WO2020199964A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020199964A1
WO2020199964A1 PCT/CN2020/080743 CN2020080743W WO2020199964A1 WO 2020199964 A1 WO2020199964 A1 WO 2020199964A1 CN 2020080743 W CN2020080743 W CN 2020080743W WO 2020199964 A1 WO2020199964 A1 WO 2020199964A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
frequency
space
frequency domain
index
Prior art date
Application number
PCT/CN2020/080743
Other languages
English (en)
French (fr)
Inventor
高翔
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20782209.9A priority Critical patent/EP3952120A4/en
Publication of WO2020199964A1 publication Critical patent/WO2020199964A1/zh
Priority to US17/488,588 priority patent/US11929799B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0482Adaptive codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • This application relates to the field of communication, and in particular to a communication method and device.
  • MIMO technology can significantly improve the performance of wireless communication systems by deploying multiple antennas on network equipment and terminal equipment. For example, in a diversity scenario, MIMO technology can effectively improve transmission reliability; in a multiplexing scenario, MIMO technology can greatly improve transmission throughput.
  • the terminal device For a wireless communication system based on frequency division duplexing (FDD), uplink (UL) and downlink (downlink, DL) are separated. Therefore, the terminal device needs to feed back a downlink precoding matrix or a precoding matrix index (Precoding Matrix Index, PMI) to the network device, so that the network device can generate a precoding matrix. Specifically, the terminal device needs to report the amplitude quantization value and the phase quantization value of the combination coefficient corresponding to each frequency domain unit, so the reporting overhead is high. In order to reduce the reporting overhead, the network device can configure compression codebook parameters such as the number of space-domain basis vectors that need to be reported, the number of frequency-domain basis vectors, and the number of space-frequency combination coefficients.
  • compression codebook parameters such as the number of space-domain basis vectors that need to be reported, the number of frequency-domain basis vectors, and the number of space-frequency combination coefficients.
  • the prior art only provides that different rank indicator values and/or different spatial layers are configured with different compressed codebook parameters when the rank value is 1 or 2, and the rank indicator value is not provided. How to configure compressed codebook parameters at 3 or 4.
  • the configuration method of compressed codebook parameters when the rank indicator value is 1 or 2 can be referred to to complete the configuration of the compressed codebook parameters when the rank indicator value is 3 or 4.
  • the scale of the compressed codebook parameters that need to be configured is larger, and a large number of new parameters need to be introduced, which results in a complicated and complicated configuration process when the rank indicator value is 3 or 4. .
  • a fixed scale factor may also be used to limit the value of the compressed codebook parameter when the rank indicator value is 3 or 4.
  • the fixed scale factor method is difficult to adapt to dynamically changing channel conditions, and will affect the performance of the compressed codebook. Therefore, how to configure the compressed codebook parameters when the rank indicator value is 3 or 4, not only can better control the configuration complexity, but also better adapt to the dynamically changing channel conditions, has become an urgent solution. The problem.
  • the present application provides a communication method and device, which can complete the configuration of the compressed codebook parameters when the rank indicator value is 3 or 4 under the premise of taking into account the configuration complexity of the compressed codebook parameters and adapting to dynamically changing channel conditions.
  • a communication method is provided.
  • the communication method is applied to terminal equipment.
  • the communication method includes: the terminal device receives the first parameter from the network device.
  • the first parameter is used to determine the indication information of the first precoding matrix and the second parameter, and the second parameter is used to determine the indication information of the second precoding matrix.
  • the terminal device sends the indication information of the second precoding matrix to the network device.
  • the terminal device can determine the second parameter according to the first parameter configured by the base station, and determine the indication information for generating the second precoding matrix according to the second parameter, without affecting the existing first parameter.
  • the parameter configuration process can reduce the configuration complexity of configuring the second parameter and save the configuration overhead of the second parameter, thereby improving the working efficiency of the wireless communication system.
  • the above-mentioned first parameter may include one or more of the following parameters: the number of first frequency domain units, the number of first spatial basis vectors, the number or scale coefficient of first frequency domain basis vectors, and the first empty space.
  • the above-mentioned second parameter may include one or more of the following parameters: the number of second frequency domain units, the number of second spatial domain basis vectors, the number or scale coefficient of second frequency domain basis vectors, and the second spatial frequency The number or scale factor of the combination factor.
  • the scale coefficient of the frequency domain basis vector may also be referred to as the frequency domain basis vector coefficient, or the frequency domain basis vector number parameter. It is a preset proportional relationship used to determine the number of frequency domain basis vectors.
  • the scale factor of the frequency domain basis vector is denoted as p, and the scale factor represents the relationship between the number of frequency domain basis vectors M and the number of frequency domain units, namely Specifically, N f is the length of the frequency domain base vector, that is, the number of elements contained in the frequency domain base vector. The value of N f can be the number of frequency domain units or a preset value.
  • f is the ratio of the granularity of the CQI subband to the granularity of the PMI subband, which can be used to characterize that one CQI frequency domain subband contains f PMI subbands.
  • the proportional coefficient of the space-frequency combination coefficient is also called the space-frequency combination coefficient number coefficient, or the space-frequency combination coefficient number parameter. It is a preset proportional relationship used to determine the number of space-frequency combination coefficients.
  • the proportional coefficient of the space-frequency combining coefficient is denoted as ⁇
  • M is the number of frequency-domain basis vectors
  • L is the number of spatial-domain basis vectors.
  • the above-mentioned first parameter is used to determine the second parameter, which may include: determining the second parameter according to the first correspondence.
  • the first correspondence includes one or more of the following correspondences: the correspondence between the number of first spatial basis vectors and the number of second spatial basis vectors; the number of first frequency domain basis vectors and the second frequency domain Correspondence between the number of basis vectors; Correspondence between the scale factor of the first frequency domain basis vector and the scale factor of the second frequency domain basis vector; The ratio of the first frequency domain unit number to the first frequency domain basis vector Correspondence between the number of coefficients and the number of second frequency domain basis vectors; Correspondence between the number of first space-frequency combination coefficients and the number of second space-frequency combination coefficients; The ratio coefficient of the first space-frequency combination coefficient and the first 2.
  • the proportional coefficients of space-frequency combination coefficients Correspondence between the proportional coefficients of space-frequency combination coefficients; the number of first space-domain basis vectors, the number of first frequency-domain basis vectors, the number of first space-frequency combination coefficients, and the number of second space-frequency combination coefficients Correspondence relationship between the number of first spatial domain basis vectors, the number of first frequency domain basis vectors, the number of second spatial domain basis vectors, and the number of second frequency domain basis vectors; the first spatial domain basis vector The corresponding relationship between the number of base vectors in the first frequency domain, the number of base vectors in the second space domain, and the number of base vectors in the second frequency domain; the number of base vectors in the first space, the first space-frequency combination coefficient Correspondence between the number and the number of the second space-domain basis vector and the number of the second space-frequency combining coefficient; the number of the first space-domain basis vector, the scale coefficient of the first space-frequency combining coefficient and the number of the second space-domain basis vector , Correspondence
  • one or a set of first parameters may correspond to one or more, or one or more sets of candidate values for the second parameters.
  • the foregoing first correspondence relationship may be stored in the terminal device in a manner of a preset configuration table or configuration pattern.
  • the terminal device can search for one or more corresponding candidate values of the second parameter according to the first parameter, or one or more sets of candidate values of the second parameter, and then perform measurement tasks such as channel state measurement by traversing all the candidate values, and perform measurement tasks such as channel state measurement according to the measurement results
  • the second parameter with the optimal channel state and the indication information of the second precoding matrix can be selected from the foregoing traversal measurement results.
  • a first index for the candidate values of multiple or multiple sets of second parameters corresponding to one or a set of first parameters in the above first correspondence.
  • the terminal device only needs to report the first index.
  • the network device also needs to store the above-mentioned first correspondence locally. After the network device receives the first index reported by the terminal device, it can use the first index and the first index previously issued to the terminal device.
  • the parameter determines the second parameter, and then generates the second precoding matrix according to the second parameter and the indication information of the second precoding matrix reported by the terminal device.
  • the above communication method may further include the following step: the terminal device sends the first index to the network device.
  • the first index is an index value determined according to the first parameter and the first corresponding relationship. For the same (group) first parameter, the first index corresponds to the second parameter one-to-one.
  • the network device may also send the first index corresponding to the candidate value of the second parameter to the terminal device. Therefore, optionally, the above communication method may further include the following step: the terminal device receives the first index from the network device. The first index is used to determine the second parameter according to the first parameter and the first correspondence.
  • the above-mentioned first parameter is used to determine the second parameter, which may include: calculating the converted value of the second parameter according to the first parameter and a preset conversion rule.
  • the foregoing preset conversion rule may include one or more of the following formulas: Among them, L is the number of basis vectors in the first airspace, Is the converted value of the number of basis vectors in the second spatial domain, M is the number of basis vectors in the first frequency domain, Is the converted value of the number of base vectors in the second frequency domain, K 0 is the number of first space-frequency combining coefficients, Is the converted value of the number of second space-frequency combining coefficients, R is the candidate value of the rank indicator corresponding to the second parameter, R is a positive integer and R>2.
  • the above-mentioned first parameter is used to determine the second parameter, and may also include: directly using the converted value of the second parameter as the second parameter.
  • the above-mentioned first parameter is used to determine the second parameter, and it may further include: taking the sum of the deviation value of the second parameter and the converted value of the second parameter as the second parameter.
  • the deviation value of the second parameter corresponds to the second index one to one.
  • the deviation value is usually a small value, which can be positive, negative, or 0, which is used to indicate the difference of the corresponding converted value, so as to realize small-scale fine-tuning of the second parameter near the converted value.
  • the one-to-one correspondence between the deviation value of the second parameter and the second index (hereinafter referred to as the second correspondence) can also be stored in the form of a pre-configured table or correspondence pattern like the above-mentioned first correspondence. In terminal equipment and network equipment.
  • the network device may also issue the above-mentioned second index to the terminal device, and then the terminal device determines the deviation value of the second parameter by itself according to the second correspondence relationship stored locally. Therefore, optionally, the communication method described in the first aspect may further include the following step: the terminal device receives the second index or the deviation value of the second parameter from the network device. Wherein, the second index corresponds to the deviation value of the second parameter one to one.
  • the network device may not issue the deviation value of the second parameter and the second index.
  • the terminal device can also determine the deviation value of the second parameter and the candidate value of the second index according to the second corresponding relationship stored locally, and perform measurement tasks such as channel state measurement by traversing all the candidate values, and determine the needs based on the best The deviation value and the second index of the reported second parameter. Therefore, optionally, the communication method described in the first aspect may further include the following steps: the terminal device sends the second index or the deviation value of the second parameter to the network device; wherein the deviation value of the second index and the second parameter is equal to One correspondence.
  • the above-mentioned first parameter corresponds to the first rank indicator value
  • the second parameter corresponds to the second rank indicator value
  • the second rank indicator value is greater than the first rank indicator value.
  • the terminal device preferably determines the rank indicator value that needs to be reported from the first rank indicator value and the second rank indicator value according to the channel state measurement result, so that the network device generates a precoding matrix that best matches the current channel state. Therefore, optionally, the communication method described in the first aspect may further include the following step: the terminal device sends the second rank indicator value to the network device.
  • a communication method is provided.
  • the communication method is applied to network equipment.
  • the communication method includes: the network device sends the first parameter to the terminal device.
  • the first parameter is used for the terminal device to determine the indication information of the first precoding matrix and the second parameter, and the second parameter is used for determining the indication information of the second precoding matrix.
  • the network device receives the indication information of the second precoding matrix from the terminal device.
  • the above-mentioned first parameter includes one or more of the following parameters: the number of first frequency domain units, the number of first spatial domain basis vectors, the number or scale coefficient of the first frequency domain basis vectors, the first spatial frequency The number or scale factor of the combination factor.
  • the above-mentioned second parameter includes one or more of the following parameters: the number of second frequency domain units, the number of second spatial domain basis vectors, the number or scale coefficient of second frequency domain basis vectors, and the second space-frequency combination The number of coefficients or scale factors.
  • the above-mentioned first parameter is used to determine the second parameter, which may include: determining the second parameter according to the first correspondence.
  • the first correspondence includes one or more of the following correspondences: the correspondence between the number of first spatial basis vectors and the number of second spatial basis vectors; the number of first frequency domain basis vectors and the second frequency domain Correspondence between the number of basis vectors; Correspondence between the scale factor of the first frequency domain basis vector and the scale factor of the second frequency domain basis vector; The ratio of the first frequency domain unit number to the first frequency domain basis vector Correspondence between the number of coefficients and the number of second frequency domain basis vectors; Correspondence between the number of first space-frequency combination coefficients and the number of second space-frequency combination coefficients; The ratio coefficient of the first space-frequency combination coefficient and the first 2.
  • the proportional coefficients of space-frequency combination coefficients Correspondence between the proportional coefficients of space-frequency combination coefficients; the number of first space-domain basis vectors, the number of first frequency-domain basis vectors, the number of first space-frequency combination coefficients, and the number of second space-frequency combination coefficients Correspondence relationship between the number of first spatial domain basis vectors, the number of first frequency domain basis vectors, the number of second spatial domain basis vectors, and the number of second frequency domain basis vectors; the first spatial domain basis vector The corresponding relationship between the number of base vectors in the first frequency domain, the number of base vectors in the second space domain, and the number of base vectors in the second frequency domain; the number of base vectors in the first space, the first space-frequency combination coefficient Correspondence between the number and the number of the second space-domain basis vector and the number of the second space-frequency combining coefficient; the number of the first space-domain basis vector, the scale coefficient of the first space-frequency combining coefficient and the number of the second space-domain basis vector , Correspondence
  • the communication method described in the second aspect may further include: the network device receives the first index from the terminal device.
  • the second index is used to determine the second parameter according to the first parameter and the first correspondence.
  • the communication method described in the second aspect may further include: the network device sends the first index to the terminal device.
  • the first index is an index value determined according to the first parameter and the first corresponding relationship, and the first index corresponds to the second parameter one-to-one.
  • the above-mentioned first parameter is used to determine the second parameter, which may include: calculating the converted value of the second parameter according to the first parameter and a preset conversion rule.
  • the preset conversion rule may include one or more of the following formulas: Among them, L is the number of basis vectors in the first airspace, Is the converted value of the number of basis vectors in the second spatial domain, M is the number of basis vectors in the first frequency domain, Is the converted value of the number of base vectors in the second frequency domain, K 0 is the number of first space-frequency combining coefficients, Is the converted value of the number of second space-frequency combining coefficients, R is the candidate value of the rank indicator corresponding to the second parameter, R is a positive integer and R>2.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: using the converted value of the second parameter as the second parameter.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: taking the sum of the deviation value of the second parameter and the converted value of the second parameter as the second parameter.
  • the communication method described in the second aspect may further include: the network device sends the second index or the deviation value of the second parameter to the terminal device.
  • the second index corresponds to the deviation value of the second parameter one to one.
  • the communication method according to the second aspect may further include: the network device receives the second index or the deviation value of the second parameter from the terminal device.
  • the second index corresponds to the deviation value of the second parameter one to one.
  • first parameter corresponds to the first rank indicator value
  • second parameter corresponds to the second rank indicator value
  • second rank indicator value is greater than the first rank indicator value
  • the communication method described in the second aspect may further include: the network device receives the second rank indicator value from the terminal device.
  • a communication device which is applied to terminal equipment.
  • the communication device includes: a receiving module and a sending module.
  • the receiving module is used to receive the first parameter from the network device.
  • the first parameter is used to determine the indication information of the first precoding matrix and the second parameter, and the second parameter is used to determine the indication information of the second precoding matrix.
  • the sending module is used to send the indication information of the second precoding matrix to the network device.
  • the above-mentioned first parameter includes one or more of the following parameters: the number of first frequency domain units, the number of first spatial domain basis vectors, the number or scale coefficient of the first frequency domain basis vectors, the first spatial frequency The number or scale factor of the combination factor.
  • the above-mentioned second parameter includes one or more of the following parameters: the number of second frequency domain units, the number of second spatial domain basis vectors, the number or scale coefficient of second frequency domain basis vectors, and the second space-frequency combination The number of coefficients or scale factors.
  • the foregoing first parameter is used to determine the second parameter, which may include: determining the second parameter according to the first correspondence.
  • the first correspondence includes one or more of the following correspondences: the correspondence between the number of first spatial basis vectors and the number of second spatial basis vectors; the number of first frequency domain basis vectors and the second frequency domain Correspondence between the number of basis vectors; Correspondence between the scale factor of the first frequency domain basis vector and the scale factor of the second frequency domain basis vector; The ratio of the first frequency domain unit number to the first frequency domain basis vector Correspondence between the number of coefficients and the number of second frequency domain basis vectors; Correspondence between the number of first space-frequency combination coefficients and the number of second space-frequency combination coefficients; The ratio coefficient of the first space-frequency combination coefficient and the first 2.
  • the proportional coefficients of space-frequency combination coefficients Correspondence between the proportional coefficients of space-frequency combination coefficients; the number of first space-domain basis vectors, the number of first frequency-domain basis vectors, the number of first space-frequency combination coefficients, and the number of second space-frequency combination coefficients Correspondence relationship between the number of first spatial domain basis vectors, the number of first frequency domain basis vectors, the number of second spatial domain basis vectors, and the number of second frequency domain basis vectors; the first spatial domain basis vector The corresponding relationship between the number of base vectors in the first frequency domain, the number of base vectors in the second space domain, and the number of base vectors in the second frequency domain; the number of base vectors in the first space, the first space-frequency combination coefficient Correspondence between the number and the number of the second space-domain basis vector and the number of the second space-frequency combining coefficient; the number of the first space-domain basis vector, the scale coefficient of the first space-frequency combining coefficient and the number of the second space-domain basis vector , Correspondence
  • the sending module is further configured to send the first index to the network device.
  • the first index is an index value determined according to the first parameter and the first corresponding relationship, and the first index corresponds to the second parameter one-to-one.
  • the receiving module is further configured to receive the first index from the network device.
  • the first index is used to determine the second parameter according to the first parameter and the first correspondence.
  • the above-mentioned first parameter is used to determine the second parameter, which may include: calculating the converted value of the second parameter according to the first parameter and a preset conversion rule.
  • the foregoing preset conversion rule includes one or more of the following formulas: Among them, L is the number of basis vectors in the first airspace, Is the converted value of the number of basis vectors in the second spatial domain, M is the number of basis vectors in the first frequency domain, Is the converted value of the number of base vectors in the second frequency domain, K 0 is the number of first space-frequency combining coefficients, Is the converted value of the number of the second space-frequency combination coefficients, R is the candidate value of the rank indicator corresponding to the second parameter, and R>2.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: using the converted value of the second parameter as the second parameter.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: taking the sum of the deviation value of the second parameter and the converted value of the second parameter as the second parameter.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: a sending module, which is further used to send the second index or the deviation value of the second parameter to the network device.
  • a sending module which is further used to send the second index or the deviation value of the second parameter to the network device.
  • the second index corresponds to the deviation value of the second parameter one to one.
  • the receiving module is further configured to receive the second index or the deviation value of the second parameter from the network device; wherein, the second index corresponds to the deviation value of the second parameter one-to-one.
  • first parameter corresponds to the first rank indicator value
  • second parameter corresponds to the second rank indicator value
  • second rank indicator value is greater than the first rank indicator value
  • the sending module is further configured to send the second rank indicator value to the network device.
  • the foregoing communication device may be a terminal device, or a chip or a chip system provided inside the terminal device, which is not limited in the embodiment of the present application.
  • a communication device which is applied to network equipment.
  • the communication device includes: a sending module and a receiving module.
  • the sending module is used to send the first parameter to the terminal device.
  • the first parameter is used for the terminal device to determine the indication information of the first precoding matrix and the second parameter, and the second parameter is used for determining the indication information of the second precoding matrix.
  • the receiving module is configured to receive the indication information of the second precoding matrix from the terminal device.
  • the above-mentioned first parameter includes one or more of the following parameters: the number of first frequency domain units, the number of first spatial domain basis vectors, the number or scale coefficient of the first frequency domain basis vectors, the first spatial frequency The number or scale factor of the combination factor.
  • the above-mentioned second parameter includes one or more of the following parameters: the number of second frequency domain units, the number of second spatial domain basis vectors, the number or scale coefficient of second frequency domain basis vectors, and the second space-frequency combination The number of coefficients or scale factors.
  • the above-mentioned first parameter is used to determine the second parameter, which may include: determining the second parameter according to the first correspondence; where the first correspondence includes one or more of the following correspondences: Correspondence between the number of basis vectors in a space and the number of basis vectors in the second space; the number of basis vectors in the first frequency domain and the number of basis vectors in the second frequency domain; the number of basis vectors in the first frequency domain Correspondence between the scale factor and the scale factor of the second frequency domain basis vector; the correspondence between the number of first frequency domain units, the scale factor of the first frequency domain basis vector and the number of second frequency domain basis vectors; Correspondence between the number of space-frequency combination coefficients and the number of second space-frequency combination coefficients; the corresponding relationship between the proportional coefficients of the first space-frequency combination coefficients and the proportional coefficients of the second space-frequency combination coefficients; the first space domain Correspondence between the number of basis vectors, the number of first frequency domain basis vectors, the ratio coefficient of the first
  • the receiving module is further configured to receive the first index from the terminal device; where the second index is used to determine the second parameter according to the first parameter and the first correspondence relationship.
  • the sending module is further configured to send the first index to the terminal device; where the first index is an index value determined according to the first parameter and the first correspondence relationship, and the first index corresponds to the second parameter one-to-one.
  • the above-mentioned first parameter is used to determine the second parameter, which may include: calculating the converted value of the second parameter according to the first parameter and a preset conversion rule.
  • the foregoing preset conversion rule may include one or more of the following formulas: Among them, L is the number of basis vectors in the first airspace, Is the converted value of the number of basis vectors in the second spatial domain, M is the number of basis vectors in the first frequency domain, Is the converted value of the number of base vectors in the second frequency domain, K 0 is the number of first space-frequency combining coefficients, Is the converted value of the number of the second space-frequency combination coefficients, R is the candidate value of the rank indicator corresponding to the second parameter, and R>2.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: using the converted value of the second parameter as the second parameter.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: taking the sum of the deviation value of the second parameter and the converted value of the second parameter as the second parameter.
  • the sending module is further configured to send the second index or the deviation value of the second parameter to the terminal device; wherein the second index corresponds to the deviation value of the second parameter one-to-one.
  • the receiving module is further configured to receive the second index or the deviation value of the second parameter from the terminal device; wherein the second index corresponds to the deviation value of the second parameter one-to-one.
  • first parameter corresponds to the first rank indicator value
  • second parameter corresponds to the second rank indicator value
  • second rank indicator value is greater than the first rank indicator value
  • the receiving module is further configured to receive the second rank indicator value from the terminal device.
  • the above-mentioned communication device may be a network device, or a chip or a chip system provided inside the network device, which is not limited in the embodiment of the present application.
  • a terminal device including: a processor coupled with a memory.
  • the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, so that the terminal device executes the communication method according to the first aspect or any one of the possible implementation manners of the first aspect, or The communication method as described in the second aspect or any possible implementation manner of the second aspect.
  • a network device including: a processor coupled with a memory.
  • the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, so that the network device executes the communication method as described in the first aspect or any one of the possible implementation manners of the first aspect, or The communication method as described in the second aspect or any possible implementation manner of the second aspect.
  • a communication system in a seventh aspect, includes one or more of the aforementioned terminal devices, and one or more of the aforementioned network devices.
  • a computer program product includes: computer program code.
  • the computer program code runs on a computer, the computer executes as described in the first aspect or any one of the possible implementations of the first aspect.
  • a readable storage medium including a program or instruction.
  • the program or instruction runs on a computer, the computer executes the communication as described in the first aspect or any one of the possible implementation manners of the first aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application
  • Figure 2 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • the sending device (such as network equipment) can process the signal to be sent with the help of a precoding matrix that matches the channel resource when the channel state is known, so that the precoded signal to be sent and the channel Adaptation, thereby reducing the complexity of the receiving device (such as the terminal device) to eliminate the influence between channels. Therefore, through the precoding processing of the signal to be transmitted, the quality of the received signal (for example, the signal to interference plus noise ratio (SINR), etc.) can be improved. Therefore, the use of precoding technology can help improve the transmission performance of the sending device and multiple receiving devices on the same time-frequency resource, that is, improve the multi-user multiple input multiple output (MU-MIMO) System performance.
  • MU-MIMO multi-user multiple input multiple output
  • the sending device may also perform precoding in other ways. For example, when channel information (such as but not limited to a channel matrix) cannot be obtained, precoding is performed using a preset precoding matrix or a weighting processing method. For the sake of brevity, its specific content will not be repeated in this article.
  • Precoding matrix and precoding matrix indicator can be used to indicate the precoding matrix.
  • the channel matrix may be determined by the terminal equipment through channel estimation or other methods or based on channel reciprocity.
  • the specific method for the terminal device to determine the channel matrix is not limited to the above, and the specific implementation can refer to the prior art. For brevity, it will not be listed here.
  • the precoding matrix can be obtained by performing singular value decomposition (SVD) on the channel matrix or the covariance matrix of the channel matrix, or it can also be obtained by performing eigenvalue decomposition (eigenvalue decomposition, SVD) on the covariance matrix of the channel matrix. EVD).
  • SVD singular value decomposition
  • eigenvalue decomposition eigenvalue decomposition
  • the method for determining the precoding matrix listed above is only an example, and should not constitute any limitation to this application.
  • the method for determining the precoding matrix can refer to the prior art. For brevity, it will not be listed here.
  • the precoding matrix corresponding to the frequency domain unit may refer to the precoding matrix fed back for the frequency domain unit, for example, may be performed based on the reference signal on the frequency domain unit. Precoding matrix for channel measurement and feedback.
  • the precoding matrix corresponding to the frequency domain unit can be used for precoding the data subsequently transmitted through the frequency domain unit.
  • the precoding matrix corresponding to the frequency domain unit may also be referred to as the precoding matrix of the frequency domain unit for short
  • the precoding vector corresponding to the frequency domain unit may also be referred to as the precoding vector of the frequency domain unit.
  • the precoding matrix determined by the network device based on the feedback of the terminal device can be directly used for downlink data transmission; it can also undergo some beamforming methods, such as zero forcing (zero forcing, ZF), regularized zero-forcing (RZF), minimum mean-squared error (MMSE), maximum signal-to-leakage-and-noise (SLNR), etc. , In order to obtain the final precoding matrix for downlink data transmission.
  • ZF zero forcing
  • RZF regularized zero-forcing
  • MMSE minimum mean-squared error
  • SLNR maximum signal-to-leakage-and-noise
  • the precoding matrix (or vector) involved in the following may all refer to the precoding matrix (or vector) determined by the network device based on the feedback of the terminal device.
  • a precoding matrix may include one or more vectors, such as column vectors. One precoding matrix can be used to determine one or more precoding vectors.
  • the precoding vector may be a precoding matrix.
  • the precoding vector may refer to the component of the precoding matrix on one transmission layer.
  • the precoding vector may refer to the component of the precoding matrix in one polarization direction.
  • the precoding vector may refer to the component of the precoding matrix in one transmission layer and one polarization direction.
  • the precoding vector may also be determined by the vector in the precoding matrix, for example, the vector in the precoding matrix is obtained after mathematical transformation. This application does not limit the mathematical transformation relationship between the precoding matrix and the precoding vector.
  • Antenna port referred to as port. It can be understood as a virtual antenna recognized by the receiving device. Or transmit antennas that can be distinguished in space. One antenna port can be configured for each virtual antenna. Each virtual antenna can be a weighted combination of multiple physical antennas. Each antenna port can correspond to a reference signal. Therefore, each antenna port can be called a reference signal port. . In the embodiment of the present application, the antenna port may refer to an actual independent transmitting unit (transceiver unit, TxRU).
  • TxRU transmitting unit
  • Spatial domain vector Or it is called spatial domain vector or spatial beam vector or spatial domain vector.
  • Each element in the spatial basis vector can represent the weight of each antenna port. Based on the weight of each antenna port represented by each element in the spatial basis vector, the signals of each antenna port are linearly superimposed to form an area with a strong signal in a certain direction in space.
  • the airspace basis vector is denoted as u.
  • the length of the spatial basis vector u may be the number of transmitting antenna ports N s in a polarization direction, and N s ⁇ 1 and an integer.
  • the spatial basis vector can be, for example, a column vector or a row vector with a length of N s . This application does not limit this.
  • spatial basis vector please refer to the two-dimensional (2dimensions, 2D)-discrete Fourier transform (DFT) vector or Oversampled 2D-DFT vector v l,m .
  • DFT discrete Fourier transform
  • Airspace basis vector set Or called the airspace vector set, a vector set composed of candidate airspace basis vectors can include a variety of space basis vectors of different lengths to correspond to different numbers of transmitting antenna ports.
  • the length of the airspace basis vector is N s
  • the length of each airspace basis vector in the airspace basis vector set to which the airspace basis vector reported by the terminal device belongs is N s .
  • the set of spatial basis vectors may include N s spatial basis vectors, and the N s spatial basis vectors may be orthogonal to each other.
  • Each spatial basis vector in the set of spatial basis vectors can be taken from a 2D-DFT matrix.
  • the N s spatial basis vectors can be denoted as The N s spatial basis vectors can construct a matrix B s , If each spatial basis vector in the spatial basis vector set is taken from a 2D-DFT matrix, then Where D N is an orthogonal DFT matrix of NxN, and the element in the mth row and nth column is
  • the set of spatial basis vectors can be expanded into O s ⁇ N s spatial basis vectors by an oversampling factor O s .
  • the set of airspace basis vectors may include O s subsets, and each subset may include N s airspace basis vectors.
  • the N s spatial basis vectors in each subset can be orthogonal to each other.
  • Each spatial basis vector in the set of spatial basis vectors can be taken from an oversampled 2D-DFT matrix.
  • the N s spatial basis vectors in the o s (1 ⁇ o s ⁇ O s and o s is an integer) subset in the set of spatial basis vectors can be respectively denoted as Then the matrix can be constructed based on the N s spatial basis vectors in the o sth subset
  • each spatial basis vector in the spatial basis vector set can be taken from a 2D-DFT matrix or an oversampled 2D-DFT matrix.
  • Each column vector in the set of spatial basis vectors can be referred to as a 2D-DFT vector or an oversampled 2D-DFT vector.
  • the spatial basis vector can be a 2D-DFT vector or an oversampled 2D-DFT vector.
  • Frequency domain vector (frequency domain vector): or referred to as a frequency domain vector, a vector proposed in the embodiment of the present application for representing the changing law of a channel in the frequency domain.
  • Each frequency domain basis vector can represent a change rule. Since the signal is transmitted through the wireless channel, it can reach the receiving antenna through multiple paths from the transmitting antenna. Multipath time delay causes frequency selective fading, which is the change of frequency domain channel. Therefore, different frequency-domain basis vectors can be used to represent the changing law of the channel in the frequency domain caused by the delay on different transmission paths.
  • the frequency domain basis vector is denoted as v.
  • the length of the frequency-domain basis vector may be the number of frequency-domain units, or the number of frequency-domain units (such as the number of reporting bands) that need to report channel status indicators (CSI).
  • the length of the frequency domain base vector can also be a preset value, such as an integer that is a multiple of 2, 3, or 5.
  • the length of the frequency domain basis vector is denoted as N f , N f ⁇ 1, and is an integer.
  • Frequency-domain basis vector set A vector set composed of candidate frequency-domain basis vectors, which can include a variety of frequency-domain basis vectors of different lengths. One or more frequency-domain basis vectors in the set of frequency-domain basis vectors are selected for constructing a precoding vector.
  • the frequency domain basis vector set may include multiple frequency domain basis vectors.
  • the multiple frequency domain base vectors may be orthogonal to each other.
  • Each frequency-domain basis vector in the frequency-domain basis vector set can be taken from a DFT matrix or an IDFT matrix (that is, a conjugate transpose matrix of the DFT matrix).
  • the N f frequency-domain basis vectors can be denoted as The N f frequency-domain basis vectors can construct a matrix B f ,
  • the frequency-domain base vector set by oversampling factor O f expanded O f ⁇ N f frequency-domain basis vectors may include a set of basis vectors O f subsets, each subset may include N f frequency-domain basis vectors.
  • the N f frequency-domain basis vectors in each subset may be orthogonal to each other.
  • Each subset can be called an orthogonal group.
  • Each frequency domain basis vector in the frequency domain basis vector set can be taken from an oversampled DFT matrix or a conjugate transpose matrix of an oversampled DFT matrix.
  • the oversampling factor O f is a positive integer.
  • the N f frequency-domain basis vectors in the o f (1 ⁇ o f ⁇ O f and o f is an integer) subset in the frequency-domain basis vector set can be respectively denoted as Then the matrix can be constructed based on the N f frequency-domain basis vectors in the o fth subset
  • each frequency domain basis vector in the frequency domain basis vector set can be taken from the DFT matrix or the oversampled DFT matrix, or from the conjugate transpose matrix of the DFT matrix or the conjugate transpose matrix of the oversampled DFT matrix.
  • Each column vector in the frequency domain basis vector set may be referred to as a DFT vector or an oversampled DFT vector.
  • the frequency domain base vector can be a DFT vector or an oversampled DFT vector.
  • a space-frequency component matrix can be determined by a space-domain basis vector and a frequency-domain basis vector.
  • a space-frequency component matrix can be determined by, for example, a conjugate transpose of a space-domain basis vector and a frequency-domain basis vector, such as u ⁇ v H , and its dimension can be N s ⁇ N f .
  • the space-frequency component matrix may be a manifestation of space-frequency basic units determined by a space-domain basis vector and a frequency-domain basis vector.
  • the space-frequency basic unit can also be expressed as a space-frequency component vector, for example, and the space-frequency component vector can be determined, for example, by the Kronecker product of a space-domain basis vector and a frequency-domain basis vector; It can be expressed as space-frequency vector equivalence.
  • This application does not limit the specific manifestation of the basic air frequency unit. Those skilled in the art are based on the same concept, and various possible forms determined by a spatial basis vector and a frequency domain basis vector should fall within the protection scope of this application.
  • the operation relationship between the space-frequency component matrix and the space-domain basis vector and frequency-domain basis vector may also be different. This application does not limit the operational relationship between the space-frequency component matrix, the space-domain basis vector, and the frequency-domain basis vector.
  • the space-frequency matrix can be understood as an intermediate quantity used to determine the precoding matrix.
  • the space-frequency matrix can be determined by a precoding matrix or a channel matrix.
  • the space-frequency matrix may be obtained by the weighted sum of multiple space-frequency component matrices, so as to recover the downlink channel or precoding matrix.
  • the space-frequency component matrix can be expressed as a matrix with a dimension of N s ⁇ N f
  • the space-frequency matrix can also be expressed as a matrix with a dimension of N s ⁇ N f
  • the space-frequency matrix with a dimension of N s ⁇ N f may include N f column vectors with a length of N s .
  • the N f column vectors may correspond to the N f frequency domain units, and each column vector may be used to determine the precoding vector of the corresponding frequency domain unit.
  • the space frequency matrix can be denoted as V, Where V 1 to Is N f column vectors corresponding to N f frequency domain units, and the length of each column vector for a single-polarization antenna can be N s .
  • the N f column vectors respectively correspond to the target precoding vectors of the N f frequency domain units. That is, the space-frequency matrix V can be regarded as a joint matrix formed by combining the target precoding vectors corresponding to N f frequency domain units.
  • the space-frequency matrix is only an expression form used to determine the intermediate quantity of the precoding matrix, and should not constitute any limitation in this application.
  • a vector of length N s ⁇ N f can also be obtained. This vector can be called Space frequency vector.
  • the dimensions of the space-frequency matrix and the space-frequency vector shown above are only examples, and should not constitute any limitation to this application.
  • the space-frequency matrix may also be a matrix with a dimension of N f ⁇ N s .
  • each row vector may correspond to a frequency domain unit for determining the precoding vector of the corresponding frequency domain unit.
  • the dimension of the space-frequency matrix can be further expanded.
  • the dimension of the space-frequency matrix can be 2N s ⁇ N f or N f ⁇ 2N s , where V 1 to Are N f column vectors corresponding to N f frequency domain units, and the length of each column vector is 2N s . It should be understood that this application does not limit the number of polarization directions of the transmitting antenna.
  • Dual domain compression including space domain compression and frequency domain compression.
  • Spatial compression may refer to selecting one or more spatial basis vectors from the set of spatial basis vectors as the spatial basis vectors for constructing the precoding vector.
  • Frequency domain compression may refer to selecting one or more frequency domain basis vectors from a set of frequency domain basis vectors as frequency domain basis vectors for constructing precoding vectors.
  • the selected airspace basis vectors are part or all of the airspace basis vectors in the airspace basis vector set.
  • the selected frequency domain basis vectors are part or all of the frequency domain basis vectors in the frequency domain basis vector set.
  • the selected one or more spatial base vectors may form a spatial beam base matrix W 1 , where each column vector in W 1 corresponds to a selected spatial base vector.
  • the selected one or more frequency-domain basis vectors can form a frequency-domain basis matrix W 3 , where each column vector in W 3 corresponds to a selected frequency-domain basis vector.
  • space-frequency matrix V can be expressed as the result of linear combination of selected one or more space-domain basis vectors and selected one or more frequency-domain basis vectors:
  • W 1 can be expressed as:
  • v Is(i) represents the index corresponding to the selected spatial basis vector.
  • i 0,1,...,L-1.
  • L spatial basis vectors that are not exactly the same can also be used for the two polarization directions.
  • the dimension of W 3 H is M ⁇ N f
  • each column vector in W 3 corresponds to a frequency-domain basis vector.
  • the frequency-domain basis vectors corresponding to the basis vectors are all M frequency-domain basis vectors in W 3 . It is a matrix of space-frequency combination coefficients with a dimension of 2LxM. Space-frequency combination coefficient matrix The i-th row in corresponds to the i-th spatial basis vector among the 2L spatial basis vectors, the space-frequency combination coefficient matrix The j-th column in corresponds to the j-th frequency-domain basis vector among the M frequency-domain basis vectors.
  • the space-frequency combination coefficient corresponding to the i-th space-domain basis vector is the space-frequency combination coefficient matrix
  • the i-th row vector in, the space-frequency combination coefficient corresponding to the i-th space-domain basis vector is the space-frequency combination coefficient matrix The element contained in the i-th row vector in.
  • each of the L spatial base vectors may also correspond to a different frequency domain base vector.
  • W 3 H [W f (0), W f (1), ..., W f (2L-1)], where W f (i) is the i-th spatial basis vectors corresponding M i A matrix of M i rows and N f columns formed by frequency domain basis vectors.
  • the space-frequency combination coefficient contained in is the space-frequency combination coefficient corresponding to the i-th space-domain basis vector. at this time, Total includes A combination factor. If the number of frequency domain basis vectors corresponding to each spatial basis vector is M, then A total of 2LM combination coefficients are included.
  • each polarization direction of the same transmission layer corresponds to L spatial basis vectors
  • the two polarization directions of the transmission layer correspond to a total of 2L spatial basis vectors.
  • the embodiment of the present application uses two polarities of the same transmission layer.
  • the L spatial basis vectors corresponding to the transformation directions are exactly the same as an example for description.
  • the 2L spatial basis vectors corresponding to the two polarization directions of a transmission layer are called the spatial basis vectors corresponding to the transmission layer, and it is assumed to be among the 2L spatial basis vectors.
  • Each spatial basis vector selects M frequency domain basis vectors. If the M frequency domain basis vectors selected by each spatial basis vector are not exactly the same, then the 2L ⁇ M frequency domain basis vectors corresponding to the 2L spatial basis vectors are called The frequency domain basis vectors corresponding to the transmission layer. If the M frequency domain basis vectors selected for each spatial basis vector are exactly the same, the M frequency domain basis vectors corresponding to the 2L spatial basis vectors are called the frequency domain basis vectors corresponding to the transmission layer. vector.
  • the 2L ⁇ M space-frequency combination coefficients corresponding to the 2L space-domain base vectors are called the space-frequency combination coefficients corresponding to the transmission layer.
  • the base station indicates the maximum number of combination coefficients K 0 that need to be reported through the indication information, and the UE actually reports K 1 combination coefficients, and K 1 ⁇ K 0 ⁇ 2LM. For unreported combination coefficients, the corresponding space-frequency combination coefficient is considered to be 0.
  • the space-frequency matrix can be determined through dual-domain compression according to the above method.
  • each transmission layer can use the same dual-domain compression method to determine the space-frequency matrix corresponding to each transmission layer.
  • the two transmission layers can use the same number of spatial basis vectors or different numbers of spatial basis vectors.
  • the two transmission layers can use the same number of frequency domain basis vectors or different numbers of frequency domain basis vectors.
  • the two transmission layers can use the same L space base vectors, or they can use L space base vectors that are not exactly the same.
  • the two transmission layers can use the same M frequency domain basis vectors, or each spatial basis vector of each transmission layer can correspond to a different frequency domain basis vector.
  • the number of space-domain basis vectors L, the number of frequency-domain basis vectors M, and the maximum number K 0 of space-frequency combination coefficients that need to be reported may be configured by the network device through high-level signaling.
  • the network device can directly configure specific values of the number of space-domain basis vectors L, the number of frequency-domain basis vectors M, and the maximum number of space-frequency combination coefficients K 0 to be reported through high-level signaling, and can also configure indexes corresponding to the specific values.
  • the number of frequency domain combining coefficients can be proportional to the number of frequency domain units, namely p ⁇ 1 and the value of p can be 3/4, 1/2, 1/4 or 1/8.
  • the maximum number of space-frequency combination coefficients to be reported K 0 can be ⁇ times 2LM, ⁇ 1 and The value can be 3/4, 1/2, 1/4 or 1/8.
  • the matrix determined by a space-domain basis vector and a frequency-domain basis vector may also be the aforementioned space-frequency component matrix, for example.
  • the selected one or more spatial basis vectors and one or more frequency domain basis vectors can be used to determine one or more spatial frequency component matrices.
  • the weighted sum of the one or more space-frequency component matrices can be used to construct a space-frequency matrix corresponding to one transmission layer.
  • the space-frequency matrix can be approximated as a weighted sum of the space-frequency component matrix determined by the selected one or more space-domain basis vectors and one or more frequency-domain basis vectors.
  • the space-domain basis vector and the frequency-domain basis vector used to construct a space-frequency component matrix can be referred to as a space-frequency vector pair.
  • the network device when the network device obtains the space-domain basis vector, frequency-domain basis vector, and space-frequency combination coefficients that can be used to construct the space-frequency matrix, it can further determine the precoding vector corresponding to each frequency-domain unit based on the constructed space-frequency matrix .
  • used to indicate may include used for direct indication and used for indirect indication.
  • the indication information may directly indicate I or indirectly indicate I, but it does not mean that I must be carried in the indication information.
  • the information indicated by the instruction information can be called the information to be instructed.
  • the information to be instructed can be directly indicated, such as the information to be instructed itself or the Index of the information to be indicated, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, and other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the pre-arranged order (for example, stipulated in the agreement) of various information, thereby reducing the indication overhead to a certain extent.
  • the precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same parts in terms of composition or other attributes.
  • the specific indication manner may also be various existing indication manners, such as, but not limited to, the foregoing indication manner and various combinations thereof.
  • the specific details of the various indication modes can be referred to the prior art, which will not be repeated here. It can be seen from the above that, for example, when multiple pieces of information of the same type need to be indicated, a situation where different information is indicated in different ways may occur.
  • the required instruction method can be selected according to specific needs.
  • the embodiment of the application does not limit the selected instruction method.
  • the instruction method involved in the embodiment of the application should be understood as covering the instructions to be Various methods for obtaining information to be indicated.
  • a row vector can be expressed as a column vector
  • a matrix can be expressed by the transposed matrix of the matrix
  • a matrix can also be expressed in the form of a vector or an array. It can be formed by connecting each row vector or column vector of the matrix, and the Kronecker product of two vectors can also be expressed in the form of the product of one vector and the transposed vector of another vector.
  • the information to be instructed can be sent together as a whole, or divided into multiple sub-information to be sent separately, and the sending period and/or sending timing of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be pre-defined, for example, pre-defined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, but is not limited to, radio resource control signaling, such as RRC signaling, MAC layer signaling, such as MAC-CE signaling and physical layer signaling, such as downlink control information (DCI) One or a combination of at least two of them.
  • radio resource control signaling such as RRC signaling
  • MAC layer signaling such as MAC-CE signaling
  • DCI downlink control information
  • example and “for example” are used to represent examples, illustrations, or illustrations. Any embodiment or design solution described as “example” or “for example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • the embodiment of the present application takes a scenario of an NR system in a wireless communication system as an example for description. It should be noted that the technical solutions provided in the embodiments of this application can also be applied to other wireless communication networks that support FDD duplex mode, such as LTE systems, evolved LTE systems, etc. The corresponding names can also be used in other wireless communication networks. The name of the corresponding function is replaced.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail a wireless communication system applicable to the embodiments of the present application.
  • the communication system includes terminal equipment and network equipment.
  • both the terminal device and the network device may be one or more, and both the terminal device and the network device may be configured with one or more antennas.
  • the aforementioned network device is a communication device with a wireless transceiver function or a chip set in the communication device.
  • the aforementioned network equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC) ), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc. can also be 5G, such as NR, in the system gNB, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G system, or, it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit ( BBU
  • the gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include a radio unit (RU).
  • the CU implements part of the gNB function
  • the DU implements another part of the gNB function.
  • CU realizes radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU realizes radio link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited here.
  • the terminal can also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user Device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • the embodiment of this application does not limit the application scenario.
  • the aforementioned terminal equipment and the chips that can be installed in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • the communication device 200 may include at least one processor 201, a memory 202, a transceiver 203, and a communication bus 204.
  • the processor 201 is the control center of the communication device, and may be a processor or a collective name for multiple processing elements.
  • the processor 201 is a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • microprocessors digital signal processor, DSP
  • field programmable gate arrays Field Programmable Gate Array, FPGA
  • the processor 201 can execute various functions of the communication device by running or executing a software program stored in the memory 202 and calling data stored in the memory 202.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 2.
  • the communication device may include multiple processors, such as the processor 201 and the processor 205 shown in FIG. 2.
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 202 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory 202 may exist independently and is connected to the processor 201 through a communication bus 204.
  • the memory 202 may also be integrated with the processor 201.
  • the memory 202 is used to store a software program for executing the solution of the present invention, and the processor 201 controls the execution.
  • the transceiver 203 is used for communication with another communication device.
  • the transceiver 203 can also be used to communicate with a communication network, such as Ethernet, radio access network (RAN), wireless local area network (Wireless Local Area Networks, WLAN), etc.
  • the transceiver 203 may include a receiving unit to implement a receiving function, and a sending unit to implement a sending function.
  • the communication bus 204 may be an industry standard architecture (ISA) bus, a peripheral component interface (PCI) bus, or an extended industry standard architecture (EISA) bus.
  • ISA industry standard architecture
  • PCI peripheral component interface
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used in FIG. 2, but it does not mean that there is only one bus or one type of bus.
  • the structure of the communication device shown in FIG. 2 does not constitute a limitation on the communication device, and may include more or fewer components than shown in the figure, or a combination of some components, or a different component arrangement.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the application, and the communication method is applied to a terminal device or a network device. As shown in Figure 3, the communication method includes the following steps:
  • the network device sends the first parameter to the terminal device.
  • the terminal device receives the first parameter from the network device.
  • the network device may send the foregoing first parameter to the terminal device on the downlink through high-layer signaling.
  • the above-mentioned first parameter is used to determine the indication information of the first precoding matrix, and reference may be made to an existing implementation manner, which is not repeated in this embodiment of the application.
  • first parameter is also used to determine the second parameter.
  • second parameter is also used to determine the second parameter.
  • the above-mentioned first parameter may include one or more of the following parameters: the number of first frequency domain units, the number of first spatial basis vectors, the number or scale coefficient of first frequency domain basis vectors, and the first empty space.
  • the above-mentioned second parameter may include one or more of the following parameters: the number of second frequency domain units, the number of second spatial domain basis vectors, the number or scale coefficient of second frequency domain basis vectors, and the second spatial frequency The number or scale factor of the combination factor.
  • the above-mentioned first parameter is a parameter set corresponding to the first rank indicator value
  • the parameter set includes a set indicating the parameter values corresponding to each spatial layer under the first rank indicator value
  • the above-mentioned second parameter is a parameter set corresponding to the second rank indicator value
  • the parameter set includes a set that indicates the parameter value corresponding to each spatial layer under the second rank indicator value.
  • the first parameter or the second parameter indicates a parameter set composed of the parameter values corresponding to each spatial layer under the respective rank indicator values.
  • the parameter values corresponding to each spatial layer can be the same or can be different.
  • multiple spatial layers under the rank indicator value may use different parameter values respectively. It is easy to understand that for the same rank indicator value, in order to simplify the control process, multiple spatial layers under the rank indicator value may also use the same parameter value.
  • the first rank indicator value is usually 1 or 2, and the value is smaller, and the number of corresponding spatial layers is also less, which is 1 or 2 layers. Therefore, in order to further simplify the control process, the same value of the first parameter may be used for one spatial layer with a first rank indicator value of 1 and two spatial layers with a first rank indicator value of 2.
  • the parameter corresponding to the rank indicator value of 1 or 2 is used as the first parameter, and the parameter corresponding to the rank indicator value of 3 or 4 is used as the second parameter to illustrate the first parameter provided in the embodiment of the present application.
  • Parameters and second parameters are used as the first parameter, and the parameter corresponding to the rank indicator value of 3 or 4 to illustrate the first parameter provided in the embodiment of the present application.
  • the network device may also issue other parameters to the terminal device, such as one or more of the first index and the second correspondence in the first correspondence described in S302 below.
  • One or more secondary indexes in the relationship, etc. reference may be made to the related description in S302, which will not be repeated here.
  • the terminal device determines the second parameter and the indication information of the second precoding matrix according to the first parameter.
  • the above S302 terminal device determining the second parameter and the indication information of the second precoding matrix according to the first parameter may include the following steps:
  • Step 1 The terminal device determines the candidate value of the second parameter according to the first correspondence.
  • Step 2 The terminal device determines the second parameter and the indication information of the second precoding matrix according to the channel measurement results corresponding to all candidate values of the second parameter.
  • the first correspondence includes one or more of the following correspondences: the correspondence between the number of first spatial basis vectors and the number of second spatial basis vectors; the number of first frequency domain basis vectors and the second frequency domain Correspondence between the number of basis vectors; Correspondence between the scale factor of the first frequency domain basis vector and the scale factor of the second frequency domain basis vector; The ratio of the first frequency domain unit number to the first frequency domain basis vector Correspondence between the number of coefficients and the number of second frequency domain basis vectors; Correspondence between the number of first space-frequency combination coefficients and the number of second space-frequency combination coefficients; The ratio coefficient of the first space-frequency combination coefficient and the first 2.
  • the proportional coefficients of space-frequency combination coefficients Correspondence between the proportional coefficients of space-frequency combination coefficients; the number of first space-domain basis vectors, the number of first frequency-domain basis vectors, the number of first space-frequency combination coefficients, and the number of second space-frequency combination coefficients Correspondence relationship between the number of first spatial domain basis vectors, the number of first frequency domain basis vectors, the number of second spatial domain basis vectors, and the number of second frequency domain basis vectors; the first spatial domain basis vector The corresponding relationship between the number of base vectors in the first frequency domain, the number of base vectors in the second space domain, and the number of base vectors in the second frequency domain; the number of base vectors in the first space, the first space-frequency combination coefficient Correspondence between the number and the number of the second space-domain basis vector and the number of the second space-frequency combining coefficient; the number of the first space-domain basis vector, the scale coefficient of the first space-frequency combining coefficient and the number of the second space-domain basis vector , Correspondence
  • the rank indicator value of 1 or 2 is the first rank indicator value
  • the rank indicator value of 3 or 4 is the second rank indicator value
  • the parameter corresponding to the first rank indicator value is the second parameter as an example, and various correspondences in the first correspondence are described in detail.
  • the first parameter is represented by subscript 1
  • the parameter with the second rank indicator value of 3 is represented by subscript 2
  • the parameter with the second rank indicator value of 4 is represented by number 3.
  • the above-mentioned first parameter may include a parameter or a parameter set when the first rank indicator value is 1 or 2.
  • it may be a parameter subset composed of one or more parameters in the following parameter sets: ⁇ N f1 , L 1 , M 1 or p 1 , K 0,1 or ⁇ 1 ⁇ , where N f1 is the number of first frequency domain units, L 1 is the number of first spatial domain basis vectors, and M 1 is the first frequency domain basis vector P 1 is the scale coefficient of the first frequency domain base vector, K 0,1 is the number of the first space-frequency combination coefficient, ⁇ 1 is the scale coefficient of the first space-frequency combination coefficient.
  • the foregoing second parameter may be a parameter subset composed of one or more parameters in the following parameter sets: ⁇ N f2 , L 2 , M 2 or p 2 , K 0,2 or ⁇ 2 ⁇ , where N f2 is the number of second frequency domain units, L 2 is the number of second spatial basis vectors, M 2 is the number of second frequency domain basis vectors, and p 2 is the second frequency
  • N f2 is the number of second frequency domain units
  • L 2 is the number of second spatial basis vectors
  • M 2 is the number of second frequency domain basis vectors
  • p 2 is the second frequency
  • K 0,2 is the number of the second space-frequency combination coefficients
  • ⁇ 2 is the scale coefficient of the second space-frequency combination coefficients.
  • the foregoing second parameter may be a parameter subset composed of one or more parameters in the following parameter sets: ⁇ N f3 , L 3 , M 3 or p 3 , K 0,3 or ⁇ 3 ⁇ , where N f3 is the number of second frequency domain units, L 3 is the number of second space domain basis vectors, M 3 is the number of second frequency domain basis vectors, and p 3 is the second frequency domain.
  • the scale coefficient of the domain basis vector, K 0,3 is the number of second space-frequency combining coefficients, and ⁇ 3 is the scale coefficient of the second space-frequency combining coefficient.
  • Table 1 shows a corresponding relationship between the number of first spatial basis vectors and the number of second spatial basis vectors.
  • Table 1 shows a corresponding relationship between the number of first spatial basis vectors and the number of second spatial basis vectors.
  • each candidate value set includes a first index, a set of the number of second spatial basis vectors L 2 when the second rank indicator value is 3, and a second rank indicator value of 4 The set of the number of spatial basis vectors L 2 .
  • the set of the number L 2 of the second spatial basis vectors when the second rank indicator value is 3 includes 3 values in total, corresponding to the 3 spatial layers when the second rank indicator value is 3;
  • the second rank indicator value The set of the number L 2 of the second spatial basis vector when it is 4 includes a total of 4 values, which respectively correspond to the 4 spatial layers when the second rank indicator value is 4. That is to say, in Table 1, L 1 and the first index, L 1 and L 2 , L 1 and L 3 are all one-to-many relationships, and for the same L 1 , the first index and L 2 , the first The index and L 3 have a one-to-one relationship.
  • the first index is 1, and the channel measurement result with the second rank indicator value of 4 is the best, it is determined that the first index that needs to be reported is 1, the second rank indicator value is 4, and the 4th index corresponding to the 4 spatial layers
  • the number L 3 of the three second spatial basis vectors corresponding to the three spatial layers is 4, 3, 1 in descending order of the number of the spatial layers.
  • the corresponding relationship between the number of first airspace basis vectors and the number of second airspace basis vectors shown in Table 1 is a numerical relationship. It is easy to understand that the corresponding relationship between the number of first airspace basis vectors and the number of second airspace basis vectors can also be a proportional coefficient relationship.
  • Table 2 shows the number of first airspace basis vectors, and the corresponding relationship between the number of second airspace basis vectors and the number of first airspace basis vectors.
  • the terminal device can search for the difference between the number of second spatial basis vectors corresponding to each spatial layer and the number of first spatial basis vectors when the second rank indicator value is 3 or 4 according to the number of first spatial basis vectors and the first index.
  • the second rank indicator value is 3 or 4 respectively according to the proportional coefficient and the number of first spatial basis vectors. For example, if the number of first spatial basis vectors is L and the first index is 3, the second rank indicator value found is 3 or 4, respectively, and the number of second spatial basis vectors corresponding to each spatial layer is the same as the first spatial basis.
  • the proportional coefficients between the number of basis vectors are in descending order according to the number of the space layer: L, L, L/2, L, L, L/2, L/2.
  • the number of second spatial basis vectors corresponding to the three spatial layers when the second rank indicator value is 3 respectively is 4, 4, and 2, according to the number of the spatial layer, and the second rank indicator value
  • the number of the second spatial basis vectors corresponding to the four spatial layers at 4 respectively is 4, 4, 2, and 2 according to the number of the spatial layer from small to large.
  • Table 3 shows a corresponding relationship between the number of first frequency domain base vectors and the number of second frequency domain base vectors.
  • Table 3 shows a corresponding relationship between the number of first frequency domain base vectors and the number of second frequency domain base vectors.
  • each candidate value set includes a first index, a set of the number of second frequency domain basis vectors M 2 when the second rank indicator value is 3, and a first index when the second rank indicator value is 4 A set of the number M 2 of two frequency domain basis vectors.
  • the set of the number M 2 of the second frequency domain basis vectors when the second rank indicator value is 3 includes 3 values in total, corresponding to the 3 spatial layers when the second rank indicator value is 3;
  • the second rank indicator The set of the number M 2 of the second frequency-domain basis vectors when the value is 4 includes a total of 4 values, respectively corresponding to the 4 spatial layers when the second rank indicator value is 4. That is to say, in Table 3, M 1 and the first index, M 1 and M 2 , M 1 and M 3 are all one-to-many relationships, and for the same M 1 , the first index and M 2 , the first The index and M 3 have a one-to-one relationship.
  • the terminal device can find the number from Table 3, the four second frequency domain vectors from the group M 2 and M 3 are composed of M 1 corresponding to the value set in accordance with a candidate M 1 in the embodiment of the present application . Then, the terminal device can traverse the aforementioned four candidate value sets for cooperative channel measurement, and according to the measurement results, select the second rank indicator value that is optimally adapted to the current channel state, the number of spatial layers corresponding to the second rank indicator value, and The number of second frequency domain basis vectors for each spatial layer.
  • the first index to be reported is 1 and the second rank indicator value is 4.
  • the number M 3 of the four second frequency-domain basis vectors corresponding to the four spatial layers is 4, 4, 3, 3 in descending order of the number of the spatial layers.
  • the first index to be reported is 2, and the second rank indicator value is 3.
  • the number M 3 of the three second frequency-domain basis vectors corresponding to the three spatial layers is 3, 3, 2 in descending order of the number of the spatial layers.
  • the corresponding relationship between the number of first frequency domain basis vectors and the number of second frequency domain basis vectors shown in Table 3 is a numerical relationship. It is easy to understand that the corresponding relationship between the number of first frequency domain base vectors and the number of second frequency domain base vectors may also be a proportional coefficient relationship.
  • Table 4 shows the number of first frequency domain basis vectors and the correspondence between the number of second frequency domain basis vectors and the proportional coefficients of the number of first frequency domain basis vectors.
  • the terminal device can search for the number of second frequency domain basis vectors corresponding to each spatial layer when the second rank indicator value is 3 or 4 according to the number of first frequency domain basis vectors and the first index. And calculate the number of second frequency domain basis vectors corresponding to each spatial layer when the second rank indicator value is 3 or 4 respectively according to the ratio coefficient and the number of first frequency domain basis vectors.
  • the second rank indicator value found is 3 or 4 respectively
  • the number of second frequency domain basis vectors corresponding to each spatial layer is The scale coefficients between the number of base vectors in a frequency domain are ascending from small to large according to the number of the space layer: M, M, M/2, M, M, M/2, M/2.
  • the number of second frequency-domain basis vectors corresponding to the three spatial layers when the second rank indicator value is 3 respectively is 4, 4, and 2, according to the number of the spatial layer, from small to large, and the second rank indicates
  • the number of second frequency domain basis vectors corresponding to the 4 spatial layers is 4, 4, 2, and 2 in descending order according to the number of the spatial layers.
  • the accuracy of the correspondence between the number of first frequency domain base vectors and the number of second frequency domain base vectors shown in Table 3 or Table 4 can also be further improved. Therefore, exemplarily, as shown in Table 5, for the same M 1 , the same first index, the same second rank indicator value, and the same spatial layer, different polarization directions can be respectively corresponding to The number of different second frequency domain basis vectors.
  • the polarization direction can usually include the first polarization direction and the second polarization direction.
  • the first polarization direction needs to be stronger than the second polarization direction, while in other scenarios , The first polarization direction needs to be weaker than the second polarization direction.
  • Table 6 shows a correspondence relationship between the scale coefficient of the first frequency domain base vector and the scale coefficient of the second frequency domain base vector.
  • each scale factor p 1 of the first frequency domain basis vector there are a total of 4 candidate value sets for the scale factor of the second frequency domain basis vector.
  • each candidate value set includes a first index, a set of scale coefficients p 2 of the second frequency domain base vector when the second rank indicator value is 3, and a set of the second rank indicator value of 4 A set of scale coefficients p 2 of the second frequency domain basis vector.
  • the set of scale coefficients p 2 of the second frequency domain basis vector when the second rank indicator value is 3 includes a total of 3 values, respectively corresponding to the 3 spatial layers when the second rank indicator value is 3;
  • the set of scale coefficients p 2 of the second frequency domain base vector when the indicator value is 4 includes a total of 4 values, which respectively correspond to the 4 spatial layers when the second rank indicator value is 4. That is to say, in Table 6, p 1 and the first index, p 1 and p 2 , p 1 and p 3 are all one-to-many relationships, and for the same p 1 , the first index and p 2 , the first Both index and p 3 have a one-to-one relationship.
  • the scale coefficients p 3 of the three second frequency-domain basis vectors corresponding to each spatial layer are p, p, p/2 in descending order according to the number of the spatial layer.
  • the number of frequency domain basis vectors can be calculated according to the following formula:
  • N f is the number of frequency domain units
  • f is the size of the frequency domain units
  • its value can be the number of RBs or the number of built-in units, both of which are configuration values.
  • M and p may be M 1 and p 1 , or M 2 and p 2 , or M 3 and p 3 .
  • the second rank indicator value is 3 or 4
  • one p or one M in the above formula actually corresponds to a set of parameters, or a set of parameters.
  • one M in the above formula represents 4 values of the number of second frequency domain basis vectors, and the 4 values correspond to the 4 spatial layers respectively.
  • one p in the above formula represents 3 values of the proportional relationship of the second frequency domain basis vector, and the 3 values respectively correspond to the 3 spatial layers one-to-one.
  • the accuracy of the corresponding relationship between the scale coefficient of the first frequency domain base vector and the scale coefficient of the second frequency domain base vector shown in Table 6 can also be further improved.
  • different polarization directions can correspond to different The scale factor of the second frequency domain basis vector.
  • the polarization direction can usually include the first polarization direction and the second polarization direction. In some scenarios, the first polarization direction needs to be stronger than the second polarization direction. In a scenario, the first polarization direction needs to be stronger than the second polarization direction.
  • the control granularity required for the strong polarization direction is usually higher than that for the weak polarization direction. Therefore, the number of frequency domain basis vectors required for the strong polarization direction is more, that is, the scale factor of the frequency domain basis vectors is higher.
  • the first index is 3
  • the second rank indicator value is 4 for spatial layer 2
  • the second frequency domain basis vector corresponding to the strong polarization direction and the weak polarization direction The scale factors are 5p/6 and 5p/12, respectively.
  • Table 8 shows a correspondence relationship between the number of first frequency domain units, the scale coefficient of the first frequency domain basis vector, and the number of second frequency domain basis vectors.
  • Table 8 shows a correspondence relationship between the number of first frequency domain units, the scale coefficient of the first frequency domain basis vector, and the number of second frequency domain basis vectors.
  • the first parameter set ⁇ N f1 p 1 ⁇ composed of the number of first frequency domain units N f1 and the scale coefficient p 1 of the first frequency domain basis vector
  • each candidate value set includes a first index, a set of the number of second frequency domain basis vectors M 2 when the second rank indicator value is 3, and a first index when the second rank indicator value is 4 A set of the number M 2 of two frequency domain basis vectors.
  • the set of the number M 2 of the second frequency domain basis vectors when the second rank indicator value is 3 includes 3 values in total, corresponding to the 3 spatial layers when the second rank indicator value is 3;
  • the second rank indicator The set of the number M 2 of the second frequency-domain basis vectors when the value is 4 includes a total of 4 values, respectively corresponding to the 4 spatial layers when the second rank indicator value is 4.
  • ⁇ N f1 , p 1 ⁇ and the first index, ⁇ N f1 , p 1 ⁇ and M 2 , ⁇ N f1 , p 1 ⁇ and M 3 are all one-to-many relationships, and For the same ⁇ N f1 , p 1 ⁇ , the first index and M 2 , and the first index and M 3 have a one-to-one relationship.
  • the terminal device can find from Table 3 according to one ⁇ N f1 , p 1 ⁇ , four second ones composed of M 2 and M 3 corresponding to the ⁇ N f1 , p 1 ⁇ A set of candidate values for the number of base vectors in the frequency domain. Then, the terminal device can traverse the aforementioned four candidate value sets for cooperative channel measurement, and according to the measurement results, select the second rank indicator value that is optimally adapted to the current channel state, the number of spatial layers corresponding to the second rank indicator value, and The number of second frequency domain basis vectors for each spatial layer.
  • the first index to be reported is 1.
  • the second rank indicator value is 4, and the number M 3 of the 4 second frequency-domain basis vectors corresponding to the 4 spatial layers are 4, 4, 3, 3 in descending order of the number of the spatial layers.
  • the first index that needs to be reported is determined
  • the second rank indicator value is 2, and the second rank indicator value is 3.
  • the number M 3 of the three second frequency domain basis vectors corresponding to the three spatial layers is 2, 2, and 1, in descending order of the number of the spatial layers.
  • the actual configuration preset configuration table or configuration pattern may also be a part of Table 8.
  • the column where L 1 is located may not be included, that is, the values of M 2 and M 3 are only the same as N f1 /f It is related to p 1 .
  • the correspondence between the number of first frequency domain units, the scale coefficient of the first frequency domain basis vector, and the number of second frequency domain basis vectors shown in Table 8 is a numerical relationship. It is easy to understand that the correspondence relationship between the number of the first frequency domain unit, the scale coefficient of the first frequency domain basis vector, and the number of the second frequency domain basis vector may also be a scale coefficient relationship.
  • Table 9 shows a correspondence relationship between the number of first frequency domain units, the number of first frequency domain base vectors, and the proportional coefficients between the number of second frequency domain base vectors and the number of first frequency domain base vectors.
  • the terminal device can search for the number of second frequency domain basis vectors corresponding to each spatial layer when the second rank indicator value is 3 or 4 according to the number of first frequency domain units, the number of first frequency domain basis vectors, and the first index.
  • the number of basis vectors is the number of basis vectors.
  • the second rank indicator value found is 3 or 4, respectively.
  • the proportional coefficients between the number of base vectors in the second frequency domain and the number of base vectors in the first frequency domain are: p, p, p/2, p, p, p/2, p/2.
  • the number of second frequency domain basis vectors corresponding to the three spatial layers when the second rank indicator value is 3 is 4, 4, and 2, in descending order of the number of the spatial layers
  • the number of second frequency domain basis vectors corresponding to the 4 spatial layers is 4, 4, 2, 2 in descending order according to the number of the spatial layer.
  • Table 10 shows a correspondence relationship between the number of first space-frequency combining coefficients and the number of second space-frequency combining coefficients.
  • Table 10 shows a correspondence relationship between the number of first space-frequency combining coefficients and the number of second space-frequency combining coefficients.
  • each candidate value set includes a first index, a set of the number of second space-frequency combining coefficients K 0,2 when the second rank indicator value is 3, and a second rank indicator value of 4 A set of the number K 0,2 of the second space-frequency combining coefficient.
  • the set of the number K 0,2 of the second space-frequency combination coefficients when the second rank indicator value is 3 includes 3 values, respectively corresponding to the 3 spatial layers when the second rank indicator value is 3;
  • the set of the number K 0,2 of the second space-frequency combining coefficients when the rank indicator value is 4 includes 4 values in total, corresponding to the 4 spatial layers when the second rank indicator value is 4 respectively.
  • K 0,1 and the first index, K 0,1 and K 0,2 , K 0,1 and K 0,3 are all one-to-many relationships, and for the same K 0 ,1 , the first index and K 0,2 , and the first index and K 0,3 have a one-to-one relationship.
  • the terminal device can find from the table 10 corresponding to the K 0,1 four second space frequencies composed of K 0,2 and K 0,3 according to one K 0,1 A set of candidate values for the number of merge coefficients. Then, the terminal device can traverse the aforementioned four candidate value sets for cooperative channel measurement, and according to the measurement results, select the second rank indicator value that is optimally adapted to the current channel state, the number of spatial layers corresponding to the second rank indicator value, and The number of second space-frequency combining coefficients for each space layer.
  • K 0,1 K 0 as an example, assuming that the first index is 1 and the channel measurement result with the second rank indicator value of 4 is the best, it is determined that the first index to be reported is 1, and the second rank indicator The value is 4.
  • the number K 0,3 of the 4 second space-frequency combination coefficients corresponding to the 4 space layers is ascending from small to large according to the number of the space layers: K 0 , K 0 , K 0 /2, K 0 /2 .
  • K 0,1 K 0 as an example, assuming that the first index is 2 and the channel measurement result of the second rank indicator value is 3 is the best, it is determined that the first index to be reported is 2, and the second rank The indicating value is 3, and the number K 0,2 of the 3 second space-frequency combination coefficients corresponding to the 3 space layers is ascending from small to large according to the number of the space layers: K 0 , K 0 , K 0 /2.
  • Table 11 shows a corresponding relationship between the proportional coefficient of the first space-frequency combination coefficient and the proportional coefficient of the second space-frequency combination coefficient.
  • Table 11 shows a corresponding relationship between the proportional coefficient of the first space-frequency combination coefficient and the proportional coefficient of the second space-frequency combination coefficient.
  • each candidate value set includes a first index, a set of proportional coefficient ⁇ 2 of the second space-frequency combining coefficient when the second rank indicator value is 3, and a set of the second rank indicator value of 4 A set of the proportional coefficient ⁇ 3 of the second space-frequency combining coefficient.
  • the set of the proportional coefficient ⁇ 2 of the second space-frequency combination coefficient when the second rank indicator value is 3 includes 3 values, respectively corresponding to the 3 spatial layers when the second rank indicator value is 3; a second scale factor value indicating the frequency space 4 combined set of coefficients ⁇ 3 comprises a total of four values, each value corresponding to the second rank indicator 4 of the space layer 4. That is to say, in Table 11, ⁇ 1 and the first index, ⁇ 1 and ⁇ 2 , ⁇ 1 and ⁇ 3 are all one-to-many relationships, and for the same ⁇ 1 , the first index and ⁇ 2 , the first The index and ⁇ 3 have a one-to-one relationship.
  • the terminal device can find from Table 11 the candidate of the ratio coefficients of the 4 second space-frequency combining coefficients corresponding to the ⁇ 1 and consisting of ⁇ , 2 and ⁇ 3 according to one ⁇ 1 Value collection. Then, the terminal device can traverse the aforementioned four candidate value sets for cooperative channel measurement, and according to the measurement results, select the second rank indicator value that is optimally adapted to the current channel state, the number of spatial layers corresponding to the second rank indicator value, and The scale factor of the second space-frequency combination coefficient of each space layer.
  • the space layer 4 corresponding to four second combined frequency space coefficient proportional coefficient ⁇ 3 in accordance with the number of spatial layers in ascending order of: ⁇ , ⁇ , ⁇ / 2 , ⁇ / 2.
  • the proportional coefficient ⁇ 2 of the three second space-frequency combining coefficients corresponding to the three spatial layers is as follows: ⁇ , ⁇ , ⁇ /2 according to the number of the spatial layer from small to large.
  • the number of space-frequency combination coefficients K 0 needs to be calculated according to the number of space-domain basis vectors L, the number of frequency-domain basis vectors M, and the proportional coefficient ⁇ of space-frequency combination coefficients.
  • the number of space-frequency combination coefficients can be calculated according to the following formula:
  • K 0 , L, M, ⁇ can be K 0,1 , L 1 , M 1 , ⁇ 1 , or K 0,2 , L 2 , M 2 , ⁇ 2 , can be K 0,3 , L 3 , M 3 , ⁇ 3 .
  • Table 12 shows a correspondence relationship between the scale coefficients of the first space-domain base vector and the first space-frequency combining coefficient, and the number of second space-domain base vectors and the number of second space-frequency combining coefficients.
  • Table 12 shows a correspondence relationship between the scale coefficients of the first space-domain base vector and the first space-frequency combining coefficient, and the number of second space-domain base vectors and the number of second space-frequency combining coefficients.
  • p 1 ⁇ composed of the number L 1 of the first space-domain basis vector of the same group and the scale coefficient p 1 of the first space-frequency combining coefficient
  • each candidate value set includes a first index, a second rank indicator value of 3, the number of second spatial basis vectors L 2 and the second spatial frequency combination coefficient proportional relationship p 2 candidate value sub Set ⁇ L 2 , p 2 ⁇ , and a candidate value subset ⁇ L 3 , of the number of second spatial basis vectors L 3 and the proportional relationship p 3 of the second spatial frequency combining coefficient when the second rank indicator value is 4 p 3 ⁇ .
  • the number L 2 of the second spatial domain basis vector and the ratio of the second spatial-frequency combination coefficient p 2 candidate value subset ⁇ L 2 , p 2 ⁇ includes a total of 3 sets of values , Respectively correspond to the 3 spatial layers when the second rank indicator value is 3; when the second rank indicator value is 4, the number of second spatial basis vectors L 3 and the second space-frequency combination coefficient proportional relationship p 3 candidate value
  • the subset ⁇ L 3 , p 3 ⁇ includes 4 sets of values in total, corresponding to the 4 spatial layers when the second rank indicator value is 4.
  • ⁇ L 1 , p 1 ⁇ and the first index, ⁇ L 1 , p 1 ⁇ and ⁇ L 2 , p 2 ⁇ , ⁇ L 1 , p 1 ⁇ and ⁇ L 3 , p 3 ⁇ are all one-to-many relationships, and for the same ⁇ L 1 , p 1 ⁇ , the first index and ⁇ L 2 , p 2 ⁇ , the first index and ⁇ L 3 , p 3 ⁇ are all one-to-one relationships .
  • the terminal device may ⁇ , p 1 L 1 ⁇ , lookup from Table 12 to according to one in the present application embodiment the ⁇ L 1, p 1 ⁇ corresponding to the ⁇ L 2, p 2 ⁇ and ⁇ L 3 , P 3 ⁇ is a set of 4 candidate values. Then, the terminal device can traverse the aforementioned four candidate value sets for cooperative channel measurement, and according to the measurement results, select the second rank indicator value that is optimally adapted to the current channel state, the number of spatial layers corresponding to the second rank indicator value, and The ratio between the number of second space-domain basis vectors in each space layer and the second space-frequency combination coefficient.
  • the first index is 5 and the channel measurement result with the second rank indicator value of 4 is the best, it is determined that the first index to be reported is 5.
  • the second rank indicator value is 4, and the 4 ⁇ L 3 , p 3 ⁇ corresponding to the 4 space layers are as follows according to the number of the space layer: ⁇ L, p/2 ⁇ , ⁇ L, p/2 ⁇ , ⁇ L/2, p ⁇ , ⁇ L/2, p ⁇ .
  • the first index is 7 and the channel measurement result with the second rank indicator value of 4 is the best, it is determined that the first index to be reported is 7 ,
  • the second rank indicator value is 3, and the 3 ⁇ L 2 , p 2 ⁇ corresponding to the 3 spatial layers are as follows according to the number of the spatial layers: ⁇ L, p ⁇ , ⁇ L/2, p ⁇ , ⁇ L, p/2 ⁇ .
  • Table 13 shows one of the number of first spatial basis vectors and the scale factor of the first frequency domain basis vector, and the number of second spatial basis vectors and the scale factor of the second frequency domain basis vector.
  • Table 13 shows one of the number of first spatial basis vectors and the scale factor of the first frequency domain basis vector, and the number of second spatial basis vectors and the scale factor of the second frequency domain basis vector.
  • each candidate value set includes a first index, a second rank indicator value of 3, the number of second spatial domain basis vectors L 2 and the second frequency domain basis vector ratio ⁇ 2 candidate values Set ⁇ L 2 , ⁇ 2 ⁇ , and a candidate value subset ⁇ L 3 , of the number L 3 of the second spatial domain basis vector and the proportional relationship ⁇ 3 of the second frequency domain basis vector when the second rank indicator value is 4 ⁇ 3 ⁇ .
  • the number L 2 of the second spatial domain basis vector and the ratio of the second frequency domain basis vector ⁇ 2 candidate value subset ⁇ L 2 , ⁇ 2 ⁇ includes a total of 3 sets of values , Respectively correspond to the 3 spatial layers when the second rank indicator value is 3; when the second rank indicator value is 4, the number of second spatial domain basis vectors L 3 and the second frequency domain basis vector ratio ⁇ 3 candidate values
  • the subset ⁇ L 3 , ⁇ 3 ⁇ includes 4 sets of values in total, corresponding to the 4 spatial layers when the second rank indicator value is 4.
  • ⁇ L 1 , ⁇ 1 ⁇ and the first index, ⁇ L 1 , ⁇ 1 ⁇ and ⁇ L 2 , ⁇ 2 ⁇ , ⁇ L 1 , ⁇ 1 ⁇ and ⁇ L 3 , ⁇ 3 ⁇ are one-to-many relationships, and for the same ⁇ L 1 , ⁇ 1 ⁇ , the first index and ⁇ L 2 , ⁇ 2 ⁇ , the first index and ⁇ L 3 , ⁇ 3 ⁇ are all one-to-one relationships .
  • the terminal device can find the corresponding group ⁇ L 1 , ⁇ 1 ⁇ from the table 13 according to 1 group ⁇ L 1 , ⁇ 1 ⁇ by ⁇ L 2 , ⁇ 2 ⁇ and ⁇ L 3 , ⁇ 3 ⁇ is composed of 4 candidate value sets. Then, the terminal device can traverse the aforementioned four candidate value sets for cooperative channel measurement, and according to the measurement results, select the second rank indicator value that is optimally adapted to the current channel state, the number of spatial layers corresponding to the second rank indicator value, and The proportional relationship between the number of second spatial basis vectors in each spatial layer and the second frequency domain basis vectors.
  • the first index to be reported is 5.
  • the second rank indicator value is 4, and the 4 ⁇ L 3 , ⁇ 3 ⁇ corresponding to the 4 spatial layers are ascending in descending order according to the number of the spatial layers: ⁇ L, ⁇ /2 ⁇ , ⁇ L, ⁇ /2 ⁇ , ⁇ L/2, ⁇ , ⁇ L/2, ⁇ .
  • one or a group of first parameters may correspond to one or more, or one or more groups of candidate values for the second parameter.
  • the foregoing first correspondence relationship may be stored in the terminal device in a manner of a preset configuration table or configuration pattern.
  • the terminal device can search for one or more corresponding candidate values of the second parameter according to the first parameter, or one or more sets of candidate values of the second parameter, and then perform measurement tasks such as channel state measurement by traversing all the candidate values, and perform measurement tasks such as channel state measurement according to the measurement results
  • the second parameter with the optimal channel state and the indication information of the second precoding matrix can be selected from the foregoing traversal measurement results.
  • the terminal device may not report the second parameter, but only the first index.
  • the network device also needs to store the above-mentioned first correspondence locally. After the network device receives the first index reported by the terminal device, it can determine the second parameter based on the first index and the first parameter previously issued to the terminal device, and then determine the second parameter based on the second parameter and the second preset reported by the terminal device.
  • the indication information of the coding matrix generates a second precoding matrix. Therefore, optionally, the above communication method may further include the following steps:
  • Step 3 The terminal device sends the first index to the network device.
  • the first index is an index value determined according to the first parameter and the first corresponding relationship. For the same (group) first parameter, the first index corresponds to the second parameter one-to-one.
  • the network device may also send the first index corresponding to the partial candidate values of the second parameter to the terminal device, for example, only one first index is configured. Therefore, optionally, the above communication method may further include the following steps:
  • Step 4 The terminal device receives the first index from the network device.
  • the first index is used to determine the second parameter according to the first parameter and the first correspondence.
  • the network device configures a first index
  • the terminal device reports the indication information of the second precoding matrix, it is not necessary to report the configured first index.
  • the terminal device when the network device configures multiple first indexes, the terminal device also needs to report the corresponding first index when reporting the indication information of the second precoding matrix. It is easy to understand that the terminal device needs to traverse multiple first indexes to perform channel measurement tasks. After that, the terminal device can perform one of the following:
  • the first index that optimally adapts to the current channel state, the indication information of the second precoding matrix and the rank indication value are selected, and reported to the network device.
  • the indicator information and the rank indicator value of the second precoding matrix corresponding to each first index are all reported to the network device.
  • the above S302 terminal device determining the second parameter and the indication information of the second precoding matrix according to the first parameter may include the following steps:
  • Step 5 The terminal device calculates the converted value of the second parameter according to the first parameter and the preset conversion rule.
  • the foregoing preset conversion rule may include one or more of the following formulas:
  • L is the number of basis vectors in the first airspace
  • M is the number of basis vectors in the first frequency domain
  • K 0 is the number of first space-frequency combining coefficients
  • R is the candidate value of the rank indicator corresponding to the second parameter
  • R is a positive integer and R>2.
  • the rank indicator value is 3 or 4
  • each spatial layer corresponds to a different number of frequency domain basis vectors, then for the case where the rank indicator value is 3, the conversion value of the number of frequency domain basis vectors is:
  • the conversion value of the average frequency domain basis vector number is:
  • the above S302 terminal device determining the second parameter and the indication information of the second precoding matrix according to the first parameter may further include the following steps:
  • Step 6 the terminal device directly uses the converted value of the second parameter as the second parameter.
  • the foregoing S302 terminal device determining the second parameter and the indication information of the second precoding matrix according to the first parameter may further include the following steps:
  • Step 7 The terminal device uses the sum of the deviation value of the second parameter and the converted value of the second parameter as the second parameter.
  • the deviation value of the second parameter corresponds to the second index one to one.
  • the deviation value is usually a small value, which can be positive, negative, or zero.
  • the one-to-one correspondence between the deviation value of the second parameter and the second index (hereinafter referred to as the second correspondence) can also be stored in the form of a pre-configured table or correspondence pattern like the above-mentioned first correspondence. In terminal equipment and network equipment.
  • Table 14 is an example of the foregoing second correspondence.
  • the 4 second indexes 0, 1, 2, and 3 correspond to the deviation values of the 4 second parameters: 1, 0, -1, -2.
  • the foregoing preset conversion rule may include one or more of the following formulas:
  • L 1 is the number of a first spatial basis vectors
  • L i is the number of the second spatial basis vectors
  • M 1 is the number of first frequency domain basis vectors
  • M i is the number of second frequency domain basis vectors
  • K 0 a number of frequency coefficients is combined first blank
  • K 0 is the number of the second space-frequency conversion value of the combined coefficient
  • R i is the second parameter value corresponding rank indication
  • R i is a positive integer and R i> 2, i value of 2 or 3, R i ⁇ , ⁇ , ⁇ followed by L i, M i, K 0 , the deviation value of i.
  • the rank indicator value is 3 or 4
  • each spatial layer corresponds to a different number of frequency domain basis vectors, assuming that ⁇ is 1, then for the case of the rank indicator value of 3, the number of frequency domain basis vectors is 6; for the rank indicator value In the case of 4, the converted value of the average frequency domain basis vector number is 5.
  • the network device may also issue the above-mentioned second index to the terminal device, and then the terminal device determines the deviation value of the second parameter by itself according to the second correspondence relationship stored locally. Therefore, optionally, before performing the foregoing S302, the terminal device determines the second parameter and the indication information of the second precoding matrix according to the first parameter, the foregoing communication method may further include the following steps:
  • Step 8 The terminal device receives the second index or the deviation value of the second parameter from the network device.
  • the second index corresponds to the deviation value of the second parameter one to one.
  • the network device may issue the second index in the form of a bitmap.
  • the network device indicates the high-level signaling of the number of frequency-domain basis vectors corresponding to each spatial layer with the rank indicator value of 3 and 4, which contains a total of 7 fields, which are used to indicate each of the rank indicators of 3 and 4 respectively.
  • each field contains 2 bits, which are used to indicate a second index in Table 3.
  • Each second index corresponds to an optional deviation of the number of frequency domain basis vectors relative to the number of frequency domain basis vectors .
  • the high-level signaling is 00011101011010, which means that when the indicating rank indicator value is 3, the deviation of the converted value of the number of frequency domain basis vectors corresponding to spatial layers 1 to 3 relative to the number of frequency domain basis vectors is: 1, 0 ,-2. Similarly, when the indicating rank indicator value is 3, the number of frequency domain basis vectors corresponding to spatial layer 2 is 5, and the number of frequency domain basis vectors corresponding to spatial layer 3 is 3. When the indicator rank indicator value is 4, the number of frequency domain basis vectors corresponding to spatial layers 1 to 4 are 4, 4, 3, and 3, respectively.
  • the network device may not issue the deviation value of the second parameter and the second index.
  • the terminal device can also determine the deviation value of the second parameter and the candidate value of the second index according to the second corresponding relationship stored locally, and perform measurement tasks such as channel state measurement by traversing all the candidate values, and determine the needs based on the best The deviation value and the second index of the reported second parameter. Therefore, optionally, the above communication method may further include the following steps:
  • Step 9 The terminal device sends the second index or the deviation value of the second parameter to the network device.
  • the second index corresponds to the deviation value of the second parameter one to one.
  • the above-mentioned first parameter corresponds to the first rank indicator value
  • the second parameter corresponds to the second rank indicator value
  • the second rank indicator value is greater than the first rank indicator value.
  • the terminal device preferably determines the rank indicator value that needs to be reported from the first rank indicator value and the second rank indicator value according to the channel state measurement result, so that the network device generates a precoding matrix that best matches the current channel state. Therefore, optionally, the communication method may further include the following steps:
  • Step ten The terminal device sends the second rank indicator value to the network device.
  • the terminal device sends the indication information of the second precoding matrix to the network device.
  • the network device receives the indication information of the second precoding matrix from the terminal device.
  • the terminal device may report the indication information of the second precoding matrix in the uplink through a channel state indication report, a measurement report, and the like. It is easy to understand that in addition to the indication information of the second precoding matrix, the terminal device needs to report one or more of the following parameters: the first rank indicator value or the second rank indicator value, the first index or the second parameter, For the specific method for determining the deviation value of the second index or the second parameter, refer to the related description in S302, which will not be repeated here.
  • the terminal device can determine the second parameter according to the first parameter configured by the base station, and determine the indication information for generating the second precoding matrix according to the second parameter, without affecting the existing first parameter.
  • the parameter configuration process can reduce the configuration complexity of configuring the second parameter and save the configuration overhead of the second parameter, thereby improving the working efficiency of the wireless communication system.
  • the communication method of the embodiment of the present application is described in detail above in conjunction with FIG. 3.
  • the following describes in detail a communication device capable of executing the communication method described in the method embodiment of the present application with reference to FIG. 4 and FIG. 5.
  • the embodiment of the present application provides a communication device, which can be applied to the terminal device shown in FIG. 1 and used to perform the functions of the terminal device in the communication method described in FIG. 3.
  • the communication device 400 includes a receiving module 401 and a sending module 402.
  • the receiving module 401 is configured to receive the first parameter from the network device.
  • the first parameter is used to determine the indication information of the first precoding matrix and the second parameter
  • the second parameter is used to determine the indication information of the second precoding matrix.
  • the sending module 402 is configured to send the indication information of the second precoding matrix to the network device.
  • the above-mentioned first parameter includes one or more of the following parameters: the number of first frequency domain units, the number of first spatial domain basis vectors, the number or scale coefficient of the first frequency domain basis vectors, the first spatial frequency The number or scale factor of the combination factor.
  • the above-mentioned second parameter includes one or more of the following parameters: the number of second frequency domain units, the number of second spatial domain basis vectors, the number or scale coefficient of second frequency domain basis vectors, and the second space-frequency combination The number of coefficients or scale factors.
  • the foregoing first parameter is used to determine the second parameter, which may include: determining the second parameter according to the first correspondence.
  • the first correspondence includes one or more of the following correspondences: the correspondence between the number of first spatial basis vectors and the number of second spatial basis vectors; the number of first frequency domain basis vectors and the second frequency domain Correspondence between the number of basis vectors; Correspondence between the scale factor of the first frequency domain basis vector and the scale factor of the second frequency domain basis vector; The ratio of the first frequency domain unit number to the first frequency domain basis vector Correspondence between the number of coefficients and the number of second frequency domain basis vectors; Correspondence between the number of first space-frequency combination coefficients and the number of second space-frequency combination coefficients; The ratio coefficient of the first space-frequency combination coefficient and the first 2.
  • the proportional coefficients of space-frequency combination coefficients Correspondence between the proportional coefficients of space-frequency combination coefficients; the number of first space-domain basis vectors, the number of first frequency-domain basis vectors, the number of first space-frequency combination coefficients, and the number of second space-frequency combination coefficients Correspondence relationship between the number of first spatial domain basis vectors, the number of first frequency domain basis vectors, the number of second spatial domain basis vectors, and the number of second frequency domain basis vectors; the first spatial domain basis vector The corresponding relationship between the number of base vectors in the first frequency domain, the number of base vectors in the second space domain, and the number of base vectors in the second frequency domain; the number of base vectors in the first space, the first space-frequency combination coefficient Correspondence between the number and the number of the second space-domain basis vector and the number of the second space-frequency combining coefficient; the number of the first space-domain basis vector, the scale coefficient of the first space-frequency combining coefficient and the number of the second space-domain basis vector , Correspondence
  • the sending module 402 is further configured to send the first index to the network device.
  • the first index is an index value determined according to the first parameter and the first corresponding relationship, and the first index corresponds to the second parameter one-to-one.
  • the receiving module 401 is further configured to receive the first index from the network device.
  • the first index is used to determine the second parameter according to the first parameter and the first correspondence.
  • the above-mentioned first parameter is used to determine the second parameter, which may include: calculating the converted value of the second parameter according to the first parameter and a preset conversion rule.
  • the foregoing preset conversion rule includes one or more of the following formulas: Among them, L is the number of basis vectors in the first airspace, Is the converted value of the number of basis vectors in the second spatial domain, M is the number of basis vectors in the first frequency domain, Is the converted value of the number of base vectors in the second frequency domain, K 0 is the number of first space-frequency combining coefficients, Is the converted value of the number of the second space-frequency combination coefficients, R is the candidate value of the rank indicator corresponding to the second parameter, and R>2.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: using the converted value of the second parameter as the second parameter.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: taking the sum of the deviation value of the second parameter and the converted value of the second parameter as the second parameter.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: a sending module 402, which is further configured to send the second index or the deviation value of the second parameter to the network device.
  • the second index corresponds to the deviation value of the second parameter one to one.
  • the receiving module 401 is further configured to receive the second index or the deviation value of the second parameter from the network device; wherein, the second index corresponds to the deviation value of the second parameter one-to-one.
  • first parameter corresponds to the first rank indicator value
  • second parameter corresponds to the second rank indicator value
  • second rank indicator value is greater than the first rank indicator value
  • the sending module 402 is further configured to send the second rank indicator value to the network device.
  • the aforementioned communication device 400 may further include a processing module 403.
  • the processing module 403 is used to control the receiving module 401 and the sending module 402 of the communication device 400 to perform functions and execute internal processing procedures, such as determining the second parameter according to the first parameter, and an indication of determining the second precoding matrix according to the second parameter Information etc.
  • the communication device 400 may further include a storage module (not shown in FIG. 4).
  • the storage module is used to store the control program or instruction of the communication device 400, and the control program or instruction can be read and executed by the processor 403, so that the communication device 400 executes the communication method shown in FIG. Features.
  • the above-mentioned communication apparatus 400 may be a terminal device, or a chip or a chip system provided inside the terminal device, which is not limited in the embodiment of the present application.
  • the embodiment of the present application provides a communication device 500, which can be applied to the network device shown in FIG. 1 and used to perform the functions of the network device in the communication method described in FIG. 3.
  • the communication device 500 includes: a sending module 501 and a receiving module 502.
  • the sending module 501 is configured to send the first parameter to the terminal device.
  • the first parameter is used for the terminal device to determine the indication information of the first precoding matrix and the second parameter, and the second parameter is used for determining the indication information of the second precoding matrix.
  • the receiving module 502 is configured to receive the indication information of the second precoding matrix from the terminal device.
  • the above-mentioned first parameter includes one or more of the following parameters: the number of first frequency domain units, the number of first spatial domain basis vectors, the number or scale coefficient of the first frequency domain basis vectors, the first spatial frequency The number or scale factor of the combination factor.
  • the above-mentioned second parameter includes one or more of the following parameters: the number of second frequency domain units, the number of second spatial domain basis vectors, the number or scale coefficient of second frequency domain basis vectors, and the second space-frequency combination The number of coefficients or scale factors.
  • the above-mentioned first parameter is used to determine the second parameter, which may include: determining the second parameter according to the first correspondence; where the first correspondence includes one or more of the following correspondences: Correspondence between the number of basis vectors in a space and the number of basis vectors in the second space; the number of basis vectors in the first frequency domain and the number of basis vectors in the second frequency domain; the number of basis vectors in the first frequency domain Correspondence between the scale factor and the scale factor of the second frequency domain basis vector; the correspondence between the number of first frequency domain units, the scale factor of the first frequency domain basis vector and the number of second frequency domain basis vectors; Correspondence between the number of space-frequency combination coefficients and the number of second space-frequency combination coefficients; the corresponding relationship between the proportional coefficients of the first space-frequency combination coefficients and the proportional coefficients of the second space-frequency combination coefficients; the first space domain Correspondence between the number of basis vectors, the number of first frequency domain basis vectors, the ratio coefficient of the first
  • the receiving module 502 is further configured to receive a first index from the terminal device; where the second index is used to determine the second parameter according to the first parameter and the first correspondence.
  • the sending module 501 is further configured to send a first index to the terminal device; where the first index is an index value determined according to the first parameter and the first corresponding relationship, and the first index corresponds to the second parameter one-to-one .
  • the above-mentioned first parameter is used to determine the second parameter, which may include: calculating the converted value of the second parameter according to the first parameter and a preset conversion rule.
  • the foregoing preset conversion rule may include one or more of the following formulas: Among them, L is the number of basis vectors in the first airspace, Is the converted value of the number of basis vectors in the second spatial domain, M is the number of basis vectors in the first frequency domain, Is the converted value of the number of base vectors in the second frequency domain, K 0 is the number of first space-frequency combining coefficients, Is the converted value of the number of the second space-frequency combination coefficients, R is the candidate value of the rank indicator corresponding to the second parameter, and R>2.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: using the converted value of the second parameter as the second parameter.
  • the above-mentioned first parameter is used to determine the second parameter, and may further include: taking the sum of the deviation value of the second parameter and the converted value of the second parameter as the second parameter.
  • the sending module 501 is further configured to send the second index or the deviation value of the second parameter to the terminal device; wherein, the second index corresponds to the deviation value of the second parameter one-to-one.
  • the receiving module 502 is further configured to receive the second index or the deviation value of the second parameter from the terminal device; wherein, the second index corresponds to the deviation value of the second parameter one-to-one.
  • first parameter corresponds to the first rank indicator value
  • second parameter corresponds to the second rank indicator value
  • second rank indicator value is greater than the first rank indicator value
  • the receiving module 502 is further configured to receive the second rank indicator value from the terminal device.
  • the aforementioned communication device 500 may further include a processing module 503.
  • the processing module 503 is used to control the sending module 501 and the receiving module 502 of the communication device 500 to perform functions and execute internal processing procedures, such as determining the first index according to the first parameter and the second parameter, and the indication information of the second precoding matrix Generate a second precoding matrix, etc.
  • the communication device 500 may further include a storage module (not shown in FIG. 5).
  • the storage module is used to store a control program or instruction of the communication device 500, and the control program or instruction can be read and executed by the processor 503, so that the communication device 500 executes the communication method shown in FIG. Features.
  • the embodiment of the application provides a communication system.
  • the communication system includes one or more terminal devices and one or more network devices.
  • the embodiment of the application provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to perform the functions of the terminal device or the network device in the communication method described in the foregoing method embodiment.
  • the embodiment of the present application provides a readable storage medium.
  • the readable storage medium stores a program or instruction, and when the program or instruction runs on a computer, the computer executes the functions of the terminal device or the network device in the communication method described in the foregoing method embodiment.
  • the aforementioned communication device 500 may be a network device, or a chip or a chip system provided inside the network device, which is not limited in the embodiment of the present application.
  • the processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integrated Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the foregoing embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish different objects, or used to distinguish different processing of the same object, instead of describing a specific order of objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the subscript sometimes as W 1 may form the subject of the non-typo as W1, while not emphasize the difference, to express their meaning is the same.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置。该方法包括:终端设备接收来自网络设备的第一参数。其中,第一参数用于确定第一预编码矩阵的指示信息和第二参数,第二参数用于确定第二预编码矩阵的指示信息。然后,终端设备向网络设备发送第二预编码矩阵的指示信息。可以适用于终端设备上报秩指示值为3或4时的预编码矩阵的指示信息。

Description

通信方法及装置
本申请要求于2019年03月29日提交国家知识产权局、申请号为201910252646.1、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
多入多出(multiple input and multiple output,MIMO)技术通过在网络设备和终端设备上部署多根天线,可以显著提高无线通信系统的性能。例如,在分集场景下,MIMO技术可有效提升传输可靠性;在复用场景下,MIMO技术可以大大提升传输吞吐量。
对于基于频分双工(frequency division duplexing,FDD)的无线通信系统,上行链路(uplink,UL)和下行链路(downlink,DL)是分开的。因此,终端设备需要向网络设备反馈下行链路的预编码矩阵或预编码矩阵索引(Precoding Matrix Index,PMI),以便网络设备生成预编码矩阵。具体地,终端设备需要上报每个频域单元对应的合并系数的幅度量化值和相位量化值,因此上报开销很大。为了减少上报开销,网络设备可以配置需要上报的空域基向量的数量,频域基向量的数量以及空频合并系数的数量等压缩码本参数。
但是,现有技术仅给出了秩指示(rank)值为1或2时为不同的秩指示值和/或不同的空间层分别配置不同的压缩码本参数,并没有给出秩指示值为3或4时如何配置压缩码本参数。一方面,可以参考秩指示值为1或2时压缩码本参数的配置方法,完成秩指示值为3或4时的压缩码本参数的配置。但是,鉴于秩指示值为3或4的空间层数更多,需要配置的压缩码本参数的规模更大,需要引入大量新参数,从而导致秩指示值为3或4时的配置过程繁琐复杂。另一方面,为了降低配置复杂度,也可以采用固定比例系数限定秩指示值为3或4时的压缩码本参数取值。但是,固定比例系数方式很难适配动态变化的信道条件,又会影响压缩码本的性能。因此,如何能够在配置秩指示值为3或4时的压缩码本参数的过程中,既能较好的控制配置复杂度,又能够较好地适配动态变化的信道条件,成为一个亟待解决的问题。
发明内容
本申请提供一种通信方法及装置,能够在兼顾压缩码本参数的配置复杂度和适配动态变化的信道条件的前提下,完成秩指示值为3或4时的压缩码本参数的配置。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种通信方法。该通信方法应用于终端设备。该通信方法包括:终端设备接收来自网络设备的第一参数。其中,第一参数用于确定第一预编码矩阵的 指示信息和第二参数,第二参数用于确定第二预编码矩阵的指示信息。然后,终端设备向网络设备发送第二预编码矩阵的指示信息。
本申请实施例提供的通信方法,终端设备可以根据基站配置的第一参数确定第二参数,并根据第二参数确定用于生成第二预编码矩阵的指示信息,不会影响现有的第一参数的配置流程,且可以降低配置第二参数的配置复杂度,节省第二参数的配置开销,从而提高了无线通信系统的工作效率。
示例性地,上述第一参数可以包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数。相应地,上述第二参数可以包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
需要说明的是,频域基向量的比例系数也可以称为频域基向量系数,或频域基向量数目参数。为预设的比例关系,用于确定频域基向量的数量。在一种实现方式中,频域基向量的比例系数记为p,该比例系数表示频域基向量的数目M与频域单元数目的关系,即
Figure PCTCN2020080743-appb-000001
具体地,N f为频域基向量的长度,即频域基向量包含的元素数目。N f的取值可以是频域单元的数目,也可以是预设值。f为CQI子带的粒度与PMI子带的粒度的比值,可用于表征一个CQI频域子带包含f个PMI子带。
空频合并系数的比例系数也称为空频合并系数数目系数,或空频合并系数数目参数。为预设的比例关系,用于确定空频合并系数的数量。在一种实现方式中,空频合并系数的比例系数记为β,该比例系数表示空频合并系数的数目K 0与频域基向量数目和空域基向量数目的关系,即K 0=β2LM。具体地,M为频域基向量的数目,L为空域基向量的数目。
在一种可能的设计方法中,上述第一参数用于确定第二参数,可以包括:根据第一对应关系,确定第二参数。其中,第一对应关系包括如下一种或多种对应关系:第一空域基向量的数量与第二空域基向量的数量之间的对应关系;第一频域基向量的数量与第二频域基向量的数量之间的对应关系;第一频域基向量的比例系数与第二频域基向量的比例系数之间的对应关系;第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的对应关系;第一空频合并系数的数量与第二空频合并系数的数量之间的对应关系;第一空频合并系数的比例系数与第二空频合并系数的比例系数之间的对应关系;第一空域基向量的数量、第一频域基向量的数量、第一空频合并系数的比例系数,与第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的数量与第二空域基向量的数量、第二频域基向量的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的比例系数与第二空域基向量的数量、第二频域基向量的比例系数之间的对应关系;第一空域基向量的数量、第一空频合并系数的数量与第二空域基向量的数量、第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一空频合并系数的比例系数与第二空域基向量的数量、第二空频合并系数的比例系数之间的对应关系。
需要说明的是,上述第一对应关系中,一个或一组第一参数可以对应一个或多个, 或者一组或多组第二参数的候选值。实际应用中,上述第一对应关系可以采用预设配置表或配置图样的方式,存储在终端设备中。终端设备可以根据第一参数查找与之对应的一个或多个,或者一组或多组第二参数的候选值,然后采用遍历所有候选值的方式执行信道状态测量等测量任务,并根据测量结果确定需要上报给网络设备的第二参数,以及与第二参数对应的、用于确定第二预编码矩阵的指示信息(如PMI),以便网络设备生成第二预编码矩阵。例如,可以从上述遍历测量结果中选择信道状态最优的第二参数和第二预编码矩阵的指示信息。
进一步地,为了降低终端设备的上报开销,也可以为上述第一对应关系中一个或一组第一参数对应的多个或多组第二参数的候选值分别设置一个第一索引(index)。此时,终端设备只需要上报该第一索引就可以了。当然,在此情况下,网络设备本地也需要存储上述第一对应关系,在网络设备接收到终端设备上报的第一索引后,即可根据第一索引,以及之前下发给终端设备的第一参数确定第二参数,然后根据第二参数和终端设备上报的第二预编码矩阵的指示信息生成第二预编码矩阵。因此,可选地,上述通信方法还可以包括如下步骤:终端设备向网络设备发送第一索引。其中,第一索引为根据第一参数和第一对应关系确定的索引值,对于同一个(组)第一参数,第一索引与第二参数一一对应。
同理,为了降低网络设备配置第二参数的资源开销,或者在网络设备只需要获取第二参数的多个(组)候选值中的部分候选值所对应的第二预编码矩阵的指示信息的情况下,网络设备也可以向终端设备发送该第二参数的候选值对应的第一索引。因此,可选地,上述通信方法还可以包括如下步骤:终端设备接收来自网络设备的第一索引。其中,第一索引用于根据第一参数和第一对应关系确定第二参数。
在另一种可能的设计方法中,上述第一参数用于确定第二参数,可以包括:根据第一参数和预设折算规则,计算第二参数的折算值。
示例性地,上述预设折算规则可以包括如下一个或多个公式:
Figure PCTCN2020080743-appb-000002
Figure PCTCN2020080743-appb-000003
其中,L为第一空域基向量的数量,
Figure PCTCN2020080743-appb-000004
为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
Figure PCTCN2020080743-appb-000005
为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
Figure PCTCN2020080743-appb-000006
为第二空频合并系数的数量的折算值,R为第二参数对应的秩指示值的候选值,R为正整数且R>2。
进一步地,可选地,上述第一参数用于确定第二参数,还可以包括:直接将第二参数的折算值作为第二参数。
或者,可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的偏差值与第二参数的折算值之和作为第二参数。
其中,第二参数的偏差值与第二索引一一对应。该偏差值通常为一个较小值,可以为正,也可以为负,还可以为0,用于表示相对应折算值的差异,从而实现在折算值附近对第二参数进行小幅度的微调。上述第二参数的偏差值与第二索引之间的一一对应关系(下文简称为第二对应关系),也可以与上述第一对应关系一样,采用预配置表格或对应关系图样的形式存储在终端设备和网络设备中。
容易理解,第二参数的偏差值可以由网络设备直接下发给终端设备。可选地,为了进一步减少配置开销,网络设备也可以将上述第二索引下发给终端设备,然后由终端设备根据本地存储的第二对应关系自行确定第二参数的偏差值。因此,可选地,第一方面所述的通信方法还可以包括如下步骤:终端设备接收来自网络设备的第二索引或第二参数的偏差值。其中,第二索引与第二参数的偏差值一一对应。
当然,网络设备也可以不下发第二参数的偏差值和第二索引。此时,终端设备也可以根据本地存储的第二对应关系,确定第二参数的偏差值和第二索引的候选值,并采用遍历所有候选值的方式执行信道状态测量等测量任务,择优确定需要上报的第二参数的偏差值和第二索引。因此,可选地,第一方面所述的通信方法还可以包括如下步骤:终端设备向网络设备发送第二索引或第二参数的偏差值;其中,第二索引与第二参数的偏差值一一对应。
需要说明的是,上述第一参数与第一秩指示值对应,第二参数与第二秩指示值对应,且第二秩指示值大于第一秩指示值。其中,终端设备根据信道状态测量结果,从上述第一秩指示值和第二秩指示值择优确定需要上报的秩指示值,以便网络设备生成与当前信道状态最为匹配的预编码矩阵。因此,可选地,第一方面所述的通信方法还可以包括如下步骤:终端设备向网络设备发送第二秩指示值。
第二方面,提供一种通信方法。该通信方法应用于网络设备。该通信方法包括:网络设备向终端设备发送第一参数。其中,第一参数用于终端设备确定第一预编码矩阵的指示信息和第二参数,第二参数用于确定第二预编码矩阵的指示信息。然后,网络设备接收来自终端设备的第二预编码矩阵的指示信息。
示例性地,上述第一参数包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数。相应地,上述第二参数包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
在一种可能的设计方法中,上述第一参数用于确定第二参数,可以包括:根据第一对应关系,确定第二参数。其中,第一对应关系包括如下一种或多种对应关系:第一空域基向量的数量与第二空域基向量的数量之间的对应关系;第一频域基向量的数量与第二频域基向量的数量之间的对应关系;第一频域基向量的比例系数与第二频域基向量的比例系数之间的对应关系;第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的对应关系;第一空频合并系数的数量与第二空频合并系数的数量之间的对应关系;第一空频合并系数的比例系数与第二空频合并系数的比例系数之间的对应关系;第一空域基向量的数量、第一频域基向量的数量、第一空频合并系数的比例系数,与第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的数量与第二空域基向量的数量、第二频域基向量的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的比例系数与第二空域基向量的数量、第二频域基向量的比例系数之间的对应关系;第一空域基向量的数量、第一空频合并系数的数量与第二空域基向量的数量、第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一空频合并系数的比例系数与第二空域基向量的数 量、第二空频合并系数的比例系数之间的对应关系。
可选地,第二方面所述的通信方法还可以包括:网络设备接收来自终端设备的第一索引。其中,第二索引用于根据第一参数和第一对应关系确定第二参数。
可选地,第二方面所述的通信方法还可以包括:网络设备向终端设备发送第一索引。其中,第一索引为根据第一参数和第一对应关系确定的索引值,第一索引与第二参数一一对应。
在另一种可能的设计方法中,上述第一参数用于确定第二参数,可以包括:根据第一参数和预设折算规则,计算第二参数的折算值。
示例性地,预设折算规则可以包括如下一个或多个公式:
Figure PCTCN2020080743-appb-000007
Figure PCTCN2020080743-appb-000008
其中,L为第一空域基向量的数量,
Figure PCTCN2020080743-appb-000009
为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
Figure PCTCN2020080743-appb-000010
为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
Figure PCTCN2020080743-appb-000011
为第二空频合并系数的数量的折算值,R为第二参数对应的秩指示值的候选值,R为正整数且R>2。
进一步地,可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的折算值作为第二参数。
可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的偏差值与第二参数的折算值之和作为第二参数。
可选地,第二方面所述的通信方法还可以包括:网络设备向终端设备发送第二索引或第二参数的偏差值。其中,第二索引与第二参数的偏差值一一对应。
可选地,第二方面所述的通信方法还可以包括:网络设备接收来自终端设备的第二索引或第二参数的偏差值。其中,第二索引与第二参数的偏差值一一对应。
需要说明的是,上述第一参数与第一秩指示值对应,第二参数与第二秩指示值对应,第二秩指示值大于第一秩指示值。
可选地,第二方面所述的通信方法还可以包括:网络设备接收来自终端设备的第二秩指示值。
第三方面,提供一种通信装置,应用于终端设备中。该通信装置包括:接收模块和发送模块。其中,接收模块,用于接收来自网络设备的第一参数。其中,第一参数用于确定第一预编码矩阵的指示信息和第二参数,第二参数用于确定第二预编码矩阵的指示信息。发送模块,用于向网络设备发送第二预编码矩阵的指示信息。
示例性地,上述第一参数包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数。相应地,上述第二参数包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
在一种可能的设计中,上述第一参数用于确定第二参数,可以包括:根据第一对应关系,确定第二参数。其中,第一对应关系包括如下一种或多种对应关系:第一空域基向量的数量与第二空域基向量的数量之间的对应关系;第一频域基向量的数量与 第二频域基向量的数量之间的对应关系;第一频域基向量的比例系数与第二频域基向量的比例系数之间的对应关系;第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的对应关系;第一空频合并系数的数量与第二空频合并系数的数量之间的对应关系;第一空频合并系数的比例系数与第二空频合并系数的比例系数之间的对应关系;第一空域基向量的数量、第一频域基向量的数量、第一空频合并系数的比例系数,与第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的数量与第二空域基向量的数量、第二频域基向量的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的比例系数与第二空域基向量的数量、第二频域基向量的比例系数之间的对应关系;第一空域基向量的数量、第一空频合并系数的数量与第二空域基向量的数量、第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一空频合并系数的比例系数与第二空域基向量的数量、第二空频合并系数的比例系数之间的对应关系。
可选地,发送模块,还用于向网络设备发送第一索引。其中,第一索引为根据第一参数和第一对应关系确定的索引值,第一索引与第二参数一一对应。
可选地,接收模块,还用于接收来自网络设备的第一索引。其中,第一索引用于根据第一参数和第一对应关系确定第二参数。
在另一种可能的设计中,上述第一参数用于确定第二参数,可以包括:根据第一参数和预设折算规则,计算第二参数的折算值。
示例性地,上述预设折算规则包括如下一个或多个公式:
Figure PCTCN2020080743-appb-000012
Figure PCTCN2020080743-appb-000013
其中,L为第一空域基向量的数量,
Figure PCTCN2020080743-appb-000014
为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
Figure PCTCN2020080743-appb-000015
为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
Figure PCTCN2020080743-appb-000016
为第二空频合并系数的数量的折算值,R为第二参数对应的秩指示值的候选值,R>2。
进一步地,可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的折算值作为第二参数。
进一步地,可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的偏差值与第二参数的折算值之和作为第二参数。
或者,可选地,上述第一参数用于确定第二参数,还可以包括:发送模块,还用于向网络设备发送第二索引或第二参数的偏差值。其中,第二索引与第二参数的偏差值一一对应。
可选地,接收模块,还用于接收来自网络设备的第二索引或第二参数的偏差值;其中,第二索引与第二参数的偏差值一一对应。
需要说明的是,上述第一参数与第一秩指示值对应,第二参数与第二秩指示值对应,第二秩指示值大于第一秩指示值。
可选地,发送模块,还用于向网络设备发送第二秩指示值。
需要说明的是,上述通信装置可以是终端设备,也可以是设置于该终端设备内部的芯片或芯片系统,本申请实施例对此不作限定。
第四方面,提供一种通信装置,应用于网络设备中。该通信装置包括:发送模块和接收模块。其中,发送模块,用于向终端设备发送第一参数。其中,第一参数用于终端设备确定第一预编码矩阵的指示信息和第二参数,第二参数用于确定第二预编码矩阵的指示信息。接收模块,用于接收来自终端设备的第二预编码矩阵的指示信息。
示例性地,上述第一参数包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数。相应地,上述第二参数包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
在一种可能的设计中,上述第一参数用于确定第二参数,可以包括:根据第一对应关系,确定第二参数;其中,第一对应关系包括如下一种或多种对应关系:第一空域基向量的数量与第二空域基向量的数量之间的对应关系;第一频域基向量的数量与第二频域基向量的数量之间的对应关系;第一频域基向量的比例系数与第二频域基向量的比例系数之间的对应关系;第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的对应关系;第一空频合并系数的数量与第二空频合并系数的数量之间的对应关系;第一空频合并系数的比例系数与第二空频合并系数的比例系数之间的对应关系;第一空域基向量的数量、第一频域基向量的数量、第一空频合并系数的比例系数,与第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的数量与第二空域基向量的数量、第二频域基向量的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的比例系数与第二空域基向量的数量、第二频域基向量的比例系数之间的对应关系;第一空域基向量的数量、第一空频合并系数的数量与第二空域基向量的数量、第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一空频合并系数的比例系数与第二空域基向量的数量、第二空频合并系数的比例系数之间的对应关系。
可选地,接收模块,还用于接收来自终端设备的第一索引;其中,第二索引用于根据第一参数和第一对应关系确定第二参数。
可选地,发送模块,还用于向终端设备发送第一索引;其中,第一索引为根据第一参数和第一对应关系确定的索引值,第一索引与第二参数一一对应。
在另一种可能的设计中,上述第一参数用于确定第二参数,可以包括:根据第一参数和预设折算规则,计算第二参数的折算值。
示例性地,上述预设折算规则可以包括如下一个或多个公式:
Figure PCTCN2020080743-appb-000017
Figure PCTCN2020080743-appb-000018
其中,L为第一空域基向量的数量,
Figure PCTCN2020080743-appb-000019
为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
Figure PCTCN2020080743-appb-000020
为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
Figure PCTCN2020080743-appb-000021
为第二空频合并系数的数量的折算值,R为第二参数对应的秩指示值的候选值,R>2。
进一步地,可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的折算值作为第二参数。
可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的偏差值与第二参数的折算值之和作为第二参数。
可选地,发送模块,还用于向终端设备发送第二索引或第二参数的偏差值;其中,第二索引与第二参数的偏差值一一对应。
可选地,接收模块,还用于接收来自终端设备的第二索引或第二参数的偏差值;其中,第二索引与第二参数的偏差值一一对应。
需要说明的是,上述第一参数与第一秩指示值对应,第二参数与第二秩指示值对应,第二秩指示值大于第一秩指示值。
可选地,接收模块,还用于接收来自终端设备的第二秩指示值。
需要说明的是,上述通信装置可以是网络设备,也可以是设置于网络设备内部的芯片或芯片系统,本申请实施例对此不作限定。
第五方面,提供了一种终端设备,包括:处理器,该处理器与存储器耦合。其中,存储器,用于存储计算机程序;处理器,用于执行存储器中存储的计算机程序,以使得终端设备执行如第一方面或第一方面中任一种可能实现方式所述的通信方法,或者如第二方面或第二方面中任一种可能实现方式所述的通信方法。
第六方面,提供了一种网络设备,包括:处理器,该处理器与存储器耦合。其中,存储器,用于存储计算机程序;处理器,用于执行存储器中存储的计算机程序,以使得网络设备执行如第一方面或第一方面中任一种可能实现方式所述的通信方法,或者如第二方面或第二方面中任一种可能实现方式所述的通信方法。
第七方面,提供一种通信系统。该通信系统包括一个或多个上述终端设备,以及一个或多个上述网络设备。
第八方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,该计算机执行如第一方面或第一方面中任一种可能实现方式所述的通信方法,和/或如第二方面或第二方面中任一种可能实现方式所述的通信方法。
第九方面,提供了一种可读存储介质,包括程序或指令,当程序或指令在计算机上运行时,该计算机执行如第一方面或第一方面中任一种可能实现方式所述的通信方法,和/或如第二方面或第二方面中任一种可能实现方式所述的通信方法。
附图说明
图1为本申请实施例提供的通信系统的架构示意图;
图2为本申请实施例提供的通信设备的结构示意图;
图3为本申请实施例提供的通信方法的示意性流程图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了便于理解本申请实施例,首先对本申请实施例中涉及的术语做简单说明。
1、预编码技术:发送设备(如网络设备)可以在已知信道状态的情况下,借助与信道资源相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备(如终端设备)消除信道间影响的复杂度降低。 因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以有助于提升发送设备与多个接收设备在相同的时频资源上传输的性能,即提升多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)系统的性能。
应理解,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、预编码矩阵和预编码矩阵指示(precoding matrix indicator,PMI):PMI可以用于指示预编码矩阵。其中,该预编码矩阵例如可以是终端设备基于各个频域单元(如,频域子带,或频域子带的R倍,R=1或1/2,或RB的数量)的信道矩阵确定的、与各频域单元对应的预编码矩阵。
其中,信道矩阵可以是终端设备通过信道估计等方式或者基于信道互易性确定。但应理解,终端设备确定信道矩阵的具体方法并不限于上文所述,具体实现方式可参考现有技术,为了简洁,这里不再一一列举。
预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decomposition,EVD)的方式获得。
应理解,上文中列举的预编码矩阵的确定方式仅为示例,不应对本申请构成任何限定。预编码矩阵的确定方式可以参考现有技术,为了简洁,这里不再一一列举。
需要说明的是,在本申请实施例中,与频域单元对应的预编码矩阵,可以是指,针对该频域单元反馈的预编码矩阵,例如可以是基于该频域单元上的参考信号进行信道测量和反馈的预编码矩阵。与频域单元对应的预编码矩阵可用于对后续通过该频域单元传输的数据做预编码的预编码矩阵。下文中,与频域单元对应的预编码矩阵也可以简称为该频域单元的预编码矩阵,与频域单元对应的预编码向量也可以称为该频域单元的预编码向量。
还需要说明的是,在本申请实施例中,网络设备基于终端设备的反馈所确定的预编码矩阵可以直接用于下行数据传输;也可以经过一些波束成形方法,例如包括迫零(zero forcing,ZF)、正则化迫零(regularized zero-forcing,RZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,以得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。在未作出特别说明的情况下,下文中所涉及的预编码矩阵(或向量)均可以是指网络设备基于终端设备反馈所确定的预编码矩阵(或向量)。
3、预编码向量:一个预编码矩阵可以包括一个或多个向量,如列向量。一个预编码矩阵可以用于确定一个或多个预编码向量。
当传输层数(rank,也称之为秩指示值、数据流数、空间层数等)为1且发射天线的极化方向数也为1时,预编码向量可以是预编码矩阵。当传输层数为多个且发射天线的极化方向数为1时,预编码向量可以是指预编码矩阵在一个传输层上的分量。 当传输层数为1且发射天线的极化方向数为多个时,预编码向量可以是指预编码矩阵在一个极化方向上的分量。当传输层数为多个且发射天线的极化方向数也为多个时,预编码向量可以是指预编码矩阵在一个传输层、一个极化方向上的分量。
应理解,预编码向量也可以由预编码矩阵中的向量确定,如,对预编码矩阵中的向量进行数学变换后得到。本申请对于预编码矩阵与预编码向量之间的数学变换关系不作限定。
4、天线端口(antenna port):简称端口。可以理解为被接收设备所识别的虚拟天线。或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号对应,因此,每个天线端口可以称为一个参考信号的端口。在本申请实施例中,天线端口可以是指实际的独立发送单元(transceiver unit,TxRU)。
5、空域基向量(spatial domain vector):或者称空域基向量或空域波束向量或空域向量。空域基向量中的各个元素可以表示各个天线端口的权重。基于空域基向量中各个元素所表示的各个天线端口的权重,将各个天线端口的信号做线性叠加,可以在空间某一方向上形成信号较强的区域。
下文中为方便说明,假设空域基向量记作u。空域基向量u的长度可以为一个极化方向上的发射天线端口数N s,N s≥1且为整数。空域基向量例如可以为长度为N s的列向量或行向量。本申请对此不作限定。
关于空域基向量的定义可以参考NR协议TS 38.214版本15(release 15,R15)中类型II码本中定义的二维(2dimensions,2D)-离散傅里叶变换(discrete fourier transform,DFT)向量或过采样2D-DFT向量v l,m。这里为了简洁,不再赘述。
6、空域基向量集合:或者称之为空域向量集合,候选空域基向量构成的向量集合,可以包括多种不同长度的空域基向量,以与不同的发射天线端口数对应。在本申请实施例中,由于空域基向量的长度为N s,故终端设备所上报的空域基向量所属的空域基向量集合中的各空域基向量的长度均为N s
在一种可能的设计中,该空域基向量集合可以包括N s个空域基向量,该N s个空域基向量之间可以两两相互正交。该空域基向量集合中的每个空域基向量可以取自2D-DFT矩阵。其中,2D可以表示两个不同的方向,如,水平方向和垂直方向。若水平方向和垂直方向的天线端口数目分别为N 1和N 2,那么N s=N 1N 2
该N s个空域基向量例如可以记作
Figure PCTCN2020080743-appb-000022
该N s个空域基向量可以构建矩阵B s
Figure PCTCN2020080743-appb-000023
若空域基向量集合中的每个空域基向量取自2D-DFT矩阵,则
Figure PCTCN2020080743-appb-000024
其中D N为NxN的正交DFT矩阵,第m行第n列的元素为
Figure PCTCN2020080743-appb-000025
在另一种可能的设计中,该空域基向量集合可以通过过采样因子O s扩展为O s×N s个空域基向量。此情况下,该空域基向量集合可以包括O s个子集,每个子集可以包括N s个空域基向量。每个子集中的N s个空域基向量之间可以两两相互正交。该空域基向量集合中的每个空域基向量可以取自过采样2D-DFT矩阵。其中,过采样因子O s为正整数。具体地,O s=O 1×O 2,O 1可以是水平方向的过采样因子,O 2可以是垂直方向的 过采样因子。O 1≥1,O 2≥1,O 1、O 2不同时为1,且均为整数。
该空域基向量集合中的第o s(1≤o s≤O s且o s为整数)个子集中的N s个空域基向量例如可以分别记作
Figure PCTCN2020080743-appb-000026
则基于该第o s个子集中的N s个空域基向量可以构造矩阵
Figure PCTCN2020080743-appb-000027
Figure PCTCN2020080743-appb-000028
因此,空域基向量集合中的各空域基向量可以取自2D-DFT矩阵或过采样2D-DFT矩阵。该空域基向量集合中的每个列向量可以称为一个2D-DFT向量或过采样2D-DFT向量。换句话说,空域基向量可以为2D-DFT向量或过采样2D-DFT向量。
7、频域基向量(frequency domain vector):或称之为频域向量,本申请实施例中提出的用于表示信道在频域的变化规律的向量。每个频域基向量可以表示一种变化规律。由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。因此,可以通过不同的频域基向量来表示不同传输路径上时延导致的信道在频域上的变化规律。
下文中为方便说明,假设频域基向量记作v。频域基向量的长度可以为频域单元的数目,还可以是需要上报信道状态指示(channel status indicator,CSI)的频域单元的数目(如reporting band的数目)。此外,频域基向量的长度还可以是预设的取值,如是2、3或5的倍数的整数。频域基向量的长度记作N f,N f≥1,且为整数。
8、频域基向量集合:候选频域基向量构成的向量集合,可以包括多种不同长度的频域基向量。该频域基向量集合中的一个或多个频域基向量被选择用于构建预编码向量。
在一种可能的设计中,该频域基向量集合可以包括多个频域基向量。该多个频域基向量之间可以两两相互正交。该频域基向量集合中的每个频域基向量可以取自DFT矩阵或IDFT矩阵(即DFT矩阵的共轭转置矩阵)。
例如,该N f个频域基向量例如可以记作
Figure PCTCN2020080743-appb-000029
该N f个频域基向量可以构建矩阵B f
Figure PCTCN2020080743-appb-000030
在另一种可能的设计中,该频域基向量集合可以通过过采样因子O f扩展为O f×N f个频域基向量。此情况下,该频域基向量集合可以包括O f个子集,每个子集可以包括N f个频域基向量。每个子集中的N f个频域基向量之间可以两两相互正交。每个子集可以称为一个正交组。该频域基向量集合中的每个频域基向量可以取自过采样DFT矩阵或过采样DFT矩阵的共轭转置矩阵。其中,过采样因子O f为正整数。
例如,该频域基向量集合中的第o f(1≤o f≤O f且o f为整数)个子集中的N f个频域基向量例如可以分别记作
Figure PCTCN2020080743-appb-000031
则基于该第o f个子集中的N f个频域基向量可以构造矩阵
Figure PCTCN2020080743-appb-000032
Figure PCTCN2020080743-appb-000033
因此,频域基向量集合中的各频域基向量可以取自DFT矩阵或过采样DFT矩阵,或者取自DFT矩阵的共轭转置矩阵或过采样DFT矩阵的共轭转置矩阵。该频域基向量集合中的每个列向量可以称为一个DFT向量或过采样DFT向量。换句话说,频域基向量可以为DFT向量或过采样DFT向量。
9、空频分量矩阵:通过一个空域基向量和一个频域基向量可以确定一个空频分量矩阵。一个空频分量矩阵例如可以由一个空域基向量和一个频域基向量的共轭转置确定,如u×v H,其维度可以为N s×N f
应理解,空频分量矩阵可以是由一个空域基向量和一个频域基向量确定的空频基本单位的一种表现形式。空频基本单位例如还可以表现为空频分量向量,该空频分量向量例如可以由一个空域基向量和一个频域基向量的克罗内克(Kronecker)积确定;该空频基本单位例如还可以表现为空频向量对等。本申请对于空频基本单位的具体表现形式不作限定。本领域的技术人员基于相同的构思,由一个空域基向量和一个频域基向量确定的各种可能的形式均应落入本申请保护的范围内。此外,如果对空域基向量或频域基向量定义了与上文列举所不同的形式,空频分量矩阵与空域基向量、频域基向量的运算关系也可能不同。本申请对于空频分量矩阵与空域基向量、频域基向量的运算关系不作限定。
10、空频矩阵:在本申请实施例中,空频矩阵可以理解为用于确定预编码矩阵的一个中间量。对于终端设备来说,空频矩阵可以由预编码矩阵或信道矩阵确定。对于网络设备来说,空频矩阵可以是由多个空频分量矩阵的加权和得到,以用于恢复下行信道或预编码矩阵。
如前所述,空频分量矩阵可以表示为维度为N s×N f的矩阵,空频矩阵也可以表示为维度为N s×N f的矩阵。该维度为N s×N f的空频矩阵可以包括N f个长度为N s的列向量。该N f个列向量可以与N f个频域单元对应,每个列向量可用于确定所对应的频域单元的预编码向量。
例如,空频矩阵可以记作V,
Figure PCTCN2020080743-appb-000034
其中,V 1
Figure PCTCN2020080743-appb-000035
是与N f个频域单元对应的N f个列向量,对于单极化方向天线各列向量的长度均可以为N s。该N f个列向量分别对应N f个频域单元的目标预编码向量。即空频矩阵V可以视为将N f个频域单元对应的目标预编码向量组合构成的联合矩阵。
应理解,空频矩阵仅为用于确定预编码矩阵的中间量的一种表现形式,不应对本申请构成任何限定。例如,将空频矩阵中的各列向量按从左至右的顺序依次首位相接,或者按照其他预定义的规则排列,也可以得到长度为N s×N f的向量,该向量可以称为空频向量。
还应理解,上文所示的空频矩阵和空频向量的维度仅为示例,不应对本申请构成任何限定。例如,该空频矩阵也可以是维度为N f×N s的矩阵。其中,每个行向量可对应于一个频域单元,以用于确定所对应的频域单元的预编码向量。
此外,当发射天线配置有多个极化方向时,该空频矩阵的维度还可以进一步扩展。如,对于双极化方向天线,该空频矩阵的维度可以为2N s×N f或N f×2N s,其中V 1
Figure PCTCN2020080743-appb-000036
是与N f个频域单元对应的N f个列向量,各列向量的长度均为2N s。应理解,本申请对于发射天线的极化方向数不作限定。
11、双域压缩:包括空域压缩和频域压缩。空域压缩可以是指在空域基向量集合中选择一个或多个空域基向量,作为构建预编码向量的空域基向量。频域压缩可以是指在频域基向量集合中选择一个或多个频域基向量,作为构建预编码向量的频域基向量。被选择的空域基向量为空域基向量集合中的部分或全部空域基向量。被选择的频域基向量为频域基向量集合中的部分或全部频域基向量。
选择的一个或多个空域基向量可以构成空域波束基矩阵W 1,其中W 1中的每一个列向量对应选择的一个空域基向量。选择的一个或多个频域基向量可以构成频域基矩阵W 3,其中W 3中的每一个列向量对应选择的一个频域基向量。对于一个传输层空频矩阵V可以表示为选择的一个或多个空域基向量与选择的一个或多个频域基向量线性 合并的结果:
Figure PCTCN2020080743-appb-000037
其中,若采用双极化方向,为每个传输层的每个极化方向选择L个空域基向量,W 1的维度为2N s×2L。在一种可能的实现方式中,两个极化方向采用相同的L个空域基向量{v Is(0),v Is(1),...,v Is(L-1)},此时,W 1可以表示为:
Figure PCTCN2020080743-appb-000038
其中v Is(i)表示选择的空域基向量对应的索引。其中,i=0,1,…,L-1。此外,两个极化方向也可以采用不完全相同的L个空域基向量。
举例说明,每个空域基向量选择相同的M个频域基向量,则W 3 H的维度为M×N f,W 3中的每一个列向量对应一个频域基向量,此时每个空域基向量对应的频域基向量均为W 3中的M个频域基向量。
Figure PCTCN2020080743-appb-000039
为空频合并系数矩阵,维度为2LxM。空频合并系数矩阵
Figure PCTCN2020080743-appb-000040
中的第i行对应2L个空域基向量中的第i个空域基向量,空频合并系数矩阵
Figure PCTCN2020080743-appb-000041
中的第j列对应M个频域基向量中的第j个频域基向量。第i个空域基向量对应的空频合并系数为空频合并系数矩阵
Figure PCTCN2020080743-appb-000042
中的第i个行向量,第i个空域基向量对应的空频合并系数为空频合并系数矩阵
Figure PCTCN2020080743-appb-000043
中的第i个行向量中包含的元素。
此外,L个空域基向量中的每一个空域基向量也可以对应不同的频域基向量。此时,W 3 H=[W f(0),W f(1),...,W f(2L-1)],其中W f(i)为第i个空域基向量对应的M i个频域基向量构成的M i行N f列的矩阵。
Figure PCTCN2020080743-appb-000044
其中
Figure PCTCN2020080743-appb-000045
是第i个空域基向量对应的维度是1xM i的空频合并系数矩阵,
Figure PCTCN2020080743-appb-000046
中包含的空频合并系数为第i个空域基向量对应的空频合并系数。此时,
Figure PCTCN2020080743-appb-000047
共计包含
Figure PCTCN2020080743-appb-000048
个合并系数。若每个空域基向量对应的频域基向量的数目均为M,则
Figure PCTCN2020080743-appb-000049
共计包含2LM个合并系数。
此外,空频矩阵V也可以表示为V=W 1WW 3 H,此时W 3中的每一个行向量对应选择的一个频域基向量。
需要说明的是,同一传输层的每个极化方向各自对应L个空域基向量,传输层的两个极化方向共对应2L个空域基向量,本申请实施例以同一传输层的两个极化方向各自对应的L个空域基向量完全相同为例进行说明。
还需要说明的是,在本申请实施例中,将为一个传输层的两个极化方向对应的2L个空域基向量称为传输层对应的空域基向量,假设为2L个空域基向量中的每个空域基向量选择M个频域基向量,若每个空域基向量选择的M个频域基向量不完全相同,则将2L个空域基向量对应的2L×M个频域基向量称为传输层对应的频域基向量,若每个空域基向量选择的M个频域基向量完全相同,则将2L个空域基向量对应的M个频域基向量称为传输层对应的频域基向量。将2L个空域基向量对应的2L×M个空频 合并系数称为传输层对应的空频合并系数。
还需要说明的是,在一种实施方式中,仅需要上报合并系数矩阵
Figure PCTCN2020080743-appb-000050
中包含的所有合并系数的子集。基站通过指示信息指示需要上报的合并系数的最大数目K 0,UE实际上报K 1个合并系数,且K 1≤K 0≤2LM。对于未上报的合并系数,认为对应的空频合并系数为0。
还需要说明的是,对于一个传输层,可以按照上述方法通过双域压缩确定空频矩阵。对于多个传输层,其中每个传输层均可以采用相同的双域压缩方法确定每个传输层对应的空频矩阵。以2个传输层为例,2个传输层可以采用相同的空域基向量数目,也可以采用不同的空域基向量数目。2个传输层可以采用相同的频域基向量数目,也可以采用不同的频域基向量数目。2个传输层可以采用相同的L个空域基向量,也可以采用不完全相同的L个空域基向量。2个传输层可以采用相同的M个频域基向量,也可以是每个传输层的每个空域基向量对应不同的频域基向量。
还需要说明的是,对于一个传输层,空域基向量数目L,频域基向量数目M以及需要上报的空频合并系数的最大数目K 0可以是网络设备通过高层信令配置的。网络设备通过高层信令可以直接配置空域基向量数目L,频域基向量数目M以及需要上报的空频合并系数的最大数目K 0的具体数值,也可以配置具体数值对应的索引。此外,频域合并系数的数目可以与频域单元的数目成比例系数关系,即
Figure PCTCN2020080743-appb-000051
p<1且p的取值可以为3/4、1/2、1/4或1/8此外,需要上报的空频合并系数的最大数目K 0可以是2LM的β倍,β<1且取值可以为3/4、1/2、1/4或1/8。
此外,一个空域基向量和一个频域基向量所确定的矩阵例如也可以为上述空频分量矩阵。被选择的一个或多个空域基向量和一个或多个频域基向量可用于确定一个或多个空频分量矩阵。该一个或多个空频分量矩阵的加权和可用于构建与一个传输层对应的空频矩阵。换句话说,空频矩阵可以近似为由上述被选择的一个或多个空域基向量和一个或多个频域基向量所确定的空频分量矩阵的加权和。这里,用于构建一个空频分量矩阵的空域基向量和频域基向量可以称为一个空频向量对。
因此,当网络设备获取了可用于构建空频矩阵的空域基向量、频域基向量和空频合并系数后,便可以基于所构建的空频矩阵进一步确定与各频域单元对应的预编码向量。
为便于理解本申请实施例,在介绍本申请实施例之前,先做出以下几点说明。
第一,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示。例如,当描述某一指示信息用于指示信息I时,可以包括该指示信息直接指示I或间接指示I,而并不代表该指示信息中一定携带有I。
可以将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独 指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如行向量可以表现为列向量,一个矩阵可以通过该矩阵的转置矩阵来表示,一个矩阵也可以表现为向量或者数组的形式,该向量或者数组可以由该矩阵的各个行向量或者列向量相互连接而成,两个向量的克罗内克尔积也可以通过一个向量与另一个向量的转置向量的乘积等形式来表现等。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令,例如RRC信令、MAC层信令,例如MAC-CE信令和物理层信令,例如下行控制信息(downlink control information,DCI)中的一种或者至少两种的组合。
下面将结合附图,对本申请中的技术方案进行详细描述。本申请实施例的技术方案可以应用于各种基于频分双工(frequency division duplexing,FDD)模式的无线通信系统,如长期演进(long term evolution,LTE)系统,第五代(5th generation,5G)系统,如新无线(new radio,NR),及未来的通信系统,如6G系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例”、“例如”用于表示作例子、例证或说明。本申请中被描述为“示例”、“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例以无线通信系统中NR系统的场景为例进行说明。应当指出的是,本申请实施例提供的技术方案还可以应用于其他支持FDD双工模式的无线通信网络 中,如LTE系统、演进的LTE系统等,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的无线通信系统。如图1所示,该通信系统包括终端设备和网络设备。其中,终端设备和网络设备均可以为一个或多个,且终端设备和网络设备均可以配置有一个或多个天线。
其中,上述网络设备为具有无线收发功能的通信设备或设置于该通信设备中的芯片。上述网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的另一部分功能。例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成物理层的信息,或者,由物理层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
本申请实施例提供一种通信设备,该通信设备可以是图1所示的通信系统中的终 端设备或网络设备。图2为本申请实施例提供的一种通信设备的结构示意图。如图2所示,通信设备200可以包括至少一个处理器201,存储器202、收发器203以及通信总线204。
下面结合图2对该通信设备的各个构成部件进行具体的介绍:
处理器201是该通信设备的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器201是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器201可以通过运行或执行存储在存储器202内的软件程序,以及调用存储在存储器202内的数据,执行该通信设备的各种功能。
在具体的实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,该通信设备可以包括多个处理器,例如图2中所示的处理器201和处理器205。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器202可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器202可以是独立存在,通过通信总线204与处理器201相连接。存储器202也可以和处理器201集成在一起。其中,所述存储器202用于存储执行本发明方案的软件程序,并由处理器201来控制执行。
收发器203,用于与另一个通信设备之间的通信。当然,收发器203还可以用于与通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。收发器203可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线204,可以是工业标准体系结构(industry standard architecture,ISA)总线、外部设备互连(peripheral component interface,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的通信设备的结构并不构成对该通信设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图3为本申请实施例提供的一种通信方法的流程示意图,该通信方法应用于终端设备或网络设备。如图3所示,该通信方法包括以下步骤:
S301,网络设备向终端设备发送第一参数。相应地,终端设备接收来自网络设备的第一参数。
具体地,网络设备可以通过高层信令,在下行链路上向终端设备发送上述第一参数。
其中,上述第一参数用于确定第一预编码矩阵的指示信息,可以参考现有实现方式,本申请实施例不再赘述。
此外,上述第一参数也用于确定第二参数,具体实现方式可以参考S302中的相关描述,此处不再赘述。
示例性地,上述第一参数可以包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数。相应地,上述第二参数可以包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
需要说明的是,上述第一参数是第一秩指示值对应的参数集合,且该参数集合包含指示第一秩指示值下,每个空间层所对应的参数取值组成的集合。上述第二参数是第二秩指示值对应的参数集合,且该参数集合包含指示第二秩指示值下,每个空间层所对应的参数取值组成的集合。也就是说,第一参数或第二参数,指示的都是各自对应的秩指示值下,每个空间层对应的参数值组成的参数集合,每个空间层对应的参数取值可以相同也可以不同。
示例性地,对于同一个秩指示值,为提高控制精度,该秩指示值下的多个空间层可以分别采用不同的参数值。容易理解,对于同一个秩指示值,为简化控制流程,该秩指示值下的多个空间层也可以采用相同的参数值。此外,第一秩指示值通常为1或2,取值较小,对应的空间层数也较少,为1层或2层。因此,为进一步简化控制流程,还可以对第一秩指示值为1的1个空间层和第一秩指示值为2的2个空间层采用相同的第一参数的取值。
在本申请实施例中,以秩指示值为1或2时对应的参数作为第一参数,以秩指示值为3或4对应的参数作为第二参数为例说明本申请实施例提供的第一参数和第二参数。
需要说明的是,除第一参数外,网络设备还有可能向终端设备下发其他参数,如下述S302中所述的第一对应关系中的一个或多个第一索引、所述第二对应关系中的一个或多个第二索引等。关于第一索引和第二索引,可以参考S302中的相关描述,此处不再赘述。
S302,终端设备根据第一参数确定第二参数和第二预编码矩阵的指示信息。
在一种可能的设计方法中,上述S302终端设备根据第一参数确定第二参数和第二预编码矩阵的指示信息,可以包括如下步骤:
步骤一,终端设备根据第一对应关系,确定第二参数的候选值。
步骤二,终端设备根据第二参数的所有候选值对应的信道测量结果,确定第二参 数和第二预编码矩阵的指示信息。
其中,第一对应关系包括如下一种或多种对应关系:第一空域基向量的数量与第二空域基向量的数量之间的对应关系;第一频域基向量的数量与第二频域基向量的数量之间的对应关系;第一频域基向量的比例系数与第二频域基向量的比例系数之间的对应关系;第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的对应关系;第一空频合并系数的数量与第二空频合并系数的数量之间的对应关系;第一空频合并系数的比例系数与第二空频合并系数的比例系数之间的对应关系;第一空域基向量的数量、第一频域基向量的数量、第一空频合并系数的比例系数,与第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的数量与第二空域基向量的数量、第二频域基向量的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的比例系数与第二空域基向量的数量、第二频域基向量的比例系数之间的对应关系;第一空域基向量的数量、第一空频合并系数的数量与第二空域基向量的数量、第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一空频合并系数的比例系数与第二空域基向量的数量、第二空频合并系数的比例系数之间的对应关系。
首先,以取值为1或2的秩指示值为第一秩指示值,取值为3或4的秩指示值为第二秩指示值,且以第一秩指示值对应的参数为第一参数,第二秩指示值对应的参数为第二参数为例,详细说明上述第一对应关系中的各种对应关系。其中,第一参数以下标1表示,第二参数中,第二秩指示值为3的参数以下标2表示,第二秩指示值为4的参数以编号3表示。
示例性地,上述第一参数可以包括第一秩指示值为1或2时的参数或参数集合,例如可以为如下参数集合中的一种或多种参数组成的参数子集:{N f1,L 1,M 1或p 1,K 0,1或β 1},其中,N f1为第一频域单元数,L 1为第一空域基向量的数量,M 1为第一频域基向量的数量,p 1为第一频域基向量的比例系数,K 0,1为第一空频合并系数的数量,β 1为第一空频合并系数的比例系数。
示例性地,当第二秩指示值为3时,上述第二参数可以为如下参数集合中的一种或多种参数组成的参数子集:{N f2,L 2,M 2或p 2,K 0,2或β 2},其中,N f2为第二频域单元数,L 2为第二空域基向量的数量,M 2为第二频域基向量的数量,p 2为第二频域基向量的比例系数,K 0,2为第二空频合并系数的数量,β 2为第二空频合并系数的比例系数。
示例性地,当第二秩指示值为4时,上述第二参数可以为如下参数集合中的一种或多种参数组成的参数子集:{N f3,L 3,M 3或p 3,K 0,3或β 3},其中,N f3为第二频域单元数,L 3为第二空域基向量的数量,M 3为第二频域基向量的数量,p 3为第二频域基向量的比例系数,K 0,3为第二空频合并系数的数量,β 3为第二空频合并系数的比例系数。
示例性地,表1示出了上述第一空域基向量的数量与第二空域基向量的数量之间的一种对应关系。如表1所示,对于每个第一空域基向量的数量L 1,共计存在4个第二空域基向量的数量的候选值集合。其中,每个候选值集合共计包括1个第一索引、一个第二秩指示值为3时的第二空域基向量的数量L 2的集合,以及一个第二秩指示值为4时的第二空域基向量的数量L 2的集合。其中,第二秩指示值为3时的第二空域基向量的数量L 2的集合共计包括3个取值,分别对应第二秩指示值为3时的3个空间层; 第二秩指示值为4时的第二空域基向量的数量L 2的集合共计包括4个取值,分别对应第二秩指示值为4时的4个空间层。也就是说,在表1中,L 1与第一索引、L 1与L 2、L 1与L 3均为一对多关系,且对于同一个L 1,第一索引与L 2、第一索引与L 3均为一对一关系。
表1
Figure PCTCN2020080743-appb-000052
在本申请实施例中,终端设备可以根据1个L 1,从表1中查找到与该L 1对应的由L 2和L 3组成的4个第二空域基向量的数量的候选值集合。然后,终端设备可以根据信道测量结果,遍历上述4个候选值集合,并根据测量结果择优选择与当前信道状态最优适配的第二秩指示值,该第二秩指示值对应的空间层数,以及每个空间层的第二空域基向量的数量。例如,以L 1=2为例,表示对于第一秩指示值为1或2时,每个空间层对应的空域基向量数目。假定第一索引为1,且第二秩指示值为4的信道测量结果最优,则确定需要上报的第一索引为1,第二秩指示值为4,4个空间层对应的4个第二空域基向量的数量L 3按照空间层的编号从小到大依次为:2、2、1、1。又例如,以L 1=4为例,假定第一索引为2,且第二秩指示值为3的信道测量结果最优,则确定需要上报的第一索引为2,第二秩指示值为3,3个空间层对应的3个第二空域基向量的数量L 3按照空间层的编号从小到大依次为:4、3、1。
需要说明的是,表1示出的第一空域基向量的数量与第二空域基向量的数量之间的对应关系为数值关系。容易理解,第一空域基向量的数量与第二空域基向量的数量之间的对应关系也可以为比例系数关系。表2示出了一种第一空域基向量的数量,以及第二空域基向量的数量与第一空域基向量的数量的比例系数之间的对应关系。终端设备可以根据第一空域基向量的数量和第一索引查找第二秩指示值分别为3或4时每个空间层对应的第二空域基向量的数量与第一空域基向量的数量之间的比例系数,并根据该比例系数和第一空域基向量的数量计算第二秩指示值分别为3或4时每个空间层对应的第二空域基向量的数量。例如,第一空域基向量的数量为L,第一索引为3,则查找到的第二秩指示值分别为3或4时每个空间层对应的第二空域基向量的数量与 第一空域基向量的数量之间的比例系数按照空间层的编号从小到大依次为:L、L、L/2、L、L、L/2、L/2。假定L=4,则第二秩指示值分别为3时的3个空间层对应的第二空域基向量的数量按照空间层的编号从小到大依次为4、4、2,第二秩指示值分别为4时的4个空间层对应的第二空域基向量的数量按照空间层的编号从小到大依次为4、4、2、2。
表2
Figure PCTCN2020080743-appb-000053
示例性地,表3示出了上述第一频域基向量的数量与第二频域基向量的数量之间的一种对应关系。如表3所示,对于每个第一频域基向量的数量M 1,共计存在4个第二频域基向量的数量的候选值集合。其中,每个候选值集合共计包括1个第一索引、一个第二秩指示值为3时的第二频域基向量的数量M 2的集合,以及一个第二秩指示值为4时的第二频域基向量的数量M 2的集合。其中,第二秩指示值为3时的第二频域基向量的数量M 2的集合共计包括3个取值,分别对应第二秩指示值为3时的3个空间层;第二秩指示值为4时的第二频域基向量的数量M 2的集合共计包括4个取值,分别对应第二秩指示值为4时的4个空间层。也就是说,在表3中,M 1与第一索引、M 1与M 2、M 1与M 3均为一对多关系,且对于同一个M 1,第一索引与M 2、第一索引与M 3均为一对一关系。
表3
Figure PCTCN2020080743-appb-000054
表3(续)
Figure PCTCN2020080743-appb-000055
在本申请实施例中,终端设备可以根据1个M 1,从表3中查找到与该M 1对应的由M 2和M 3组成的4个第二频域基向量的数量的候选值集合。然后,终端设备可以遍历上述4个候选值集合作信道测量,并根据测量结果择优选择与当前信道状态最优适配的第二秩指示值,该第二秩指示值对应的空间层数,以及每个空间层的第二频域基向量的数量。
例如,以M 1=7为例,假定第一索引为1,且第二秩指示值为4的信道测量结果最优,则确定需要上报的第一索引为1,第二秩指示值为4,4个空间层对应的4个第二频域基向量的数量M 3按照空间层的编号从小到大依次为:4、4、3、3。又例如,以M 1=4为例,假定第一索引为2,且第二秩指示值为3的信道测量结果最优,则确定需要上报的第一索引为2,第二秩指示值为3,3个空间层对应的3个第二频域基向量的 数量M 3按照空间层的编号从小到大依次为:3、3、2。
需要说明的是,表3示出的第一频域基向量的数量与第二频域基向量的数量之间的对应关系为数值关系。容易理解,第一频域基向量的数量与第二频域基向量的数量之间的对应关系也可以为比例系数关系。表4示出了一种第一频域基向量的数量,以及第二频域基向量的数量与第一频域基向量的数量的比例系数之间的对应关系。终端设备可以根据第一频域基向量的数量和第一索引查找第二秩指示值分别为3或4时每个空间层对应的第二频域基向量的数量与第一频域基向量的数量之间的比例系数,并根据该比例系数和第一频域基向量的数量计算第二秩指示值分别为3或4时每个空间层对应的第二频域基向量的数量。
例如,第一频域基向量的数量为M,第一索引为3,则查找到的第二秩指示值分别为3或4时每个空间层对应的第二频域基向量的数量与第一频域基向量的数量之间的比例系数按照空间层的编号从小到大依次为:M、M、M/2、M、M、M/2、M/2。假定M=4,则第二秩指示值分别为3时的3个空间层对应的第二频域基向量的数量按照空间层的编号从小到大依次为4、4、2,第二秩指示值分别为4时的4个空间层对应的第二频域基向量的数量按照空间层的编号从小到大依次为4、4、2、2。
表4
Figure PCTCN2020080743-appb-000056
在本申请实施例中,也可以进一步提高表3或表4所示的第一频域基向量的数量与第二频域基向量的数量之间的对应关系的精度。因此,示例性地,如表5所示,对于同一个M 1、同一个第一索引、同一个第二秩指示值的取值、同一个空间层,对于不同的极化方向,可以分别对应不同的第二频域基向量的数量。
以双极化为例,极化方向通常可以包括第一极化方向和第二极化方向,在一些场景下,需要第一极化方向强于第二极化方向,而在另一些场景下,需要第一极化方向弱于第二极化方向。容易理解,强极化方向需要的控制粒度通常要高于弱极化方向,因此强极化方向需要的频域基向量的数量更多。例如,如表5所示,对于M 1=7,第一索引为0,第二秩指示值为3时的空间层1,强极化方向和弱极化方向对应的第二频域基向量分别为7和4。
表5
Figure PCTCN2020080743-appb-000057
示例性地,表6示出了第一频域基向量的比例系数与第二频域基向量的比例系数之间的一种对应关系。如表6所示,对于每个第一频域基向量的比例系数p 1,共计存在4个第二频域基向量的比例系数的候选值集合。其中,每个候选值集合共计包括1个第一索引、一个第二秩指示值为3时的第二频域基向量的比例系数p 2的集合,以及一个第二秩指示值为4时的第二频域基向量的比例系数p 2的集合。其中,第二秩指示值为3时的第二频域基向量的比例系数p 2的集合共计包括3个取值,分别对应第二秩指示值为3时的3个空间层;第二秩指示值为4时的第二频域基向量的比例系数p 2的集合共计包括4个取值,分别对应第二秩指示值为4时的4个空间层。也就是说,在表6中,p 1与第一索引、p 1与p 2、p 1与p 3均为一对多关系,且对于同一个p 1,第一索引与p 2、第一索引与p 3均为一对一关系。
在本申请实施例中,终端设备可以根据1个p 1,从表6中查找到与该p 1对应的由p 2和p 3组成的4个第二频域基向量的比例系数的候选值集合。然后,终端设备可以遍历上述4个候选值集合作信道测量,并根据测量结果择优选择与当前信道状态最优适配的第二秩指示值,该第二秩指示值对应的空间层数,以及每个空间层的第二频域基向量的比例系数。例如,假定p 1=p,第一索引为5,且第二秩指示值为4的信道测量结果最优,则确定需要上报的第一索引为5,第二秩指示值为4,4个空间层对应的4个第二频域基向量的比例系数p 3按照空间层的编号从小到大依次为:p、p、p/2、p/2。又例如,假定p 1=p,第一索引为2,且第二秩指示值为3的信道测量结果最优,则确定需要上报的第一索引为2,第二秩指示值为3,3个空间层对应的3个第二频域基向量的比例系数p 3按照空间层的编号从小到大依次为:p、p、p/2。
需要说明的是,在进行信道测量的过程中,需要根据第一频域基向量的比例系数p 1计算第一频域基向量的数量M 1,以及根据第一频域基向量的比例系数p 1和表6,查找第二秩指示值为3时的3个空间层各自对应的第二频域基向量的比例系数p 2,以及 第二秩指示值为4时的4个空间层各自对应的第二频域基向量的比例系数p 3。然后,根据第二秩指示值为3时的第二频域基向量的比例系数p 2计算第二秩指示值为3时的第二频域基向量的数量M 2,根据第二秩指示值为4时的第二频域基向量的比例系数p 3计算第二秩指示值为4时的第二频域基向量的数量M 3。示例性地,可以根据如下公式,计算频域基向量的数量:
Figure PCTCN2020080743-appb-000058
其中,N f为频域单元数,f为频域单元的大小,其取值可以是RB个数或自带个数,均为配置值。M和p可以为M 1和p 1,也可以为M 2和p 2,还可以为M 3和p 3
需要说明的是,当第二秩指示值为3或4时,上述公式中的一个p或者一个M实际对应的是一组参数,或者是一个参数集合。例如,当第二秩指示值为4时,上述公式中的一个M表示第二频域基向量的数量的4个取值,该4个取值分别与4个空间层一一对应。又例如,当第二秩指示值为3时,上述公式中的一个p表示第二频域基向量的比例关系的3个取值,该3个取值分别与3个空间层一一对应。
实际应用中,鉴于第一秩指示值为1或2时的空间层数较少,为简化处理流程,第一秩指示值为1时的1个空间层和第一秩指示值为2时的2个空间层采用相同的第一参数,即3配置同一个M和同一个p。
表6
Figure PCTCN2020080743-appb-000059
本申请实施例中,也可以进一步提高表6所示的第一频域基向量的比例系数与第二频域基向量的比例系数之间的对应关系的精度。示例性地,如表7所示,对于同一个p 1、同一个第一索引、同一个第二秩指示值的取值、同一个空间层,对于不同的极化方向,可以分别对应不同的第二频域基向量的比例系数。其中,以双极化为例,极化方向通常可以包括第一极化方向和第二极化方向,在一些场景下,需要第一极化方向强于第二极化方向,而在另一些场景下,需要第一极化方向强于第二极化方向。容易理解,强极化方向需要的控制粒度通常要高于弱极化方向,因此强极化方向需要的频域基向量的数量更多,即频域基向量的比例系数更高。例如,如表7所示,对于p 1=p,第一索引为3,第二秩指示值为4时的空间层2,强极化方向和弱极化方向对应的第二频域基向量的比例系数分别为5p/6和5p/12。
表7
Figure PCTCN2020080743-appb-000060
示例性地,表8示出了第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的一种对应关系。如表8所示,对于同一组第一频域单元数N f1与第一频域基向量的比例系数p 1组成的第一参数集合{N f1,p 1},共计存在4个第二频域基向量的数量的候选值集合。其中,每个候选值集合共计包括1个第一索引、一个第二秩指示值为3时的第二频域基向量的数量M 2的集合,以及一个第二秩指示值为4时的第二频域基向量的数量M 2的集合。其中,第二秩指示值为3时的第二频域基向量的数量M 2的集合共计包括3个取值,分别对应第二秩指示值为3时的3个空间层;第二秩指示值为4时的第二频域基向量的数量M 2的集合共计包括4个取值,分别对应第二秩指示值为4时的4个空间层。也就是说,在表8中,{N f1,p 1}与第一索引、{N f1,p 1}与M 2、{N f1,p 1}与M 3均为一对多关系,且对于同一个{N f1,p 1},第一索引与M 2、第一索引与M 3均为一对一关系。
在本申请实施例中,终端设备可以根据1个{N f1,p 1},从表3中查找到与该{N f1,p 1}对应的由M 2和M 3组成的4个第二频域基向量的数量的候选值集合。然后,终端设备可以遍历上述4个候选值集合作信道测量,并根据测量结果择优选择与当前信道状态最优适配的第二秩指示值,该第二秩指示值对应的空间层数,以及每个空间层的第二频域基向量的数量。例如,以{N f1=13,p 1=1/2}为例,假定第一索引为1,且第二秩指示值为4的信道测量结果最优,则确定需要上报的第一索引为1,第二秩指示值为4,4个空间层对应的4个第二频域基向量的数量M 3按照空间层的编号从小到大依次为:4、4、3、3。又例如,以{N f1=4,p 1=1/2}为例,假定第一索引为2,且第二秩指示值为3的信道测量结果最优,则确定需要上报的第一索引为2,第二秩指示值为3,3个空间层对应的3个第二频域基向量的数量M 3按照空间层的编号从小到大依次为:2、2、1。
需要说明的是,实际配置的预设配置表或配置图样也可以是表8的一部分,例如, 可以不包括L 1所在的那一列,即M 2和M 3的取值仅与N f1/f和p 1有关。
表8
Figure PCTCN2020080743-appb-000061
表8(续)
Figure PCTCN2020080743-appb-000062
需要说明的是,表8示出的第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的对应关系为数值关系。容易理解,第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的对应关系也可以为比例系数关系。表9示出了一种第一频域单元数、第一频域基向量的数量,以及第二频域基向量的数量与第一频域基向量的数量的比例系数之间的对应关系。终端设备可以根据第一频域单元数、第一频域基向量的数量和第一索引查找第二秩指示值分别为3或4时每个空间层对应的第二频域基向量的数量与第一频域基向量的数量之间的比例系数,并根据该比例系数和第一频域基向量的数量计算第二秩指示值分别为3或4时每个空间层对应的第二频域基向量的数量。
表9
Figure PCTCN2020080743-appb-000063
例如,第一频域单元数为N f、第一频域基向量的比例系数为p,第一索引为3, 则查找到的第二秩指示值分别为3或4时每个空间层对应的第二频域基向量的数量与第一频域基向量的数量之间的比例系数按照空间层的编号从小到大依次为:p、p、p/2、p、p、p/2、p/2。假定N f=4,f=1,则第二秩指示值为3时的3个空间层对应的第二频域基向量的数量按照空间层的编号从小到大依次为4、4、2,第二秩指示值分别为4时的4个空间层对应的第二频域基向量的数量按照空间层的编号从小到大依次为4、4、2、2。
示例性地,表10示出了上述第一空频合并系数的数量与第二空频合并系数的数量之间的一种对应关系。如表10所示,对于每个第一空频合并系数的数量K 0,1,共计存在4个第二空频合并系数的数量的候选值集合。其中,每个候选值集合共计包括1个第一索引、一个第二秩指示值为3时的第二空频合并系数的数量K 0,2的集合,以及一个第二秩指示值为4时的第二空频合并系数的数量K 0,2的集合。其中,第二秩指示值为3时的第二空频合并系数的数量K 0,2的集合共计包括3个取值,分别对应第二秩指示值为3时的3个空间层;第二秩指示值为4时的第二空频合并系数的数量K 0,2的集合共计包括4个取值,分别对应第二秩指示值为4时的4个空间层。也就是说,在表10中,K 0,1与第一索引、K 0,1与K 0,2、K 0,1与K 0,3均为一对多关系,且对于同一个K 0,1,第一索引与K 0,2、第一索引与K 0,3均为一对一关系。
表10
Figure PCTCN2020080743-appb-000064
在本申请实施例中,终端设备可以根据1个K 0,1,从表10中查找到与该K 0,1对应的由K 0,2和K 0,3组成的4个第二空频合并系数的数量的候选值集合。然后,终端设备可以遍历上述4个候选值集合作信道测量,并根据测量结果择优选择与当前信道状态最优适配的第二秩指示值,该第二秩指示值对应的空间层数,以及每个空间层的第二空频合并系数的数量。例如,以K 0,1=K 0为例,假定第一索引为1,且第二秩指示值为4的信道测量结果最优,则确定需要上报的第一索引为1,第二秩指示值为4,4个空间层对应的4个第二空频合并系数的数量K 0,3按照空间层的编号从小到大依次为:K 0、K 0、K 0/2、K 0/2。又例如,以K 0,1=K 0为例,假定第一索引为2,且第二秩指示值为3的信道测量结果最优,则确定需要上报的第一索引为2,第二秩指示值为3,3个空间层对应的3个第二空频合并系数的数量K 0,2按照空间层的编号从小到大依次为:K 0、K 0、K 0/2。
示例性地,表11示出了上述第一空频合并系数的比例系数与第二空频合并系数的 比例系数之间的一种对应关系。如表11所示,对于每个第一空频合并系数的比例系数β 1,共计存在4个第二空频合并系数的比例系数的候选值集合。其中,每个候选值集合共计包括1个第一索引、一个第二秩指示值为3时的第二空频合并系数的比例系数β 2的集合,以及一个第二秩指示值为4时的第二空频合并系数的比例系数β 3的集合。其中,第二秩指示值为3时的第二空频合并系数的比例系数β 2的集合共计包括3个取值,分别对应第二秩指示值为3时的3个空间层;第二秩指示值为4时的第二空频合并系数的比例系数β 3的集合共计包括4个取值,分别对应第二秩指示值为4时的4个空间层。也就是说,在表11中,β 1与第一索引、β 1与β 2、β 1与β 3均为一对多关系,且对于同一个β 1,第一索引与β 2、第一索引与β 3均为一对一关系。
在本申请实施例中,终端设备可以根据1个β 1,从表11中查找到与该β 1对应的由β ,2和β 3组成的4个第二空频合并系数的比例系数的候选值集合。然后,终端设备可以遍历上述4个候选值集合作信道测量,并根据测量结果择优选择与当前信道状态最优适配的第二秩指示值,该第二秩指示值对应的空间层数,以及每个空间层的第二空频合并系数的比例系数。例如,以β 1=β为例,假定第一索引为1,且第二秩指示值为4的信道测量结果最优,则确定需要上报的第一索引为1,第二秩指示值为4,4个空间层对应的4个第二空频合并系数的比例系数β 3按照空间层的编号从小到大依次为:β、β、β/2、β/2。又例如,以β 1=β为例,假定第一索引为2,且第二秩指示值为3的信道测量结果最优,则确定需要上报的第一索引为2,第二秩指示值为3,3个空间层对应的3个第二空频合并系数的比例系数β 2按照空间层的编号从小到大依次为:β、β、β/2。
需要说明的是,在进行信道测量的过程中,需要根据空域基向量的数量L、频域基向量的数量M、空频合并系数的比例系数β,计算空频合并系数的数量K 0。示例性地,可以根据如下公式,计算空频合并系数的数量的数量:
Figure PCTCN2020080743-appb-000065
其中,2表示2个极化方向,K 0、L、M、β的取值可以是K 0,1、L 1、M 1、β 1,也可以是K 0,2、L 2、M 2、β 2,可以是K 0,3、L 3、M 3、β 3
表11
Figure PCTCN2020080743-appb-000066
示例性地,表12示出了第一空域基向量和第一空频合并系数的比例系数,与第二空域基向量的数量和第二空频合并系数的数量之间的一种对应关系。如表12所示,对 于同一组第一空域基向量的数量L 1和第一空频合并系数的比例系数p 1组成的第一参数集合{L 1,p 1},共计存在4个第二空域基向量的数量和第二空频合并系数的数量的候选值集合。其中,每个候选值集合共计包括1个第一索引、一个第二秩指示值为3时的第二空域基向量的数量L 2和第二空频合并系数的比例关系p 2的候选值子集{L 2,p 2},以及一个第二秩指示值为4时的第二空域基向量的数量L 3和第二空频合并系数的比例关系p 3的候选值子集{L 3,p 3}。其中,第二秩指示值为3时的第二空域基向量的数量L 2和第二空频合并系数的比例关系p 2的候选值子集{L 2,p 2}共计包括3组取值,分别对应第二秩指示值为3时的3个空间层;第二秩指示值为4时的第二空域基向量的数量L 3和第二空频合并系数的比例关系p 3的候选值子集{L 3,p 3}共计包括4组取值,分别对应第二秩指示值为4时的4个空间层。也就是说,在表12中,{L 1,p 1}与第一索引、{L 1,p 1}与{L 2,p 2}、{L 1,p 1}与{L 3,p 3}均为一对多关系,且对于同一个{L 1,p 1},第一索引与{L 2,p 2}、第一索引与{L 3,p 3}均为一对一关系。
在本申请实施例中,终端设备可以根据1个{L 1,p 1},从表12中查找到与该{L 1,p 1}对应的由{L 2,p 2}和{L 3,p 3}组成的4个候选值集合。然后,终端设备可以遍历上述4个候选值集合作信道测量,并根据测量结果择优选择与当前信道状态最优适配的第二秩指示值,该第二秩指示值对应的空间层数,以及每个空间层的第二空域基向量的数量和第二空频合并系数的比例关系。
例如,以{L 1=L,p 1=p}为例,假定第一索引为5,且第二秩指示值为4的信道测量结果最优,则确定需要上报的第一索引为5,第二秩指示值为4,4个空间层对应的4个{L 3,p 3}按照空间层的编号从小到大依次为:{L,p/2}、{L,p/2}、{L/2,p}、{L/2,p}。又例如,以{L 1=L,p 1=p}为例,假定第一索引为7,且第二秩指示值为4的信道测量结果最优,则确定需要上报的第一索引为7,第二秩指示值为3,3个空间层对应的3个{L 2,p 2}按照空间层的编号从小到大依次为:{L,p}、{L/2,p}、{L,p/2}。
表12
Figure PCTCN2020080743-appb-000067
示例性地,表13示出了第一空域基向量的数量和第一频域基向量的比例系数,与第二空域基向量的数量和第二频域基向量的比例系数之间的一种对应关系。如表13所示,对于同一组第一空域基向量的数量L 1和第一频域基向量的比例系数β 1组成的第一参数集合{L 1,β 1},共计存在4个第二空域基向量的数量和第二频域基向量的比 例系数的候选值集合。其中,每个候选值集合共计包括1个第一索引、一个第二秩指示值为3时的第二空域基向量的数量L 2和第二频域基向量的比例关系β 2的候选值子集{L 2,β 2},以及一个第二秩指示值为4时的第二空域基向量的数量L 3和第二频域基向量的比例关系β 3的候选值子集{L 3,β 3}。其中,第二秩指示值为3时的第二空域基向量的数量L 2和第二频域基向量的比例关系β 2的候选值子集{L 2,β 2}共计包括3组取值,分别对应第二秩指示值为3时的3个空间层;第二秩指示值为4时的第二空域基向量的数量L 3和第二频域基向量的比例关系β 3的候选值子集{L 3,β 3}共计包括4组取值,分别对应第二秩指示值为4时的4个空间层。也就是说,在表13中,{L 1,β 1}与第一索引、{L 1,β 1}与{L 2,β 2}、{L 1,β 1}与{L 3,β 3}均为一对多关系,且对于同一个{L 1,β 1},第一索引与{L 2,β 2}、第一索引与{L 3,β 3}均为一对一关系。
在本申请实施例中,终端设备可以根据1组{L 1,β 1},从表13中查找到与该组{L 1,β 1}对应的由{L 2,β 2}和{L 3,β 3}组成的4个候选值集合。然后,终端设备可以遍历上述4个候选值集合作信道测量,并根据测量结果择优选择与当前信道状态最优适配的第二秩指示值,该第二秩指示值对应的空间层数,以及每个空间层的第二空域基向量的数量和第二频域基向量的比例关系。
例如,以{L 1=L,β 1=β}为例,假定第一索引为5,且第二秩指示值为4的信道测量结果最优,则确定需要上报的第一索引为5,第二秩指示值为4,4个空间层对应的4个{L 3,β 3}按照空间层的编号从小到大依次为:{L,β/2}、{L,β/2}、{L/2,β}、{L/2,β}。又例如,以{L 1=L,β 1=β}为例,假定第一索引为7,且第二秩指示值为3的信道测量结果最优,则确定需要上报的第一索引为7,第二秩指示值为3,3个空间层对应的3个{L 2,β 2}按照空间层的编号从小到大依次为:{L,β}、{L/2,β}、{L,β/2}。
表13
Figure PCTCN2020080743-appb-000068
上述表1至表13仅为上述第一对应关系的几个示例。实际应用中,还可能用到其他形式的第一对应关系实例,此处不再一一列举。
需要说明的是,上述第一对应关系中的任意一种,一个或一组第一参数可以对应一个或多个,或者一组或多组第二参数的候选值。实际应用中,上述第一对应关系可以采用预设配置表或配置图样的方式,存储在终端设备中。终端设备可以根据第一参数查找与之对应的一个或多个,或者一组或多组第二参数的候选值,然后采用遍历所 有候选值的方式执行信道状态测量等测量任务,并根据测量结果确定需要上报给网络设备的第二参数,以及与第二参数对应的、用于确定第二预编码矩阵的指示信息,以便网络设备生成第二预编码矩阵。例如,可以从上述遍历测量结果中选择信道状态最优的第二参数和第二预编码矩阵的指示信息。
进一步地,为了降低终端设备的上报开销,终端设备也可以不上报第二参数,而是只上报第一索引。当然,在此情况下,网络设备本地也需要存储上述第一对应关系。在网络设备接收到终端设备上报的第一索引后,即可根据第一索引,以及之前下发给终端设备的第一参数确定第二参数,然后根据第二参数和终端设备上报的第二预编码矩阵的指示信息生成第二预编码矩阵。因此,可选地,上述通信方法还可以包括如下步骤:
步骤三,终端设备向网络设备发送第一索引。其中,第一索引为根据第一参数和第一对应关系确定的索引值,对于同一个(组)第一参数,第一索引与第二参数一一对应。
同理,为了降低网络设备配置第二参数的资源开销,或者在网络设备只需要终端设备指定的第二参数的多个(组)候选值中的部分候选值所对应的第二预编码矩阵的指示信息的情况下,网络设备也可以向终端设备发送该第二参数的部分候选值对应的第一索引,如只配置一个第一索引。因此,可选地,上述通信方法还可以包括如下步骤:
步骤四,终端设备接收来自网络设备的第一索引。其中,第一索引用于根据第一参数和第一对应关系确定第二参数。
需要说明的是,当网络设备配置1个第一索引时,终端设备在上报第二预编码矩阵的指示信息时,没有必要上报配置的1个第一索引。
但是,当网络设备配置多个第一索引时,终端设备在上报第二预编码矩阵的指示信息时,还需要上报与之对应的第一索引。容易理解,终端设备需要遍历多个第一索引执行信道测量任务。之后,终端设备可以执行如下之一:
根据信道测量任务选择最优适配当前信道状态的第一索引、第二预编码矩阵的指示信息和秩指示值,并上报给网络设备。
根据信道测量任务每个第一索引各自对应的第二预编码矩阵的指示信息和秩指示值,并全部上报给网络设备。
在另一种可能的设计方法中,上述S302终端设备根据第一参数确定第二参数和第二预编码矩阵的指示信息,可以包括如下步骤:
步骤五,终端设备根据第一参数和预设折算规则,计算第二参数的折算值。
示例性地,上述预设折算规则可以包括如下一个或多个公式:
Figure PCTCN2020080743-appb-000069
其中,L为第一空域基向量的数量,
Figure PCTCN2020080743-appb-000070
为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
Figure PCTCN2020080743-appb-000071
为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
Figure PCTCN2020080743-appb-000072
为第二空频合并系数的数量的折算值,R为第二参数对应的秩指示值的候选值,R为正整数且R>2。
示例性地,以频域单元数目N f=13,每个频域单元与一个频域子带具有相同的频域长度,即f=1为例。若频域基向量比例系数p=1/2,则秩指示值为1或2时每个空间层每个空域基向量对应相同的M=7个频域基向量。若秩指示值为3或4时每个空间层对应不同的频域基向量数目,则对于秩指示值为3的情况,频域基向量的数量的折算值为:
Figure PCTCN2020080743-appb-000073
对于秩指示值为4的情况,平均频域基向量数量的折算值为:
Figure PCTCN2020080743-appb-000074
进一步地,可选地,上述S302终端设备根据第一参数确定第二参数和第二预编码矩阵的指示信息,还可以包括如下步骤:
步骤六,终端设备直接将第二参数的折算值作为第二参数。
可选地,上述S302终端设备根据第一参数确定第二参数和第二预编码矩阵的指示信息,还可以包括如下步骤:
步骤七,终端设备将第二参数的偏差值与第二参数的折算值之和作为第二参数。
其中,第二参数的偏差值与第二索引一一对应。该偏差值通常为一个较小值,可以为正,也可以为负,还可以为0。上述第二参数的偏差值与第二索引之间的一一对应关系(下文简称为第二对应关系),也可以与上述第一对应关系一样,采用预配置表格或对应关系图样的形式存储在终端设备和网络设备中。
示例性地,表14为上述第二对应关系一个示例。如表14所示,4个第二索引0、1、2、3依次对应4个第二参数的偏差值:1、0、-1、-2。相应地,上述预设折算规则可以包括如下一个或多个公式:
Figure PCTCN2020080743-appb-000075
其中,L 1为第一空域基向量的数量,L i为第二空域基向量的数量,M 1为第一频域基向量的数量,M i为第二频域基向量的数量,K 0,1为第一空频合并系数的数量,K 0,i为第二空频合并系数的数量的折算值,R i为第二参数对应的秩指示值,R i为正整数且R i>2,i取值为2或3,R iα、δ、λ依次为L i、M i、K 0,i的偏差值。
示例性地,以频域单元数目N f=13,每个频域单元与一个频域子带具有相同的频域长度,即f=1为例。若频域基向量比例系数p=1/2,则秩指示值为1或2时每个空间层每个空域基向量对应相同的M=7个频域基向量。若秩指示值为3或4时每个空间层对应不同的频域基向量数目,假定δ为1,则对于秩指示值为3的情况,频域基向量的数量为6;对于秩指示值为4的情况,平均频域基向量数量的折算值为5。
表14
第二索引 偏差值
0 +1
1 0
2 -1
3 -2
容易理解,第二参数的偏差值可以由网络设备直接下发给终端设备。可选地,为 了进一步减少配置开销,网络设备也可以将上述第二索引下发给终端设备,然后由终端设备根据本地存储的第二对应关系自行确定第二参数的偏差值。因此,可选地,在执行上述S302终端设备根据第一参数确定第二参数和第二预编码矩阵的指示信息之前,上述通信方法还可以包括如下步骤:
步骤八,终端设备接收来自网络设备的第二索引或第二参数的偏差值。其中,第二索引与第二参数的偏差值一一对应。
示例性地,网络设备可以采用位图(bitmap)的形式下发第二索引。例如,网络设备指示秩指示值分别为3和4的每个空间层对应的频域基向量的数目的高层信令,共计包含7个字段,分别用于指示秩指示值为3时的每个空间层对应的频域基向量的数目,以及秩指示值为4时的每个空间层对应的频域基向量的数目。基于表11,每个字段包含2个比特,用于指示表3中的一个第二索引,每个第二索引对应一个可选的频域基向量的数量相对频域基向量的数量的偏差值。例如,该高层信令为00011101011010,则表示指示秩指示值为3时,空间层1至3对应的频域基向量的数量相对频域基向量的数量的折算值的偏差依次为:1、0、-2。类似的,指示秩指示值为3下,空间层2对应的频域基向量数目为5,空间层3对应的频域基向量数目为3。指示秩指示值为4时,空间层1~4对应的频域基向量数目分别为4,4,3,3。
当然,网络设备也可以不下发第二参数的偏差值和第二索引。此时,终端设备也可以根据本地存储的第二对应关系,确定第二参数的偏差值和第二索引的候选值,并采用遍历所有候选值的方式执行信道状态测量等测量任务,择优确定需要上报的第二参数的偏差值和第二索引。因此,可选地,上述通信方法还可以包括如下步骤:
步骤九,终端设备向网络设备发送第二索引或第二参数的偏差值。其中,第二索引与第二参数的偏差值一一对应。
需要说明的是,上述第一参数与第一秩指示值对应,第二参数与第二秩指示值对应,且第二秩指示值大于第一秩指示值。其中,终端设备根据信道状态测量结果,从上述第一秩指示值和第二秩指示值择优确定需要上报的秩指示值,以便网络设备生成与当前信道状态最为匹配的预编码矩阵。因此,可选地,该通信方法还可以包括如下步骤:
步骤十,终端设备向网络设备发送第二秩指示值。
S303,终端设备向网络设备发送第二预编码矩阵的指示信息。相应地,网络设备接收来自终端设备的第二预编码矩阵的指示信息。
示例性地,终端设备可以在上行链路,通过信道状态指示报告、测量报告等上报第二预编码矩阵的指示信息。容易理解,除第二预编码矩阵的指示信息之外,终端设备还需要上报如下参数中的一种或多种:第一秩指示值或第二秩指示值、第一索引或第二参数、第二索引或第二参数的偏差值,其具体确定方法可以参考S302中的相关描述,此处不再赘述。
本申请实施例提供的通信方法,终端设备可以根据基站配置的第一参数确定第二参数,并根据第二参数确定用于生成第二预编码矩阵的指示信息,不会影响现有的第一参数的配置流程,且可以降低配置第二参数的配置复杂度,节省第二参数的配置开销,从而提高了无线通信系统的工作效率。
以上结合图3详细说明了本申请实施例的通信方法。以下结合图4和图5详细说明能够执行本申请方法实施例所述的通信方法的通信装置。
本申请实施例提供一种通信装置,可以应用于图1所示的终端设备中,用于执行如图3所述的通信方法中终端设备的功能。如图4所示,通信装置400包括:接收模块401和发送模块402。
其中,接收模块401,用于接收来自网络设备的第一参数。其中,第一参数用于确定第一预编码矩阵的指示信息和第二参数,第二参数用于确定第二预编码矩阵的指示信息。
发送模块402,用于向网络设备发送第二预编码矩阵的指示信息。
示例性地,上述第一参数包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数。相应地,上述第二参数包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
在一种可能的设计中,上述第一参数用于确定第二参数,可以包括:根据第一对应关系,确定第二参数。其中,第一对应关系包括如下一种或多种对应关系:第一空域基向量的数量与第二空域基向量的数量之间的对应关系;第一频域基向量的数量与第二频域基向量的数量之间的对应关系;第一频域基向量的比例系数与第二频域基向量的比例系数之间的对应关系;第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的对应关系;第一空频合并系数的数量与第二空频合并系数的数量之间的对应关系;第一空频合并系数的比例系数与第二空频合并系数的比例系数之间的对应关系;第一空域基向量的数量、第一频域基向量的数量、第一空频合并系数的比例系数,与第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的数量与第二空域基向量的数量、第二频域基向量的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的比例系数与第二空域基向量的数量、第二频域基向量的比例系数之间的对应关系;第一空域基向量的数量、第一空频合并系数的数量与第二空域基向量的数量、第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一空频合并系数的比例系数与第二空域基向量的数量、第二空频合并系数的比例系数之间的对应关系。
可选地,发送模块402,还用于向网络设备发送第一索引。其中,第一索引为根据第一参数和第一对应关系确定的索引值,第一索引与第二参数一一对应。
可选地,接收模块401,还用于接收来自网络设备的第一索引。其中,第一索引用于根据第一参数和第一对应关系确定第二参数。
在另一种可能的设计中,上述第一参数用于确定第二参数,可以包括:根据第一参数和预设折算规则,计算第二参数的折算值。
示例性地,上述预设折算规则包括如下一个或多个公式:
Figure PCTCN2020080743-appb-000076
Figure PCTCN2020080743-appb-000077
其中,L为第一空域基向量的数量,
Figure PCTCN2020080743-appb-000078
为第二空域基向量的数量的折算 值,M为第一频域基向量的数量,
Figure PCTCN2020080743-appb-000079
为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
Figure PCTCN2020080743-appb-000080
为第二空频合并系数的数量的折算值,R为第二参数对应的秩指示值的候选值,R>2。
进一步地,可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的折算值作为第二参数。
进一步地,可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的偏差值与第二参数的折算值之和作为第二参数。
或者,可选地,上述第一参数用于确定第二参数,还可以包括:发送模块402,还用于向网络设备发送第二索引或第二参数的偏差值。其中,第二索引与第二参数的偏差值一一对应。
可选地,接收模块401,还用于接收来自网络设备的第二索引或第二参数的偏差值;其中,第二索引与第二参数的偏差值一一对应。
需要说明的是,上述第一参数与第一秩指示值对应,第二参数与第二秩指示值对应,第二秩指示值大于第一秩指示值。
可选地,发送模块402,还用于向网络设备发送第二秩指示值。
可选地,如图4所示,上述通信装置400还可以包括处理模块403。处理模块403,用于控制通信装置400的接收模块401和发送模块402执行功能,以及执行内部处理流程,如根据第一参数确定第二参数,以及根据第二参数确定第二预编码矩阵的指示信息等。
此外,通信装置400还可以包括存储模块(图4中未示出)。该存储模块用于存储通信装置400的控制程序或指令,所述控制程序或指令可以由处理器403读取并执行,使得通信装置400执行如图3所示的通信方法中由终端设备执行的功能。
需要说明的是,上述通信装置400可以是终端设备,也可以是设置于该终端设备内部的芯片或芯片系统,本申请实施例对此不作限定。
本申请实施例提供了一种通信装置500,可以应用于图1所示的网络设备中,用于执行如图3所述的通信方法中网络设备的功能。如图5所示,通信装置500包括:发送模块501和接收模块502。
其中,发送模块501,用于向终端设备发送第一参数。其中,第一参数用于终端设备确定第一预编码矩阵的指示信息和第二参数,第二参数用于确定第二预编码矩阵的指示信息。接收模块502,用于接收来自终端设备的第二预编码矩阵的指示信息。
示例性地,上述第一参数包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数。相应地,上述第二参数包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
在一种可能的设计中,上述第一参数用于确定第二参数,可以包括:根据第一对应关系,确定第二参数;其中,第一对应关系包括如下一种或多种对应关系:第一空域基向量的数量与第二空域基向量的数量之间的对应关系;第一频域基向量的数量与第二频域基向量的数量之间的对应关系;第一频域基向量的比例系数与第二频域基向 量的比例系数之间的对应关系;第一频域单元数、第一频域基向量的比例系数与第二频域基向量的数量之间的对应关系;第一空频合并系数的数量与第二空频合并系数的数量之间的对应关系;第一空频合并系数的比例系数与第二空频合并系数的比例系数之间的对应关系;第一空域基向量的数量、第一频域基向量的数量、第一空频合并系数的比例系数,与第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的数量与第二空域基向量的数量、第二频域基向量的数量之间的对应关系;第一空域基向量的数量、第一频域基向量的比例系数与第二空域基向量的数量、第二频域基向量的比例系数之间的对应关系;第一空域基向量的数量、第一空频合并系数的数量与第二空域基向量的数量、第二空频合并系数的数量之间的对应关系;第一空域基向量的数量、第一空频合并系数的比例系数与第二空域基向量的数量、第二空频合并系数的比例系数之间的对应关系。
可选地,接收模块502,还用于接收来自终端设备的第一索引;其中,第二索引用于根据第一参数和第一对应关系确定第二参数。
可选地,发送模块501,还用于向终端设备发送第一索引;其中,第一索引为根据第一参数和第一对应关系确定的索引值,第一索引与第二参数一一对应。
在另一种可能的设计中,上述第一参数用于确定第二参数,可以包括:根据第一参数和预设折算规则,计算第二参数的折算值。
示例性地,上述预设折算规则可以包括如下一个或多个公式:
Figure PCTCN2020080743-appb-000081
Figure PCTCN2020080743-appb-000082
其中,L为第一空域基向量的数量,
Figure PCTCN2020080743-appb-000083
为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
Figure PCTCN2020080743-appb-000084
为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
Figure PCTCN2020080743-appb-000085
为第二空频合并系数的数量的折算值,R为第二参数对应的秩指示值的候选值,R>2。
进一步地,可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的折算值作为第二参数。
可选地,上述第一参数用于确定第二参数,还可以包括:将第二参数的偏差值与第二参数的折算值之和作为第二参数。
可选地,发送模块501,还用于向终端设备发送第二索引或第二参数的偏差值;其中,第二索引与第二参数的偏差值一一对应。
可选地,接收模块502,还用于接收来自终端设备的第二索引或第二参数的偏差值;其中,第二索引与第二参数的偏差值一一对应。
需要说明的是,上述第一参数与第一秩指示值对应,第二参数与第二秩指示值对应,第二秩指示值大于第一秩指示值。
可选地,接收模块502,还用于接收来自终端设备的第二秩指示值。
可选地,如图5所示,上述通信装置500还可以包括处理模块503。处理模块503,用于控制通信装置500的发送模块501和接收模块502执行功能,以及执行内部处理流程,如根据第一参数和第二参数确定第一索引,以及第二预编码矩阵的指示信息生成第二预编码矩阵等。
此外,通信装置500还可以包括存储模块(图5中未示出)。该存储模块用于存储通信装置500的控制程序或指令,所述控制程序或指令可以由处理器503读取并执行,使得通信装置500执行如图3所示的通信方法中由网络设备执行的功能。
本申请实施例提供一种通信系统。该通信系统包括一个或多个终端设备,以及一个或多个网络设备。
本申请实施例提供一种计算机程序产品。该计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例所述的通信方法中终端设备或网络设备的功能。
本申请实施例提供一种可读存储介质。该可读存储介质存储有程序或指令,当该程序或指令在计算机上运行时,使得该计算机执行上述方法实施例所述的通信方法中终端设备或网络设备的功能。
需要说明的是,上述通信装置500可以是网络设备,也可以是设置于网络设备内部的芯片或芯片系统,本申请实施例对此不作限定。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式 向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本申请实施例中术语“和/或”,仅仅用于描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中,“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。
本申请实施例中,“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是在一些实施例中还包括其他没有列出的步骤或单元,或在一些实施例中还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”、“消息(message)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
在本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (54)

  1. 一种通信方法,其特征在于,应用于终端设备,所述通信方法包括:
    所述终端设备接收来自网络设备的第一参数;其中,所述第一参数用于确定第一预编码矩阵的指示信息和第二参数,所述第二参数用于确定第二预编码矩阵的指示信息;
    所述终端设备向所述网络设备发送所述第二预编码矩阵的指示信息。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一参数包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数;
    所述第二参数包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
  3. 根据权利要求2所述的通信方法,其特征在于,所述第一参数用于确定第二参数,包括:
    根据第一对应关系,确定所述第二参数;其中,所述第一对应关系包括如下一种或多种对应关系:
    所述第一空域基向量的数量与所述第二空域基向量的数量之间的对应关系;
    所述第一频域基向量的数量与所述第二频域基向量的数量之间的对应关系;
    所述第一频域基向量的比例系数与所述第二频域基向量的比例系数之间的对应关系;
    所述第一频域单元数、所述第一频域基向量的比例系数与所述第二频域基向量的数量之间的对应关系;
    所述第一空频合并系数的数量与所述第二空频合并系数的数量之间的对应关系;
    所述第一空频合并系数的比例系数与所述第二空频合并系数的比例系数之间的对应关系;
    所述第一空域基向量的数量、所述第一频域基向量的数量、所述第一空频合并系数的比例系数,与所述第二空频合并系数的数量之间的对应关系。
  4. 根据权利要求3所述的通信方法,其特征在于,所述通信方法还包括:
    所述终端设备向所述网络设备发送第一索引;其中,所述第一索引为根据所述第一参数和所述第一对应关系确定的索引值,所述第一索引与所述第二参数一一对应。
  5. 根据权利要求3所述的通信方法,其特征在于,所述通信方法还包括:
    所述终端设备接收来自所述网络设备的第一索引;其中,所述第一索引用于根据所述第一参数和所述第一对应关系确定所述第二参数。
  6. 根据权利要求1所述的通信方法,其特征在于,所述第一参数用于确定第二参数,包括:
    根据所述第一参数和预设折算规则,计算所述第二参数的折算值。
  7. 根据权利要求6所述的通信方法,其特征在于,所述预设折算规则包括如下一个或多个公式:
    Figure PCTCN2020080743-appb-100001
    其中,L为第一空域基向量的数量,
    Figure PCTCN2020080743-appb-100002
    为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
    Figure PCTCN2020080743-appb-100003
    为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
    Figure PCTCN2020080743-appb-100004
    为第二空频合并系数的数量的折算值,R为所述第二参数对应的秩指示值的候选值,R>2。
  8. 根据权利要求6或7所述的通信方法,其特征在于,所述第一参数用于确定第二参数,还包括:
    将所述第二参数的折算值作为所述第二参数。
  9. 根据权利要求6或7所述的通信方法,其特征在于,所述第一参数用于确定第二参数,还包括:
    将所述第二参数的偏差值与所述第二参数的折算值之和作为所述第二参数。
  10. 根据权利要求9所述的通信方法,其特征在于,所述通信方法还包括:
    所述终端设备向所述网络设备发送第二索引或所述第二参数的偏差值;其中,所述第二索引与所述第二参数的偏差值一一对应。
  11. 根据权利要求9所述的通信方法,其特征在于,所述通信方法还包括:
    所述终端设备接收来自所述网络设备的第二索引或所述第二参数的偏差值;其中,所述第二索引与所述第二参数的偏差值一一对应。
  12. 根据权利要求1-11中任意一项所述的通信方法,其特征在于,所述第一参数与第一秩指示值对应,所述第二参数与第二秩指示值对应,所述第二秩指示值大于所述第一秩指示值。
  13. 根据权利要求12所述的通信方法,其特征在于,所述通信方法还包括:
    所述终端设备向所述网络设备发送所述第二秩指示值。
  14. 一种通信方法,其特征在于,应用于网络设备,所述通信方法包括:
    所述网络设备向终端设备发送第一参数;其中,所述第一参数用于所述终端设备确定第一预编码矩阵的指示信息和第二参数,所述第二参数用于确定第二预编码矩阵的指示信息;
    所述网络设备接收来自所述终端设备的所述第二预编码矩阵的指示信息。
  15. 根据权利要求14所述的通信方法,其特征在于,所述第一参数包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数;
    所述第二参数包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
  16. 根据权利要求15所述的通信方法,其特征在于,所述第一参数用于确定第二参数,包括:
    根据第一对应关系,确定所述第二参数;其中,所述第一对应关系包括如下一种或多种对应关系:
    所述第一空域基向量的数量与所述第二空域基向量的数量之间的对应关系;
    所述第一频域基向量的数量与所述第二频域基向量的数量之间的对应关系;
    所述第一频域基向量的比例系数与所述第二频域基向量的比例系数之间的对应关系;
    所述第一频域单元数、所述第一频域基向量的比例系数与所述第二频域基向量的数量之间的对应关系;
    所述第一空频合并系数的数量与所述第二空频合并系数的数量之间的对应关系;
    所述第一空频合并系数的比例系数与所述第二空频合并系数的比例系数之间的对应关系;
    所述第一空域基向量的数量、所述第一频域基向量的数量、所述第一空频合并系数的比例系数,与所述第二空频合并系数的数量之间的对应关系。
  17. 根据权利要求16所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备接收来自所述终端设备的第一索引;其中,所述第一索引用于根据所述第一参数和所述第一对应关系确定所述第二参数。
  18. 根据权利要求16所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备向所述终端设备发送第一索引;其中,所述第一索引为根据所述第一参数和所述第一对应关系确定的索引值,所述第一索引与所述第二参数一一对应。
  19. 根据权利要求14所述的通信方法,其特征在于,所述第一参数用于确定第二参数,包括:
    根据所述第一参数和预设折算规则,计算所述第二参数的折算值。
  20. 根据权利要求19所述的通信方法,其特征在于,所述预设折算规则包括如下一个或多个公式:
    Figure PCTCN2020080743-appb-100005
    其中,L为第一空域基向量的数量,
    Figure PCTCN2020080743-appb-100006
    为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
    Figure PCTCN2020080743-appb-100007
    为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
    Figure PCTCN2020080743-appb-100008
    为第二空频合并系数的数量的折算值,R为所述第二参数对应的秩指示值的候选值,R>2。
  21. 根据权利要求19或20所述的通信方法,其特征在于,所述第一参数用于确定第二参数,还包括:
    将所述第二参数的折算值作为所述第二参数。
  22. 根据权利要求19或20所述的通信方法,其特征在于,所述第一参数用于确定第二参数,还包括:
    将所述第二参数的偏差值与所述第二参数的折算值之和作为所述第二参数。
  23. 根据权利要求22所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备向所述终端设备发送第二索引或所述第二参数的偏差值;其中,所述第二索引与所述第二参数的偏差值一一对应。
  24. 根据权利要求22所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备接收来自所述终端设备的第二索引或所述第二参数的偏差值;其中,所述第二索引与所述第二参数的偏差值一一对应。
  25. 根据权利要求14-24中任意一项所述的通信方法,其特征在于,所述第一参数与第一秩指示值对应,所述第二参数与第二秩指示值对应,所述第二秩指示值大于所述第一秩指示值。
  26. 根据权利要求25所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备接收来自所述终端设备的所述第二秩指示值。
  27. 一种通信装置,其特征在于,应用于终端设备中,上述通信装置包括:接收模块和发送模块;其中,
    所述接收模块,用于接收来自网络设备的第一参数;其中,所述第一参数用于确定第一预编码矩阵的指示信息和第二参数,所述第二参数用于确定第二预编码矩阵的指示信息;
    所述发送模块,用于向所述网络设备发送所述第二预编码矩阵的指示信息。
  28. 根据权利要求27所述的通信装置,其特征在于,所述第一参数包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数;
    所述第二参数包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
  29. 根据权利要求28所述的通信装置,其特征在于,所述第一参数用于确定第二参数,包括:
    根据第一对应关系,确定所述第二参数;其中,所述第一对应关系包括如下一种或多种对应关系:
    所述第一空域基向量的数量与所述第二空域基向量的数量之间的对应关系;
    所述第一频域基向量的数量与所述第二频域基向量的数量之间的对应关系;
    所述第一频域基向量的比例系数与所述第二频域基向量的比例系数之间的对应关系;
    所述第一频域单元数、所述第一频域基向量的比例系数与所述第二频域基向量的数量之间的对应关系;
    所述第一空频合并系数的数量与所述第二空频合并系数的数量之间的对应关系;
    所述第一空频合并系数的比例系数与所述第二空频合并系数的比例系数之间的对应关系;
    所述第一空域基向量的数量、所述第一频域基向量的数量、所述第一空频合并系数的比例系数,与所述第二空频合并系数的数量之间的对应关系。
  30. 根据权利要求29所述的通信装置,其特征在于,
    所述发送模块,还用于向所述网络设备发送第一索引;其中,所述第一索引为根据所述第一参数和所述第一对应关系确定的索引值,所述第一索引与所述第二参数一一对应。
  31. 根据权利要求29所述的通信装置,其特征在于,
    所述接收模块,还用于接收来自所述网络设备的第一索引;其中,所述第一索引用于根据所述第一参数和所述第一对应关系确定所述第二参数。
  32. 根据权利要求27所述的通信装置,其特征在于,所述第一参数用于确定第二参数,包括:
    根据所述第一参数和预设折算规则,计算所述第二参数的折算值。
  33. 根据权利要求32所述的通信装置,其特征在于,所述预设折算规则包括如下 一个或多个公式:
    Figure PCTCN2020080743-appb-100009
    其中,L为第一空域基向量的数量,
    Figure PCTCN2020080743-appb-100010
    为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
    Figure PCTCN2020080743-appb-100011
    为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
    Figure PCTCN2020080743-appb-100012
    为第二空频合并系数的数量的折算值,R为所述第二参数对应的秩指示值的候选值,R>2。
  34. 根据权利要求32或33所述的通信装置,其特征在于,所述第一参数用于确定第二参数,还包括:
    将所述第二参数的折算值作为所述第二参数。
  35. 根据权利要求32或33所述的通信装置,其特征在于,所述第一参数用于确定第二参数,还包括:
    将所述第二参数的偏差值与所述第二参数的折算值之和作为所述第二参数。
  36. 根据权利要求35所述的通信装置,其特征在于,
    所述发送模块,还用于向所述网络设备发送第二索引或所述第二参数的偏差值;其中,所述第二索引与所述第二参数的偏差值一一对应。
  37. 根据权利要求35所述的通信装置,其特征在于,
    所述接收模块,还用于接收来自所述网络设备的第二索引或所述第二参数的偏差值;其中,所述第二索引与所述第二参数的偏差值一一对应。
  38. 根据权利要求27-37中任意一项所述的通信装置,其特征在于,所述第一参数与第一秩指示值对应,所述第二参数与第二秩指示值对应,所述第二秩指示值大于所述第一秩指示值。
  39. 根据权利要求38所述的通信装置,其特征在于,
    所述发送模块,还用于向所述网络设备发送所述第二秩指示值。
  40. 一种通信装置,其特征在于,应用于网络设备中,所述通信装置包括:发送模块和接收模块;其中,
    所述发送模块,用于向终端设备发送第一参数;其中,所述第一参数用于所述终端设备确定第一预编码矩阵的指示信息和第二参数,所述第二参数用于确定第二预编码矩阵的指示信息;
    所述接收模块,用于接收来自所述终端设备的所述第二预编码矩阵的指示信息。
  41. 根据权利要求40所述的通信装置,其特征在于,所述第一参数包括如下参数中的一种或多种:第一频域单元数、第一空域基向量的数量、第一频域基向量的数量或比例系数、第一空频合并系数的数量或比例系数;
    所述第二参数包括如下参数中的一种或多种:第二频域单元数、第二空域基向量的数量、第二频域基向量的数量或比例系数、第二空频合并系数的数量或比例系数。
  42. 根据权利要求41所述的通信装置,其特征在于,所述第一参数用于确定第二参数,包括:
    根据第一对应关系,确定所述第二参数;其中,所述第一对应关系包括如下一种或多种对应关系:
    所述第一空域基向量的数量与所述第二空域基向量的数量之间的对应关系;
    所述第一频域基向量的数量与所述第二频域基向量的数量之间的对应关系;
    所述第一频域基向量的比例系数与所述第二频域基向量的比例系数之间的对应关系;
    所述第一频域单元数、所述第一频域基向量的比例系数与所述第二频域基向量的数量之间的对应关系;
    所述第一空频合并系数的数量与所述第二空频合并系数的数量之间的对应关系;
    所述第一空频合并系数的比例系数与所述第二空频合并系数的比例系数之间的对应关系;
    所述第一空域基向量的数量、所述第一频域基向量的数量、所述第一空频合并系数的比例系数,与所述第二空频合并系数的数量之间的对应关系。
  43. 根据权利要求42所述的通信装置,其特征在于,
    所述接收模块,还用于接收来自所述终端设备的第一索引;其中,所述第一索引用于根据所述第一参数和所述第一对应关系确定所述第二参数。
  44. 根据权利要求42所述的通信装置,其特征在于,
    所述发送模块,还用于向所述终端设备发送第一索引;其中,所述第一索引为根据所述第一参数和所述第一对应关系确定的索引值,所述第一索引与所述第二参数一一对应。
  45. 根据权利要求40所述的通信装置,其特征在于,所述第一参数用于确定第二参数,包括:
    根据所述第一参数和预设折算规则,计算所述第二参数的折算值。
  46. 根据权利要求45所述的通信装置,其特征在于,所述预设折算规则包括如下一个或多个公式:
    Figure PCTCN2020080743-appb-100013
    其中,L为第一空域基向量的数量,
    Figure PCTCN2020080743-appb-100014
    为第二空域基向量的数量的折算值,M为第一频域基向量的数量,
    Figure PCTCN2020080743-appb-100015
    为第二频域基向量的数量的折算值,K 0为第一空频合并系数的数量,
    Figure PCTCN2020080743-appb-100016
    为第二空频合并系数的数量的折算值,R为所述第二参数对应的秩指示值的候选值,R>2。
  47. 根据权利要求45或46所述的通信装置,其特征在于,所述第一参数用于确定第二参数,还包括:
    将所述第二参数的折算值作为所述第二参数。
  48. 根据权利要求45或46所述的通信装置,其特征在于,所述第一参数用于确定第二参数,还包括:
    将所述第二参数的偏差值与所述第二参数的折算值之和作为所述第二参数。
  49. 根据权利要求48所述的通信装置,其特征在于,
    所述发送模块,还用于向所述终端设备发送第二索引或所述第二参数的偏差值;其中,所述第二索引与所述第二参数的偏差值一一对应。
  50. 根据权利要求48所述的通信装置,其特征在于,
    所述接收模块,还用于接收来自所述终端设备的第二索引或所述第二参数的偏差值;其中,所述第二索引与所述第二参数的偏差值一一对应。
  51. 根据权利要求40-50中任意一项所述的通信装置,其特征在于,所述第一参数与第一秩指示值对应,所述第二参数与第二秩指示值对应,所述第二秩指示值大于所述第一秩指示值。
  52. 根据权利要求51所述的通信装置,其特征在于,
    所述接收模块,还用于接收来自所述终端设备的所述第二秩指示值。
  53. 一种通信设备,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信设备执行如权利要求1至26中任一项所述的通信方法。
  54. 一种可读存储介质,其特征在于,存储有程序或指令,当所述程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至26中任意一项所述的通信方法。
PCT/CN2020/080743 2019-03-29 2020-03-23 通信方法及装置 WO2020199964A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20782209.9A EP3952120A4 (en) 2019-03-29 2020-03-23 COMMUNICATION METHOD AND APPARATUS
US17/488,588 US11929799B2 (en) 2019-03-29 2021-09-29 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910252646.1A CN111756415B (zh) 2019-03-29 2019-03-29 通信方法及装置
CN201910252646.1 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/488,588 Continuation US11929799B2 (en) 2019-03-29 2021-09-29 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020199964A1 true WO2020199964A1 (zh) 2020-10-08

Family

ID=72664964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080743 WO2020199964A1 (zh) 2019-03-29 2020-03-23 通信方法及装置

Country Status (4)

Country Link
US (1) US11929799B2 (zh)
EP (1) EP3952120A4 (zh)
CN (1) CN111756415B (zh)
WO (1) WO2020199964A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206409A1 (zh) * 2021-04-02 2022-10-06 大唐移动通信设备有限公司 信息上报方法、网络侧配置方法、装置、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11949483B2 (en) * 2021-02-01 2024-04-02 Koninklijke Philips N.V. Methods and apparatuses for codebook restriction for type-II feedback reporting and higher layer configuration and reporting for linear combination codebook in a wireless communications network
WO2021031143A1 (en) * 2019-08-21 2021-02-25 Qualcomm Incorporated Frequency domain basis restriction for csi reporting enhancement
CN115333586A (zh) * 2021-05-11 2022-11-11 大唐移动通信设备有限公司 码本指示方法、装置及存储介质
WO2023159614A1 (zh) * 2022-02-28 2023-08-31 北京小米移动软件有限公司 一种预编码矩阵确定方法及设备/存储介质/装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082639A (zh) * 2010-11-08 2011-06-01 大唐移动通信设备有限公司 信道状态信息的传输方法和设备
CN102468925A (zh) * 2010-11-09 2012-05-23 大唐移动通信设备有限公司 预编码矩阵索引上报及预编码处理方法、系统和装置
US20130273931A1 (en) * 2010-12-13 2013-10-17 Nokia Siemens Networks Oy Mechanism for Providing Channel Feedback in Multi-Cell Communication
WO2018129733A1 (zh) * 2017-01-16 2018-07-19 华为技术有限公司 确定信道状态信息的方法、接入网设备和终端设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848673B2 (en) * 2011-12-19 2014-09-30 Ofinno Technologies, Llc Beam information exchange between base stations
EP2837127B1 (en) * 2012-04-12 2016-03-09 Telefonica S.A. A method and a system for communication in lte networks
US10256884B2 (en) * 2014-03-06 2019-04-09 Alcatel Lucent Method and apparatus for quantizing channel state information
JP6386672B2 (ja) * 2014-12-11 2018-09-05 華為技術有限公司Huawei Technologies Co.,Ltd. データ処理方法、装置、及びデバイス
US9985700B2 (en) * 2015-05-12 2018-05-29 Mediatek Inc. Channel state feedback enhancement in downlink multiuser superposition transmission
WO2017069580A1 (en) * 2015-10-23 2017-04-27 Samsung Electronics Co., Ltd. Precoder codebook for advanced wireless communication systems
CN107395259B (zh) * 2016-05-13 2020-04-21 华为技术有限公司 一种二级预编码方法及装置
CN108390704B (zh) * 2017-02-03 2021-06-25 上海诺基亚贝尔股份有限公司 用于mimo通信的方法和设备
CN110190941B (zh) * 2018-01-12 2022-05-10 华为技术有限公司 一种用于终端设备能力传输的方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082639A (zh) * 2010-11-08 2011-06-01 大唐移动通信设备有限公司 信道状态信息的传输方法和设备
CN102468925A (zh) * 2010-11-09 2012-05-23 大唐移动通信设备有限公司 预编码矩阵索引上报及预编码处理方法、系统和装置
US20130273931A1 (en) * 2010-12-13 2013-10-17 Nokia Siemens Networks Oy Mechanism for Providing Channel Feedback in Multi-Cell Communication
WO2018129733A1 (zh) * 2017-01-16 2018-07-19 华为技术有限公司 确定信道状态信息的方法、接入网设备和终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on CSI Enhancement", 3GPP TSG RAN WG1 MEETING #96BIS R1-1903969, 12 April 2019 (2019-04-12), XP051691191 *
See also references of EP3952120A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206409A1 (zh) * 2021-04-02 2022-10-06 大唐移动通信设备有限公司 信息上报方法、网络侧配置方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US11929799B2 (en) 2024-03-12
US20220038145A1 (en) 2022-02-03
EP3952120A4 (en) 2022-06-08
CN111756415B (zh) 2021-10-26
EP3952120A1 (en) 2022-02-09
CN111756415A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
US11811471B2 (en) Channel measurement method and communications apparatus
WO2020199964A1 (zh) 通信方法及装置
CN111342873B (zh) 一种信道测量方法和通信装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
EP3907918B1 (en) Parameter configuration method and communication apparatus
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
US20200374175A1 (en) Communication method, communications apparatus, and system
WO2020125511A1 (zh) 一种信道测量方法和通信装置
US20220385343A1 (en) Information transmission method and apparatus
EP4181446A1 (en) Method and apparatus for acquiring channel parameter
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
US11943014B2 (en) Channel measurement method and communications apparatus
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020135101A1 (zh) 用于构建预编码向量的向量指示方法以及通信装置
WO2022227976A1 (zh) 通信方法和通信装置
EP4040699A1 (en) Method for configuring transmission port of a downlink reference signal, and communication apparatus
WO2020164387A1 (zh) 指示和确定预编码向量的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782209

Country of ref document: EP

Effective date: 20211026