WO2017139970A1 - 信息传输装置、方法以及通信系统 - Google Patents

信息传输装置、方法以及通信系统 Download PDF

Info

Publication number
WO2017139970A1
WO2017139970A1 PCT/CN2016/074129 CN2016074129W WO2017139970A1 WO 2017139970 A1 WO2017139970 A1 WO 2017139970A1 CN 2016074129 W CN2016074129 W CN 2016074129W WO 2017139970 A1 WO2017139970 A1 WO 2017139970A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
base station
channel
user equipment
channel information
Prior art date
Application number
PCT/CN2016/074129
Other languages
English (en)
French (fr)
Inventor
宋磊
汪巍崴
王昕�
Original Assignee
富士通株式会社
宋磊
汪巍崴
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 宋磊, 汪巍崴, 王昕� filed Critical 富士通株式会社
Priority to JP2018541699A priority Critical patent/JP2019511159A/ja
Priority to EP16890203.9A priority patent/EP3419329A4/en
Priority to CN201680078619.1A priority patent/CN108464033A/zh
Priority to PCT/CN2016/074129 priority patent/WO2017139970A1/zh
Publication of WO2017139970A1 publication Critical patent/WO2017139970A1/zh
Priority to US16/055,780 priority patent/US20180352465A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to an information transmission apparatus, method, and communication system.
  • eIMTA enhanced Interference Mitigation and Traffic Adaption
  • changing the TDD frame structure configuration of a cell may affect neighboring cells.
  • two adjacent cells adopt opposite uplink and downlink configurations, which will cause the base station to no longer interfere with the user equipment and the user.
  • the interference of the device to the base station occurs, but the interference of the base station to the base station and the interference of the user equipment to the user equipment occur.
  • the base station and the base station are mostly direct transmission paths, and the attenuation is small, which increases the interference between the base station and the base station to some extent.
  • uplink and downlink reconfiguration of each cell for example, the TDD frame structure of the macro base station is not reconfigured, or only the uplink is reconfigured as downlink, or only in the Uplink and downlink reconfiguration are allowed on individual subframes.
  • the communication scenario will be more diversified, the network architecture will be more flexible, and the demand for uplink and downlink service matching will become more flexible and changeable. In this case, the many restrictions set in eIMTA will not meet future business needs.
  • each cell can select the uplink and downlink configuration according to the service status of its own users.
  • TPs multiple transmission points
  • a macro base station for example, MTP
  • MTP macro base station
  • STP small base station
  • the MTP can also perform uplink communication; and the STP in the coverage of the MTP can be performed simultaneously.
  • uplink communication can also be performed; this flexible transmission mode can realize flexible uplink and downlink service transmission.
  • Embodiments of the present invention provide an information transmission apparatus, method, and communication system.
  • the transmission point that performs the scheduling decision can obtain the channel information necessary for flexible duplex transmission, and thus can support multiple devices (for example, multiple base stations that are far away, or multiple base stations that do not have X2 connection with each other) Or multiple base stations with large backhaul delays) flexible uplink and downlink transmissions at the same time.
  • an information transmission method including:
  • an information transmission apparatus which is configured in a user equipment, where the information transmission apparatus includes:
  • An information receiving unit configured to receive, by the first base station, first channel information corresponding to a channel between the first base station and the second base station;
  • An information reporting unit that reports the identification information of the first base station and/or the first channel information corresponding to the first channel information to the second base station.
  • an information transmission method including:
  • an information transmission apparatus configured in a first base station, The information transmission device includes:
  • An information acquiring unit which obtains first channel information of a channel between the first base station and the second base station;
  • an information sending unit that sends the first channel information of a channel between the first base station and the second base station to a user equipment.
  • an information transmission method including:
  • the second base station receives second channel information of a channel between the user equipment and the second base station reported by the user equipment.
  • an information transmission apparatus which is configured in a second base station, where the information transmission apparatus includes:
  • a first information receiving unit which receives first channel information of a channel between the first base station and the second base station reported by the user equipment, and/or identifier information of the first base station corresponding to the first channel information;
  • a second information receiving unit that receives second channel information of a channel between the user equipment and the second base station reported by the user equipment.
  • a communication system comprising:
  • a first base station configured with the information transmission apparatus according to the fourth aspect
  • the second base station is configured with the information transmission apparatus described in the sixth aspect above.
  • the first base station obtains the channel information between the first base station and the second base station and sends the channel information to the user equipment, and the user equipment forwards the channel information to the second base station;
  • the second base station can obtain the channel information necessary for flexible duplex transmission, and thus can support multiple devices to perform flexible uplink and downlink transmission at the same time, thereby avoiding or alleviating interference between uplink and downlink transmissions between multiple devices.
  • FIG. 1 is a schematic diagram of an information transmission method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a first base station transmitting first channel information to a user equipment according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of user equipment reporting information to a second base station according to Embodiment 1 of the present invention.
  • FIG. 4 is another schematic diagram of an information transmission method according to Embodiment 1 of the present invention.
  • FIG. 5 is another schematic diagram of an information transmission method according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of an information transmission method according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of an information transmission method according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of an information transmission apparatus according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic diagram of a user equipment according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of an information transmission apparatus according to Embodiment 5 of the present invention.
  • FIG. 11 is a schematic diagram of a base station according to Embodiment 5 of the present invention.
  • Figure 12 is a schematic diagram of an information transmission apparatus according to Embodiment 6 of the present invention.
  • Figure 13 is a diagram showing the communication system of Embodiment 7 of the present invention.
  • a base station may be referred to as an access point, a broadcast transmitter, a Node B, an evolved Node B (eNB), etc., and may include some or all of their functions.
  • the term “base station” will be used herein. Each base station provides communication coverage for a particular geographic area.
  • the term “cell” can refer to a base station and/or its coverage area, which Depends on the context in which the term is used.
  • a mobile station or device may be referred to as a "User Equipment” (UE).
  • UE User Equipment
  • a UE may be fixed or mobile and may also be referred to as a mobile station, terminal, access terminal, subscriber unit, station, and the like.
  • the UE may be a cellular telephone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless telephone, and the like.
  • PDA personal digital assistant
  • FIG. 1 is a schematic diagram of an information transmission method according to an embodiment of the present invention, which is described from the user equipment side. As shown in FIG. 1, the information transmission method includes:
  • Step 101 The user equipment receives, by the first base station, first channel information corresponding to a channel between the first base station and the second base station.
  • Step 102 The user equipment reports the identifier information of the first base station corresponding to the first channel information and/or the first channel information to the second base station.
  • the second base station may be a macro base station (or a macro transmission point, which may be referred to herein as an MTP), and a macro cell (for example, a macro cell) generated by the macro base station may provide a service for the user equipment;
  • the first base station may be a small base station (this article) It can be called STP), and a small cell (for example, a small cell) generated by the small base station can provide services for user equipment.
  • the information exchange between the first base station and the second base station may be performed through the X2 interface, or may be performed by defining a new air interface format without the X2 interface.
  • the present invention is not limited thereto, and a specific scenario may be determined according to actual needs.
  • the MTP performs the downlink transmission and the STP performs the uplink transmission in the heterogeneous network.
  • the following is also applicable to other network structures or scenarios. For example, it is also applicable to the scenario where the MTP performs uplink transmission and the STP performs downlink transmission.
  • the MTP acts as the transmitting end to interfere with the STP as the receiving end.
  • the receiving end can obtain channel information between the transmitting end and the receiving end through channel estimation.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA single carrier frequency division multiplexing
  • SC-FDMA Simple-Carrier Frequency Division
  • the STP may receive the reference signal sent by the MTP in the idle time slot, and estimate channel state information (CSI, Channel State Information) between the MTP and the STP; That is, the CSI between the first base station and the second base station is obtained by channel estimation.
  • CSI Channel State Information
  • channel measurement information between the first base station and the second base station may also be obtained by performing corresponding radio resource measurement; for example, reference signal received power (RSRP, Reference Signal Received Power), and/or reference signal received quality (RSRQ, Reference Signal Received Quality), and more.
  • RSRP reference signal received power
  • RSS Reference Signal Received Quality
  • the second base station can obtain the first channel information of the channel between the first base station and the second base station by using the forwarding of the user equipment, the first channel information. It may be a short-term or transient parameter (such as CSI) or a long-term parameter (such as RSRP and/or RSRQ).
  • CSI short-term or transient parameter
  • RSRP long-term parameter
  • the user equipment may receive first channel information sent by one or more first base stations.
  • the first channel information may be sent by the first base station through a Master Information Block (MIB) and/or a System Information Block (SIB), or may be sent through Downlink Control Information (DCI).
  • MIB Master Information Block
  • SIB System Information Block
  • DCI Downlink Control Information
  • the heterogeneous network includes, for example, two first base stations STP1 and STP2; STP1 may cover the same.
  • the user equipments UE1 and UE2 in the range broadcast the first channel information between the STP1 and the MTP, and the STP2 can broadcast the first channel information between the STP2 and the MTP to the user equipments UE2 and UE3 in its coverage.
  • the user equipment may report the identification information of the first base station corresponding to the one or more first channel information to the second base station; and further report the one or more first channel information to the second base station.
  • FIG. 3 is a schematic diagram of the user equipment reporting information to the second base station according to the embodiment of the present invention.
  • the UE1 may report the first channel information and/or the STP1 identification information between the STP1 and the MTP to the MTP;
  • the first channel information and/or the identification information of the STP2 between the STP2 and the MTP may be reported to the MTP.
  • FIG. 3 does not show the case reported by UE3.
  • the user equipment may perform feedback according to requirements, for example, which user equipments need to report the first channel information and/or the STP identification information, and may be configured by the second base station to send high layer signaling.
  • the MTP can obtain the first channel information necessary for flexible duplex transmission, and the MTP can also obtain the second channel information of the channel between the user equipment and the MTP; the MTP can be reasonably based on the channel information. Scheduling decisions that allow STP and user equipment to be flexible at the same time Up and down transmission.
  • FIG. 4 is another schematic diagram of an information transmission method according to an embodiment of the present invention, which is further described from the user equipment side. As shown in FIG. 4, the information transmission method includes:
  • Step 401 The user equipment receives, by the first base station, first channel information corresponding to a channel between the first base station and the second base station.
  • Step 402 The user equipment obtains second channel information of a channel between the user equipment and the second base station.
  • the second channel information may be a short-term or instantaneous parameter (such as CSI obtained by channel estimation), or may be a long-term parameter (such as RSRP obtained by radio resource measurement and/or RSRQ).
  • CSI channel estimation
  • RSRP radio resource measurement and/or RSRQ
  • Step 403 The user equipment determines feedback information that needs to be reported to the second base station.
  • the user equipment may report the identifier information of the first base station corresponding to the first channel information and/or the first channel information to the second base station; or report the second channel information to the second channel information.
  • Second base station may report the identifier information of the first base station corresponding to the first channel information and/or the first channel information to the second base station; or report the second channel information to the second channel information.
  • the specific content of the feedback information can be determined according to the actual scene, for example, can be determined based on the direction information as will be described later; however, the present invention is not limited thereto.
  • Step 404 The user equipment reports the feedback information to the second base station in one or more uplink time slots.
  • the identifier information of the first base station corresponding to the first channel information and/or the first channel information may be fed back to the second base station in a certain time slot, and the second channel information may be fed back to the other time slot.
  • the second base station; or, the feedback information may be sent in one time slot.
  • the present invention is not limited thereto, and the timing and manner of feedback can be determined according to actual needs.
