WO2023011529A1 - 一种波束生效时间确定方法、装置、终端和网络设备 - Google Patents

一种波束生效时间确定方法、装置、终端和网络设备 Download PDF

Info

Publication number
WO2023011529A1
WO2023011529A1 PCT/CN2022/109981 CN2022109981W WO2023011529A1 WO 2023011529 A1 WO2023011529 A1 WO 2023011529A1 CN 2022109981 W CN2022109981 W CN 2022109981W WO 2023011529 A1 WO2023011529 A1 WO 2023011529A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
panel
effective time
signal resource
terminal
Prior art date
Application number
PCT/CN2022/109981
Other languages
English (en)
French (fr)
Inventor
骆亚娟
李辉
高秋彬
陈润华
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111157481.3A external-priority patent/CN115884406A/zh
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023011529A1 publication Critical patent/WO2023011529A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of wireless technologies, and in particular to a method, device, terminal and network equipment for determining beam effective time.
  • the relevant beam effective time does not consider the problem of the beam effective time when the terminal has multiple transmission panels (panels). Specifically, when the terminal has multiple uplink sending/receiving panels, but supports only one panel for uplink sending/receiving at the same time, if the new beam indicated by the network device through the downlink control information (Downlink Control Information, DCI) is not in When the terminal is on the active and transmitting panel, the required beam activation time is too long.
  • DCI Downlink Control Information
  • Embodiments of the present disclosure provide a beam effective time determination method, device, terminal and network device to solve the problem that the required beam effective time is too long question.
  • an embodiment of the present disclosure provides a method for determining a beam effective time, which is executed by a terminal, and the method includes:
  • the beam effective time is the preset first beam effective time or the preset second beam effective time
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the method also includes:
  • sending reference signal resource information to the network device includes:
  • Report N reference signal resource indexes and corresponding layer 1 reference signal received power L1-RSRP values according to the report set report setting configured by the network device; N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • reporting the N reference signal resource indexes includes:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • reporting the N reference signal resource indexes includes:
  • determining that the beam effective time is the preset first beam effective time or the preset second beam effective time includes:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • determining that the beam activation time is the preset first beam activation time or the preset second beam activation time includes:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the method also includes:
  • the reference signal is a quasi-co-location type D QCL type-D type reference signal.
  • the method further includes:
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are reported by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • an embodiment of the present disclosure further provides a method for determining a beam effective time, which is performed by a network device, and the method includes:
  • the beam effective time is the preset first beam effective time or the preset second beam effective time
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the method also includes:
  • receiving the reference signal resource information sent by the terminal includes:
  • N N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • receiving the N reference signal resource indexes sent by the terminal includes:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • receiving the N reference signal resource indexes sent by the terminal includes:
  • the receiving terminal respectively reports the number of terminal transmission panel panels and at least one reference signal resource index corresponding to the transmission panel identity panel ID.
  • updating the transmission configuration indication state TCI state according to the reference signal resource information includes:
  • determining that the beam effective time is the preset first beam effective time or the preset second beam effective time includes:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • determining that the beam activation time is the preset first beam activation time or the preset second beam activation time includes:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the method also includes:
  • the downlink signal or channel is transmitted according to the transmission beam corresponding to the reference signal, or the uplink signal or channel is received according to the reception beam corresponding to the reference signal.
  • the reference signal is a co-location type DQCL type-D type reference signal.
  • the method further includes:
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are sent by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • an embodiment of the present disclosure further provides a terminal, including a memory, a transceiver, and a processor:
  • the memory is for storing computer programs; the transceiver is for sending and receiving data under the control of the processor; the processor is for reading the computer programs in the memory and performing the following operations:
  • the transceiver is configured to send reference signal resource information to the network device, where the reference signal resource information is used to instruct the network device to update the transmission configuration indication state TCI state; and receive the updated transmission configuration sent by the network device Indicates the state TCI state;
  • the processor is configured to, according to the updated transmission configuration indication state TCI state, determine that the beam effective time is the preset first beam effective time or the preset second beam effective time;
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the transceiver is also used for:
  • the transceiver is specifically used for:
  • Report N reference signal resource indexes and corresponding layer 1 reference signal received power L1-RSRP values according to the report set report setting configured by the network device; N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • the transceiver is specifically configured to:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • the transceiver is specifically used to:
  • the processor is specifically configured to:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • the processor is specifically configured to:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the transceiver is also used for:
  • the reference signal is a quasi-co-location type D QCL type-D type reference signal.
  • the processor is further configured to:
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are reported by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • an embodiment of the present disclosure further provides a network device, including a memory, a transceiver, and a processor:
  • the memory is for storing computer programs; the transceiver is for sending and receiving data under the control of the processor; the processor is for reading the computer programs in the memory and performing the following operations:
  • the transceiver is configured to receive reference signal resource information sent by the terminal;
  • the processor is configured to, according to the reference signal resource information, update the transmission configuration indication state TCI state; and, according to the updated transmission configuration indication state TCI state, determine that the beam effective time is the preset first beam effective time or is the preset effective time of the second beam;
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the transceiver is also used for:
  • the processor is further configured to configure a report set report setting for the terminal;
  • the transceiver is further configured to send first indication information to the terminal, where the first indication information is used to instruct the terminal to report reference signal resource information to the network device; and receive the N reference signal information sent by the terminal Signal resource index and corresponding layer 1 reference signal received power L1-RSRP value; N N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • the transceiver is specifically configured to:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • the transceiver is specifically configured to:
  • the receiving terminal respectively reports the number of terminal transmission panel panels and at least one reference signal resource index corresponding to the transmission panel identity panel ID.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • the processor is specifically configured to:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the transceiver is also used for:
  • the downlink signal or channel is transmitted according to the transmission beam corresponding to the reference signal, or the uplink signal or channel is received according to the reception beam corresponding to the reference signal.
  • the reference signal is a co-location type DQCL type-D type reference signal.
  • the processor is further configured to:
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are sent by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • an embodiment of the present disclosure further provides an apparatus for determining a beam effective time, which is executed by a terminal, and the apparatus includes:
  • a first sending unit configured to send reference signal resource information to a network device, where the reference signal resource information is used to instruct the network device to update the transmission configuration indication state TCI state;
  • a first receiving unit configured to receive an updated transmission configuration indication state TCI state sent by the network device
  • the first determination unit is configured to determine, according to the updated transmission configuration indication state TCI state, that the beam effective time is the preset first beam effective time or the preset second beam effective time;
  • the first beam effective time includes the time when the terminal switches beams and the time when the terminal switches transmission panels; the second beam effective time includes the time when the terminal switches beams.
  • the device also includes:
  • An effective time reporting unit configured to report the first beam effective time and/or the second beam effective time to the network device.
  • the first sending unit is specifically configured to:
  • Report N reference signal resource indexes and corresponding layer 1 reference signal received power L1-RSRP values according to the report set report setting configured by the network device; N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • the first sending unit is specifically configured to:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • the first sending unit is specifically configured to:
  • the first determining unit is specifically configured to:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • the first determining unit is specifically configured to:
  • the reference signal determine the resource group number or transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the device also includes:
  • a feedback message sending unit configured to send a hybrid automatic repeat request confirmation HARQ-ACK feedback for the updated transmission configuration indication state TCI state to the network device;
  • the first transceiver unit is configured to use the time point at which the hybrid automatic repeat request confirmation HARQ-ACK feedback is sent as the starting point of time, and within the effective time of the beam after the starting point of time, according to the corresponding reception of the reference signal
  • the beam receives the downlink signal or the channel, or transmits the uplink signal or the channel according to the sending beam corresponding to the reference signal.
  • the reference signal is a quasi-co-location type D QCL type-D type reference signal.
  • the device also includes:
  • a first effective time determining unit configured to determine a beam effective time according to a first preset mode indicated by the network device
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are reported by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • an embodiment of the present disclosure further provides an apparatus for determining a beam effective time, which is executed by a network device, and the apparatus includes:
  • the second receiving unit is configured to receive reference signal resource information sent by the terminal
  • An updating unit configured to update the transmission configuration indication state TCI state according to the reference signal resource information
  • the second determining unit is used to indicate the state TCI state according to the updated transmission configuration, and determine that the beam effective time is the preset first beam effective time or the preset second beam effective time;
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the device also includes:
  • the effective time receiving unit is configured to receive the first beam effective time and/or the second beam effective time reported by the terminal.
  • the second receiving unit is specifically configured to:
  • N N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • the second receiving unit is specifically configured to:
  • each set of reference signal resource indexes is reported by the terminal in a manner of sequentially reporting the resource group number corresponding to the terminal transmission panel identity identification panel ID arranged in order of.
  • the second receiving unit is specifically configured to:
  • the receiving terminal respectively reports the number of terminal transmission panel panels and at least one reference signal resource index corresponding to the transmission panel identity panel ID.
  • the updating unit is specifically used for:
  • the second determining unit is specifically configured to:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • the second determining unit is specifically configured to:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the device also includes:
  • the feedback information receiving unit is configured to receive the hybrid automatic repeat request confirmation HARQ-ACK feedback sent by the terminal for the updated transmission configuration indication state TCI state;
  • the second signal transceiving unit is configured to transmit the downlink signal or channel according to the transmission beam corresponding to the reference signal within the effective time of the beam, or transmit the uplink signal or channel according to the reception beam corresponding to the reference signal take over.
  • the reference signal is a co-location type DQCL type-D type reference signal.
  • the device further includes:
  • the second beam effective time determining unit is configured to determine the beam effective time according to the first preset mode
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are sent by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • the embodiment of the present disclosure further provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is aimed at enabling the processor to execute any one of the first aspect.
  • two kinds of beam effective times are defined through the specification, corresponding to the situation of not switching the transmission panel panel and the situation of switching the transmission panel panel respectively, and according to the transmission configuration indication state TCI state updated by the network device, the beam effective time is determined to be two kinds of beams Which one of the effective time can realize the new beam corresponding to the updated transmission configuration indication state TCI state is on the panel that the terminal is activating and transmitting, directly determine the effective time of the beam as the first preset time, in the updated transmission
  • the new beam corresponding to the configuration indication state TCI state is not on the panel that the terminal is activating and transmitting, directly determine the beam effective time as the second preset time, thereby reducing the required beam effective time.
  • FIG. 1 shows a structural diagram of a network system for an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of the effective time of the beam indicated by the DCI of the present disclosure
  • FIG. 3 shows a schematic flowchart of a method for determining a beam effective time for a terminal according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic flowchart of a method for determining a beam effective time for a network device according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of units of a terminal according to an embodiment of the present disclosure
  • FIG. 6 shows a structural diagram of a terminal in an embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of units of a network device according to an embodiment of the present disclosure
  • FIG. 8 shows a structural diagram of a network device according to an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are intended to be examples, illustrations or descriptions. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present disclosure shall not be construed as being preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • the beam effective time determination method, device, terminal and network equipment provided by the embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system may be a system using the fifth generation (5th Generation, 5G) mobile communication technology (hereinafter referred to as the 5G system).
  • 5G fifth generation
  • NR New Radio
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure.
  • the user terminal 11 may be a user equipment (User Equipment, UE ), for example: it can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (personal digital assistant, PDA), a mobile Internet device (Mobile Internet Device, MID) or a wearable
  • UE User Equipment
  • the above-mentioned base station 12 can be a base station of 5G and later versions (for example: 5G base station (gNB), 5G NR node (5G NR NB)), or a base station in other communication systems, or called a node B. It should be noted that, In the embodiment of the present disclosure, only a 5G base station is taken as an example, but the specific type of the base station 12 is not limited.
  • the downlink channel includes the physical downlink shared control channel (Physical Downlink Shared Channel, PDSCH) and the physical downlink control channel (Physical Downlink Control Channel, PDCCH), the uplink channel includes the physical uplink shared control channel (Physical Uplink Shared Channel) , PUSCH) and physical uplink control channel (Physical Uplink Control Channel, PUCCH).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • the uplink channel includes the physical uplink shared control channel (Physical Uplink Shared Channel) , PUSCH) and physical uplink control channel (Physical Uplink Control Channel, PUCCH).
  • PUCCH Physical Uplink Control Channel
  • the direction of the shaped beam can be Determined by beam scanning of uplink and downlink reference signals, such as using different directions of Channel State Information Reference Signal (CSI-RS) or Channel Sounding Reference Signal (Sounding Reference Signal, SRS) for beam scanning to select beam quality
  • CSI-RS Channel State Information Reference Signal
  • SRS Sounding Reference Signal
  • the direction of the best reference signal is used for uplink or downlink transmission.
  • the beam reversal of different channels is determined, and signaling needs to be used to indicate the beam during channel transmission, that is, beam indication.
  • the base station semi-statically configures multiple beam directions for the terminal through the high-level signaling spatial relationship information (SpatialRelationInfo), and through the media access control unit (Media Access Control Control Element, MAC -CE) indicates to activate one of them.
  • the uplink beam selected by the base station is indicated by the channel sounding reference signal resource indicator (SRS Resource Indicator, SRI) field in the dynamic signaling downlink control information (Downlink Control Information, DCI)
  • SRS Resource Indicator, SRI channel sounding reference signal resource indicator
  • DCI Downlink Control Information
  • the base station For the PDCCH channel, the base station configures multiple transmission configuration indication states (Transmission Configuration Index state, TCI state) for each resource set (CORESET) through high-level signaling, and activates them through the MAC-CE indication One of.
  • TCI state Transmission Configuration Index state
  • the base station For the PDSCH channel, the base station indicates a TCI state through the TCI field in the DCI signaling, indicating the beam direction of the channel.
  • Different channels use different beam indication signaling, and each channel performs beam indication independently. Such different channels may use respective different beam transmissions.
  • An important scenario in practical applications is that multiple channels use the same beam direction.
  • the PDCCH for resource scheduling and the PDSCH for transmitting user data use the same beam direction; the physical uplink control channels PUCCH and PUSCH also use the same beam direction.
  • the uplink channel and the downlink channel will also use the same beam direction.
  • the current beam-independent indication method increases system complexity and signaling indication overhead.
