WO2022206409A1 - 信息上报方法、网络侧配置方法、装置、设备及存储介质 - Google Patents

信息上报方法、网络侧配置方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022206409A1
WO2022206409A1 PCT/CN2022/081482 CN2022081482W WO2022206409A1 WO 2022206409 A1 WO2022206409 A1 WO 2022206409A1 CN 2022081482 W CN2022081482 W CN 2022081482W WO 2022206409 A1 WO2022206409 A1 WO 2022206409A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
terminal
frequency
information
domain basis
Prior art date
Application number
PCT/CN2022/081482
Other languages
English (en)
French (fr)
Inventor
刘正宣
高秋彬
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/552,073 priority Critical patent/US20240179724A1/en
Priority to KR1020237037731A priority patent/KR20230165820A/ko
Priority to EP22778592.0A priority patent/EP4319354A1/en
Priority to JP2023559139A priority patent/JP2024510530A/ja
Publication of WO2022206409A1 publication Critical patent/WO2022206409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an information reporting method, a network side configuration method, an apparatus, a device, and a storage medium.
  • the dimension M v of the codebook parameter represents the number of frequency-domain basis vectors.
  • the number of frequency-domain basis vectors is determined by the network side configuration. The number of vectors is not the most appropriate number. If the number of redundant frequency domain basis vectors is reported, it will easily lead to waste of terminal overhead. It can be seen that the method of determining the number of frequency domain basis vectors in the related art has a large terminal feedback overhead. question.
  • Embodiments of the present disclosure provide an information reporting method, a network side configuration method, an apparatus, a device, and a storage medium, so as to solve the problem of high terminal feedback overhead in the related art method for determining the number of frequency domain basis vectors.
  • An embodiment of the present disclosure provides an information reporting method, including:
  • the terminal estimates downlink channel information
  • the terminal determines frequency domain base vector information according to the downlink channel information
  • the terminal sends the frequency domain base vector information to the network device.
  • the terminal determines frequency domain basis vector information according to the downlink channel information, including:
  • the terminal calculates, according to the downlink channel information, a compression coefficient corresponding to each frequency-domain base vector in the preset frequency-domain base vectors;
  • the terminal determines frequency domain basis vector information according to the compression coefficient.
  • the method before the terminal determines the frequency domain basis vector information according to the downlink channel information, the method further includes:
  • the terminal determines frequency domain basis vector information according to the downlink channel information, including:
  • the terminal determines frequency domain base vector information according to the downlink channel information and the frequency domain base vector set.
  • the terminal determines frequency-domain basis vector information according to the downlink channel information and the frequency-domain basis vector set, including:
  • the terminal calculates, according to the downlink channel information, a compression coefficient corresponding to each frequency-domain base vector in the frequency-domain base vector set;
  • the terminal determines frequency domain basis vector information based on the compression coefficient.
  • the frequency-domain basis vector information includes at least one of the number of frequency-domain basis vectors, indication information corresponding to the frequency-domain basis vectors, or target indication content, wherein the frequency-domain basis vectors correspond to at least one item.
  • the indication information is used to indicate the frequency domain base vector selected by the terminal from the frequency domain base vector set configured by the network device, or the frequency domain base vector selected from the frequency domain base vector set preset in the terminal.
  • the target indication content includes the frequency domain basis vector set or a preset frequency domain basis vector.
  • the method further includes;
  • the terminal receives the trigger status sent by the network device, where the trigger status is used to indicate the reporting method of the terminal, and is also used to indicate the codebook parameters configured by the network device to the terminal, where the codebook parameters include all One or more of the frequency domain basis vector set, the size of the frequency domain basis vector set, or the starting point information of the frequency domain basis vector set;
  • the terminal determines the codebook parameter according to the trigger state.
  • the method before the terminal sends the frequency domain basis vector information to the network device, the method further includes:
  • the indication information corresponding to the vector is used to instruct the terminal to select a selection manner of a frequency-domain basis vector from the frequency-domain basis vector set;
  • the terminal sends the frequency domain basis vector information to the network device, including:
  • the terminal sends the frequency domain base vector information indicated by the target bit information to the network device.
  • the reporting structure of the terminal includes a two-part reporting structure or a three-part reporting structure
  • the terminal sends the frequency-domain basis vector information to the network device, including:
  • the terminal sends the target indication content to the network device through a first target partial reporting structure;
  • the first target partial reporting structure is the first partial reporting structure in the two-part reporting structure;
  • the terminal sends the target indication content to the network device, including:
  • the terminal sends the target indication content to the network device through a second target partial reporting structure; the second target partial reporting structure is the first partial reporting structure among the three-part reporting structures.
  • the frequency domain basis vector information of each transmission layer is the same or different;
  • the terminal sends the frequency domain basis vector information to the network device, including:
  • the terminal sends Z pieces of the frequency domain basis vector information to the network side, where Z is a positive integer, and N is used to indicate the number of layers of the transport layer.
  • Embodiments of the present disclosure also provide a network-side configuration method, including:
  • the network device receives the frequency domain base vector information sent by the terminal, where the frequency domain base vector information is determined by the terminal according to the estimated downlink channel information.
  • the method before the network device receives the frequency domain basis vector information sent by the terminal, the method further includes:
  • the frequency domain base vector information is determined by the terminal based on the downlink channel information and the frequency domain base vector set.
  • the frequency-domain basis vector information includes at least one of the number of frequency-domain basis vectors, indication information corresponding to the frequency-domain basis vectors, or target indication content, wherein the frequency-domain basis vectors correspond to at least one item.
  • the indication information is used to indicate the frequency domain base vector selected by the terminal from the frequency domain base vector set configured by the network device, or the frequency domain base vector selected from the frequency domain base vector set preset in the terminal.
  • the target indication content includes the frequency domain basis vector set or a preset frequency domain basis vector.
  • the network device receives frequency domain basis vector information sent by the terminal, including:
  • the indication information corresponding to the frequency domain base vector is used to indicate the frequency domain base vector selected by the terminal from the frequency domain base vector set configured by the network device, or, from the frequency domain base vector preset in the terminal Frequency-domain basis vectors selected from the set.
  • the method further includes:
  • the network device sends a trigger state to the terminal, where the trigger state is used to indicate a reporting method of the terminal, and is also used to indicate a codebook parameter configured by the network device to the terminal, where the codebook parameter includes the One or more of the frequency domain basis vector set, the size of the frequency domain basis vector set, or the starting point information of the frequency domain basis vector set.
  • the frequency domain basis vector information of each transmission layer is the same or different;
  • the network device receives the frequency-domain basis vector information sent by the terminal, including:
  • the network device receives Z pieces of the frequency domain basis vector information, where Z is a positive integer, and Z is used to represent the number of layers of the transport layer.
  • An embodiment of the present disclosure further provides a terminal, including: a memory, a transceiver, and a processor, wherein:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the frequency domain base vector information is sent to the network device.
  • the determining the frequency domain basis vector information according to the downlink channel information includes:
  • the terminal calculates, according to the downlink channel information, a compression coefficient corresponding to each frequency-domain base vector in the preset frequency-domain base vectors;
  • the terminal determines frequency domain basis vector information according to the compression coefficient.
  • the method before determining the frequency domain basis vector information according to the downlink channel information, the method further includes:
  • Determine frequency domain basis vector information according to the downlink channel information including:
  • Frequency domain base vector information is determined according to the downlink channel information and the frequency domain base vector set.
  • the determining the frequency domain basis vector information according to the downlink channel information and the frequency domain basis vector set includes:
  • Frequency domain basis vector information is determined based on the compression coefficients.
  • the method further includes;
  • Receive a trigger status sent by the network device where the trigger status is used to indicate the reporting method of the terminal, and is also used to indicate codebook parameters configured by the network device to the terminal, where the codebook parameters include the frequency domain One or more of the basis vector set, the size of the frequency domain basis vector set, or the starting point information of the frequency domain basis vector set.
  • the frequency-domain basis vector information includes the number of frequency-domain basis vectors and/or indication information corresponding to the frequency-domain basis vectors, wherein the indication information corresponding to the frequency-domain basis vectors is used to indicate to the terminal.
  • Embodiments of the present disclosure also provide a network device, including: a memory, a transceiver, and a processor, wherein:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the frequency domain base vector information sent by the terminal is received, wherein the frequency domain base vector information is determined by the terminal according to the estimated downlink channel information.
  • the method before the receiving the frequency domain basis vector information sent by the terminal, the method further includes:
  • the frequency domain base vector information is determined by the terminal based on the downlink channel information and the frequency domain base vector set.
  • the frequency-domain basis vector information includes the number of frequency-domain basis vectors and/or indication information corresponding to the frequency-domain basis vectors, wherein the indication information corresponding to the frequency-domain basis vectors is used to indicate to the terminal.
  • the method further includes:
  • the trigger status is used to indicate the reporting mode of the terminal, and is also used to indicate a codebook parameter configured by the network device to the terminal, where the codebook parameter includes the frequency domain basis vector One or more of the set, the size of the frequency-domain basis vector set, or the starting point information of the frequency-domain basis vector set.
  • An embodiment of the present disclosure also provides a terminal, including:
  • a first determining unit configured to determine frequency domain base vector information according to the downlink channel information
  • a sending unit configured to send the frequency domain base vector information to a network device.
  • the first determining unit includes:
  • a calculation unit configured to calculate a compression coefficient corresponding to each frequency-domain base vector in the preset frequency-domain base vectors according to the downlink channel information
  • the second determining unit is configured to determine frequency-domain basis vector information according to the compression coefficient.
  • Embodiments of the present disclosure also provide a network device, including:
  • the receiving unit is configured to receive frequency domain base vector information sent by the terminal, wherein the frequency domain base vector information is determined by the terminal according to the estimated downlink channel information.
  • a configuration unit configured to configure a frequency domain base vector set to the terminal
  • the frequency domain base vector information is determined by the terminal based on the downlink channel information and the frequency domain base vector set.
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is configured to enable the processor to perform the channel state information reporting provided by the embodiment of the present disclosure method, or the computer program is configured to cause the processor to execute the method for reporting channel state information provided by the embodiments of the present disclosure.
  • the terminal estimates downlink channel information, and the terminal determines frequency domain base vector information according to the downlink channel information.
  • the terminal sends the frequency-domain basis vector information to the network device.
  • the terminal reports the frequency-domain basis vector information according to the frequency-domain basis vector set configured by the network device, which is prone to reporting redundant frequency-domain basis vector information.
  • the terminal determines the frequency domain base vector information according to the downlink channel information, which can make the determined frequency domain base vector information more accurate, thereby reducing the feedback overhead of the terminal.
  • FIG. 1 is a schematic structural diagram of a network architecture to which an embodiment of the present disclosure can be applied;
  • FIG. 3 is a schematic diagram of a plurality of CSI reports associated with each CSI report and a resource set;
  • FIG. 4 is a flowchart of another network side configuration method provided by an embodiment of the present disclosure.
  • FIG. 5 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • Embodiments of the present disclosure provide an information reporting method, a network side configuration method, an apparatus, a device, and a storage medium, so as to solve the problem of high terminal feedback overhead in the related art method for determining the number of frequency domain basis vectors.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband Code Division Multiple Access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • LTE-A long term evolution advanced
  • UMTS universal mobile telecommunication system
  • WiMAX microwave access
  • 5G New Radio (NR) system 6G system, etc.
  • EPS evolved packet system
  • 5G system 5G system
  • 5GS 5G system
  • FIG. 1 is a schematic structural diagram of a network architecture applicable to the implementation of the present disclosure. As shown in FIG. 1 , it includes a terminal 11 and a network device 12 .
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), base station in 6G, or Home evolved Node B (HeNB), relay A node (relay node), a home base station (femto), a pico base station (pico), etc., are not limited in the embodiments of the present disclosure.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • One or more antennas can be used between the network device and the terminal for multiple input multiple output (Multi Input Multi Output, MIMO) transmission, and the MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO ( Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, and can also be diversity transmission, precoding transmission, or beamforming transmission.
  • this application provides A method for reporting channel state information. It should be understood that the method for reporting channel state information in this application can be, but is not limited to, applied to the reporting of codebook parameter information in a Rel-17 port.
  • FIG. 2 is a flowchart of an information reporting method provided by an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • Step 201 the terminal estimates downlink channel information.
  • the terminal may estimate downlink channel information according to the pilot signal sent by the network device.
  • the terminal estimates downlink channel information according to the received beamformed CSI-RS of the P ports.
  • Step 202 The terminal determines frequency domain basis vector information according to the downlink channel information.
  • Step 203 The terminal sends the frequency domain basis vector information to the network device.
  • the terminal estimates downlink channel information, and the terminal determines frequency domain base vector information according to the downlink channel information.
  • the terminal sends the frequency-domain basis vector information to the network device.
  • the terminal reports the frequency-domain basis vector information according to the frequency-domain basis vector set configured by the network device, which is prone to reporting redundant frequency-domain basis vector information.
  • the terminal determines the frequency domain base vector information according to the downlink channel information, which can make the determined frequency domain base vector information more accurate, thereby reducing the feedback overhead of the terminal.
  • the frequency-domain basis vector information includes at least one of the number of frequency-domain basis vectors, indication information corresponding to the frequency-domain basis vectors, or target indication content, wherein the frequency-domain basis vector
  • the indication information corresponding to the vector is used to indicate the frequency domain base vector selected by the terminal from the frequency domain base vector set configured by the network device, or the frequency domain base vector selected from the preset frequency domain base vector set in the terminal.
  • the target indication content includes the frequency domain basis vector set or a preset frequency domain basis vector.
  • the preset frequency domain base vector set in the terminal may be a set of candidate frequency domain base vectors determined by the terminal according to the effective channel, and the target indication content may be 1-bit indication information, and the terminal may use the 1-bit indication information to indicate that the terminal sends
