WO2024032387A1 - 码本参数传输方法、装置及存储介质 - Google Patents

码本参数传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2024032387A1
WO2024032387A1 PCT/CN2023/109796 CN2023109796W WO2024032387A1 WO 2024032387 A1 WO2024032387 A1 WO 2024032387A1 CN 2023109796 W CN2023109796 W CN 2023109796W WO 2024032387 A1 WO2024032387 A1 WO 2024032387A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
airspace
beams
domain basis
configuration information
Prior art date
Application number
PCT/CN2023/109796
Other languages
English (en)
French (fr)
Inventor
卢艺文
高秋彬
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024032387A1 publication Critical patent/WO2024032387A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a codebook parameter transmission method, device and storage medium.
  • the New Radio (NR) system supports a variety of Multi-Transmitting Receiving Point (MTRP) multi-point cooperative transmission schemes.
  • Multi-point cooperative transmission schemes can be divided into Coherent Joint Transmission (CJT) schemes and Non-Coherent Joint Transmission (NCJT) scheme.
  • the current Type II codebook design and Precoder Matrix Indicator (PMI) reporting are only applicable to single-point transmission methods or NCJT methods, and are not suitable for multi-point joint coherent transmission methods, resulting in poor system reliability. technical problem.
  • Embodiments of the present disclosure provide a codebook parameter transmission method, device, and storage medium to solve the technical problem of poor system reliability in related technologies.
  • embodiments of the present disclosure provide a codebook parameter transmission method, including:
  • the terminal determines the initial codebook parameter configuration information
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information
  • the terminal reports codebook parameters in a multipoint joint coherent transmission mode.
  • the initial codebook parameter configuration information is predefined or configured by a network device.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information, including :
  • the terminal determines the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the number of single airspace beams X; or,
  • the terminal determines the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the first index; the first index is used to indicate multiple The number of airspace beams.
  • the terminal determines the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the single airspace beam number X, including:
  • the terminal determines the number of each airspace beam in the plurality of airspace beam numbers, and the number of each airspace beam is X; or,
  • the terminal determines the number of each airspace beam in the plurality of airspace beams, and the number of each airspace beam is X/I, where I is the number of the plurality of airspace beams; or,
  • the terminal determines the number of i-th airspace beams, and the number of i-th airspace beams is Li, I is the number of the multiple spatial domain beams.
  • the terminal determines the number of i-th airspace beams, including:
  • the terminal determines the number of i-th airspace beams based on the i-th channel estimation information.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information. ,include:
  • the terminal determines the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on the single number Y of frequency domain basis vectors. ;or,
  • the terminal determines the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on the second index; the second index is used Indicates the number of multiple frequency domain basis vectors.
  • the terminal determines the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on the single frequency domain basis vector number Y, including:
  • the terminal determines the number of each frequency domain basis vector in the plurality of frequency domain basis vectors, and the number of each frequency domain basis vector is Y*N3/R, where N3 is the current precoding indication PMI subband size, R is the subband factor; or,
  • the terminal determines the number of each frequency domain basis vector in the plurality of frequency domain basis vectors.
  • the number of each frequency domain basis vector is (Y*N3)/(R*I), and N3 is the current PMI subband. size, R is the sub-band factor, I is the number of the multiple frequency domain basis vectors; or,
  • the terminal determines the number of i-th frequency domain basis vectors, and the number of i-th frequency domain basis vectors is Mi, I is the number of the plurality of frequency domain basis vectors.
  • the terminal reports codebook parameters in the multipoint joint coherent transmission mode, including:
  • the terminal reports a frequency domain basis vector
  • the terminal reports multiple frequency domain basis vectors.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information. ,include:
  • the terminal determines a plurality of non-zero coefficient numbers in a multipoint joint coherent transmission mode based on the non-zero coefficient number indication.
  • the terminal reports codebook parameters in the multipoint joint coherent transmission mode, including:
  • the terminal reports multiple non-zero coefficients and multiple strongest coefficient indices; or,
  • the terminal reports multiple non-zero coefficients and reports a strongest coefficient index.
  • the method further includes:
  • the terminal performs differential quantization on non-zero coefficients.
  • embodiments of the present disclosure provide a codebook parameter transmission method, including:
  • the network device receives the codebook parameters reported by the terminal
  • the network device parses the codebook parameters based on initial codebook parameter configuration information.
  • the initial codebook parameter configuration information is predefined or configured by the network device.
  • the initial codebook parameter configuration information includes one or more of the following information:
  • the number of spatial beams includes one or more of the following:
  • a first index is used to indicate the number of multiple spatial domain beams.
  • the number of frequency domain basis vectors includes one or more of the following:
  • a second index is used to indicate the number of multiple frequency domain basis vectors.
  • the network device parses the codebook parameters based on initial codebook parameter configuration information, including:
  • the network device determines the bit width of each codebook parameter based on the initial codebook parameter configuration information
  • the codebook parameters are parsed based on the bit width.
  • embodiments of the present disclosure provide a terminal, including a memory, a transceiver, and a processor;
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the initial codebook parameter configuration information is predefined or configured by a network device.
  • determining the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information includes:
  • the initial codebook parameter configuration information is a single airspace beam number X
  • the initial codebook parameter configuration information is the number of multiple spatial domain beams
  • the initial codebook parameter configuration information is a first index
  • the number of multiple airspace beams in the multipoint joint coherent transmission mode is determined based on the first index; the first index is used to indicate multiple airspace beams quantity.
  • determining the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the single airspace beam number X includes:
  • determining the number of i-th airspace beams includes:
  • the number of i-th airspace beams is determined based on the i-th channel estimation information.
  • the codebook parameters in the multipoint joint coherent transmission mode are determined based on the initial codebook parameter configuration information, include:
  • the initial codebook parameter configuration information is a single frequency domain basis vector number Y
  • the initial codebook parameter configuration information is the second index
  • the second index determines the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode; the second index is used to indicate the number of multiple frequency domain basis vectors.
  • determining the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on the single frequency domain basis vector number Y includes:
  • the number of each frequency domain basis vector in the plurality of frequency domain basis vectors is Y*N3/R, N3 is the current PMI subband size, and R is the subband factor; or ,
  • the number of each frequency domain basis vector is (Y*N3)/(R*I), N3 is the current PMI subband size, R is the subband factor, I is the number of the multiple frequency domain basis vectors; or,
  • the reporting of codebook parameters under joint multipoint coherent transmission mode includes:
  • the codebook parameters in the multipoint joint coherent transmission mode are determined based on the initial codebook parameter configuration information, include:
  • the number of non-zero coefficients in the multi-point joint coherent transmission mode is determined based on the indication of the number of non-zero coefficients.
  • the reporting of codebook parameters under joint multipoint coherent transmission mode includes:
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • embodiments of the present disclosure provide a network device, including a memory, a transceiver, and a processor;
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the initial codebook parameter configuration information is predefined or configured by the network device.
  • the initial codebook parameter configuration information includes one or more of the following information:
  • the number of spatial beams includes one or more of the following:
  • a first index is used to indicate the number of multiple spatial domain beams.
  • the number of frequency domain basis vectors includes one or more of the following:
  • a second index is used to indicate the number of multiple frequency domain basis vectors.
  • parsing the codebook parameters based on initial codebook parameter configuration information includes:
  • the codebook parameters are parsed based on the bit width.
  • embodiments of the present disclosure provide a codebook parameter transmission device, including:
  • the first determination module is used to determine the initial codebook parameter configuration information
  • a second determination module configured to determine the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information
  • the first transmission module is used to report codebook parameters in the multipoint joint coherent transmission mode.
  • the initial codebook parameter configuration information is predefined or configured by a network device.
  • determining the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information includes:
  • the initial codebook parameter configuration information is a single airspace beam number X
  • the initial codebook parameter configuration information is a first index
  • the number of multiple airspace beams in the multipoint joint coherent transmission mode is determined based on the first index; the first index is used to indicate multiple airspace beams quantity.
  • determining the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the single airspace beam number X includes:
  • determining the number of i-th airspace beams includes:
  • the number of i-th airspace beams is determined based on the i-th channel estimation information.
  • the codebook parameters in the multipoint joint coherent transmission mode are determined based on the initial codebook parameter configuration information, include:
  • the initial codebook parameter configuration information is a single frequency domain basis vector number Y
  • the initial codebook parameter configuration information is a second index
  • the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode is determined based on the second index; the second index is used to indicate multiple The number of frequency domain basis vectors.
  • determining the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on the single frequency domain basis vector number Y includes:
  • the number of each frequency domain basis vector in the plurality of frequency domain basis vectors is Y*N3/R, N3 is the current PMI subband size, and R is the subband factor; or ,
  • the number of each frequency domain basis vector is (Y*N3)/(R*I), N3 is the current PMI subband size, R is the subband factor, I is the number of the multiple frequency domain basis vectors; or,
  • the reporting of codebook parameters under multipoint joint coherent transmission mode include:
  • the codebook parameters in the multipoint joint coherent transmission mode are determined based on the initial codebook parameter configuration information, include:
  • the number of non-zero coefficients in the multi-point joint coherent transmission mode is determined based on the indication of the number of non-zero coefficients.
  • the reporting of codebook parameters in multipoint joint coherent transmission mode includes:
  • the apparatus further includes a quantization module
  • the quantization module is used to perform differential quantization on non-zero coefficients.
  • an embodiment of the present disclosure provides a codebook parameter transmission device, including:
  • the second transmission module is used to receive the codebook parameters reported by the terminal;
  • a parsing module configured to parse the codebook parameters based on initial codebook parameter configuration information.
  • the initial codebook parameter configuration information is predefined or configured by a network device.
  • the initial codebook parameter configuration information includes one or more of the following information:
  • the number of spatial beams includes one or more of the following:
  • a first index is used to indicate the number of multiple spatial domain beams.
  • the number of frequency domain basis vectors includes one or more of the following:
  • a second index is used to indicate the number of multiple frequency domain basis vectors.
  • parsing the codebook parameters based on initial codebook parameter configuration information includes:
  • the codebook parameters are parsed based on the bit width.
  • embodiments of the present disclosure further provide a processor-readable storage medium that stores a computer program, and the computer program is used to cause the processor to execute the first aspect or the third aspect as described above.
  • the codebook parameter transmission method described in the second aspect is not limited to:
  • embodiments of the present disclosure further provide a computer-readable storage medium, which stores a computer program, and the computer program is used to cause a computer to execute the first aspect or the second aspect as described above.
  • embodiments of the present disclosure further provide a communication device-readable storage medium that stores a computer program, and the computer program is used to cause the communication device to execute the first or third aspect as described above.
  • the codebook parameter transmission method described in the second aspect is not limited to:
  • embodiments of the present disclosure also provide a chip product-readable storage medium.
  • the chip product-readable storage medium stores a computer program.
  • the computer program is used to cause the chip product to execute the first aspect or the third aspect as described above.
  • the codebook parameter transmission method described in the second aspect is used to cause the chip product to execute the first aspect or the third aspect as described above.
  • the terminal determines the codebook parameters under the multipoint joint coherent transmission mode and reports them based on the initial codebook parameter configuration information, realizing the hypothesis of the multipoint coordinated transmission scheme.
  • the joint codebook parameters are reported under the system, which improves the reliability of the system.
  • Figure 1 is one of the flow diagrams of a codebook parameter transmission method provided by an embodiment of the present disclosure
  • Figure 2 is a second schematic flowchart of a codebook parameter transmission method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • Figure 5 is one of the structural schematic diagrams of a codebook parameter transmission device provided by an embodiment of the present disclosure
  • Figure 6 is a second structural schematic diagram of a codebook parameter transmission device provided by an embodiment of the present disclosure.
  • the Type II codebook design mainly considers the two-level codebook design.
  • the first-level codebook W1 requires broadband feedback of spatial beam information
  • the second-level codebook W2 requires subband feedback of frequency domain information, including the spatial beam of each subband. linear merger coefficient.
  • For the first-level airspace beam information there are a total of 2N 1 N 2 O 1 O 2 candidate beams in the first-level codebook, N 1 N 2 represents the number of CSI-RS antenna ports in the vertical or horizontal direction, O 1 O 2 Represents the vertical or horizontal beam oversampling factor.
  • the spatial beam is fed back on PUSCH, with
  • the body ground parameters include i 1,1 and i 1,2 .
  • the specific feedback overhead bit width is shown in Table 1.
  • the base station determines the air domain decoding information based on the feedback overhead in Table 1.
  • the Rel-15TypeII codebook is defined. It is based on linear combination of beams within orthogonal beam groups and supports rank1 and rank2 codebooks. Since the Rel-15 codebook requires sub-band feedback for the combined coefficients, and the feedback of each sub-band includes both the sub-band phase coefficient and the sub-band amplitude coefficient, when the number of sub-bands is large, the feedback of the coefficients of all sub-bands is The feedback required is expensive.
  • the orthogonal combined beam contained in W1 is the same as the Type II codebook of Rel-15; represents the compressed coefficient, where p diff (i, j) represents the differential amplitude coefficient, q (i, j) represents the phase coefficient, and p ref represents the reference amplitude coefficient.
  • the strongest amplitude coefficient in is located in the first polarization direction (i.e. (the first L rows in ), then the reference amplitude coefficient is located in the second polarization direction, as shown in the above expression.
  • the strongest amplitude coefficient in is located in the second polarization direction (i.e. (the last L lines in )
  • the reference amplitude coefficient is located in the first polarization direction, which will not be described again here.
  • the differential amplitude coefficient, phase coefficient and reference amplitude coefficient all need to be fed back to the base station. At the same time, the terminal needs to report the location of the strongest amplitude coefficient.
  • the corresponding differential amplitude coefficient is defined as 1 and the phase coefficient is defined as 0. There is no need to report it.
  • each layer All compression coefficients do not need to be reported, but only the non-zero coefficients need to be reported.
  • the base station configures the upper limit of the number of non-zero coefficients reported by each layer to be K0. Since all compression coefficients are not reported, each layer needs to indicate the location of the corresponding reported non-zero coefficients.
  • Wf represents a compressed basis vector, which contains M basis vectors. The length of each vector is N 3 , and N 3 is determined by the number of CQI subbands configured in the system.
  • the reference amplitude coefficient is quantized to 4 bits, and its value is
  • the NR system supports a variety of MTRP multi-point coordinated transmission schemes, which can be divided into CJT schemes and NCJT schemes.
  • CJT schemes For PDSCH, Rel-16 standardized an NCJT scheme SDM1a, and Rel-17 standardized a multi-point cooperation scheme based on System Frame Number (SFN) transmission.
  • SFN System Frame Number
  • Rel-18 standardizes the CJT scheme that adds MTRP of less than or equal to 4 transmission points.
  • the base station needs to perform joint precoding transmission and coherent data transmission for multiple transmission points of multi-point cooperation.
  • the embodiments of the present disclosure mainly design joint codebooks for multiple transmission points in the CJT method, and the terminal can perform joint signaling based on the cooperation results of all transmission points.
  • Channel measurement and channel status reporting improve the reliability of the system.
  • Figure 1 is one of the flow diagrams of a codebook parameter transmission method provided by an embodiment of the disclosure.
  • an embodiment of the disclosure provides a codebook parameter transmission method, and the execution subject can be a terminal, such as a mobile phone, etc. .
  • the method includes:
  • Step 101 The terminal determines the initial codebook parameter configuration information.
  • Step 102 The terminal determines codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information.
  • Step 103 The terminal reports codebook parameters in the multipoint joint coherent transmission mode.
  • the initial codebook parameter configuration information may be predefined.
  • the initial codebook parameter configuration information is configured by the network device.
  • the network device sends initial codebook parameter configuration information to the terminal, and the terminal receives the initial codebook parameter configuration information sent by the network device.
  • the initial codebook parameter configuration information may include one or more of the following information:
  • the number of spatial beams may include one or more of the following:
  • a first index is used to indicate the number of multiple spatial domain beams.
  • the number of frequency domain basis vectors may include one or more of the following:
  • a second index is used to indicate the number of multiple frequency domain basis vectors.
  • the codebook parameters may include codebook parameter information (the codebook parameter itself) and/or the codebook parameter number (the number of codebook parameters).
  • Codebook parameters can include one or more of the following parameters:
  • CSI Channel State Information
  • the terminal determines the following codebook parameters based on initial codebook parameter configuration information predefined by the system or configured by the base station.
  • the terminal determines the number of airspace beams based on the initial codebook parameter configuration information predefined by the system or configured at the base station, and the terminal reports the number of multipoint joint airspace beams and/or airspace beam information based on the CJT assumption.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information, including:
  • the terminal determines the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the number X of single airspace beams.
  • the terminal can determine all airspace beam information for multipoint transmission in the following manner and report it to the base station.
  • the terminal determines the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the number of single airspace beams X, including:
  • the terminal determines the number of each airspace beam in the plurality of airspace beams, and the number of each airspace beam is X.
  • Li is the number of airspace beams of the i-th transmission point/transmission point group
  • I is the number of all transmission points/transmission point groups in multi-point cooperation.
  • the terminal determines the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the number of single airspace beams X, including:
  • the terminal determines the number of each airspace beam in the plurality of airspace beams.
  • the number of each airspace beam is X/I, and I is the number of multiple airspace beams.
  • Li is the number of airspace beams of the i-th transmission point/transmission point group
  • I is the number of all transmission points/transmission point groups in multi-point cooperation.
  • the terminal determines the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the number of single airspace beams X, including:
  • the terminal determines the number of i-th airspace beams, and the number of i-th airspace beams is Li, I is the number of multiple airspace beams.
  • the terminal obtains the airspace beam number configuration information in, Among them, Li is the number of airspace beams of the i-th transmission point/transmission point group, and I is the number of all transmission points/transmission point groups in multi-point cooperation.
  • the terminal can add and report the airspace beam allocation results of all transmission points/transmission point groups in field 1 in the PMI report.
  • the terminal can add and report the airspace beam allocation results of all transmission points/transmission point groups in part 1 of the CSI report.
  • the terminal determines the number of i-th airspace beams, including:
  • the terminal determines the number of i-th airspace beams based on the i-th channel estimation information.
  • the terminal is based on the channel estimation from different transmission points to the terminal, and uses the highest Reference Signal Receiving Power (RSRP) of the transmission point as the highest cyclic dynamic selection of the number of airspace beams.
  • RSRP Reference Signal Receiving Power
  • the value range of the number of airspace beams for each transmission point is: 0 ⁇ L i ⁇ X.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information, including:
  • the terminal determines the airspace configuration information of all transmission points/transmission point groups based on multiple pieces of airspace beam configuration information, and reports the airspace recommended beams of all transmission points/transmission point groups.
  • I is the number of all transmission points/transmission point groups reported in multi-point cooperation
  • J is the number of multiple airspace beams included in the airspace beam configuration information, J ⁇ I.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information, including:
  • the terminal determines the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the first index; the first index is used to indicate the number of multiple airspace beams.
  • the terminal jointly determines all transmission points/transmission points based on a single airspace beam configuration information and additional combined indication information of airspace configuration information of all transmission points/transmission point groups. Enter the airspace configuration information of the point group, and report the recommended airspace beams of all transmission points/transmission point groups.
  • additional combined indication information of the airspace configuration information of all transmission points/transmission point groups can be configured in a predefined manner, high-level signaling and dynamic downlink control information (Downlink Control Information, DCI) indication signaling.
  • DCI Downlink Control Information
  • the terminal can determine multiple candidate Lj allocation methods through additional combination indication information, and recommend reporting an additional combination information i 1,3 of the airspace configuration information of all transmission points/transmission point groups based on the current measurement number i.
  • the terminal can add additional combination information i 1,3 for reporting airspace configuration information of all transmission points/transmission point groups in field 1 in the PMI report.
  • the terminal can add an additional combination result of reporting airspace configuration information of all transmission points/transmission point groups in part 1 of the CSI report.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information, including:
  • the terminal determines the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on the number Y of single frequency domain basis vectors.
  • the terminal determines the number of frequency domain basis vectors (beams) based on the initial codebook parameter configuration information predefined by the system or configured at the base station, and the terminal reports the number of multipoint joint frequency domain basis vectors (beams) and/or frequency based on the CJT assumption. Domain basis vector (beam) information.
  • the reported frequency domain basis vector information can be reported individually for each data transmission layer, or can be reported jointly and uniformly for all data transmission layers.
  • the terminal can determine all frequency domain basis vector information for multipoint transmission in the following manner and report it to the base station.
  • the terminal determines the frequency domain basis vector configuration factors of all transmission points/transmission point groups based on the single frequency domain basis vector configuration information, and reports the frequency domain basis vector recommendation information of all transmission points/transmission point groups.
  • the terminal determines the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on a single frequency domain basis vector number Y, including:
  • the terminal determines the number of each frequency domain basis vector among the multiple frequency domain basis vectors.
  • the number of each frequency domain basis vector is Y*N3/R.
  • N3 is the current precoding indication PMI subband size, and R is the subband factor. .
  • Mi is the number of frequency domain basis vectors of the i-th transmission point/transmission point group
  • I is the number of all transmission points/transmission point groups in multipoint cooperation
  • N3 is the current PMI subband size
  • R is the subband factor.
  • the terminal determines the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on a single frequency domain basis vector number Y, including:
  • the terminal determines the number of each frequency domain basis vector among the multiple frequency domain basis vectors.
  • the number of each frequency domain basis vector is (Y*N3)/(R*I).
  • N3 is the current PMI subband size, and R is The subband factor, I is the number of multiple frequency domain basis vectors.
  • Mi is the number of frequency domain basis vectors of the i-th transmission point/transmission point group
  • I is the number of all transmission points/transmission point groups in multipoint cooperation
  • N3 is the current PMI subband size
  • R is the subband factor.
  • the terminal determines the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on a single frequency domain basis vector number Y, including:
  • the terminal determines the number of i-th frequency domain basis vectors, and the number of i-th frequency domain basis vectors is Mi, I is the number of multiple frequency domain basis vectors.
  • the terminal obtains the frequency domain basis vector number configuration factor Y based on a single frequency domain basis vector configuration information, and determines the frequency domain basis vector number M 1 , M 2 ,..., Mi for each transmission point/transmission point group by itself, ..., M I .
  • Mi is the number of frequency domain basis vectors of the i-th transmission point/transmission point group
  • I is the number of all transmission points/transmission point groups in multipoint cooperation
  • N3 is the current PMI subband size
  • R is the subband factor.
  • the terminal can add and report the frequency domain recommended basis vector allocation results of all transmission points/transmission point groups in field 1 in the PMI report.
  • the terminal can add and report the frequency domain recommended basis vector number allocation results of all transmission points/transmission point groups in part 1 of the CSI report.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information, including:
  • the terminal determines the frequency domain recommended basis vector configuration factors of all transmission points/transmission point groups based on multiple frequency domain basis vector configuration information, and reports the frequency domain recommended basis vectors of all transmission points/transmission point groups.
  • the terminal obtains frequency domain recommended basis vector configuration information Y 1 , Y 2 , ...., Y i , ...., Y J based on multiple frequency domain basis vector configuration information, and determines the transmission point of each transmission point/transmission point group.
  • I is the number of all transmission points/transmission point groups reported in multi-point cooperation
  • J is the number of multiple frequency domain basis vectors included in the frequency domain basis vector configuration information, J ⁇ I.
  • the initial codebook parameter configuration information is the number of basis vectors in the frequency domain.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information, including:
  • the terminal determines the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on the second index; the second index is used to indicate the number of multiple frequency domain basis vectors. .
  • the terminal jointly determines the frequency domain basis vector configuration information of all transmission points/transmission point groups based on a single frequency domain basis vector configuration information and additional combination indication information of the frequency domain basis vector configuration information of all transmission points/transmission point groups, And report the frequency domain recommended basis vectors of all transmission points/transmission point groups.
  • additional combined indication information of frequency domain basis vector information of all transmission points/transmission point groups can be configured in a predefined manner, high-layer signaling and dynamic DCI indication signaling.