  • a method of using one beam indication information to indicate multiple channel beams is introduced, which configures a set of TCI state pools through Radio Resource Control (RRC), and MAC-CE activation
  • RRC Radio Resource Control
  • the DCI is used to indicate one of the active TCI states to indicate the uplink and downlink shared beams.
  • the relevant Rel-17 beam effective time is set as X ms (X Orthogonal Frequency Division Multiplexing (orthogonal frequency division nmmultiplexing, OFDM) symbol (symbol)).
  • X ms X Orthogonal Frequency Division Multiplexing (orthogonal frequency division nmmultiplexing, OFDM) symbol (symbol)
  • OFDM orthogonal Frequency Division Multiplexing
  • the base station sends DCI signaling to indicate the TCI status of the downlink and uplink.
  • the terminal performs HARQ-ACK feedback on the DCI indication of the base station.
  • the beam indicated by the DCI performs channel or signal transmission, and the base station uses the corresponding beam to receive.
  • the terminal considers that the beam indicated by the TCI state of the nth time slot used by the base station is used for signal/channel transmission, and the terminal uses the corresponding beam for reception.
  • Embodiments of the present disclosure provide a method and device for determining a beam effective time, which is used to solve the problem in the related art that the required beam effective time is too long when the terminal and/or network equipment has multiple transmission panels (panels). question.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • an embodiment of the present disclosure provides a method for determining a beam effective time, which is executed by a terminal, and the method includes:
  • Step S301 Send reference signal resource information to the network device, where the reference signal resource information is used to instruct the network device to update the transmission configuration indication state;
  • the terminal reports the reference resource information to the network side device, and the network device updates the TCI state according to the reference signal resource information.
  • the reference signal resource information may be CSI-RS or SRS.
  • Step S302 Receive an updated transmission configuration indication status sent by the network device.
  • the network device updates the TCI state according to the reference signal resource reported by the terminal, obtains the updated TCI state, and sends the updated TCI state to the terminal.
  • the updated TCI state can also be used for Instruct the terminal to determine the sending beam or receiving beam.
  • Step S303 According to the updated transmission configuration indication status, determine that the beam activation time is the preset first beam activation time or the preset second beam activation time;
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the beam effective time is determined to be the preset first beam effective time, and if no switching occurs, the beam effective time is determined to be the preset second beam effective time.
  • the beam effective time includes at least the time when the terminal switches beams.
  • the effective time of the beam at least includes the time when the terminal switches the beam and the time when the terminal switches the panel.
  • the terminal reports the reference signal resource information to the network device, and the terminal reports two or more beam effective times Xms (or X OFDM symbols) and Yms (or Y OFDM symbols) through the capability, corresponding to the beams when the terminal switches panels and does not switch panels respectively Effective time.
  • the terminal receives the updated TCI state instruction sent by the network device, and determines the effective time of the beam according to the TCI state.
  • the beam effective time is determined to be two Which one of the beam effective time can realize the new beam corresponding to the updated transmission configuration indication state TCI state is on the panel that the terminal is activating and transmitting, directly determine the beam effective time as the first preset time, in the updated
  • the beam effective time is determined to be the second preset time, thereby reducing the required beam effective time.
  • the method also includes:
  • the terminal may report two kinds of beam effective times through the capability.
  • sending reference signal resource information to the network device includes:
  • Report N reference signal resource indexes and corresponding Layer 1 reference signal received power (Layer 1 reference signal received power, L1-RSRP) values according to the report set (report setting) configured by the network device; N is greater than or equal to 4 positive integer.
  • the terminal reports N reference signal resource indexes and corresponding L1-RSRP values according to the report setting configured by the network device, and each reference signal resource index carries one or more numbers.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number (panel Identifier, panel ID);
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • the reference signal resource index includes a resource group number or an explicit panel ID, and resources with the same resource group number or panel ID correspond to the same terminal transmission panel.
  • reporting the N reference signal resource indexes includes:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • the N reference signal resource indexes reported by the terminal can be reported in a predefined format.
  • the terminal reports two panels through capabilities, and the corresponding panel IDs are panel#1 and panel#2 respectively.
  • N is 6, that is, the terminal reports 6 reference signal resource indexes
  • the terminal can report three reference signal resource index groups, and each reference signal resource index group includes two reference signal resource indexes , the order of the panel IDs corresponding to the two reference signal resource indexes in each reference signal resource index group is panel#1, panel#2, that is, as shown in Table 1 below, the first reference signal resource index group reported by the terminal
  • the first reference signal resource index in is the reference signal resource index for panel#1, where CRI is CSI-RS Resource Indicator, which is the reference signal resource indicator, and SSBRI is Synchronization Signaland block resource indicator, which is the synchronization signal block resource Indicates that the second reference signal resource index in the first reference signal resource index group is the reference signal resource index for panel#2, and the
  • reporting the N reference signal resource indexes includes:
  • the N reference signal resource indexes reported by the terminal can be reported in the format of Part1+Part2; wherein, the Part1 part indicates the relevant information of several panels that the terminal has, and the Part2 part indicates at least A beam information (reference signal resource index).
  • the terminal has three panels, and the corresponding panel IDs are panel#1, panel#2, and panel#3 respectively, and each panel corresponds to four beam information, so the number of terminal panels reported in Part1 is 3, and Part1 also reports The corresponding three panel IDs can be reported: panel#1, panel#2, and panel#3.
  • Part2 reports four beam information for panel#1, four beam information for panel#2, and four beam information for panel#3. information and four beam information of panel#4.
  • Table 2 The format table of the Part2 part of the reference signal resource index reported by the terminal is shown in Table 2 below.
  • Table 2 The format table of the Part2 part of the reference signal resource index reported by the terminal
  • the Part2 part can follow the first reference signal resource index for panel#1, the second reference signal resource index for panel#1, the third reference signal resource index for panel#1, and the second reference signal resource index for panel#1.
  • the fourth reference signal resource index of the first reference signal resource index for panel#2, the second reference signal resource index for panel#2, the third reference signal resource index for panel#2, for panel
  • determining that the beam activation time is the preset first beam activation time or the preset second beam activation time includes:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • determining that the beam activation time is the preset first beam activation time or the preset second beam activation time includes:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the method also includes:
  • the reference signal is a quasi-co-location type D QCL type-D type reference signal.
  • the terminal determines the effective time of the beam, including the terminal determining the resource group number or panel ID according to the QCL type-D source RS contained in the TCI state, and determining the panel corresponding to the QCL type-D source RS relative to the previous transmission panel Whether to switch. If there is no need for panel switching, the terminal determines that the effective time of the beam is Xms (or X OFDM symbols). If panel switching is required, the terminal determines that the effective time of the beam is Yms (or Y OFDM symbols).
  • the reference signal resource includes a downlink reference signal resource (group) (CSI-RS/SSB resource (group)), and also includes an uplink reference signal resource (group) (SRS resource (group)).
  • group downlink reference signal resource
  • SRS resource group
  • the terminal receives downlink channel/signal transmission or uplink channel/signal transmission according to the determined beam effective time.
  • the method further includes:
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are reported by the terminal to the network device.
  • the beam effective time can be confirmed according to the first preset method indicated by the network device, or defaulted to the target beam in the beam effective time reported by the capability Effective time.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • the beam effective time defaults to the target beam effective time in the beam effective time reported by the terminal through the capability.
  • the target beam effective time is the largest beam Effective time.
  • the terminal reports N reference signal resource indexes and corresponding L1-RSRP values according to the report setting configured by the network device, and each reference signal resource index carries one or more numbers.
  • the terminal reports two or more beam effective times Xms (or X OFDM symbols) and Yms (or Y OFDM symbols) through the capability, corresponding to the beam effective time when the terminal switches panels and does not switch panels respectively.
  • the terminal receives the updated TCI state instruction sent by the network device and determines the effective time of the beam according to the QCL type-D source RS contained in the TCI state.
  • the terminal uses the receiving beam of the QCL type-D source RS contained in the updated TCI state to receive the downlink signal/channel or perform uplink signal/channel after the beam effective time after the feedback network device updates the TCI state HARQ/ACK send.
  • the reference signal resource index includes a resource group number or an explicit panel ID, and resources with the same resource group number or panel ID correspond to the same terminal transmission panel.
  • Determining the effective time of the beam according to the QCL type-D source RS contained in the TCI state includes determining the resource group number or panel ID according to the QCL type-D source RS contained in the TCI state, and determining the QCL type-D source Whether the panel corresponding to the RS needs to be switched compared with the previous transmission panel. If there is no need for panel switching, the terminal determines that the effective time of the beam is Xms (or X OFDM symbols). If panel switching is required, the terminal determines that the effective time of the beam is Yms (or Y OFDM symbols).
  • N takes a value of 4 or greater than 4.
  • Reference signal resources include downlink reference signal resources (group) (CSI-RS/SSB resource (group)), and uplink reference signal resources (group) (SRS resource (group)).
  • the beam effective time is determined according to the way indicated by the network device or defaults to a certain beam effective time in the beam effective time reported by the terminal through the capability, such as the largest beam effective time.
  • the terminal receives downlink channel/signal transmission or uplink channel/signal transmission according to the predetermined beam effective time.
  • the embodiment of the present disclosure is used to determine the effective time of the beam in the case of inter-panel.
  • the terminal reports the correspondence between reference signal resources and panel entity (resource set ID/panel ID) when selecting an uplink panel.
  • the network device receives the report from the terminal, updates the QCL type-D source RS included in the TCI state, and instructs the terminal to use the receiving beam of the QCL type-D source RS to receive/send downlink/uplink channels/signals.
  • the network device determines the effective time of the beam according to the corresponding relationship between the reference signal resource reported by the terminal and the panel entity and the QCL type-D source RS included in the updated TCI status. If the QCL type-D source RS included in the updated TCI status The RS corresponds to an inactive/transmitting panel, and the network device determines that the beam effective time is Yms (or Y OFDM symbols), otherwise, if the QCL type-D source RS included in the updated TCI status corresponds to a transmitting panel, the network The device determines that the effective time of the new beam is Xms (or X OFDM symbols). The values of X and Y are determined by the system predefined.
  • the terminal receives the TCI status update instruction of the network device, and determines the effective time of the beam according to the QCL type-D source RS contained in the TCI status and the corresponding relationship between the reference signal resource and the panel entity. That is, if the QCL type-D source RS contained in the TCI state received by the terminal corresponds to an inactive/transmitted panel, the terminal determines that the beam effective time is Yms (or Y OFDM symbols). Otherwise, if the terminal receives the TCI state The included QCL type-D source RS corresponds to a panel that is being transmitted, and the terminal determines that the effective time of the new beam is Xms (or X OFDM symbols).
  • a specific embodiment is used below to illustrate the process of determining the effective time of the beam when the terminal reports the CSI-RS resource index and the resource group number.
  • the direction of the beam can be determined by beam scanning of the uplink and downlink reference signals, for example, using CSI-RS or SRS for beam scanning, and selecting the direction of the reference signal with the best beam quality for uplink or downlink transmission.
  • the terminal reports the CSI-RS resource index as an example for illustration.
  • the network device configures and sends 8 CSI-RS resources to the terminal: ⁇ CSI-RS#1, CSI-RS#2, ..., CSI-RS#8 ⁇ .
  • the network device configures the report setting for the terminal to notify the terminal to report 4 CSI-RS Reference Signal Resource Indicators (CSI-RS Resource Indicator, CRI) + L1-RSRP and the corresponding resource group number.
  • the terminal groups the resources, the first group is ⁇ CSI-RS#1, CSI-RS#3, CSI-RS#5, CSI-RS#7 ⁇ , the second group is ⁇ CSI-RS#2, CSI-RS #4, CSI-RS#6, CSI-RS#8 ⁇ .
  • the two types of beam effective times reported by the terminal through the capability are 5 ms and 3 ms respectively. Wherein, 5 ms is the effective time of the first beam, and 3 ms is the effective time of the second beam.
  • the terminal uses the first panel to receive the first set of CSI-RS resources and measure the corresponding L1-RSRP values: L1-RSRP1, L1-RSPR3, L1-RSRP5, L1-RSRP7.
  • the terminal uses the second panel to receive the second group of CSI-RS resources and measure the corresponding L1-RSRP values: L1-RSRP2, L1-RSRP4, L1-RSRP6, L1-RSRP8.
  • the terminal compares the measured L1-RSRP values, selects 4 CSI-RS index values to report, and reports the corresponding resource group numbers: CRI1+L1-RSRP1(group 1), CRI5+L1-RSRP5(group 1), CRI2 +L1-RSRP2 (group 2), CRI6+L1-RSRP6 (group 2).
  • the network device receives the report from the terminal, updates the TCI status indication, and uses CSI-RS#1 to update the source reference signal (such as CSI-RS#2) included in the previous TCI status.
  • the terminal receives the TCI update command from the network device, determines that the source reference signal therein is CSI-RS#1, and the corresponding group is the first group.
  • the source reference signal contained in the previous TCI state is CSI-RS#2, and the corresponding group is the second group, which corresponds to the second panel.
  • the terminal determines that the beam effective time at this time is 5 ms (corresponding to the beam effective time when panel switching occurs).
  • the terminal uses the beam receiving CSI-RS#1 to receive the downlink signal/channel or send the uplink channel/signal 5ms after the feedback beam updates the TCI status indication HARQ-ACK.
  • the network device sends the downlink signal/channel or receives the uplink channel/signal with the beam sending CSI-RS#1 5ms after receiving the HARQ-ACK fed back by the terminal.
  • the following uses a specific embodiment to illustrate the process of determining the effective time of the beam when the terminal reports the CSI-RS resource index and the panel ID.
  • the direction of the beam can be determined by beam scanning of the uplink and downlink reference signals, for example, using CSI-RS or SRS for beam scanning, and selecting the direction of the reference signal with the best beam quality for uplink or downlink transmission.
  • the terminal reports the CSI-RS resource index as an example for illustration.
  • the terminal has 2 panels, namely: panel#1 and panel#2.
  • the number of panels reported by the terminal is 2, and the effective time of the two beams reported by the capability is 3 ms and 5 ms respectively.