  • Step 405 The user equipment receives the scheduling information sent by the second base station, and performs uplink and downlink transmission according to the scheduling information.
  • the second base station can simultaneously schedule the first base station and the user equipment. Therefore, the user equipment can perform flexible uplink and downlink transmissions simultaneously with the first base station, thereby avoiding or alleviating interference between uplink and downlink transmissions between multiple devices.
  • FIG. 5 is another schematic diagram of an information transmission method according to an embodiment of the present invention, showing a situation in which a user equipment, a first base station, and a second base station interact.
  • the information transmission method includes:
  • Step 501 The first base station obtains first channel information between the first base station and the second base station.
  • CSI between the first base station and the second base station may be obtained through channel estimation, and/or RSRP and/or RSRQ and the like between the first base station and the second base station may be obtained through radio resource measurement.
  • the STP can receive the reference signal transmitted by the MTP in the idle time slot and estimate the CSI between the STP and the MTP.
  • the first channel information is CSI
  • the CSI includes direction information; for example, one or more of the following information: beam number (BI, Beam Index), precoding matrix indication (PMI) , Precoding Matrix Indicator), channel state information reference signal resource indication (CRI, CSI-RS resource indicator).
  • BI Beam Index
  • PMI precoding matrix indication
  • CRI channel state information reference signal resource indication
  • CSI-RS resource indicator channel state information reference signal resource indication
  • Step 502 The first base station sends first channel information to the user equipment.
  • the STP may broadcast/send the CSI and STP numbers of the channels between the STP and the MTP to the user equipment in the coverage of the STP.
  • STP can be broadcast via MIB or SIB or via DCI.
  • Step 503 The user equipment obtains second channel information of a channel between the user equipment and the second base station.
  • the user equipment may obtain CSI of a channel between the user equipment and the second base station by using channel estimation, and/or obtain a channel between the user equipment and the second base station by using radio resource measurement. RSRP and / or RSRQ, and so on.
  • Step 504 The user equipment reports the feedback information to the second base station.
  • the user equipment may report the identification information of the first base station corresponding to the first channel information and/or the first channel information; and may further report the second channel information.
  • the user equipment with the downlink communication requirement forwards the received STP information to the MTP in the uplink time slot together with the information to be fed back.
  • the user equipment may report the information to the second base station in a periodic feedback manner, or report the information to the second base station in a non-periodic feedback manner.
  • the feedback information may be reported at the same time, or the feedback information may be reported separately at different times.
  • the identifier information of the first base station in the report information may include: the first channel information that is the same as the direction of the second channel information (for example, the same BI/PMI/CRI, that is, is not suitable for simultaneous uplink and downlink transmission) Corresponding identification information of the first base station.
  • each user equipment feeds back its own BI/PMI/CRI to the MTP and feeds back the number of the STP with the same BI/PMI/CRI.
  • the UE 1's own BI ie, the BI of the channel between the UE1 and the MTP
  • the BI sent by the STP 1 to the UE 1 ie, the BI of the channel between the STP 1 and the MTP
  • UE1 sends the identification information of STP 1 to the MTP.
  • the MTP can prevent the user equipment and the STP from being scheduled together for flexible uplink and downlink transmission, thereby avoiding or mitigating interference.
  • the identifier information of the first base station in the report information may include: identifier information of one or more first base stations that are suitable for simultaneous uplink and downlink transmission with the user equipment.
  • each user equipment feeds back its own BI/PMI/CRI to the MTP, and feeds back the number of the STP suitable for flexible uplink and downlink transmission with the user equipment, and can also feed back the BI/PMI/CRI of the STP.
  • the STP suitable for flexible uplink and downlink transmission with the user equipment may be one or more.
  • the identifier information of the first base station in the report information may include: identifier information of the first base station corresponding to all the first channel information received by the user equipment.
  • each user equipment feeds back its own BI/PMI/CRI to the MTP, and feeds back the number of all received STPs.
  • it can also feed back all BI/PMI/CRI sent by STP; this implementation may involve A large amount of feedback.
  • the number of the STP here may be a unique number of the STP in the entire network, or may be a number temporarily set for all STPs within the coverage of the macro base station, for example; the present invention is not limited thereto.
  • the above embodiment has been described by taking only BI/PMI/CRI as an example, and other channel information can be processed accordingly.
  • Step 505 The second base station performs scheduling decision according to the reported feedback information.
  • the second base station may perform scheduling decision based on the second channel information and the identifier information of the first base station corresponding to the first channel information, or may also be based on the second channel information, the first channel information, and the first The identification information of the first base station corresponding to the channel information is used for scheduling decision.
  • Step 506 The second base station sends scheduling information to the first base station and/or the user equipment.
  • the second base station can simultaneously schedule the first base station and the user equipment, so that the first base station and the user equipment perform uplink and downlink transmission simultaneously.
  • one or more user equipments can perform uplink and downlink transmissions simultaneously with one or more first base stations (eg, one user equipment is in downlink transmission, and multiple first base stations are in uplink transmission), different user equipments.
  • the corresponding first base stations may be different; specific scenarios may be determined according to actual needs.
  • FIG. 5 only schematically illustrates an embodiment of the present invention, but the present invention is not limited thereto.
  • the order of execution between the various steps may be appropriately adjusted.
  • step 503 may be performed before step 501 or may be performed in parallel with step 501.
  • step 504 can be performed at different times to separately transmit the first channel information and the second channel information.
  • the first base station obtains channel information between the first base station and the second base station, and sends the channel information to the user equipment, and the user equipment forwards the channel information to the second base station;
  • the base station can obtain the channel information necessary for flexible duplex transmission, and thus can support multiple devices to perform flexible uplink and downlink transmission at the same time, thereby avoiding or alleviating interference between uplink and downlink transmissions between multiple devices.
  • the embodiment of the present invention provides an information transmission method, which is applied to the first base station, and the same content as that of Embodiment 1 is not described herein.
  • FIG. 6 is a schematic diagram of an information transmission method according to an embodiment of the present invention. As shown in FIG. 6, the information transmission method includes:
  • Step 601 The first base station obtains first channel information of a channel between the first base station and the second base station.
  • Step 602 The first base station sends, to the user equipment, first channel information of a channel between the first base station and the second base station.
  • the first channel information may include: CSI obtained by channel estimation.
  • the STP may receive the reference signal transmitted by the MTP in the idle time slot, and estimate the CSI between the MTP and the STP; that is, obtain the first base station and the second base station by using channel estimation.
  • CSI between may include: CSI obtained by channel estimation.
  • the first channel information may also include channel measurement information obtained by radio resource measurement.
  • the first base station may perform corresponding radio resource measurement to obtain RSRP and/or RSRQ between the first base station and the second base station, and the like.
  • the first base station can obtain the first channel information of the channel between the first base station and the second base station, and the first channel information can be a parameter that characterizes short-term or instantaneous (such as CSI), or can be a parameter that characterizes the long-term ( For example RSRP and / or RSRQ). And, the first base station can send the first channel information to the user equipment.
  • the first channel information can be a parameter that characterizes short-term or instantaneous (such as CSI), or can be a parameter that characterizes the long-term ( For example RSRP and / or RSRQ).
  • the information transmission method may further include:
  • Step 603 The first base station receives scheduling information sent by the second base station.
  • the second base station can simultaneously schedule the first base station and the user equipment, so that the first base station and the user equipment perform uplink and downlink transmission simultaneously.
  • one or more user equipments can perform uplink and downlink transmissions simultaneously with one or more first base stations (eg, one user equipment is in downlink transmission, and multiple first base stations are in uplink transmission), different user equipments.
  • the corresponding first base stations may be different; specific scenarios may be determined according to actual needs.
  • the scheduling information can be transmitted using a new DCI format different from the existing DCI formats 1 to 5.
  • the new DCI format can be defined as DCI format 6 (DCI format 6).
  • the DCI format 6 is used for related uplink and downlink transmission scheduling, and may include the following information:
  • PUSCH Physical Uplink Shared Channel
  • a transmission power control command for the PUSCH and PUCCH of the user equipment that performs uplink transmission is a transmission power control command for the PUSCH and PUCCH of the user equipment that performs uplink transmission.
  • the MTP can send scheduling information through the DCI format 6.
  • the STP and the corresponding user equipment can receive the scheduling information carried by the DCI format 6, thereby performing flexible uplink and downlink transmission.
  • the first base station obtains channel information between the first base station and the second base station, and sends the channel information to the user equipment, and the user equipment forwards the channel information to the second base station;
  • the base station can obtain the channel information necessary for flexible duplex transmission, and thus can support multiple devices to perform flexible uplink and downlink transmission at the same time, thereby avoiding or alleviating interference between uplink and downlink transmissions between multiple devices.
  • the embodiment of the present invention provides an information transmission method, which is applied to the second base station, and the same content as that of Embodiment 1 or 2 is not described again.
  • FIG. 7 is a schematic diagram of an information transmission method according to an embodiment of the present invention. As shown in FIG. 7, the information transmission method includes:
  • Step 701 The second base station receives, by the user equipment, first channel information of a channel between the first base station and the second base station, and/or identifier information of the first base station corresponding to the first channel information.
  • Step 702 The second base station receives second channel information of a channel between the user equipment and the second base station reported by the user equipment.
  • the first channel information and/or the second channel information may include: CSI obtained by channel estimation, And/or channel measurement information obtained by radio resource measurement; however, the present invention is not limited thereto, and may be other channel information, for example.
  • step 701 and step 702 can be performed simultaneously, for example, the first channel information and the second channel information sent by the user equipment can be simultaneously received.
  • step 701 and step 702 may also be performed at different times.
  • the first channel information and the second channel information sent by the user equipment may be separately received at different times.
  • the order of execution between step 701 and step 702 is not limited thereto.
  • step 702 may also be performed before step 701.
  • the information transmission method may further include:
  • Step 703 The second base station performs scheduling decision based on the feedback information reported by the user equipment.
  • the second base station may perform scheduling decision based on the feedback information reported by one or more user equipments.
  • the second base station may also refer to the first channel information sent by one or more user equipments.
  • Step 704 The second base station sends scheduling information to the first base station and the user equipment.
  • the second base station can simultaneously schedule the first base station and the user equipment, so that the first base station and the user equipment simultaneously perform uplink and downlink transmission.
  • the scheduling information can be transmitted using a new DCI format different from the existing DCI formats 1 to 5.
  • the new DCI format can be defined as DCI format 6 (DCI format 6), and the related content in Embodiment 2 can be referred to.
  • the first base station obtains channel information between the first base station and the second base station, and sends the channel information to the user equipment, and the user equipment forwards the channel information to the second base station;
  • the base station can obtain the channel information necessary for flexible duplex transmission, and thus can support multiple devices to perform flexible uplink and downlink transmission at the same time, thereby avoiding or alleviating interference between uplink and downlink transmissions between multiple devices.
  • the embodiment of the invention provides an information transmission device, which is configured in a user equipment.
  • the embodiment of the present invention corresponds to the information transmission method of Embodiment 1, and the same content as Embodiment 1 will not be described again.
  • FIG. 8 is a schematic diagram of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 8, the information transmission apparatus 800 includes:
  • An information receiving unit 801 configured to receive, by the first base station, a correspondence between the first base station and the second base station First channel information of the track;
  • the information reporting unit 802 reports the identification information of the first base station and/or the first channel information corresponding to the first channel information to the second base station.
  • the information transmission device 800 may further include:
  • the information reporting unit 802 is further configured to report the second channel information to the second base station.
  • the information transmission device 800 may further include:
  • the scheduling receiving unit 804 receives the scheduling information sent by the second base station, and performs uplink and downlink transmission according to the scheduling information.
  • the second base station can simultaneously schedule the first base station and the user equipment. Therefore, the user equipment can perform flexible uplink and downlink transmissions simultaneously with the first base station, thereby avoiding or alleviating interference between uplink and downlink transmissions between multiple devices.
  • the first channel information and/or the second channel information may include: CSI obtained by channel estimation, and/or channel measurement information obtained by radio resource measurement.
  • the present invention is not limited thereto, and may be other channel information.
  • the first channel information may include direction information; the direction information may include one or more of the following information: BI, PMI, CRI.
  • the first channel information may be transmitted by the first base station through the MIB and/or the SIB, or may also be transmitted through the DCI.
  • the information reporting unit 802 may send the first channel information and/or the identifier information of the first base station corresponding to the first channel information to the second base station by using a periodic feedback manner or an aperiodic feedback manner.
  • the information reporting unit 802 can also send the second channel information to the second base station by using a periodic feedback manner or an aperiodic feedback manner.
  • the identifier information of the first base station corresponding to the first channel information may include: identifier information of the first base station corresponding to the first channel information in the same direction as the second channel information; or, with the user
  • the device is suitable for identifying information of one or more first base stations that are simultaneously transmitting uplink and downlink; or the identification information of the first base station corresponding to all the first channel information received by the user equipment.
  • the embodiment of the invention further provides a user equipment, which is configured with the information transmission device 800 described above.
  • FIG. 9 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 900 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the functionality of information transfer device 800 can be integrated into central processor 100.
  • the central processing unit 100 may be configured to implement the information transmission method described in Embodiment 1.
  • the central processing unit 100 may be configured to perform control of: receiving, by the first base station, first channel information corresponding to a channel between the first base station and the second base station; and corresponding to the first channel information The identification information of the first base station and/or the first channel information is reported to the second base station.
  • the information transmission device 800 can be configured separately from the central processing unit 100.
  • the information transmission device 800 can be configured as a chip connected to the central processing unit 100, and the information transmission device can be implemented by the control of the central processing unit 100. 800 features.
  • the user equipment 900 may further include: a communication module 110, an input unit 120, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 900 does not have to include all the components shown in FIG. 9, and the above components are not required; in addition, the user equipment 900 may further include components not shown in FIG. There are technologies.
  • the user equipment may be configured to use a new transmission mode (TM) different from the existing transmission modes 1 to 10; for example, the new transmission mode may be defined as the TM 11.
  • TM new transmission mode
  • the user equipment is configured by the upper layer to use a Cyclic Redundancy Check (CRC) scrambled by a Cell Radio Network Temporary Identifier (C-RNTI), the physical downlink control channel (PDCCH, The physical downlink control channel is decoded, and the user equipment decodes the PDCCH and the corresponding physical downlink shared channel (PDSCH) according to the following Table 1.
  • CRC Cyclic Redundancy Check
  • C-RNTI Cell Radio Network Temporary Identifier
  • the user equipment decodes the EPDCCH and the corresponding PDSCH according to Table 2 below.
  • TM 9 and TM 10 are multiple input multiple output (MIMO) transmissions supporting up to 8 data streams, but DCI format 2D is used in TM 10 and DCI format is used in TM 9 2C, that is, the TM 10 supports multiple antennas at the transmitting end that are not on the same base station.
  • MIMO multiple input multiple output
  • TM 11 can also be similar to TM 9, supporting up to 8 data streams for MIMO transmission.
  • the transmitting antenna that simultaneously transmits data in the TM 11 may not even be at the base station, but may also be at the user equipment (the UE performing uplink transmission).
  • the TM 11 can be configured for the user equipment that performs downlink transmission with the MTP, and the STP that performs the uplink transmission can also receive the corresponding TM configuration, and then search for the DCI format 6, and obtain the scheduling information of the user equipment that uses the STP for uplink transmission.
  • the user equipment that performs downlink transmission with the MTP can also obtain downlink scheduling information, especially the antenna port information, by searching the DCI format 6.
  • Tables 1 and 2 only schematically show the contents of the TM 11, but the present invention is not limited thereto.
  • the contents of the transmission mode (for example, TM 1 to 10) can refer to relevant standards, and will not be described in detail herein.
  • the first base station obtains channel information between the first base station and the second base station, and sends the channel information to the user equipment, and the user equipment forwards the channel information to the second base station;
  • the base station can obtain the channel information necessary for flexible duplex transmission, and thus can support multiple devices to perform flexible uplink and downlink transmission at the same time, thereby avoiding or alleviating interference between uplink and downlink transmissions between multiple devices.
  • An embodiment of the present invention provides an information transmission apparatus, which is configured in a first base station.
  • the embodiment of the present invention corresponds to the information transmission method of Embodiment 2, and the same content as Embodiment 1 or 2 will not be described again.
  • FIG. 10 is a schematic diagram of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 10, the information transmission apparatus 1000 includes:
  • An information acquiring unit 1001 which obtains first channel information of a channel between the first base station and the second base station;
  • the information sending unit 1002 sends the first channel information of the channel between the first base station and the second base station to the user equipment.
  • the first channel information may include: CSI obtained by channel estimation, and/or channel measurement information (for example, RSRP or RSRQ) obtained by radio resource measurement.
  • channel measurement information for example, RSRP or RSRQ
  • the invention is not limited to this, For example, it may be other channel information.
  • the information transmission apparatus 1000 may further include:
  • the scheduling receiving unit 1003 receives the scheduling information sent by the second base station, and performs uplink and downlink transmission according to the scheduling information.
  • the second base station can simultaneously schedule the first base station and the user equipment, so that the first base station and the user equipment perform uplink and downlink transmission simultaneously.
  • the embodiment of the invention further provides a base station, which is configured with the above information transmission device 1000.
  • FIG. 11 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • base station 1100 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processor 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the central processing unit 200 may be configured to implement the information transmission method in Embodiment 2.
  • the central processing unit 100 may be configured to perform control of: obtaining first channel information of a channel between the first base station and the second base station; and transmitting, by the user equipment, a channel between the first base station and the second base station One channel of information.
  • the base station 1100 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and details are not described herein again. It should be noted that the base station 1100 does not have to include all the components shown in FIG. 11; in addition, the base station 1100 may further include components not shown in FIG. 11, and reference may be made to the prior art.
  • the first base station obtains channel information between the first base station and the second base station, and sends the channel information to the user equipment, and the user equipment forwards the channel information to the second base station;
  • the base station can obtain the channel information necessary for flexible duplex transmission, and thus can support multiple devices to perform flexible uplink and downlink transmission at the same time, thereby avoiding or alleviating interference between uplink and downlink transmissions between multiple devices.
  • An embodiment of the present invention provides an information transmission apparatus, which is configured in a second base station, and the embodiment of the present invention corresponds to the information transmission method of Embodiment 3.
  • the same content as Embodiments 1 to 3 is not described herein.
  • FIG. 12 is a schematic diagram of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 12, the information transmission apparatus 1100 includes:
  • a first information receiving unit 1201 which receives a channel between the first base station and the second base station reported by the user equipment First channel information, and/or identification information of the first base station corresponding to the first channel information;
  • the second information receiving unit 1202 receives the second channel information of the channel between the user equipment and the second base station reported by the user equipment.
  • the first channel information and/or the second channel information may include: CSI obtained by channel estimation, and/or channel measurement information obtained by radio resource measurement.
  • the present invention is not limited thereto, and may be other channel information, for example.
  • the information transmission device 1200 may further include:
  • the scheduling decision unit 1203 performs scheduling decision based on the feedback information reported by the user equipment
  • a scheduling sending unit 1204 which sends scheduling information to the first base station and the user equipment;
  • the second base station can simultaneously schedule the first base station and the user equipment, so that the first base station and the user equipment simultaneously perform uplink and downlink transmission.
  • the scheduling information may use a new DCI format different from the existing DCI formats 1 to 5.
  • the new DCI format can be defined as DCI format 6 (DCI format 6), and the related content in Embodiment 2 can be referred to.
  • the embodiment of the invention further provides a base station, which is configured with the information transmission device 1200 described above.
  • the base station may be configured as shown in FIG. 11.
  • the base station may include a central processing unit (CPU) 200 and a memory 210; and the memory 210 is coupled to the central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the central processing unit 200 may be configured to implement the information transmission method in Embodiment 3.
  • the central processing unit 100 may be configured to perform control of: receiving first channel information of a channel between a first base station and a second base station reported by a user equipment, and/or a first base station corresponding to the first channel information. And the second channel information of the channel between the user equipment and the second base station reported by the user equipment.
  • the first base station obtains channel information between the first base station and the second base station, and sends the channel information to the user equipment, and the user equipment forwards the channel information to the second base station;
  • the base station can obtain the channel information necessary for flexible duplex transmission, and thus can support multiple devices to perform flexible uplink and downlink transmission at the same time, thereby avoiding or alleviating interference between uplink and downlink transmissions between multiple devices.
  • the embodiment of the present invention further provides a communication system, and the same content as Embodiments 1 to 6 is not described again.
  • FIG. 13 is a schematic diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 13, the communication system 1300 may include a first base station 1301, a second base station 1302, and a user equipment 1303.
  • the first base station 1301 obtains first channel information of a channel between the first base station 1301 and the second base station 1302; and sends the first channel information of the channel between the first base station 1301 and the second base station 1302 to the user equipment 1303.
  • the user equipment 1303 receives the first channel information sent by the first base station 1301, and reports the identification information and/or the first channel information of the first base station 1301 corresponding to the first channel information to the second base station 1302.
  • the second base station 1302 receives feedback information reported by one or more user equipments 1303. Thus, the second base station 1302 can make scheduling decisions based on the information.
  • user equipment 1303 can be configured to use a new transmission mode, such as TM11.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes a computer to execute the information transmission method described in Embodiment 1 in the user equipment when the program is executed in a user equipment.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to execute the information transmission method described in Embodiment 1 in a user equipment.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a base station, the program causes a computer to execute the information transmission method described in Embodiment 2 or 3 in the base station.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to execute the information transmission method described in Embodiment 2 or 3 in a base station.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the information transmission apparatus and/or information transmission method described in connection with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 8 and/or one or more combinations of functional block diagrams may correspond to various software of a computer program flow.
  • Modules can also correspond to individual hardware modules.
  • These software modules may correspond to the respective steps shown in FIG. 1, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • Software modules can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM Memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输装置、方法以及通信系统。该信息传输方法包括:用户设备接收第一基站发送的对应第一基站和第二基站之间信道的第一信道信息;以及将所述第一信道信息对应的第一基站的标识信息和/或所述第一信道信息上报给第二基站。由此,进行调度决策的第二基站可以获得灵活双工传输所必要的信道信息,因而可以支持多个设备同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。

Description

信息传输装置、方法以及通信系统 技术领域
本发明涉及无线通信技术领域,特别涉及一种信息传输装置、方法以及通信系统。
背景技术
在对第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)中长期演进(LTE,Long Term Evolution)的时分双工(TDD,Time Division Duplex)系统的研究中,增强的干扰管理和业务自适应(eIMTA,enhanced Interference Mitigation and Traffic Adaption)作为一种自适应技术用于打破固定的TDD帧结构配置,灵活地改变上下行配比。
然而,改变一个小区的TDD帧结构配置会对相邻小区产生影响,例如两个相邻的小区采用相反的上下行配置,这将使得系统中不再单纯地存在基站对用户设备的干扰以及用户设备对基站的干扰,而是出现了基站对基站的干扰以及用户设备对用户设备的干扰。
通常,由于基站架设的比较高,基站和基站之间多为直传路径,衰减较小,在一定程度上增加了基站和基站之间的干扰。在eIMTA的研究中为了减少干扰,对各个小区的上下行重新配置进行了诸多限制;例如,宏基站的TDD帧结构是不做重新配置的,或者仅允许上行被重配为下行,或者仅在个别子帧上允许上下行重配等。
然而,在未来第五代(5G)移动通信系统中,通信场景会更加多样化,网络架构也越来越灵活,同时上下行业务配比的需求也越来越灵活多变。在这种情况下,eIMTA中设置的诸多限制将不能满足未来业务需求。
因而,5G将需要更加灵活的双工方式:即在兼顾系统干扰的情况下,每个小区都可以根据自己用户的业务状况来选择上下行配置。以异构网络为例,在宏基站(例如称为MTP)的覆盖范围下,多个传输点(TP,Transmission Point)可以同时支持上行和下行传输业务。例如宏基站(MTP)进行下行通信;而其覆盖范围内的小基站(例如称为STP)既可以进行下行通信,也可以进行上行通信,与该STP的覆盖范围内用户的业务需求有关。
反过来,MTP也可以进行上行通信;而该MTP覆盖范围内的STP既可以进行下 行通信,也可以进行上行通信;这种灵活传输方式可以实现灵活的上下行业务传输。
此外,与多点传输不同,灵活的上下行调度中不仅距离较近的基站可以联合进行传输,距离较远的多个基站(甚至彼此无X2接口连接的多个基站)也可能被调度为同时进行灵活的上下行传输。因此,干扰(例如基站和基站间的干扰)抑制方案需要进一步增强。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
本发明实施例提供一种信息传输装置、方法以及通信系统。通过用户设备的反馈,进行调度决策的传输点可以获得灵活双工传输所必要的信道信息,因而可以支持多个设备(例如距离较远的多个基站、或者彼此间无X2连接的多个基站、或回路(backhaul)延时较大的多个基站)同时进行灵活的上下行传输。
根据本发明实施例的第一个方面,提供一种信息传输方法,包括:
用户设备接收第一基站发送的对应该第一基站和第二基站之间信道的第一信道信息;
将所述第一信道信息所对应的第一基站的标识信息和/或所述第一信道信息上报给所述第二基站。
根据本发明实施例的第二个方面,提供一种信息传输装置,配置于用户设备中,所述信息传输装置包括:
信息接收单元,其接收第一基站发送的对应所述第一基站和第二基站之间信道的第一信道信息;
信息上报单元,其将所述第一信道信息所对应的第一基站的标识信息和/或所述第一信道信息上报给所述第二基站。
根据本发明实施例的第三个方面,提供一种信息传输方法,包括:
第一基站获得所述第一基站与所述第二基站之间信道的第一信道信息;
向用户设备发送所述第一基站和所述第二基站之间信道的所述第一信道信息。
根据本发明实施例的第四个方面,提供一种信息传输装置,配置于第一基站中, 所述信息传输装置包括:
信息获取单元,其获得所述第一基站与所述第二基站之间信道的第一信道信息;
信息发送单元,其向用户设备发送所述第一基站和所述第二基站之间信道的所述第一信道信息。
根据本发明实施例的第五个方面,提供一种信息传输方法,包括:
第二基站接收用户设备上报的第一基站与第二基站之间信道的第一信道信息,和/或所述第一信道信息所对应的第一基站的标识信息;
所述第二基站接收所述用户设备上报的所述用户设备与所述第二基站之间信道的第二信道信息。
根据本发明实施例的第六个方面,提供一种信息传输装置,配置于第二基站中,所述信息传输装置包括:
第一信息接收单元,其接收用户设备上报的第一基站与第二基站之间信道的第一信道信息,和/或所述第一信道信息所对应的第一基站的标识信息;
第二信息接收单元,其接收所述用户设备上报的所述用户设备与所述第二基站之间信道的第二信道信息。
根据本发明实施例的第七个方面,提供一种通信系统,所述通信系统包括:
用户设备,配置有如上第二方面所述的信息传输装置;
第一基站,配置有如上第四方面所述的信息传输装置;以及
第二基站,配置有如上第六方面所述的信息传输装置。
本发明实施例的有益效果在于:第一基站获得该第一基站和第二基站之间的信道信息并发送给用户设备,用户设备将该信道信息转发给第二基站;由此,进行调度决策的第二基站可以获得灵活双工传输所必要的信道信息,因而可以支持多个设备同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本发明实施例1的信息传输方法的一示意图;
图2是本发明实施例1的第一基站向用户设备发送第一信道信息的一示意图;
图3是本发明实施例1的用户设备向第二基站上报信息的一示意图;
图4是本发明实施例1的信息传输方法的另一示意图;
图5是本发明实施例1的信息传输方法的另一示意图;
图6是本发明实施例2的信息传输方法的一示意图;
图7是本发明实施例3的信息传输方法的一示意图;
图8是本发明实施例4的信息传输装置的一示意图;
图9是本发明实施例4的用户设备的一示意图;
图10是本发明实施例5的信息传输装置的一示意图;
图11是本发明实施例5的基站的一示意图;
图12是本发明实施例6的信息传输装置的一示意图;
图13是本发明实施例7的通信系统的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请中,基站可以被称为接入点、广播发射机、节点B、演进节点B(eNB)等,并且可以包括它们的一些或所有功能。在文中将使用术语“基站”。每个基站对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这 取决于使用该术语的上下文。
在本申请中,移动站或设备可以被称为“用户设备”(UE,User Equipment)。UE可以是固定的或移动的,并且也可以称为移动台、终端、接入终端、用户单元、站等。UE可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、膝上型计算机、无绳电话等。
实施例1
本发明实施例提供一种信息传输方法,应用于用户设备。图1是本发明实施例的信息传输方法的一示意图,从用户设备侧进行说明。如图1所示,该信息传输方法包括:
步骤101,用户设备接收第一基站发送的对应该第一基站和第二基站之间信道的第一信道信息;
步骤102,用户设备将该第一信道信息所对应的第一基站的标识信息和/或该第一信道信息上报给该第二基站。
在本实施例中,以异构网络为例进行说明。其中,第二基站可以为宏基站(或宏传输点,本文可称为MTP),该宏基站产生的宏小区(例如Macro cell)可以为用户设备提供服务;第一基站可以为小基站(本文可称为STP),该小基站产生的小小区(例如Small cell)可以为用户设备提供服务。第一基站和第二基站之间可以通过X2接口进行信息交互,也可以不具有X2接口而通过定义新的空口格式进行信息交互。
值得注意的是,本发明不限于此,可以根据实际的需要确定具体的场景。以下仅以异构网络中,MTP进行下行传输而STP进行上行传输为例进行说明;此外还可以适用于其他的网络结构或场景,例如还适用于MTP进行上行传输而STP进行下行传输的场景。
在异构网络中MTP进行下行传输而STP进行上行传输的场景下,MTP作为发送端会对作为接收端的STP产生干扰。通常,接收端是可以通过信道估计得到发送端与接收端之间的信道信息的。然而,在当前的LTE系统中,下行采用的是正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)传输,而上行采用的是单载波频分复用(SC-FDMA,Simple-Carrier Frequency Division Multiplexing)传输,即作为接收端的STP不能估计到MTP和STP之间的信道信息。
在本实施例中,为获得MTP和STP之间的信道信息,STP可以在空闲时隙接收MTP发送的参考信号,并估计出MTP和STP之间的信道状态信息(CSI,Channel State Information);即通过信道估计获得第一基站和第二基站之间的CSI。
此外,也可进行相应的无线资源测量而获得第一基站和第二基站之间的信道测量信息;例如参考信号接收功率(RSRP,Reference Signal Received Power),和/或参考信号接收质量(RSRQ,Reference Signal Received Quality),等等。
由此,即使第一基站和第二基站之间没有X2连接,通过用户设备的转发,第二基站也可以获得第一基站和第二基站之间信道的第一信道信息,该第一信道信息可以是表征短期或瞬时的参数(例如CSI),也可以是表征长期的参数(例如RSRP和/或RSRQ)。
在步骤101中,用户设备可以接收一个或多个第一基站发送的第一信道信息。该第一信道信息可以由第一基站通过主信息块(MIB,Master Information Block)和/或系统信息块(SIB,System Information Block)发送,或者通过下行控制信息(DCI,Downlink Control Information)发送。
图2是本发明实施例的第一基站向用户设备发送第一信道信息的一示意图,如图2所示,该异构网络中例如包括两个第一基站STP1和STP2;STP1可以向其覆盖范围内的用户设备UE1和UE2广播STP1和MTP之间的第一信道信息,STP2可以向其覆盖范围内的用户设备UE2和UE3广播STP2和MTP之间的第一信道信息。
在步骤102中,用户设备可以将一个或多个第一信道信息所对应的第一基站的标识信息上报给该第二基站;此外还可以将一个或多个第一信道信息上报给第二基站。
图3是本发明实施例的用户设备向第二基站上报信息的一示意图,如图3所示,UE1可以向MTP上报STP1和MTP之间的第一信道信息和/或STP1的标识信息;UE2可以向MTP上报STP2和MTP之间的第一信道信息和/或STP2的标识信息。
此外,图3没有示出UE3上报的情况。用户设备可以根据需要进行反馈,例如具体哪些用户设备需要上报第一信道信息和/或STP标识信息,可以由第二基站发送高层信令进行配置。
由此,通过用户设备的转发,MTP可以获得灵活双工传输所必要的第一信道信息,此外MTP还可以获得用户设备和MTP之间信道的第二信道信息;MTP可以根据这些信道信息进行合理的调度决策,因而可以支持STP和用户设备同时进行灵活 的上下行传输。
图4是本发明实施例的信息传输方法的另一示意图,从用户设备侧进行进一步说明。如图4所示,该信息传输方法包括:
步骤401,用户设备接收第一基站发送的对应该第一基站和第二基站之间信道的第一信道信息;
步骤402,用户设备获得该用户设备与该第二基站之间信道的第二信道信息;
在本实施例中,该第二信道信息可以是表征短期或瞬时的参数(例如通过信道估计而获得的CSI),也可以是表征长期的参数(例如通过无线资源测量而获得的RSRP和/或RSRQ)。
步骤403,用户设备确定需要向第二基站上报的反馈信息;
在本实施例中,用户设备可以将第一信道信息所对应的第一基站的标识信息和/或该第一信道信息上报给该第二基站;此外也可以将该第二信道信息上报给该第二基站。
关于反馈信息的具体内容,可以根据实际的场景确定,例如可以如后所述地根据方向信息确定;但本发明不限于此。
步骤404,用户设备在某一个或多个上行时隙向第二基站上报该反馈信息。
在本实施例中,第一信道信息所对应的第一基站的标识信息和/或该第一信道信息可以在某一时隙反馈给第二基站,而第二信道信息可以在另一时隙反馈给第二基站;或者,也可以在一个时隙中发送上述反馈信息。本发明不限于此,可以根据实际需要确定反馈的时机和方式。
步骤405,用户设备接收第二基站发送的调度信息,并根据该调度信息进行上下行传输。
在本实施例中,例如第二基站可以同时调度该第一基站和该用户设备。由此,用户设备可以和第一基站同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。
以上从用户设备侧进行了说明,以下从多个设备(第一基站、用户设备和第二基站)的角度进行说明。
图5是本发明实施例的信息传输方法的另一示意图,示出了用户设备、第一基站和第二基站之间交互的情况。如图5所示,该信息传输方法包括:
步骤501,第一基站获得第一基站和第二基站之间的第一信道信息;
在本实施例中,可以通过信道估计而获得第一基站和第二基站之间的CSI,和/或通过无线资源测量而获得第一基站和第二基站之间的RSRP和/或RSRQ等。例如,STP可以在空闲时隙接收MTP发送的参考信号,并估计出STP和MTP之间的CSI。
为了简单起见,以下仅以第一信道信息是CSI为例进行说明,其中CSI包含方向信息;例如如下信息的其中一种或多种:波束编号(BI,Beam Index),预编码矩阵指示(PMI,Precoding Matrix Indicator),信道状态信息参考信号资源指示(CRI,CSI-RS resource indicator)。但本发明不限于此,对于其他第一信道信息可以类似地进行处理。
步骤502,第一基站向用户设备发送第一信道信息;
在本实施例中,例如STP可以广播/发送STP和MTP之间信道的CSI和STP的编号给该STP覆盖范围内的用户设备。例如,STP可以通过MIB或者SIB广播,或者通过DCI发送。
步骤503,用户设备获得该用户设备与该第二基站之间信道的第二信道信息;
在本实施例中,例如用户设备可以通过信道估计而获得该用户设备与该第二基站之间信道的CSI,和/或通过无线资源测量而获得该用户设备与该第二基站之间信道的RSRP和/或RSRQ,等等。
步骤504,用户设备将反馈信息上报给该第二基站。
在本实施例中,用户设备可以上报该第一信道信息所对应的第一基站的标识信息和/或该第一信道信息;此外还可以上报该第二信道信息。例如,具有下行通信需求的用户设备将收到的STP的信息连同自己的待反馈信息,在上行时隙转发给MTP。
在本实施例中,用户设备可以通过周期性反馈方式向第二基站上报信息,也可以通过非周期性反馈方式向第二基站上报信息。此外,可以同时上报上述反馈信息,也可以在不同的时刻分别上报上述反馈信息。
在一个实施方式中,上报信息中的第一基站的标识信息可以包括:与第二信道信息的方向相同(例如BI/PMI/CRI相同,即不适合同时进行上下行传输)的第一信道信息所对应的第一基站的标识信息。
例如,每个用户设备向MTP反馈自已的BI/PMI/CRI,并且反馈具有相同BI/PMI/CRI的STP的编号。以图3和BI为例,如果UE 1自己的BI(即UE1与MTP之间信道的BI)为4,STP 1向UE 1发送的BI(即STP 1与MTP之间信道的BI) 也为4,则UE1将该STP 1的标识信息发送给MTP。这样MTP就可以避免将该用户设备和该STP调度到一起进行灵活的上下行传输,由此可以避免或者缓解干扰。
在另一个实施方式中,上报信息中的第一基站的标识信息可以包括:与该用户设备适合同时进行上下行传输的一个或多个第一基站的标识信息。
例如,每个用户设备向MTP反馈自己的BI/PMI/CRI,并且反馈适合与该用户设备一起进行灵活的上下行传输的STP的编号,此外还可以反馈该STP的BI/PMI/CRI。这里适合与该用户设备进行灵活的上下行传输的STP可以是一个或多个。
在另一个实施方式中,上报信息中的第一基站的标识信息可以包括:用户设备接收到的全部第一信道信息所对应的第一基站的标识信息。
例如,每个用户设备向MTP反馈自己BI/PMI/CRI,并且反馈接收到的所有STP的编号,此外还可以反馈所有的STP发送的BI/PMI/CRI;这种实施方式可能将涉及到较大的反馈量。
值得注意的是,这里STP的编号既可以是在整个网络中STP的唯一编号,也可以是在例如宏基站覆盖范围内的为所有STP临时设置的编号;本发明不限于此。此外,以上实施方式仅以BI/PMI/CRI为例进行了说明,对于其他的信道信息可以相应地进行处理。
步骤505,第二基站根据上报的反馈信息进行调度决策。
在本实施例中,第二基站可以基于第二信道信息以及第一信道信息所对应的第一基站的标识信息进行调度决策,或者也可以基于第二信道信息、第一信道信息以及该第一信道信息所对应的第一基站的标识信息进行调度决策。
步骤506,第二基站向第一基站和/或用户设备发送调度信息;
在本实施例中,例如第二基站可以同时调度该第一基站和该用户设备,使得该第一基站和该用户设备同时进行上下行传输。
在本实施例中,一个或多个用户设备可以同时和一个或多个第一基站进行上下行传输(例如一个用户设备处于下行传输,而多个第一基站处于上行传输),不同的用户设备对应的第一基站可以是不同的;可以根据实际需求确定具体的场景。
值得注意的是,图5仅示意性地对本发明实施例进行了说明,但本发明不限于此。可以适当地调整各个步骤之间的执行顺序,例如步骤503可以在步骤501之前执行,也可以与步骤501并行执行。此外还可以增加其他的一些步骤或者减少其中的某些步 骤,例如步骤504可以在不同的时刻执行,分别发送第一信道信息和第二信道信息。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图的记载。
由上述实施例可知,第一基站获得该第一基站和第二基站之间的信道信息并发送给用户设备,用户设备将该信道信息转发给第二基站;由此,进行调度决策的第二基站可以获得灵活双工传输所必要的信道信息,因而可以支持多个设备同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。
实施例2
本发明实施例提供一种信息传输方法,应用于第一基站中,与实施例1相同的内容不再赘述。
图6是本发明实施例的信息传输方法的一示意图,如图6所示,该信息传输方法包括:
步骤601,第一基站获得该第一基站与该第二基站之间信道的第一信道信息;
步骤602,第一基站向用户设备发送该第一基站和该第二基站之间信道的第一信道信息。
在本实施例中,第一信道信息可以包括:通过信道估计而获得的CSI。例如,为获得MTP和STP之间的信道信息,STP可以在空闲时隙接收MTP发送的参考信号,并估计出MTP和STP之间的CSI;即通过信道估计获得第一基站和第二基站之间的CSI。
或者,第一信道信息也可以包括:通过无线资源测量而获得的信道测量信息。例如,第一基站可以进行相应的无线资源测量,从而获得第一基站和第二基站之间的RSRP和/或RSRQ,等等。
由此,第一基站可以获得第一基站和第二基站之间信道的第一信道信息,该第一信道信息可以是表征短期或瞬时的参数(例如CSI),也可以是表征长期的参数(例如RSRP和/或RSRQ)。并且,第一基站可以将该第一信道信息发送给用户设备。
如图6所示,该信息传输方法还可以包括:
步骤603,第一基站接收第二基站发送的调度信息;
在本实施例中,例如第二基站可以同时调度该第一基站和该用户设备,使得该第一基站和该用户设备同时进行上下行传输。
在本实施例中,一个或多个用户设备可以同时和一个或多个第一基站进行上下行传输(例如一个用户设备处于下行传输,而多个第一基站处于上行传输),不同的用户设备对应的第一基站可以是不同的;可以根据实际需求确定具体的场景。
在本实施例中,该调度信息可以使用不同于现有DCI格式1至5的新的DCI格式来发送。例如,可以将该新的DCI格式定义为DCI格式6(DCI format 6)。
例如,在MTP进行下行传输而STP进行上行传输时,DCI format 6用于相关的上下行传输调度,可以包含以下信息:
Figure PCTCN2016074129-appb-000001
与STP进行上行传输的用户设备所使用的物理上行控制信道(PUCCH,Physical Uplink Control Channel)和/或物理上行共享信道(PUSCH,Physical Uplink Shared Channel)资源;和/或
Figure PCTCN2016074129-appb-000002
进行上行传输的用户设备的PUSCH和PUCCH的发送功率控制命令。
或者除了以上信息外,同时还包含DCI format 2D中的信息。MTP可以通过DCI format 6发送调度信息,STP和相应的用户设备可以接收通过DCI format 6承载的调度信息,由此进行灵活的上下行传输。
由上述实施例可知,第一基站获得该第一基站和第二基站之间的信道信息并发送给用户设备,用户设备将该信道信息转发给第二基站;由此,进行调度决策的第二基站可以获得灵活双工传输所必要的信道信息,因而可以支持多个设备同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。
实施例3
本发明实施例提供一种信息传输方法,应用于第二基站中,与实施例1或2相同的内容不再赘述。
图7是本发明实施例的信息传输方法的一示意图,如图7所示,该信息传输方法包括:
步骤701,第二基站接收用户设备上报的第一基站和第二基站之间信道的第一信道信息,和/或该第一信道信息所对应的第一基站的标识信息;
步骤702,第二基站接收用户设备上报的该用户设备和该第二基站之间信道的第二信道信息。
其中,第一信道信息和/或第二信道信息可以包括:通过信道估计而获得的CSI, 和/或通过无线资源测量而获得的信道测量信息;但本发明不限于此,例如还可以是其他的信道信息。
在本实施例中,步骤701和步骤702可以同时进行,例如可以同时接收到用户设备发送的第一信道信息和第二信道信息。此外,步骤701和步骤702也可以不同时进行,例如可以在不同的时刻分别接收到用户设备发送的第一信道信息和第二信道信息。步骤701和步骤702之间的执行顺序不限于此,例如步骤702还可以在步骤701之前执行。
如图7所示,该信息传输方法还可以包括:
步骤703,第二基站基于用户设备上报的反馈信息进行调度决策;
在本实施例中,第二基站可以基于一个或多个用户设备上报的反馈信息进行调度决策。此外,第二基站在进行调度决策时,还可以参考一个或多个用户设备发送的第一信道信息。
步骤704,第二基站向第一基站和用户设备发送调度信息;
在本实施例中,例如第二基站可以同时调度该第一基站和该用户设备,使得第一基站和用户设备同时进行上下行传输。
其中,调度信息可以使用不同于现有DCI格式1至5的新的DCI格式来发送。例如,可以将该新的DCI格式定义为DCI格式6(DCI format 6),可以参考实施例2中的相关内容。
由上述实施例可知,第一基站获得该第一基站和第二基站之间的信道信息并发送给用户设备,用户设备将该信道信息转发给第二基站;由此,进行调度决策的第二基站可以获得灵活双工传输所必要的信道信息,因而可以支持多个设备同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。
实施例4
本发明实施例提供一种信息传输装置,配置于用户设备中。本发明实施例对应于实施例1的信息传输方法,与实施例1相同的内容不再赘述。
图8是本发明实施例的信息传输装置的一示意图,如图8所示,信息传输装置800包括:
信息接收单元801,其接收第一基站发送的对应所述第一基站和第二基站之间信 道的第一信道信息;
信息上报单元802,其将所述第一信道信息所对应的第一基站的标识信息和/或所述第一信道信息上报给该第二基站。
如图8所示,信息传输装置800还可以包括:
信息获取单元803,其获得用户设备与第二基站之间信道的第二信道信息;
信息上报单元802还用于将该第二信道信息上报给该第二基站。如图8所示,信息传输装置800还可以包括:
调度接收单元804,其接收第二基站发送的调度信息,并根据该调度信息进行上下行传输。
在本实施例中,例如第二基站可以同时调度该第一基站和该用户设备。由此,用户设备可以和第一基站同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。
在本实施例中,第一信道信息和/或第二信道信息可以包括:通过信道估计而获得的CSI,和/或通过无线资源测量而获得的信道测量信息。但本发明不限于此,还可以是其他的信道信息。
在本实施例中,第一信道信息中可以包括方向信息;所述方向信息可以包括如下信息的一种或多种:BI,PMI,CRI。第一信道信息可以由第一基站通过MIB和/或SIB发送,或者也可以通过DCI发送。
在本实施例中,信息上报单元802可以通过周期性反馈方式或者非周期性反馈方式,向第二基站发送第一信道信息和/或第一信道信息所对应的第一基站的标识信息。信息上报单元802也可以通过周期性反馈方式或者非周期性反馈方式,向第二基站发送第二信道信息。
在本实施例中,第一信道信息所对应的第一基站的标识信息可以包括:与第二信道信息的方向相同的第一信道信息所对应的第一基站的标识信息;或者,与该用户设备适合同时进行上下行传输的一个或多个第一基站的标识信息;或者,该用户设备接收到的全部第一信道信息所对应的第一基站的标识信息。
本发明实施例还提供一种用户设备,配置有上述的信息传输装置800。
图9是本发明实施例的用户设备的一示意图。如图9所示,该用户设备900可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的 是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,信息传输装置800的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为实现实施例1中所述的信息传输方法。
例如,中央处理器100可以被配置为进行如下的控制:接收第一基站发送的对应所述第一基站和第二基站之间信道的第一信道信息;将所述第一信道信息所对应的第一基站的标识信息和/或所述第一信道信息上报给所述第二基站。
在另一个实施方式中,信息传输装置800可以与中央处理器100分开配置,例如可以将信息传输装置800配置为与中央处理器100连接的芯片,通过中央处理器100的控制来实现信息传输装置800的功能。
如图9所示,该用户设备900还可以包括:通信模块110、输入单元120、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备900也并不是必须要包括图9中所示的所有部件,上述部件并不是必需的;此外,用户设备900还可以包括图9中没有示出的部件,可以参考现有技术。
在本实施例中,用户设备可以被配置为使用不同于现有传输模式1至10的新的传输模式(TM,Transmission Mode);例如该新的传输模式可以被定义为TM 11。
例如,如果用户设备被高层配置为通过小区无线网络临时标识(C-RNTI,Cell Radio Network Temporary Identifier)加扰的循环冗余校验(CRC,Cyclic Redundancy Check)来为物理下行控制信道(PDCCH,Physical Downlink Control Channel)译码,则用户设备按照下表1来为PDCCH和相应的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)译码。
表1 C-RNTI配置的PDCCH和PDSCH
Figure PCTCN2016074129-appb-000003
再例如,如果用户设备被高层配置为通过C-RNTI加扰的CRC来为增强的EPDCCH(Enhanced PDCCH)译码,则用户设备按照下表2来为EPDCCH和相应的PDSCH译码。
表2 C-RNTI配置的EPDCCH和PDSCH
Figure PCTCN2016074129-appb-000004
现有标准中例如TM 9和TM 10,均是最多可以支持8个数据流的多输入多输出(MIMO,Multiple Input Multiple Output)传输,但TM 10中使用DCI format 2D,而TM 9使用DCI format 2C,即TM 10中支持发送端多个天线不在同一个基站上。
如上表1和2所示,TM 11也可以与TM 9类似,最多支持8个数据流的MIMO传输。然而相比TM 10,TM 11中同时发送数据的发送天线甚至可以不全是在基站处,也可以是在用户设备处(进行上行传输的UE)。
所以TM 11可以配置给与MTP进行下行传输的用户设备,同时进行上行传输的STP也可以接收到相应的TM配置,并进而搜索DCI format 6,获得利用STP进行上行传输的用户设备的调度信息。同时与MTP进行下行传输的用户设备也可以通过搜索DCI format 6而获得下行调度信息,尤其是天线端口信息。
值得注意的是,表1和表2仅示意性示出了TM 11的内容,但本发明不限于此。此外,关于传输模式(例如TM 1至10)的内容可以参考相关的标准,此处不再详细说明。
由上述实施例可知,第一基站获得该第一基站和第二基站之间的信道信息并发送给用户设备,用户设备将该信道信息转发给第二基站;由此,进行调度决策的第二基站可以获得灵活双工传输所必要的信道信息,因而可以支持多个设备同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。
实施例5
本发明实施例提供一种信息传输装置,配置于第一基站中。本发明实施例对应于实施例2的信息传输方法,与实施例1或2相同的内容不再赘述。
图10是本发明实施例的信息传输装置的一示意图,如图10所示,信息传输装置1000包括:
信息获取单元1001,其获得所述第一基站与所述第二基站之间信道的第一信道信息;
信息发送单元1002,其向用户设备发送所述第一基站和所述第二基站之间信道的所述第一信道信息。
在本实施例中,第一信道信息可以包括:通过信道估计而获得的CSI,和/或通过无线资源测量而获得的信道测量信息(例如RSRP或RSRQ)。但本发明不限于此, 例如还可以是其他的信道信息。
如图10所示,信息传输装置1000还可以包括:
调度接收单元1003,其接收第二基站发送的调度信息,并根据该调度信息进行上下行传输。
在本实施例中,例如第二基站可以同时调度该第一基站和该用户设备,使得该第一基站和该用户设备同时进行上下行传输。
本发明实施例还提供一种基站,配置有上述的信息传输装置1000。
图11是本发明实施例的基站的一构成示意图。如图11所示,基站1100可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,中央处理器200可以被配置为实现实施例2中的信息传输方法。例如,中央处理器100可以被配置为进行如下的控制:获得第一基站与第二基站之间信道的第一信道信息;向用户设备发送该第一基站和该第二基站之间信道的第一信道信息。
此外,如图11所示,基站1100还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1100也并不是必须要包括图11中所示的所有部件;此外,基站1100还可以包括图11中没有示出的部件,可以参考现有技术。
由上述实施例可知,第一基站获得该第一基站和第二基站之间的信道信息并发送给用户设备,用户设备将该信道信息转发给第二基站;由此,进行调度决策的第二基站可以获得灵活双工传输所必要的信道信息,因而可以支持多个设备同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。
实施例6
本发明实施例提供一种信息传输装置,配置于第二基站中,本发明实施例对应于实施例3的信息传输方法,与实施例1至3相同的内容不再赘述。
图12是本发明实施例的信息传输装置的一示意图,如图12所示,信息传输装置1100包括:
第一信息接收单元1201,其接收用户设备上报的第一基站和第二基站之间信道 的第一信道信息,和/或第一信道信息所对应的第一基站的标识信息;
第二信息接收单元1202,其接收用户设备上报的该用户设备和第二基站之间信道的第二信道信息。
在本实施例中,第一信道信息和/或第二信道信息可以包括:通过信道估计而获得的CSI,和/或通过无线资源测量而获得的信道测量信息。但本发明不限于此,例如还可以是其他的信道信息。
如图12所示,信息传输装置1200还可以包括:
调度决策单元1203,其基于用户设备上报的反馈信息进行调度决策;
调度发送单元1204,其向所述第一基站和所述用户设备发送调度信息;
在本实施例中,例如第二基站可以同时调度该第一基站和该用户设备,使得所述第一基站和所述用户设备同时进行上下行传输。
在本实施例中,调度信息可以使用不同于现有DCI格式1至5的新的DCI格式。例如,可以将该新的DCI格式定义为DCI格式6(DCI format 6),可以参考实施例2中的相关内容。
本发明实施例还提供一种基站,配置有上述的信息传输装置1200。该基站的构成可以参考图11,如图11所示,该基站可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,中央处理器200可以被配置为实现实施例3中的信息传输方法。例如,中央处理器100可以被配置为进行如下的控制:接收用户设备上报的第一基站和第二基站之间信道的第一信道信息,和/或第一信道信息所对应的第一基站的标识信息;接收用户设备上报的该用户设备和第二基站之间信道的第二信道信息。
由上述实施例可知,第一基站获得该第一基站和第二基站之间的信道信息并发送给用户设备,用户设备将该信道信息转发给第二基站;由此,进行调度决策的第二基站可以获得灵活双工传输所必要的信道信息,因而可以支持多个设备同时进行灵活的上下行传输,避免或者缓解多个设备之间进行上下行传输的干扰。
实施例7
本发明实施例还提供一种通信系统,与实施例1至6相同的内容不再赘述。
图13是本发明实施例的通信系统的一示意图,如图13所示,通信系统1300可以包括第一基站1301、第二基站1302和用户设备1303。
其中,第一基站1301获得第一基站1301与第二基站1302之间信道的第一信道信息;以及向用户设备1303发送第一基站1301和第二基站1302之间信道的该第一信道信息。
用户设备1303接收第一基站1301发送的第一信道信息;以及将第一信道信息所对应的第一基站1301的标识信息和/或第一信道信息上报给第二基站1302。
第二基站1302接收一个或多个用户设备1303上报的反馈信息。由此,第二基站1302可以基于这些信息进行调度决策。
在本实施例中,用户设备1303可以被配置为使用新的传输模式,例如TM 11。
本发明实施例还提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得计算机在所述用户设备中执行实施例1所述的信息传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在用户设备中执行实施例1所述的信息传输方法。
本发明实施例还提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行实施例2或3所述的信息传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行实施例2或3所述的信息传输方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的信息传输装置和/或信息传输方法,可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图8中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,信息接收单元、信息上报单元等),既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图1所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM 存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (17)

  1. 一种信息传输装置,配置于用户设备中,所述信息传输装置包括:
    信息接收单元,其接收第一基站发送的对应所述第一基站和第二基站之间信道的第一信道信息;
    信息上报单元,其将所述第一信道信息所对应的第一基站的标识信息和/或所述第一信道信息上报给所述第二基站。
  2. 根据权利要求1所述的信息传输装置,其中,所述信息传输装置还包括:
    信息获取单元,其获得所述用户设备与所述第二基站之间信道的第二信道信息;
    所述信道上报单元还用于将所述第二信道信息上报给所述第二基站。
  3. 根据权利要求2所述的信息传输装置,其中,所述信息传输装置还包括:
    调度接收单元,其接收所述第二基站发送的调度信息,并根据所述调度信息进行上下行传输。
  4. 根据权利要求2所述的信息传输装置,其中,所述第一信道信息和/或所述第二信道信息包括:通过信道估计而获得的信道状态信息,和/或通过无线资源测量而获得的信道测量信息。
  5. 根据权利要求1所述的信息传输装置,其中,所述第一信道信息中包括方向信息;所述方向信息包括如下信息的一种或多种:波束编号,预编码矩阵指示,信道状态信息参考信号资源指示。
  6. 根据权利要求1所述的信息传输装置,其中,所述第一信道信息由所述第一基站通过主信息块和/或系统信息块发送,或者通过下行控制信息发送。
  7. 根据权利要求1所述的信息传输装置,其中,所述信息上报单元通过周期性反馈方式或者非周期性反馈方式,向所述第二基站上报所述第一信道信息所对应的第一基站的标识信息和/或所述第一信道信息。
  8. 根据权利要求2所述的信息传输装置,其中,所述第一信道信息所对应的第一基站的标识信息包括:
    与所述第二信道信息指示的方向相同的所述第一信道信息所对应的第一基站的标识信息;或者,与所述用户设备适合同时进行上下行传输的一个或多个第一基站的标识信息;或者,所述用户设备接收到的全部第一信道信息所对应的第一基站的标识 信息。
  9. 一种信息传输装置,配置于第一基站中,所述信息传输装置包括:
    信息获取单元,其获得所述第一基站与所述第二基站之间信道的第一信道信息;
    信息发送单元,其向用户设备发送所述第一基站和所述第二基站之间信道的所述第一信道信息。
  10. 根据权利要求9所述的信息传输装置,其中,所述第一信道信息包括:通过信道估计而获得的信道状态信息,和/或通过无线资源测量而获得的信道测量信息。
  11. 根据权利要求9所述的信息传输装置,其中,所述信息传输装置还包括:
    调度接收单元,其接收所述第二基站发送的调度信息,并根据所述调度信息进行上下行传输。
  12. 一种信息传输装置,配置于第二基站中,所述信息传输装置包括:
    第一信息接收单元,其接收用户设备上报的第一基站与所述第二基站之间信道的第一信道信息,和/或所述第一信道信息所对应的第一基站的标识信息;
    第二信息接收单元,其接收所述用户设备上报的所述用户设备与所述第二基站之间信道的第二信道信息。
  13. 根据权利要求12所述的信息传输装置,其中,所述第一信道信息和/或所述第二信道信息包括:通过信道估计而获得的信道状态信息,和/或通过无线资源测量而获得的信道测量信息。
  14. 根据权利要求12所述的信息传输装置,其中,所述信息传输装置还包括:
    调度决策单元,其基于所述用户设备上报的反馈信息进行调度决策;
    调度发送单元,其向所述第一基站和所述用户设备发送调度信息。
  15. 根据权利要求14所述的信息传输装置,其中,所述调度信息使用不同于现有下行控制信息格式1至5的下行控制信息格式。
  16. 一种通信系统,所述通信系统包括:
    用户设备,配置有如权利要求1所述的信息传输装置;
    第一基站,配置有如权利要求9所述的信息传输装置;以及
    第二基站,配置有如权利要求12所述的信息传输装置。
  17. 根据权利要求16所述的通信系统,其中所述用户设备被配置为使用不同于现有传输模式1至10的传输模式。
PCT/CN2016/074129 2016-02-19 2016-02-19 信息传输装置、方法以及通信系统 WO2017139970A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018541699A JP2019511159A (ja) 2016-02-19 2016-02-19 情報伝送装置、方法及び通信システム
EP16890203.9A EP3419329A4 (en) 2016-02-19 2016-02-19 DEVICE AND METHOD FOR INFORMATION TRANSMISSION AND COMMUNICATION SYSTEM
CN201680078619.1A CN108464033A (zh) 2016-02-19 2016-02-19 信息传输装置、方法以及通信系统
PCT/CN2016/074129 WO2017139970A1 (zh) 2016-02-19 2016-02-19 信息传输装置、方法以及通信系统
US16/055,780 US20180352465A1 (en) 2016-02-19 2018-08-06 Information Transmission Apparatus and Method and Communication System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074129 WO2017139970A1 (zh) 2016-02-19 2016-02-19 信息传输装置、方法以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/055,780 Continuation US20180352465A1 (en) 2016-02-19 2018-08-06 Information Transmission Apparatus and Method and Communication System

Publications (1)

Publication Number Publication Date
WO2017139970A1 true WO2017139970A1 (zh) 2017-08-24

Family

ID=59625564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074129 WO2017139970A1 (zh) 2016-02-19 2016-02-19 信息传输装置、方法以及通信系统

Country Status (5)

Country Link
US (1) US20180352465A1 (zh)
EP (1) EP3419329A4 (zh)
JP (1) JP2019511159A (zh)
CN (1) CN108464033A (zh)
WO (1) WO2017139970A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030713A1 (ko) * 2016-08-12 2018-02-15 엘지전자 주식회사 셀 별로 flexible duplex 모드로 동작하는 무선통신 시스템에서 셀 간 간섭을 제어하기 위한 자원 할당 방법 및 이를 위한 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158910A (zh) * 2011-04-14 2011-08-17 电信科学技术研究院 一种进行干扰协调的方法、系统和设备
CN103781125A (zh) * 2012-10-24 2014-05-07 普天信息技术研究院有限公司 一种异构网中调整上下行子帧配置的方法
WO2014067086A1 (zh) * 2012-10-31 2014-05-08 华为技术有限公司 干扰的通知方法、控制方法及相关设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8682313B2 (en) * 2009-12-08 2014-03-25 Electronics And Telecommunications Research Institute Over-the-air inter-cell interference coordination methods in cellular systems
US9014025B2 (en) * 2010-10-04 2015-04-21 Futurewei Technologies, Inc. System and method for coordinating different types of base stations in a heterogeneous communications system
ES2536895T3 (es) * 2011-02-09 2015-05-29 Telefonaktiebolaget L M Ericsson (Publ) Configuración de símbolos de recursos dependientes del punto en una célula inalámbrica
CN102149099B (zh) * 2011-04-08 2014-02-12 电信科学技术研究院 一种进行小区间干扰协调的方法及装置
CN103297980B (zh) * 2012-03-01 2016-12-14 华为技术有限公司 干扰协调的方法和装置
WO2014000236A1 (zh) * 2012-06-28 2014-01-03 华为技术有限公司 一种时分双工系统的干扰协调方法、基站及系统
CN104145516B (zh) * 2012-12-31 2018-10-19 华为技术有限公司 一种上行信道干扰协调方法、基站及集中式设备
US9369253B2 (en) * 2013-02-21 2016-06-14 Blackberry Limited Methods of interference measurement for advanced receiver in LTE/LTE-A
US9397800B2 (en) * 2013-03-21 2016-07-19 Broadcom Corporation Duplexing in long term evolution (LTE) cellular networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158910A (zh) * 2011-04-14 2011-08-17 电信科学技术研究院 一种进行干扰协调的方法、系统和设备
CN103781125A (zh) * 2012-10-24 2014-05-07 普天信息技术研究院有限公司 一种异构网中调整上下行子帧配置的方法
WO2014067086A1 (zh) * 2012-10-31 2014-05-08 华为技术有限公司 干扰的通知方法、控制方法及相关设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on the solution to minimize the UL interference in HetNet", 3GPP TSG RAN WG2 MEETING #85 R2-140316, 14 February 2014 (2014-02-14), XP050791707 *
See also references of EP3419329A4 *

Also Published As

Publication number Publication date
US20180352465A1 (en) 2018-12-06
JP2019511159A (ja) 2019-04-18
CN108464033A (zh) 2018-08-28
EP3419329A1 (en) 2018-12-26
EP3419329A4 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2018196550A1 (zh) 传输反馈信息的方法和装置
WO2019153347A1 (zh) 配置信息的接收和发送方法、装置及通信系统
US10277363B2 (en) Hybrid automatic repeat request acknowledgement transmission method, user equipment, and base station
JP2021007270A (ja) 無線ネットワークにおけるアップリンク制御情報送/受信
US20160337086A1 (en) Method for configuring physical uplink channel, base station and user equipment
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
TW202013921A (zh) 發送上行信號的方法和設備
EP3627943A1 (en) Control information transmission method and device
CN110932820A (zh) 发送和接收上行控制信息的方法以及通信装置
WO2020248101A1 (zh) 上报csi的方法和终端设备
CN113490278B (zh) 下行信号传输的方法和设备
WO2019213968A1 (zh) 上行信道的发送方法和终端设备
WO2020206581A1 (zh) 传输信号的方法、终端设备和网络设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2019028760A1 (zh) 资源指示和接收方法、装置及通信系统
WO2021068264A1 (zh) 无线通信方法、装置和通信设备
CN115553008A (zh) 用于多trp操作的空间关系和路径损耗参考信号
CN105991269B (zh) 一种增强的ca中的pdcch方法和装置
WO2020211095A1 (zh) 一种信号加扰方法及装置、通信设备
TW202019210A (zh) 無線通訊方法和終端設備
TW201632013A (zh) 方法、裝置及系統
WO2017139970A1 (zh) 信息传输装置、方法以及通信系统
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
WO2021082013A1 (zh) 用于传输信道状态信息的方法及设备
WO2023011529A1 (zh) 一种波束生效时间确定方法、装置、终端和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016890203

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016890203

Country of ref document: EP

Effective date: 20180919