  • the terminal can determine multiple candidate Mj allocation methods through additional combination indication information, and recommend reporting an additional combination information i 1,3 of the frequency domain configuration information of all transmission points/transmission point groups based on the current measurement number i.
  • the terminal can add additional combination information i 1,8 for reporting the frequency domain basis vector information of all transmission points/transmission point groups in field 1 in the PMI report.
  • the terminal can add an additional combination result of reporting the frequency domain configuration information of all transmission points/transmission point groups in part 1 of the CSI report.
  • the terminal reports codebook parameters in the multipoint joint coherent transmission mode, including:
  • the terminal reports a frequency domain basis vector
  • the terminal reports multiple frequency domain basis vectors.
  • the terminal can report joint frequency domain basis vector recommendation information based on all transmission points, and all transmission points correspond to one frequency domain basis vector.
  • the terminal reports the frequency domain basis vector recommendation information of each transmission point separately.
  • the input point corresponds to a frequency domain basis vector.
  • the terminal takes a transmission point group as a unit, the terminal reports joint frequency domain basis vector recommendation information of the transmission point group respectively, and all transmission points in the group can report one joint frequency domain basis vector recommendation information.
  • the terminal can also report the offset value i 1,8 of the frequency domain basis vectors of different transmission points/transmission point groups.
  • the terminal determines the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information. ,include:
  • the terminal determines a plurality of non-zero coefficient numbers in a multipoint joint coherent transmission mode based on the non-zero coefficient number indication.
  • the terminal can report based on Multi-point joint strongest coefficient index under CJT assumption.
  • the terminal reports codebook parameters in the multipoint joint coherent transmission mode, including:
  • the terminal reports multiple non-zero coefficients and multiple strongest coefficient indices; or,
  • the terminal reports multiple non-zero coefficients and reports a strongest coefficient index.
  • the reported frequency domain basis vector information can be reported separately for each data transmission layer, or can be reported jointly for all data transmission layers.
  • the terminal reports the recommended non-zero coefficient for each transmission point based on the non-zero coefficient quantity indication, and reports the strongest coefficient index (Strongest Coefficient Index, SCI) of each transmission point among the non-zero coefficients within each transmission point. .
  • SCI Shortest Coefficient Index
  • the terminal reports the recommended non-zero coefficients of each transmission point group based on the non-zero coefficient number indication, and reports the SCI of each transmission point group in the non-zero coefficients of each transmission point group. For each transmission point group within the transmission point group, jointly report non-zero coefficients between transmission points and report a SCI.
  • the terminal reports the recommended non-zero coefficient of each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point among the non-zero coefficients in each transmission point.
  • the first transmission point is multiple transmission points. one of the transmission points.
  • the terminal reports the recommended non-zero coefficient for each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point in the first transmission point group in the non-zero coefficient of each transmission point group.
  • the transmission point group is one of the plurality of transmission point groups, and the first transmission point is one of the transmission points in the first transmission point group.
  • each transmission point jointly reports non-zero coefficients.
  • the method further includes:
  • the terminal performs differential quantization on non-zero coefficients.
  • the terminal performs differential quantization on all non-zero coefficients based on the determined non-zero coefficients and based on the following quantization scheme.
  • each transmission point/transmission point group there are 2*Li*Mi (spatial domain Li, frequency domain Mi) non-zero coefficients for each transmission point/transmission point group.
  • i*Li*Mi-1 non-zero coefficients are quantized based on the differential quantization of the polarization direction of the SCI of the first transmission point of each layer, and then the other polarization direction is quantized for the first polarization direction. Differential quantization of Li*Mi non-zero coefficients.
  • each transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point group. All transmission points are quantized i*Li*Mi-1 non-zero coefficients based on the differential quantization of the polarization direction of the first transmission point in the first transmission point group of each layer, and then the other polarization direction is quantized. Li*Mi non-zero coefficients are differentially quantized for the first polarization direction.
  • the above solution will perform joint difference for all layers, that is, 2*Li*Mi non-zero coefficients.
  • the terminal determines the codebook parameters under the multipoint joint coherent transmission mode and reports them based on the initial codebook parameter configuration information, thereby realizing the joint codebook under the assumption of multipoint coordinated transmission scheme. Parameter reporting improves system reliability.
  • FIG. 2 is a second flow diagram of a codebook parameter transmission method provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a codebook parameter transmission method, and the execution subject may be a network device, such as a base station. wait.
  • the method includes:
  • Step 201 The network device receives the codebook parameters reported by the terminal;
  • Step 202 The network device parses the codebook parameters based on the initial codebook parameter configuration information.
  • the initial codebook parameter configuration information is predefined or configured by the network device.
  • the initial codebook parameter configuration information includes one or more of the following information:
  • the number of spatial beams includes one or more of the following:
  • a first index is used to indicate the number of multiple spatial domain beams.
  • the number of frequency domain basis vectors includes one or more of the following:
  • a second index is used to indicate the number of multiple frequency domain basis vectors.
  • the network device parses the codebook parameters based on initial codebook parameter configuration information, including:
  • the network device determines the bit width of each codebook parameter based on the initial codebook parameter configuration information
  • the codebook parameters are parsed based on the bit width.
  • the base station instructs the terminal to initial codebook parameter configuration information, receives the codebook parameters reported by the terminal (this embodiment of the disclosure takes CSI information as an example), and decodes the CSI information based on information reported by the terminal and/or predefined by the system.
  • the base station side determines the information bits to decode the spatial beam information.
  • the base station decodes the CSI information based on the single reported information (TRP-common) and information bits, and determines the recommended airspace beams for all transmission points/transmission point groups.
  • the base station decodes the CSI information based on the single reported information (TRP-common) and the information bits in Table 2, and determines that the number of airspace recommended beams for all transmission points/transmission point groups is the same and consistent with the configured number, and based on all transmission
  • the number of recommended airspace beams for a point/transmission point group determines the recommended airspace beam for each transmission point/transmission point group.
  • the base station decodes the CSI information based on the single reported information (TRP-common) and the information bits in Table 3, and determines that the number of recommended airspace beams for all transmission points/transmission point groups is the same, and the total sum is consistent with the configured number, and The recommended airspace beams for each transmission point/transmission point group are determined based on the number of airspace recommended beams for all transmission points/transmission point groups.
  • the base station decodes the CSI information based on a single reported information (TRP-common) and information bits, and first determines the recommended number of airspace beams for all transmission points/transmission point groups based on the allocation results reported by the terminal, and the sum of all is equal to The number of configurations is the same.
  • i is the number of all transmission points/transmission point groups in multipoint cooperation, and based on all transmission
  • the number of recommended airspace beams for a point/transmission point group determines the recommended airspace beam for each transmission point/transmission point group.
  • the terminal can add and report the airspace beam allocation results of all transmission points/transmission point groups in field 1 in the PMI report, as shown in Table 4.
  • the terminal can add and report the airspace beam allocation results of all transmission points/transmission point groups in part 1 of the CSI report, as shown in Table 5.
  • the base station decodes CSI information based on multiple pieces of reported information (TRP specific) and information bits in Table 6, and determines airspace recommended beam information for all transmission points/transmission point groups.
  • the terminal obtains the airspace beam number configuration information X1, X2... .
  • i is the number of all transmission points/transmission point groups reported in multipoint cooperation
  • the airspace recommended beams for each transmission point/transmission point group are determined based on the number of airspace recommended beams of all transmission points/transmission point groups.
  • the base station configures the base station according to a single configuration information, and additional transmission point groups
  • the combined allocation configuration jointly determines the information bits to decode the CSI information, and determines the number of airspace recommended beams for all transmission points/transmission point groups, and determines the number of airspace recommended beams for each transmission point/transmission point group based on the number of airspace recommended beams for all transmission points/transmission point groups. Airspace recommended beams.
  • additional combined indication information of the airspace configuration information of all transmission points/transmission point groups can be configured in a predefined manner, high-layer signaling and dynamic DCI indication signaling.
  • the terminal can determine multiple candidate Lj allocation methods through additional combination indication information, and recommend reporting an additional combination information i 1,3 of the airspace configuration information of all transmission points/transmission point groups based on the current measurement number i.
  • the terminal can add additional combination information i 1,3 for reporting airspace configuration information of all transmission points/transmission point groups in field 1 in the PMI report, as shown in Table 7.
  • the terminal can add additional combination results of reporting the airspace configuration information of all transmission points/transmission point groups in part 1 of the CSI report, as shown in Table 8.
  • the base station side determines the information bits to decode the frequency domain beam information.
  • the base station decodes the CSI information based on the single reported information (TRP-common) and information bits, and determines the frequency domain recommended basis vectors of all transmission points/transmission point groups.
  • the base station decodes the CSI information based on the single reported information (TRP-common) and information bits, and determines the number of recommended frequency domain basis vectors for all transmission points/transmission point groups.
  • TRP-common single reported information
  • the frequency domain recommended basis vector of each transmission point/transmission point group is determined based on the number of frequency domain recommended basis vectors of all transmission points/transmission point groups.
  • the terminal reports the configuration or predefined information of the base station separately for each data transmission layer, as shown in Table 9.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 10.
  • the base station decodes the CSI information based on the single reported information (TRP-common) and information bits, and determines that the number of frequency domain recommended basis vectors of all transmission points/transmission point groups is the same, and the total sum is consistent with the configured number, and The frequency domain recommended basis vector of each transmission point/transmission point group is determined according to the number of frequency domain recommended basis vectors of all transmission points/transmission point groups.
  • the configuration or predefined information of the base station, if the terminal reports it separately for each data transmission layer, is shown in Table 11.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 12.
  • the base station decodes the CSI information based on a single reported information (TRP-common) and information bits, and first determines the number of recommended frequency domain basis vectors for all transmission points/transmission point groups based on the allocation results reported by the terminal, and all The number is consistent with the configured number.
  • i is the number of all transmission points/transmission point groups in multipoint cooperation
  • the frequency domain recommended basis vector of each transmission point/transmission point group is determined based on the number of frequency domain recommended basis vectors of all transmission points/transmission point groups.
  • the terminal can add and report the frequency domain basis vector allocation results of all transmission points/transmission point groups in field 1 in the PMI report.
  • the terminal reports the configuration or predefined information of the base station separately for each data transmission layer, as shown in Table 13.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 14.
  • the terminal can add and report the frequency domain basis vector allocation results of all transmission points/transmission point groups in part 1 of the CSI report, as shown in Table 15.
  • the base station decodes the CSI information based on multiple pieces of reported information (TRP specific) and information bits, and determines the frequency domain recommended basis vector information of all transmission points/transmission point groups.
  • i is the number of all transmission points/transmission point groups reported in multipoint cooperation
  • the frequency domain recommended basis vector of each transmission point/transmission point group is determined based on the number of frequency domain recommended basis vectors of all transmission points/transmission point groups.
  • the terminal reports the configuration or predefined information of the base station separately for each data transmission layer, as shown in Table 16.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 17.
  • the base station jointly determines the information bit decoding CSI information based on the single configuration information and the additional transmission point combination allocation configuration, and determines the number of recommended frequency domain basis vectors for all transmission points/transmission point groups, and determines the number of recommended basis vectors in the frequency domain based on all transmission points/transmission point groups.
  • the number of frequency domain recommended basis vectors of the point group determines the frequency domain recommended basis vector of each transmission point/transmission point group.
  • additional combined indication information of frequency domain configuration information of all transmission points/transmission point groups can be configured in a predefined manner, high-layer signaling and dynamic DCI indication signaling.
  • the terminal can determine multiple candidate Lj allocation methods through additional combination indication information, and recommend and report a frequency domain of all transmission points/transmission point groups based on the current measurement number i Additional combination information i 1,3 of the configuration information.
  • the terminal can add additional combination information i 1,8 for reporting frequency domain configuration information of all transmission points/transmission point groups in field 1 in the PMI report.
  • the terminal reports the configuration or predefined information of the base station separately for each data transmission layer, as shown in Table 18.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 19.
  • the terminal can add an additional combination result of reporting the frequency domain configuration information of all transmission points/transmission point groups in part 1 of the CSI report, as shown in Table 20.
  • Method 1 Configure the number i of all transmission points/transmission point groups that can be reported by CSI based on high-layer signaling or a predefined method.
  • Method 2 Implicitly determine the number i of all transmission points/transmission point groups that can be reported by CSI based on the number of CSI resources or port groups.
  • Method 3 Based on the maximum number of all transmission points/transmission point groups j configured by the base station, the terminal automatically calculates the number i of all transmission points/transmission point groups reported by the current CSI.
  • Method 1 The O 1 O 2 blocks are selected uniformly, and the L beams within the block are selected separately.
  • Method 2 The O 1 O 2 block and the L beams within the block are selected separately.
  • the network device determines the codebook parameters under the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information and receives them, thereby realizing the joint code under the assumption of the multipoint coordinated transmission scheme. Reporting this parameter improves the reliability of the system.
  • Step1 The terminal receives the CSI codebook configuration parameters. Specifically, the base station may indicate it to the terminal through system predefinition or high-level signaling.
  • a high-level signaling method can be configured through a combination of the number of single airspace beams, the airspace beam number configuration factor Y, and the non-zero coefficient number factor.
  • a high-level signaling method can be configured individually through each of the above parameters.
  • Step 2 The terminal obtains a single airspace beam number indication, and determines to obtain the airspace beam number configuration information .
  • i is the number of all transmission points/transmission point groups in multipoint cooperation.
  • Method 1 Configure the number i of all transmission points/transmission point groups that can be reported by CSI based on high-layer signaling or a predefined method.
  • Method 2 Implicitly determine the number i of all transmission points/transmission point groups that can be reported by CSI based on the number of CSI resources or port groups.
  • Method 3 Based on the maximum number of all transmission points/transmission point groups j configured by the base station, the terminal automatically calculates the number i of all transmission points/transmission point groups reported by the current CSI.
  • Step 4 The terminal reports i airspace beam information, and the base station determines the overhead bit width of each airspace beam and determines the overhead bit width of all transmission points/transmission point groups.
  • Method 1 The O 1 O 2 block and the L beams within the block are selected separately, as shown in Table 21.
  • Method 2 All transmission points/groups report an O 1 O 2 block, and L beams within the block are selected separately, as shown in Table 22.
  • Step5-1 The terminal reports i frequency domain basis vector information, and the base station determines the overhead bit width of each air domain beam and determines the overhead bit width of all transmission points/transmission point groups.
  • the configuration or predefined information of the base station, if the terminal reports it separately for each data transmission layer, is shown in Table 23.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 24.
  • Step5-2 The terminal reports a joint frequency domain basis vector information.
  • the base station determines the overhead bit width of each air domain beam according to Table 25, and determines the overhead bit width of all transmission points/transmission point groups.
  • the terminal reports the configuration or predefined information of the base station separately for each data transmission layer, as shown in Table 25.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 26.
  • the terminal can also report the offset value i 1,8 of the frequency domain basis vectors of different transmission points/transmission point groups.
  • Step 6 According to the non-zero coefficient number indication in the initial codebook parameter configuration information predefined by the system or configured at the base station, and the determined frequency domain basis vector information of all transmission points/transmission point groups, the terminal can report based on Multi-point joint strongest coefficient index under CJT assumption.
  • the reported frequency domain basis vector information can be reported separately for each data transmission layer, or can be reported jointly for all data transmission layers.
  • Step6-1 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of each transmission point among the non-zero coefficients within each transmission point.
  • Step6-2 The terminal reports the recommended non-zero coefficients of each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of each transmission point group in the non-zero coefficients of each transmission point group. , each transmission point jointly reports non-zero coefficients and reports A SCI.
  • Step 6-3 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point among the non-zero coefficients in each transmission point.
  • Step6-4 The terminal reports the recommended non-zero coefficient for each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point in the first transmission point group in the non-zero coefficient of each transmission point group. For the transmission point group, each transmission point jointly reports non-zero coefficients.
  • Step7 The terminal performs differential quantization on all non-zero coefficients based on the determined non-zero coefficients and based on the following quantization scheme:
  • each transmission point/transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point/transmission point group.
  • the differential quantization Li*Mi-1 non-zero coefficients of the polarization direction of the SCI of each layer are performed, and then the other polarization direction is performed for the first polarization direction.
  • Differential quantization Li*Mi non-zero coefficients are performed according to each transmission point/transmission point group.
  • i*Li*Mi-1 non-zero coefficients are quantized based on the differential quantization of the polarization direction of the SCI of the first transmission point of each layer, and then the other polarization direction is quantized for the first polarization direction. Differential quantization of Li*Mi non-zero coefficients.
  • each transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point group. All transmission points are quantized i*Li*Mi-1 non-zero coefficients based on the differential quantization of the polarization direction of the first transmission point in the first transmission point group of each layer, and then the other polarization direction is quantized. Li*Mi non-zero coefficients are differentially quantized for the first polarization direction.
  • the above solution will perform joint difference for all layers, that is, 2*Li*Mi non-zero coefficients.
  • Step1 The terminal receives the CSI codebook configuration parameters. Specifically, the base station may indicate it to the terminal through system predefinition or high-level signaling.
  • a high-level signaling method can be configured through a combination of the total number of beams in a single airspace, compressed basis vector factors, and non-zero coefficient number factors.
  • a high-level signaling method can be configured individually through the total number of airspace beams.
  • i is the number of all transmission points/transmission point groups in multipoint cooperation.
  • Method 1 Configure the number i of all transmission points/transmission point groups that can be reported by CSI based on high-layer signaling or a predefined method.
  • Method 2 Implicitly determine the number i of all transmission points/transmission point groups that can be reported by CSI based on the number of CSI resources or port groups.
  • Method 3 Based on the maximum number of all transmission points/transmission point groups j configured by the base station, the terminal automatically calculates the number of all transmission points/transmission point groups reported by the current CSI i
  • Step 4 The terminal reports i airspace beam information, and the base station confirms the overhead bit width of each airspace beam according to Table 27, and determines the overhead bit width of all transmission points/transmission point groups.
  • Method 1 The O 1 O 2 block and the L beams within the block are selected separately, as shown in Table 27.
  • Method 2 All transmission points/groups report an O 1 O 2 block, and the L beams within the block are selected separately, as shown in Table 28.
  • Step5-1 The terminal reports i frequency domain basis vector information.
  • the base station determines the overhead bit width of each air domain beam according to Table 29, and determines the overhead bit width of all transmission points/transmission point groups.
  • the configuration or predefined information of the base station, if the terminal reports it separately for each data transmission layer, is shown in Table 29.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 30.
  • Step5-2 The terminal reports a joint frequency domain basis vector information.
  • the base station confirms the overhead bit width of each frequency domain parameter according to Table 31, and determines the overhead bit width of all transmission points/transmission point groups.
  • the terminal reports the configuration or predefined information of the base station separately for each data transmission layer, as shown in Table 31.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 32.
  • the terminal can also report the offset value i 1,8 of the frequency domain basis vectors of different transmission points/transmission point groups.
  • Step 6 According to the non-zero coefficient number indication in the initial codebook parameter configuration information predefined by the system or configured at the base station, and the determined frequency domain basis vector information of all transmission points/transmission point groups, the terminal can report based on Multi-point joint strongest coefficient index under CJT assumption.
  • the reported frequency domain basis vector information can be reported separately for each data transmission layer, or can be reported jointly for all data transmission layers.
  • Step6-1 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of each transmission point among the non-zero coefficients within each transmission point.
  • Step6-2 The terminal reports the recommended non-zero coefficients of each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of each transmission point group in the non-zero coefficients of each transmission point group. , each transmission point jointly reports non-zero coefficients and reports an SCI.
  • Step6-3 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point among the non-zero coefficients in each transmission point.
  • Step6-4 The terminal reports the recommended non-zero coefficient for each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point in the first transmission point group in the non-zero coefficient of each transmission point group. For the transmission point group, each transmission point jointly reports non-zero coefficients.
  • Step7 The terminal performs differential quantization on all non-zero coefficients based on the determined non-zero coefficients and based on the following quantization scheme:
  • each transmission point/transmission point group there are 2*Li*Mi non-zeros for each transmission point/transmission point group coefficient.
  • the differential quantization Li*Mi-1 non-zero coefficients of the polarization direction of the SCI of each layer are performed, and then the other polarization direction is performed for the first polarization direction.
  • Differential quantization Li*Mi non-zero coefficients are performed according to each transmission point/transmission point group.
  • i*Li*Mi-1 non-zero coefficients are quantized based on the differential quantization of the polarization direction of the SCI of the first transmission point of each layer, and then the other polarization direction is quantized for the first polarization direction. Differential quantization of Li*Mi non-zero coefficients.
  • each transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point group. All transmission points are quantized i*Li*Mi-1 non-zero coefficients based on the differential quantization of the polarization direction of the first transmission point in the first transmission point group of each layer, and then the other polarization direction is quantized. Li*Mi non-zero coefficients are differentially quantized for the first polarization direction.
  • the above solution will perform joint difference for all layers, that is, 2*Li*Mi non-zero coefficients.
  • Step1 The terminal receives the CSI codebook configuration parameters. Specifically, the base station may indicate it to the terminal through system predefinition or high-level signaling.
  • a high-level signaling method can be configured through a combination of the total number of beams in a single airspace, compressed basis vector factors, and non-zero coefficient number factors.
  • a high-level signaling method can be configured individually through the total number of airspace beams.
  • Method 1 Configure the number i of all transmission points/transmission point groups that can be reported by CSI based on high-layer signaling or a predefined method.
  • Method 2 Implicitly determine the number i of all transmission points/transmission point groups that can be reported by CSI based on the number of CSI resources or port groups.
  • Method 3 Based on the maximum number of all transmission points/transmission point groups j configured by the base station, the terminal automatically calculates the number of all transmission points/transmission point groups reported by the current CSI i
  • Step 3 The terminal reports i airspace beam information, and the base station confirms the overhead bit width of each airspace beam according to Table 33, and determines the overhead bit width of all transmission points/transmission point groups.
  • the terminal can add and report the airspace beam allocation results of all transmission points/transmission point groups in field 1 in the PMI report.
  • all transmission points/groups report an O 1 O 2 block, and L beams within the block are selected separately, as shown in Table 33.
  • the terminal can add and report the airspace beam allocation results of all transmission points/transmission point groups in field 1 in the PMI report.
  • all transmission points/groups report O 1 O 2 blocks respectively, and L beams within the blocks are selected separately, as shown in Table 34.
  • the terminal can add and report the airspace beam allocation results of all transmission points/transmission point groups in part 1 of the CSI report, as shown in Table 35.
  • the terminal can add and report the frequency domain recommended basis vector allocation results of all transmission points/transmission point groups in field 1 in the PMI report.
  • the terminal can add and report the frequency domain recommended basis vector number allocation results of all transmission points/transmission point groups in part 1 of the CSI report.
  • the terminal can also report the offset value i 1,8 of the frequency domain basis vectors of different transmission points/transmission point groups.
  • Step 6 According to the non-zero coefficient number indication in the initial codebook parameter configuration information predefined by the system or configured at the base station, and the determined frequency domain basis vector information of all transmission points/transmission point groups, the terminal can report based on Multi-point joint strongest coefficient index under CJT assumption.
  • the reported frequency domain basis vector information can be reported separately for each data transmission layer, or can be reported jointly for all data transmission layers.
  • Step6-1 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of each transmission point among the non-zero coefficients within each transmission point.
  • Step6-2 The terminal reports the recommended non-zero coefficients of each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of each transmission point group in the non-zero coefficients of each transmission point group. , each transmission point jointly reports non-zero coefficients and reports an SCI.
  • Step6-3 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point among the non-zero coefficients in each transmission point.
  • Step6-4 The terminal reports the recommended non-zero coefficient for each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point in the first transmission point group in the non-zero coefficient of each transmission point group. For the transmission point group, each transmission point jointly reports non-zero coefficients.
  • Step7 The terminal performs differential quantization on all non-zero coefficients based on the determined non-zero coefficients and based on the following quantization scheme:
  • each transmission point/transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point/transmission point group.
  • the differential quantization Li*Mi-1 non-zero coefficients of the polarization direction of the SCI of each layer are performed, and then the other polarization direction is performed for the first polarization direction.
  • Differential quantization Li*Mi non-zero coefficients are performed according to each transmission point/transmission point group.
  • i*Li*Mi-1 non-zero coefficients are quantized based on the differential quantization of the polarization direction of the SCI of the first transmission point of each layer, and then the other polarization direction is quantized for the first polarization direction. Differential quantization of Li*Mi non-zero coefficients.
  • each transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point group. All transmission points are quantized i*Li*Mi-1 non-zero coefficients based on the differential quantization of the polarization direction of the first transmission point in the first transmission point group of each layer, and then the other polarization direction is quantized. Li*Mi non-zero coefficients are differentially quantized for the first polarization direction.
  • Step1 The terminal receives the CSI codebook configuration parameters. Specifically, the base station may indicate it to the terminal through system predefinition or high-level signaling.
  • a high-level signaling method can be configured through a combination of multiple airspace beam numbers, compression basis vector factors, and non-zero coefficient number factors.
  • a high-level signaling method can be individually configured through multiple airspace beam numbers.
  • multiple codebook configuration parameters respectively correspond to multiple transmission points/transmission point groups.
  • i is the number of all transmission points/transmission point groups in multipoint cooperation.
  • Step 3 The terminal determines the frequency domain recommended basis vector configuration factors of all transmission points/transmission point groups based on multiple frequency domain basis vector configuration information, and reports the frequency domain recommended basis vectors of all transmission points/transmission point groups.
  • Method 1 Configure the number i of all transmission points/transmission point groups that can be reported by CSI based on high-layer signaling or a predefined method.
  • Method 2 Implicitly determine the number i of all transmission points/transmission point groups that can be reported by CSI based on the number of CSI resources or port groups.
  • Method 3 Based on the maximum number of all transmission points/transmission point groups j configured by the base station, the terminal automatically calculates the number of all transmission points/transmission point groups reported by the current CSI i
  • Step 4 The terminal reports i airspace beam information, and the base station determines the overhead bit width of each airspace beam according to Table 36, and determines the overhead bit width of all transmission points/transmission point groups.
  • Method 1 The O 1 O 2 block and the L beams within the block are selected separately, as shown in Table 36.
  • Method 2 All transmission points/groups report an O 1 O 2 block, and the L beams within the block are selected separately, as shown in Table 37.
  • Step 5 The terminal reports i frequency domain beam information, and the base station determines the overhead bit width of each frequency domain beam according to Table 38, and determines the overhead bit width of all transmission points/transmission point groups.
  • the configuration or predefined information of the base station, if the terminal reports it separately for each data transmission layer, is shown in Table 38.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 39.
  • the terminal can add and report the frequency domain recommended basis vector allocation results of all transmission points/transmission point groups in field 1 in the PMI report.
  • the terminal can add and report the frequency domain recommended basis vector number allocation results of all transmission points/transmission point groups in part 1 of the CSI report.
  • the terminal can also report the offset value i 1,8 of the frequency domain basis vectors of different transmission points/transmission point groups.
  • Step 6 According to the non-zero coefficient number indication in the initial codebook parameter configuration information predefined by the system or configured at the base station, and the determined frequency domain basis vector information of all transmission points/transmission point groups, the terminal can report based on Multi-point joint strongest coefficient index under CJT assumption.
  • the reported frequency domain basis vector information can be reported separately for each data transmission layer, or can be reported jointly for all data transmission layers.
  • Step6-1 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of each transmission point among the non-zero coefficients within each transmission point.
  • Step6-2 The terminal reports the recommended non-zero coefficients of each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of each transmission point group in the non-zero coefficients of each transmission point group. , each transmission point jointly reports non-zero coefficients and reports an SCI.
  • Step6-3 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point among the non-zero coefficients in each transmission point.
  • Step6-4 The terminal reports the recommended non-zero coefficient for each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point in the first transmission point group in the non-zero coefficient of each transmission point group. For the transmission point group, each transmission point jointly reports non-zero coefficients.
  • Step7 The terminal performs differential quantization on all non-zero coefficients based on the determined non-zero coefficients and based on the following quantization scheme:
  • each transmission point/transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point/transmission point group.
  • the differential quantization Li*Mi-1 non-zero coefficients of the polarization direction of the SCI of each layer are performed, and then the other polarization direction is performed for the first polarization direction.
  • Differential quantization Li*Mi non-zero coefficients are performed according to each transmission point/transmission point group.
  • each transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point group. All transmission points are quantized i*Li*Mi-1 non-zero coefficients based on the differential quantization of the polarization direction of the first transmission point in the first transmission point group of each layer, and then the other polarization direction is quantized. Li*Mi non-zero coefficients are differentially quantized for the first polarization direction.
  • Step1 The terminal receives the CSI codebook configuration parameters. Specifically, the base station may indicate it to the terminal through system predefinition or high-level signaling.
  • a high-level signaling method can be configured through a combination of multiple airspace beam numbers, compression basis vector factors, and non-zero coefficient number factors.
  • a high-level signaling method can be individually combined and configured in the signaling through the number of multiple airspace beams, including but not limited to those shown in Table 40.
  • a high-level signaling method can be configured in the signaling through a separate combination of multiple frequency domain basis vector factors, including but not limited to those shown in Table 41.
  • a high-level signaling method can be configured in the signaling through a joint combination of multiple spatial domain beams/frequency domain basis vector factors, including but not limited to those shown in Table 42.
  • Step 2 The terminal obtains the combined beam indication, and determines an optimal airspace beam number configuration based on the combined airspace beam configuration information, such as configuration 4 in Table 42, and determines the number of airspace beams for each transmission point/transmission point group 2.
  • i is the number of all transmission points/transmission point groups in multipoint cooperation
  • the optimal configuration in the selection table 42 also implicitly selects the recommended number of transmission points i.
  • Method 1 Configure the number i of all transmission points/transmission point groups that can be reported by CSI based on high-layer signaling or a predefined method.
  • Method 2 Implicitly determine the number i of all transmission points/transmission point groups that can be reported by CSI based on the number of CSI resources or port groups.
  • Method 3 Based on the maximum number of all transmission points/transmission point groups j configured by the base station, the terminal automatically calculates the number of all transmission points/transmission point groups reported by the current CSI i
  • Step 3 The terminal reports i airspace beam information, and the base station confirms the overhead bit width of each airspace beam according to Table 43, and determines the overhead bit width of all transmission points/transmission point groups.
  • the terminal can add an additional combination of reporting airspace configuration information of all transmission points/transmission point groups in field1 in the PMI report.
  • the terminal can add additional combination results of reporting the airspace configuration information of all transmission points/transmission point groups in part1 of the CSI report, as shown in Table 44.
  • additional combined indication information of frequency domain configuration information of all transmission points/transmission point groups can be configured in a predefined manner, high-layer signaling and dynamic DCI indication signaling.
  • the terminal can determine multiple candidate Lj allocation methods through additional combination indication information, and recommend reporting an additional combination information i1,3 of the frequency domain configuration information of all transmission points/transmission point groups based on the current measurement number i.
  • the terminal can add additional combination information i 1,8 for reporting frequency domain configuration information of all transmission points/transmission point groups in field 1 in the PMI report.
  • the configuration or predefined information of the base station, if the terminal reports it separately for each data transmission layer, is shown in Table 45.
  • the terminal can perform unified and joint reporting for all data transmission layers, as shown in Table 46.
  • the terminal can add an additional combination result of reporting the frequency domain configuration information of all transmission points/transmission point groups in part 1 of the CSI report, as shown in Table 47.
  • the terminal can also report the offset value i 1,8 of the frequency domain basis vectors of different transmission points/transmission point groups.
  • Step 6 According to the non-zero coefficient number indication in the initial codebook parameter configuration information predefined by the system or configured at the base station, and the determined frequency domain basis vector information of all transmission points/transmission point groups, the terminal can report based on Multi-point joint strongest coefficient index under CJT assumption.
  • the reported frequency domain basis vector information can be reported separately for each data transmission layer, or can be reported jointly for all data transmission layers.
  • Step6-1 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of each transmission point among the non-zero coefficients within each transmission point.
  • Step6-2 The terminal reports the recommended non-zero coefficient of each transmission point group based on the non-zero coefficient quantity indication, and reports the non-zero coefficient of each transmission point group in the non-zero coefficient of each transmission point group.
  • SCI for the transmission point group, each transmission point jointly reports non-zero coefficients and reports an SCI.
  • Step6-3 The terminal reports the recommended non-zero coefficients for each transmission point based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point among the non-zero coefficients in each transmission point.
  • Step6-4 The terminal reports the recommended non-zero coefficient for each transmission point group based on the non-zero coefficient quantity indication, and reports the SCI of the first transmission point in the first transmission point group in the non-zero coefficient of each transmission point group. For the transmission point group, each transmission point jointly reports non-zero coefficients.
  • Step7 The terminal performs differential quantization on all non-zero coefficients based on the determined non-zero coefficients and based on the following quantization scheme:
  • each transmission point/transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point/transmission point group.
  • the differential quantization Li*Mi-1 non-zero coefficients of the polarization direction of the SCI of each layer are performed, and then the other polarization direction is performed for the first polarization direction.
  • Differential quantization Li*Mi non-zero coefficients are performed according to each transmission point/transmission point group.
  • i*Li*Mi-1 non-zero coefficients are quantized based on the differential quantization of the polarization direction of the SCI of the first transmission point of each layer, and then the other polarization direction is quantized for the first polarization direction. Differential quantization of Li*Mi non-zero coefficients.
  • each transmission point group there are 2*Li*Mi non-zero coefficients for each transmission point group. All transmission points are quantized i*Li*Mi-1 non-zero coefficients based on the differential quantization of the polarization direction of the first transmission point in the first transmission point group of each layer, and then the other polarization direction is quantized. Li*Mi non-zero coefficients are differentially quantized for the first polarization direction.
  • the above solution will perform joint difference for all layers, that is, 2*Li*Mi non-zero coefficients.
  • Embodiments of the present disclosure can realize joint codebook parameter reporting under the assumption of multi-point coordinated transmission scheme, improve the reliability of the system, and ensure a certain feedback overhead.
  • FIG. 3 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in Figure 3, The terminal includes a memory 320, a transceiver 300, and a processor 310, where:
  • Memory 320 is used to store computer programs; transceiver 300 is used to send and receive data under the control of the processor 310; processor 310 is used to read the computer program in the memory 320 and perform the following operations:
  • the transceiver 300 is used to receive and send data under the control of the processor 310.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 310 and various circuits of the memory represented by memory 320 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 300 may be a plurality of components, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the user interface 330 may also be an interface capable of connecting external and internal required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 310 is responsible for managing the bus architecture and general processing, and the memory 320 can store data used by the processor 310 when performing operations.
  • the processor 310 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA), or a complex programmable logic device. (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor can also adopt a multi-core architecture.
  • the processor is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory can also be physically separated.
  • the initial codebook parameter configuration information is predefined or configured by a network device.
  • determining the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information includes:
  • the initial codebook parameter configuration information is a single airspace beam number X
  • the initial codebook parameter configuration information is a first index
  • the number of multiple airspace beams in the multipoint joint coherent transmission mode is determined based on the first index; the first index is used to indicate multiple airspace beams quantity.
  • determining the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the single airspace beam number X includes:
  • determining the number of i-th airspace beams includes:
  • the number of i-th airspace beams is determined based on the i-th channel estimation information.
  • the codebook parameters in the multipoint joint coherent transmission mode are determined based on the initial codebook parameter configuration information, include:
  • the initial codebook parameter configuration information is a single frequency domain basis vector number Y
  • the initial codebook parameter configuration information is a second index
  • the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode is determined based on the second index; the second index is used to indicate multiple The number of frequency domain basis vectors.
  • determining the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on the single frequency domain basis vector number Y includes:
  • the number of each frequency domain basis vector in the plurality of frequency domain basis vectors is Y*N3/R, N3 is the current PMI subband size, and R is the subband factor; or ,
  • the number of each frequency domain basis vector is (Y*N3)/(R*I), N3 is the current PMI subband size, R is the subband factor, I is the number of the multiple frequency domain basis vectors; or,
  • the reporting of codebook parameters under joint multipoint coherent transmission mode includes:
  • the codebook parameters in the multipoint joint coherent transmission mode are determined based on the initial codebook parameter configuration information, include:
  • the number of non-zero coefficients in the multi-point joint coherent transmission mode is determined based on the indication of the number of non-zero coefficients.
  • the reporting of codebook parameters under joint multipoint coherent transmission mode includes:
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • the above-mentioned terminal provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment in which the execution subject is the terminal, and can achieve the same technical effect. No further explanation will be given here. The same parts and beneficial effects as those in the method embodiment will be described in detail.
  • FIG. 4 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • the network device includes a memory 420, a transceiver 400, and a processor 410, where:
  • Memory 420 is used to store computer programs; transceiver 400 is used to send and receive data under the control of the processor 410; processor 410 is used to read the computer program in the memory 420 and perform the following operations:
  • the transceiver 400 is used to receive and send data under the control of the processor 410.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 410 and various circuits of the memory represented by memory 420 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 400 may be a plurality of components, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 410 is responsible for managing the bus architecture and general processing, and the memory 420 can store data used by the processor 410 when performing operations.
  • the processor 410 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the initial codebook parameter configuration information is predefined or configured by the network device.
  • the initial codebook parameter configuration information includes one or more of the following information:
  • the number of spatial beams includes one or more of the following:
  • a first index is used to indicate the number of multiple spatial domain beams.
  • the number of frequency domain basis vectors includes one or more of the following:
  • a second index is used to indicate the number of multiple frequency domain basis vectors.
  • parsing the codebook parameters based on initial codebook parameter configuration information includes:
  • the codebook parameters are parsed based on the bit width.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment in which the execution subject is the network device, and can achieve the same technical effect.
  • the method in this embodiment will no longer be compared.
  • the same parts and beneficial effects of the embodiments will be described in detail.
  • FIG. 5 is one of the structural schematic diagrams of a codebook parameter transmission device provided by an embodiment of the present disclosure. As shown in Figure 5, an embodiment of the present disclosure provides a codebook parameter transmission device, including a first determination module 501, a second Determining module 502 and first transmission module 503, wherein:
  • the first determination module 501 is used to determine the initial codebook parameter configuration information
  • the second determination module 502 is configured to determine the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information
  • the first transmission module 503 is used to report codebook parameters in the multipoint joint coherent transmission mode.
  • the initial codebook parameter configuration information is predefined or configured by a network device.
  • determining the codebook parameters in the multipoint joint coherent transmission mode based on the initial codebook parameter configuration information includes:
  • the initial codebook parameter configuration information is a single airspace beam number X
  • the initial codebook parameter configuration information is the number of multiple airspace beams
  • multiple airspaces in the multipoint joint coherent transmission mode are determined based on the number of multiple airspace beams.
  • the number of beams, where the number of i-th airspace beams is Li, Li Xi, Xi is the number of i-th airspace beams in the initial codebook parameter configuration information; or,
  • the initial codebook parameter configuration information is a first index
  • the number of multiple airspace beams in the multipoint joint coherent transmission mode is determined based on the first index; the first index is used to indicate multiple airspace beams quantity.
  • determining the number of multiple airspace beams in the multipoint joint coherent transmission mode based on the single airspace beam number X includes:
  • determining the number of i-th airspace beams includes:
  • the number of i-th airspace beams is determined based on the i-th channel estimation information.
  • the codebook parameters in the multipoint joint coherent transmission mode are determined based on the initial codebook parameter configuration information, include:
  • the initial codebook parameter configuration information is a single frequency domain basis vector number Y
  • the initial codebook parameter configuration information is a second index
  • the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode is determined based on the second index; the first The binary index is used to indicate multiple frequency domain basis vector quantities.
  • determining the number of multiple frequency domain basis vectors in the multipoint joint coherent transmission mode based on the single frequency domain basis vector number Y includes:
  • the number of each frequency domain basis vector in the plurality of frequency domain basis vectors is Y*N3/R, N3 is the current PMI subband size, and R is the subband factor; or ,
  • the number of each frequency domain basis vector is (Y*N3)/(R*I), N3 is the current PMI subband size, R is the subband factor, I is the number of the multiple frequency domain basis vectors; or,
  • the reporting of codebook parameters under joint multipoint coherent transmission mode includes:
  • the codebook parameters in the multipoint joint coherent transmission mode are determined based on the initial codebook parameter configuration information, include:
  • the number of non-zero coefficients in the multi-point joint coherent transmission mode is determined based on the indication of the number of non-zero coefficients.
  • the reporting of codebook parameters in multipoint joint coherent transmission mode includes:
  • the apparatus further includes a quantization module
  • the quantization module is used to perform differential quantization on non-zero coefficients.
  • the above codebook parameter transmission device provided by the embodiment of the present disclosure can realize All the method steps implemented by the method embodiment in which the execution subject is a terminal can achieve the same technical effect.
  • the parts and beneficial effects in this embodiment that are the same as those in the method embodiment will not be described in detail here.
  • FIG. 6 is a second structural schematic diagram of a codebook parameter transmission device provided by an embodiment of the present disclosure. As shown in Figure 6, an embodiment of the present disclosure provides a codebook parameter transmission device, including a second transmission module 601 and an analysis module. 602, of which:
  • the second transmission module 601 is used to receive the codebook parameters reported by the terminal;
  • the parsing module 602 is configured to parse the codebook parameters based on the initial codebook parameter configuration information.
  • the initial codebook parameter configuration information is predefined or configured by a network device.
  • the initial codebook parameter configuration information includes one or more of the following information:
  • the number of spatial beams includes one or more of the following:
  • a first index is used to indicate the number of multiple spatial domain beams.
  • the number of frequency domain basis vectors includes one or more of the following:
  • a second index is used to indicate the number of multiple frequency domain basis vectors.
  • parsing the codebook parameters based on initial codebook parameter configuration information includes:
  • the codebook parameters are parsed based on the bit width.
  • the above-mentioned codebook parameter transmission device provided by the embodiment of the present disclosure can realize all the method steps implemented by the above-mentioned method embodiment in which the execution subject is a network device, and can achieve the same technical effect. This embodiment will no longer be discussed here. The same parts and beneficial effects as those in the method embodiments will be described in detail.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or contributes to the relevant technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, It includes several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • a computer-readable storage medium stores a computer program.
  • the computer program is used to cause the computer to execute the codebook parameter transmission method provided by the above method embodiments.
  • the above-mentioned computer-readable storage medium provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effect. No further reference will be made here to the method embodiments in this embodiment. The same parts and beneficial effects are carried out Elaborate in detail.
  • the computer-readable storage medium may be any available medium or data storage device that the processor can access, including but not limited to magnetic memory (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), Optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic memory such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • Optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • first, second, etc. are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that embodiments of the present disclosure can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • the term "and/or” describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone. these three situations.
  • the character "/” generally indicates that the related objects are in an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar to it.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet Wireless service general packet radio service, GPRS
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE-A Long term evolution advanced
  • UMTS universal mobile telecommunication system system
  • WiMAX microwave access
  • NR 5G New Radio
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem, etc.
  • the names of terminal equipment may also be different.
  • the terminal equipment may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the Radio Access Network (RAN).
  • the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (also known as a "cell phone").
  • Wireless terminal equipment can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and an access point.
  • remote terminal equipment remote terminal equipment
  • access terminal equipment access terminal
  • user terminal user terminal
  • user agent user agent
  • user device user device
  • the network device involved in the embodiment of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • a base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or it can be named by another name.
  • the network device can be used to convert the received empty The mid-frame exchanges with Internet Protocol (IP) packets and serves as a router between the wireless terminal device and the rest of the access network, where the rest of the access network may include an Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices also coordinate attribute management of the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA). ), or it can be a network device (NodeB) in a Wide-band Code Division Multiple Access (WCDMA), or an evolutionary network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , home base station (femto), pico base station (pico), etc., are not limited in the embodiments of the present disclosure.
  • network devices may include centralized unit (CU) nodes and distributed unit (DU) nodes, and the centralized units and distributed units may also be arranged geographically separately.
  • Determining B based on A in this disclosure means that the factor A should be considered when determining B. It is not limited to “B can be determined based on A alone", but also includes: “B is determined based on A and C", “B is determined based on A, C and E", "C is determined based on A, and B is further determined based on C" wait. In addition, it can also include taking A as a condition for determining B, for example, "When A meets the first condition, use the first method to determine B"; another example, "When A meets the second condition, determine B", etc.; another example , "When A meets the third condition, determine B based on the first parameter" and so on. Of course, it can also be a condition that uses A as a factor to determine B, for example, "when A meets the first condition, use the first method to determine C, and further determine B based on C" and so on.
  • MIMO transmission can It is single user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO (Multiple User MIMO, MU-MIMO). Depending on the shape and number of root antenna combinations, MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO or massive-MIMO, or it can be diversity transmission, precoding transmission or beamforming transmission, etc.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, magnetic disk storage, optical storage, and the like) embodying computer-usable program code therein.
  • a computer-usable storage media including, but not limited to, magnetic disk storage, optical storage, and the like
  • processor-executable instructions may also be stored in a processor-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the generation of instructions stored in the processor-readable memory includes the manufacture of the instruction means product, the instruction device implements the function specified in one process or multiple processes in the flow chart and/or one block or multiple blocks in the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby causing the computer or other programmable device to Instructions for execution are provided for implementing a process or processes in a flow diagram and/or a method in a block diagram The steps for a function specified in a box or boxes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Communication Control (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开实施例提供一种码本参数传输方法、装置及存储介质,所述方法包括:终端确定初始码本参数配置信息;所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数;所述终端上报多点联合相干传输方式下的码本参数。

Description

码本参数传输方法、装置及存储介质
相关申请的交叉引用
本申请要求于2022年08月12日提交的申请号为202210969422.4,发明名称为“码本参数传输方法、装置及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种码本参数传输方法、装置及存储介质。
背景技术
新空口(New Radio,NR)系统支持多种多发送接收点(Multi Transmitting Receiving Point,MTRP)多点协作传输方案,多点协作传输方案可分为相干协同传输(Coherent Joint Transmission,CJT)方案和非相干协同传输(Non-Coherent Joint Transmission,NCJT)方案。
目前的类型(type)II码本设计及预编码指示(Precoder Matrix Indicator,PMI)上报仅适用于单点传输方式或NCJT方式,并不适用于多点联合相干传输方式,从而导致系统可靠性差的技术问题。
发明内容
本公开实施例提供一种码本参数传输方法、装置及存储介质,用以解决相关技术中系统可靠性差的技术问题。
第一方面,本公开实施例提供一种码本参数传输方法,包括:
终端确定初始码本参数配置信息;
所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数;
所述终端上报多点联合相干传输方式下的码本参数。
在一些实施例中,所述初始码本参数配置信息是预定义的或网络设备配置的。
在一些实施例中,在所述初始码本参数配置信息为空域波束数量的情况下,所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一空域波束数量X的情况下,所述终端基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量;或,
在所述初始码本参数配置信息为多个空域波束数量的情况下,所述终端基于所述多个空域波束数量确定多点联合相干传输方式下的多个空域波束数量,其中,第i个空域波束数量为Li,Li=Xi,Xi为所述初始码本参数配置信息中的第i个空域波束数量;或,
在所述初始码本参数配置信息为第一索引的情况下,所述终端基于所述第一索引确定多点联合相干传输方式下的多个空域波束数量;所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述终端基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
所述终端确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X;或,
所述终端确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X/I,I为所述多个空域波束数量的数量;或,
所述终端确定第i个空域波束数量,第i个空域波束数量为Li,I为所述多个空域波束数量的数量。
在一些实施例中,所述终端确定第i个空域波束数量,包括:
所述终端基于第i个信道估计信息确定第i个空域波束数量。
在一些实施例中,在所述初始码本参数配置信息为频域基向量数量的情况下,所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一频域基向量数量Y的情况下,所述终端基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量;或,
在所述初始码本参数配置信息为多个频域基向量数量的情况下,所述终端基于所述多个频域基向量数量确定多点联合相干传输方式下的多个频域基向量数量,其中,第i个频域基向量数量为Mi,Mi=Yi,Yi为所述初始码本参数配置信息中的第i个频域基向量数量;或,
在所述初始码本参数配置信息为第二索引的情况下,所述终端基于所述第二索引确定多点联合相干传输方式下的多个频域基向量数量;所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述终端基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
所述终端确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为Y*N3/R,N3为当前预编码指示PMI子带大小,R为子带因子;或,
所述终端确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为(Y*N3)/(R*I),N3为当前PMI子带大小,R为子带因子,I为所述多个频域基向量数量的数量;或,
所述终端确定第i个频域基向量数量,第i个频域基向量数量为Mi,I为所述多个频域基向量数量的数量。
在一些实施例中,所述终端上报多点联合相干传输方式下的码本参数,包括:
所述终端上报一个频域基向量;或,
所述终端上报多个频域基向量。
在一些实施例中,在所述初始码本参数配置信息为非零系数数量指示的情况下,所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
所述终端基于所述非零系数数量指示确定多点联合相干传输方式下的多个非零系数数量。
在一些实施例中,所述终端上报多点联合相干传输方式下的码本参数,包括:
所述终端上报多个非零系数和多个最强系数索引;或,
所述终端上报多个非零系数,并上报一个最强系数索引。
在一些实施例中,所述方法还包括:
所述终端对非零系数进行差分量化。
第二方面,本公开实施例提供一种码本参数传输方法,包括:
网络设备接收终端上报的码本参数;
所述网络设备基于初始码本参数配置信息解析所述码本参数。
在一些实施例中,所述初始码本参数配置信息是预定义的或所述网络设备配置的。
在一些实施例中,所述初始码本参数配置信息包括以下信息中的一种或多种:
空域波束数量;
频域基向量数量;或,
非零系数数量指示。
在一些实施例中,所述空域波束数量包括以下一种或多种:
单一空域波束数量;
多个空域波束数量;或,
第一索引,所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述频域基向量数量包括以下一种或多种:
单一频域基向量数量;
多个频域基向量数量;或,
第二索引,所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述网络设备基于初始码本参数配置信息解析所述码本参数,包括:
所述网络设备基于所述初始码本参数配置信息,确定每一码本参数的比特宽度;
基于所述比特宽度解析所述码本参数。
第三方面,本公开实施例提供一种终端,包括存储器,收发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定初始码本参数配置信息;
基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数;
上报多点联合相干传输方式下的码本参数。
在一些实施例中,所述初始码本参数配置信息是预定义的或网络设备配置的。
在一些实施例中,在所述初始码本参数配置信息为空域波束数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一空域波束数量X的情况下,基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量;或,
在所述初始码本参数配置信息为多个空域波束数量的情况下,基 于所述多个空域波束数量确定多点联合相干传输方式下的多个空域波束数量,其中,第i个空域波束数量为Li,Li=Xi,Xi为所述初始码本参数配置信息中的第i个空域波束数量;或,
在所述初始码本参数配置信息为第一索引的情况下,基于所述第一索引确定多点联合相干传输方式下的多个空域波束数量;所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X;或,
确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X/I,I为所述多个空域波束数量的数量;或,
确定第i个空域波束数量,第i个空域波束数量为Li,I为所述多个空域波束数量的数量。
在一些实施例中,所述确定第i个空域波束数量,包括:
基于第i个信道估计信息确定第i个空域波束数量。
在一些实施例中,在所述初始码本参数配置信息为频域基向量数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一频域基向量数量Y的情况下,基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量;或,
在所述初始码本参数配置信息为多个频域基向量数量的情况下,基于所述多个频域基向量数量确定多点联合相干传输方式下的多个频域基向量数量,其中,第i个频域基向量数量为Mi,Mi=Yi,Yi为所述初始码本参数配置信息中的第i个频域基向量数量;或,
在所述初始码本参数配置信息为第二索引的情况下,基于所述第 二索引确定多点联合相干传输方式下的多个频域基向量数量;所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为Y*N3/R,N3为当前PMI子带大小,R为子带因子;或,
确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为(Y*N3)/(R*I),N3为当前PMI子带大小,R为子带因子,I为所述多个频域基向量数量的数量;或,
确定第i个频域基向量数量,第i个频域基向量数量为Mi,I为所述多个频域基向量数量的数量。
在一些实施例中,所述上报多点联合相干传输方式下的码本参数,包括:
上报一个频域基向量;或,
上报多个频域基向量。
在一些实施例中,在所述初始码本参数配置信息为非零系数数量指示的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
基于所述非零系数数量指示确定多点联合相干传输方式下的多个非零系数数量。
在一些实施例中,所述上报多点联合相干传输方式下的码本参数,包括:
上报多个非零系数和多个最强系数索引;或,
上报多个非零系数,并上报一个最强系数索引。
在一些实施例中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
对非零系数进行差分量化。
第四方面,本公开实施例提供一种网络设备,包括存储器,收发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收终端上报的码本参数;
基于初始码本参数配置信息解析所述码本参数。
在一些实施例中,所述初始码本参数配置信息是预定义的或所述网络设备配置的。
在一些实施例中,所述初始码本参数配置信息包括以下信息中的一种或多种:
空域波束数量;
频域基向量数量;或,
非零系数数量指示。
在一些实施例中,所述空域波束数量包括以下一种或多种:
单一空域波束数量;
多个空域波束数量;或,
第一索引,所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述频域基向量数量包括以下一种或多种:
单一频域基向量数量;
多个频域基向量数量;或,
第二索引,所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述基于初始码本参数配置信息解析所述码本参数,包括:
基于所述初始码本参数配置信息,确定每一码本参数的比特宽度;
基于所述比特宽度解析所述码本参数。
第五方面,本公开实施例提供一种码本参数传输装置,包括:
第一确定模块,用于确定初始码本参数配置信息;
第二确定模块,用于基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数;
第一传输模块,用于上报多点联合相干传输方式下的码本参数。
在一些实施例中,所述初始码本参数配置信息是预定义的或网络设备配置的。
在一些实施例中,在所述初始码本参数配置信息为空域波束数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一空域波束数量X的情况下,基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量;或,
在所述初始码本参数配置信息为多个空域波束数量的情况下,基于所述多个空域波束数量确定多点联合相干传输方式下的多个空域波束数量,其中,第i个空域波束数量为Li,Li=Xi,Xi为所述初始码本参数配置信息中的第i个空域波束数量;或,
在所述初始码本参数配置信息为第一索引的情况下,基于所述第一索引确定多点联合相干传输方式下的多个空域波束数量;所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X;或,
确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X/I,I为所述多个空域波束数量的数量;或,
确定第i个空域波束数量,第i个空域波束数量为Li, I为所述多个空域波束数量的数量。
在一些实施例中,所述确定第i个空域波束数量,包括:
基于第i个信道估计信息确定第i个空域波束数量。
在一些实施例中,在所述初始码本参数配置信息为频域基向量数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一频域基向量数量Y的情况下,基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量;或,
在所述初始码本参数配置信息为多个频域基向量数量的情况下,基于所述多个频域基向量数量确定多点联合相干传输方式下的多个频域基向量数量,其中,第i个频域基向量数量为Mi,Mi=Yi,Yi为所述初始码本参数配置信息中的第i个频域基向量数量;或,
在所述初始码本参数配置信息为第二索引的情况下,基于所述第二索引确定多点联合相干传输方式下的多个频域基向量数量;所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为Y*N3/R,N3为当前PMI子带大小,R为子带因子;或,
确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为(Y*N3)/(R*I),N3为当前PMI子带大小,R为子带因子,I为所述多个频域基向量数量的数量;或,
确定第i个频域基向量数量,第i个频域基向量数量为Mi,I为所述多个频域基向量数量的数量。
在一些实施例中,所述上报多点联合相干传输方式下的码本参数, 包括:
上报一个频域基向量;或,
上报多个频域基向量。
在一些实施例中,在所述初始码本参数配置信息为非零系数数量指示的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
基于所述非零系数数量指示确定多点联合相干传输方式下的多个非零系数数量。
在一些实施例中,所述上报多点联合相干传输方式下的码本参数,包括:
上报多个非零系数和多个最强系数索引;或,
上报多个非零系数,并上报一个最强系数索引。
在一些实施例中,所述装置还包括量化模块;
所述量化模块用于对非零系数进行差分量化。
第六方面,本公开实施例提供一种码本参数传输装置,包括:
第二传输模块,用于接收终端上报的码本参数;
解析模块,用于基于初始码本参数配置信息解析所述码本参数。
在一些实施例中,所述初始码本参数配置信息是预定义的或网络设备配置的。
在一些实施例中,所述初始码本参数配置信息包括以下信息中的一种或多种:
空域波束数量;
频域基向量数量;或,
非零系数数量指示。
在一些实施例中,所述空域波束数量包括以下一种或多种:
单一空域波束数量;
多个空域波束数量;或,
第一索引,所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述频域基向量数量包括以下一种或多种:
单一频域基向量数量;
多个频域基向量数量;或,
第二索引,所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述基于初始码本参数配置信息解析所述码本参数,包括:
基于所述初始码本参数配置信息,确定每一码本参数的比特宽度;
基于所述比特宽度解析所述码本参数。
第七方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行如上所述第一方面或第二方面所述的码本参数传输方法。
第八方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行如上所述第一方面或第二方面所述的码本参数传输方法。
第九方面,本公开实施例还提供一种通信设备可读存储介质,所述通信设备可读存储介质存储有计算机程序,所述计算机程序用于使通信设备执行如上所述第一方面或第二方面所述的码本参数传输方法。
第十方面,本公开实施例还提供一种芯片产品可读存储介质,所述芯片产品可读存储介质存储有计算机程序,所述计算机程序用于使芯片产品执行如上所述第一方面或第二方面所述的码本参数传输方法。
本公开实施例提供的码本参数传输方法、装置及存储介质,终端基于初始码本参数配置信息,确定多点联合相干传输方式下的码本参数并进行上报,实现针对多点协作传输方案假设下的联合码本参数上报,提高了系统的可靠性。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的码本参数传输方法的流程示意图之一;
图2是本公开实施例提供的码本参数传输方法的流程示意图之二;
图3是本公开实施例提供的一种终端的结构示意图;
图4是本公开实施例提供的一种网络设备的结构示意图;
图5是本公开实施例提供的一种码本参数传输装置的结构示意图之一;
图6是本公开实施例提供的一种码本参数传输装置的结构示意图之二。
具体实施方式
Type II码本设计主要考虑了两级码本设计,其中第一级码本W1需要宽带反馈空域波束信息,第二级码本W2需要子带反馈频域信息,其中包括每个子带的空域波束的线性合并系数。针对第一级的空域波束信息,第一级码本中总共存在2N1N2O1O2个候选波束,N1N2表示垂直或水平方向的CSI-RS天线端口数,O1O2表示垂直或水平方向的波束过采样因子。终端支持高层信令配置反馈空域波束个数L=2,4,反馈2或4个空域波束。其中,空域波束在PUSCH上进行反馈,具 体地参数包括i1,1和i1,2。具体地反馈开销比特宽度如表1所示。基站根据表1中的反馈开销确定空域解码信息。
表1
NR Rel-15中,定义了Rel-15TypeII码本。其基于对正交波束组内的波束进行线性合并的方式,支持rank1和rank2码本。由于Rel-15码本中需要对合并系数进行子带反馈,并且每个子带的反馈既包括子带相位系数也包括子带幅度系数,当子带数目较大时,反馈全部子带的系数所需要的反馈开销巨大。NR Rel-16中定义了低开销Rel-16eType II码本,其将每个子带的系数进行压缩,将压缩后的系数反馈给基站。以rank=1为例,对于全部子带,码本可以表示为W。



其中,W1中包含的正交合并波束,与Rel-15的Type II码本相同;表示压缩后系数,这里pdiff(i,j)表示差分幅度系数,q(i,j)表示相位系数,pref表示参考幅度系数。若中的最强幅度系数位于第一极化方向(即中的前L行),则参考幅度系数位于第二极化方向,如上述表达式所示。若中的最强幅度系数位于第二极化方向(即 中的后L行),则参考幅度系数位于第一极化方向,此处不再赘述。
差分幅度系数、相位系数及参考幅度系数均需反馈给基站,同时,终端需要上报最强幅度系数所在的位置,其对应的差分幅度系数定义为1,相位系数定义为0,不需要上报。
另外,考虑到进一步节省反馈开销,每层的中的压缩系数不需要全部上报,而仅需要将其中的非零系数上报。对于Rank=1和Rank=2,基站配置每层上报的非零系数的个数上限为K0。由于不上报全部的压缩系数,因此每层需要指示相应的上报的非零系数所在的位置。Wf表示压缩基向量,其中包含M个基向量,每个向量的长度为N3,N3由系统配置的CQI子带个数所确定。
此外,参考幅度系数量化为4比特,其取值为
目前NR系统支持多种MTRP多点协作传输方案,其中可分为CJT方案以及NCJT方案。针对PDSCH,Rel-16标准化了一种NCJT方案SDM1a,Rel-17标准化了一种基于系统帧号(System Frame Number,SFN)传输的多点协作方案。Rel-18标准化增加小于等于4个传输点MTRP的CJT方案。
CJT方案中,基站需要对多点协作的多个传输点进行联合预编码传输以及数据相干传输。
目前Rel-17只针对最多两个传输点NCJT协作传输方案的CSI测量反馈进行了标准化增强,具体终端根据每个传输点分别计算预编码信息,传统的基于单点传输的码本设计与PMI上报仍适用于NCJT。因此,目前的type II码本设计及PMI上报仅适用于单点传输方式或NCJT方式,并不适用于多点联合CJT,导致无法采用多点联合CJT,系统的可靠性低的技术问题。
基于上述技术问题,本公开实施例主要针对CJT方式对多传输点进行联合码本设计,并且终端可根据全部传输点协作结果进行联合信 道测量以及信道状态上报,提高了系统的可靠性。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是本公开实施例提供的码本参数传输方法的流程示意图之一,如图1所示,本公开实施例提供一种码本参数传输方法,其执行主体可以为终端,例如,手机等。该方法包括:
步骤101、终端确定初始码本参数配置信息。
步骤102、所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数。
步骤103、所述终端上报多点联合相干传输方式下的码本参数。
可选地,初始码本参数配置信息可以是预定义的。
可选地,初始码本参数配置信息是由网络设备配置的。网络设备向终端发送初始码本参数配置信息,终端接收网络设备发送的初始码本参数配置信息。
可选地,初始码本参数配置信息可以包括以下信息中的一种或多种:
空域波束数量;
频域基向量数量;或,
非零系数数量指示。
可选地,空域波束数量可以包括以下一种或多种:
单一空域波束数量;
多个空域波束数量;或,
第一索引,所述第一索引用于指示多个空域波束数量。
可选地,频域基向量数量可以包括以下一种或多种:
单一频域基向量数量;
多个频域基向量数量;或,
第二索引,所述第二索引用于指示多个频域基向量数量。
可选地,码本参数可以包括码本参数信息(码本参数本身)和/或码本参数数量(码本参数的数量)。
码本参数可以包括以下参数中的一种或多种:
信道状态信息(Channel State Information,CSI);
空域波束;
频域基向量;或,
非零系数。
可选地,终端根据系统预定义或基站端配置的初始码本参数配置信息确定下述码本参数。
可选地,终端根据系统预定义或基站端配置的初始码本参数配置信息确定空域波束数量,终端上报基于CJT假设下的多点联合空域波束数量和/或空域波束信息。
在一些实施方式中,在初始码本参数配置信息为空域波束数量的情况下,终端基于初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在初始码本参数配置信息为单一空域波束数量X的情况下,终端基于单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量。
例如,基于根据系统预定义或基站端配置的单一空域波束数量,终端可以根据以下方式确定多点传输的全部空域波束信息,并上报给基站侧。
在一些实施方式中,终端基于单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
终端确定多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X。
例如,终端根据单一的空域波束配置信息获取空域波束数量配置信息X,并确定每个传输点/传输点组的空域波束数量L1=L2=,…,=Li=,…,=LI=X。其中,Li为第i个传输点/传输点组的空域波束数量,I为多点协作中全部传输点/传输点组数量。
在一些实施方式中,终端基于单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
终端确定多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X/I,I为多个空域波束数量的数量。
例如,终端根据单一的空域波束配置信息获取空域波束数量配置信息X,并确定每个传输点/传输点组的空域波束数量L1=L2=,…,=Li=,…,=LI=X。其中,Li为第i个传输点/传输点组的空域波束数量,I为多点协作中全部传输点/传输点组数量。
在一些实施方式中,终端基于单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
终端确定第i个空域波束数量,第i个空域波束数量为Li,I为多个空域波束数量的数量。
例如,终端根据单一的空域波束配置信息获取空域波束数量配置信息X,并自行确定每个传输点/传输点组的空域波束数量L1,L2,…,Li,…,LI。其中,其中,Li为第i个传输点/传输点组的空域波束数量,I为多点协作中全部传输点/传输点组数量。
可选地,终端在上报空域推荐波束信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的空域波束分配结果。
可选地,终端在上报空域推荐波束信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的空域波束分配结果。
在一些实施方式中,终端确定第i个空域波束数量,包括:
终端基于第i个信道估计信息确定第i个空域波束数量。
例如,终端基于不同传输点到终端的信道估计,并以传输点参考信号接收功率(Reference Signal Receiving Power,RSRP)最高为循环动态选择空域波束数目,每个传输点的空域波束数目取值范围为0≤Li≤X。
在一些实施方式中,在初始码本参数配置信息为空域波束数量的情况下,终端基于初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在初始码本参数配置信息为多个空域波束数量的情况下,终端基于多个空域波束数量确定多点联合相干传输方式下的多个空域波束数量,其中,第i个空域波束数量为Li,Li=Xi,Xi为初始码本参数配置信息中的第i个空域波束数量。
例如,终端根据多个的空域波束配置信息确定全部传输点/传输点组的空域配置信息,并上报全部传输点/传输点组的空域推荐波束。
终端根据多个的空域波束配置信息获取空域波束数量配置信息X1,X2,….,Xi,….,XJ,并确定每个传输点/传输点组的空域波束数L1=X1,L2=X2,…,Li=Xi,…,LI=XI。其中,I为多点协作中上报的全部传输点/传输点组数量,J为空域波束配置信息包含的多个空域波束数量的数量,J≥I。
在一些实施方式中,在初始码本参数配置信息为空域波束数量的情况下,终端基于初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在初始码本参数配置信息为第一索引的情况下,终端基于第一索引确定多点联合相干传输方式下的多个空域波束数量;第一索引用于指示多个空域波束数量。
例如,终端根据单一的空域波束配置信息以及全部传输点/传输点组的空域配置信息的额外组合指示信息,联合确定全部传输点/传 输点组的空域配置信息,并上报全部传输点/传输点组的空域推荐波束。
可选地,全部传输点/传输点组的空域配置信息的额外组合指示信息可由预定义方式,高层信令以及动态下行控制信息(Downlink Control Information,DCI)指示信令进行配置。
可选地,终端可通过额外组合指示信息确定多种候选Lj分配方式,并根据当前测量数量i推荐上报一种全部传输点/传输点组的空域配置信息的额外组合信息i1,3
可选地,终端在上报空域推荐波束信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的空域配置信息的额外组合信息i1,3
可选地,终端在上报空域推荐波束信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的空域配置信息的额外组合结果。
在一些实施例中,在初始码本参数配置信息为频域基向量数量的情况下,终端基于初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在初始码本参数配置信息为单一频域基向量数量Y的情况下,终端基于单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量。
例如,终端根据系统预定义或基站端配置的初始码本参数配置信息确定频域基向量(波束)数量,终端上报基于CJT假设下的多点联合频域基向量(波束)数量和/或频域基向量(波束)信息。
可选地,上报的频域基向量信息,可针对每数据传输层进行单独上报,也可以针对全部数据传输层进行统一联合上报。
例如,基于配置或预定义的单一频域基向量因子,终端可以根据以下方式确定多点传输的全部频域基向量信息,并上报给基站侧。
终端根据单一的频域基向量配置信息确定全部传输点/传输点组的频域基向量配置因子,并上报全部传输点/传输点组的频域基向量推荐信息。
在一些实施例中,终端基于单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
终端确定多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为Y*N3/R,N3为当前预编码指示PMI子带大小,R为子带因子。
例如,终端根据单一的频域基向量配置信息获取频域基向量数量配置因子Y,并确定每个传输点/传输点组的频域基向量数量M1=M2=,…,=Mi=,…,=MI=Y*N3/R。其中,Mi为第i个传输点/传输点组的频域基向量数量,I为多点协作中全部传输点/传输点组数量,N3是当前PMI子带大小,R是子带因子。
在一些实施例中,终端基于单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
终端确定多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为(Y*N3)/(R*I),N3为当前PMI子带大小,R为子带因子,I为多个频域基向量数量的数量。
例如,终端根据单一的频域基向量配置信息获取频域基向量数量配置因子Y,并确定每个传输点/传输点组的频域基向量数量M1=M2=,…,=Mi=,…,=MI=(Y*N3)/(R*I)。其中,Mi为第i个传输点/传输点组的频域基向量数量,I为多点协作中全部传输点/传输点组数量,N3是当前PMI子带大小,R是子带因子。
在一些实施例中,终端基于单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
终端确定第i个频域基向量数量,第i个频域基向量数量为Mi,I为多个频域基向量数量的数量。
例如,终端根据单一的频域基向量配置信息获取频域基向量数量配置因子Y,并自行确定每个传输点/传输点组的频域基向量数量M1,M2,…,Mi,…,MI。其中,Mi为第i个传输点/传输点组的频域基向量数量,I为多点协作中全部传输点/传输点组数量,N3是当前PMI子带大小,R是子带因子。
可选地,终端在上报频域推荐基向量信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的频域推荐基向量分配结果。
可选地,终端在上报频域推荐基向量信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的频域推荐基向量数量分配结果。
在一些实施例中,在初始码本参数配置信息为频域基向量数量的情况下,终端基于初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在初始码本参数配置信息为多个频域基向量数量的情况下,终端基于多个频域基向量数量确定多点联合相干传输方式下的多个频域基向量数量,其中,第i个频域基向量数量为Mi,Mi=Yi,Yi为初始码本参数配置信息中的第i个频域基向量数量。
例如,终端根据多个的频域基向量配置信息确定全部传输点/传输点组的频域推荐基向量配置因子,并上报全部传输点/传输点组的频域推荐基向量。
例如,终端根据多个的频域基向量配置信息获取频域推荐基向量配置信息Y1,Y2,….,Yi,….,YJ,并确定每个传输点/传输点组的频域推荐基向量M1=Y1,M2=Y2,…,Mi=Yi,…,MI=YI。其中,I为多点协作中上报的全部传输点/传输点组数量,J为频域基向量配置信息包含的多个频域基向量数量的数量,J≥I。
在一些实施例中,在初始码本参数配置信息为频域基向量数量的 情况下,终端基于初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在初始码本参数配置信息为第二索引的情况下,终端基于第二索引确定多点联合相干传输方式下的多个频域基向量数量;第二索引用于指示多个频域基向量数量。
例如,终端根据单一的频域基向量配置信息以及全部传输点/传输点组的频域基向量配置信息的额外组合指示信息,联合确定全部传输点/传输点组的频域基向量配置信息,并上报全部传输点/传输点组的频域推荐基向量。
可选地,全部传输点/传输点组的频域基向量信息的额外组合指示信息可由预定义方式,高层信令以及动态DCI指示信令进行配置。
可选地,终端可通过额外组合指示信息确定多种候选Mj分配方式,并根据当前测量数量i推荐上报一种全部传输点/传输点组的频域配置信息的额外组合信息i1,3
可选地,终端在上报频域推荐基向量信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的频域基向量信息的额外组合信息i1,8
可选地,终端在上报频域推荐基向量信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的频域配置信息的额外组合结果。
在一些实施例中,所述终端上报多点联合相干传输方式下的码本参数,包括:
所述终端上报一个频域基向量;或,
所述终端上报多个频域基向量。
例如,终端可基于全部传输点上报联合频域基向量推荐信息,全部传输点对应一个频域基向量。
例如,终端分别上报每个传输点的频域基向量推荐信息,一个传 输点对应一个频域基向量。
例如,以传输点组为单元,终端分别上报传输点组的联合频域基向量推荐信息,组内的全部传输点可上报一个联合频域基向量推荐信息。
可选地,终端还可以上报不同传输点/传输点组的频域基向量的偏移值i1,8
在一些实施例中,在所述初始码本参数配置信息为非零系数数量指示的情况下,所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
所述终端基于所述非零系数数量指示确定多点联合相干传输方式下的多个非零系数数量。
例如,终端根据系统预定义或基站端配置的初始码本参数配置信息中的非零系数数量指示,以及确定的全部传输点/传输点组的频域基向量信息,终端可以根据以下方式上报基于CJT假设下的多点联合最强系数索引。
在一些实施例中,所述终端上报多点联合相干传输方式下的码本参数,包括:
所述终端上报多个非零系数和多个最强系数索引;或,
所述终端上报多个非零系数,并上报一个最强系数索引。
可选地,上报的频域基向量信息,可针对每个数据传输层进行单独上报,也可以针对全部数据传输层进行统一联合上报。
例如,终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报每个传输点的最强系数索引(Strongest Coefficient Index,SCI)。
例如,终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报每个传输点组的SCI,针对传输点组内,每个传输点之间联合上报非零系数,并上报一个 SCI。
例如,终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报第一传输点的SCI,第一传输点是多个传输点中的其中一个传输点。
例如,终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报第一传输点组内第一传输点的SCI,第一传输点组是多个传输点组中的其中一个传输点组,第一传输点是第一传输点组中的其中一个传输点。针对传输点组内,每个传输点之间联合上报非零系数。
在一些实施例中,所述方法还包括:
所述终端对非零系数进行差分量化。
例如,终端根据确定的全部非零系数,并基于下述量化方案对全部非零系数进行差分量化。
例如,针对每个数据层,每个传输点/传输点组均存在2*Li*Mi(空域Li,频域Mi)个非零系数,先根据每个传输点/传输点组内,进行每层的SCI所在极化方向的差分量化Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
例如,针对每个数据层,每个传输点均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
例如,针对每个数据层,每个传输点组均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点组内第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
可选地,若频域基向量和非零系数采用所有层联合上报的方式,则上述方案将针对所有层进行联合差分,即2*Li*Mi个非零系数。
本公开实施例提供的码本参数传输方法,终端基于初始码本参数配置信息,确定多点联合相干传输方式下的码本参数并进行上报,实现针对多点协作传输方案假设下的联合码本参数上报,提高了系统的可靠性。
图2是本公开实施例提供的码本参数传输方法的流程示意图之二,如图2所示,本公开实施例提供一种码本参数传输方法,其执行主体可以为网络设备,例如,基站等。该方法包括:
步骤201、网络设备接收终端上报的码本参数;
步骤202、所述网络设备基于初始码本参数配置信息解析所述码本参数。
在一些实施例中,所述初始码本参数配置信息是预定义的或所述网络设备配置的。
在一些实施例中,所述初始码本参数配置信息包括以下信息中的一种或多种:
空域波束数量;
频域基向量数量;或,
非零系数数量指示。
在一些实施例中,所述空域波束数量包括以下一种或多种:
单一空域波束数量;
多个空域波束数量;或,
第一索引,所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述频域基向量数量包括以下一种或多种:
单一频域基向量数量;
多个频域基向量数量;或,
第二索引,所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述网络设备基于初始码本参数配置信息解析所述码本参数,包括:
所述网络设备基于所述初始码本参数配置信息,确定每一码本参数的比特宽度;
基于所述比特宽度解析所述码本参数。
例如,基站指示给终端初始码本参数配置信息,并接收终端上报的码本参数(本公开实施例以CSI信息为例进行说明),并根据终端上报和或系统预定义的信息解码CSI信息。
基于不同终端上报方式对应的不同开销/比特宽度,基站侧确定信息位进行空域波束信息的解码。
可选地,基站根据单一的上报信息(TRP-common)以及信息位解码CSI信息,并确定全部传输点/传输点组的空域推荐波束。
可选地,基站根据单一的上报信息(TRP-common)以及表2信息位解码CSI信息,并确定全部传输点/传输点组的空域推荐波束数目相同,且与配置数目一致,并根据全部传输点/传输点组的空域推荐波束数目确定每个传输点/传输点组的空域推荐波束。
表2
可选地,基站根据单一的上报信息(TRP-common)以及表3信息位解码CSI信息,并确定全部传输点/传输点组的空域推荐波束数目相同,且全部之和与配置数目一致,并根据全部传输点/传输点组的空域推荐波束数目确定每个传输点/传输点组的空域推荐波束。
表3
可选地,基站根据单一的上报信息(TRP-common)以及信息位解码CSI信息,并先基于终端上报的分配结果分别确定全部传输点/传输点组的空域推荐波束数目,且全部之和与配置数目一致。其中,i为多点协作中全部传输点/传输点组数量,并根据全部传输 点/传输点组的空域推荐波束数目确定每个传输点/传输点组的空域推荐波束。
可选地,终端在上报空域推荐波束信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的空域波束分配结果,如表4所示。
表4
可选地,终端在上报空域推荐波束信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的空域波束分配结果,如表5所示。
表5
在一些实施例中,基站根据多个的上报信息(TRP特定)以及表6信息位解码CSI信息,并确定全部传输点/传输点组的空域推荐波束信息。
例如,终端根据多个的空域波束配置信息获取空域波束数量配置信息X1,X2….Xj,并确定每个传输点/传输点组的空域波束数L1=X1,L2=X2…,Li=Xi。其中,i为多点协作中上报的全部传输点/传输点组数量,并根据全部传输点/传输点组的空域推荐波束数目确定每个传输点/传输点组的空域推荐波束。
表6
在一些实施例中,基站根据单一配置信息,以及额外的传输点组 合分配配置联合确定信息位解码CSI信息,并确定全部传输点/传输点组的空域推荐波束数目,并根据全部传输点/传输点组的空域推荐波束数目确定每个传输点/传输点组的空域推荐波束。
可选地,全部传输点/传输点组的空域配置信息的额外组合指示信息可由预定义方式,高层信令以及动态DCI指示信令进行配置。
可选地,终端可通过额外组合指示信息确定多种候选Lj分配方式,并根据当前测量数量i推荐上报一种全部传输点/传输点组的空域配置信息的额外组合信息i1,3
可选地,终端在上报空域推荐波束信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的空域配置信息的额外组合信息i1,3,如表7所示。
表7
可选地,终端在上报空域推荐波束信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的空域配置信息的额外组合结果,如表8所示。
表8
基于1中所述的不同终端上报方式对应的不同开销/比特宽度,基站侧确定信息位进行频域波束信息的解码
可选地,基站根据单一的上报信息(TRP-common)以及信息位解码CSI信息,并确定全部传输点/传输点组的频域推荐基向量。
可选地,基站根据单一的上报信息(TRP-common)以及信息位解码CSI信息,并确定全部传输点/传输点组的频域推荐基向量数目 相同,且与配置数目一致,并根据全部传输点/传输点组的频域推荐基向量数目确定每个传输点/传输点组的频域推荐基向量。
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表9所示。
表9
若终端可以针对全部数据传输层进行统一联合上报,如表10所示。
表10
可选地,基站根据单一的上报信息(TRP-common)以及信息位解码CSI信息,并确定全部传输点/传输点组的频域推荐基向量数目相同,且全部之和与配置数目一致,并根据全部传输点/传输点组的频域推荐基向量数目确定每个传输点/传输点组的频域推荐基向量。
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表11所示。
表11
若终端可以针对全部数据传输层进行统一联合上报,如表12所示。
表12

可选地,基站根据单一的上报信息(TRP-common)以及信息位解码CSI信息,并先基于终端上报的分配结果分别确定全部传输点/传输点组的频域推荐基向量数目,且全部之和与配置数目一致。其中,i为多点协作中全部传输点/传输点组数量,并根据全部传输点/传输点组的频域推荐基向量数目确定每个传输点/传输点组的频域推荐基向量。
可选地,终端在上报频域推荐基向量信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的频域基向量分配结果。
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表13所示。
表13
若终端可以针对全部数据传输层进行统一联合上报,如表14所示。
表14
可选地,终端在上报频域推荐基向量信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的频域基向量分配结果,如表15所示。
表15

可选地,基站根据多个的上报信息(TRP特定)以及信息位解码CSI信息,并确定全部传输点/传输点组的频域推荐基向量信息。
可选地终端根据多个的频域基向量配置信息获取频域基向量数量配置信息X1,X2….Xj,并确定每个传输点/传输点组的频域基向量数M1=Y1,…,Mi=Yi。其中,i为多点协作中上报的全部传输点/传输点组数量,并根据全部传输点/传输点组的频域推荐基向量数目确定每个传输点/传输点组的频域推荐基向量。
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表16所示。
表16
若终端可以针对全部数据传输层进行统一联合上报,如表17所示。
表17
可选地,基站根据单一配置信息,以及额外的传输点组合分配配置联合确定信息位解码CSI信息,并确定全部传输点/传输点组的频域推荐基向量数目,并根据全部传输点/传输点组的频域推荐基向量数目确定每个传输点/传输点组的频域推荐基向量。
可选地,全部传输点/传输点组的频域配置信息的额外组合指示信息可由预定义方式,高层信令以及动态DCI指示信令进行配置。
可选地,终端可通过额外组合指示信息确定多种候选Lj分配方式,并根据当前测量数量i推荐上报一种全部传输点/传输点组的频域 配置信息的额外组合信息i1,3
可选地,终端在上报频域推荐基向量信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的频域配置信息的额外组合信息i1,8
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表18所示。
表18
若终端可以针对全部数据传输层进行统一联合上报,如表19所示。
表19
可选地,终端在上报频域推荐基向量信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的频域配置信息的额外组合结果,如表20所示。
表20
关于多点协作中上报的全部传输点/传输点组数量i的确定方式:
方式1:基于高层信令或预定义的方式进行配置可CSI上报的全部传输点/传输点组数量i。
方式2:基于CSI资源或端口组数量隐式确定可CSI上报的全部传输点/传输点组数量i。
方式3:基于基站配置的最大全部传输点/传输点组数量j,终端自行计算当前CSI上报的全部传输点/传输点组数量i。
关于多点协作中上报测量的全部传输点/传输点组数量i1,1的确定方式:
方式1:O1O2组块选择一致,组块内的L个波束分开选择。
方式2:O1O2组块与组块内的L个波束分开选择。
本公开实施例提供的码本参数传输方法,网络设备基于初始码本参数配置信息,确定多点联合相干传输方式下的码本参数并进行接收,实现针对多点协作传输方案假设下的联合码本参数上报,提高了系统的可靠性。
下面以几个具体地例子,对上述实施例中的方法进行进一步说明。
例一:
Step1:终端接收CSI码本配置参数。具体地,基站可由系统预定义或高层信令的方式指示给终端。
一种高层信令的方式可通过单一空域波束数目,空域波束数量配置因子Y以及非零系数个数因子等组合配置。
一种高层信令的方式可通过上述每个参数单独配置。
Step2:终端得到单一空域波束数目指示,并根据单一的空域波束配置信息确定获取空域波束数量配置信息X,并确定每个传输点/传输点组的空域波束数量L1=L2=…=Li=X。其中,i为多点协作中全部传输点/传输点组数量。
可选地,终端根据单一的空域波束配置信息获取空域波束数量配置因子Y,并确定每个传输点/传输点组的空域波束数量M1=M2=…=Mi=Y*N3/R,其中N3是当前PMI子带大小,R是子带因子。其中,i为多点协作中全部传输点/传输点组数量。
方式1:基于高层信令或预定义的方式进行配置可CSI上报的全部传输点/传输点组数量i。
方式2:基于CSI资源或端口组数量隐式确定可CSI上报的全部传输点/传输点组数量i。
方式3:基于基站配置的最大全部传输点/传输点组数量j,终端自行计算当前CSI上报的全部传输点/传输点组数量i。
Step4:终端上报i个空域波束信息,基站根据确实每个空域波束的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
方式1:O1O2组块与组块内的L个波束分开选择,如表21所示。
表21
方式2:全部传输点/组上报一个O1O2组块,组块内的L个波束分开选择,如表22所示。
表22
Step5-1:终端上报i个频域基向量信息,基站根据确实每个空域波束的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表23所示。
表23
若终端可以针对全部数据传输层进行统一联合上报,如表24所示。
表24

Step5-2:终端上报1个联合频域基向量信息,基站根据表25确实每个空域波束的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表25所示。
表25
若终端可以针对全部数据传输层进行统一联合上报,如表26所示。
表26
可选地,终端还可以上报不同传输点/传输点组的频域基向量的偏移值i1,8
Step6:终端根据系统预定义或基站端配置的初始码本参数配置信息中的非零系数数量指示,以及确定的全部传输点/传输点组的频域基向量信息,终端可以根据以下方式上报基于CJT假设下的多点联合最强系数索引。
可选地,上报的频域基向量信息,可针对每个数据传输层进行单独上报,也可以针对全部数据传输层进行统一联合上报。
Step6-1:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报每个传输点的SCI。
Step6-2:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报每个传输点组的SCI,针对传输点组内,每个传输点之间联合上报非零系数,并上报 一个SCI。
Step6-3:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报第一传输点的SCI。
Step6-4:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报第一传输点组内第一传输点的SCI,针对传输点组内,每个传输点之间联合上报非零系数。
Step7:终端根据确定的全部非零系数,并基于下述量化方案对全部非零系数进行差分量化:
针对每个数据层,每个传输点/传输点组均存在2*Li*Mi个非零系数。其中先根据每个传输点/传输点组内,进行每层的SCI所在极化方向的差分量化Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点组均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点组内第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
可选地,若频域基向量和非零系数采用所有层联合上报的方式,则上述方案将针对所有层进行联合差分,即2*Li*Mi个非零系数。
例二:
Step1:终端接收CSI码本配置参数。具体地,基站可由系统预定义或高层信令的方式指示给终端。
一种高层信令的方式可通过单一空域波束数目总和,压缩基向量因子以及非零系数个数因子等组合配置。
一种高层信令的方式可通过空域波束总和数目单独配置。
Step2:终端得到单一空域波束数目指示,并根据单一的空域波束配置信息确定获取空域波束数量配置信息X,确定每个传输点/传输点组的空域波束数量L1=L2=…=Li=X/i。其中,i为多点协作中全部传输点/传输点组数量。
Step3:终端根据单一的频域基向量配置信息获取频域基向量数量配置信息Y,并确定每个传输点/传输点组的空域波束数量M1=M2=…=Mi=(Y*N3)/(R*i)。其中,i为多点协作中全部传输点/传输点组数量。
方式1:基于高层信令或预定义的方式进行配置可CSI上报的全部传输点/传输点组数量i。
方式2:基于CSI资源或端口组数量隐式确定可CSI上报的全部传输点/传输点组数量i。
方式3:基于基站配置的最大全部传输点/传输点组数量j,终端自行计算当前CSI上报的全部传输点/传输点组数量i
Step4:终端上报i个空域波束信息,基站根据表27确实每个空域波束的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
方式1:O1O2组块与组块内的L个波束分开选择,如表27所示。
表27
方式2:全部传输点/组上报一个O1O2组块,组块内的L个波束分开选择,如表28所示。
表28

Step5-1:终端上报i个频域基向量信息,基站根据表29确实每个空域波束的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表29所示。
表29
若终端可以针对全部数据传输层进行统一联合上报,如表30所示。
表30
Step5-2:终端上报1个联合频域基向量信息,基站根据表31确实每个频域参数的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表31所示。
表31
若终端可以针对全部数据传输层进行统一联合上报,如表32所示。
表32
可选地,终端还可以上报不同传输点/传输点组的频域基向量的偏移值i1,8
Step6:终端根据系统预定义或基站端配置的初始码本参数配置信息中的非零系数数量指示,以及确定的全部传输点/传输点组的频域基向量信息,终端可以根据以下方式上报基于CJT假设下的多点联合最强系数索引。
可选地,上报的频域基向量信息,可针对每个数据传输层进行单独上报,也可以针对全部数据传输层进行统一联合上报。
Step6-1:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报每个传输点的SCI
Step6-2:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报每个传输点组的SCI,针对传输点组内,每个传输点之间联合上报非零系数,并上报一个SCI。
Step6-3:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报第一传输点的SCI
Step6-4:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报第一传输点组内第一传输点的SCI,针对传输点组内,每个传输点之间联合上报非零系数。
Step7:终端根据确定的全部非零系数,并基于下述量化方案对全部非零系数进行差分量化:
针对每个数据层,每个传输点/传输点组均存在2*Li*Mi个非零 系数。其中先根据每个传输点/传输点组内,进行每层的SCI所在极化方向的差分量化Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点组均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点组内第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
可选地,若频域基向量和非零系数采用所有层联合上报的方式,则上述方案将针对所有层进行联合差分,即2*Li*Mi个非零系数。
例三:
Step1:终端接收CSI码本配置参数。具体地,基站可由系统预定义或高层信令的方式指示给终端。
一种高层信令的方式可通过单一空域波束数目总和,压缩基向量因子以及非零系数个数因子等组合配置。
一种高层信令的方式可通过空域波束总和数目单独配置。
Step2:终端得到单一空域波束数目指示,并根据单一的空域波束配置信息确定获取空域波束数量配置信息X,并基于下述示例方法分别确定每个传输点/传输点组的空域波束数量L1=L2=…=Li。其中,i为多点协作中全部传输点/传输点组数量。
Step3:终端根据单一的空域波束配置信息获取频域波束数量配置信息Y,并自行确定每个传输点/传输点组的空域波束数量M1=M2=…=Mi。其中,i为多点协作中全部传输点/传输 点组数量。
多点协作中全部传输点/传输点组数量i的确定方法
方式1:基于高层信令或预定义的方式进行配置可CSI上报的全部传输点/传输点组数量i。
方式2:基于CSI资源或端口组数量隐式确定可CSI上报的全部传输点/传输点组数量i。
方式3:基于基站配置的最大全部传输点/传输点组数量j,终端自行计算当前CSI上报的全部传输点/传输点组数量i
每个传输点数目分配方法:
方法1:终端确定全部传输点总和X,并基于上述方式确定上报传输点数目i。基于不同传输点到当前终端的信道估计Hi。并以传输点RSRP最高为循环动态选择空域波束数目,每个传输点的空域波束数目取值范围为0<=Li<=X。
Step3:终端上报i个空域波束信息,基站根据表33确实每个空域波束的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
可选地,终端在上报空域推荐波束信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的空域波束分配结果。其中,全部传输点/组上报一个O1O2组块,组块内的L个波束分开选择,如表33所示。
表33
可选地,终端在上报空域推荐波束信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的空域波束分配结果。其中,全部传输点/组分别上报O1O2组块,组块内的L个波束分开选择,如表34所示。
表34
可选地,终端在上报空域推荐波束信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的空域波束分配结果,如表35所示。
表35
分配方式的上报:
可选地,终端在上报频域推荐基向量信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的频域推荐基向量分配结果。
可选地,终端在上报空域推荐波束信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的频域推荐基向量数量分配结果。
可选地,终端还可以上报不同传输点/传输点组的频域基向量的偏移值i1,8
Step6:终端根据系统预定义或基站端配置的初始码本参数配置信息中的非零系数数量指示,以及确定的全部传输点/传输点组的频域基向量信息,终端可以根据以下方式上报基于CJT假设下的多点联合最强系数索引。
可选地,上报的频域基向量信息,可针对每个数据传输层进行单独上报,也可以针对全部数据传输层进行统一联合上报。
Step6-1:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报每个传输点的SCI
Step6-2:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报每个传输点组的SCI,针对传输点组内,每个传输点之间联合上报非零系数,并上报一个SCI。
Step6-3:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报第一传输点的SCI
Step6-4:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报第一传输点组内第一传输点的SCI,针对传输点组内,每个传输点之间联合上报非零系数。
Step7:终端根据确定的全部非零系数,并基于下述量化方案对全部非零系数进行差分量化:
针对每个数据层,每个传输点/传输点组均存在2*Li*Mi个非零系数。其中先根据每个传输点/传输点组内,进行每层的SCI所在极化方向的差分量化Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点组均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点组内第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
可选地,若频域基向量和非零系数采用所有层联合上报的方式,则上述方案将针对所有层进行联合差分,即2*Li*Mi个非零系数
例四:
Step1:终端接收CSI码本配置参数。具体地,基站可由系统预定义或高层信令的方式指示给终端。
一种高层信令的方式可通过多个空域波束数目,压缩基向量因子以及非零系数个数因子等组合配置。
一种高层信令的方式可通过多个空域波束数目单独配置。
可选地,多个码本配置参数分别对应多个传输点/传输点组。
Step2:终端得到多个空域波束数目指示,并根据多个的空域波束配置信息确定获取空域波束数量配置信息Xi,并确定每个传输点/传输点组的空域波束数量Li=Xi。其中,i为多点协作中全部传输点/传输点组数量。
Step 3:终端根据多个的频域基向量配置信息确定全部传输点/传输点组的频域推荐基向量配置因子,并上报全部传输点/传输点组的频域推荐基向量。
方式2-1:终端根据多个的空域波束配置信息获取频域推荐基向量配置信息Y1,Y2…Yj,并确定每个传输点/传输点组的频域推荐基向量M1=Y1,M2=Y2…,Mi=Yi。其中,i为多点协作中上报的全部传输点/传输点组数量。
方式1:基于高层信令或预定义的方式进行配置可CSI上报的全部传输点/传输点组数量i。
方式2:基于CSI资源或端口组数量隐式确定可CSI上报的全部传输点/传输点组数量i。
方式3:基于基站配置的最大全部传输点/传输点组数量j,终端自行计算当前CSI上报的全部传输点/传输点组数量i
Step4:终端上报i个空域波束信息,基站根据表36确实每个空域波束的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
方式1:O1O2组块与组块内的L个波束分开选择,如表36所示。
表36
方式2:全部传输点/组上报一个O1O2组块,组块内的L个波束分开选择,如表37所示。
表37
Step5:终端上报i个频域波束信息,基站根据表38确实每个频域波束的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表38所示。
表38
若终端可以针对全部数据传输层进行统一联合上报,如表39所示。
表39
分配方式的上报:
可选地,终端在上报频域推荐基向量信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的频域推荐基向量分配结果。
可选地,终端在上报空域推荐波束信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的频域推荐基向量数量分配结果。
可选地,终端还可以上报不同传输点/传输点组的频域基向量的偏移值i1,8
Step6:终端根据系统预定义或基站端配置的初始码本参数配置信息中的非零系数数量指示,以及确定的全部传输点/传输点组的频域基向量信息,终端可以根据以下方式上报基于CJT假设下的多点联合最强系数索引。
可选地,上报的频域基向量信息,可针对每个数据传输层进行单独上报,也可以针对全部数据传输层进行统一联合上报。
Step6-1:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报每个传输点的SCI
Step6-2:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报每个传输点组的SCI,针对传输点组内,每个传输点之间联合上报非零系数,并上报一个SCI。
Step6-3:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报第一传输点的SCI
Step6-4:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报第一传输点组内第一传输点的SCI,针对传输点组内,每个传输点之间联合上报非零系数。
Step7:终端根据确定的全部非零系数,并基于下述量化方案对全部非零系数进行差分量化:
针对每个数据层,每个传输点/传输点组均存在2*Li*Mi个非零系数。其中先根据每个传输点/传输点组内,进行每层的SCI所在极化方向的差分量化Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点均存在2*Li*Mi个非零系数。其 中所有传输点内均根据进行每层的第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点组均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点组内第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
例五:
Step1:终端接收CSI码本配置参数。具体地,基站可由系统预定义或高层信令的方式指示给终端。
一种高层信令的方式可通过多个空域波束数目,压缩基向量因子以及非零系数个数因子等组合配置。
一种高层信令的方式可通过多个空域波束数目单独组合配置在信令内,包括但不限于表40所示。
表40
一种高层信令的方式可通过多个频域基向量因子单独组合配置在信令内,包括但不限于表41所示。
表41

一种高层信令的方式可通过多个空域波束/频域基向量因子联合组合配置在信令内,包括但不限于表42所示。
表42
Step2:终端得到组合波束指示,并根据组合空域波束配置信息确定一个最优空域波束数量配置配置如表42配置4,并确定每个传输点/传输点组的空域波束数量2。其中,i为多点协作中全部传输点/传输点组数量,选择表42最优配置也隐式选择了推荐传输点个数i。
方式1:基于高层信令或预定义的方式进行配置可CSI上报的全部传输点/传输点组数量i。
方式2:基于CSI资源或端口组数量隐式确定可CSI上报的全部传输点/传输点组数量i。
方式3:基于基站配置的最大全部传输点/传输点组数量j,终端自行计算当前CSI上报的全部传输点/传输点组数量i
Step3:终端上报i个空域波束信息,基站根据表43确实每个空域波束的开销比特宽度,并确定全部传输点/传输点组的开销比特宽度。
可选地,终端在上报空域推荐波束信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的空域配置信息的额外组合 信息i1,3,如表43所示。
表43
可选地,终端在上报空域推荐波束信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的空域配置信息的额外组合结果,如表44所示。
表44
可选地,全部传输点/传输点组的频域配置信息的额外组合指示信息可由预定义方式,高层信令以及动态DCI指示信令进行配置。
可选地,终端可通过额外组合指示信息确定多种候选Lj分配方式,并根据当前测量数量i推荐上报一种全部传输点/传输点组的频域配置信息的额外组合信息i1,3。
可选地,终端在上报频域推荐基向量信息外,可在PMI上报中的field1中增加上报全部传输点/传输点组的频域配置信息的额外组合信息i1,8
可选地,基站的配置或预定义信息,若终端针对每个数据传输层进行单独上报,如表45所示。
表45
若终端可以针对全部数据传输层进行统一联合上报,如表46所示。
表46
可选地,终端在上报频域推荐基向量信息外,可在CSI上报中的part1中增加上报全部传输点/传输点组的频域配置信息的额外组合结果,如表47所示。
表47
可选地,终端还可以上报不同传输点/传输点组的频域基向量的偏移值i1,8
Step6:终端根据系统预定义或基站端配置的初始码本参数配置信息中的非零系数数量指示,以及确定的全部传输点/传输点组的频域基向量信息,终端可以根据以下方式上报基于CJT假设下的多点联合最强系数索引。
可选地,上报的频域基向量信息,可针对每个数据传输层进行单独上报,也可以针对全部数据传输层进行统一联合上报。
Step6-1:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报每个传输点的SCI
Step6-2:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报每个传输点组的 SCI,针对传输点组内,每个传输点之间联合上报非零系数,并上报一个SCI。
Step6-3:终端基于非零系数数量指示上报每个传输点的推荐上报非零系数,并在每个传输点内的非零系数中上报第一传输点的SCI
Step6-4:终端基于非零系数数量指示上报每个传输点组的推荐上报非零系数,并在每个传输点组的非零系数中上报第一传输点组内第一传输点的SCI,针对传输点组内,每个传输点之间联合上报非零系数。
Step7:终端根据确定的全部非零系数,并基于下述量化方案对全部非零系数进行差分量化:
针对每个数据层,每个传输点/传输点组均存在2*Li*Mi个非零系数。其中先根据每个传输点/传输点组内,进行每层的SCI所在极化方向的差分量化Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
针对每个数据层,每个传输点组均存在2*Li*Mi个非零系数。其中所有传输点内均根据进行每层的第一传输点组内第一传输点的SCI所在极化方向的差分量化i*Li*Mi-1个非零系数,再进行另一极化方向的针对第一极化方向的差分量化Li*Mi个非零系数。
可选地,若频域基向量和非零系数采用所有层联合上报的方式,则上述方案将针对所有层进行联合差分,即2*Li*Mi个非零系数。
本公开实施例,可以实现针对多点协作传输方案假设下的联合码本参数上报,提高了系统的可靠性,并保证一定的反馈开销。
图3是本公开实施例提供的一种终端的结构示意图,如图3所示, 所述终端包括存储器320,收发机300,处理器310,其中:
存储器320,用于存储计算机程序;收发机300,用于在所述处理器310的控制下收发数据;处理器310,用于读取所述存储器320中的计算机程序并执行以下操作:
确定初始码本参数配置信息;
基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数;
上报多点联合相干传输方式下的码本参数。
具体地,收发机300,用于在处理器310的控制下接收和发送数据。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器310代表的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机300可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器310负责管理总线架构和通常的处理,存储器320可以存储处理器310在执行操作时所使用的数据。
在一些实施例中,处理器310可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
在一些实施例中,所述初始码本参数配置信息是预定义的或网络设备配置的。
在一些实施例中,在所述初始码本参数配置信息为空域波束数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一空域波束数量X的情况下,基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量;或,
在所述初始码本参数配置信息为多个空域波束数量的情况下,基于所述多个空域波束数量确定多点联合相干传输方式下的多个空域波束数量,其中,第i个空域波束数量为Li,Li=Xi,Xi为所述初始码本参数配置信息中的第i个空域波束数量;或,
在所述初始码本参数配置信息为第一索引的情况下,基于所述第一索引确定多点联合相干传输方式下的多个空域波束数量;所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X;或,
确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X/I,I为所述多个空域波束数量的数量;或,
确定第i个空域波束数量,第i个空域波束数量为Li,I为所述多个空域波束数量的数量。
在一些实施例中,所述确定第i个空域波束数量,包括:
基于第i个信道估计信息确定第i个空域波束数量。
在一些实施例中,在所述初始码本参数配置信息为频域基向量数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一频域基向量数量Y的情况下,基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量;或,
在所述初始码本参数配置信息为多个频域基向量数量的情况下,基于所述多个频域基向量数量确定多点联合相干传输方式下的多个频域基向量数量,其中,第i个频域基向量数量为Mi,Mi=Yi,Yi为所述初始码本参数配置信息中的第i个频域基向量数量;或,
在所述初始码本参数配置信息为第二索引的情况下,基于所述第二索引确定多点联合相干传输方式下的多个频域基向量数量;所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为Y*N3/R,N3为当前PMI子带大小,R为子带因子;或,
确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为(Y*N3)/(R*I),N3为当前PMI子带大小,R为子带因子,I为所述多个频域基向量数量的数量;或,
确定第i个频域基向量数量,第i个频域基向量数量为Mi,I为所述多个频域基向量数量的数量。
在一些实施例中,所述上报多点联合相干传输方式下的码本参数,包括:
上报一个频域基向量;或,
上报多个频域基向量。
在一些实施例中,在所述初始码本参数配置信息为非零系数数量指示的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
基于所述非零系数数量指示确定多点联合相干传输方式下的多个非零系数数量。
在一些实施例中,所述上报多点联合相干传输方式下的码本参数,包括:
上报多个非零系数和多个最强系数索引;或,
上报多个非零系数,并上报一个最强系数索引。
在一些实施例中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
对非零系数进行差分量化。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述执行主体为终端的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图4是本公开实施例提供的一种网络设备的结构示意图,如图4所示,所述网络设备包括存储器420,收发机400,处理器410,其中:
存储器420,用于存储计算机程序;收发机400,用于在所述处理器410的控制下收发数据;处理器410,用于读取所述存储器420中的计算机程序并执行以下操作:
接收终端上报的码本参数;
基于初始码本参数配置信息解析所述码本参数。
具体地,收发机400,用于在处理器410的控制下接收和发送数据。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器410代表的一个或多个处理器和存储器420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机400可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器410负责管理总线架构和通常的处理,存储器420可以存储处理器410在执行操作时所使用的数据。
处理器410可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
在一些实施例中,所述初始码本参数配置信息是预定义的或所述网络设备配置的。
在一些实施例中,所述初始码本参数配置信息包括以下信息中的一种或多种:
空域波束数量;
频域基向量数量;或,
非零系数数量指示。
在一些实施例中,所述空域波束数量包括以下一种或多种:
单一空域波束数量;
多个空域波束数量;或,
第一索引,所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述频域基向量数量包括以下一种或多种:
单一频域基向量数量;
多个频域基向量数量;或,
第二索引,所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述基于初始码本参数配置信息解析所述码本参数,包括:
基于所述初始码本参数配置信息,确定每一码本参数的比特宽度;
基于所述比特宽度解析所述码本参数。
具体地,本公开实施例提供的上述网络设备,能够实现上述执行主体为网络设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图5是本公开实施例提供的一种码本参数传输装置的结构示意图之一,如图5所示,本公开实施例提供一种码本参数传输装置,包括第一确定模块501、第二确定模块502和第一传输模块503,其中:
第一确定模块501用于确定初始码本参数配置信息;
第二确定模块502用于基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数;
第一传输模块503用于上报多点联合相干传输方式下的码本参数。
在一些实施例中,所述初始码本参数配置信息是预定义的或网络设备配置的。
在一些实施例中,在所述初始码本参数配置信息为空域波束数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一空域波束数量X的情况下,基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量;或,
在所述初始码本参数配置信息为多个空域波束数量的情况下,基于所述多个空域波束数量确定多点联合相干传输方式下的多个空域 波束数量,其中,第i个空域波束数量为Li,Li=Xi,Xi为所述初始码本参数配置信息中的第i个空域波束数量;或,
在所述初始码本参数配置信息为第一索引的情况下,基于所述第一索引确定多点联合相干传输方式下的多个空域波束数量;所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X;或,
确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X/I,I为所述多个空域波束数量的数量;或,
确定第i个空域波束数量,第i个空域波束数量为Li,I为所述多个空域波束数量的数量。
在一些实施例中,所述确定第i个空域波束数量,包括:
基于第i个信道估计信息确定第i个空域波束数量。
在一些实施例中,在所述初始码本参数配置信息为频域基向量数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
在所述初始码本参数配置信息为单一频域基向量数量Y的情况下,基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量;或,
在所述初始码本参数配置信息为多个频域基向量数量的情况下,基于所述多个频域基向量数量确定多点联合相干传输方式下的多个频域基向量数量,其中,第i个频域基向量数量为Mi,Mi=Yi,Yi为所述初始码本参数配置信息中的第i个频域基向量数量;或,
在所述初始码本参数配置信息为第二索引的情况下,基于所述第二索引确定多点联合相干传输方式下的多个频域基向量数量;所述第 二索引用于指示多个频域基向量数量。
在一些实施例中,所述基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为Y*N3/R,N3为当前PMI子带大小,R为子带因子;或,
确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为(Y*N3)/(R*I),N3为当前PMI子带大小,R为子带因子,I为所述多个频域基向量数量的数量;或,
确定第i个频域基向量数量,第i个频域基向量数量为Mi,I为所述多个频域基向量数量的数量。
在一些实施例中,所述上报多点联合相干传输方式下的码本参数,包括:
上报一个频域基向量;或,
上报多个频域基向量。
在一些实施例中,在所述初始码本参数配置信息为非零系数数量指示的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
基于所述非零系数数量指示确定多点联合相干传输方式下的多个非零系数数量。
在一些实施例中,所述上报多点联合相干传输方式下的码本参数,包括:
上报多个非零系数和多个最强系数索引;或,
上报多个非零系数,并上报一个最强系数索引。
在一些实施例中,所述装置还包括量化模块;
所述量化模块用于对非零系数进行差分量化。
具体地,本公开实施例提供的上述码本参数传输装置,能够实现 上述执行主体为终端的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图6是本公开实施例提供的一种码本参数传输装置的结构示意图之二,如图6所示,本公开实施例提供一种码本参数传输装置,包括第二传输模块601和解析模块602,其中:
第二传输模块601用于接收终端上报的码本参数;
解析模块602用于基于初始码本参数配置信息解析所述码本参数。
在一些实施例中,所述初始码本参数配置信息是预定义的或网络设备配置的。
在一些实施例中,所述初始码本参数配置信息包括以下信息中的一种或多种:
空域波束数量;
频域基向量数量;或,
非零系数数量指示。
在一些实施例中,所述空域波束数量包括以下一种或多种:
单一空域波束数量;
多个空域波束数量;或,
第一索引,所述第一索引用于指示多个空域波束数量。
在一些实施例中,所述频域基向量数量包括以下一种或多种:
单一频域基向量数量;
多个频域基向量数量;或,
第二索引,所述第二索引用于指示多个频域基向量数量。
在一些实施例中,所述基于初始码本参数配置信息解析所述码本参数,包括:
基于所述初始码本参数配置信息,确定每一码本参数的比特宽度;
基于所述比特宽度解析所述码本参数。
具体地,本公开实施例提供的上述码本参数传输装置,能够实现上述执行主体为网络设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开上述各实施例中对单元/模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在一些实施例中,还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行上述各方法实施例提供的码本参数传输方法。
具体地,本公开实施例提供的上述计算机可读存储介质,能够实现上述各方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进 行具体赘述。
需要说明的是:所述计算机可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
另外需要说明的是:本公开实施例中术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication  system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空 中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
本公开中的“基于A确定B”表示确定B时要考虑A这个因素。并不限于“只基于A就可以确定出B”,还应包括:“基于A和C确定B”、“基于A、C和E确定B”、基于“A确定C,基于C进一步确定B”等。另外还可以包括将A作为确定B的条件,例如,“当A满足第一条件时,使用第一方法确定B”;再例如,“当A满足第二条件时,确定B”等;再例如,“当A满足第三条件时,基于第一参数确定B”等。当然也可以是将A作为确定B的因素的条件,例如,“当A满足第一条件时,使用第一方法确定C,并进一步基于C确定B”等。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以 是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方 框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (52)

  1. 一种码本参数传输方法,包括:
    终端确定初始码本参数配置信息;
    所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数;
    所述终端上报多点联合相干传输方式下的码本参数。
  2. 根据权利要求1所述的码本参数传输方法,其中,所述初始码本参数配置信息是预定义的或网络设备配置的。
  3. 根据权利要求1或2所述的码本参数传输方法,其中,在所述初始码本参数配置信息为空域波束数量的情况下,所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
    在所述初始码本参数配置信息为单一空域波束数量X的情况下,所述终端基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量;或,
    在所述初始码本参数配置信息为多个空域波束数量的情况下,所述终端基于所述多个空域波束数量确定多点联合相干传输方式下的多个空域波束数量,其中,第i个空域波束数量为Li,Li=Xi,Xi为所述初始码本参数配置信息中的第i个空域波束数量;或,
    在所述初始码本参数配置信息为第一索引的情况下,所述终端基于所述第一索引确定多点联合相干传输方式下的多个空域波束数量;所述第一索引用于指示多个空域波束数量。
  4. 根据权利要求3所述的码本参数传输方法,其中,所述终端基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
    所述终端确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X;或,
    所述终端确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X/I,I为所述多个空域波束数量的数量;或,
    所述终端确定第i个空域波束数量,第i个空域波束数量为Li,I为所述多个空域波束数量的数量。
  5. 根据权利要求4所述的码本参数传输方法,其中,所述终端确定第i个空域波束数量,包括:
    所述终端基于第i个信道估计信息确定第i个空域波束数量。
  6. 根据权利要求1或2所述的码本参数传输方法,其中,在所述初始码本参数配置信息为频域基向量数量的情况下,所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
    在所述初始码本参数配置信息为单一频域基向量数量Y的情况下,所述终端基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量;或,
    在所述初始码本参数配置信息为多个频域基向量数量的情况下,所述终端基于所述多个频域基向量数量确定多点联合相干传输方式下的多个频域基向量数量,其中,第i个频域基向量数量为Mi,Mi=Yi,Yi为所述初始码本参数配置信息中的第i个频域基向量数量;或,
    在所述初始码本参数配置信息为第二索引的情况下,所述终端基于所述第二索引确定多点联合相干传输方式下的多个频域基向量数量;所述第二索引用于指示多个频域基向量数量。
  7. 根据权利要求6所述的码本参数传输方法,其中,所述终端基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
    所述终端确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为Y*N3/R,N3为当前预编码指示PMI子带大小,R为子带因子;或,
    所述终端确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为(Y*N3)/(R*I),N3为当前PMI子带大小,R为子带因子,I为所述多个频域基向量数量的数量;或,
    所述终端确定第i个频域基向量数量,第i个频域基向量数量为Mi,I为所述多个频域基向量数量的数量。
  8. 根据权利要求7所述的码本参数传输方法,其中,所述终端上报多点联合相干传输方式下的码本参数,包括:
    所述终端上报一个频域基向量;或,
    所述终端上报多个频域基向量。
  9. 根据权利要求1或2所述的码本参数传输方法,其中,在所述初始码本参数配置信息为非零系数数量指示的情况下,所述终端基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
    所述终端基于所述非零系数数量指示确定多点联合相干传输方式下的多个非零系数数量。
  10. 根据权利要求9所述的码本参数传输方法,其中,所述终端上报多点联合相干传输方式下的码本参数,包括:
    所述终端上报多个非零系数和多个最强系数索引;或,
    所述终端上报多个非零系数,并上报一个最强系数索引。
  11. 根据权利要求10所述的码本参数传输方法,其中,所述方法还包括:
    所述终端对非零系数进行差分量化。
  12. 一种码本参数传输方法,包括:
    网络设备接收终端上报的码本参数;
    所述网络设备基于初始码本参数配置信息解析所述码本参数。
  13. 根据权利要求12所述的码本参数传输方法,其中,所述初始码本参数配置信息是预定义的或所述网络设备配置的。
  14. 根据权利要求12所述的码本参数传输方法,其特征在于,所述初始码本参数配置信息包括以下信息中的一种或多种:
    空域波束数量;
    频域基向量数量;或,
    非零系数数量指示。
  15. 根据权利要求14所述的码本参数传输方法,其中,所述空域波束数量包括以下一种或多种:
    单一空域波束数量;
    多个空域波束数量;或,
    第一索引,所述第一索引用于指示多个空域波束数量。
  16. 根据权利要求14所述的码本参数传输方法,其中,所述频域基向量数量包括以下一种或多种:
    单一频域基向量数量;
    多个频域基向量数量;或,
    第二索引,所述第二索引用于指示多个频域基向量数量。
  17. 根据权利要求12至16中的任一项所述的码本参数传输方法,其中,所述网络设备基于初始码本参数配置信息解析所述码本参数,包括:
    所述网络设备基于所述初始码本参数配置信息,确定每一码本参数的比特宽度;
    基于所述比特宽度解析所述码本参数。
  18. 一种终端,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定初始码本参数配置信息;
    基于所述初始码本参数配置信息,确定多点联合相干传输方式下 的码本参数;
    上报多点联合相干传输方式下的码本参数。
  19. 根据权利要求18所述的终端,其中,所述初始码本参数配置信息是预定义的或网络设备配置的。
  20. 根据权利要求18或19所述的终端,其中,在所述初始码本参数配置信息为空域波束数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
    在所述初始码本参数配置信息为单一空域波束数量X的情况下,基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量;或,
    在所述初始码本参数配置信息为多个空域波束数量的情况下,基于所述多个空域波束数量确定多点联合相干传输方式下的多个空域波束数量,其中,第i个空域波束数量为Li,Li=Xi,Xi为所述初始码本参数配置信息中的第i个空域波束数量;或,
    在所述初始码本参数配置信息为第一索引的情况下,基于所述第一索引确定多点联合相干传输方式下的多个空域波束数量;所述第一索引用于指示多个空域波束数量。
  21. 根据权利要求20所述的终端,其中,所述基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
    确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X;或,
    确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X/I,I为所述多个空域波束数量的数量;或,
    确定第i个空域波束数量,第i个空域波束数量为Li,I为所述多个空域波束数量的数量。
  22. 根据权利要求21所述的终端,其中,所述确定第i个空域 波束数量,包括:
    基于第i个信道估计信息确定第i个空域波束数量。
  23. 根据权利要求18或19所述的终端,其中,在所述初始码本参数配置信息为频域基向量数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
    在所述初始码本参数配置信息为单一频域基向量数量Y的情况下,基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量;或,
    在所述初始码本参数配置信息为多个频域基向量数量的情况下,基于所述多个频域基向量数量确定多点联合相干传输方式下的多个频域基向量数量,其中,第i个频域基向量数量为Mi,Mi=Yi,Yi为所述初始码本参数配置信息中的第i个频域基向量数量;或,
    在所述初始码本参数配置信息为第二索引的情况下,基于所述第二索引确定多点联合相干传输方式下的多个频域基向量数量;所述第二索引用于指示多个频域基向量数量。
  24. 根据权利要求23所述的终端,其中,所述基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
    确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为Y*N3/R,N3为当前PMI子带大小,R为子带因子;或,
    确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为(Y*N3)/(R*I),N3为当前PMI子带大小,R为子带因子,I为所述多个频域基向量数量的数量;或,
    确定第i个频域基向量数量,第i个频域基向量数量为Mi,I为所述多个频域基向量数量的数量。
  25. 根据权利要求24所述的终端,其中,所述上报多点联合相 干传输方式下的码本参数,包括:
    上报一个频域基向量;或,
    上报多个频域基向量。
  26. 根据权利要求18或19所述的终端,其中,在所述初始码本参数配置信息为非零系数数量指示的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
    基于所述非零系数数量指示确定多点联合相干传输方式下的多个非零系数数量。
  27. 根据权利要求26所述的终端,其中,所述上报多点联合相干传输方式下的码本参数,包括:
    上报多个非零系数和多个最强系数索引;或,
    上报多个非零系数,并上报一个最强系数索引。
  28. 根据权利要求27所述的终端,其中,所述处理器还用于读取所述存储器中的计算机程序并执行以下操作:
    对非零系数进行差分量化。
  29. 一种网络设备,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收终端上报的码本参数;
    基于初始码本参数配置信息解析所述码本参数。
  30. 根据权利要求29所述的网络设备,其中,所述初始码本参数配置信息是预定义的或所述网络设备配置的。
  31. 根据权利要求29所述的网络设备,其中,所述初始码本参数配置信息包括以下信息中的一种或多种:
    空域波束数量;
    频域基向量数量;或,
    非零系数数量指示。
  32. 根据权利要求31所述的网络设备,其中,所述空域波束数量包括以下一种或多种:
    单一空域波束数量;
    多个空域波束数量;或,
    第一索引,所述第一索引用于指示多个空域波束数量。
  33. 根据权利要求31所述的网络设备,其中,所述频域基向量数量包括以下一种或多种:
    单一频域基向量数量;
    多个频域基向量数量;或,
    第二索引,所述第二索引用于指示多个频域基向量数量。
  34. 根据权利要求29至33中的任一项所述的网络设备,其中,所述基于初始码本参数配置信息解析所述码本参数,包括:
    基于所述初始码本参数配置信息,确定每一码本参数的比特宽度;
    基于所述比特宽度解析所述码本参数。
  35. 一种码本参数传输装置,包括:
    第一确定模块,用于确定初始码本参数配置信息;
    第二确定模块,用于基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数;
    第一传输模块,用于上报多点联合相干传输方式下的码本参数。
  36. 根据权利要求35所述的码本参数传输装置,其中,所述初始码本参数配置信息是预定义的或网络设备配置的。
  37. 根据权利要求35或36所述的码本参数传输装置,其中,在所述初始码本参数配置信息为空域波束数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
    在所述初始码本参数配置信息为单一空域波束数量X的情况下, 基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量;或,
    在所述初始码本参数配置信息为多个空域波束数量的情况下,基于所述多个空域波束数量确定多点联合相干传输方式下的多个空域波束数量,其中,第i个空域波束数量为Li,Li=Xi,Xi为所述初始码本参数配置信息中的第i个空域波束数量;或,
    在所述初始码本参数配置信息为第一索引的情况下,基于所述第一索引确定多点联合相干传输方式下的多个空域波束数量;所述第一索引用于指示多个空域波束数量。
  38. 根据权利要求37所述的码本参数传输装置,其中,所述基于所述单一空域波束数量X确定多点联合相干传输方式下的多个空域波束数量,包括:
    确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X;或,
    确定所述多个空域波束数量中的每一空域波束数量,每一空域波束数量均为X/I,I为所述多个空域波束数量的数量;或,
    确定第i个空域波束数量,第i个空域波束数量为Li,I为所述多个空域波束数量的数量。
  39. 根据权利要求38所述的码本参数传输装置,其中,所述确定第i个空域波束数量,包括:
    基于第i个信道估计信息确定第i个空域波束数量。
  40. 根据权利要求35或36所述的码本参数传输装置,其中,在所述初始码本参数配置信息为频域基向量数量的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
    在所述初始码本参数配置信息为单一频域基向量数量Y的情况下,基于所述单一频域基向量数量Y确定多点联合相干传输方式下 的多个频域基向量数量;或,
    在所述初始码本参数配置信息为多个频域基向量数量的情况下,基于所述多个频域基向量数量确定多点联合相干传输方式下的多个频域基向量数量,其中,第i个频域基向量数量为Mi,Mi=Yi,Yi为所述初始码本参数配置信息中的第i个频域基向量数量;或,
    在所述初始码本参数配置信息为第二索引的情况下,基于所述第二索引确定多点联合相干传输方式下的多个频域基向量数量;所述第二索引用于指示多个频域基向量数量。
  41. 根据权利要求40所述的码本参数传输装置,其中,所述基于所述单一频域基向量数量Y确定多点联合相干传输方式下的多个频域基向量数量,包括:
    确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为Y*N3/R,N3为当前PMI子带大小,R为子带因子;或,
    确定所述多个频域基向量数量中的每一频域基向量数量,每一频域基向量数量均为(Y*N3)/(R*I),N3为当前PMI子带大小,R为子带因子,I为所述多个频域基向量数量的数量;或,
    确定第i个频域基向量数量,第i个频域基向量数量为Mi,I为所述多个频域基向量数量的数量。
  42. 根据权利要求41所述的码本参数传输装置,其中,所述上报多点联合相干传输方式下的码本参数,包括:
    上报一个频域基向量;或,
    上报多个频域基向量。
  43. 根据权利要求35或36所述的码本参数传输装置,其中,在所述初始码本参数配置信息为非零系数数量指示的情况下,所述基于所述初始码本参数配置信息,确定多点联合相干传输方式下的码本参数,包括:
    基于所述非零系数数量指示确定多点联合相干传输方式下的多个非零系数数量。
  44. 根据权利要求43所述的码本参数传输装置,其中,所述上报多点联合相干传输方式下的码本参数,包括:
    上报多个非零系数和多个最强系数索引;或,
    上报多个非零系数,并上报一个最强系数索引。
  45. 根据权利要求44所述的码本参数传输装置,其中,所述装置还包括量化模块;
    所述量化模块用于对非零系数进行差分量化。
  46. 一种码本参数传输装置,包括:
    第二传输模块,用于接收终端上报的码本参数;
    解析模块,用于基于初始码本参数配置信息解析所述码本参数。
  47. 根据权利要求46所述的码本参数传输装置,其中,所述初始码本参数配置信息是预定义的或网络设备配置的。
  48. 根据权利要求46所述的码本参数传输装置,其中,所述初始码本参数配置信息包括以下信息中的一种或多种:
    空域波束数量;
    频域基向量数量;或,
    非零系数数量指示。
  49. 根据权利要求48所述的码本参数传输装置,其中,所述空域波束数量包括以下一种或多种:
    单一空域波束数量;
    多个空域波束数量;或,
    第一索引,所述第一索引用于指示多个空域波束数量。
  50. 根据权利要求48所述的码本参数传输装置,其中,所述频域基向量数量包括以下一种或多种:
    单一频域基向量数量;
    多个频域基向量数量;或,
    第二索引,所述第二索引用于指示多个频域基向量数量。
  51. 根据权利要求46至50中的任一项所述的码本参数传输装置,其中,所述基于初始码本参数配置信息解析所述码本参数,包括:
    基于所述初始码本参数配置信息,确定每一码本参数的比特宽度;
    基于所述比特宽度解析所述码本参数。
  52. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行权利要求1至17中的任一项所述的码本参数传输方法。
PCT/CN2023/109796 2022-08-12 2023-07-28 码本参数传输方法、装置及存储介质 WO2024032387A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210969422.4 2022-08-12
CN202210969422.4A CN117639850A (zh) 2022-08-12 2022-08-12 码本参数传输方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024032387A1 true WO2024032387A1 (zh) 2024-02-15

Family

ID=89850804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109796 WO2024032387A1 (zh) 2022-08-12 2023-07-28 码本参数传输方法、装置及存储介质

Country Status (3)

Country Link
CN (1) CN117639850A (zh)
TW (1) TW202408303A (zh)
WO (1) WO2024032387A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726154A (zh) * 2019-03-21 2020-09-29 电信科学技术研究院有限公司 一种信道状态信息上报的方法和设备
CN112187324A (zh) * 2019-07-05 2021-01-05 大唐移动通信设备有限公司 一种信道状态信息反馈方法及装置
WO2021213656A1 (en) * 2020-04-23 2021-10-28 Nokia Technologies Oy Inter-transmission layer interference tracking for multi-transmission/reception points
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置
CN113992250A (zh) * 2019-02-15 2022-01-28 Oppo广东移动通信有限公司 一种码本信息处理方法、终端设备及网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992250A (zh) * 2019-02-15 2022-01-28 Oppo广东移动通信有限公司 一种码本信息处理方法、终端设备及网络设备
CN111726154A (zh) * 2019-03-21 2020-09-29 电信科学技术研究院有限公司 一种信道状态信息上报的方法和设备
CN112187324A (zh) * 2019-07-05 2021-01-05 大唐移动通信设备有限公司 一种信道状态信息反馈方法及装置
WO2021213656A1 (en) * 2020-04-23 2021-10-28 Nokia Technologies Oy Inter-transmission layer interference tracking for multi-transmission/reception points
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置

Also Published As

Publication number Publication date
CN117639850A (zh) 2024-03-01
TW202408303A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
TWI806329B (zh) 資訊上報、接收方法、終端設備及網路設備
US20210218442A1 (en) Communication method and apparatus, network device, terminal device, and system
WO2024032387A1 (zh) 码本参数传输方法、装置及存储介质
TWI803216B (zh) 碼本指示方法、裝置及存儲介質
WO2024066983A1 (zh) 信道状态信息的上报方法、终端及网络设备
WO2023208045A1 (zh) Csi上报的方法、终端、网络设备、装置及存储介质
WO2022206409A1 (zh) 信息上报方法、网络侧配置方法、装置、设备及存储介质
WO2024007854A1 (zh) 码本传输方法、装置及存储介质
WO2023202338A1 (zh) 信息传输方法、装置、终端、网络侧设备及介质
WO2023143086A1 (zh) 信号传输方法、装置及存储介质
WO2024067158A1 (zh) 信息确定方法、装置、终端及网络设备
WO2024032807A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022206371A1 (zh) 端口指示信息上报方法及终端
WO2022268141A1 (zh) 信道状态信息发送方法、接收方法及装置
TWI837633B (zh) 資訊上報方法、網路側配置方法、終端裝置、網路設備及記憶介質
WO2023207668A1 (zh) 一种物理上行共享信道的传输方法、设备及存储介质
WO2024032760A1 (zh) Csi报告方法、终端设备、网络设备及存储介质
WO2023208190A1 (zh) 信息确定方法及装置
WO2022206374A1 (zh) 数据传输方法、装置、设备以及存储介质
WO2024099294A1 (zh) 一种信息确定方法、装置及可读存储介质
WO2017193278A1 (zh) Csi-rs的配置方法、csi的反馈方法、装置以及通信系统
WO2024032699A1 (zh) Dmrs端口的确定方法、设备、装置及存储介质
WO2024067346A1 (zh) 信息传输方法、装置及存储介质
WO2023202693A1 (zh) 一种信息传输方法、装置、网络设备及终端
WO2022028599A1 (zh) 信息传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851608

Country of ref document: EP

Kind code of ref document: A1