  • the network device configures and sends 8 CSI-RS resources to the terminal, namely: ⁇ CSI-RS#1, CSI-RS#2, ..., CSI-RS#8 ⁇ .
  • the network device configures the report setting for the terminal to notify the terminal to report 8 CRI+L1-RSRP and the corresponding panel ID.
  • the terminal associates the resources configured by the network device with the panel, and the CSI-RS resources associated with the panel#1 include ⁇ CSI-RS#1, CSI-RS#3, CSI-RS#5, CSI-RS#7 ⁇ .
  • the CSI-RS resources associated with panel#2 include ⁇ CSI-RS#2, CSI-RS#4, CSI-RS#6, CSI-RS#8 ⁇ .
  • the terminal reports two types of beam effective times of 5 ms and 3 ms through the capability. Wherein, 5 ms is the effective time of the first beam, and 3 ms is the effective time of the second beam.
  • the terminal uses the first panel to receive the first set of CSI-RS resources and measure the corresponding L1-RSRP values: L1-RSRP1, L1-RSPR3, L1-RSRP5, L1-RSRP7.
  • the terminal uses the second panel to receive the second group of CSI-RS resources and measure the corresponding L1-RSRP values: L1-RSRP2, L1-RSRP4, L1-RSRP6, L1-RSRP8.
  • the terminal compares the measured L1-RSRP values, selects 4 CSI-RS index values to report, and reports the corresponding panel IDs: CRI1+L1-RSRP+panel#1, CRI5+L1-RSRP5+panel#1, CRI2+ L1-RSRP2+panel#2, CRI6+L1-RSRP6+panel#2.
  • the network device receives the report from the terminal, updates the TCI status indication, and uses CSI-RS#1 to update the source reference signal (such as CSI-RS#3) included in the previous TCI status.
  • the terminal receives the TCI update command from the network device, and determines that the source reference signal is CSI-RS#1, and the corresponding panel ID is panel#1.
  • the source reference signal contained in the previous TCI state is CSI-RS#3, and the corresponding panel ID is panel#1.
  • the terminal determines that the effective time of the beam at this time is 3 ms (corresponding to the effective time of the beam without panel switching).
  • the terminal uses the beam receiving CSI-RS#1 to receive the downlink signal/channel or send the uplink channel/signal 3ms after the feedback beam updates the TCI state indication HARQ-ACK.
  • the network device sends the downlink signal/channel or receives the uplink channel/signal with the beam sending CSI-RS#1 3 ms after receiving the HARQ-ACK fed back by the terminal.
  • the following describes the process of determining the effective time of the beam when the terminal reports the CSI-RS resource index by using a specific embodiment.
  • the direction of the beam can be determined by beam scanning of the uplink and downlink reference signals, for example, using CSI-RS or SRS for beam scanning, and selecting the direction of the reference signal with the best beam quality for uplink or downlink transmission.
  • the terminal reports the CSI-RS resource index as an example for illustration.
  • the network device configures and sends 8 CSI-RS resources for the terminal: ⁇ CSI-RS#1, CSI-RS#2, ..., CSI-RS#8 ⁇ .
  • the network device configures the report setting for the terminal to notify the terminal to report 4 CRI+L1-RSRP values.
  • the terminal has 2 panels, namely panel#1 and panel#2.
  • the terminal groups the CSI-RS resources and performs mapping with the panel.
  • Panel#1 corresponds to the first set of CSI-RS resources ⁇ CSI-RS#1, CSI-RS#2, CSI-RS#3, CSI-RS#4 ⁇ .
  • Panel#2 corresponds to the second group of CSI-RS resources ⁇ CSI-RS#5, CSI-RS#6, CSI-RS#7, CSI-RS#8 ⁇ .
  • the effective time for the terminal to report the beam through the capability is 7ms. In this embodiment, it is not limited whether the 7 ms is the first beam activation time or the second beam activation time.
  • the terminal uses the first panel to receive the first set of CSI-RS resources and measure the corresponding L1-RSRP values: L1-RSRP1, L1-RSPR2, L1-RSRP3, L1-RSRP4.
  • the terminal uses the second panel to receive the second group of CSI-RS resources and measure the corresponding L1-RSRP values: L1-RSRP5, L1-RSRP6, L1-RSRP7, L1-RSRP8.
  • the terminal compares the measured L1-RSRP values, selects 4 CSI-RS index values to report, and reports the corresponding resource group numbers: CRI1+L1-RSRP1, CRI5+L1-RSRP5, CRI3+L1-RSRP3, CRI6+L1 -RSRP6.
  • the network device receives the report from the terminal, updates the TCI status indication, and uses CSI-RS#1 to update the source reference signal (such as CSI-RS#7) included in the previous TCI status.
  • the terminal receives the TCI update command from the network device, and determines that the source reference signal therein is CSI-RS#1, and the corresponding panel is panel#1.
  • the source reference signal contained in the previous TCI state is CSI-RS#7, and the corresponding panel is panel#2.
  • the terminal determines that the effective time of the beam at this time is 7ms.
  • the terminal uses the beam receiving CSI-RS#1 to receive the downlink signal/channel or send the uplink channel/signal 7ms after the feedback beam updates the TCI state indication HARQ-ACK.
  • the network device sends the downlink signal/channel or receives the uplink channel/signal with the beam sending CSI-RS#1 7ms after receiving the HARQ-ACK fed back by the terminal.
  • the embodiment of the present disclosure defines two types of beam effective time through the specification, corresponding to the case of unswitched transmission panel panel and the case of switched transmission panel panel respectively, and determines the beam effective time according to the transmission configuration indication state TCI state updated by the network device Which of the two beam effective times is the time, can realize the updated transmission configuration indication state TCI state
  • the new beam corresponding to the TCI state is on the panel that the terminal is activating and transmitting, directly determine the beam effective time as the first preset time , when the updated transmission configuration indicates that the new beam corresponding to the state TCI state is not on the panel that the terminal is activating and transmitting, directly determine the beam effective time as the second preset time, thereby reducing the required beam effective time.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • Network devices can interchange received air frames and Internet Protocol (IP) packets, acting as routers between wireless terminal devices and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), can also be a home evolved base station (Home evolved Node B, HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., are not limited in this embodiment of the present disclosure.
  • a network device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node
  • MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi-User MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional MIMO (2 Dimension MIMO, 2D-MIMO), three-dimensional MIMO (3 Dimension MIMO, 3D-MIMO), full-dimensional MIMO (Full Dimension MIMO, FD-MIMO) Or massive MIMO (massive-MIMO), or diversity transmission, precoding transmission, or beamforming transmission, etc.
  • an embodiment of the present disclosure provides a method for determining a beam effective time, which is performed by a network device, and the method includes:
  • Step S401 receiving reference signal resource information sent by the terminal
  • Step S402 Update the transmission configuration indication state according to the reference signal resource information
  • Step S403 According to the updated transmission configuration indication status, determine that the beam activation time is the preset first beam activation time or the preset second beam activation time;
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the beam effective time is determined to be two Which one of the beam effective time can realize the new beam corresponding to the updated transmission configuration indication state TCI state is on the panel that the terminal is activating and transmitting, directly determine the beam effective time as the first preset time, in the updated
  • the beam effective time is determined to be the second preset time, thereby reducing the required beam effective time.
  • the method also includes:
  • receiving the reference signal resource information sent by the terminal includes:
  • N N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • receiving the N reference signal resource indexes sent by the terminal includes:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • receiving the N reference signal resource indexes sent by the terminal includes:
  • the receiving terminal respectively reports the number of terminal transmission panel panels and at least one reference signal resource index corresponding to the transmission panel identity panel ID.
  • updating the transmission configuration indication status according to the reference signal resource information includes:
  • determining that the beam activation time is the preset first beam activation time or the preset second beam activation time includes:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • determining that the beam activation time is a preset first beam activation time or a preset second beam activation time includes:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the method also includes:
  • the downlink signal or channel is transmitted according to the transmission beam corresponding to the reference signal, or the uplink signal or channel is received according to the reception beam corresponding to the reference signal.
  • the reference signal is a co-location type DQCL type-D type reference signal.
  • the method further includes:
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are sent by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • the network device configures the terminal report setting to notify the terminal to report N reference signal resource indexes.
  • the network device receives N reference signal resource indexes reported by the terminal, and each reference signal resource index carries one or more numbers.
  • the network device receives the two types of beam effective time Xms (or X OFDM symbols) and Yms (or Y OFDM symbols) reported by the terminal through the capability, which correspond to the beam effective time when the terminal switches the panel and does not switch the panel respectively.
  • the network device updates the TCI state according to the reference signal resource index reported by the terminal, and instructs the terminal to determine the sending/receiving beam according to the QCL type-D source RS included in the updated TCI state. At the same time, the network device determines the effective time of the beam according to the QCL type-D source RS contained in the TCI state. The network device uses the transmission beam of the QCL type-D source RS contained in the updated TCI state to send downlink signals/channels or uplink after receiving the updated TCI state HARQ/ACK feedback from the terminal. signal/channel to receive.
  • the signal resource index includes a resource group number or an explicit panel-ID, and reference signal resources with the same resource group number or panel-ID correspond to the same terminal transmission panel.
  • the network device determines the effective time of the beam according to the QCL type-D source RS contained in the TCI state, including the network device determining the resource group number or panel-ID according to the QCL type-D source RS contained in the TCI state, and determining the QCL type -D source RS Whether the panel corresponding to the previous transmission panel needs to be switched. If there is no need for panel switching, the network device determines that the effective time of the beam is Xms (or X OFDM symbols). If panel switching is required, the network device determines that the effective time of the beam is Yms (or Y OFDM symbols).
  • the network device updates the TCI state according to the reference signal resource index reported by the terminal, and instructs the terminal to determine the sending/receiving beam according to the reference signal included in the updated TCI state.
  • the network device only updates the TCI state of the source reference signal corresponding to the CRI.
  • N takes a value of 4 or greater than 4.
  • Reference signal resources include downlink reference signal resources (group) CSI-RS/SSB resource (group), and uplink reference signal resources (group) SRS resource (group).
  • the beam effective time is determined according to the method indicated by the network device or defaults to a certain beam effective time in the beam effective time reported by the terminal through the capability, such as the beam effective time with the largest value.
  • the network device receives the uplink signal/channel or sends the downlink signal/channel according to the determined beam effective time.
  • an embodiment of the present disclosure provides an apparatus 500 for determining beam effective time, including:
  • the first sending unit 510 is configured to send reference signal resource information to the network device, where the reference signal resource information is used to instruct the network device to update the transmission configuration indication state TCI state;
  • the first receiving unit 520 is configured to receive the updated transmission configuration indication state TCI state sent by the network device;
  • the first determining unit 530 is configured to determine, according to the updated transmission configuration indication state TCI state, that the beam effective time is the preset first beam effective time or the preset second beam effective time;
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the beam effective time is determined to be two Which one of the beam effective time can realize the new beam corresponding to the updated transmission configuration indication state TCI state is on the panel that the terminal is activating and transmitting, directly determine the beam effective time as the first preset time, in the updated
  • the beam effective time is determined to be the second preset time, thereby reducing the required beam effective time.
  • the device also includes:
  • An effective time reporting unit configured to report the first beam effective time and/or the second beam effective time to the network device.
  • the first sending unit 510 is specifically configured to:
  • Report N reference signal resource indexes and corresponding layer 1 reference signal received power L1-RSRP values according to the report set report setting configured by the network device; N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • the first sending unit 510 is specifically configured to:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • the first sending unit 510 is specifically configured to:
  • the first determining unit 530 is specifically configured to:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • the first determining unit 530 is specifically configured to:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the device also includes:
  • a feedback message sending unit configured to send a hybrid automatic repeat request confirmation HARQ-ACK feedback for the updated transmission configuration indication state TCI state to the network device;
  • the first transceiver unit is configured to use the time point at which the hybrid automatic repeat request confirmation HARQ-ACK feedback is sent as the starting point of time, and within the effective time of the beam after the starting point of time, according to the corresponding reception of the reference signal
  • the beam receives the downlink signal or the channel, or transmits the uplink signal or the channel according to the sending beam corresponding to the reference signal.
  • the reference signal is a quasi-co-location type D QCL type-D type reference signal.
  • the device also includes:
  • a first effective time determining unit configured to determine a beam effective time according to a first preset mode indicated by the network device
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are reported by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • the embodiment of the beam time determination device is a one-to-one corresponding device with the above-mentioned method embodiments, and all the implementation methods in the above-mentioned method embodiments are applicable to the embodiments of the beam time determination device, and can also achieve the same technical effect.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the essence of the technical solution of the present disclosure or the part that contributes to the related technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • an embodiment of the present disclosure also provides a terminal device, including a processor 600, a transceiver 610, a memory 620, and a program stored in the memory 620 and operable on the processor 600; wherein , the transceiver 610 is connected to the processor 600 and the memory 620 through a bus interface, wherein the processor 600 performs the following process for reading the program in the memory:
  • the transceiver 610 is configured to send reference signal resource information to the network device, where the reference signal resource information is used to instruct the network device to update the transmission configuration indication state TCI state; and receive the updated transmission sent by the network device Configuration indication state TCI state;
  • the processor 600 is configured to, according to the updated transmission configuration indication state TCI state, determine that the beam effective time is the preset first beam effective time or the preset second beam effective time;
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the transceiver 610 is for receiving and sending data under the control of the processor 600 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 610 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, etc. medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a CPU (Central Processing Unit), ASIC (Application Specific Integrated Circuit, Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array, Field Programmable Gate Array) or CPLD (Complex Programmable Logic Device, complex programmable logic device), and the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device, complex programmable logic device
  • the processor can also adopt a multi-core architecture.
  • the processor executes any one of the methods provided in the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the transceiver 610 is also used for:
  • the transceiver 610 is specifically used for:
  • Report N reference signal resource indexes and corresponding layer 1 reference signal received power L1-RSRP values according to the report set report setting configured by the network device; N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • the transceiver 610 is specifically configured to:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • the transceiver 610 is specifically configured to:
  • processor 600 is specifically configured to:
  • the beam effective time is the preset first beam effective time or the preset second beam effective time.
  • processor 600 is specifically configured to:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the transceiver 610 is also used for:
  • the reference signal is a quasi-co-location type D QCL type-D type reference signal.
  • the processor 600 is further configured to:
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are reported by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, on which a computer program is stored, wherein, when the computer program is executed by a processor, the steps of the method for determining the effective time of the beam for the terminal are realized.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (e.g., CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage e.g., CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM,
  • an embodiment of the present disclosure provides an apparatus 700 for determining a beam effective time, which is executed by a network device, and the apparatus includes:
  • the second receiving unit 710 is configured to receive reference signal resource information sent by the terminal;
  • An updating unit 720 configured to update the transmission configuration indication state TCI state according to the reference signal resource information
  • the second determining unit 730 is configured to determine the beam effective time as the preset first beam effective time or the preset second beam effective time according to the updated transmission configuration indication state TCI state;
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the beam effective time is determined to be two Which one of the beam effective time can realize the new beam corresponding to the updated transmission configuration indication state TCI state is on the panel that the terminal is activating and transmitting, directly determine the beam effective time as the first preset time, in the updated
  • the beam effective time is determined to be the second preset time, thereby reducing the required beam effective time.
  • the device also includes:
  • the effective time receiving unit is configured to receive the first beam effective time and/or the second beam effective time reported by the terminal.
  • the second receiving unit 710 is specifically configured to:
  • N N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • the second receiving unit 710 is specifically configured to:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • the second receiving unit 710 is specifically configured to:
  • the receiving terminal respectively reports the number of terminal transmission panel panels and at least one reference signal resource index corresponding to the transmission panel identity panel ID.
  • the updating unit 720 is specifically configured to:
  • the second determining unit 730 is specifically configured to:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • the second determining unit 730 is specifically configured to:
  • the reference signal determine the resource group number or transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the device also includes:
  • the feedback information receiving unit is configured to receive the hybrid automatic repeat request confirmation HARQ-ACK feedback sent by the terminal for the updated transmission configuration indication state TCI state;
  • the second signal transceiving unit is configured to transmit the downlink signal or channel according to the transmission beam corresponding to the reference signal within the effective time of the beam, or transmit the uplink signal or channel according to the reception beam corresponding to the reference signal take over.
  • the reference signal is a co-location type DQCL type-D type reference signal.
  • the device further includes:
  • the second beam effective time determining unit is configured to determine the beam effective time according to the first preset method
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are sent by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • the embodiment of the device for determining the effective time of the beam is a one-to-one corresponding device with the above-mentioned method embodiments, and all the implementation methods in the above-mentioned method embodiments are suitable for the embodiment of the device for determining the effective time of the beam, and can also achieve Same technical effect.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the essence of the technical solution of the present disclosure or the part that contributes to the related technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • an embodiment of the present disclosure also provides a network device, including a processor 800, a transceiver 810, a memory 820, and a program stored in the memory 820 and operable on the processor 800; wherein , the transceiver 810 is connected to the processor 800 and the memory 820 through a bus interface, wherein the processor 800 performs the following process for reading the program in the memory:
  • the transceiver 810 is configured to receive reference signal resource information sent by the terminal;
  • the processor 800 is configured to, according to the reference signal resource information, update the transmission configuration indication state TCI state; and, according to the updated transmission configuration indication state TCI state, determine that the beam effective time is the preset first beam effective time time or the preset effective time of the second beam;
  • the first beam effective time includes the time when the terminal switches the beam and the time when the terminal switches the transmission panel; the second beam effective time includes the time when the terminal switches the beam.
  • the transceiver 810 is for receiving and sending data under the control of the processor 800 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 800 and various circuits of the memory represented by the memory 820 are linked together.
  • the bus architecture can also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 810 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 800 can store data used by the processor 800 when performing operations.
  • the processor 800 can be a central processing unit (Central Processing Unit CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • processor 800 executes the program of the method for determining the effective time of the beam, the following steps are implemented:
  • the transceiver 810 is also used for:
  • the processor 800 is further configured to configure a report set report setting for the terminal;
  • the transceiver 810 is further configured to send first indication information to the terminal, where the first indication information is used to instruct the terminal to report reference signal resource information to the network device; and receive the N information sent by the terminal Reference signal resource index and corresponding layer 1 reference signal received power L1-RSRP value; N N is a positive integer greater than or equal to 4.
  • each reference signal resource index carries at least one resource group number or at least one transmission panel identification number panel ID;
  • the same resource group number corresponds to the same terminal transmission panel panel
  • the same transmission panel identification number panel ID corresponds to the same terminal transmission panel panel.
  • the transceiver 810 is specifically configured to:
  • each of the reference signal resource index groups includes at least one reference signal resource index
  • each of the reference signal resource index groups corresponds to different transmission panel identity identification panel IDs; each of the reference signal resource index groups in the reference signal resource index corresponds to the transmission panel identity identification panel ID are sorted in the same order.
  • the transceiver 810 is specifically configured to:
  • the receiving terminal respectively reports the number of terminal transmission panel panels and at least one reference signal resource index corresponding to the transmission panel identity panel ID.
  • processor 800 is specifically configured to:
  • processor 800 is specifically configured to:
  • the beam activation time is the preset first beam activation time or the preset second beam activation time.
  • processor 800 is specifically configured to:
  • the reference signal determine the resource group number or the transmission panel identification number panel ID in the reference signal resource information
  • the resource group number or the transmission panel identification number panel ID determine whether the previous transmission panel panel needs to be switched
  • the beam effective time is the first beam effective time; when there is no need to switch the transmission panel panel, determine that the beam effective time is the second beam effective time .
  • the transceiver 810 is also used for:
  • the downlink signal or channel is transmitted according to the transmission beam corresponding to the reference signal, or the uplink signal or channel is received according to the reception beam corresponding to the reference signal.
  • the reference signal is a co-location type DQCL type-D type reference signal.
  • the processor 800 is further configured to:
  • one target beam effective time among multiple beam effective times is determined as the beam effective time; the multiple beam effective times are sent by the terminal to the network device.
  • the target beam effective time is a maximum beam effective time among the plurality of beam effective times.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, on which a computer program is stored, wherein, when the computer program is executed by a processor, the steps of the method for determining the effective time of a beam for a network device are realized.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (e.g., CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NANDFLASH), solid-state disk (SSD)), etc.
  • magnetic storage e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage e.g., CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM,
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagram.
  • modules can all be implemented in the form of calling software through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in the form of hardware.
  • a certain module can be a separate processing element, or it can be integrated into a chip of the above-mentioned device.
  • it can also be stored in the memory of the above-mentioned device in the form of program code, and processed by one of the above-mentioned devices.
  • the component invokes and executes the functions of the modules identified above.
  • each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, subunit or submodule may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种波束生效时间确定方法、装置、终端和网络设备,涉及通信技术领域。该方法,包括:向网络设备发送参考信号资源信息;接收网络设备发送的更新的传输配置指示状态TCI state;根据更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;其中,第一波束生效时间等于终端切换波束的时间以及终端切换传输面板panel的时间之和;第二波束生效时间等于终端切换波束的时间。

Description

一种波束生效时间确定方法、装置、终端和网络设备
相关申请的交叉引用
本公开主张在2021年08月06日在中国提交的中国专利申请号No.202110904311.0以及在2021年09月30日在中国提交的中国专利申请号No.202111157481.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线技术领域,特别涉及一种波束生效时间确定方法、装置、终端和网络设备。
背景技术
相关的波束生效时间并未考虑终端具有多个传输面板(panel)情况下,波束生效时间的问题。具体来说,当终端具有多个上行发送panel/接收panel,但是同一时间只支持一个panel用于上行发送/接收时,如果网络设备通过下行控制信息(Downlink Control Information,DCI)指示的新波束不在终端正在激活和传输的panel上时,所需要的波束生效时间太长。
发明内容
本公开实施例提供一种波束生效时间确定方法、装置、终端和网络设备,用以解决相关技术中,终端和/或网络设备具有多个传输面板panel的情况下,所需要的波束生效时间太长的问题。
为了解决上述技术问题,本公开实施例提供如下技术方案:
第一方面,本公开实施例提供一种波束生效时间确定方法,由终端执行,所述方法包括:
向网络设备发送参考信号资源信息,所述参考信号资源信息用于指示所述网络设备更新传输配置指示状态TCI state;
接收所述网络设备发送的更新的传输配置指示状态TCI state;
根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设 的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
可选地,所述方法还包括:
向所述网络设备上报所述第一波束生效时间和/或所述第二波束生效时间。
可选地,向网络设备发送参考信号资源信息,包括:
根据网络设备配置的汇报集合report setting上报N个所述参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,上报N个所述参考信号资源索引,包括:
依次上报至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,上报N个所述参考信号资源索引,包括:
分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述方法还包括:
向所述网络设备发送针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
以发送所述混合自动重传请求确认HARQ-ACK反馈的时间点作为时间起点,在所述时间起点后的所述波束生效时间内,根据所述参考信号对应的接收波束对下行信号或信道进行接收,或者,根据所述参考信号对应的发送波束对上行信号或信道进行发送。
可选地,所述参考信号为准共址类型D QCL type-D类型参考信号。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述方法还包括:
根据所述网络设备指示的第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间是所述终端向所述网络设备上报的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
第二方面,本公开实施例还提供一种波束生效时间确定方法,由网络设备执行,所述方法包括:
接收终端发送的参考信号资源信息;
根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新;
根据更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
可选地,所述方法还包括:
接收所述终端上报的所述第一波束生效时间和/或所述第二波束生效时间。
可选地,接收终端发送的参考信号资源信息,包括:
为终端配置汇报集合report setting;
向所述终端发送第一指示信息,所述第一指示信息用于指示所述终端向网络设备上报参考信号资源信息;
接收所述终端发送的N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N个N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,接收所述终端发送的N个参考信号资源索引,包括:
接收终端依次上报的至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,接收所述终端发送的N个参考信号资源索引,包括:
接收终端分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,在N为4的情况下,根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新,包括:
对信道状态信息CSI参考信号资源指示符对应的源参考信号的传输配置指示状态TCI state进行更新。
可选地,根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述方法还包括:
接收所述终端发送的针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
在所述波束生效时间内,根据所述参考信号对应的发送波束对下行信号或信道进行发送,或者,根据所述参考信号对应的接收波束对上行信号或信道进行接收。
可选地,所述参考信号为共址类型DQCL type-D类型参考信号。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述方法还包括:
根据第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间为所述终端向所述网络设备发送的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
第三方面,本公开实施例还提供一种终端,包括存储器,收发机,处理器:
存储器,针对存储计算机程序;收发机,针对在所述处理器的控制下收发数据;处理器,针对读取所述存储器中的计算机程序并执行以下操作:
所述收发机用于,向网络设备发送参考信号资源信息,所述参考信号资源信息用于指示所述网络设备更新传输配置指示状态TCI state;以及,接收所述网络设备发送的更新的传输配置指示状态TCI state;
所述处理器用于,根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
可选地,所述收发机还用于:
向所述网络设备上报所述第一波束生效时间和/或所述第二波束生效时间。
可选地,所述收发机具体用于:
根据网络设备配置的汇报集合report setting上报N个所述参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述收发机具体用于:
依次上报至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述收发机用于具体用于:
分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,所述处理器具体用于:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,所述处理器具体用于:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述收发机还用于:
向所述网络设备发送针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
以发送所述混合自动重传请求确认HARQ-ACK反馈的时间点作为时间起点,在所述时间起点后的所述波束生效时间内,根据所述参考信号对应的 接收波束对下行信号或信道进行接收,或者,根据所述参考信号对应的发送波束对上行信号或信道进行发送。
可选地,所述参考信号为准共址类型D QCL type-D类型参考信号。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述处理器还用于:
根据所述网络设备指示的第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间是所述终端向所述网络设备上报的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
第四方面,本公开实施例还提供一种网络设备,包括存储器,收发机,处理器:
存储器,针对存储计算机程序;收发机,针对在所述处理器的控制下收发数据;处理器,针对读取所述存储器中的计算机程序并执行以下操作:
所述收发机用于,接收终端发送的参考信号资源信息;
所述处理器用于,根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新;以及,根据更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
可选地,所述收发机还用于:
接收所述终端上报的所述第一波束生效时间和/或所述第二波束生效时间。
可选地,所述处理器还用于,为终端配置汇报集合report setting;
所述收发机还用于,向所述终端发送第一指示信息,所述第一指示信息用于指示所述终端向网络设备上报参考信号资源信息;以及,接收所述终端 发送的N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N个N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述收发机具体用于:
接收终端依次上报的至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述收发机具体用于:
接收终端分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,在N为4的情况下,所述处理器具体用于:
对信道状态信息CSI参考信号资源指示符对应的源参考信号的传输配置指示状态TCI state进行更新。
可选地,所述处理器具体用于:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,所述处理器具体用于:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述收发机还用于:
接收所述终端发送的针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
在所述波束生效时间内,根据所述参考信号对应的发送波束对下行信号或信道进行发送,或者,根据所述参考信号对应的接收波束对上行信号或信道进行接收。
可选地,所述参考信号为共址类型DQCL type-D类型参考信号。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述处理器还用于:
根据第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间为所述终端向所述网络设备发送的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
第五方面,本公开实施例还提供一种波束生效时间确定装置,由终端执行,所述装置包括:
第一发送单元,用于向网络设备发送参考信号资源信息,所述参考信号资源信息用于指示所述网络设备更新传输配置指示状态TCI state;
第一接收单元,用于接收所述网络设备发送的更新的传输配置指示状态TCI state;
第一确定单元,用于根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束 的时间。
可选地,所述装置还包括:
生效时间上报单元,用于向所述网络设备上报所述第一波束生效时间和/或所述第二波束生效时间。
可选地,所述第一发送单元具体用于:
根据网络设备配置的汇报集合report setting上报N个所述参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述第一发送单元具体用于:
依次上报至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述第一发送单元具体用于:
分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,所述第一确定单元具体用于:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,所述第一确定单元具体用于:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输 面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述装置还包括:
反馈消息发送单元,用于向所述网络设备发送针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
第一收发单元,用于以发送所述混合自动重传请求确认HARQ-ACK反馈的时间点作为时间起点,在所述时间起点后的所述波束生效时间内,根据所述参考信号对应的接收波束对下行信号或信道进行接收,或者,根据所述参考信号对应的发送波束对上行信号或信道进行发送。
可选地,所述参考信号为准共址类型D QCL type-D类型参考信号。
可选地,所述装置还包括:
第一生效时间确定单元,用于根据所述网络设备指示的第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间是所述终端向所述网络设备上报的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
第六方面,本公开实施例还提供一种波束生效时间确定装置,由网络设备执行,所述装置包括:
第二接收单元,用于接收终端发送的参考信号资源信息;
更新单元,用于根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新;
第二确定单元,用于根据更新的传输配置指示状态TCI state,确定波束 生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
可选地,所述装置还包括:
生效时间接收单元,用于接收所述终端上报的所述第一波束生效时间和/或所述第二波束生效时间。
可选地,所述第二接收单元具体用于:
为终端配置汇报集合report setting;
向所述终端发送第一指示信息,所述第一指示信息用于指示所述终端向网络设备上报参考信号资源信息;
接收所述终端发送的N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N个N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述第二接收单元具体用于:
接收所述终端依次上报至少一组参考信号资源索引;其中,每组参考信号资源索引所述终端是以依次上报与按照顺序排列的终端传输面板身份标识panel ID对应的资源组编号的方式进行上报的。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述第二接收单元具体用于:
接收终端分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,在N为4的情况下,所述更新单元具体用于:
对信道状态信息CSI参考信号资源指示符对应的源参考信号的传输配置 指示状态TCI state进行更新。
可选地,所述第二确定单元具体用于:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,所述第二确定单元具体用于:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述装置还包括:
反馈信息接收单元,用于接收所述终端发送的针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
第二信号收发单元,用于在所述波束生效时间内,根据所述参考信号对应的发送波束对下行信号或信道进行发送,或者,根据所述参考信号对应的接收波束对上行信号或信道进行接收。
可选地,所述参考信号为共址类型DQCL type-D类型参考信号。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述装置还包括:
第二波束生效时间确定单元,用于根据第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间为所述终端向所述网络设备发送的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
第七方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序针对使所述处理器执行如第一方面中任一项所述的波束生效时间确定方法,或者针对使所述处理器执行如第二方面中任一项所述的波束生效时间确定方法。
本公开的有益效果是:
本公开方案,通过规范定义两种波束生效时间,分别对应未切换传输面板panel的情况和切换传输面板panel的情况,根据网络设备更新的传输配置指示状态TCI state,确定波束生效时间为两种波束生效时间中的哪一个,可以实现更新的传输配置指示状态TCI state对应的新波束在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第一预设时间,在更新的传输配置指示状态TCI state对应的新波束不在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第二预设时间,进而减小所需的波束生效时间。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示针对本公开实施例的一种网络系统的结构图;
图2表示本公开的DCI指示的波束生效时间的示意图;
图3表示本公开实施例的针对终端的波束生效时间确定方法的流程示意图;
图4表示本公开实施例的针对网络设备的波束生效时间确定方法的流程示意图;
图5表示本公开实施例的终端的单元示意图;
图6表示本公开实施例的终端的结构图;
图7表示本公开实施例的网络设备的单元示意图;
图8表示本公开实施例的网络设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是针对区别类似的对象,而不必针对描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
在本公开实施例中,“示例性的”或者“例如”等词针对表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的波束生效时间 确定方法、装置、终端及网络设备可以应针对无线通信系统中。该无线通信系统可以为采用第五代(5th Generation,5G)移动通信技术的系统(以下均简称为5G系统),所述领域技术人员可以了解,5G新空口(New Radio,NR)系统仅为示例,不为限制。
参见图1,图1是本公开实施例可应用的一种网络系统的结构图,如图1所示,包括用户终端11和基站12,其中,用户终端11可以是用户设备(User Equipment,UE),例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。上述基站12可以是5G及以后版本的基站(例如:5G基站(gNB)、5G NR节点(5G NR NB)),或者其他通信系统中的基站,或者称之为节点B,需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定基站12的具体类型。
首先对与本公开实施例相关的一些概念进行说明如下。
在新空口NR系统中,下行信道包括物理下行共享控制信道(Physical Downlink Shared Channel,PDSCH)和物理下行控制信道(Physical Downlink Control Channel,PDCCH),上行信道包括物理上行共享控制信道(Physical Uplink Shared Channel,PUSCH)和物理上行控制信道(Physical Uplink Control Channel,PUCCH)。对于高频传输(NR中的频率范围2((Frequency Range 2,FR2)频段),由于传输范围受限,通常上下行信道会经过波束赋形后进行传输以增强覆盖。赋形波束的方向可以通过上下行参考信号的波束扫描确定,例如使用不同方向的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或者信道探测参考信号(Sounding Reference Signal,SRS)进行波束扫描,选择波束质量最好的参考信号所在的方向用于上行或者下行传输。确定了不同信道的波束反向,需要使用信令指示信道传输时的波束,即波束指示。在NR版本15/16(Release 15/16,Rel-15/16)协议中,对于PUCCH信道,基站通过高层信令空间关系信息(SpatialRelationInfo)半静态的配置给终端多个波束方向,并通过媒体访问控制单元(Media Access  Control Control Element,MAC-CE)指示激活其中的一个。对于PUSCH,基站选择的上行波束是由动态信令下行控制信息(Downlink Control Information,DCI)中信道探测参考信号资源指示(SRS Resource Indicator,SRI)域所指的SRS资源的SpatialRelationInfo间接指示的。对于PDCCH信道,基站通过高层信令为每个资源集(CORESET)配置多个传输配置指示状态(Transmission Configuration Index state,TCI state),并通过MAC-CE指示激活其中的一个。对于PDSCH信道,基站通过DCI信令中的TCI域指示一个TCI state,表示信道的波束方向。
不同的信道使用不同的波束指示信令,且各个信道独立进行波束指示。这样不同的信道可能使用各自不同的波束传输。而实际应用中的一个重要场景是多个信道使用相同的波束方向。例如,用于资源调度的PDCCH和传输用户数据的PDSCH之间使用相同的波束方向;物理上行控制信道PUCCH和PUSCH也会使用相同的波束方向。当波束方向互异性存在时,上行信道和下行信道也将使用同一个波束方向。此时,当前这种波束独立指示的方式,增加了系统的复杂度和信令指示开销。为了克服上述问题,在NR Rel-17协议中,引入采用一个波束指示信息指示多个信道波束的方法,其通过无线资源控制(Radio Resource Control,RRC)配置一组TCI状态池,MAC-CE激活其中的一组TCI状态,再使用DCI指示激活TCI状态中的一个,用以指示上下行共用波束。
相关Rel-17的波束生效时间定为终端在对基站波束指示DCI反馈混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)-确认(ACK)之后的X ms(X正交频分复用(orthogonal frequency divisio nmultiplexing,OFDM)符号(symbol))。基于如图2所示的DCI指示的波束生效时间的示意图,在第n时隙,基站下发DCI信令指示下行和上行的TCI状态。在第n+m时隙,终端对基站的DCI指示进行HARQ-ACK反馈,在n+K时隙,DCI指示的波束进行信道或者信号发送,基站用对应的波束进行接收。对于下行传输,终端认为基站使用的第n个时隙TCI state指示的波束进行信号/信道发送,终端使用相对应的波束进行接收。
本公开实施例提供了一种波束生效时间确定方法及装置,用以解决相关 技术中,终端和/或网络设备具有多个传输面板(panel)的情况下,所需要的波束生效时间太长的问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图3所示,本公开实施例提供一种波束生效时间确定方法,由终端执行,所述方法包括:
步骤S301:向网络设备发送参考信号资源信息,所述参考信号资源信息用于指示所述网络设备更新传输配置指示状态;
在本公开实施例中,终端向网络侧设备上报参考资源信息,网络设备根据参考信号资源信息对TCI state进行更新。
需要说明的是,参考信号资源信息可以是CSI-RS或者SRS。
步骤S302:接收所述网络设备发送的更新的传输配置指示状态。
在本公开实施例中,网络设备根据终端上报的参考信号资源对TCI state进行更新,得到更新后的TCI state,并向终端发送更新后的TCI state,所述更新后的TCI state还可以用于指示终端确定发送波束或者接收波束。
步骤S303:根据所述更新的传输配置指示状态,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板的时间;所述第二波束生效时间包括所述终端切换波束的时间。
本公开实施例,在接收到更新的TCI state后,确定发送波束或者接收波束后,根据发送波束或者接收波束对应的panel,确定该panel与之前的panel是否发生了切换,若发生了切换,则确定波束生效时间为预设的第一波束生效时间,若未发生切换,确定波束生效时间为预设的第二波束生效时间。
在本公开实施例中,在规范中定义两种波束生效时间Xms(或者X正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)字符(symbols))和Yms(或者Y OFDM symbols),分别对应终端切换panel和没有切换panel时的波束生效时间。对于终端没有切换panel的情况,此波束生效时间至少包括终端切换波束的时间。对于终端切换panel的情况,此波束 生效时间至少包括终端切换波束的时间以及终端切换panel的时间。终端向网络设备上报参考信号资源信息,终端通过能力上报两种或者多种波束生效时间Xms(或者X OFDM symbols)和Yms(或者Y OFDM symbols),分别对应终端切换panel和没有切换panel时的波束生效时间。终端接收网络设备发送的更新TCI state指示,并根据TCI state确定波束生效时间。
本公开实施例,通过规范定义两种波束生效时间,分别对应未切换传输面板panel的情况和切换传输面板panel的情况,根据网络设备更新的传输配置指示状态TCI state,确定波束生效时间为两种波束生效时间中的哪一个,可以实现更新的传输配置指示状态TCI state对应的新波束在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第一预设时间,在更新的传输配置指示状态TCI state对应的新波束不在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第二预设时间,进而减小所需的波束生效时间。
可选地,所述方法还包括:
向所述网络设备上报所述第一波束生效时间和/或所述第二波束生效时间。
在本公开实施例中,终端可以在向网络设备发送参考信号资源信息后,终端通过能力上报两种波束生效时间。
可选地,向网络设备发送参考信号资源信息,包括:
根据网络设备配置的汇报集合(report setting)上报N个所述参考信号资源索引以及对应的层1参考信号接收功率(Layer 1 reference signal received power,L1-RSRP)值;N为大于或等于4的正整数。
在本公开实施例中,终端按照网络设备配置的report setting上报N个参考信号资源索引以及对应的L1-RSRP值,每个参考信号资源索引携带一个或者多个编号。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号(panel Identifier,panel ID);
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
在本公开实施例中,参考信号资源索引包括资源组编号或者一个显式的panel ID,具有相同资源组编号或者panel ID的资源对应相同的终端传输panel。
可选地,上报N个所述参考信号资源索引,包括:
依次上报至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
需要说明的是,终端上报N个参考信号资源索引可以按照某种预先定义的格式进行上报,示例性地,终端通过能力上报两个panel,对应的panel ID分别为panel#1、panel#2,N为6,也就是终端上报6个参考信号资源索引,那么本实施例提供的格式下,终端可以上报三个参考信号资源索引组,每个参考信号资源索引组中包括两个参考信号资源索引,每个参考信号资源索引组中的两个参考信号资源索引对应的panel ID的顺序为panel#1、panel#2,也就是如下表1所示,终端上报的第一个参考信号资源索引组中的第一个参考信号资源索引是针对panel#1的参考信号资源索引,其中,CRI即CSI-RS Resource Indicator,为参考信号资源指示符,SSBRI即Synchronization Signaland block resource indicator,为同步信号块资源指示,第一个参考信号资源索引组中的第二个参考信号资源索引是针对panel#2的参考信号资源索引,第二个参考信号资源索引组中的第一个参考信号资源索引是针对panel#1的参考信号资源索引,第二个参考信号资源索引组中的第二个参考信号资源索引是针对panel#2的参考信号资源索引,第三个参考信号资源索引组中的第一个参考信号资源索引是针对panel#1的参考信号资源索引,第三个参考信号资源索引组中的第二个参考信号资源索引是针对panel#2的参考信号资源索引。
表1终端上报参考信号资源索引格式表
Figure PCTCN2022109981-appb-000001
Figure PCTCN2022109981-appb-000002
可选地,上报N个所述参考信号资源索引,包括:
分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
需要说明的是,终端上报N个参考信号资源索引可以按照分为Part1+Part2两部分的格式进行上报;其中,Part1部分指示终端有几个panel的相关信息,Part2部分指示对应每个panel的至少一个波束信息(参考信号资源索引)。示例性地,终端有三个panel,对应的panel ID分别为panel#1、panel#2、panel#3,每个panel对应四个波束信息,则Part1部分上报终端panel的数量为3,Part1部分还可以上报对应的三个panel ID:panel#1、panel#2、panel#3,Part2部分上报针对panel#1的四个波束信息、panel#2的四个波束信息、panel#3的四个波束信息和panel#4的四个波束信息。终端上报参考信号资源索引的Part2部分的格式表如下表2所示。
表2终端上报参考信号资源索引的Part2部分的格式表
1 st CRI/SSBRI for panel#1 1 st CRI/SSBRI for panel#2 1 st CRI/SSBRI for panel#3
2 nd CRI/SSBRI for panel#1 2 nd CRI/SSBRI for panel#2 2 nd CRI/SSBRI for panel#3
3 rd CRI/SSBRI for panel#1 3 rd CRI/SSBRI for panel#2 3 rd CRI/SSBRI for panel#3
4 th CRI/SSBRI for panel#1 4 th CRI/SSBRI for panel#2 4 th CRI/SSBRI for panel#3
也就是,Part2部分可以按照针对panel#1的第一个参考信号资源索引、针对panel#1的第二个参考信号资源索引、针对panel#1的第三个参考信号资源索引、针对panel#1的第四个参考信号资源索引、针对panel#2的第一个参考信号资源索引、针对panel#2的第二个参考信号资源索引、针对panel#2的第三个参考信号资源索引、针对panel#2的第四个参考信号资源索引、针对panel#3的第一个参考信号资源索引、针对panel#3的第二个参考信号资源索引、针对panel#3的第三个参考信号资源索引、针对panel#3的第四个参考信号资源索引的方式进行上报。
可选地,根据所述更新的传输配置指示状态,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述方法还包括:
向所述网络设备发送针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
以发送所述混合自动重传请求确认HARQ-ACK反馈的时间点作为时间起点,在所述时间起点后的所述波束生效时间内,根据所述参考信号对应的接收波束对下行信号或信道进行接收,或者,根据所述参考信号对应的发送波束对上行信号或信道进行发送。
可选地,所述参考信号为准共址类型D QCL type-D类型参考信号。
在本公开实施例中,终端根据TCI state中包含的准共址类型D(Quasi Co-Location type-D,QCL type-D)类型参考信号(QCL type-D source Reference Signal,QCL type-D source RS)确定波束生效时间,包括终端按照TCI state中包含的QCL type-D source RS确定所述资源组编号或者panel ID,以及确定所述QCL type-D source RS对应的panel相对于之前的传输panel是否需要切换。如果不需要panel切换,终端确定波束生效时间为Xms(或者X OFDM symbols)。如果需要panel切换,终端确定波束生效时间为Yms(或者Y OFDM symbols)。
其中,所述参考信号资源包括下行参考信号资源(组)(CSI-RS/SSB  resource(group)),也包括上行参考信号资源(组)(SRS resource(group))。
终端按照确定的波束生效时间接收下行信道/信号传输或者上行信道/信号发送。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述方法还包括:
根据所述网络设备指示的第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间是所述终端向所述网络设备上报的。
在本公开实施例中,在一个参考信号资源索引携带多个编号时,波束生效时间可以按照网络设备指示的第一预设方式进行确认,或者默认为通过能力汇报的波束生效时间中的目标波束生效时间。可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
在本公开实施例中,每个参考信号资源索引携带多个编号时,波束生效时间默认为终端通过能力汇报的波束生效时间中的目标波束生效时间,优选地,目标波束生效时间位最大的波束生效时间。
下面具体说明终端确定波束生效时间的具体流程。
终端按照网络设备配置的report setting上报N个参考信号资源索引以及对应的L1-RSRP值,每个参考信号资源索引携带一个或者多个编号。终端通过能力上报两种或者多种波束生效时间Xms(或者X OFDM symbols)和Yms(或者Y OFDM symbols),分别对应终端切换panel和没有切换panel时的波束生效时间。终端接收网络设备发送的更新TCI state指示并根据TCI state中包含的QCL type-D source RS确定波束生效时间。终端在反馈网络设备更新TCI state HARQ/ACK之后的所述波束生效时间用所述更新TCI state中包含的QCL type-D source RS的接收波束对下行信号/信道进行接收或者对上行信号/信道进行发送。
参考信号资源索引包括资源组编号或者一个显式的panel ID,具有相同资源组编号或者panel ID的资源对应相同的终端传输panel。
根据TCI state中包含的QCL type-D source RS确定波束生效时间包括终端终端按照TCI state中包含的QCL type-D source RS确定所述资源组编号或者panel ID,以及确定所述QCL type-D source RS对应的panel相对于之前的传输panel是否需要切换。如果不需要panel切换,终端确定波束生效时间为Xms(或者X OFDM symbols)。如果需要panel切换,终端确定波束生效时间为Yms(或者Y OFDM symbols)。
N取值为4或者大于4。
参考信号资源包括下行参考信号资源(组)(CSI-RS/SSB resource(group)),也包括上行参考信号资源(组)(SRS resource(group))。
每个参考信号资源索引携带多个编号时,波束生效时间按照网络设备指示的方式确定或者默认为终端通过能力汇报的波束生效时间中的某个波束生效时间,比如最大的波束生效时间。
终端按照定的波束生效时间接收下行信道/信号传输或者上行信道/信号发送。
本公开实施例,用以确定inter-panel情况下的波束生效时间问题。
本公开实施例,终端在上行panel选择时汇报参考信号资源与panel entity(resource set ID/panel ID)的对应关系。网络设备收到终端的汇报,对TCI state中包含的QCL type-D source RS进行更新,指示终端使用QCL type-D source RS的接收波束接收/发送下行/上行信道/信号。
同时网络设备根据终端汇报的参考信号资源与panel entity的对应关系以及更新之后的TCI状态中包含的QCL type-D source RS确定波束生效时间,如果更新后的TCI状态中包含的QCL type-D source RS对应了一个未激活/传输的panel,网络设备确定波束生效时间为Yms(或者Y OFDM symbols),否则,如果更新后的TCI状态包含的QCL type-D source RS对应一个正在传输的panel,网络设备确定新波束生效时间为Xms(或者X OFDM symbols).X和Y的值通过系统预定义确定。终端收到网络设备的TCI状态更新指示,根据TCI状态中包含的QCL type-D source RS以及参考信号资源与panel entity的对应关系确定波束生效时间。即,如果终端收到的TCI状态中包含的QCL type-D source RS对应的是一个未激活/传输的panel,终端确定波束生效时间 为Yms(或者Y OFDM symbols).否则如果终端接收TCI状态中包含的QCL type-D source RS对应了一个正在传输的panel,终端确定新波束生效时间为Xms(或者X OFDM symbols).
下面以一个具体的实施例说明终端上报CSI-RS资源索引以及资源组编号时确定波束生效时间的过程。
需要说明的是,波束的方向可以通过上下行参考信号的波束扫描确定,例如使用CSI-RS或者SRS进行波束扫描,选择波束质量最好的参考信号所在的方向用于上行或者下行传输,在本实施例中,终端上报CSI-RS资源索引为例进行说明。
网络设备给终端配置并发送8个CSI-RS资源:{CSI-RS#1,CSI-RS#2,…,CSI-RS#8}。网络设备给终端配置report setting,通知终端上报4个CSI-RS参考信号资源指示符(CSI-RS Resource Indicator,CRI)+L1-RSRP以及对应的资源组编号。终端将资源进行分组,第1组为{CSI-RS#1,CSI-RS#3,CSI-RS#5,CSI-RS#7},第2组为{CSI-RS#2,CSI-RS#4,CSI-RS#6,CSI-RS#8}。终端通过能力上报两种波束生效时间分别5ms和3ms。其中,5ms为第一波束生效时间,3ms为第二波束生效时间。
终端按照网络设备的配置用第一个panel接收第一组CSI-RS资源并测量其对应的L1-RSRP值:L1-RSRP1,L1-RSPR3,L1-RSRP5,L1-RSRP7。终端用第二个panel接收第二组CSI-RS资源并测量其对应的L1-RSRP值:L1-RSRP2,L1-RSRP4,L1-RSRP6,L1-RSRP8。终端比较测量得到的L1-RSRP值,选择4个CSI-RS索引值进行汇报,并汇报对应的资源组编号:CRI1+L1-RSRP1(group 1),CRI5+L1-RSRP5(group 1),CRI2+L1-RSRP2(group 2),CRI6+L1-RSRP6(group 2)。网络设备收到终端的汇报,更新TCI状态指示,用CSI-RS#1更新之前的TCI状态中包含的源参考信号(比如CSI-RS#2)。
终端接收到网络设备的TCI更新命令,确定其中的源参考信号为CSI-RS#1,对应的组为第1组。之前的TCI状态中包含的源参考信号为CSI-RS#2,对应的组为第2组,即对应第2个panel。终端确定此时的波束生效时间为5ms(对应于发生panel切换的波束生效时间)。终端在反馈波束更 新TCI状态指示HARQ-ACK之后的5ms用接收CSI-RS#1的波束对下行信号/信道进行接收或者对上行信道/信号进行发送。网络设备在收到终端反馈的HARQ-ACK之后的5ms用发送CSI-RS#1的波束对下行信号/信道进行发送或者对上行信道/信号进行接收。
下面以一个具体的实施例说明终端上报CSI-RS资源索引以及panel ID时确定波束生效时间的过程。
需要说明的是,波束的方向可以通过上下行参考信号的波束扫描确定,例如使用CSI-RS或者SRS进行波束扫描,选择波束质量最好的参考信号所在的方向用于上行或者下行传输,在本实施例中,终端上报CSI-RS资源索引为例进行说明。
终端有2个panel,分别为:panel#1和panel#2。终端通过能力上报panel数目2,并且通过能力上报两种波束生效时间分别为3ms和5ms。网络设备给终端配置并发送8个CSI-RS资源,分别为:{CSI-RS#1,CSI-RS#2,…,CSI-RS#8}。网络设备给终端配置report setting,通知终端上报8个CRI+L1-RSRP以及对应的panel ID。终端将网络设备配置的资源与panel关联,与panel#1关联的CSI-RS资源包括{CSI-RS#1,CSI-RS#3,CSI-RS#5,CSI-RS#7}。与panel#2关联的CSI-RS资源包括{CSI-RS#2,CSI-RS#4,CSI-RS#6,CSI-RS#8}。终端通过能力上报两种波束生效时间5ms和3ms。其中,5ms为第一波束生效时间,3ms为第二波束生效时间。
终端按照网络设备的配置用第一个panel接收第一组CSI-RS资源并测量其对应的L1-RSRP值:L1-RSRP1,L1-RSPR3,L1-RSRP5,L1-RSRP7。终端用第二个panel接收第二组CSI-RS资源并测量其对应的L1-RSRP值:L1-RSRP2,L1-RSRP4,L1-RSRP6,L1-RSRP8。终端比较测量得到的L1-RSRP值,选择4个CSI-RS索引值进行汇报,并汇报对应的panel ID:CRI1+L1-RSRP+panel#1,CRI5+L1-RSRP5+panel#1,CRI2+L1-RSRP2+panel#2,CRI6+L1-RSRP6+panel#2。
网络设备收到终端的汇报,更新TCI状态指示,用CSI-RS#1更新之前的TCI状态中包含的源参考信号(比如CSI-RS#3)。终端接收到网络设备的TCI更新命令,确定其中的源参考信号为CSI-RS#1,对应的panel ID为panel#1。 之前的TCI状态中包含的源参考信号为CSI-RS#3,对应panel ID为panel#1。终端确定此时的波束生效时间为3ms(对应于没有发生panel切换的波束生效时间)。终端在反馈波束更新TCI状态指示HARQ-ACK之后的3ms用接收CSI-RS#1的波束对下行信号/信道进行接收或者对上行信道/信号进行发送。网络设备在收到终端反馈的HARQ-ACK之后的3ms用发送CSI-RS#1的波束对下行信号/信道进行发送或者对上行信道/信号进行接收。
下面以一个具体的实施例说明终端上报CSI-RS资源索引时确定波束生效时间的过程。
需要说明的是,波束的方向可以通过上下行参考信号的波束扫描确定,例如使用CSI-RS或者SRS进行波束扫描,选择波束质量最好的参考信号所在的方向用于上行或者下行传输,在本实施例中,终端上报CSI-RS资源索引为例进行说明。
网络设备为终端配置并发送8个CSI-RS资源:{CSI-RS#1,CSI-RS#2,…,CSI-RS#8}。网络设备为终端配置report setting,通知终端上报4个CRI+L1-RSRP值。终端有2个panel,分别为panel#1,panel#2。终端将CSI-RS资源分组并与panel进行mapping。Panel#1对应第一组CSI-RS资源{CSI-RS#1,CSI-RS#2,CSI-RS#3,CSI-RS#4}。Panel#2对应第二组CSI-RS资源{CSI-RS#5,CSI-RS#6,CSI-RS#7,CSI-RS#8}。终端通过能力上报波束生效时间为7ms。在本实施例中不限定该7ms是第一波束生效时间,还是第二波束生效时间。
终端按照网络设备的配置用第一个panel接收第一组CSI-RS资源并测量其对应的L1-RSRP值:L1-RSRP1,L1-RSPR2,L1-RSRP3,L1-RSRP4。终端用第二个panel接收第二组CSI-RS资源并测量其对应的L1-RSRP值:L1-RSRP5,L1-RSRP6,L1-RSRP7,L1-RSRP8。终端比较测量得到的L1-RSRP值,选择4个CSI-RS索引值进行汇报,并汇报对应的资源组编号:CRI1+L1-RSRP1,CRI5+L1-RSRP5,CRI3+L1-RSRP3,CRI6+L1-RSRP6。网络设备收到终端的汇报,更新TCI状态指示,用CSI-RS#1更新之前的TCI状态中包含的源参考信号(比如CSI-RS#7)。
终端接收到网络设备的TCI更新命令,确定其中的源参考信号为CSI-RS#1,对应的panel为panel#1。之前的TCI状态中包含的源参考信号为 CSI-RS#7,对应panel为panel#2。终端确定此时的波束生效时间为7ms。终端在反馈波束更新TCI状态指示HARQ-ACK之后的7ms用接收CSI-RS#1的波束对下行信号/信道进行接收或者对上行信道/信号进行发送。网络设备在收到终端反馈的HARQ-ACK之后的7ms用发送CSI-RS#1的波束对下行信号/信道进行发送或者对上行信道/信号进行接收。
需要说明的是,本公开实施例通过规范定义两种波束生效时间,分别对应未切换传输面板panel的情况和切换传输面板panel的情况,根据网络设备更新的传输配置指示状态TCI state,确定波束生效时间为两种波束生效时间中的哪一个,可以实现更新的传输配置指示状态TCI state对应的新波束在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第一预设时间,在更新的传输配置指示状态TCI state对应的新波束不在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第二预设时间,进而减小所需的波束生效时间。
本公开实施例提供的技术方案可以适针对多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evolved Packet System,EPS)、5G系统(5G System,5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备 可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可针对将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布 置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(2 Dimension MIMO,2D-MIMO)、三维MIMO(3 Dimension MIMO,3D-MIMO)、全维MIMO(Full Dimension MIMO,FD-MIMO)或大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
如图4所示,本公开实施例提供一种波束生效时间确定方法,由网络设备执行,所述方法包括:
步骤S401:接收终端发送的参考信号资源信息;
步骤S402:根据所述参考信号资源信息,对传输配置指示状态进行更新;
步骤S403:根据更新的传输配置指示状态,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板的时间;所述第二波束生效时间包括所述终端切换波束的时间。
本公开实施例,通过规范定义两种波束生效时间,分别对应未切换传输面板panel的情况和切换传输面板panel的情况,根据网络设备更新的传输配置指示状态TCI state,确定波束生效时间为两种波束生效时间中的哪一个,可以实现更新的传输配置指示状态TCI state对应的新波束在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第一预设时间,在更新的传输配置指示状态TCI state对应的新波束不在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第二预设时间,进而减小所需的波束生效时间。
可选地,所述方法还包括:
接收所述终端上报的所述第一波束生效时间和/或所述第二波束生效时间。
可选地,接收终端发送的参考信号资源信息,包括:
为终端配置汇报集合report setting;
向所述终端发送第一指示信息,所述第一指示信息用于指示所述终端向网络设备上报参考信号资源信息;
接收所述终端发送的N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N个N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,接收所述终端发送的N个参考信号资源索引,包括:
接收终端依次上报的至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,接收所述终端发送的N个参考信号资源索引,包括:
接收终端分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,在N为4的情况下,根据所述参考信号资源信息,对传输配置指示状态进行更新,包括:
对信道状态信息CSI参考信号资源指示符对应的源参考信号的传输配置指示状态TCI state进行更新。
可选地,根据所述更新的传输配置指示状态,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,根据所述更新的传输配置指示状态TCI state中的参考信号,确 定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述方法还包括:
接收所述终端发送的针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
在所述波束生效时间内,根据所述参考信号对应的发送波束对下行信号或信道进行发送,或者,根据所述参考信号对应的接收波束对上行信号或信道进行接收。
可选地,所述参考信号为共址类型DQCL type-D类型参考信号。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述方法还包括:
根据第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间为所述终端向所述网络设备发送的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
下面具体说明终端确定波束生效时间的具体流程。
网络设备配置终端report setting,通知终端上报N个参考信号资源索引。网络设备接收终端上报N个参考信号资源索引,每个参考信号资源索引携带一个或者多个编号。网络设备接收终端通过能力上报的两种波束生效时间 Xms(或者X OFDM symbols)和Yms(或者Y OFDM symbols),分别对应终端切换panel和没有切换panel时的波束生效时间。
网络设备按照终端汇报的参考信号资源索引对TCI state进行更新,指示终端按照更新后的TCI state中包含的QCL type-D source RS确定发送/接收波束。同时,网络设备根据TCI state中包含的QCL type-D source RS确定波束生效时间。网络设备在收到终端对所述更新TCI state HARQ/ACK反馈之后的所述波束生效时间用所述更新TCI state中包含的QCL type-D source RS的发送波束对下行信号/信道进行发送或者上行信号/信道进行接收。
信号资源索引包括资源组编号或者一个显式的panel-ID,具有相同资源组编号或者panel-ID的参考信号资源对应相同的终端传输panel。
网络设备根据TCI state中包含的QCL type-D source RS确定波束生效时间包括网络设备根据TCI state中包含的QCL type-D source RS确定所述资源组编号或者panel-ID,以及确定所述QCL type-D source RS对应的panel相对于之前的传输panel是否需要切换。如果不需要panel切换,网络设备确定波束生效时间为Xms(或者X OFDM symbols)。如果需要panel切换,网络设备确定波束生效时间为Yms(或者Y OFDM symbols)。
网络设备按照终端汇报的参考信号资源索引更新TCI状态,指示终端按照更新后的TCI状态所包含的参考信号确定发送/接收波束。当1)中所述N取值为4时,网络设备只更新CRI对应的源参考信号的TCI状态。
N取值为4或者大于4。
参考信号资源包括下行参考信号资源(组)CSI-RS/SSB resource(group),也包括上行参考信号资源(组)SRS resource(group)。
每个参考信号资源索引携带多个编号时,波束生效时间按照网络设备指示的方式确定或者默认为终端通过能力汇报的波束生效时间中的某个波束生效时间,比如取值最大的波束生效时间。
网络设备按照确定的波束生效时间接收上行信号/信道或者发送下行信号/信道。
需要说明的是,上述实施例中所有关于终端的描述均适针对该网络设备的实施例中,也能达到与之相同的技术效果。
如图5所示,本公开实施例提供一种波束生效时间确定装置500,包括:
第一发送单元510,用于向网络设备发送参考信号资源信息,所述参考信号资源信息用于指示所述网络设备更新传输配置指示状态TCI state;
第一接收单元520,用于接收所述网络设备发送的更新的传输配置指示状态TCI state;
第一确定单元530,用于根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
本公开实施例,通过规范定义两种波束生效时间,分别对应未切换传输面板panel的情况和切换传输面板panel的情况,根据网络设备更新的传输配置指示状态TCI state,确定波束生效时间为两种波束生效时间中的哪一个,可以实现更新的传输配置指示状态TCI state对应的新波束在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第一预设时间,在更新的传输配置指示状态TCI state对应的新波束不在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第二预设时间,进而减小所需的波束生效时间。
可选地,所述装置还包括:
生效时间上报单元,用于向所述网络设备上报所述第一波束生效时间和/或所述第二波束生效时间。
可选地,所述第一发送单元510具体用于:
根据网络设备配置的汇报集合report setting上报N个所述参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述第一发送单元510具体用于:
依次上报至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述第一发送单元510具体用于:
分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,所述第一确定单元530具体用于:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,所述第一确定单元530具体用于:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述装置还包括:
反馈消息发送单元,用于向所述网络设备发送针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
第一收发单元,用于以发送所述混合自动重传请求确认HARQ-ACK反馈的时间点作为时间起点,在所述时间起点后的所述波束生效时间内,根据所述参考信号对应的接收波束对下行信号或信道进行接收,或者,根据所述 参考信号对应的发送波束对上行信号或信道进行发送。
可选地,所述参考信号为准共址类型D QCL type-D类型参考信号。
可选地,所述装置还包括:
第一生效时间确定单元,用于根据所述网络设备指示的第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间是所述终端向所述网络设备上报的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
需要说明的是,该波束时间确定装置实施例是与上述方法实施例一一对应的装置,上述方法实施例中所有实现方式均适针对该波束时间确定装置的实施例中,也能达到相同的技术效果。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
如图6所示,本公开实施例还提供一种终端设备,包括处理器600、收 发机610、存储器620及存储在所述存储器620上并可在所述处理器600上运行的程序;其中,收发机610通过总线接口与处理器600和存储器620连接,其中,所述处理器600针对读取存储器中的程序,执行下列过程:
所述收发机610用于,向网络设备发送参考信号资源信息,所述参考信号资源信息用于指示所述网络设备更新传输配置指示状态TCI state;以及,接收所述网络设备发送的更新的传输配置指示状态TCI state;
所述处理器600用于,根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
收发机610,针对在处理器600的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供针对在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是CPU(中央处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,针对按照获得的可执行指令 执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
进一步地,所述处理器600执行所述波束生效时间确定方法的程序时实现以下步骤:
可选地,所述收发机610还用于:
向所述网络设备上报所述第一波束生效时间和/或所述第二波束生效时间。
可选地,所述收发机610具体用于:
根据网络设备配置的汇报集合report setting上报N个所述参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述收发机610具体用于:
依次上报至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述收发机610具体用于:
分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,所述处理器600具体用于:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波 束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,所述处理器600具体用于:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述收发机610还用于:
向所述网络设备发送针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
以发送所述混合自动重传请求确认HARQ-ACK反馈的时间点作为时间起点,在所述时间起点后的所述波束生效时间内,根据所述参考信号对应的接收波束对下行信号或信道进行接收,或者,根据所述参考信号对应的发送波束对上行信号或信道进行发送。
可选地,所述参考信号为准共址类型D QCL type-D类型参考信号。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述处理器600还用于:
根据所述网络设备指示的第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间是所述终端向所述网络设备上报的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
在此需要说明的是,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现应针对终端的波束生效时间确定方法的步骤。所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
如图7所示,本公开实施例提供一种波束生效时间确定装置700,由网络设备执行,所述装置包括:
第二接收单元710,用于接收终端发送的参考信号资源信息;
更新单元720,用于根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新;
第二确定单元730,用于根据更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
本公开实施例,通过规范定义两种波束生效时间,分别对应未切换传输面板panel的情况和切换传输面板panel的情况,根据网络设备更新的传输配置指示状态TCI state,确定波束生效时间为两种波束生效时间中的哪一个,可以实现更新的传输配置指示状态TCI state对应的新波束在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第一预设时间,在更新的传输配置指示状态TCI state对应的新波束不在终端正在激活和传输的panel上的情况下,直接确定波束生效时间为第二预设时间,进而减小所需的波束生效时间。
可选地,所述装置还包括:
生效时间接收单元,用于接收所述终端上报的所述第一波束生效时间和/或所述第二波束生效时间。
可选地,所述第二接收单元710具体用于:
为终端配置汇报集合report setting;
向所述终端发送第一指示信息,所述第一指示信息用于指示所述终端向网络设备上报参考信号资源信息;
接收所述终端发送的N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N个N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述第二接收单元710具体用于:
接收终端依次上报的至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述第二接收单元710具体用于:
接收终端分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,在N为4的情况下,所述更新单元720具体用于:
对信道状态信息CSI参考信号资源指示符对应的源参考信号的传输配置指示状态TCI state进行更新。
可选地,所述第二确定单元730具体用于:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,所述第二确定单元730具体用于:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输 面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述装置还包括:
反馈信息接收单元,用于接收所述终端发送的针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
第二信号收发单元,用于在所述波束生效时间内,根据所述参考信号对应的发送波束对下行信号或信道进行发送,或者,根据所述参考信号对应的接收波束对上行信号或信道进行接收。
可选地,所述参考信号为共址类型DQCL type-D类型参考信号。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述装置还包括:
第二波束生效时间确定单元,用于根据第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间为所述终端向所述网络设备发送的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
需要说明的是,该波束生效时间确定装置实施例是与上述方法实施例一一对应的装置,上述方法实施例中所有实现方式均适针对该波束生效时间确定装置的实施例中,也能达到相同的技术效果。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物 理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
如图8所示,本公开实施例还提供一种网络设备,包括处理器800、收发机810、存储器820及存储在所述存储器820上并可在所述处理器800上运行的程序;其中,收发机810通过总线接口与处理器800和存储器820连接,其中,所述处理器800针对读取存储器中的程序,执行下列过程:
所述收发机810用于,接收终端发送的参考信号资源信息;
所述处理器800用于,根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新;以及,根据更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
收发机810,针对在处理器800的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机810可以是多个元件,即包括发送机和接收机,提供针对在传输介质上与各种其他装置通信的单元, 这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器800负责管理总线架构和通常的处理,存储器800可以存储处理器800在执行操作时所使用的数据。
处理器800可以是中央处理器(Central Processing Unit CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
进一步地,所述处理器800执行所述波束生效时间确定方法的程序时实现以下步骤:
可选地,所述收发机810还用于:
接收所述终端上报的所述第一波束生效时间和/或所述第二波束生效时间。
可选地,所述处理器800还用于,为终端配置汇报集合report setting;
所述收发机810还用于,向所述终端发送第一指示信息,所述第一指示信息用于指示所述终端向网络设备上报参考信号资源信息;以及,接收所述终端发送的N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N个N为大于或等于4的正整数。
可选地,每个所述参考信号资源索引携带至少一个资源组编号或至少一个传输面板身份标识号panel ID;
其中,相同的所述资源组编号对应相同的终端传输面板panel;
或,
相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述收发机810具体用于:
接收终端依次上报的至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
可选地,在所述参考信号资源索引携带至少一个资源组编号的情况下,所述收发机810具体用于:
接收终端分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
可选地,在N为4的情况下,所述处理器800具体用于:
对信道状态信息CSI参考信号资源指示符对应的源参考信号的传输配置指示状态TCI state进行更新。
可选地,所述处理器800具体用于:
根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
可选地,所述处理器800具体用于:
根据所述参考信号,确定所述参考信号资源信息中的资源组编号或传输面板身份标识号panel ID;
根据所述资源组编号或所述传输面板身份标识号panel ID,确定之前的传输面板panel是否需要进行切换;
在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
可选地,所述收发机810还用于:
接收所述终端发送的针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
在所述波束生效时间内,根据所述参考信号对应的发送波束对下行信号或信道进行发送,或者,根据所述参考信号对应的接收波束对上行信号或信道进行接收。
可选地,所述参考信号为共址类型DQCL type-D类型参考信号。
可选地,在一个所述参考信号资源索引携带多个资源组编号或多个传输面板身份标识号panel ID的情况下,所述处理器800还用于:
根据第一预设方式,确定波束生效时间;
或,
按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间为所述终端向所述网络设备发送的。
可选地,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现应针对网络设备的波束生效时间确定方法的步骤。所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NANDFLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生针对实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供针对实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,某个模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在 这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (39)

  1. 一种波束生效时间确定方法,由终端执行,所述方法包括:
    向网络设备发送参考信号资源信息,所述参考信号资源信息用于指示所述网络设备更新传输配置指示状态TCI state;
    接收所述网络设备发送的更新的传输配置指示状态TCI state;
    根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
    其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
  2. 根据权利要求1所述的波束生效时间确定方法,所述方法还包括:
    向所述网络设备上报所述第一波束生效时间和/或所述第二波束生效时间。
  3. 根据权利要求1所述的波束生效时间确定方法,其中,向网络设备发送参考信号资源信息,包括:
    根据网络设备配置的汇报集合report setting上报N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N为大于或等于4的正整数。
  4. 根据权利要求3所述的波束生效时间确定方法,其中,每个所述参考信号资源索引携带至少一个参考信号资源组编号或至少一个传输面板身份标识号panel ID;
    其中,相同的所述参考信号资源组编号对应相同的终端传输面板panel;
    或,
    相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
  5. 根据权利要求3所述的波束生效时间确定方法,其中,上报N个所述参考信号资源索引,包括:
    依次上报至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
    其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不 同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
  6. 根据权利要求3所述的波束生效时间确定方法,其中,上报N个所述参考信号资源索引,包括:
    分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
  7. 根据权利要求1所述的波束生效时间确定方法,其中,根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
    根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
  8. 根据权利要求7所述的波束生效时间确定方法,其中,根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
    根据所述参考信号,确定所述参考信号资源信息中的参考信号资源组编号或传输面板身份标识号panel ID;
    根据所述参考信号资源组编号或所述传输面板身份标识号panel ID,确定传输配置指示状态TCI state更新之前的传输面板panel是否需要进行切换;
    在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
  9. 根据权利要求8所述的波束生效时间确定方法,所述根据所述参考信号资源组编号或所述传输面板身份标识号panel ID,确定传输配置指示状态TCI state更新之前的传输面板panel是否需要进行切换,包括:
    确定所述参考信号资源组编号对应的传输面板panel或所述传输面板身份标识号panel ID对应的传输面板panel,相对于传输配置指示状态TCI state更新之前的传输面板panel是否发生了改变;
    在发生改变的情况下,确定需要切换传输面板panel,或者,在未发生改变的情况下,确定不需要切换传输面板panel。
  10. 根据权利要求1所述的波束生效时间确定方法,所述方法还包括:
    向所述网络设备发送针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
    以发送所述混合自动重传请求确认HARQ-ACK反馈的时间点作为时间起点,在所述时间起点后的所述波束生效时间内,根据所述更新的传输配置指示状态TCI state中包含的参考信号对应的接收波束对下行信号或信道进行接收,或者,根据所述参考信号对应的发送波束对上行信号或信道进行发送。
  11. 根据权利要求7-10中任一项所述的波束生效时间确定方法,其中,所述参考信号为准共址类型D QCL type-D类型参考信号。
  12. 根据权利要求4所述的波束生效时间确定方法,其中,在一个所述参考信号资源索引携带多个参考信号资源组编号或多个传输面板身份标识号panel ID的情况下,所述方法还包括:
    根据所述网络设备指示的第一预设方式,确定波束生效时间;
    或,
    按照第二预设方式,确定所述终端向所述网络设备上报的多个波束生效时间中的一个目标波束生效时间为所述波束生效时间。
  13. 根据权利要求12所述的波束生效时间确定方法,其中,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
  14. 一种波束生效时间确定方法,由网络设备执行,所述方法包括:
    接收终端发送的参考信号资源信息;
    根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新;
    根据更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
    其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
  15. 根据权利要求14所述的波束生效时间确定方法,所述方法还包括:
    接收所述终端上报的所述第一波束生效时间和/或所述第二波束生效时间。
  16. 根据权利要求14所述的波束生效时间确定方法,其中,接收终端发送的参考信号资源信息,包括:
    为终端配置汇报集合report setting;
    向所述终端发送第一指示信息,所述第一指示信息用于指示所述终端向网络设备上报参考信号资源信息;
    接收所述终端发送的N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N个N为大于或等于4的正整数。
  17. 根据权利要求16所述的波束生效时间确定方法,其中,每个所述参考信号资源索引携带至少一个参考信号资源组编号或至少一个传输面板身份标识号panel ID;
    其中,相同的所述参考信号资源组编号对应相同的终端传输面板panel;
    或,
    相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
  18. 根据权利要求16所述的波束生效时间确定方法,其中,接收所述终端发送的N个参考信号资源索引,包括:
    接收终端依次上报的至少一个参考信号资源索引组;每个所述参考信号资源索引组包括至少一个参考信号资源索引;
    其中,每个所述参考信号资源索引组中不同的参考信号资源索引对应不同的传输面板身份标识panel ID;每个所述参考信号资源索引组中参考信号资源索引对应的传输面板身份标识panel ID的排列顺序相同。
  19. 根据权利要求16所述的波束生效时间确定方法,其中,在所述参考信号资源索引携带至少一个参考信号资源组编号的情况下,
    接收所述终端发送的N个参考信号资源索引,包括:
    接收终端分别上报终端传输面板panel的数量,以及与传输面板身份标识panel ID对应的至少一个参考信号资源索引。
  20. 根据权利要求16所述的波束生效时间确定方法,其中,在N为4的情况下,根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新,包括:
    对信道状态信息CSI参考信号资源指示符对应的源参考信号的传输配置 指示状态TCI state进行更新。
  21. 根据权利要求14所述的波束生效时间确定方法,其中,根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
    根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间。
  22. 根据权利要求21所述的波束生效时间确定方法,其中,根据所述更新的传输配置指示状态TCI state中的参考信号,确定所述波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间,包括:
    根据所述参考信号,确定所述参考信号资源信息中的参考信号资源组编号或传输面板身份标识号panel ID;
    根据所述参考信号资源组编号或所述传输面板身份标识号panel ID,确定传输配置指示状态TCI state更新之前的传输面板panel是否需要进行切换;
    在需要切换传输面板panel的情况下,确定所述波束生效时间为所述第一波束生效时间;在不需要切换传输面板panel的情况下,确定所述波束生效时间为所述第二波束生效时间。
  23. 根据权利要求15所述的波束生效时间确定方法,所述方法还包括:
    接收所述终端发送的针对所述更新的传输配置指示状态TCI state的混合自动重传请求确认HARQ-ACK反馈;
    在所述波束生效时间内,根据所述更新的传输配置指示状态TCI state中包含的参考信号对应的发送波束对下行信号或信道进行发送,或者,根据所述参考信号对应的接收波束对上行信号或信道进行接收。
  24. 根据权利要求20-23中任一项所述的波束生效时间确定方法,其中,所述参考信号为共址类型DQCL type-D类型参考信号。
  25. 根据权利要求17所述的波束生效时间确定方法,其中,在一个所述参考信号资源索引携带多个参考信号资源组编号或多个传输面板身份标识号panel ID的情况下,所述方法还包括:
    根据第一预设方式,确定波束生效时间;
    或,
    按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间为所述终端向所述网络设备发送的。
  26. 根据权利要求25所述的波束生效时间确定方法,其中,所述目标波束生效时间为所述多个波束生效时间中的最大波束生效时间。
  27. 一种终端,包括存储器,收发机,处理器:
    存储器,针对存储计算机程序;收发机,针对在所述处理器的控制下收发数据;处理器,针对读取所述存储器中的计算机程序并执行以下操作:
    所述收发机用于,向网络设备发送参考信号资源信息,所述参考信号资源信息用于指示所述网络设备更新传输配置指示状态TCI state;以及,接收所述网络设备发送的更新的传输配置指示状态TCI state;
    所述处理器用于,根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
    其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
  28. 根据权利要求27所述的终端,所述收发机还用于:
    向所述网络设备上报所述第一波束生效时间和/或所述第二波束生效时间。
  29. 根据权利要求27所述的终端,其中,所述收发机具体用于:
    根据网络设备配置的汇报集合report setting上报N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N为大于或等于4的正整数。
  30. 根据权利要求27所述的终端,其中,每个所述参考信号资源索引携带至少一个参考信号资源组编号或至少一个传输面板身份标识号panel ID;
    其中,相同的所述参考信号资源组编号对应相同的终端传输面板panel;
    或,
    相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
  31. 根据权利要求30所述的终端,其中,在一个所述参考信号资源索引携带多个参考信号资源组编号或多个传输面板身份标识号panel ID的情况下, 所述处理器还用于:
    根据所述网络设备指示的第一预设方式,确定波束生效时间;
    或,
    按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间是所述终端向所述网络设备上报的。
  32. 一种网络设备,包括存储器,收发机,处理器:
    存储器,针对存储计算机程序;收发机,针对在所述处理器的控制下收发数据;处理器,针对读取所述存储器中的计算机程序并执行以下操作:
    所述收发机用于,接收终端发送的参考信号资源信息;
    所述处理器用于,根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新;以及,根据更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
    其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
  33. 根据权利要求32所述的网络设备,所述收发机还用于:
    接收所述终端上报的所述第一波束生效时间和/或所述第二波束生效时间。
  34. 根据权利要求32所述的网络设备,所述处理器还用于,为终端配置汇报集合report setting;
    所述收发机还用于,向所述终端发送第一指示信息,所述第一指示信息用于指示所述终端向网络设备上报参考信号资源信息;以及,接收所述终端发送的N个参考信号资源索引以及对应的层1参考信号接收功率L1-RSRP值;N个N为大于或等于4的正整数。
  35. 根据权利要求34所述的网络设备,其中,每个所述参考信号资源索引携带至少一个参考信号资源组编号或至少一个传输面板身份标识号panel ID;
    其中,相同的所述参考信号资源组编号对应相同的终端传输面板panel;
    或,
    相同的传输面板身份标识号panel ID对应相同的终端传输面板panel。
  36. 根据权利要求35所述的网络设备,其中,在一个所述参考信号资源索引携带多个参考信号资源组编号或多个传输面板身份标识号panel ID的情况下,所述处理器还用于:
    根据第一预设方式,确定波束生效时间;
    或,
    按照第二预设方式,确定多个波束生效时间中的其中一个目标波束生效时间为所述波束生效时间;所述多个波束生效时间为所述终端向所述网络设备发送的。
  37. 一种波束生效时间确定装置,由终端执行,所述装置包括:
    第一发送单元,用于向网络设备发送参考信号资源信息,所述参考信号资源信息用于指示所述网络设备更新传输配置指示状态TCI state;
    第一接收单元,用于接收所述网络设备发送的更新的传输配置指示状态TCI state;
    第一确定单元,用于根据所述更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
    其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
  38. 一种波束生效时间确定装置,由网络设备执行,所述装置包括:
    第二接收单元,用于接收终端发送的参考信号资源信息;
    更新单元,用于根据所述参考信号资源信息,对传输配置指示状态TCI state进行更新;
    第二确定单元,用于根据更新的传输配置指示状态TCI state,确定波束生效时间为预设的第一波束生效时间或者为预设的第二波束生效时间;
    其中,所述第一波束生效时间包括所述终端切换波束的时间以及所述终端切换传输面板panel的时间;所述第二波束生效时间包括所述终端切换波束的时间。
  39. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序针对使所述处理器执行权利要求1至13中任一项所述的波束生效时间确定方法,或者针对使所述处理器执行权利要求14至26中任一项所述的波束生效时间确定方法。
PCT/CN2022/109981 2021-08-06 2022-08-03 一种波束生效时间确定方法、装置、终端和网络设备 WO2023011529A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110904311.0 2021-08-06
CN202110904311 2021-08-06
CN202111157481.3 2021-09-30
CN202111157481.3A CN115884406A (zh) 2021-08-06 2021-09-30 一种波束生效时间确定方法、装置、终端和网络设备

Publications (1)

Publication Number Publication Date
WO2023011529A1 true WO2023011529A1 (zh) 2023-02-09

Family

ID=85155278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109981 WO2023011529A1 (zh) 2021-08-06 2022-08-03 一种波束生效时间确定方法、装置、终端和网络设备

Country Status (1)

Country Link
WO (1) WO2023011529A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536456A (zh) * 2018-05-25 2019-12-03 成都华为技术有限公司 通信方法、终端设备和网络设备
CN111586858A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法和通信装置
CN112188623A (zh) * 2019-07-05 2021-01-05 华为技术有限公司 通信方法和装置及计算机存储介质
US20210185647A1 (en) * 2019-12-13 2021-06-17 Samsung Electronics Co., Ltd. Method and apparatus for group-based multi-beam operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536456A (zh) * 2018-05-25 2019-12-03 成都华为技术有限公司 通信方法、终端设备和网络设备
CN111586858A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法和通信装置
CN112188623A (zh) * 2019-07-05 2021-01-05 华为技术有限公司 通信方法和装置及计算机存储介质
US20210185647A1 (en) * 2019-12-13 2021-06-17 Samsung Electronics Co., Ltd. Method and apparatus for group-based multi-beam operation

Similar Documents

Publication Publication Date Title
US11128416B2 (en) Feedback information transmission method and apparatus
WO2019223729A1 (zh) 通信方法、终端设备和网络设备
EP3972175B1 (en) Method used for transmitting data, and terminal device
WO2020155179A1 (zh) 传输信号的方法、终端设备和网络设备
US20230276436A1 (en) Communication method, user equipment, network device and computer-readable storage medium
US20220394504A1 (en) Beam pair training method and communication apparatus
WO2022151952A1 (zh) 信息上报、接收方法、终端设备及网络设备
US20230140502A1 (en) Beam indication method and communications apparatus
WO2023035945A1 (zh) 多时隙传输方法、装置、终端及网络侧设备
WO2023011529A1 (zh) 一种波束生效时间确定方法、装置、终端和网络设备
KR20230088910A (ko) 정보 전송 처리 방법, 장치 및 단말
US20240089057A1 (en) Information processing method, device, terminal and network device
WO2022237498A1 (zh) 重复传输的确定方法、装置、终端及网络侧设备
WO2024032719A1 (zh) Csi报告方法、终端、网络设备、装置及存储介质
WO2024032308A1 (zh) Ta传输的方法及装置
WO2023051689A1 (zh) 上行信息发送方法、接收方法、终端和网络设备
CN115150029B (zh) 物理上行共享信道重复传输方法、装置及可读存储介质
WO2022237637A1 (zh) 一种信息处理方法、装置、终端及网络设备
WO2024032760A1 (zh) Csi报告方法、终端设备、网络设备及存储介质
WO2023193580A1 (zh) 一种信息处理方法、装置和可读存储介质
WO2023202693A1 (zh) 一种信息传输方法、装置、网络设备及终端
WO2017139970A1 (zh) 信息传输装置、方法以及通信系统
WO2024032699A1 (zh) Dmrs端口的确定方法、设备、装置及存储介质
WO2023202694A1 (zh) 信号传输方法、装置、终端及网络设备
WO2024032391A1 (zh) 波束指示方法、装置及其相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE