 一种通信装置,其特征在于,包括:
    收发器,用于接收预编码参考信号,所述预编码参考信号是基于K个角度向量和L个时延向量对参考信号预编码得到;
    处理器,用于生成第一指示信息,所述第一指示信息用于指示对应于P个角度时延对的P个加权系数,所述P个加权系数由所述预编码参考信号确定,所述P个角度时延对及其对应的P个加权系数用于确定预编码矩阵;所述P个角度时延对中的每个角度时延对包括所述K个角度向量中的一个角度向量和所述L个时延向量中的一个时延向量,且P、K和L均为正整数;
    所述收发器还用于发送所述第一指示信息。
  30. 如权利要求29所述的装置,其特征在于,所述收发器还用于接收第二指示信息,所述第二指示信息用于配置一个或多个参考信号资源,所述一个或多个参考信号资源用于承载所述预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在所述第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
  31. 如权利要求29所述的装置,其特征在于,所述收发器还用于接收第三指示信息,所述第三指示信息用于配置一个参考信号资源,所述参考信号资源用于承载所述预编码参考信号,且所述参考信号资源中的至少两个资源块RB上承载的预编码参考信号对应的端口号不同。
  32. 如权利要求29至31中任一项所述的装置,其特征在于,所述收发器还用于接收第四指示信息,所述第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
  33. 如权利要求29至32中任一项所述的装置,其特征在于,所述P个加权系数中的每个加权系数是基于一个角度向量和一个时延向量预编码得到的预编码参考信号在多个RB上进行信道估计得到的多个估计值的和。
  34. 如权利要求29至33中任一项所述的装置,其特征在于,所述K个角度向量和所述L个时延向量基于上行信道测量确定。
  35. 如权利要求29至34中任一项所述的装置,其特征在于,所述P个加权系数对应于一个接收天线或一个传输层。
  36. 一种通信装置,其特征在于,包括:
    收发器,用于发送预编码参考信号,所述预编码参考信号是基于K个角度向量和L个时延向量对参考信号预编码得到;并用于接收第一指示信息,所述第一指示信息用于指示对应于P个角度时延对的P个加权系数,所述P个加权系数由所述预编码参考信号确定, 所述P个角度时延对及其对应的P个加权系数用于确定预编码矩阵;所述P个角度时延对中的每个角度时延对包括所述K个角度向量中的一个角度向量和所述L个时延向量中的一个时延向量,且P、K和L均为正整数;
    处理器,用于根据所述第一指示信息确定所述预编码矩阵。
  37. 如权利要求36所述的装置,其特征在于,所述收发器还用于发送第二指示信息,所述第二指示信息用于配置一个或多个参考信号资源,所述一个或多个参考信号资源用于承载所述预编码参考信号;其中,同一参考信号资源上承载的预编码参考信号对应一个或多个端口,且在所述第二指示信息配置多个参考信号资源的情况下,各参考信号资源上承载的预编码参考信号对应的角度时延对互不相同,且各参考信号资源之间在频域和/或时域上互不重叠。
  38. 如权利要求36所述的装置,其特征在于,所述收发器还用于发送第三指示信息,所述第三指示信息用于配置一个参考信号资源,所述参考信号资源用于承载所述预编码参考信号,且所述参考信号资源中的至少两个资源块RB上承载的预编码参考信号对应的端口不同。
  39. 如权利要求36至38中任一项所述的装置,其特征在于,所述收发器还用于发送第四指示信息,所述第四指示信息用于指示频域组数M,M个频域组中的每个频域组包括多个RB,同一个频域组的任意两个RB上承载的同一端口的预编码参考信号对应相同的角度时延对;M>1且为整数。
  40. 如权利要求36至39中任一项所述的装置,其特征在于,所述P个加权系数中的每个加权系数是基于一个角度向量和一个时延向量预编码得到的预编码参考信号在多个RB上进行信道估计得到的多个估计值的和。
  41. 如权利要求36至40中任一项所述的装置,其特征在于,所述K个角度向量和所述L个时延向量基于上行信道测量确定。
  42. 如权利要求36至41中任一项所述的装置,其特征在于,所述P个加权系数对应于一个接收天线或一个传输层。
  43. 一种通信装置,其特征在于,所述装置用于实现如权利要求1至7中任一项所述的方法。
  44. 一种通信装置,其特征在于,所述装置用于实现如权利要求8至14中任一项所述的方法。
  45. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至7中任一项所述的方法。
  46. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求8至14中任一项所述的方法。
  47. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求1至7中任一项所述的方法。
  48. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求8至14中任一项所述的方法。
  49. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的方法。
  50. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求8至14中任一项所述的方法。
  51. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法。
  52. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求8至14中任一项所述的方法。
PCT/CN2019/124505 2018-12-18 2019-12-11 一种信道测量方法和通信装置 WO2020125510A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19899982.3A EP3883135A4 (en) 2018-12-18 2019-12-11 CHANNEL MEASUREMENT METHOD AND COMMUNICATION DEVICE
US17/347,903 US11689256B2 (en) 2018-12-18 2021-06-15 Channel measurement method and communications apparatus
US17/982,239 US11811471B2 (en) 2018-12-18 2022-11-07 Channel measurement method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811550306.9A CN111342912B (zh) 2018-12-18 2018-12-18 一种信道测量方法和通信装置
CN201811550306.9 2018-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/347,903 Continuation US11689256B2 (en) 2018-12-18 2021-06-15 Channel measurement method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020125510A1 true WO2020125510A1 (zh) 2020-06-25

Family

ID=71101057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124505 WO2020125510A1 (zh) 2018-12-18 2019-12-11 一种信道测量方法和通信装置

Country Status (4)

Country Link
US (2) US11689256B2 (zh)
EP (1) EP3883135A4 (zh)
CN (2) CN113489517A (zh)
WO (1) WO2020125510A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4181446A4 (en) * 2020-07-27 2024-02-07 Huawei Tech Co Ltd CHANNEL PARAMETER ACQUISITION METHOD AND APPARATUS

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054824B (zh) 2019-06-06 2021-07-16 华为技术有限公司 一种信道测量方法和通信装置
WO2022027625A1 (en) * 2020-08-07 2022-02-10 Qualcomm Incorporated Frequency domain precoding for fdd reciprocity
CN114204970A (zh) * 2020-09-02 2022-03-18 华为技术有限公司 信道测量的方法和装置
US11799710B2 (en) * 2020-12-10 2023-10-24 Qualcomm Incorporated Techniques for signaling a source of dominant noise at a user equipment
WO2022160353A1 (zh) * 2021-02-01 2022-08-04 北京小米移动软件有限公司 一种信道状态信息csi的编译码方法及装置
US11838121B2 (en) * 2021-07-01 2023-12-05 Qualcomm Incorporated Downlink transmission requirement based on downlink compensation capability of a user equipment
CN114448757A (zh) * 2022-01-21 2022-05-06 华中科技大学 Fdd大规模mimo系统中基于信道部分互易性的信道估计方法
CN116743217A (zh) * 2022-03-01 2023-09-12 华为技术有限公司 信道状态信息的反馈方法和通信装置
WO2023184326A1 (en) * 2022-03-31 2023-10-05 Qualcomm Incorporated Resource grouping information indication for time-domain channel reporting and resource selection
CN117254839A (zh) * 2022-06-10 2023-12-19 中兴通讯股份有限公司 信道状态参考信号的波束赋形方法、装置及存储介质
US20240048203A1 (en) * 2022-08-05 2024-02-08 Samsung Electronics Co., Ltd. Mobility classification and channel state information prediction
CN117811627A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种通信的方法和通信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107196749A (zh) * 2013-12-31 2017-09-22 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN107370558A (zh) * 2016-05-13 2017-11-21 北京华为数字技术有限公司 一种信道信息发送方法、数据发送方法和设备
CN107889141A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 测量和上报方法、终端及基站
CN108631891A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 通信节点间链路的测量方法及装置
WO2018201495A1 (en) * 2017-05-05 2018-11-08 Zte Corporation Techniques for communicating beam information
CN108933745A (zh) * 2018-07-16 2018-12-04 北京理工大学 一种基于超分辨率角度和时延估计的宽带信道估计方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2424137B1 (en) * 2009-04-24 2015-12-02 Sharp Kabushiki Kaisha Radio communication system, radio communication device, and radio communication method
US9407343B2 (en) * 2012-08-31 2016-08-02 Google Technology Holdings LLC Method and apparatus for mitigating downlink interference
EP2843854B1 (en) * 2013-08-27 2018-04-04 ADVA Optical Networking SE Method, transmitter and receiver device for transmitting a binary digital transmit signal over an optical transmission link
EP3119150B1 (en) * 2014-04-10 2024-04-03 Huawei Technologies Co., Ltd. Channel status information reporting method, user equipment and base station
CN105099529B (zh) * 2015-06-30 2018-12-07 上海华为技术有限公司 一种数据处理的方法以及相关设备
CN107733485B (zh) * 2016-08-12 2021-09-03 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
CN107888265B (zh) * 2016-09-30 2019-08-23 中兴通讯股份有限公司 信道信息的反馈方法及装置、终端、基站
CN108023700B (zh) * 2016-11-04 2022-08-26 中兴通讯股份有限公司 一种导频参数的反馈、配置方法及装置、用户终端、基站
CN106599391B (zh) * 2016-11-25 2020-07-31 江苏大学 基于三角形角度值动态加权的关联向量机软测量建模方法
WO2018146632A1 (en) * 2017-02-10 2018-08-16 Uhnder, Inc. Radar data buffering
US11451272B2 (en) * 2018-03-21 2022-09-20 Qualcomm Incorporated Precoding patterns for shared channel transmission repetition
CN110662294B (zh) * 2018-06-29 2020-12-25 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US10833742B2 (en) * 2018-08-10 2020-11-10 At&T Intellectual Property I, L.P. Determining channel state information in advanced networks
US11956762B2 (en) * 2018-09-28 2024-04-09 At&T Intellectual Property I, L.P. Facilitating improved performance in advanced networks with multiple transmission points
US11611379B2 (en) * 2020-05-13 2023-03-21 Qualcomm Incorporated Precoding techniques for wireless communications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107196749A (zh) * 2013-12-31 2017-09-22 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN107370558A (zh) * 2016-05-13 2017-11-21 北京华为数字技术有限公司 一种信道信息发送方法、数据发送方法和设备
CN107889141A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 测量和上报方法、终端及基站
CN108631891A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 通信节点间链路的测量方法及装置
WO2018201495A1 (en) * 2017-05-05 2018-11-08 Zte Corporation Techniques for communicating beam information
CN108933745A (zh) * 2018-07-16 2018-12-04 北京理工大学 一种基于超分辨率角度和时延估计的宽带信道估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "NR; Physical Layer Procedures for Data", TS 38.214, no. V15.3.0, 30 September 2018 (2018-09-30), XP051487513, DOI: 20200217223453A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4181446A4 (en) * 2020-07-27 2024-02-07 Huawei Tech Co Ltd CHANNEL PARAMETER ACQUISITION METHOD AND APPARATUS

Also Published As

Publication number Publication date
US11689256B2 (en) 2023-06-27
EP3883135A1 (en) 2021-09-22
US11811471B2 (en) 2023-11-07
EP3883135A4 (en) 2022-01-12
CN111342912B (zh) 2021-06-01
CN111342912A (zh) 2020-06-26
US20230064117A1 (en) 2023-03-02
US20210320694A1 (en) 2021-10-14
CN113489517A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2020125510A1 (zh) 一种信道测量方法和通信装置
WO2020125534A1 (zh) 一种信道测量方法和通信装置
WO2020125511A1 (zh) 一种信道测量方法和通信装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
WO2020143577A1 (zh) 参数配置方法和通信装置
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
US11943014B2 (en) Channel measurement method and communications apparatus
WO2021081847A1 (zh) 一种信道测量方法和通信装置
CN111757382A (zh) 指示信道状态信息的方法以及通信装置
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
EP4040699A1 (en) Method for configuring transmission port of a downlink reference signal, and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019899982

Country of ref document: EP

Effective date: 20210616