  • the frequency domain basis vector information of is the adopted frequency domain basis vector set configured on the network side or a preset frequency domain basis vector.
  • the preset frequency domain base vector may be a frequency domain base vector whose elements are all 1s.
  • the length of the frequency domain basis vector may be determined according to the size of the CQI subband and the parameter R configured by the network. More specifically, when there is a Z-layer transport layer, it can be represented by the indication information of Zbits. This is only an example, not a limitation.
  • indication information can also be used, as long as it can indicate whether the selection of the frequency domain basis vector information reported by the terminal is configured by the network device or determined by the terminal. That's it. However, no matter what changes are made, they are all within the protection scope of the embodiments of the present application.
  • the frequency-domain basis vector information includes the number of frequency-domain basis vectors, in other words, what the terminal sends to the network device is the number of frequency-domain basis vectors.
  • the frequency-domain basis vector information includes indication information of the frequency-domain basis vector, in other words, what the terminal sends to the network device is the frequency-domain basis vector selected by the terminal from the frequency-domain basis vector set.
  • the frequency domain basis vector set may be configured by the network side device to the terminal, and the specific configuration method will be described in detail below.
  • the frequency-domain basis vector information includes the number of frequency-domain basis vectors and indication information corresponding to the frequency-domain basis vectors.
  • the frequency domain basis vector information may further include other information. This is only an example, not a limitation, but no matter what changes are made, it is within the protection scope of the embodiments of the present application.
  • the terminal may determine frequency domain basis vector information.
  • the terminal determines frequency domain basis vector information according to downlink channel information, including:
  • the terminal calculates the compression coefficient corresponding to each frequency domain base vector in the preset frequency domain base vector according to the downlink channel information
  • the terminal determines frequency domain basis vector information according to the compression coefficient.
  • the terminal determines the frequency domain base vector information according to the downlink channel information as follows:
  • the downlink channel information of each port is estimated as the effective channel.
  • the estimated effective channel on N 3 frequency domain units is denoted as
  • the compression coefficient corresponding to the n-th frequency-domain basis vector f n is calculated, and the calculation formula can satisfy the following relationship:
  • the value of M v is determined according to the compression coefficient c′ p,n calculated in the above steps.
  • the value of M v may be determined from the frequency-domain basis vector with the smallest compression factor.
  • the terminal may determine frequency-domain basis vector information according to the frequency-domain basis vector set configured by the network-side device.
  • the above method further includes:
  • the terminal receives the frequency domain base vector set configured by the network device
  • the terminal determines the frequency domain basis vector information according to the downlink channel information, including:
  • the terminal determines frequency domain basis vector information according to the downlink channel information and the frequency domain basis vector set.
  • the terminal determines the frequency domain basis vector information according to the downlink channel information and the frequency domain basis vector set, and can determine an appropriate number of frequency domain basis vectors. For example, when the value of the frequency domain basis vector configured by the network device is 4, When the value of the frequency domain base vector determined by the terminal according to the downlink channel information is 2, at this time, the terminal determines the value of the frequency domain base vector to be 2, and the terminal reports the value of M v to the network side device. The terminal feedback overhead caused by the network device reporting an excess number of frequency domain basis vectors is wasted.
  • the terminal determines frequency-domain basis vector information according to the downlink channel information and the frequency-domain basis vector set, including:
  • the terminal calculates the compression coefficient corresponding to each frequency domain base vector in the frequency domain base vector set according to the downlink channel information
  • the terminal determines frequency domain basis vector information based on the compression coefficient.
  • the terminal determines the frequency domain basis vector information according to the downlink channel information and the frequency domain basis vector set as follows.
  • the terminal estimates the downlink channel information of each port as an effective channel according to the CSI-RS of the P ports received in the above steps, and for the pth port, the estimated effective channel on N 3 frequency domain units is denoted as
  • f n is the nth frequency-domain basis vector in the configured frequency-domain basis vector set, and use the above formula to calculate each frequency-domain basis vector in the frequency-domain basis vector set.
  • the value of M v is determined according to the compression coefficient c′ p,n calculated in the above steps.
  • the value of M v may be determined from the frequency-domain basis vector with the smallest compression factor.
  • the network device may configure codebook parameters to the terminal, send a trigger status to the terminal, and instruct the terminal to select frequency domain base vector information in a manner corresponding to the codebook parameter and the trigger status.
  • the network device sends the trigger status to the terminal, and the terminal determines the reporting method and codebook parameters according to the trigger status as follows.
  • the above method further includes;
  • the terminal receives the trigger status sent by the network device.
  • the trigger status is used to indicate the reporting method of the terminal, and is also used to indicate the codebook parameters configured by the network device to the terminal.
  • the codebook parameters include the frequency domain base vector set and the size of the frequency domain base vector set. Or one or more of the starting point information of the frequency domain basis vector set;
  • the terminal determines the codebook parameters according to the trigger state.
  • the steps for the terminal to determine the codebook parameters according to the trigger state are as follows.
  • the configuration method can be that the network device configures a window or the starting point M initial of the set and a window containing N ⁇ M v frequency domain basis vectors for the terminal Or set, or, the terminal selects M v of consecutive N frequency domain basis vectors in the window or set, and the parameter M v can also be configured by the network device.
  • the parameters M initial , N or M v configured for the terminal configured by the higher-layer signaling Radio Resource Control (RRC) or MAC layer control element (MAC Control Element, MAC-CE) may contain a set of multiple candidate values, or The higher layer signaling RRC or MAC-CE configures multiple sets, and each set includes two or three of parameters M initial , N and M v . If this information is used by adding information fields in DCI, the overhead of DCI will be increased. Therefore, it is necessary to determine the above codebook parameters without increasing the DCI overhead.
  • RRC Radio Resource Control
  • MAC Control Element, MAC-CE MAC Control Element
  • the DCI format used for uplink scheduling includes DCI 0_1 and DCI 0_2.
  • the DCI fields of these two formats include a CSI request field of 0 to 6 bits, and the length of the field is configured through the information length (reportTriggerSize) of the CSI request field in the RRC signaling.
  • the request field of CSI activates a trigger state, the trigger state corresponds to one or more CSI reports, and the report content includes CSI-RS Resource Indicator (CRI)/Rank indicator (Rank indicator, RI)/precoding matrix Indication (Precoding Matrix Indicator, PMI)/Channel Quality Indicator (Channel Quality Indicator, CQI), etc.
  • CRI CSI-RS Resource Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • the reporting methods of the terminal include aperiodic CSI reporting and semi-persistent CSI reporting.
  • the aperiodic CSI reporting is configured and triggered by means of MAC CE combined with DCI, and is reported based on the Physical Uplink Shared Channel (PUSCH).
  • RRC configures multiple CSI trigger states. Each trigger state corresponds to one or more CSI reports.
  • the size of the CSI request field in DCI format 0_1/0_2 can be configured by RRC signaling to be 0 to 6 bits, so a maximum of 63 CSI trigger states (with one reserved state) can be indicated.
  • RRC can configure up to 128 CSI trigger states.
  • the 63 CSI trigger states are mapped to the CSI request field indication by MAC CE signaling.
  • Each trigger state can be associated with 1, 2, and 3 aperiodic resource settings (resource sets). If the resource setting contains multiple aperiodic resource sets (resource sets), only one resource set is selected, and each resource set is selected.
  • the resource set contains multiple CSI-RS resources, as shown in Figure 3.
  • the PMI is calculated according to the CSI-RS resource for CMR included in the resource setting associated with the CSI report.
  • PUSCH-based SP-CSI similar to the above-mentioned aperiodic CSI reporting, is also activated and deactivated by DCI signaling.
  • RRC configures multiple trigger states, with a maximum of 64 trigger states, and each trigger state corresponds to a CSI reporting setting.
  • a trigger state is activated using the CSI request field in the DCI.
  • the PMI in semi-persistent CSI reporting is calculated based on the CSI-RS resources of a CMR that is the nearest neighbor to the DCI before the DCI triggers.
  • the CSI-RS resources are included in the CSI resource setting associated with the DCI trigger. middle.
  • the parameters M initial , N or M v configured for the terminal configured by the high-layer signaling RRC or MAC-CE may contain a set of multiple candidate values, or the high-layer signaling RRC or MAC-CE is configured with multiple parameters consisting of multiple parameters. gather. There is currently no corresponding codebook parameter indication method. If the common practice is used to directly increase the DCI information field for indication, the overhead of the DCI will be increased.
  • the codebook parameter is determined in a manner that the codebook parameter is associated with the trigger state of the DCI, and the specific steps are as follows.
  • Step 1 The network device configures the terminal through high-layer signaling RRC or MAC-CE with codebook parameters including at least one or more parameters of M v , N and M initial , or a combination of multiple parameters. Each parameter contains X ⁇ 1 candidate values, or candidate parameter combinations have X ⁇ 1. The network device configures the S ⁇ 1 trigger state for each CSI report of the terminal.
  • Step 2 The network device sends the CSI request field in the DCI to activate a trigger state, which not only indicates K ⁇ 1 aperiodic or PUSCH-based semi-persistent CSI reporting, but also indicates one or more of the parameter values, or a combination of multiple parameters.
  • Step 3 The terminal determines the value of the codebook parameter M v /N/M initial according to the network device configuration and/or the DCI indication.
  • Step 4 The terminal calculates the CRI/RI/PMI/CQI information by using the indicated codebook parameters and reports it to the network side through the corresponding CSI.
  • the joint coding indication is realized by the trigger state activated by the CSI request field in the DCI and the codebook parameter information, that is, a trigger state not only corresponds to one or more aperiodic or semi-persistent CSI reports, but also corresponds to one or more Multiple codebook parameters, or a combination of multiple parameters, enables the UE to determine the corresponding CSI reporting ID and codebook parameters according to the coding method.
  • M v denote the number of frequency domain basis vectors
  • N denote the size of the window or set
  • M initial denote the starting point of the window.
  • the codebook parameter refers to one or more of M v , N and M initial , or a combination of these parameters.
  • the network device configures reportTriggerSize for the terminal to indicate Y trigger states.
  • the above method can be used to indicate the corresponding codebook parameters to the terminal without increasing the DCI overhead.
  • the specific behavior and instruction determination method of the network device and the terminal may be as follows:
  • the network device configures the terminal with codebook parameters including at least one or more parameters of M v , N and M initial through high-layer signaling RRC or MAC-CE, or configures a combination of multiple parameters.
  • Each parameter contains X ⁇ 1 candidate values, or candidate parameter combinations have X ⁇ 1.
  • the network device configures the S ⁇ 1 trigger state for each CSI report of the terminal, where S ⁇ X needs to be satisfied at the same time.
  • the terminal may determine the codebook parameter according to the trigger state and the candidate parameter or combination configured by the network side, a specific example is as follows.
  • the DCI triggers the nth trigger state in Y, and the terminal determines that the codebook parameter corresponding to the CSI report is the nth one of the X candidate parameters or combinations configured by the network device.
  • the DCI triggers the nth trigger state in Y, and n ⁇ X, then the terminal determines that the codebook parameter corresponding to the CSI report is the nth one of the X candidate parameters or combinations configured by the network device.
  • the terminal determines that the codebook parameter corresponding to the CSI report configures a default value of X candidate parameters or a combination for the network device, such as the first one in the parameter or set.
  • the network device activates a trigger state through the CSI request field in the DCI, and the trigger state not only indicates K>1 aperiodic or PUSCH-based semi-persistent CSI reporting, but also indicates the above codebook One or more parameter values described in Parameters, or a combination of one or more parameters.
  • the codebook parameters corresponding to the K CSI reports may be determined according to the previous embodiment, and the codebook parameters corresponding to the K CSIs are the same.
  • the K CSI reports correspond to different codebook parameters. Specifically, the terminal determines that the codebook parameter corresponding to the first CSI report is the nth parameter value or set in X, and the terminal determines that the codebook parameter corresponding to the kth CSI report is the n+kth in X Parameter value or collection. If n+k>X, the terminal determines that the codebook parameter corresponding to the kth CSI report is the mod(n+k,X)th parameter value or set in X, where mod(n+k,X) represents the remaining operations.
  • the terminal uses the codebook parameters determined by the above method and the downlink channel estimated by the CSI-RS resources of the measurement channel associated with the CSI report to calculate the CSI feedback information and report it to the network device.
  • the network device sends the trigger status to the terminal after configuring the codebook parameters for the terminal in the above-mentioned manner, so that the terminal can determine the reporting method and the reported codebook parameters.
  • the base station configures multiple CSI report information for the UE, and each trigger state corresponds to one CSI report.
  • the base station also configures a reportTriggerSize of 3 for the UE through RRC signaling. Then the size of the DCI field is 3 bits, which can indicate 7 trigger states, of which the trigger state 0 is reserved.
  • the joint coding indication of the codebook parameter and the codebook parameter M initial is shown in Table 1 below.
  • the base station sends the DCI carrying the triggering aperiodic SRS transmission to the UE, and the value of the DCI field is 2, an aperiodic CSI report with a trigger state of 2 is activated, and the M initial codebook parameter corresponding to the CSI report is N3/ 4.
  • n/a indicates that the corresponding codebook parameter cannot be determined.
  • the terminal determines the ID reported by the CSI and the value of the codebook parameter M initial according to the DCI information. For example, M v , N, etc. and the channel information measured by the CSI-RS resource associated with the CSI report, calculate other feedback information such as CRI/RI/CQI and report it to the network device.
  • This embodiment mainly describes the case where K>1 aperiodic or PUSCH-based semi-persistent CSI reporting, the trigger state and a codebook parameter set are jointly coded for indication.
  • the base station configures multiple CSI report information for the UE, and each trigger state corresponds to one CSI report.
  • the base station also configures a reportTriggerSize of 3 for the UE through RRC signaling. Then the size of the DCI field is 3 bits, which can indicate 7 trigger states, of which the trigger state 0 is reserved.
  • the joint coding indication of the codebook parameter and the set of codebook parameters ⁇ M v , N, M initial ⁇ is shown in Table 2 below.
  • the base station sends the DCI carrying the triggering aperiodic SRS transmission to the UE, and the value of the DCI field is 3, an aperiodic CSI report with a trigger state of 2 is activated, and the codebook parameter set corresponding to the CSI report is ⁇ 3, 4,N3/2 ⁇ .
  • the channel information measured by the associated CSI-RS resources is calculated and other feedback information such as CRI/RI/CQI is calculated and reported to the network side.
  • the processing behavior of the UE is as described above, and is not repeated here.
  • This embodiment mainly describes the case of K>1 aperiodic or PUSCH-based semi-persistent CSI reporting.
  • the base station also configures a reportTriggerSize of 3 for the UE through RRC signaling. Then the size of the DCI field is 3 bits, which can indicate 7 trigger states, of which the trigger state 0 is reserved.
  • the joint coding indication of the codebook parameter and the codebook parameter M initial is shown in Table 3 below.
  • the base station sends a DCI that triggers aperiodic SRS transmission to the UE, and the value of the DCI field is 2, an aperiodic CSI report with a trigger state of 2 is activated, and the M initial codebook parameters corresponding to the two CSI reports are both is N3/4.
  • the terminal uses the DCI information to determine the ID and the value of the codebook parameter M initial corresponding to the two CSI reports.
  • Other parameters such as M v , N, etc., configured according to the network device and the CSI-reports associated with the two CSI reports are used.
  • the channel information measured by the RS resources is calculated and other feedback information such as CRI/RI/CQI corresponding to them is calculated and reported to the network side.
  • the trigger state indicated by the DCI request field not only indicates which or which aperiodic or semi-persistent PUSCH-based CSI reporting is to be performed, but also indicates one or more codebook parameters of the port selection codebook, or a variety of A combination of parameters such that the size of the DCI load does not change.
  • the network device configuring the reportTriggerSize for the terminal the relationship between the Y trigger states and the number X of parameters or combinations can be indicated, and the method for indicating the codebook parameter value or set is determined.
  • the network device activates a trigger state through the CSI request field in the DCI, and the trigger state not only indicates K>1 aperiodic or PUSCH-based semi-persistent CSI reporting, but also indicates one or more parameters in the codebook parameters value, or a combination of multiple parameters.
  • the codebook parameters corresponding to the K CSI reports can be determined according to the above method, which is not repeated here, and the codebook parameters corresponding to the K CSIs are the same.
  • the terminal determines a method in which K>1 CSI reports correspond to different codebook parameter values or sets. Flexible indication of codebook parameters can be achieved without changing the DCI signaling size.
  • the above method further includes:
  • the target bit information is determined based on the frequency-domain basis vector information, where the target bit information is used to indicate the number of frequency-domain basis vectors and/or the indication information corresponding to the frequency-domain basis vectors, wherein the indication information corresponding to the frequency-domain basis vectors is used to instruct the terminal to start from The selection method of selecting the frequency domain basis vector in the frequency domain basis vector set;
  • the terminal sends frequency domain basis vector information to the network device, including:
  • the terminal sends the frequency domain base vector information indicated by the target bit information to the network device.
  • the target bit information may be in the form of [log 2 (N)] bits, in other words, the terminal may indicate the number M of frequency domain basis vectors used by all transport layers by reporting [log 2 (N)] bits v .
  • the value of N is the number of frequency domain basis vectors.
  • the number of frequency domain basis vectors is 4 and N is 4, 2 bits need to be used to indicate the number M v of frequency domain basis vectors used by all transport layers.
  • it can be represented in binary, such as "00", "01", "10", and "11".
  • the terminal may also report 1 bit through a single CSI to indicate whether all transport layers use the M v configured by the network device for the terminal or the M v reported by the terminal.
  • the terminal may also report the above-mentioned target indication content in a part of the reporting structure.
  • the reporting structure of the terminal includes a two-part reporting structure or a three-part reporting structure
  • the terminal sends the target indication content to the network device, including:
  • the terminal sends the target indication content to the network device through the first target partial reporting structure;
  • the first target partial reporting structure is the first partial reporting structure in the two-part reporting structure;
  • the terminal sends the target indication content to the network device, including:
  • the terminal sends the target indication content to the network device through the second target partial reporting structure;
  • the second target partial reporting structure is the first partial reporting structure in the three-part reporting structure.
  • codebook parameter M v is selected for the Rel-17 port.
  • the instruction report of M v may be reported in two parts, Part 1 and Part 2, or divided into three parts, Part 0, Part 1 and Part 2.
  • the report content in Part1 at least includes one or more of the following parameters: RI, broadband CQI, CQI of each subband, and the total number of non-zero coefficients K of all layers NZ , the number of frequency domain basis vectors selected by the terminal, the port selection indication, and the number of selected ports.
  • the reporting content in Part 2 includes at least one or more of the following parameters: the strongest coefficient indication SCI of each layer, the frequency domain basis vector indication, the reference amplitude, the non-zero coefficient, the non-zero coefficient position indication, and the port selection indication.
  • the report content in Part 0 indicates whether the M v reported in Part 1 is the value configured on the network side or the value reported by the terminal.
  • the reported content in Part 1 at least includes one or more of the following parameters: RI, broadband CQI, CQI of each subband, the total number of non-zero coefficients K NZ for all layers, and the number of frequency-domain basis vectors selected by the terminal , Port selection indication, the number of selected ports.
  • the reporting content in Part 2 includes at least one or more of the following parameters: the strongest coefficient indication SCI of each layer, the frequency domain basis vector indication, the reference amplitude, the non-zero coefficient, the non-zero coefficient position indication, and the port selection indication.
  • Part1 and Part2 when using Part1 and Part2 for reporting, you can indicate in Part1 whether to use the Mv configured by the network device for the terminal or the Mv reported by the terminal.
  • Part 0, Part1 and Part2 for reporting you can In Part0 , it is indicated that the Mv configured by the network device for the terminal is adopted. This is only an example, and is not limited. In this way, it can be quickly determined through the content of the target indication, whether the reported Mv is configured by the network device or determined by the terminal according to the estimated downlink channel.
  • the frequency domain basis vector information of each transmission layer is the same or different;
  • the terminal sends the frequency domain basis vector information to the network device, including:
  • the terminal sends Z frequency domain basis vector information to the network side, where Z is a positive integer, and Z is used to indicate the number of layers of the transmission layer.
  • the method for reporting the M v indication is described in two cases where the selection of M v is layer-common and layer-specific.
  • Layer-common indicates that an M v indication information is used to indicate the M v adopted by the L layer
  • Layer-specific indicates that an M l,v indication information is used to indicate the M l,v adopted by the first layer
  • L M v indications need to be reported information to indicate that the L layers employ Mv .
  • Layer-common indicates that the Mv value of each layer is the same
  • Layer-specific indicates that the Mv value of each layer can be the same or different.
  • a frequency domain is sent for each layer of the transport layer. basis vector information.
  • each layer of frequency-domain basis vector information corresponds to a target indication content, and the target indication content can indicate that the frequency-domain basis vector information of each layer of transmission layer is a set of frequency-domain basis vectors configured on the network side or is the preset frequency domain basis vector.
  • M v the number M v of frequency domain basis vectors used by all transport layers is indicated by reporting [log 2 (N)]bits in Part1.
  • the CSI report is divided into three parts, Part0, Part1, and Part2.
  • the network side configures one parameter M v >1 or multiple M 1, v >1 for the terminal side.
  • M l,v of the lth transport layer is 1 or the network side configures M l,v for the terminal side.
  • the above-mentioned single CSI reporting may be reported through a CSI reporting setting that does not include PMI.
  • the Mv value reported by the terminal is used.
  • the network device does not have the parameter M v configured.
  • the network device does not have the parameter M v configured.
  • FIG. 4 is a flowchart of a network side configuration method provided by an embodiment of the present disclosure. As shown in FIG. 4, the following steps are included:
  • Step 401 The network device receives frequency-domain basis vector information sent by a terminal, where the frequency-domain basis vector information is determined by the terminal according to the estimated downlink channel information.
  • the method before the network device receives the frequency domain basis vector information sent by the terminal, the method further includes:
  • the frequency domain base vector information is determined by the terminal based on the downlink channel information and the frequency domain base vector set.
  • the frequency-domain basis vector information includes at least one of the number of frequency-domain basis vectors, indication information corresponding to the frequency-domain basis vectors, or target indication content, wherein the frequency-domain basis vectors correspond to at least one item.
  • the indication information is used to indicate the frequency domain base vector selected by the terminal from the frequency domain base vector set configured by the network device, or the frequency domain base vector selected from the frequency domain base vector set preset in the terminal.
  • the target indication content includes the frequency domain basis vector set or a preset frequency domain basis vector.
  • the network device receives frequency domain basis vector information sent by the terminal, including:
  • the network device receives the frequency-domain basis vector information indicated by the target bit information sent by the terminal, where the target bit information is used to indicate the number of the frequency-domain basis vectors and/or an indication corresponding to the frequency-domain basis vectors information, wherein the indication information corresponding to the frequency domain base vector is used to indicate the frequency domain base vector selected by the terminal from the frequency domain base vector set configured by the network device, or from the frequency domain preset in the terminal The frequency domain basis vectors selected from the basis vector set.
  • the method further includes:
  • the network device sends a trigger state to the terminal, where the trigger state is used to indicate a reporting method of the terminal, and is also used to indicate a codebook parameter configured by the network device to the terminal, where the codebook parameter includes the One or more of the frequency domain basis vector set, the size of the frequency domain basis vector set, or the starting point information of the frequency domain basis vector set.
  • the frequency domain basis vector information of each transmission layer is the same or different;
  • the network device receives the frequency-domain basis vector information sent by the terminal, including:
  • the network device receives Z pieces of the frequency domain basis vector information, where Z is a positive integer, and Z is used to represent the number of layers of the transport layer.
  • this embodiment is an implementation of the network device corresponding to the embodiment shown in FIG. 2 , and reference may be made to the relevant description of the embodiment shown in FIG. 2 for the specific implementation. The embodiments will not be repeated, and the same beneficial effects can also be achieved.
  • FIG. 5 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 5, the terminal includes a memory 520, a transceiver 500, and a processor 510:
  • the memory 520 is used to store computer programs; the transceiver 500 is used to send and receive data under the control of the processor 510; the processor 510 is used to read the computer programs in the memory 520 and perform the following operations:
  • the frequency domain base vector information is sent to the network device.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 510 and various circuits of memory represented by memory 520 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 500 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the bus interface 530 may also be an interface capable of externally connecting required devices, and the connected devices include but are not limited to keypads, displays, speakers, microphones, joysticks, and the like.
  • the processor 510 is responsible for managing the bus architecture and general processing, and the memory 520 may store data used by the processor 510 in performing operations.
  • the processor 510 may be a CPU (central processor), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device) , complex programmable logic devices), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic devices complex programmable logic devices
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the determining the frequency domain basis vector information according to the downlink channel information includes:
  • the terminal calculates, according to the downlink channel information, a compression coefficient corresponding to each frequency-domain base vector in the preset frequency-domain base vectors;
  • the terminal determines frequency domain basis vector information according to the compression coefficient.
  • the method before determining the frequency domain basis vector information according to the downlink channel information, the method further includes:
  • Determine frequency domain basis vector information according to the downlink channel information including:
  • Frequency domain base vector information is determined according to the downlink channel information and the frequency domain base vector set.
  • the determining the frequency domain basis vector information according to the downlink channel information and the frequency domain basis vector set includes:
  • Frequency domain basis vector information is determined based on the compression coefficients.
  • the method further includes;
  • Receive a trigger status sent by the network device where the trigger status is used to indicate the reporting method of the terminal, and is also used to indicate codebook parameters configured by the network device to the terminal, where the codebook parameters include the frequency domain One or more of the basis vector set, the size of the frequency domain basis vector set, or the starting point information of the frequency domain basis vector set.
  • the frequency-domain basis vector information includes at least one of the number of frequency-domain basis vectors, indication information corresponding to the frequency-domain basis vectors, or target indication content, wherein the frequency-domain basis vectors correspond to at least one item.
  • the indication information is used to indicate the frequency domain base vector selected by the terminal from the frequency domain base vector set configured by the network device, or the frequency domain base vector selected from the frequency domain base vector set preset in the terminal.
  • the target indication content includes the frequency domain basis vector set or a preset frequency domain basis vector.
  • FIG. 6 is a structural diagram of a network device provided by an embodiment of the present disclosure, as shown in FIG. 6, including a memory 620, a transceiver 600, and a processor 610:
  • the memory 620 is used to store a computer program; the transceiver 600 is used to send and receive data under the control of the processor 610; the processor 610 is used to read the computer program in the memory 620 and perform the following operations:
  • the frequency domain base vector information sent by the terminal is received, wherein the frequency domain base vector information is determined by the terminal according to the estimated downlink channel information.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 610 and various circuits of memory represented by memory 620 are linked together.
  • the bus architecture can also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 600 may be a number of elements, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the bus interface 630 may also be an interface capable of externally connecting a desired device, and the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 610 is responsible for managing the bus architecture and general processing, and the memory 620 may store data used by the processor 610 in performing operations.
  • the processor 610 may be a CPU (central processor), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device) , complex programmable logic devices), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic devices complex programmable logic devices
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the method before the receiving the frequency domain basis vector information sent by the terminal, the method further includes:
  • the frequency domain base vector information is determined by the terminal based on the downlink channel information and the frequency domain base vector set.
  • the frequency-domain basis vector information includes at least one of the number of frequency-domain basis vectors, indication information corresponding to the frequency-domain basis vectors, or target indication content, wherein the frequency-domain basis vectors correspond to at least one item.
  • the indication information is used to indicate the frequency domain base vector selected by the terminal from the frequency domain base vector set configured by the network device, or the frequency domain base vector selected from the frequency domain base vector set preset in the terminal.
  • the target indication content includes the frequency domain basis vector set or a preset frequency domain basis vector.
  • the method further includes:
  • the trigger status is used to indicate the reporting mode of the terminal, and is also used to indicate a codebook parameter configured by the network device to the terminal, where the codebook parameter includes the frequency domain basis vector One or more of the set, the size of the frequency-domain basis vector set, or the starting point information of the frequency-domain basis vector set.
  • FIG. 7 is a structural diagram of another terminal provided by an embodiment of the present disclosure. As shown in FIG. 7, a terminal 700 includes:
  • a first determining unit 702 configured to determine frequency domain base vector information according to the downlink channel information
  • the sending unit 703 is configured to send the frequency domain base vector information to a network device.
  • the first determining unit 702 includes:
  • a calculation unit configured to calculate a compression coefficient corresponding to each frequency-domain base vector in the preset frequency-domain base vectors according to the downlink channel information
  • the second determining unit is configured to determine frequency-domain basis vector information according to the compression coefficient.
  • FIG. 8 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • a network device 800 includes:
  • the receiving unit 801 is configured to receive frequency domain base vector information sent by a terminal, wherein the frequency domain base vector information is determined by the terminal according to estimated downlink channel information.
  • a configuration unit configured to configure a frequency domain base vector set to the terminal
  • the frequency domain base vector information is determined by the terminal based on the downlink channel information and the frequency domain base vector set.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the related technology, or all or part of the technical solution, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the information reporting method provided by the embodiment of the present disclosure, Alternatively, the computer program is configured to cause the processor to execute the network-side configuration method provided by the embodiment of the present disclosure.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including, but not limited to, magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供一种信息上报方法、网络侧配置方法、装置、设备及存储介质,该方法包括终端估计下行信道信息;终端根据下行信道信息,确定频域基向量信息;终端向网络设备发送频域基向量信息。

Description

信息上报方法、网络侧配置方法、装置、设备及存储介质
相关申请的交叉引用
本申请主张在2021年4月2日在中国提交的中国专利申请号No.202110362623.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息上报方法、网络侧配置方法、装置、设备及存储介质。
背景技术
在信道状态信息上报中,码本参数的维度M v表示了频域基向量的数量,相关技术中,频域基向量的数量是由网络侧配置确定的,由于网络侧配置确定的频域基向量的数量并非为最适当的数量,若上报了多余的频域基向量的数量,容易导致终端开销的浪费,可见,相关技术中的频域基向量的数量的确定方式存在终端反馈开销大的问题。
发明内容
本公开实施例提供一种信息上报方法、网络侧配置方法、装置、设备及存储介质,以解决相关技术中的频域基向量的数量的确定方式存在的终端反馈开销大的问题。
为解决上述技术问题,本公开是这样实现的:
本公开实施例提供了一种信息上报方法,包括:
终端估计下行信道信息;
所述终端根据所述下行信道信息,确定频域基向量信息;
所述终端向网络设备发送所述频域基向量信息。
可选的,所述终端根据所述下行信道信息,确定频域基向量信息,包括:
所述终端根据所述下行信道信息计算预设频域基向量中每一频域基向量对应的压缩系数;
所述终端根据所述压缩系数确定频域基向量信息。
可选的,所述终端根据所述下行信道信息,确定频域基向量信息之前,所述方法还包括:
所述终端接收所述网络设备配置的频域基向量集合;
所述终端根据所述下行信道信息,确定频域基向量信息,包括:
所述终端根据所述下行信道信息和所述频域基向量集合确定频域基向量信息。
可选的,所述终端根据所述下行信道信息和所述频域基向量集合确定频域基向量信息,包括:
所述终端根据所述下行信道信息,计算所述频域基向量集合中每一频域基向量对应的压缩系数;
所述终端基于所述压缩系数确定频域基向量信息。
可选的,所述频域基向量信息包括频域基向量的数量、所述频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
可选的,所述终端接收所述网络设备配置的频域基向量集合之后,所述方法还包括;
所述终端接收所述网络设备发送的触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种;
所述终端根据所述触发状态确定所述码本参数。
可选的,所述终端向网络设备发送所述频域基向量信息之前,所述方法还包括:
基于所述频域基向量信息确定目标比特信息,所述目标比特信息用于指示所述频域基向量的数量和/或所述频域基向量对应的指示信息,其中,所述频域基向量对应的指示信息用于指示所述终端从所述频域基向量集合中选择 频域基向量的选择方式;
所述终端向网络设备发送所述频域基向量信息,包括:
所述终端向网络设备发送由所述目标比特信息指示的所述频域基向量信息。
可选的,所述终端的上报结构包括两部分上报结构或者三部分上报结构;
所述频域基向量信息包括所述目标指示内容时,在所述终端的上报结构包括两部分上报结构的情况下,所述终端向网络设备发送所述频域基向量信息,包括:
所述终端通过第一目标部分上报结构向网络设备发送所述目标指示内容;所述第一目标部分上报结构为所述两部分上报结构中的第一部分上报结构;
在所述终端的上报结构包括三部分上报结构的情况下,所述终端向网络设备发送所述目标指示内容,包括:
所述终端通过第二目标部分上报结构向网络设备发送所述目标指示内容;所述第二目标部分上报结构为所述三部分上报结构中的第一部分上报结构。
可选的,每一层传输层的所述频域基向量信息相同或者不同;
在每一层传输层的所述频域基向量信息不同的情况下,所述终端向网络设备发送所述频域基向量信息,包括:
所述终端向网络侧发送Z个所述频域基向量信息,Z为正整数,N用于表示传输层的层数。
本公开实施例还提供一种网络侧配置方法,包括:
网络设备接收终端发送的频域基向量信息,其中,所述频域基向量信息是所述终端根据估计的下行信道信息确定的。
可选的,所述网络设备接收终端发送的频域基向量信息之前,所述方法还包括:
所述网络设备向所述终端配置频域基向量集合;
所述网络设备接收的终端发送的频域基向量信息中,所述频域基向量信息是所述终端基于所述下行信道信息和所述频域基向量集合确定的。
可选的,所述频域基向量信息包括频域基向量的数量、所述频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,所述频域基向量 对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
可选的,所述网络设备接收终端发送的频域基向量信息,包括:
所述网络设备接收终端发送的由目标比特信息指示的频域基向量信息,所述目标比特信息用于指示所述频域基向量的数量和/或所述频域基向量对应的指示信息,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量。
可选的,所述网络设备向所述终端配置频域基向量集合之后,所述方法还包括:
所述网络设备向所述终端发送触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种。
可选的,每一层传输层的所述频域基向量信息相同或者不同;
在每一层传输层的所述频域基向量信息不同的情况下,所述网络设备接收所述终端发送的频域基向量信息,包括:
所述网络设备接收Z个所述频域基向量信息,Z为正整数,Z用于表示传输层的层数。
本公开实施例还提供一种终端,包括:存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
估计下行信道信息;
根据所述下行信道信息,确定频域基向量信息;
向网络设备发送所述频域基向量信息。
可选的,所述根据所述下行信道信息,确定频域基向量信息,包括:
所述终端根据所述下行信道信息计算预设频域基向量中每一频域基向量对应的压缩系数;
所述终端根据所述压缩系数确定频域基向量信息。
可选的,所述根据所述下行信道信息,确定频域基向量信息之前,还包括:
接收所述网络设备配置的频域基向量集合;
根据所述下行信道信息,确定频域基向量信息,包括:
根据所述下行信道信息和所述频域基向量集合确定频域基向量信息。
可选的,所述根据所述下行信道信息和所述频域基向量集合确定频域基向量信息,包括:
根据所述下行信道信息,计算所述频域基向量集合中每一频域基向量对应的压缩系数;
基于所述压缩系数确定频域基向量信息。
可选的,所述接收所述网络设备配置的频域基向量集合之后,还包括;
接收所述网络设备发送的触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种。
可选的,所述频域基向量信息包括频域基向量的数量和/或所述频域基向量对应的指示信息,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量。
本公开实施例还提供一种网络设备,包括:存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收终端发送的频域基向量信息,其中,所述频域基向量信息是所述终端根据估计的下行信道信息确定的。
可选的,所述接收终端发送的频域基向量信息之前,还包括:
向所述终端配置频域基向量集合;
接收的终端发送的频域基向量信息中,所述频域基向量信息是所述终端 基于所述下行信道信息和所述频域基向量集合确定的。
可选的,所述频域基向量信息包括频域基向量的数量和/或所述频域基向量对应的指示信息,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量。
可选的,所述向所述终端配置频域基向量集合之后,还包括:
向所述终端发送触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种。
本公开实施例还提供一种终端,包括:
估计单元,用于估计下行信道信息;
第一确定单元,用于根据所述下行信道信息,确定频域基向量信息;
发送单元,用于向网络设备发送所述频域基向量信息。
可选的,所述第一确定单元包括:
计算单元,用于根据所述下行信道信息计算预设频域基向量中每一频域基向量对应的压缩系数;
第二确定单元,用于根据所述压缩系数确定频域基向量信息。
本公开实施例还提供一种网络设备,包括:
接收单元,用于接收终端发送的频域基向量信息,其中,所述频域基向量信息是所述终端根据估计的下行信道信息确定的。
可选的,还包括:
配置单元,用于向所述终端配置频域基向量集合;
所述网络设备接收的终端发送的频域基向量信息中,所述频域基向量信息是所述终端基于所述下行信道信息和所述频域基向量集合确定的。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行本公开实施例提供的信道状态信息上报方法,或者,所述计算机程序用于使所述处理器执行本公开实施例提供的信道状态信息上报方法。
本公开实施例中,终端估计下行信道信息,终端根据下行信道信息,确定频域基向量信息。终端向网络设备发送频域基向量信息,这样,相比于相关技术中,终端根据网络设备配置的频域基向量集合上报频域基向量信息,容易出现上报多余频域基向量信息,导致终端开销浪费的情况,在本申请中,由终端根据下行信道信息确定频域基向量信息,可以使确定的频域基向量信息更加准确,从而可以减小终端的反馈开销。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例可应用的网络构架的结构示意图;
图2是本公开实施例提供的一种信息上报方法的流程图;
图3是一种多个CSI上报与每个CSI上报和资源集合相关联的示意图;
图4是本公开实施例提供的另一种网络侧配置方法的流程图;
图5是本公开实施例提供的一种终端的结构图;
图6是本公开实施例提供的一种网络设备的结构图;
图7是本公开实施例提供的另一种终端的结构图;
图8是本公开实施例提供的另一种网络设备的结构图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种信息上报方法、网络侧配置方法、装置、设备及存储介质,以解决相关技术中的频域基向量的数量的确定方式存在的终端反馈开销大的问题。
其中,方法和设备是基于同一申请构思的,由于方法和设备解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统、6G系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
请参见图1,图1是本公开实施可应用的网络构架的结构示意图,如图1所示,包括终端11和网络设备12。
其中,本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service, PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、Redcap终端等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB)、6G中的基站,也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO, MU-MIMO)。根据多根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
信道状态信息上报中,首先需要指出的是,码本参数的维度M v在上报过程中,无法有效地确定适当数量的频域基向量,导致终端反馈的开销大,针对于此,本申请提供一种信道状态信息上报方法,应理解,本申请中的信道状态信息上报方法,可以但不限于应用于Rel-17端口中码本参数信息的上报。
请参见图2,图2是本公开实施例提供的一种信息上报方法的流程图,如图2所示,所述方法包括以下步骤:
步骤201、终端估计下行信道信息。
其中,终端可以根据网络设备发送的导频信号估计下行信道信息。例如,网络侧通过P个端口向终端发送波束赋形的导频信号(CSI Reference Signal,CSI-RS),网络侧给终端侧配置K个包含频域基向量的窗或者集合,其中K≥1,并且窗或者集合的大小为N k,k=1,…,K。终端根据接收到的P个端口波束赋形的CSI-RS估计下行信道信息。
步骤202、所述终端根据所述下行信道信息,确定频域基向量信息。
步骤203、所述终端向网络设备发送所述频域基向量信息。
上述的信息上报方法中,终端估计下行信道信息,终端根据下行信道信息,确定频域基向量信息。终端向网络设备发送频域基向量信息,这样,相比于相关技术中,终端根据网络设备配置的频域基向量集合上报频域基向量信息,容易出现上报多余频域基向量信息,导致终端开销浪费的情况,在本申请中,由终端根据下行信道信息确定频域基向量信息,可以使确定的频域基向量信息更加准确,从而可以减小终端的反馈开销。
需要指出的是,在一些可行的实施方式中,频域基向量信息包括频域基向量的数量、频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
例如,终端中预设的频域基向量集合可以是终端根据有效信道确定的候选的频域基向量的集合,目标指示内容可以是1bit的指示信息,终端可以通过该1bit的指示信息表示终端发送的频域基向量信息是采用的网络侧配置的频域基向量集合中的或是预设频域基向量。该实施方式中,预设频域基向量可以是一个元素全为1的频域基向量。其中,频域基向量的长度可根据CQI子带大小和网络配置的参数R确定。更具体地,当有Z层传输层时,可以通过Zbits的指示信息进行表示。此处仅做示例,不做限定,在其他可行的实施方式中,还可以采用其他的指示信息,只需其能表示终端上报的频域基向量信息的选择是由网络设备配置还是由终端确定即可。但不论其作何变换,都在本申请实施方式保护的范围之内。
具体而言,在一个可行的实施方式中,频域基向量信息包括频域基向量的数量,换言之,终端向网络设备发送的是频域基向量的数量。可变换地,在另一个可行的实施方式中,频域基向量信息包括频域基向量的指示信息,换言之,终端向网络设备发送的是终端从频域基向量集合中选择的频域基向量。在该实施方式中,频域基向量集合可以由网络侧设备对终端配置,其具体配置方式将在下文中详述。可变换地,在又一个可行的实施方式中,频域基向量信息包括频域基向量的数量和频域基向量对应的指示信息,换言之,终端向网络设备发送的是频域基向量的数量和终端从频域基向量集合中选择的频域基向量。可变换地,在其他可行的实施例中,频域基向量信息还可以包括其他的信息。此处仅做示例,不做限定,但不论其作何变换,都在本申请实施方式保护的范围之内。
在一些可行的实施方式中,终端可以确定频域基向量信息。
可选的,终端根据下行信道信息,确定频域基向量信息,包括:
终端根据下行信道信息计算预设频域基向量中每一频域基向量对应的压缩系数;
终端根据压缩系数确定频域基向量信息。
频域基向量信息为频域基向量的数量为例,终端根据下行信道信息,确定频域基向量信息的步骤如下所示:首先,终端根据上述步骤中接收的P个端口的CSI-RS,估算出各个端口的下行道信息作为有效信道,对于第p个端 口,在N 3个频域单元上所估计的有效信道记为
Figure PCTCN2022081482-appb-000001
假设终端中根据有效信道确定的候选的频域基向量个数为N 3,计算第n个频域基向量f n对应的压缩系数,其计算公式可以满足如下关系式:
Figure PCTCN2022081482-appb-000002
然后通过遍历的方式计算出所有的频域基向量的压缩系数c′ p,n,其中,p=1,…,P;n=1,…,N 3
进一步地,根据上述步骤计算得到的压缩系数c′ p,n确定M v的值。例如,可以根据压缩系数最小的频域基向量确定M v的值。
在一些可行的实施方式中,终端可以根据网络侧设备配置的频域基向量集合确定频域基向量信息。可选的,终端根据下行信道信息,确定频域基向量信息之前,上述的方法还包括:
终端接收网络设备配置的频域基向量集合;
终端根据下行信道信息,确定频域基向量信息,包括:
终端根据下行信道信息和频域基向量集合确定频域基向量信息。
在该实施方式中,终端根据下行信道信息和频域基向量集合确定频域基向量信息,可以确定合适数量的频域基向量,例如,当网络设备配置的频域基向量的值为4,而终端根据下行道信息确定的频域基向量的值为2时,此时,终端确定频域基向量的值为2,终端向网络侧设备上报M v的值为2,这样,可以避免向网络设备上报多余数量的频域基向量而造成的终端反馈开销浪费。
可选的,终端根据下行信道信息和频域基向量集合确定频域基向量信息,包括:
终端根据下行信道信息,计算频域基向量集合中每一频域基向量对应的压缩系数;
终端基于压缩系数确定频域基向量信息。
在该实施方式中,终端根据下行信道信息和频域基向量集合,确定频域基向量信息的步骤如下所示。
首先,终端根据上述步骤中接收的P个端口的CSI-RS,估算出各个端口的下行道信息作为有效信道,对于第p个端口,在N 3个频域单元上所估计的 有效信道记为
Figure PCTCN2022081482-appb-000003
然后,将网络设备对终端配置的频域基向量集合记为N,f n为配置的频域基向量集合中第n个频域基向量,采用上述公式计算频域基向量集合中每一个频域基向量对应的压缩系数c′ p,n,其中,p=1,…,P;n=1,…,N。
进一步地,根据上述步骤计算得到的压缩系数c′ p,n确定M v的值。例如,可以根据压缩系数最小的频域基向量确定M v的值。
在一些可行的实施方式中,网络设备可以向终端配置码本参数,并向终端发送触发状态,通过码本参数和触发状态关联对应的方式指示终端选择频域基向量信息。其中,网络设备向终端发送触发状态,终端根据触发状态确定上报的上报方式和码本参数的具体步骤如下所示。
可选的,终端接收网络设备配置的频域基向量集合之后,上述方法还包括;
终端接收网络设备发送的触发状态,触发状态用于指示终端的上报方式,还用于指示网络设备向终端配置的码本参数,码本参数包括频域基向量集合、频域基向量集合的大小或者频域基向量集合的起始点信息中的一种或多种;
终端根据触发状态确定码本参数。
在该实施方式中,终端根据触发状态确定码本参数的步骤具体如下。
首先,值得指出的是,W f通过网络设备配置给终端时,配置方法可以是,网络设备为终端配置一个窗或集合的起始点M initial和一个包含N≥M v个频域基向量的窗或集合,或者,终端在窗或集合内连续N个频域基向量选择M v个,参数M v也可由网络设备配置。高层信令无线资源控制(Radio Resource Control,RRC)或MAC层控制单元(MAC Control Element,MAC-CE)配置给终端配置的参数M initial、N或M v可能包含一组多个候选值,或者高层信令RRC或MAC-CE配置多个集合,每个集合包含参数M initial、N和M v中的两个或三个。如果通过在DCI中增加信息域用于这些信息,将增加DCI的开销。因此,需要在不增加DCI开销的情况下,确定上述的码本参数。
具体地,用于上行调度的DCI格式中包含DCI 0_1和DCI 0_2。在这两种格式的DCI域中包含一个0~6bits的CSI请求域,该域的长度是通过RRC信令中CSI请求域的信息长度(reportTriggerSize)的配置。CSI的请求域激 活一个触发状态,该触发状态对应一个或多个CSI上报,上报内容包括CSI-RS资源指示(CSI-RS Resource Indicator,CRI)/秩指示(Rank indicator,RI)/预编码矩阵指示(Precoding Matrix Indicator,PMI)/信道质量指示(Channel Quality Indicator,CQI)等。
终端的上报方式包括非周期CSI上报和半持续CSI上报,非周期CSI上报采用MAC CE结合DCI的方式进行配置和触发,并基于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上报。RRC配置多个CSI触发状态。每个触发状态对应一个或多个CSI上报。DCI格式0_1/0_2中的CSI请求域的大小可由RRC信令配置为0~6bits,因此最多可以指示63个CSI触发状态(有一个保留状态)。RRC最多可以配置128个CSI触发状态,当RRC配置的CSI触发状态超过63时,由MAC CE信令将其中的63个CSI触发状态映射至CSI请求域指示。每个触发状态可以关联至1、2、3个非周期resource setting(资源集合),其中,若resource setting中包含多个非周期resource set(资源集),则只选择其中一个resource set,每个resource set包含多个CSI-RS资源,如图3所示。其中PMI是根据与该CSI上报相关联的resource setting包含的用于CMR的CSI-RS资源计算。
而,基于PUSCH的SP-CSI,类似于上述的非周期CSI上报,也是由DCI信令激活和去激活。在CSI反馈框架下,RRC配置多个触发状态(trigger state),最大64个触发状态,且每个触发状态对应一个CSI reporting setting。使用DCI中的CSI请求域激活一个触发状态。且同一时刻可以有多个处于激活状态的基于PUSCH的SP-CSI。不同于非周期的CSI上报,半持续CSI上报中的PMI是根据DCI触发之前与DCI最近邻的一个CMR的CSI-RS资源计算,该CSI-RS资源包含在与DCI触发相关联的CSI resource setting中。
目前,高层信令RRC或MAC-CE配置给终端配置的参数M initial、N或M v可能包含一组多个候选值,或者高层信令RRC或MAC-CE配置多个包含多种参数构成的集合。目前还没有相应的码本参数指示方法。如果采用通常的做法直接增加DCI的信息域用于指示,将增加DCI的开销。
因此,在该实施方式中,为了减小DCI的开销,采用码本参数与DCI的触发状态相关联的方式确定码本参数,具体步骤如下。
步骤1:网络设备通过高层信令RRC或MAC-CE给终端配置码本参数至少包括M v、N和M initial的一种或多种参数,或者配置了多种参数的组合。每种参数包含X≥1个候选值,或者候选的参数组合有X≥1个。网络设备给终端的每个CSI上报配置了S≥1触发状态。
步骤2:网络设备发送DCI中CSI请求域激活一个触发状态,该触发状态不仅指示了K≥1个非周期或基于PUSCH的半持续CSI上报,还指示了步骤1中所述的一种或多种参数值,或者一个多种参数的组合。
步骤3:终端根据网络设备配置和/或DCI指示确定码本参数M v/N/M initial的取值。
步骤4:终端利用指示的码本参数计算CRI/RI/PMI/CQI信息并通过相应的CSI上报给网络侧。
在该实施方式中,通过DCI中的CSI请求域激活的触发状态与码本参数信息实现联合编码指示,即一个触发状态不仅对应一个或多个非周期或半持续CSI上报,还对应一种或多种码本参数,或多种参数构成的一个组合,使得UE根据编码方法确定相应的CSI上报ID和码本参数。
令M v表示频域基向量的个数;N表示窗或集合的大小;M initial表示窗的起始点。码本参数指M v、N和M initial中的一种或多种,或者这些参数的组合。网络设备给终端配置reportTriggerSize可指示Y个触发状态。
在该实施方式中,采用上述方法可以在不增加DCI开销的情况下给终端指示相应的码本参数。
在一个可行的实施方式中,网络设备和终端具体的行为及指示确定方法可以如下:
首先,网络设备通过高层信令RRC或MAC-CE给终端配置码本参数至少包括M v、N和M initial的一种或多种参数,或者配置了多种参数的组合。每种参数包含X≥1个候选值,或者候选的参数组合有X≥1个。网络设备给终端的每个CSI上报配置了S≥1触发状态,其中,同时需要满足S≥X。
然后,网络设备发送DCI中CSI请求域激活一个触发状态给终端,该触发状态不仅指示了K=1个非周期或基于PUSCH的半持续CSI上报,还指示了上述参数中的一种或多种参数值,或者参数组合中的一个多种参数的组合。
在一个可行的实施方式中,终端可以根据触发状态和网络侧配置的候选参数或组合确定码本参数,具体示例如下。
对于Y=X,DCI触发了Y中的第n个触发状态,则终端确定该CSI上报对应的码本参数为网络设备配置X个候选参数或组合的第n个。
对于Y>X,DCI触发了Y中的第n个触发状态,且n≤X,则终端确定该CSI上报对应的码本参数为网络设备配置X个候选参数或组合的第n个。
对于Y>X,DCI触发了Y中的第m个触发状态,且m>X,则终端确定该CSI上报对应的码本参数为网络设备配置X个候选参数或组合的第mod(X/m)个。此处仅做示例,不做限定。值得强调的是,此处的数学计算公式用于示例表示Y和X满足的一种计算关系,并不做限定,可变换地,在其他可行的实施方式中,通过简单的数学变换,还可以用其他的数学关系表示Y和X的关系,应理解,本申请实施方式中的其余计算公式也是计算关系的一种表示,并不做限定,但不论其作何变换,都在本申请实施方式保护的范围之内。
可选地,终端确定该CSI上报对应的码本参数为网络设备配置X个候选参数或组合的一个默认值,如参数或集合中的第1个。
在又一个可行的实施方式中,网络设备通过DCI中CSI请求域激活一个触发状态,该触发状态不仅指示了K>1个非周期或基于PUSCH的半持续CSI上报,还指示了上述的码本参数中所述的一种或多种参数值,或者一个多种参数的组合。K个CSI上报对应的码本参数可以依据上一个实施例确定,且这K个CSI对应的码本参数相同。
可选地,K个CSI上报对应不同的码本参数。具体地,终端确定第一个CSI上报对应的码本参数为X个中的第n个参数值或集合,终端确定第k个CSI上报对应的码本参数为X个中的第n+k个参数值或集合。若n+k>X,终端确定第k个CSI上报对应的码本参数为X个中的第mod(n+k,X)个参数值或集合,其中mod(n+k,X)表示取余操作。
进一步地,终端利用上述的方法确定的码本参数,结合与CSI上报相关联的测量信道的CSI-RS资源所估计的下行信道,计算CSI反馈信息并上报给网络设备。
下面,介绍网络设备采用上述的方式为终端配置码本参数后,向终端发 送触发状态,便于终端确定上报方式及上报的码本参数的具体实例。
实施例1:
本实施例主要描述K=1个非周期或基于PUSCH的半持续CSI上报,触发状态与一种码本参数联合编码指示的情况。
基站给UE配置多个CSI上报信息,并且每个触发状态对应一个CSI上报。该信息中包含了码本参数M v,N和M initial。其中包含了一组X=4个参数值,分别为0,N3/4,N3/2,N3。基站还通过RRC信令给UE配置了reportTriggerSize为3。则DCI域的大小为3bits,可以指示7个触发状态,其中触发状态0作为保留。其中码本参数与码本参数M initial的联合编码指示如下表1所示。
例如,基站向UE发送携带触发非周期SRS传输的DCI,该DCI域的值为2,则激活一个触发状态为2的非周期CSI上报,并且该CSI上报对应的M initial码本参数为N3/4。
表1码本参数与码本参数M initial的联合编码指示
触发状态 M initial的取值
1 0
2 N3/4
3 N3/2
4 N3
5 n/a
6 n/a
7 n/a
表1中,n/a表示未能确定相应的码本参数,根据表1可知,终端根据该DCI信息确定了CSI上报的ID和码本参数M initial的值,在根据网络设备配置的其它参数如M v、N等和与该CSI上报相关联的CSI-RS资源所测量的信道信息,计算CRI/RI/CQI等其它反馈信息上报给网络设备。
实施例2:
本实施例主要描述K>1个非周期或基于PUSCH的半持续CSI上报,触发状态与一个码本参数集合联合编码指示的情况。
基站给UE的配置了多个CSI上报信息,并且每个触发状态对应一个CSI上报。CSI信息中包含了X=4个由码本参数M v,N和M initial构成的集合,分别为{1,4,0},{2,4,N3/4},{3,4,N3/2},{4,4,N3}。基站还通过RRC信令给UE配置了reportTriggerSize为3。则DCI域的大小为3bits,可以指示7个触发状态,其中触发状态0作为保留。其中,码本参数与码本参数{M v,N,M initial}集合的联合编码指示如下表2所示。
例如,基站向UE发送携带触发非周期SRS传输的DCI,该DCI域的值为3,则激活一个触发状态为2的非周期CSI上报,并且该CSI上报对应的码本参数集合为{3,4,N3/2}。
表2:码本参数与码本参数M initial的联合编码指示
触发状态 码本参数{M v,N,M initial}集合
1 {1,4,0}
2 {2,4,N3/4}
3 {3,4,N3/2}
4 {4,4,N3}
5 n/a
6 n/a
7 n/a
根据上述表2客户自,终端利用该DCI信息确定了CSI上报的ID和码本参数M v=3,N=4,M initial=N3/2,在根据网络设备配置的其它参数和该CSI上报相关联的CSI-RS资源所测量的信道信息,计算CRI/RI/CQI等其它反馈信息上报给网络侧。特别地,如果DCI域的值m=5,则该CSI上报对应的码本参数集合为m-X=1,即集合{1,4,0}。
UE的处理行为如上所述,此处,不做赘述。
实施例3:
本实施例主要描述K>1个非周期或基于PUSCH的半持续CSI上报的情况。
基站给UE的配置了多个CSI上报信息,并且每个触发状态对应K=2个CSI上报。CSI信息中包含了码本参数M v,N和M initial。其中包含了一组X=4 个参数值,分别为0,N3/4,N3/2,N3。基站还通过RRC信令给UE配置了reportTriggerSize为3。则DCI域的大小为3bits,可以指示7个触发状态,其中触发状态0作为保留。其中,码本参数与码本参数M initial的联合编码指示如下表3所示。
例如,基站向UE发送携带触发非周期SRS传输的DCI,该DCI域的值为2,则激活一个触发状态为2的非周期CSI上报,并且这两个CSI上报对应的M initial码本参数均为N3/4。
表3码本参数与码本参数M initial的联合编码指示
触发状态 M initial的取值
1 0
2 N3/4
3 N3/2
4 N3
5 n/a
6 n/a
7 n/a
根据表3可知,第一个CSI上报对应的码本参数M initial为N3/4,第二个CSI上报对应的码本参数M initial为N3/2,即触发状态为n+1=3对应的码本参数值。终端利用该DCI信息确定了这两个CSI上报对应的ID和码本参数M initial的值,在根据网络设备配置的其它参数如M v、N等和与这两个CSI上报相关联的CSI-RS资源所测量的信道信息,计算他们对应的CRI/RI/CQI等其它反馈信息上报给网络侧。
在该实施方式中,DCI请求域指示的触发状态既指示了哪个或哪些非周期或半持续基于PUSCH的CSI上报,还指示了端口选择码本的一种或多种码本参数,或者多种参数构成的一个组合,使得DCI负载的大小不改变。
在上述的方法中,提供了网络设备发送DCI中CSI请求域激活一个触发状态,该触发状态不仅指示了K=1个非周期或基于PUSCH的半持续CSI上报,还指示了码本参数中的一种或多种参数值,或者一个多种参数的组合。根据网络设备给终端配置reportTriggerSize可指示Y个触发状态与参数或组 合的个数X之间的关系,确定指示码本参数值或集合的方法。
或者,网络设备通过DCI中CSI请求域激活一个触发状态,该触发状态不仅指示了K>1个非周期或基于PUSCH的半持续CSI上报,还指示了码本参数中的一种或多种参数值,或者一个多种参数的组合。K个CSI上报对应的码本参数可依据上述方法确定,此处不做赘述,且这K个CSI对应的码本参数相同。
进一步由终端确定K>1个CSI上报对应不同的码本参数值或集合的方法。可以不改变DCI信令大小的情况下实现码本参数的灵活指示。
可选的,终端向网络设备发送频域基向量信息之前,上述方法还包括:
基于频域基向量信息确定目标比特信息,目标比特信息用于指示频域基向量的数量和/或频域基向量对应的指示信息,其中,频域基向量对应的指示信息用于指示终端从频域基向量集合中选择频域基向量的选择方式;
终端向网络设备发送频域基向量信息,包括:
终端向网络设备发送由所述目标比特信息指示的所述频域基向量信息。
在该实施方式中,目标比特信息的形式可以是[log 2(N)]bits,换言之,终端可以通过上报[log 2(N)]bits指示所有传输层使用的频域基向量的个数M v。其中,N的取值为频域基向量的数量。例如,当频域基向量的数量为4时,N为4,则需要用2bits指示所有传输层使用的频域基向量的个数M v。在一个可行的实施方式中,可以采用二进制进行表示,例如“00”、“01”、“10”、“11”。
在一个示例中,终端还可以通过一个单独的CSI上报1bit指示所有传输层采用的是网络设备给终端配置的M v,还是终端上报的M v
在一些可行的实施方式中,终端还可以在部分的上报结构中上报上述的目标指示内容。
可选地,终端的上报结构包括两部分上报结构或者三部分上报结构;
在终端的上报结构包括两部分上报结构的情况下,终端向网络设备发送目标指示内容,包括:
终端通过第一目标部分上报结构向网络设备发送目标指示内容;第一目标部分上报结构为两部分上报结构中的第一部分上报结构;
在终端的上报结构包括三部分上报结构的情况下,终端向网络设备发送目标指示内容,包括:
终端通过第二目标部分上报结构向网络设备发送目标指示内容;第二目标部分上报结构为三部分上报结构中的第一部分上报结构。
需要说明的是,针对Rel-17端口选择码本参数M v。M v的指示上报可为Part1和Part2两部上报,或者分为Part 0、Part1和Part2三部分上报。
具体地,分为Part1和Part2两部分上报时,Part1中的上报内容至少包含下列参数中的一种或多种:RI、宽带CQI、各子带CQI、所有层总的非零系数个数K NZ、终端选择的频域基向量个数、端口选择指示、选择的端口个数。Part2中的上报内容至少包含下列参数的一种或多种:每层的最强系数指示SCI、频域基向量指示、参考幅度、非零系数、非零系数位置指示、端口选择指示。
分为Part 0、Part1和Part2三部分上报时,Part0中的上报内容指示在Part1中上报的M v是网络侧配置的值还是终端上报的值。其中,Part1中的上报内容至少包含下列参数中的一种或多种:RI、宽带CQI、各子带CQI、所有层总的非零系数个数K NZ、终端选择的频域基向量个数、端口选择指示、选择的端口个数。Part2中的上报内容至少包含下列参数的一种或多种:每层的最强系数指示SCI、频域基向量指示、参考幅度、非零系数、非零系数位置指示、端口选择指示。
换言之,在采用Part1和Part2两部分上报时,可以在Part1中指示采用的是网络设备给终端配置的M v,还是终端上报的M v,在采用Part 0、Part1和Part2三部分上报时,可以在Part0中指示采用的是网络设备给终端配置的M v.此处仅做示例,不做限定。这样,可以通过目标指示内容快速确定,上报的M v是由网络设备配置,还是由终端根据估计的下行信道确定。
可选的,每一层传输层的频域基向量信息相同或者不同;
在每一层传输层的频域基向量信息不同的情况下,终端向网络设备发送频域基向量信息,包括:
终端向网络侧发送Z个频域基向量信息,Z为正整数,Z用于表示传输层的层数。
在该实施方式中,描述了M v的选择为layer-common和layer-specific两种情况的M v指示上报方法。其中,Layer-common表示用一个M v指示信息指示L层采用的M v;Layer-specific表示用一个M l,v指示信息指示第l层采用的M l,v,需要上报L个M v指示信息以指示L个层采用M v。换言之,Layer-common表示每一层的M v值均相同,Layer-specific表示每一层的M v值可以相同,也可以不同,在上报的过程中,针对每一层传输层发送一个频域基向量信息。例如,当有两层传输层时,选择为Layer-common时,若M v值为4,则该两层传输层的M v值均为4,选择为Layer-specific时,可以是该两层传输层的M v值均为4,也可以是第一层传输层的M v值为2,第二层传输层的M v值为4。此处仅做示例,不做限定。更具体地,每一层频域基向量信息都对应有一个目标指示内容,通过该目标指示内容可以表示各层传输层的频域基向量信息是网络侧配置的频域基向量集合种的或是预设频域基向量。
下面,分别从频域基向量的数量K=1或者K>1时,示例说明终端上报M v值的具体步骤。
当K=1时,即N=N 1
若M v的选择为layer-common,在Part1中通过上报[log 2(N)]bits指示所有传输层使用的频域基向量的个数M v
在一个示例中,网络设备给终端配置了参数M v>1,在Part1中通过上报1bit指示所有传输层采用M v=1,还是采用网络设备给终端配置的M v值。
在另一个示例中,网络设备给终端配置了参数M v=1,CSI上报分为Part0、Part1和Part2三部分上报。在Part0中或者通过一个单独的CSI上报1bit指示所有传输层采用的是网络设备给终端配置M v=1,还是终端根据估计的下行信道信息确定并上报的M v。若为终端上报的M v,则需要在Part1中上报通过上报[log 2(N)]bits指示所有传输层使用的频域基向量的个数M v
若M v的选择为layer-specific,在Part1中通过上报
Figure PCTCN2022081482-appb-000004
bits分别指示L个传输层中第l层使用的频域基向量的个数M l,v
在一个示例中,网络侧给终端侧配置了一个参数M v>1或者多个M l,v>1。在Part1中通过上报L bits指示第l个传输层的M l,v值为1或是网络侧给终端侧配置M l,v
在一个示例中,网络侧给终端侧配置了参数M v=1,CSI上报分为Part0、Part1和Part2三部分上报。在Part0中通过一个单独的CSI上报Lbits指示一个传输层采用的是网络设备给终端配置M l,v=1,还是终端上报的M l,v。若为终端上报的M l,v,则需要再Part1中上报通过上报[log 2(N)]bits指示第l个传输层使用的频域基向量的个数M l,v
上述的一个单独的CSI上报可以是通过一个不包含PMI的CSI reporting setting上报。在此后的PMI计算中,均采用终端上报的Mv值。
当K>1时,若M v的选择为layer-common,在Part1中通过上报K×[log 2(N)]bits指示所有传输层在每个窗/集合中使用的频域基向量的个数M v≤min(N k)。min(N k),k=1,…,K表示K个窗/集合中最小的值。
若M v的选择为layer-specific,在Part1中通过上报
Figure PCTCN2022081482-appb-000005
bits分别指示L个传输层中第l层在每个窗/集合中使用的频域基向量的个数M l,v
对于每个窗或集合内的M v上报指示方法也可以采用K=1时所述的指示上报方法。
下面,结合具体的传输层,示例说明终端上报M v值的具体步骤。
实施例1:
该实施例主要描述传输层数L=2,K=1,网络设备配置的窗/集合内的频域基向量个数N 1=4的情况。
若M v的选择为layer-common,网络设备没有配置参数M v。在Part1中上报[log 2(N)]=2bits指示终端选择的M v=2个频域基向量。
在一示例中,网络设备给终端侧配置了参数M v=2,在Part1中通过上报1bit指示所有传输层的M v的值,如果该bit的值为0,所有传输层采用的M v=1。否则,所有传输层采用的M v=2。
可选地,假设网络设备给终端配置了参数M v=1,CSI上报分为Part0、Part1和Part2三部分。在Part0中上报1bit指示,如果该bit的值为0,那么所有传输层采用M v=1。否则,所有传输层采用的是终端上报的M v=2。然后在Part1中上报通过上报[log 2(N)]=2bits指示所有传输层使用了M v=2频域基向量。
若M v的选择为layer-specific,在Part1中通过上报L×[log 2(N)]=4bits分 别指示第1层和第2层使用的频域基向量的个数M 1,v=2和M 2,v=1。
在一示例中,网络设备给终端配置了参数M 1,v=4,M 2,v=2,在Part1中通过上报L=2bit指示第l个传输层的M 1,v的值,如果两个bits中的值均为0,则两个层采用的M l,v=1,l=1,2。否则,两个传输层采用的M 1,,v=4,M 2,v=2。
在一示例中,网络设备给终端配置了参数M v=1,CSI上报分为Part0、Part1和Part2三部分。在Part0中上报L bits指示,如果两个bits中的值均为0,则两个层采用的M l,v=1,l=1,2。否则,两层采用的是终端上报的M 1,,v=2,M 2,v=1,并在Part1中上报通过上报L*[log 2(N)]=4bits进行指示。
实施例2:
本实施例主要描述传输层L=2,K>1,网络侧配置的两个窗/集合内的频域基向量个数N 1=N 2=4时M v值的指示。
若M v的选择为layer-common,网络设备没有配置参数M v。在Part1中上报K×[log 2(N)]=4bits指示终端选择的M v=2个频域基向量。
若M v的选择为layer-specific,在Part1中通过上报L×K×[log 2(N)]=8bits分别指示L个传输层中第1层和第2层在每个窗/集合中使用的频域基向量的个数M 1,v=2,M 2,v=1。
请参见图4,图4是本公开实施例提供的一种网络侧配置方法的流程图,如图4所示,包括以下步骤:
步骤401、网络设备接收终端发送的频域基向量信息,其中,所述频域基向量信息是所述终端根据估计的下行信道信息确定的。
可选的,所述网络设备接收终端发送的频域基向量信息之前,所述方法还包括:
所述网络设备向所述终端配置频域基向量集合;
所述网络设备接收的终端发送的频域基向量信息中,所述频域基向量信息是所述终端基于所述下行信道信息和所述频域基向量集合确定的。
可选的,所述频域基向量信息包括频域基向量的数量、所述频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中 选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
可选的,所述网络设备接收终端发送的频域基向量信息,包括:
所述网络设备接收终端发送的由目标比特信息指示的所述频域基向量信息,所述目标比特信息用于指示所述频域基向量的数量和/或所述频域基向量对应的指示信息,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量。
可选的,所述网络设备向所述终端配置频域基向量集合之后,所述方法还包括:
所述网络设备向所述终端发送触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种。
可选的,每一层传输层的所述频域基向量信息相同或者不同;
在每一层传输层的所述频域基向量信息不同的情况下,所述网络设备接收所述终端发送的频域基向量信息,包括:
所述网络设备接收Z个所述频域基向量信息,Z为正整数,Z用于表示传输层的层数。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图5,图5是本公开实施例提供的一种终端的结构图,如图5所示,包括存储器520、收发机500和处理器510:
存储器520,用于存储计算机程序;收发机500,用于在所述处理器510的控制下收发数据;处理器510,用于读取所述存储器520中的计算机程序并执行以下操作:
估计下行信道信息;
根据所述下行信道信息,确定频域基向量信息;
向网络设备发送所述频域基向量信息。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器510代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机500可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,总线接口530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器510负责管理总线架构和通常的处理,存储器520可以存储处理器510在执行操作时所使用的数据。
可选的,处理器510可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述根据所述下行信道信息,确定频域基向量信息,包括:
所述终端根据所述下行信道信息计算预设频域基向量中每一频域基向量对应的压缩系数;
所述终端根据所述压缩系数确定频域基向量信息。
可选的,所述根据所述下行信道信息,确定频域基向量信息之前,还包括:
接收所述网络设备配置的频域基向量集合;
根据所述下行信道信息,确定频域基向量信息,包括:
根据所述下行信道信息和所述频域基向量集合确定频域基向量信息。
可选的,所述根据所述下行信道信息和所述频域基向量集合确定频域基向量信息,包括:
根据所述下行信道信息,计算所述频域基向量集合中每一频域基向量对应的压缩系数;
基于所述压缩系数确定频域基向量信息。
可选的,所述接收所述网络设备配置的频域基向量集合之后,还包括;
接收所述网络设备发送的触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种。
可选的,所述频域基向量信息包括频域基向量的数量、所述频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图6,图6是本公开实施例提供的一种网络设备的结构图,如图6所示,包括存储器620、收发机600和处理器610:
存储器620,用于存储计算机程序;收发机600,用于在所述处理器610的控制下收发数据;处理器610,用于读取所述存储器620中的计算机程序并执行以下操作:
接收终端发送的频域基向量信息,其中,所述频域基向量信息是所述终端根据估计的下行信道信息确定的。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器610代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不 再对其进行进一步描述。总线接口提供接口。收发机600可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,总线接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器610负责管理总线架构和通常的处理,存储器620可以存储处理器610在执行操作时所使用的数据。
可选的,处理器610可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述接收终端发送的频域基向量信息之前,还包括:
向所述终端配置频域基向量集合;
接收的终端发送的频域基向量信息中,所述频域基向量信息是所述终端基于所述下行信道信息和所述频域基向量集合确定的。
可选的,所述频域基向量信息包括频域基向量的数量、所述频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
可选的,所述向所述终端配置频域基向量集合之后,还包括:
向所述终端发送触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图7,图7是本公开实施例提供的另一种终端的结构图,如图7所示,终端700,包括:
估计单元701,用于估计下行信道信息;
第一确定单元702,用于根据所述下行信道信息,确定频域基向量信息;
发送单元703,用于向网络设备发送所述频域基向量信息。
可选的,所述第一确定单元702包括:
计算单元,用于根据所述下行信道信息计算预设频域基向量中每一频域基向量对应的压缩系数;
第二确定单元,用于根据所述压缩系数确定频域基向量信息。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图8,图8是本公开实施例提供的另一种网络设备的结构图,如图8所示,网络设备800,包括:
接收单元801,用于接收终端发送的频域基向量信息,其中,所述频域基向量信息是所述终端根据估计的下行信道信息确定的。
可选的,还包括:
配置单元,用于向所述终端配置频域基向量集合;
所述网络设备接收的终端发送的频域基向量信息中,所述频域基向量信息是所述终端基于所述下行信道信息和所述频域基向量集合确定的。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物 理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行本公开实施例提供的信息上报方法,或者,所述计算机程序用于使所述处理器执行本公开实施例提供的网络侧配置方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计 算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种信息上报方法,包括:
    终端估计下行信道信息;
    所述终端根据所述下行信道信息,确定频域基向量信息;
    所述终端向网络设备发送所述频域基向量信息。
  2. 根据权利要求1所述的方法,其中,所述终端根据所述下行信道信息,确定频域基向量信息,包括:
    所述终端根据所述下行信道信息计算预设频域基向量中每一频域基向量对应的压缩系数;
    所述终端根据所述压缩系数确定频域基向量信息。
  3. 根据权利要求1所述的方法,其中,所述终端根据所述下行信道信息,确定频域基向量信息之前,所述方法还包括:
    所述终端接收所述网络设备配置的频域基向量集合;
    所述终端根据所述下行信道信息,确定频域基向量信息,包括:
    所述终端根据所述下行信道信息和所述频域基向量集合确定频域基向量信息。
  4. 根据权利要求3所述的方法,其中,所述终端根据所述下行信道信息和所述频域基向量集合确定频域基向量信息,包括:
    所述终端根据所述下行信道信息,计算所述频域基向量集合中每一频域基向量对应的压缩系数;
    所述终端基于所述压缩系数确定频域基向量信息。
  5. 根据权利要求3所述的方法,其中,所述频域基向量信息包括频域基向量的数量、所述频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
  6. 根据权利要求3所述的方法,其中,所述终端接收所述网络设备配置 的频域基向量集合之后,所述方法还包括:
    所述终端接收所述网络设备发送的触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种;
    所述终端根据所述触发状态确定所述码本参数。
  7. 根据权利要求1所述的方法,其中,所述终端向网络设备发送所述频域基向量信息之前,所述方法还包括:
    基于所述频域基向量信息确定目标比特信息,所述目标比特信息用于指示所述频域基向量的数量和/或所述频域基向量对应的指示信息,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量;
    所述终端向网络设备发送所述频域基向量信息,包括:
    所述终端向网络设备发送由所述目标比特信息指示的所述频域基向量信息。
  8. 根据权利要求5所述的方法,其中,所述终端的上报结构包括两部分上报结构或者三部分上报结构;
    所述频域基向量信息包括所述目标指示内容时,在所述终端的上报结构包括两部分上报结构的情况下,所述终端向网络设备发送所述频域基向量信息,包括:
    所述终端通过第一目标部分上报结构向网络设备发送所述目标指示内容;所述第一目标部分上报结构为所述两部分上报结构中的第一部分上报结构;
    在所述终端的上报结构包括三部分上报结构的情况下,所述终端向网络设备发送所述目标指示内容,包括:
    所述终端通过第二目标部分上报结构向网络设备发送所述目标指示内容;所述第二目标部分上报结构为所述三部分上报结构中的第一部分上报结构。
  9. 根据权利要求1所述的方法,其中,每一层传输层的所述频域基向量信息相同或者不同;
    在每一层传输层的所述频域基向量信息不同的情况下,所述终端向网络设备发送所述频域基向量信息,包括:
    所述终端向网络侧发送Z个所述频域基向量信息,Z为正整数,Z用于表示传输层的层数。
  10. 一种网络侧配置方法,包括:
    网络设备接收终端发送的频域基向量信息,其中,所述频域基向量信息是所述终端根据估计的下行信道信息确定的。
  11. 根据权利要求10所述的方法,其中,所述网络设备接收终端发送的频域基向量信息之前,所述方法还包括:
    所述网络设备向所述终端配置频域基向量集合;
    所述网络设备接收的终端发送的频域基向量信息中,所述频域基向量信息是所述终端基于所述下行信道信息和所述频域基向量集合确定的。
  12. 根据权利要求11所述的方法,其中,所述频域基向量信息包括频域基向量的数量、所述频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,所述频域基向量对应的指示信息指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
  13. 根据权利要求10所述的方法,其中,所述网络设备接收终端发送的频域基向量信息,包括:
    所述网络设备接收终端发送的由目标比特信息指示的频域基向量信息,所述目标比特信息用于指示所述频域基向量的数量和/或所述频域基向量对应的指示信息,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量。
  14. 根据权利要求11所述的方法,其中,所述网络设备向所述终端配置频域基向量集合之后,所述方法还包括:
    所述网络设备向所述终端发送触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的的码本参数,所述码 本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种。
  15. 根据权利要求10所述的方法,其中,每一层传输层的所述频域基向量信息相同或者不同;
    在每一层传输层的所述频域基向量信息不同的情况下,所述网络设备接收所述终端发送的频域基向量信息,包括:
    所述网络设备接收Z个所述频域基向量信息,Z为正整数,Z用于表示传输层的层数。
  16. 一种终端,包括:存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    估计下行信道信息;
    根据所述下行信道信息,确定频域基向量信息;
    向网络设备发送所述频域基向量信息。
  17. 根据权利要求16所述的终端,其中,所述根据所述下行信道信息,确定频域基向量信息,包括:
    所述终端根据所述下行信道信息计算预设频域基向量中每一频域基向量对应的压缩系数;
    所述终端根据所述压缩系数确定频域基向量信息。
  18. 根据权利要求16所述的终端,其中,所述根据所述下行信道信息,确定频域基向量信息之前,还包括:
    接收所述网络设备配置的频域基向量集合;
    根据所述下行信道信息,确定频域基向量信息,包括:
    根据所述下行信道信息和所述频域基向量集合确定频域基向量信息。
  19. 根据权利要求18所述的终端,其中,所述根据所述下行信道信息和所述频域基向量集合确定频域基向量信息,包括:
    根据所述下行信道信息,计算所述频域基向量集合中每一频域基向量对应的压缩系数;
    基于所述压缩系数确定频域基向量信息。
  20. 根据权利要求18所述的终端,其中,所述接收所述网络设备配置的频域基向量集合之后,还包括:
    接收所述网络设备发送的触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种;
    根据所述触发状态确定所述码本参数。
  21. 根据权利要求20所述的终端,其中,所述频域基向量信息包括频域基向量的数量、所述频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
  22. 一种网络设备,包括:存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收终端发送的频域基向量信息,其中,所述频域基向量信息是所述终端根据估计的下行信道信息确定的。
  23. 根据权利要求22所述的网络设备,其中,所述接收终端发送的频域基向量信息之前,还包括:
    向所述终端配置频域基向量集合;
    接收的终端发送的频域基向量信息中,所述频域基向量信息是所述终端基于所述下行信道信息和所述频域基向量集合确定的。
  24. 根据权利要求23所述的网络设备,其中,所述频域基向量信息包括频域基向量的数量、所述频域基向量对应的指示信息、或者目标指示内容中的至少一项,其中,所述频域基向量对应的指示信息用于指示所述终端从网络设备配置的所述频域基向量集合中选择的频域基向量,或者,从终端中预设的频域基向量集合中选择的频域基向量,所述目标指示内容包括所述频域基向量集合或预设频域基向量。
  25. 根据权利要求23所述的网络设备,其中,所述向所述终端配置频域基向量集合之后,还包括:
    向所述终端发送触发状态,所述触发状态用于指示所述终端的上报方式,还用于指示所述网络设备向终端配置的码本参数,所述码本参数包括所述频域基向量集合、所述频域基向量集合的大小或者所述频域基向量集合的起始点信息中的一种或多种。
  26. 一种终端,包括:
    估计单元,用于估计下行信道信息;
    第一确定单元,用于根据所述下行信道信息,确定频域基向量信息;
    发送单元,用于向网络设备发送所述频域基向量信息。
  27. 根据权利要求26所述的终端,其中,所述第一确定单元包括:
    计算单元,用于根据所述下行信道信息计算预设频域基向量中每一频域基向量对应的压缩系数;
    第二确定单元,用于根据所述压缩系数确定频域基向量信息。
  28. 一种网络设备,包括:
    接收单元,用于接收终端发送的频域基向量信息,其中,所述频域基向量信息是所述终端根据估计的下行信道信息确定的。
  29. 根据权利要求28所述的网络设备,还包括:
    配置单元,用于向所述终端配置频域基向量集合;
    所述网络设备接收的终端发送的频域基向量信息中,所述频域基向量信息是所述终端基于所述下行信道信息和所述频域基向量集合确定的。
  30. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至9任一项所述的信息上报方法,或者,所述计算机程序用于使所述处理器执行权利要求10至15任一项所述的网络侧配置方法。
PCT/CN2022/081482 2021-04-02 2022-03-17 信息上报方法、网络侧配置方法、装置、设备及存储介质 WO2022206409A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/552,073 US20240179724A1 (en) 2021-04-02 2022-03-17 Information reporting method, network side configuration method, device, apparatus and storage medium
KR1020237037731A KR20230165820A (ko) 2021-04-02 2022-03-17 정보의 리포팅 방법, 네트워크측 구성 방법, 장치, 기기 및 저장 매체
EP22778592.0A EP4319354A1 (en) 2021-04-02 2022-03-17 Information reporting method, network side configuration method, apparatus, device and storage medium
JP2023559139A JP2024510530A (ja) 2021-04-02 2022-03-17 情報報告方法、ネットワーク側構成方法、装置、機器及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110362623.3 2021-04-02
CN202110362623.3A CN115175228A (zh) 2021-04-02 2021-04-02 信息上报方法、网络侧配置方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022206409A1 true WO2022206409A1 (zh) 2022-10-06

Family

ID=83455614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081482 WO2022206409A1 (zh) 2021-04-02 2022-03-17 信息上报方法、网络侧配置方法、装置、设备及存储介质

Country Status (6)

Country Link
US (1) US20240179724A1 (zh)
EP (1) EP4319354A1 (zh)
JP (1) JP2024510530A (zh)
KR (1) KR20230165820A (zh)
CN (1) CN115175228A (zh)
WO (1) WO2022206409A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581724A (zh) * 2018-06-08 2019-12-17 电信科学技术研究院有限公司 信道状态信息反馈方法、预编码矩阵确定方法及装置
WO2020142974A1 (en) * 2019-01-10 2020-07-16 Qualcomm Incorporated Feedback for type ii channel state information
CN111435849A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种通信方法及设备
WO2020199964A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581724A (zh) * 2018-06-08 2019-12-17 电信科学技术研究院有限公司 信道状态信息反馈方法、预编码矩阵确定方法及装置
WO2020142974A1 (en) * 2019-01-10 2020-07-16 Qualcomm Incorporated Feedback for type ii channel state information
CN111435849A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种通信方法及设备
WO2020199964A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 通信方法及装置
CN111756415A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Phase Randomization and Correction for CSI quantization in frequency domain", 3GPP DRAFT; R1-1903980, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 29 March 2019 (2019-03-29), XP051691202 *

Also Published As

Publication number Publication date
KR20230165820A (ko) 2023-12-05
US20240179724A1 (en) 2024-05-30
CN115175228A (zh) 2022-10-11
EP4319354A1 (en) 2024-02-07
JP2024510530A (ja) 2024-03-07
TW202241192A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
TWI676370B (zh) 一種發送下行控制資訊dci的方法及裝置
WO2020073794A1 (zh) 一种上行功率控制方法、终端设备及网络设备
WO2022151952A1 (zh) 信息上报、接收方法、终端设备及网络设备
WO2022042294A1 (zh) 波束指示方法、网络设备、终端、装置及存储介质
WO2022206409A1 (zh) 信息上报方法、网络侧配置方法、装置、设备及存储介质
TWI837633B (zh) 資訊上報方法、網路側配置方法、終端裝置、網路設備及記憶介質
WO2022028599A1 (zh) 信息传输方法、装置及存储介质
WO2024067158A1 (zh) 信息确定方法、装置、终端及网络设备
WO2022237360A1 (zh) 码本指示方法、装置及存储介质
WO2023208190A1 (zh) 信息确定方法及装置
WO2022022565A1 (zh) 测量结果上报方法、接收方法、终端和网络设备
WO2023078429A1 (zh) Srs传输功率确定方法、设备、装置及存储介质
WO2022268141A1 (zh) 信道状态信息发送方法、接收方法及装置
WO2023011626A1 (zh) 资源指示方法、终端、网络侧设备、装置和存储介质
WO2024032387A1 (zh) 码本参数传输方法、装置及存储介质
WO2022206457A1 (zh) 信息传输方法、装置、设备以及存储介质
WO2023207668A1 (zh) 一种物理上行共享信道的传输方法、设备及存储介质
WO2022206374A1 (zh) 数据传输方法、装置、设备以及存储介质
WO2024032760A1 (zh) Csi报告方法、终端设备、网络设备及存储介质
WO2022152317A1 (zh) 信息处理方法、装置、终端及网络设备
WO2022206371A1 (zh) 端口指示信息上报方法及终端
WO2024032391A1 (zh) 波束指示方法、装置及其相关设备
WO2023011529A1 (zh) 一种波束生效时间确定方法、装置、终端和网络设备
WO2024032477A1 (zh) Prs静默方法、装置及存储介质
WO2024032699A1 (zh) Dmrs端口的确定方法、设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552073

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023559139

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237037731

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237037731

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022778592

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778592

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE