WO2014000236A1 - 一种时分双工系统的干扰协调方法、基站及系统 - Google Patents

一种时分双工系统的干扰协调方法、基站及系统 Download PDF

Info

Publication number
WO2014000236A1
WO2014000236A1 PCT/CN2012/077803 CN2012077803W WO2014000236A1 WO 2014000236 A1 WO2014000236 A1 WO 2014000236A1 CN 2012077803 W CN2012077803 W CN 2012077803W WO 2014000236 A1 WO2014000236 A1 WO 2014000236A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
interference
subframe
interfered
interfered cell
Prior art date
Application number
PCT/CN2012/077803
Other languages
English (en)
French (fr)
Inventor
李洋
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/077803 priority Critical patent/WO2014000236A1/zh
Priority to EP12879670.3A priority patent/EP2869619A4/en
Priority to CN201280000848.3A priority patent/CN103650557A/zh
Publication of WO2014000236A1 publication Critical patent/WO2014000236A1/zh
Priority to US14/573,862 priority patent/US9622251B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to the field of communications, and in particular, to an interference coordination method, device and system for a time division duplex system.
  • Time Division Duplexing In a Time Division Duplexing (TDD) mobile communication system, uplink and downlink are respectively transmitted in different time slots of the same spectrum resource. Compared with the Frequency Division Duplexing (FDD) system, the TDD system does not need a pair of frequencies, and the spectrum and equipment cost are low.
  • the uplink and downlink resources are more flexible and are suitable for asymmetric uplink and downlink data transmission rates. It is especially suitable for Internet Protocol (IP) type data services.
  • IP Internet Protocol
  • TDD Time Division Duplex
  • Adjacent small cells may generate multiple interferences, such as: interference between uplink and downlink, and interference between uplink and uplink, downlink and downlink. Interference between the two, in order to reduce the impact of interference, the necessary interference coordination is required.
  • the interference between the uplink and the downlink is different because the uplink and downlink subframes used by the adjacent small cells are different, and the downlink (or uplink) of the current cell is affected by the uplink (or downlink) of the neighboring cell. Interference.
  • the embodiment of the present invention provides an interference coordination method for a time division duplex system, and the base station and the victim cell can identify the interference between the uplink and downlink according to the subframe ratio of the interference cell, and send the interference to the interference cell, thereby implementing interference.
  • the base station and the victim cell can identify the interference between the uplink and downlink according to the subframe ratio of the interference cell, and send the interference to the interference cell, thereby implementing interference.
  • an embodiment of the present invention provides a method for interference coordination of a time division duplex system, including: receiving, by an interfering cell, a subframe ratio of the interfering cell sent by an interfering cell; the interfered cell according to the interfered cell The subframe ratio of the subframe and the subframe ratio of the interfering cell are generated, and the interference indication information of the subframe in the interfered cell opposite to the interference cell signal transmission direction is generated;
  • An interference coordination method of another time division duplex system includes: transmitting, by an interfering cell, a subframe ratio of the interfering cell to an interfered cell; a subframe ratio of the interfered cell and the interfered cell according to the subframe ratio of the interfered cell and a subframe ratio of the interfered cell, and the interfered cell generated by the interfered cell Interference indication information of a subframe in which the signal transmission direction is opposite;
  • the interference cell performs interference coordination according to the subframe ratio of the interfered cell and the interference indication information.
  • the embodiment of the present invention provides a base station, which is applied to an interfered cell, and includes: a receiving unit, configured to receive a subframe ratio of the interfering cell sent by an interfering cell; and a generating unit, configured to be interfered according to the Generating a subframe indication ratio of the cell and a subframe ratio of the interfering cell, and generating interference indication information of the subframe in the interfered cell that is opposite to the interference cell signal transmission direction;
  • a sending unit configured to send the subframe ratio of the interfered cell and the interference indication information to the interfering cell, so that the interfering cell according to the subframe ratio of the interfered cell And the interference indication information performs interference coordination.
  • Another base station which is provided by the embodiment of the present invention, is applied to the interfered cell, and includes: a receiver, configured to receive a subframe ratio of the interfering cell sent by the interfering cell; and a processor, configured to use, according to the interfered cell Interference indication information of a subframe of the interfering cell and the subframe of the interfering cell received by the receiver, generating interference indication information of a subframe of the interfered cell that is opposite to a signal transmission direction of the interfering cell;
  • Another base station configured to send the subframe ratio of the interfered cell and the interference indication information generated by the processor to the interfering cell, so that the interfering cell is configured according to the subframe of the interfered cell
  • the ratio and the interference indication information are used for interference coordination.
  • Another base station provided by the embodiment of the present invention is applied to an interference cell, and includes:
  • a sending unit configured to send a subframe ratio of the interfering cell to the interfered cell
  • a receiving unit configured to receive a subframe ratio of the interfered cell sent by the interfered cell, and the interfered cell according to the The interference indication information of the subframe of the interfered cell and the subframe ratio of the interfering cell, and the subframe of the interfered cell that is opposite to the signal transmission direction of the interfering cell;
  • Another base station provided by the embodiment of the present invention is applied to an interference cell, and includes:
  • a transmitter configured to send a subframe ratio of the interfering cell to the interfered cell
  • a receiver configured to receive a subframe ratio of the interfered cell sent by the interfered cell, and a subframe ratio of the interfered cell according to the interfered cell and a subframe ratio of the interfered cell And generating interference indication information of the subframe in the interfered cell that is opposite to the interference cell signal transmission direction;
  • a processor configured to perform interference coordination according to the subframe ratio of the interfered cell and the interference indication information received by the receiving unit.
  • the embodiment of the present invention provides a time division duplex system, including: a first base station and a second base station respectively applied to an interfered cell and an interfering cell, where the first base station is configured to receive an interference cell.
  • Subframe of the interfering cell a ratio, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell received by the receiver, generating a subframe in the interfered cell that is opposite to the interference cell signal transmission direction
  • the interference indication information, the subframe ratio of the interfered cell and the interference indication information generated by the processor are sent to the interference cell;
  • the second base station is configured to: send a subframe ratio of the interfering cell to the interfered cell, receive a subframe ratio of the interfered cell sent by the interfered cell, and the interfered cell according to the The interference indication information of the subframe of the interfered cell and the subframe ratio of the interfering cell, and the subframe of the interfered cell that is opposite to the direction of the signal transmission of the interfering cell, according to the interfered cell
  • the subframe ratio and the interference indication information are used for interference coordination.
  • the interfered cell can distinguish the interference between the uplink and the downlink according to the subframe ratio of the interfering cell, and the interference indication information between the uplink and the downlink
  • the signal is sent to the interfering cell, and the interference cell is further interfered with the interference between the uplink and the downlink.
  • the prior art can only deal with the interference of the uplink to the uplink and the downlink and the downlink, and cannot distinguish the interference between the uplink and the downlink, and cannot interfere with the interference between the uplink and the downlink.
  • FIG. 1 is a flow chart of an interference coordination method for a time division duplex system according to an embodiment of the present invention
  • FIG. 2 is a flow chart of an interference coordination method of another time division duplex system according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of an interference coordination method of another time division duplex system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a subframe ratio of an interfering cell and an interfered cell according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a subframe ratio of three cells according to an embodiment of the present invention
  • FIG. 6 is a structural diagram of a device applied to a base station of an interfered cell according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another apparatus applied to a base station of an interfered cell according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of another apparatus applied to a base station of an interfered cell according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of another apparatus applied to a base station of an interfered cell according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of an apparatus applied to a base station of an interfering cell according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of another apparatus applied to a base station of an interfering cell according to an embodiment of the present invention.
  • the embodiments of the present invention are described from the interfering cell side and the interfered cell side, respectively, and the supporting embodiments of the two are described at the same time, but this does not mean that the two must cooperate with the implementation, in fact, when the interfering cell is interfered with
  • the cells are separately implemented, they also solve the problems existing on the interfering cell side and the interfered cell side respectively, but when the two are used in combination, a better technical effect is obtained.
  • the interfering cell and the interfered cell in the embodiment of the present invention are relative. According to the actual interference situation, each cell can be used as an interfering cell or as an interfered cell.
  • FIG. 1 a schematic flowchart of an interference coordination method on an interfered cell side, as shown in the figure, may include the following steps:
  • the interfered cell receives a subframe ratio of the interfering cell sent by the interfering cell;
  • Step 102 The interfered cell generates, according to a subframe ratio of the interfered cell and a subframe ratio of the interfering cell, a signal transmission direction opposite to the interference cell in the interfered cell. Interference indication information of the subframe;
  • the interfered cell generates a subframe in the interfered cell that is opposite to the interference cell signal transmission direction according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell.
  • the interference indication information may include:
  • the interference indication information of the subframe in the interfered cell that is opposite to the signal transmission direction of the interfering cell according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell , including:
  • the interfered cell matches the signal transmission direction of the subframe in the interfered cell and the subframe in the interfering cell according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell; Determining, by the interfering cell, a subframe that is opposite to a signal transmission direction of the interfering cell in the interfered cell;
  • the subframe in the interfered cell that is opposite to the interference cell signal transmission direction includes at least one of the following subframes:
  • the signal in the interfered cell is downlink, and the signal of the interfering cell is a subframe corresponding to the uplink;
  • the signal in the interfered cell is an uplink
  • the signal of the interfering cell is a downlink corresponding subframe.
  • the interfered cell generates interference indication information of the subframe in the interfered cell that is opposite to the interference cell signal transmission direction according to the interference measurement value.
  • the interference indication information may include: interference strength level indication information of each resource granularity or interference influence indication information of the interference cell relative to the interfered cell for each resource granularity.
  • the interfering cell sends the subframe ratio of the interfered cell and the interference indication information to the interfering cell, so that the interfering cell according to the subframe ratio of the interfered cell and the The interference indication information is used for interference coordination.
  • the interfered cell can distinguish the interference between the uplink and the downlink according to the subframe ratio of the interfering cell, and send the interference indication information between the uplink and downlink to the interference cell. , thereby implementing interference between the uplink and downlink of the interfering cell Interference coordination.
  • the prior art can only solve the interference of the uplink to the uplink and the downlink to the downlink, and cannot distinguish the interference between the uplink and the downlink, and cannot interfere with the interference between the uplink and the downlink.
  • a schematic flowchart of an interference coordination method on the interfering cell side may include the following steps:
  • the interfering cell receives a subframe ratio of the interfered cell sent by the interfered cell, and the subframe ratio of the interfered cell according to the interfered cell and a subframe configuration of the interfering cell Comparing, the interference indication information of the generated subframe in the interfered cell that is opposite to the interference cell signal transmission direction;
  • the subframe in the interfered cell that is opposite to the interference cell signal transmission direction includes at least one of the following subframes:
  • the signal in the interfered cell is downlink, and the signal of the interfering cell is a subframe corresponding to the uplink;
  • the signal in the interfered cell is an uplink
  • the signal of the interfering cell is a downlink corresponding subframe.
  • the interference indication information may include: interference strength level indication information of each resource granularity or interference influence indication information of the interference cell relative to the interfered cell for each resource granularity.
  • the interference cell performs interference coordination according to the subframe ratio of the interfered cell and the interference indication information.
  • the interference cell may perform interference coordination according to the subframe ratio of the interfered cell and the interference indication information, and may include: the subframe according to the subframe ratio of the interfered cell and the The sub-frame ratio of the interfering cell determines a subframe in which the interfering cell causes uplink and downlink interference to the interfered cell; and the interfering cell adjusts, according to the interference indication information, a sub-interference that causes uplink and downlink interference to the interfered cell.
  • the interference cell will be The frame ratio is sent to the interfered cell, so that the interfered cell can distinguish the interference between the uplink and the downlink according to the subframe ratio of the interfering cell, and generate the interference indication information between the uplink and the downlink, and the interference cell according to the interference indication between the uplink and the downlink.
  • the information realizes interference coordination for interference between uplink and downlink.
  • the prior art can only solve the interference of the uplink to the uplink and the downlink to the downlink, and cannot distinguish the interference between the uplink and the downlink, and cannot interfere with the interference between the uplink and the downlink.
  • the above method embodiments are described below by way of specific embodiments. See Figure 3, including:
  • the interfering cell sends the subframe ratio of the interfering cell to the interfered cell.
  • the uplink signal and the downlink signal are transmitted in different time slots of the same frequency channel, and in the single wave system, according to the service traffic.
  • the difference between the uplink and downlink subframes used in the semi-static switching system can be matched.
  • the LTE TDD system defines seven uplink and downlink subframe ratios (for the sake of description, hereinafter referred to as subframe ratios), as shown in Table 1.
  • 'D indicates a downlink subframe
  • 'U indicates an uplink subframe
  • 'S indicates a special subframe (including a downlink transmission slot, a guard time, and an uplink transmission slot)
  • the cell can configure different subframe ratios. Match the actual uplink and downlink data service requirements.
  • the uplink and downlink subframe ratios used by the interfered cell and the interfering cell are respectively configured for subframes 1 and 2.
  • the manner in which the interfering cell sends the subframe ratio of the interfering cell to the interfered cell may be:
  • the base station of the interfering cell sends the subframe ratio of the interfering cell to the base station of the interfered cell through the X2 interface; or the base station of the interfering cell sends the interfering cell to the base station of the interfered cell through the air interface on the dedicated channel or the pilot signal Subframe ratio; or,
  • the base station of the interfering cell sends a system message to the user equipment served by the interfered cell, so that The user equipment served by the interfering cell acquires the subframe ratio of the interfering cell, and sends the subframe ratio of the interfering cell to the base station of the interfered cell; or the base station of the interfering cell forwards the interference to the base station of the interfered cell through the upper layer network.
  • the subframe ratio of the cell The subframe ratio of the cell.
  • the interfered cell matches the signal transmission direction of the corresponding subframe in the interfered cell and the interfering cell according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell;
  • the interfered cell matches the signal transmission direction of the corresponding subframe in the interfering cell and the interfering cell to determine whether the signal transmission direction of the corresponding subframe in the interfered cell and the interfering cell is consistent.
  • the signal transmission direction of the interfered cell is downlink, and the signal transmission direction of the interference cell is downlink. Therefore, in the 0# subframe, the signal transmission direction of the interfered cell and the interference cell is the same; Similarly, when the signal transmission direction of the interfered cell is uplink and the signal transmission direction of the interference cell is also uplink, the signal transmission direction of the interfered cell and the interference cell is also the same, and the interference generated by the interference cell to the interfered cell is in the same direction.
  • the interference for example, the interference generated by the downlink signal sent by the interfering cell to the downlink signal sent by the interfered cell; or the interference generated by the uplink signal sent by the user equipment of the interfering cell to the uplink signal sent by the user equipment served by the interfering cell.
  • the signal transmission direction of the interfered cell is uplink, and the signal transmission direction of the interference cell is downlink. Therefore, in the 3# subframe, the signal transmission direction of the interfered cell and the interference cell is opposite, and the same.
  • the signal transmission direction of the interfered cell is downlink and the signal transmission direction of the interference cell is downlink
  • the signal transmission direction of the interfered cell and the interference cell is also opposite, and the interference generated by the interference cell to the interfered cell is uplink and downlink interference
  • the interfered cell determines a subframe in the interfered cell that is opposite to a signal transmission direction in the interfering cell;
  • the interfered cell determines, according to the result of the foregoing matching, a subframe that is opposite to the interference signal transmission direction of the interfered cell, and may include:
  • the signal in the interfered cell is downlink, and the signal of the interfering cell is a subframe corresponding to the uplink;
  • the signal in the interfered cell is uplink, and the signal of the interfering cell is a downlink corresponding subframe.
  • the 3# subframe is a subframe that is not synchronized between the interfered cell and the interfering cell.
  • the interfered cell generates interference indication information on a subframe that is opposite to the interference cell signal transmission direction in the interfered cell. Typically, the interfered cell generates an opposite direction to the interference cell signal transmission direction in the interfered cell.
  • the interference indication information of the subframe may include:
  • the interfered cell acquires an interference measurement value of a subframe in the interfered cell that is opposite to a signal transmission direction of the interference cell;
  • the uplink signal of the interfered cell is interfered by the downlink signal of the interfering cell (referred to as the lower-up interference), and the interfered cell
  • the base station performs interference measurement, and the interfered cell base station obtains the lower-to-upper interference measurement value by measuring the downlink data channel transmitted by the interfering cell base station or the pilot signal to the received signal power of the interfered cell base station; and the signal in the interfered cell
  • the downlink signal of the interfered cell is interfered by the uplink signal of the interfering cell (referred to as the uplink-to-bottom interference), and the interfered cell obtains the interference by the user equipment (UE) it serves.
  • Measured values can include:
  • the base station of the interfered cell informs the UE that is served by the interfered cell of the location of the uplink interference frame by the control signaling;
  • the base station of the interfered cell informs the subframe ratio of the UE interfering cell served by the interfered cell by using the control signaling, so that the UE learns the subframe with the upper and lower interference through the subframe ratio of the interfered cell and the interfered cell.
  • the UE served by the interfered cell measures the uplink data channel sent by the UE served by the interfering cell or the received signal power of the pilot signal to the UE served by the interfered cell in the subframe where the interference is present, and obtains the received signal power of the UE served by the interfered cell. Interference measurement value;
  • the UE served by the interfered cell transmits the interference measurement value to the base station of the interfered cell.
  • the interference intensity on each sub-frame that can be measured or a part of the sub-frame that can be measured can be measured within a specific measurement time window, and then the measured interference measurement values are averaged. Finally, the interference measurement value corresponding to the measurement time window is obtained. Of course Then repeat the operation in the next measurement time window.
  • the interfered cell generates interference indication information of a subframe in the interfered cell that is opposite to a signal transmission direction of the interfering cell according to the interference measurement value.
  • the interference indication information may include: interference strength level indication information of each resource granularity or interference influence indication information of the interference cell relative to the interfered cell for each resource granularity.
  • the interference cell and the interfered cell or the system in which the interfering cell and the interfered cell are located pre-defined the interference strength level indication information.
  • the predefined interference intensity level indication information may indicate the power level by using four bits of information, where the power level may be e ⁇ - ⁇ , -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3 ⁇ [ dB], where each interference level uses the information bits "0000", "0001", "0010", in order from low to high,
  • the interference cell and the interfered cell or the system in which the interfering cell and the interfered cell are located pre-define the interference influence indication information of the interfering cell relative to the interfered cell. For example, two bit information “00", "01", "10” may be used. "The interference of the interfering cell indicates that the interference of the interfered cell is "weak”, “medium”, “strong", and the base station of the interfered cell compares the acquired interference measurement value with the effective received signal power of the interfered cell to obtain The Signal to Interference Ratio (SIR) can be used to pre-define the interference impact threshold. The interfered cell compares the obtained SIR with the threshold. For example: When the SIR exceeds the threshold, it indicates strong interference.
  • SIR Signal to Interference Ratio
  • the interference indication information may include interference indication information of each resource granularity, where one resource granularity may include one Physical Resource Block (PRB) or several PRBs, and the specific representation form of the interference indication information is not limited.
  • the interference indication information may be broadband interference indication information, that is, an interference indication signal is generated for the entire system bandwidth.
  • the multiple narrowband interference indication information is beneficial to separately perform interference coordination for different frequency bands; or the interference indication information includes both broadband interference indication information and narrowband interference indication information. .
  • the interfered cell sends the subframe ratio of the interfered cell and the generated interference indication information to the interference cell.
  • the interfered cell may send the subframe ratio of the interfered cell and the generated interference indication information to the interference cell by:
  • the base station of the interfered cell sends the subframe ratio of the interfered cell and the generated interference indication information to the base station of the interfering cell through the X2 interface;
  • the base station of the interfered cell transmits the subframe ratio of the interfered cell and the generated interference indication information to the base station of the interfering cell through the air interface on the dedicated channel or the pilot signal; or, the base station of the interfered cell passes The backhaul or S1 interface sends the subframe ratio of the interfered cell and the generated interference indication information to the upper layer network centralized controller, and then the centralized controller forwards the information to the base station of the interfering cell.
  • the interfering cell performs interference coordination according to the subframe ratio of the interfered cell and the interference indication information.
  • the interfering cell may perform interference coordination according to the subframe ratio of the interfered cell and the interference indication information, and may include:
  • the interfering cell adjusts, according to the interference indication information, transmit power on a subframe that causes uplink and downlink interference to the interfered cell, or adjusts a resource location used by the user equipment served by the interfering cell, to reduce or avoid Interference caused by the interfered cell.
  • the interference indication information is the interference influence indication information of the interfering cell with respect to the interfered cell
  • the interference indication information indicates that the granularity of a certain resource or multiple resource granularities
  • the interference indication information is "10"
  • an update period may also be set.
  • the interfered cell generates a reversed signal transmission direction of the interfering cell according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell and the set update period.
  • the interference indication information of each subframe in each update period; and according to the set update period, the subframe ratio of the interfered cell and the interference indication information in each update period are sent to each update period to
  • the interference cell performs interference coordination according to the set update period, the subframe ratio of the interfered cell, and the interference indication information in each update period in each update period.
  • the cell 2 is the interfered cell
  • the cell 1 and the cell 3 are the interfering cells
  • the interference coordination of the cell 1 and the cell 3 is relatively independent
  • the cell 1 and the cell 3 respectively transmit the respective subframe allocations to the cell 2, and the cell 2 determines the subframes opposite to the cell 1 signal transmission direction according to the subframe ratio of the cell 2 and the cell 1, and generates interference indication information for the cell 1. And transmitting the subframe ratio of the cell 2 and the interference indication information for the cell 1 generated by the cell 2 to the cell 1.
  • the cell 1 performs the cell frame ratio according to the cell 2 and the interference indication information for the cell 1 generated by the cell 2.
  • Cell 2 further determines a subframe opposite to the cell 3 signal transmission direction according to the subframe ratio of the cell 2 and the cell 3, and generates interference indication information for the cell 3, and then compares the subframe ratio of the cell 2 with the cell 2
  • the generated interference indication information for the cell 3 is sent to the cell 3, and the cell 3 according to the subframe ratio of the cell 2 and the interference finger for the cell 3 generated by the cell 2 Information processing interference.
  • the interfered cell can distinguish the interference between the uplink and the downlink according to the subframe ratio of the interfering cell, and send the interference indication information between the uplink and downlink to the interference cell. And further, the interference cell performs interference coordination on the interference between the uplink and the downlink.
  • the prior art can only solve the interference of the uplink to the uplink and the downlink to the downlink, and cannot distinguish the interference between the uplink and the downlink, and cannot interfere with the interference between the uplink and the downlink.
  • the interference coordination method of the time division duplex system provided by another embodiment of the present invention has the same principle as that described in FIG.
  • the interfered cell has a small subframe ratio and interference according to the interfered cell.
  • the subframe ratio of the area is generated, and the interference indication information of the subframe in the interfered cell opposite to the interference signal transmission direction is generated, and the interference indication information of the subframe in the interfered cell that is the same as the interference cell signal transmission direction is generated.
  • All the interference indication information is sent to the interference cell, and the interference cell performs corresponding processing on the interference according to the interference indication information sent by the interfered cell. See picture
  • the method includes:
  • 601 The subframe ratio of the interfering cell sent by the interfering cell to the interfered cell
  • the interfered cell matches the signal transmission direction of the corresponding subframe in the interfered cell and the interfering cell according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell.
  • the interfered cell determines a subframe in the interfered cell that is opposite to the interference cell signal transmission direction and a subframe in which the signal transmission direction is the same; for example, see FIG. 3, the 0# subframe of the interfered cell and the 0 of the interfered cell
  • the sub-frames are the same as the sub-frames in the same direction
  • the 2# sub-frames of the interfering cell and the 2# sub-frames of the interfering cell are the same as the uplink sub-frame, and the sub-frames with the same signal transmission direction
  • the 3# subframe of the interfered cell and the 3# subframe of the interfering cell are subframes in which signals are transmitted in different directions.
  • the interfered cell may also determine a subframe in the interfered cell that is both in the uplink direction and a subframe that is in the downlink direction.
  • the interfered cell generates interference indication information on the subframe in the interfered cell opposite to the interference cell signal transmission direction and the interference indication information on the subframe with the same signal transmission direction; because the signal transmission direction has been described in detail in the previous embodiment
  • the interference indication information on the opposite subframe is described. Therefore, only the interference indication information on the subframe in which the signal transmission direction is the same is described.
  • the method may include:
  • the interfered cell acquires the interference measurement value in the same subframe as the interference cell signal transmission direction;
  • the subframes with the same signal transmission direction include two cases, and the following two cases are respectively explained.
  • the uplink signal of the interfered cell is interfered by the uplink signal of the interfering cell (referred to as upper-pair interference), and the base station of the interfered cell performs interference measurement.
  • the base station of the interfered cell receives the uplink data channel sent by the UE served by the interfering cell, or the pilot signal arrives at the base station of the interfered cell. Signal power, obtaining the upper and upper interference measurement values;
  • the downlink signal of the interfered cell is interfered by the downlink signal of the interfering cell (referred to as upper-lower interference), and the interfered cell passes the service thereof.
  • the UE performs the interference measurement, and the UE served by the interfered cell obtains the downlink-to-down interference measurement value by measuring the downlink data channel sent by the base station of the interfering cell or the pilot signal to the received signal power of the UE served by the interfered cell;
  • the UE served by the interfered cell transmits the interference measurement value to the base station of the interfered cell.
  • the interfered cell generates the interference indication information according to the obtained interference measurement value.
  • the interference indication information in the subframe with the same signal transmission direction may also include the interference strength level indication information of each resource granularity or each resource.
  • the interference-influencing indication information of the granularity of the interfering cell with respect to the interfered cell is specifically described in the foregoing embodiment, and details are not described herein again.
  • the interference indication information may further include a narrowband transmit power limitation of the base station (Relative Narrowband TX power indication). , referred to as RNTP) and High Interference Indicator (HII).
  • RNTP Relative Narrowband TX power indication
  • HAI High Interference Indicator
  • the RNTP indicates the downlink transmit power of the interfered cell.
  • the resource granularity may be in units of resources. Each resource granularity includes one PRB or multiple PRBs. Each resource granularity uses four information bits to indicate the granularity of the resource.
  • the transmit power level where the power level can be e ⁇ - ⁇ , -ll, -10, -9, -8, -7, -6, -5, -4, -3, -2, -l, 0, +l, +2, +3 ⁇ [dB], for example, each interference level uses the information bits "0000", "0001", “0010", “001 1" "1 111" in order from low to high. Instructions.
  • the HII is used to indicate which resource granularity the interfered cell will schedule the cell edge users, and the granularity of these resources may cause interference to the neighboring cells.
  • the resource granularity is also used, and each resource granularity uses 1 bit, indicating whether the resource granularity will generate strong interference.
  • the interfered cell sends the subframe ratio of the interfered cell and the generated interference indication information to the interfering cell.
  • the transmission mode that can be selected by the interfered cell is the same as that in the previous embodiment, and details are not described herein again.
  • the interfering cell performs interference coordination according to the subframe ratio of the interfered cell and the generated interference indication information.
  • the interfering cell may perform interference coordination according to the subframe ratio of the interfered cell and the interference indication information, and may include:
  • the interfering cell determines, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, a subframe in which the interfering cell causes uplink and downlink interference to the interfered cell, and upper and lower upper and lower a sub-frame for interference;
  • the interfering cell adjusts, according to the interference indication information, transmit power on a subframe that causes uplink and downlink interference, upper-lower and lower-down interference to the interfered cell, or adjusts use of the user equipment of the interfering cell service. Resource location to reduce or avoid interference to the interfered cell.
  • the adjustment method is the same as the previous embodiment, except that the transmission power of the base station or the UE is separately adjusted according to different interference directions.
  • the interference indication information is the interference influence indication information of the interfering cell with respect to the interfered cell
  • the interference indication information indicates that the interference indication information of a certain resource granularity or multiple resource granularities is “10”
  • the interfering cell may reduce the interfering cell base station at the corresponding resource granularity location (for lower-to-upper interference and upper-to-upper interference) Or the transmit power of the UE (for upper-lower interference and lower-down interference), or the downlink channel or the uplink channel is scheduled to be transmitted to other resource granularities that do not have strong interference effects.
  • the interfering cell when the interference indication information received by the interfering cell is an interference indication including RNTP and ⁇ information, the interfering cell avoids and is prevented by scheduling the edge user serving the interfering cell to the resource granularity with low interference strength in the RNTP and HII information. Strong interference occurs between interfering cells.
  • cell 2 is an interfered cell
  • cell 1 and cell 3 are interfering cells
  • interference coordination between cell 1 and cell 3 is also relatively independent, for example,
  • the cell 1 and the cell 3 respectively transmit the respective subframe allocations to the cell 2, and the cell 2 determines, according to the subframe ratio of the cell 2 and the cell 1, the subframes with the same signal transmission direction as the cell 1 and the same transmission direction, and generates a cell for the cell.
  • the area 1 performs interference processing according to the subframe ratio of the cell 2 and the interference indication information for the cell 1 generated by the cell 2; the cell 2 also determines the opposite direction and transmission of the signal transmission direction of the cell 3 according to the subframe ratio of the cell 2 and the cell 3.
  • the subframes with the same direction are generated and the interference indication information for the cell 3 is generated, and the subframe ratio of the cell 2 and the interference indication information for the cell 3 generated by the cell 2 are transmitted to the cell 3, and the cell 3 is allocated according to the subframe of the cell 2.
  • the interference processing is performed on the interference indication information for the cell 3 generated by the cell 2.
  • the interfered cell can distinguish the interference between the uplink and the downlink according to the subframe ratio of the interfering cell, and send the interference indication information between the uplink and downlink to the interference cell. And further, the interference cell performs interference coordination on the interference between the uplink and the downlink.
  • the prior art can only deal with the interference of the uplink to the uplink and the downlink and the downlink, and cannot distinguish the interference between the uplink and the downlink, and cannot interfere with the interference between the uplink and the downlink.
  • an embodiment of the present invention provides a base station, which is used for an interfered cell.
  • the base station includes:
  • the receiving unit 701 is configured to receive a subframe ratio of the interfering cell sent by the interfering cell.
  • the uplink signal and the downlink signal are transmitted in different time slots of the same frequency channel, in a single wave system, according to Different service traffic can be used in the semi-static switching system to match the uplink and downlink subframes used in the system.
  • the LTE TDD system defines seven uplink and downlink subframe ratios (for the sake of description, hereinafter referred to as subframe ratios), as shown in Table 1.
  • 'D indicates a downlink subframe
  • 'U indicates an uplink subframe
  • 'S indicates a special subframe (including a downlink transmission slot, a guard time, and an uplink transmission slot)
  • the cell can configure different subframe ratios. Match the actual uplink and downlink data service requirements.
  • the uplink and downlink subframe ratios used by the interfered cell and the interfering cell are respectively configured for subframes 1 and 2.
  • the manner in which the receiving unit 701 receives the subframe ratio of the interfering cell may be: receiving the subframe ratio of the interfering cell through the X2 interface; or, by using an air interface, on the dedicated channel or the pilot signal, receiving the a subframe ratio of the interfering cell sent by the base station of the interfering cell; or receiving, by the user equipment that is served by the interfered cell, by receiving the interfering cell Subframe ratio of the interfering cell obtained by the system message; or
  • the generating unit 702 is configured to generate, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, an interference indication of a subframe in the interfered cell that is opposite to the interference cell signal transmission direction.
  • the generating unit 702 can include:
  • the matching module 7021 is configured to match, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, a signal transmission direction of the subframe corresponding to the interfered cell and the interfering cell; Exemplarily, the matching module 7021 matches the signal transmission directions of the corresponding subframes in the interfered cell and the interfering cell.
  • the signal transmission direction of the interfered cell is downlink, and the signal transmission direction of the interference cell is downlink. Therefore, in the 0# subframe, the signal transmission direction of the interfered cell and the interference cell is the same; Similarly, when the signal transmission direction of the interfered cell is uplink and the signal transmission direction of the interference cell is also uplink, the signal transmission direction of the interfered cell and the interference cell is also the same, and the interference generated by the interference cell to the interfered cell is in the same direction.
  • the interference for example, the interference generated by the downlink signal sent by the interfering cell to the downlink signal sent by the interfered cell; or the interference generated by the uplink signal sent by the user equipment of the interfering cell to the uplink signal sent by the user equipment served by the interfering cell.
  • the signal transmission direction of the interfered cell is uplink, and the signal transmission direction of the interference cell is downlink. Therefore, in the 3# subframe, the signal transmission direction of the interfered cell and the interference cell is opposite, and the same.
  • the signal transmission direction of the interfered cell is downlink and the signal transmission direction of the interference cell is downlink
  • the signal transmission direction of the interfered cell and the interference cell is also opposite, and the interference generated by the interference cell to the interfered cell is uplink and downlink interference
  • a determining module 7022 configured to determine, according to a matching result of the matching module, a subframe that is opposite to a signal transmission direction of the interfering cell in the interfered cell; For example, the determining module 7022 determines, according to the result of the matching of the matching module 7021, the subframe in the interfered cell that is opposite to the direction in which the interfering cell signal is transmitted, and may include:
  • the signal in the interfered cell is downlink, and the signal of the interfering cell is the subframe corresponding to the uplink; the signal in the interfered cell is the uplink, and the signal of the interfering cell is the subframe corresponding to the downlink.
  • the generating module 7023 is configured to generate interference indication information of the subframe that is opposite to the interference cell signal transmission direction of the interfered cell determined by the determining module.
  • the generating module 7023 may include: an acquiring submodule, configured to acquire interference measurement values of the subframes in the interfered cell that are opposite to the interference cell signal transmission direction;
  • the uplink signal of the interfered cell is interfered by the downlink signal of the interfering cell (referred to as the lower-up interference), and the interfered cell
  • the base station performs interference measurement, and the interfered cell base station obtains the lower-to-upper interference measurement value by measuring the downlink data channel transmitted by the interfering cell base station or the pilot signal to the received signal power of the interfered cell base station; and the signal in the interfered cell
  • the downlink signal of the interfered cell is interfered by the uplink signal of the interfering cell (referred to as the uplink-to-bottom interference), and the interfered cell obtains the interference by the user equipment (UE) it serves.
  • Measured values can include:
  • the base station of the interfered cell informs the UE that is served by the interfered cell of the location of the uplink interference frame by the control signaling;
  • the base station of the interfered cell informs the subframe ratio of the UE interfering cell served by the interfered cell by using the control signaling, so that the UE learns the subframe with the upper and lower interference through the subframe ratio of the interfered cell and the interfered cell.
  • the UE served by the interfered cell measures the uplink data channel sent by the UE served by the interfering cell or the received signal power of the pilot signal to the UE served by the interfered cell in the subframe where the interference is present, and obtains the received signal power of the UE served by the interfered cell. Interference measurement value;
  • the UE served by the interfered cell transmits the interference measurement value to the base station of the interfered cell.
  • the base station or the UE performs interference measurement, it can be measured within a specific measurement time window.
  • Each of the sub-frames or portions that can be measured can measure the interference intensity on the measured subframe, and then the plurality of measured interference measurement values are averaged, and finally the interference measurement value corresponding to the measurement time window is obtained. Then repeat the operation in the next measurement time window.
  • a generating submodule configured to generate interference indication information of the subframe in the interfered cell that is opposite to the interference cell signal transmission direction according to the interference measurement value acquired by the acquiring submodule.
  • the interference indication information may include: interference strength level indication information of each resource granularity or interference influence indication information of the interference cell relative to the interfered cell for each resource granularity.
  • the predefined interference intensity level indication information may indicate the power level by using four bits of information, where the power level may be e ⁇ - ⁇ , -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3 ⁇ [ dB], where each interference level is indicated by the information bits "0000", “0001", “0010", “0011” "1111” in order from low to high, and the interference measurement values obtained by the base station of the interfered cell Quantization is performed, and the quantized result corresponds to which predefined interference intensity level, and the corresponding bit indication information is used as the interference indication information. If the interference measurement is quantized to -7.8dB, use "0010" as the interference indication.
  • the interference cell and the interfered cell or the system in which the interfering cell and the interfered cell are located pre-define the interference influence indication information of the interfering cell relative to the interfered cell. For example, two bit information “00", "01", "10” may be used. "The interference of the interfering cell indicates that the interference of the interfered cell is "weak”, “medium”, “strong", and the base station of the interfered cell compares the acquired interference measurement value with the effective received signal power of the interfered cell to obtain The Signal to Interference Ratio (SIR) can be used to pre-define the interference impact threshold. The interfered cell compares the obtained SIR with the threshold. For example: When the SIR exceeds the threshold, it indicates strong interference.
  • SIR Signal to Interference Ratio
  • the interference indication information may include interference indication information of each resource granularity.
  • One of the resource granularities may include one physical resource block (PRB) or several PRBs, and the specific indication form of the interference indication information is not limited.
  • the interference indication information may be broadband interference indication information, that is, the entire system bandwidth generation.
  • An interference indication information including interference indication information of each resource granularity of the entire system bandwidth; or the interference indication information is narrowband interference indication information, that is, the entire system bandwidth is divided into multiple frequency bands, and each frequency band generates an interference indication information, including The interference indication information of each resource granularity in the frequency band, because the interference has frequency selectivity, the multiple narrowband interference indication information facilitates interference coordination for different frequency bands respectively; or the interference indication information includes both broadband interference indication information and narrowband Interference indication information.
  • the generating unit 702 is further configured to: generate, according to a subframe ratio of the interfered cell and a subframe ratio of the interfering cell, a subframe that is the same as a signal transmission direction of the interfering cell in the interfered cell. Interference indication information.
  • the 0# subframe of the interfered cell and the 0# subframe of the interfering cell are both downlink subframes, which are subframes with the same signal transmission direction; 2# subframes and interfering cells of the interfered cell
  • the 2# subframe is the same as the uplink subframe, and is also the subframe with the same signal transmission direction.
  • the 3# subframe of the interfered cell and the 3# subframe of the interfering cell are subframes of different directions for signal transmission. .
  • the generating unit 702 generates, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, interference of a subframe in the interfered cell that is in the same direction as the interfering cell signal transmission direction.
  • the process of indicating information can include:
  • the generating unit 702 acquires interference measurement values on the same subframe as the interference cell signal transmission direction;
  • the subframes with the same signal transmission direction include two cases, and the following two cases are respectively explained.
  • the uplink signal of the interfered cell is interfered by the uplink signal of the interfering cell (referred to as upper-pair interference), and the base station of the interfered cell performs interference measurement.
  • the base station of the interfered cell obtains the uplink interference measurement value by measuring the received data power of the uplink data channel or the pilot signal sent by the UE served by the interference cell to the interfered cell base station;
  • the downlink signal of the interfered cell is interfered by the downlink signal of the interfering cell (referred to as upper-to-lower interference).
  • the interfered cell performs interference measurement by the UE served by the interfered cell, and the UE served by the interfered cell obtains the received signal power of the UE served by the interfered cell by measuring the downlink data channel transmitted by the base station of the interfered cell or the pilot signal. Next to the next interference measurement;
  • the UE served by the interfered cell transmits the interference measurement value to the base station of the interfered cell.
  • the generating unit 702 generates, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, interference indication information of a subframe in the interfered cell that is in the same direction as the interference cell signal transmission direction. .
  • the interference indication information on the same subframe in the signal transmission direction may also include the interference strength level indication information of each resource granularity or the interference impact indication of the interfering cell with respect to the interfered cell for each resource granularity.
  • the specific representation of the information is the same as above, and will not be described here.
  • the interference indication information may further include a narrowband transmit power limitation of the base station (Relative Narrowband TX power indication). , referred to as RNTP) and High Interference Indicator (HII).
  • RNTP Relative Narrowband TX power indication
  • HAI High Interference Indicator
  • the RNTP indicates the downlink transmit power of the interfered cell.
  • the resource granularity may be in units of resources. Each resource granularity includes one PRB or multiple PRBs. Each resource granularity uses four information bits to indicate the granularity of the resource.
  • the transmit power level where the power level can be e ⁇ - ⁇ , -ll, -10, -9, -8, -7, -6, -5, -4, -3, -2, -l, 0, +l, +2, +3 ⁇ [dB], for example, each interference level uses the information bits "0000", "0001", “0010", “001 1" "1 111" in order from low to high. Instructions.
  • the HII is used to indicate which resource granularity the interfered cell will schedule the cell edge users, and the granularity of these resources may cause interference to the neighboring cells.
  • the resource granularity is also used.
  • Each resource granularity uses 1 bit, indicating whether strong interference will occur in the granularity of the resource.
  • the sending unit 703 is configured to send the subframe ratio of the interfered cell and the interference indication information to the interfering cell, so that the interfering cell according to the subframe ratio of the interfered cell and the The interference indication information is used for interference coordination.
  • the sending unit 703 can send the interference indication information to the interference cell by: Sending the interference indication information to the interfering cell through the X2 interface; or sending the interference indication information to the base station of the interfering cell on the dedicated channel or the pilot signal through the air interface; or sending the interference indication information through the backhaul or S1 interface
  • the centralized controller is sent to the upper layer network, and then forwarded by the centralized controller to the base station of the interfering cell.
  • the base station further includes an update period setting unit 704, configured to set an update period, and correspondingly, the generating unit 702 is further configured to: according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell And generating, by the update period set by the update period setting unit, the interference indication information in a subframe of the interfered cell that is opposite to the interference cell signal transmission direction in each update period;
  • the sending unit 703 is further configured to: compare, according to an update period set by the update period setting unit, a subframe ratio of the interfered cell and the interference indication information in each update period in each update period. And transmitting to the interfering cell, so that the interfering cell performs interference coordination according to the subframe ratio of the interfered cell and the interference indication information in each update period in each update period.
  • the base station provided by the embodiment of the present invention can distinguish the interference between the uplink and the downlink according to the subframe ratio of the interfering cell, and send the interference indication information between the uplink and downlink to the interfering cell, thereby implementing the interfering cell between the uplink and the downlink.
  • the interference is interfered with. It solves the problem that the prior art can only deal with uplink and downlink to downlink and downlink interference, and cannot distinguish between uplink and downlink interference, and cannot
  • a base station according to another embodiment of the present invention may perform all the steps shown in FIG. 1, where the base station includes,
  • a receiver 901 configured to receive a subframe ratio of the interfering cell sent by the interfering cell; in the TDD system, the uplink signal and the downlink signal are transmitted in different time slots of the same frequency channel, in the single wave system, according to Different service traffic can be used in the semi-static switching system to match the uplink and downlink subframes used in the system.
  • the LTE TDD system defines seven uplink and downlink subframe ratios (for the sake of description, hereinafter referred to as subframe ratios), as shown in Table 1.
  • 'D indicates a downlink subframe
  • 'U indicates an uplink subframe
  • 'S indicates a special subframe (including a downlink transmission slot, a guard time, and an uplink transmission slot)
  • the cell can configure different subframe ratios. Match the actual uplink and downlink data service requirements. Referring to FIG. 4, it is assumed that the uplink and downlink subframe ratios used by the interfered cell and the interfering cell are respectively configured for subframes 1 and 2.
  • the manner in which the receiver 901 receives the subframe ratio of the interfering cell may be: receiving the subframe ratio of the interfering cell through the X2 interface; or, by using an air interface, on the dedicated channel or the pilot signal, receiving the The subframe ratio of the interfering cell sent by the base station of the interfering cell; or the subframe configuration of the interfering cell acquired by receiving the system message of the interfering cell and sent by the user equipment served by the interfered cell Than; or,
  • the processor 902 is configured to generate, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, an interference indication of a subframe in the interfered cell that is opposite to the interference cell signal transmission direction.
  • the processor 902 is configured to transmit, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, a signal of a subframe corresponding to the interfered cell and the interfering cell. Performing matching on the direction; determining, according to the matching result, a subframe that is opposite to the signal transmission direction of the interfering cell in the interfered cell; and then generating a subframe in the interfered cell that is opposite to the signal transmission direction of the interfering cell.
  • Interference indication information For example, referring to FIG. 4, for the 0# subframe, the signal transmission direction of the interfered cell is downlink, and the signal transmission direction of the interference cell is downlink.
  • the signal transmission direction of the interfered cell and the interference cell is the same;
  • the signal transmission direction of the interfered cell is uplink and the signal transmission direction of the interference cell is also uplink
  • the signal transmission direction of the interfered cell and the interference cell is also the same, and the interference generated by the interference cell to the interfered cell is in the same direction.
  • the interference for example, the interference generated by the downlink signal sent by the interfering cell to the downlink signal sent by the interfered cell; or the interference generated by the uplink signal sent by the user equipment of the interfering cell to the uplink signal sent by the user equipment served by the interfering cell.
  • the signal transmission direction of the interfered cell is uplink, and the signal transmission direction of the interference cell is downlink. Therefore, in the 3# subframe, the signal transmission direction of the interfered cell and the interference cell is opposite, and the same.
  • the signal transmission direction of the interfered cell is downlink and the signal transmission direction of the interfering cell is downlink
  • the signal transmission direction of the interfered cell and the interfering cell is also opposite, and the interference is
  • the interference generated by the cell to the interfered cell is the uplink and downlink interference, for example, the interference generated by the downlink signal sent by the interfering cell to the uplink signal sent by the user equipment served by the interfering cell; or the uplink signal pair sent by the user equipment that interferes with the cell service Interference generated by the downlink signal transmitted by the interfered cell.
  • a subframe in the interfered cell that is opposite to the direction in which the interfering cell signal is transmitted may include:
  • the signal in the interfered cell is downlink, and the signal of the interfering cell is the subframe corresponding to the uplink; the signal in the interfered cell is the uplink, and the signal of the interfering cell is the subframe corresponding to the downlink.
  • the uplink signal of the interfered cell is interfered by the downlink signal of the interfering cell (referred to as the lower-up interference), and the interfered cell
  • the base station performs interference measurement, and the interfered cell base station obtains the lower-to-upper interference measurement value by measuring the downlink data channel transmitted by the interfering cell base station or the pilot signal to the received signal power of the interfered cell base station; and the signal in the interfered cell
  • the downlink signal of the interfered cell is interfered by the uplink signal of the interfering cell (referred to as the uplink-to-bottom
  • the interference intensity on each sub-frame that can be measured or a part of the sub-frame that can be measured can be measured within a specific measurement time window, and then the measured interference measurement values are averaged. Finally, the interference measurement value corresponding to the measurement time window is obtained. Then repeat the operation in the next measurement time window.
  • the processor 902 then generates interference indication information of the subframes in the interfered cell that are opposite to the interference cell signal transmission direction according to the interference measurement value.
  • the interference indication information may include: an interference intensity level indication information of each resource granularity or interference influence indication information of the interfering cell with respect to the interfered cell for each resource granularity.
  • the predefined interference intensity level indication information may indicate the power level by using four bits of information, where the power level may be e ⁇ - ⁇ , -11 , -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3 ⁇ [dB], where each interference level is from low to high
  • the sequence is indicated by the information bits "0000", “0001”, “0010”, "0011” and "1111”, respectively, and the base station of the interfered cell quantizes the acquired interference measurement value, and the quantized result corresponds to which predefined interference intensity.
  • the corresponding bit indication information is used as the interference indication information. If the interference measurement is quantized to -7.8 dB, "0010" is used as the interference indication information.
  • the interference cell and the interfered cell or the system in which the interfering cell and the interfered cell are located pre-define the interference influence indication information of the interfering cell relative to the interfered cell. For example, two bit information “00", "01", "10” may be used. "The interference of the interfering cell indicates that the interference of the interfered cell is "weak”, “medium”, “strong", and the base station of the interfered cell compares the acquired interference measurement value with the effective received signal power of the interfered cell to obtain The Signal to Interference Ratio (SIR) can be used to pre-define the interference impact threshold. The interfered cell compares the obtained SIR with the threshold. For example: When the SIR exceeds the threshold, it indicates strong interference.
  • SIR Signal to Interference Ratio
  • the interference indication information may include interference indication information of each resource granularity, where one resource granularity may include one Physical Resource Block (PRB) or several PRBs, and the specific representation form of the interference indication information is not limited.
  • the interference indication information may be broadband interference indication information, that is, an interference indication information is generated for the entire system bandwidth, and the interference indication information of each resource granularity of the entire system bandwidth is included; or the interference indication information is narrowband interference indication information, that is, the entire system bandwidth. Divided into multiple frequency bands, each of which generates an interference indication information, including interference indication information of each resource granularity in the frequency band. Since the interference has frequency selectivity, multiple narrowband interference indication information is beneficial for different frequency bands.
  • Interference coordination is performed separately; or the interference indication information includes both broadband interference indication information and narrowband interference indication information.
  • the processor 902 is further configured to: generate, according to the subframe ratio of the interfered cell, a subframe ratio of the interfering cell, generate the same signal transmission direction as the interfering cell in the interfered cell.
  • the interference indication information of the subframe is further configured to: generate, according to the subframe ratio of the interfered cell, a subframe ratio of the interfering cell, generate the same signal transmission direction as the interfering cell in the interfered cell.
  • the 0# subframe of the interfered cell and the 0# subframe of the interfering cell are both downlink subframes, which are subframes with the same signal transmission direction; 2# subframes and interfering cells of the interfered cell
  • the 2# subframe is the same as the uplink subframe, and is also the subframe with the same signal transmission direction.
  • the 3# subframe of the interfered cell and the 3# subframe of the interfering cell are subframes of different directions for signal transmission. .
  • the processor 902 generates, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, interference of a subframe in the interfered cell that is in the same direction as the interference cell signal transmission direction.
  • the process of indicating information can include:
  • the processor 902 obtains an interference measurement value on a subframe that is the same as the interference cell signal transmission direction;
  • the subframes with the same signal transmission direction include two cases, and the following two cases are respectively explained.
  • the uplink signal of the interfered cell is interfered by the uplink signal of the interfering cell (referred to as upper-pair interference), and the base station of the interfered cell performs interference measurement.
  • the base station of the interfered cell obtains the uplink interference measurement value by measuring the received data power of the uplink data channel or the pilot signal sent by the UE served by the interference cell to the interfered cell base station;
  • the downlink signal of the interfered cell is interfered by the downlink signal of the interfering cell (referred to as upper-lower interference), and the interfered cell passes the service thereof.
  • the UE performs the interference measurement, and the UE served by the interfered cell obtains the downlink-to-down interference measurement value by measuring the downlink data channel sent by the base station of the interfering cell or the pilot signal to the received signal power of the UE served by the interfered cell;
  • the UE served by the interfered cell transmits the interference measurement value to the base station of the interfered cell.
  • the processor 902 generates, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, interference indication information of a subframe in the interfered cell that is in the same direction as the interference cell signal transmission direction. .
  • the interference indication information on the same subframe in the signal transmission direction may also include the interference strength level indication information of each resource granularity or the interference impact indication of the interfering cell with respect to the interfered cell for each resource granularity.
  • the specific representation of the information is the same as above, and will not be described here.
  • the interference indication information may further include the base station. Relative Narrowband TX power indication (RNTP) and High Interference Indicator (HII).
  • the RNTP indicates the downlink transmit power of the interfered cell.
  • the resource granularity may be in units of a granularity.
  • Each resource granularity includes one PRB or multiple PRBs, and each resource granularity uses four information bits to indicate the granularity of the resource.
  • the transmit power level where the power level can be e ⁇ - ⁇ , -ll, -10, -9, -8, -7, -6, -5, -4, -3, -2, -l, 0, +l, +2, +3 ⁇ [dB]
  • each interference level is indicated by information bits "0000", "0001", "0010", "0011” "11”, respectively, in order from low to high.
  • the HII is used to indicate which resource granularity the interfered cell will schedule the cell edge users, and the granularity of these resources may cause interference to the neighboring cells.
  • the resource granularity is also used, and each resource granularity uses 1 bit, indicating whether there is strong interference in the granularity of the resource.
  • the transmitter 903 is configured to send the subframe ratio of the interfered cell and the interference indication information to the interfering cell, so that the interfering cell according to the subframe ratio of the interfered cell and the The interference indication information is used for interference coordination.
  • the transmitter 903 can transmit the interference indication information to the interference cell by:
  • the interference indication information is sent to the upper layer network centralized controller through the backhaul or S1 interface, and then forwarded by the centralized controller to the base station of the interfering cell.
  • the base station provided by the embodiment of the present invention can distinguish the interference between the uplink and the downlink according to the subframe ratio of the interfering cell, and send the interference indication information between the uplink and downlink to the interfering cell, thereby implementing the interfering cell between the uplink and the downlink.
  • the interference is interfered with. It solves the problem that the prior art can only deal with uplink and downlink to downlink and downlink interference, and cannot distinguish between uplink and downlink interference, and cannot
  • a base station provided by another embodiment of the present invention is used for an interfering cell, and all the steps shown in FIG. 2 can be performed.
  • the base station includes,
  • a sending unit 1001 configured to send, to the interfered cell, a subframe ratio of the interfering cell;
  • the sending unit 1001 may send a subframe ratio to the interfered cell by:
  • the receiving unit 1002 is configured to receive a subframe ratio of the interfered cell sent by the interfered cell, and a subframe ratio of the interfered cell according to the interfered cell and a subframe configuration of the interfered cell. Comparing, the interference indication information of the generated subframe in the interfered cell that is opposite to the interference cell signal transmission direction;
  • the receiving unit 1002 is further configured to: receive, by the interfered cell, the subframe that is allocated by the interfered cell according to a subframe ratio of the interfered cell and a subframe ratio of the interfering cell.
  • the subframe in the interfered cell that is opposite to the direction in which the interfering cell signal propagates includes at least one of the following subframes:
  • the signal in the interfered cell is downlink, and the subframe corresponding to the signal uplink of the interfering cell is uplink; the signal in the interfered cell is uplinked, and the subframe corresponding to the signal downlink of the interfering cell is downlink.
  • the subframe in the interfered cell that is the same as the interference cell signal propagation direction includes at least one of the following subframes:
  • the signal in the interfered cell is downlink, and the subframe corresponding to the signal downlink of the interfering cell is uplink; the signal in the interfered cell is uplinked, and the subframe corresponding to the uplink of the signal of the interfering cell is uplinked.
  • the 0# subframe of the interfered cell is the same as the 0# subframe of the interfering cell.
  • the subframe is the same subframe as the signal transmission direction;
  • the 2# subframe of the interfered cell is the same as the uplink subframe and the subframe with the same signal transmission direction;
  • the subframe and the 3# subframe of the interfering cell are subframes in which signals are transmitted in different directions.
  • the interference indication information may include: interference strength level indication information of each resource granularity or interference influence indication information of the interference cell relative to the interfered cell for each resource granularity.
  • the predefined interference intensity level indication information may indicate the power level by using four bits of information, where the power level may be e ⁇ - ⁇ , -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3 ⁇ [ dB], where each interference level is indicated by the information bits "0000", “0001", “0010", “0011” "1111” in order from low to high, and the interference measurement values obtained by the base station of the interfered cell Quantization is performed, and the quantized result corresponds to which predefined interference intensity level, and the corresponding bit indication information is used as the interference indication information. If the interference measurement is quantized to -7.8dB, use "0010" as the interference indication.
  • the interference cell and the interfered cell or the system in which the interfering cell and the interfered cell are located pre-define the interference influence indication information of the interfering cell relative to the interfered cell. For example, two bit information “00", "01", "10” may be used. "The interference of the interfering cell indicates that the interference of the interfered cell is "weak”, “medium”, “strong", and the base station of the interfered cell compares the acquired interference measurement value with the effective received signal power of the interfered cell to obtain The Signal to Interference Ratio (SIR) can be used to pre-define the interference impact threshold. The interfered cell compares the obtained SIR with the threshold. For example: When the SIR exceeds the threshold, it indicates strong interference.
  • SIR Signal to Interference Ratio
  • the interference indication information may include interference indication information of each resource granularity, where one resource granularity may include one Physical Resource Block (PRB) or several PRBs, and the specific representation form of the interference indication information is not limited.
  • the interference indication information may be broadband interference indication information, that is, an interference indication signal is generated for the entire system bandwidth.
  • the interference indication information is narrowband interference indication information, that is, the entire system bandwidth is divided into multiple frequency bands, and each frequency band generates an interference indication information, including the frequency band.
  • the multiple narrowband interference indication information is beneficial to separately perform interference coordination for different frequency bands; or the interference indication information includes both broadband interference indication information and narrowband interference indication information.
  • the interference indication information may further include a narrowband transmit power limitation of the base station (Relative Narrowband TX power indication). , referred to as RNTP) and High Interference Indicator (HII).
  • RNTP Relative Narrowband TX power indication
  • HAI High Interference Indicator
  • the RNTP indicates the downlink transmit power of the interfered cell.
  • the resource granularity may be in units of resources. Each resource granularity includes one PRB or multiple PRBs. Each resource granularity uses four information bits to indicate the granularity of the resource.
  • the transmit power level where the power level can be e ⁇ - ⁇ , -ll, -10, -9, -8, -7, -6, -5, -4, -3, -2, -l, 0, +l, +2, +3 ⁇ [dB], for example, each interference level uses the information bits "0000", "0001", “0010", “001 1" "1 111" in order from low to high. Instructions.
  • the HII is used to indicate which resource granularity the interfered cell will schedule the cell edge users, and the granularity of these resources may cause interference to the neighboring cells.
  • the resource granularity is also used, and each resource granularity uses 1 bit, indicating whether the resource granularity will generate strong interference.
  • the processing unit 1003 is configured to perform interference coordination according to the subframe ratio of the interfered cell and the interference indication information received by the receiving unit.
  • the processing unit 1003 may include: a determining module 10031, configured to determine, according to the subframe ratio of the interfered cell and a subframe ratio of the interfering cell, that the interfering cell causes an upper and lower a subframe that interferes with the uplink, and a subframe that interferes with the uplink and the downlink.
  • the processing module 10032 is configured to adjust, according to the interference indication information received by the receiving unit, the uplink and downlink interference caused by the interfered cell. The transmit power on the subframe, or the resource location used by the user equipment served by the interfering cell, to reduce or avoid interference to the interfered cell.
  • the processing module 10032 needs to separately adjust the base station or according to different interference directions.
  • the transmit power of the UE For example, when the interference indication information is the interference influence indication information of the interfering cell with respect to the interfered cell, and the interference indication information indicates that the interference indication information of a certain resource granularity or multiple resource granularities is “10”, If the one resource granularity or the multiple resource granularities are affected by the "strong" interference of the interfering cell signal by the interfering cell signal, the interfering cell may reduce the interfering cell base station at the corresponding resource granularity location (for lower-to-upper interference and upper-to-upper interference) Or UE
  • the transmit power for upper-lower interference and lower-to-lower interference
  • the downlink channel or uplink channel is scheduled to be transmitted to other resource granularities that do not have strong interference effects.
  • the processing module 10032 avoids by scheduling the edge user serving the interfering cell to the resource granularity with low interference strength in the RNTP and the ⁇ information. Strong interference occurs between the interfered cell.
  • the base station further includes an update period setting unit 1004, configured to set an update period, and correspondingly, the receiving unit 1002 is further configured to: receive the update period in each update period according to the update period set by the update period setting unit 1004.
  • the subframe ratio of the interfered cell sent by the interfered cell, and the interfered cell generated according to the subframe ratio of the interfered cell and the subframe ratio of the interfered cell
  • the processing unit 1003 is further configured to: according to the update period set by the update period setting unit, according to the subframe ratio of the interfered cell and the interference indication information in each update period in each update period Interference coordination.
  • the base station provided by the embodiment of the present invention sends the subframe ratio to the interfered cell, so that the interfered cell can distinguish the interference between the uplink and downlink according to the subframe ratio of the interfering cell, and generate the interference indication information between the uplink and the downlink.
  • the base station implements interference coordination on the interference between the uplink and the downlink according to the interference indication information between the uplink and the downlink.
  • the prior art can only solve the interference of the uplink to the uplink and the downlink to the downlink, and cannot distinguish the interference between the uplink and the downlink, and cannot interfere with the interference between the uplink and the downlink.
  • a base station according to another embodiment of the present invention is used for an interfering cell, and all the steps shown in FIG. 2 can be performed. Referring to FIG. 11, the base station includes: a transmitter 1101, configured to send the interfered cell to the interfered cell. Frame ratio Exemplarily, the transmitter 1 101 can send a subframe ratio to the interfered cell in the following manner:
  • a receiver 1102 configured to receive a subframe ratio of the interfered cell sent by the interfered cell, and a subframe ratio of the interfered cell according to the interfered cell and a subframe of the interfered cell a ratio, the generated interference indication information of the subframe in the interfered cell that is opposite to the interference cell signal transmission direction;
  • the receiver 1102 is further configured to receive, by the interfered cell, the acquired by the subframe ratio of the interfered cell and the acquired subframe ratio of the interfering cell.
  • the subframe in the interfered cell that is opposite to the direction in which the interfering cell signal propagates includes at least one of the following subframes:
  • the signal in the interfered cell is downlink, and the subframe corresponding to the signal uplink of the interfering cell is uplink; the signal in the interfered cell is uplinked, and the subframe corresponding to the signal downlink of the interfering cell is downlink.
  • the subframe in the interfered cell that is the same as the interference cell signal propagation direction includes at least one of the following subframes:
  • the signal in the interfered cell is downlink, and the subframe corresponding to the signal downlink of the interfering cell is uplink; the signal in the interfered cell is uplinked, and the subframe corresponding to the uplink of the signal of the interfering cell is uplinked.
  • the signal in the interfered cell is downlink, and the subframe corresponding to the signal downlink of the interfering cell is uplink; the signal in the interfered cell is uplinked, and the subframe corresponding to the uplink of the signal of the interfering cell is uplinked.
  • the 0# subframe of the interfered cell and the 0# subframe of the interfering cell are both downlink subframes, which are subframes with the same signal transmission direction; 2# subframes of the interfered cell and 2 of the interfered cell # The subframe is the same as the uplink subframe, and is also the subframe with the same signal transmission direction; the 3# subframe of the interfered cell and the 3# subframe of the interference cell are subframes of different directions for signal transmission.
  • the interference indication information may include: interference strength level indication information of each resource granularity or interference influence indication information of the interference cell relative to the interfered cell for each resource granularity.
  • the interference cell and the interfered cell or the system in which the interfering cell and the interfered cell are located pre-defined the interference strength level indication information.
  • the predefined interference intensity level indication information may indicate the power level by using four bits of information, where the power level may be e ⁇ - ⁇ , -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3 ⁇ [ dB], where each interference level uses the information bits "0000", "0001", "0010", in order from low to high,
  • the interference cell and the interfered cell or the system in which the interfering cell and the interfered cell are located pre-define the interference influence indication information of the interfering cell relative to the interfered cell. For example, two bit information “00", "01", "10” may be used. "The interference of the interfering cell indicates that the interference of the interfered cell is "weak”, “medium”, “strong", and the base station of the interfered cell compares the acquired interference measurement value with the effective received signal power of the interfered cell to obtain The Signal to Interference Ratio (SIR) can be used to pre-define the interference impact threshold. The interfered cell compares the obtained SIR with the threshold. For example: When the SIR exceeds the threshold, it indicates strong interference.
  • SIR Signal to Interference Ratio
  • the interference indication information may include interference indication information of each resource granularity, where one resource granularity may include one Physical Resource Block (PRB) or several PRBs, and the specific representation form of the interference indication information is not limited.
  • the interference indication information may be broadband interference indication information, that is, an interference indication information is generated for the entire system bandwidth, and the interference indication information of each resource granularity of the entire system bandwidth is included; or the interference indication information
  • the information is narrowband interference indication information, that is, the entire system bandwidth is divided into multiple frequency bands, and each frequency band generates one interference indication information, including interference indication information of each resource granularity in the frequency band, because the interference has frequency selectivity, so
  • the narrowband interference indication information facilitates interference coordination for different frequency bands respectively; or the interference indication information includes both broadband interference indication information and narrowband interference indication information.
  • the interference indication information may further include a narrowband transmit power limitation of the base station (Relative Narrowband TX power indication). , referred to as RNTP) and High Interference Indicator (HII).
  • RNTP Relative Narrowband TX power indication
  • HAI High Interference Indicator
  • the RNTP indicates the downlink transmit power of the interfered cell.
  • the resource granularity may be in units of resources. Each resource granularity includes one PRB or multiple PRBs. Each resource granularity uses four information bits to indicate the granularity of the resource.
  • the transmit power level where the power level can be e ⁇ - ⁇ , -ll, -10, -9, -8, -7, -6, -5, -4, -3, -2, -l, 0, +l, +2, +3 ⁇ [dB], for example, each interference level uses the information bits "0000", "0001", “0010", “001 1" "1 111" in order from low to high. Instructions.
  • the HII is used to indicate which resource granularity the interfered cell will schedule the cell edge users, and the granularity of these resources may cause interference to the neighboring cells.
  • the resource granularity is also used, and each resource granularity uses 1 bit, indicating whether there is strong interference in the granularity of the resource.
  • the processor 1103 is configured to perform interference coordination according to the subframe ratio of the interfered cell and the interference indication information received by the receiving unit.
  • the processing unit 1003 may determine, according to the subframe ratio of the interfered cell and the subframe ratio of the interfering cell, a subframe in which the interfering cell causes uplink and downlink interference to the interfered cell, and a subframe that interferes with the uplink and the downlink; and, according to the interference indication information received by the receiving unit, adjusting transmit power on a subframe that causes uplink and downlink interference to the interfered cell, or adjusting the interference cell
  • the processor 1103 separately adjusts the transmit power of the base station or the UE according to different interference directions.
  • the interference indication information is the interference influence indication information of the interfering cell with respect to the interfered cell
  • the interference indication information indicates that the granularity of a certain resource or multiple resource granularities
  • the interference indication information is "10"
  • the transmission power of the lower-to-upper interference and the upper-to-upper interference) or the UE (for the upper-to-bottom interference and the lower-to-lower interference) or the downlink channel or the uplink channel is scheduled to be transmitted to other resource granularities that do not have strong interference effects. .
  • the processor 1103 avoids by scheduling the edge users serving the interfering cell to the resource granularity with low interference strength in the RNTP and the ⁇ information. Strong interference occurs between the interfered cell.
  • the base station provided by the embodiment of the present invention sends the subframe ratio to the interfered cell, so that the interfered cell can distinguish the interference between the uplink and downlink according to the subframe ratio of the interfering cell, and generate the interference indication information between the uplink and the downlink.
  • the base station implements interference coordination on the interference between the uplink and the downlink according to the interference indication information between the uplink and the downlink.
  • the prior art can only deal with the interference of the uplink to the uplink and the downlink to the downlink, and cannot distinguish the interference between the uplink and the downlink, and cannot interfere with the interference between the uplink and the downlink.
  • Another embodiment of the present invention provides a time division duplex system, including: a first base station and a second base station respectively applied to an interfered cell and an interfering cell, where the first base station is configured to receive an Generating a subframe ratio of the interfering cell, and generating, according to the subframe ratio of the interfered cell and a subframe ratio of the interfering cell received by the receiver, a signal of the interfering cell and the interfering cell.
  • the interference indication information of the subframes with opposite transmission directions, the subframe ratio of the interfered cell and the interference indication information generated by the processor are sent to the interference cell;
  • the second base station is configured to: send a subframe ratio of the interfering cell to the interfered cell, receive a subframe ratio of the interfered cell sent by the interfered cell, and the interfered cell according to the The interference indication information of the subframe of the interfered cell and the subframe ratio of the interfering cell, and the subframe of the interfered cell that is opposite to the direction of the signal transmission of the interfering cell, according to the interfered cell
  • the subframe ratio and the interference indication information are used for interference coordination.
  • the interfered cell can distinguish the interference between the uplink and the downlink according to the subframe ratio of the interfering cell, and send the interference indication information between the uplink and downlink to the interfering cell, thereby implementing the interfering cell pair.
  • Interference coordination between lines The prior art can only solve the interference of the uplink to the uplink and the downlink to the downlink, and cannot distinguish the interference between the uplink and the downlink.
  • a person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to the program instructions.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • a medium that can store program codes such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种时分双工系统的干扰协调方法、设备及系统,涉及通信领域,被干扰小区根据干扰小区的子帧配比能够区分上下行之间的干扰,并将上下行之间的干扰指示信息发送给干扰小区,进而实现干扰小区对上下行之间的干扰进行干扰协调。本发明实施例提供的方法包括:被干扰小区接收干扰小区发送的所述干扰小区的子帧配比;所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子帧配比,生成所述被干扰小区中与所述干扰小区信号传输方向相反的子帧的干扰指示信息;所述被干扰小区将所述被干扰小区的子帧配比及所述干扰指示信息发送给所述干扰小区,以使得干扰小区根据所述被干扰小区的子帧配比及所述干扰指示信息进行干扰协调。

Description

一种时分汉工系统的干扰协调方法、 基站及系统 技术领域
本发明涉及通信领域, 尤其涉及一种时分双工系统的干扰协调方法、 设备及系统。
背景技术
在时分双工 (Time Division Duplexing , 简称 TDD ) 移动通信系统 中, 上行链路和下行链路分别位于同一频谱资源的不同时隙进行传输。 与 频分双工( Frequency Division Duplexing , 简称 FDD ) 系统相比, TDD系 统不需要成对的频率, 频谱和设备成本低, 上下行资源配置更加灵活, 适 用于不对称的上下行数据传输速率, 特别适用于网际协议 ( Internet Protocol , 简称 IP ) 型的数据业务。
随着移动通信技术的发展,移动数据业务流量需求正在以每年翻一倍 的速率快速增长, 并且 80%以上的数据业务来自室内和热点地区。 为了减 少宏蜂窝网络的负载并且使得收益增长与提供的数据业务流量增长相匹 配, 运营商急需在室内和热点地区部署更多小小区, 提供高速的数据业务 服务。
TDD 的特点使得其非常适合应用于小小区, 可以灵活地根据上下行 业务量需求, 自适应改变上下行子帧配置, 以提供更高的用户数据速率体 验和系统资源使用效率。 然而, 为了实现热点覆盖, 在一定区域可能需要 部署多个小小区, 相邻的小小区可能产生多种干扰, 例如: 上下行之间的 干扰, 以及上行和上行之间的干扰、 下行和下行之间的干扰, 为了减少干 扰带来的影响, 需要进行必要的干扰协调。 其中, 上下行之间的干扰是由 于相邻小小区使用的上下行子帧配比不同, 本小区的下行链路(或上行链 路) 会受到邻小区的上行链路 (或下行链路) 的干扰。
但是, 现有技术只能处理上行对上行和下行对下行的干扰, 无法区分 上下行之间的干扰, 也无法对上下行之间的干扰进行干扰协调。
发明内容 本发明的实施例提供一种时分双工系统的干扰协调方法、 基站及系 被干扰小区根据干扰小区的子帧配比能够是识别出上下行之间的干扰, 发送给干扰小区, 进而实现干扰小区对上
Figure imgf000004_0001
为达到上述目的, 本发明实施例采用的技术方案是,
一方面,本发明实施例提供一种时分双工系统的干扰协调方法, 包括: 被干扰小区接收干扰小区发送的所述干扰小区的子帧配比; 所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧的干扰指示信息;
所述被干扰小区将所述被干扰小区的子帧配比及所述干扰指示信息 发送给所述干扰小区, 以使得所述干扰小区根据所述被干扰小区的子帧配 比及所述干扰指示信息进行干扰协调。 本发明实施例提供的另一种时分双工系统的干扰协调方法, 包括: 干扰小区向被干扰小区发送所述干扰小区的子帧配比; 所述干扰小区接收所述被干扰小区发送的所述被干扰小区的子帧配 比以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反的 子帧的干扰指示信息;
所述干扰小区根据所述被干扰小区的子帧配比和所述干扰指示信息 进行干扰协调。
一方面, 本发明实施例提供一种基站, 应用于被干扰小区, 包括: 接收单元, 用于接收干扰小区发送的所述干扰小区的子帧配比; 生成单元, 用于根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的子帧 的干扰指示信息;
发送单元, 用于将所述被干扰小区的子帧配比及所述干扰指示信息发 送给所述干扰小区, 以使得所述干扰小区根据所述被干扰小区的子帧配比 及所述干扰指示信息进行干扰协调。 本发明实施例提供的另一种基站, 应用于被干扰小区, 包括: 接收器, 用于接收干扰小区发送的所述干扰小区的子帧配比; 处理器, 用于根据所述被干扰小区的子帧配比和所述接收器接收的所 述干扰小区的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输 方向相反的子帧的干扰指示信息;
发送器, 用于将所述被干扰小区的子帧配比及所述处理器生成的所述 干扰指示信息发送给所述干扰小区, 以使得所述干扰小区根据所述被干扰 小区的子帧配比及所述干扰指示信息进行干扰协调。 本发明实施例提供的另一种基站, 应用于干扰小区, 包括:
发送单元, 用于向被干扰小区发送所述干扰小区的子帧配比; 接收单元, 用于接收所述被干扰小区发送的所述被干扰小区的子帧配 比以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反的 子帧的干扰指示信息;
处理单元, 用于根据所述接收单元接收的所述被干扰小区的子帧配比 和所述干扰指示信息进行干扰协调。 本发明实施例提供的另一种基站, 应用于干扰小区, 包括:
发送器, 用于向被干扰小区发送所述干扰小区的子帧配比;
接收器, 用于接收所述被干扰小区发送的所述被干扰小区的子帧配比 以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧的干扰指示信息;
处理器, 用于根据所述接收单元接收的所述被干扰小区的子帧配比和 所述干扰指示信息进行干扰协调。
再一方面, 本发明实施例提供一种时分双工系统, 包括: 分别应用于 被干扰小区和干扰小区的第一基站和第二基站, 其中, 所述第一基站用于, 接收干扰小区发送的所述干扰小区的子帧 配比, 根据所述被干扰小区的子帧配比和所述接收器接收的所述干扰小区 的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的 子帧的干扰指示信息, 将所述被干扰小区的子帧配比及所述处理器生成的 所述干扰指示信息发送给所述干扰小区;
所述第二基站用于, 向被干扰小区发送所述干扰小区的子帧配比, 接 收所述被干扰小区发送的所述被干扰小区的子帧配比以及所述被干扰小区 根据所述被干扰小区的子帧配比和所述干扰小区的子帧配比, 生成的所述 被干扰小区中与所述干扰小区信号传输方向相反的子帧的干扰指示信息, 根据所述被干扰小区的子帧配比和所述干扰指示信息进行干扰协调。
本发明的实施例提供的时分双工系统的干扰协调方法、 基站及系统, 被干扰小区根据干扰小区的子帧配比能够区分上下行之间的干扰, 并将上 下行之间的干扰指示信息发送给干扰小区, 进而实现干扰小区对上下行之 间的干扰进行干扰协调。 解决了现有技术只能处理上行对上行和下行对下 行的干扰, 无法区分上下行之间的干扰, 也无法对上下行之间的干扰进行 干扰协调的问题。
附图说明
实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1 为本发明实施例提供的一种时分双工系统的干扰协调方法流程 图;
图 2为本发明实施例提供的另一种时分双工系统的干扰协调方法流程 图;
图 3为本发明实施例提供的另一种时分双工系统的干扰协调方法流程 图;
图 4为本发明实施例提供的干扰小区和被干扰小区的子帧配比图; 图 5为本发明实施例提供三个小区的子帧配比图; 图 6为本发明实施例提供的应用于被干扰小区的基站的装置结构图; 图 7为本发明实施例提供的另一种应用于被干扰小区的基站的装置结 构图;
图 8为本发明实施例提供的另一种应用于被干扰小区的基站的装置结 构图;
图 9为本发明实施例提供的另一种应用于被干扰小区的基站的装置结 构图;
图 10 为本发明实施例提供的一种应用于干扰小区的基站的装置结构 图;
图 1 1 为本发明实施例提供的另一种应用于干扰小区的基站的装置结 构图。
具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的 范围。
本发明实施例分别从干扰小区侧和被干扰小区侧进行说明, 并同时 对二者的配合实施例进行说明, 但这并不意味着二者必须配合实施, 实 际上, 当干扰小区与被干扰小区分开实施时, 其也解决了分别在干扰小 区侧、 被干扰小区侧上存在的问题, 只是二者结合使用时, 会获得更好 的技术效果。 本发明实施例所述的干扰小区和被干扰小区是相对的, 根 据实际的干扰情况, 每一个小区既可以作为干扰小区, 也可以作为被干 扰小区。
参见图 1 , 为被干扰小区侧的干扰协调方法流程示意图, 如图所示, 可以包括以下步骤:
101 : 被干扰小区接收干扰小区发送的所述干扰小区的子帧配比;
102: 所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小 区的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反 的子帧的干扰指示信息;
示例性的, 所述被干扰小区根据所述被干扰小区的子帧配比和所述干 扰小区的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向 相反的子帧的干扰指示信息, 可以包括:
所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 获取所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧的干扰指示信息, 包括:
所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比将所述被干扰小区和所述干扰小区中对应的子帧的信号传输方向 进行匹配; 所述被干扰小区确定所述被干扰小区中与所述干扰小区信号传输方 向相反的子帧;
示例性的, 所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧包括下述子帧中的至少一种:
所述被干扰小区中的信号为下行, 且所述干扰小区的信号为上行对应 的子帧;
所述被干扰小区中的信号为上行, 且所述干扰小区的信号为下行对应 的子帧。
所述被干扰小区根据所述干扰测量值生成所述被干扰小区中与所述 干扰小区信号传输方向相反的子帧的干扰指示信息。
示例性的, 所述干扰指示信息可以包括: 每一个资源粒度的干扰强度 等级指示信息或者每一个资源粒度的所述干扰小区相对所述被干扰小区的 干扰影响指示信息。
103 : 所述被干扰小区将所述被干扰小区的子帧配比及所述干扰指示 信息发送给所述干扰小区, 以使得所述干扰小区根据所述被干扰小区的子 帧配比及所述干扰指示信息进行干扰协调。
本发明的实施例提供的时分双工系统的干扰协调方法, 被干扰小区根 据干扰小区的子帧配比能够区分上下行之间的干扰, 并将上下行之间的干 扰指示信息发送给干扰小区, 进而实现干扰小区对上下行之间的干扰进行 干扰协调。 解决了现有技术只能处理上行对上行和下行对下行的干扰, 无 法区分上下行之间的干扰, 也无法对上下行之间的干扰进行干扰协调的问 题。
参见图 2 , 为干扰小区侧的干扰协调方法流程示意图, 如图所示, 可 以包括以下步骤:
201 : 干扰小区向被干扰小区发送所述干扰小区的子帧配比;
202 : 所述干扰小区接收所述被干扰小区发送的所述被干扰小区的子 帧配比以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小 区的子帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相 反的子帧的干扰指示信息;
示例性的, 所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧包括下述子帧中的至少一种:
所述被干扰小区中的信号为下行, 且所述干扰小区的信号为上行对应 的子帧;
所述被干扰小区中的信号为上行, 且所述干扰小区的信号为下行对应 的子帧。
示例性的, 所述干扰指示信息可以包括: 每一个资源粒度的干扰强度 等级指示信息或者每一个资源粒度的所述干扰小区相对所述被干扰小区的 干扰影响指示信息。
203: 所述干扰小区根据所述被干扰小区的子帧配比和所述干扰指示 信息进行干扰协调。
示例性的, 干扰小区根据所述所述被干扰小区的子帧配比和所述干 扰指示信息进行干扰协调, 可以包括: 所述干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比确定所述干扰小区对所述被干扰小区造成上下行干扰的子帧; 所述干扰小区根据所述干扰指示信息, 调整对所述被干扰小区造成上 下行干扰的子帧上的发射功率, 或调整所述干扰小区服务的用户设备使用 的资源位置, 以减少或避免对被干扰小区造成的干扰。
本发明的实施例提供的时分双工系统的干扰协调方法, 干扰小区将子 帧配比发送给被干扰小区, 使被干扰小区根据干扰小区的子帧配比能够区 分上下行之间的干扰并生成上下行之间的干扰指示信息, 干扰小区根据上 下行之间的干扰指示信息实现对上下行之间的干扰进行干扰协调。 解决了 现有技术只能处理上行对上行和下行对下行的干扰, 无法区分上下行之间 的干扰, 也无法对上下行之间的干扰进行干扰协调的问题。 下面通过具体实施例对上述方法实施例进行说明。 参见图 3 , 包括:
301 : 干扰小区向被干扰小区发送所述干扰小区的子帧配比; 在 TDD 系统中, 上行信号和下行信号的传输是在同一频率信道的不 同时隙, 在单波系统中, 根据业务流量的不同, 可以半静态的切换系统中 所使用的上行与下行的子帧配比。 例如, LTE TDD系统定义了 7种上下行 子帧配比 (为了描述方面, 下文简称子帧配比) , 如表 1 所示。 其中 'D, 表示下行子帧, 'U,表示上行子帧, 'S,表示特殊子帧 (包括下行传输时隙, 保护时间和上行传输时隙) , 小区可以配置不同的子帧配比来与实际的上 下行数据业务需求匹配。
表 1 上下行子帧配比
Figure imgf000010_0001
参见图 4, 假设被干扰小区和干扰小区使用的上行与下行的子帧配比 分别为 1号和 2号子帧配置。 示例性的, 干扰小区向被干扰小区发送干扰小区的子帧配比的方式可 以为:
干扰小区的基站通过 X2接口向被干扰小区的基站发送干扰小区的子 帧配比; 或者, 干扰小区的基站通过空口, 在专用信道或者导频信号上, 向被干扰小 区的基站发送干扰小区的子帧配比; 或者,
干扰小区的基站向被干扰小区服务的用户设备发送系统消息, 以使得 被干扰小区服务的用户设备获取干扰小区的子帧配比, 并将干扰小区的子 帧配比发送给被干扰小区的基站; 或者, 干扰小区的基站通过上层网络向被干扰小区的基站转发干扰小区的 子帧配比。
302: 被干扰小区根据被干扰小区的子帧配比和干扰小区的子帧配比 将被干扰小区和干扰小区中对应的子帧的信号传输方向进行匹配;
示例性的, 被干扰小区将被干扰小区和干扰小区中对应的子帧的信号 传输方向进行匹配, 以确定被干扰小区和干扰小区中对应的子帧的信号传 输方向是否一致。
例如, 参见图 4 , 对于 0#子帧, 被干扰小区的信号传输方向为下行, 干扰小区的信号传输方向为下行, 所以, 在 0#子帧, 被干扰小区和干扰小 区信号传输方向相同; 同理, 当被干扰小区的信号传输方向为上行, 干扰 小区的信号传输方向也为上行时, 被干扰小区和干扰小区信号传输方向也 相同, 干扰小区对被干扰小区产生的干扰为同方向的干扰, 例如, 干扰小 区发送的下行信号对被干扰小区发送的下行信号产生的干扰; 或者干扰小 区服务的用户设备发送的上行信号对被干扰小区服务的用户设备发送的上 行信号产生的干扰。
再例如, 对于 3#子帧, 被干扰小区的信号传输方向为上行, 干扰小区 的信号传输方向为下行, 所以, 在 3#子帧, 被干扰小区和干扰小区信号传 输方向相反, 同理, 当被干扰小区的信号传输方向为下行, 干扰小区的信 号传输方向为下行时, 被干扰小区和干扰小区信号传输方向也相反, 干扰 小区对被干扰小区产生的干扰为上下行的干扰, 例如, 干扰小区发送的下 行信号对被干扰小区服务的用户设备发送的上行信号产生的干扰; 或者干 扰小区服务的用户设备发送的上行信号对被干扰小区发送的下行信号产生 的干扰。
303 : 被干扰小区确定被干扰小区中与干扰小区中信号传输方向相反 的子帧;
示例性的, 被干扰小区根据上述匹配的结果, 确定被干扰小区中与干 扰小区信号传输方向相反的子帧, 可以包括:
被干扰小区中的信号为下行, 且干扰小区的信号为上行对应的子帧; 被干扰小区中的信号为上行, 且干扰小区的信号为下行对应的子帧。 例如, 参见图 4 , 3#子帧即为被干扰小区与干扰小区中不同步的子帧。
304: 被干扰小区生成被干扰小区中与干扰小区信号传输方向相反的 子帧上的干扰指示信息; 示例性的, 被干扰小区生成所述被干扰小区中与所述干扰小区信号传 输方向相反的子帧的干扰指示信息, 可以包括:
1、 所述被干扰小区获取所述被干扰小区中与所述干扰小区信号传输 方向相反的子帧的干扰测量值;
示例性的, 对于被干扰小区中的信号为上行, 且干扰小区的信号为下 行的子帧, 被干扰小区的上行信号受到干扰小区下行信号的干扰 (简称下 对上干扰) , 由被干扰小区的基站进行干扰测量, 被干扰小区基站通过测 量干扰小区基站发送的下行数据信道、 或导频信号到达被干扰小区基站的 接收信号功率, 得到下对上干扰测量值; 对于被干扰小区中的信号为下行, 且干扰小区的信号为上行的子帧, 被干扰小区的下行信号受到干扰小区上行信号的干扰(简称上对下干扰), 被干扰小区通过其服务的的用户设备(UE ) 获取干扰测量值; 例如, 可以 包括:
被干扰小区的基站通过控制信令告知被干扰小区所服务的 UE存在上 对下干扰的子帧的位置; 或者,
被干扰小区的基站通过控制信令告知被干扰小区所服务的 UE干扰小 区的子帧配比, 以使得 UE通过被干扰小区和被干扰小区的子帧配比获知 存在上对下干扰的子帧; 被干扰小区所服务的 UE在存在上对下干扰的子帧上测量干扰小区所 服务的 UE发送的上行数据信道、或导频信号到达被干扰小区所服务的 UE 的接收信号功率, 得到上对下的干扰测量值;
被干扰小区所服务的 UE将干扰测量值发送给被干扰小区的基站。 优选的, 基站或 UE进行干扰测量时, 可以在特定测量时间窗内测量 各个可进行测量的子帧或部分可进行测量的子帧上的干扰强度, 再将多个 测量的干扰测量值进行平均, 最终得到测量时间窗对应的干扰测量值。 然 后在下一个测量时间窗重复操作。
2、 所述被干扰小区根据所述干扰测量值生成所述被干扰小区中与所 述干扰小区信号传输方向相反的子帧的干扰指示信息。 示例性的, 所述干扰指示信息可以包括: 每一个资源粒度的干扰强度 等级指示信息或者每一个资源粒度的所述干扰小区相对所述被干扰小区的 干扰影响指示信息。
例如:
1、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰强度等级指示信息, 例如, 预先定义的干扰强度等级指示信息 可以用四个比特信息来指示功率等级, 功率等级可 e {-∞ , -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3}[dB], 其中每个干扰等 级按照从低到高的顺序分别用信息比特 "0000" 、 "0001" 、 "0010" 、
"0011" "1111" 指示, 被干扰小区的基站将获取的干扰测量值 进行量化, 量化后的结果对应哪个预先定义的干扰强度等级, 就采用相应 的比特指示信息作为干扰指示信息。 如果干扰测量值量化为 -7.8dB, 则使 用 "0010" 作为干扰指示信息。
2、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰小区相对被干扰小区的干扰影响指示信息, 例如, 可以使用两 个比特信息 "00" , "01" , "10" 表示干扰小区的干扰对被干扰小区的 干扰影响为 "弱" 、 "中" 、 "强" , 被干扰小区的基站将获取的干扰测 量值与被干扰小区的有效接收信号功率进行比较,得到接收信干比 ( Signal to Interference Ratio , 简称 SIR ) , 可以预先定义干扰影响门限值, 被干扰 小区根据得到的 SIR与门限值进行比较, 例如: 当 SIR超过门限值, 表示 强干扰, 用 "10" 表示干扰指示信息; 当 SIR低于门限值, 表示弱干扰, 用 "00" 表示干扰指示信息; 当 SIR接近门限值, 表示中干扰, 用 "01" 表示干扰指示信息。
示例性的, 干扰指示信息可以包括每一个资源粒度的干扰指示信息, 其中一个资源粒度可以包括一个物理资源块 ( Physical Resource Block , 简 称 PRB) 或者几个 PRB, 干扰指示信息的具体表现形式不限, 例如, 干扰 指示信息可以为宽带干扰指示信息, 即整个系统带宽生成一个干扰指示信 息, 包含整个系统带宽每一个资源粒度的干扰指示信息; 或者干扰指示信 息为窄带干扰指示信息, 即整个系统带宽被划分为多个频带, 每个频带分 别生成一个干扰指示信息,包含该频带内每一个资源粒度的干扰指示信息, 由于干扰具有频率选择性, 所以多个窄带的干扰指示信息有利于针对不同 频带分别进行干扰协调; 或者干扰指示信息既包括宽带干扰指示信息又包 括窄带干扰指示信息。
305: 被干扰小区将被干扰小区的子帧配比以及所生成的干扰指示信 息发送给干扰小区;
示例性的, 被干扰小区可以通过下述方式将被干扰小区的子帧配比以 及所生成的干扰指示信息发送给干扰小区:
被干扰小区的基站通过 X2接口将被干扰小区的子帧配比以及所生成 的干扰指示信息发送给干扰小区的基站;
或者, 被干扰小区的基站通过空口, 在专用信道或导频信号上, 将被 干扰小区的子帧配比以及所生成的干扰指示信息发送给干扰小区的基站; 或者, 被干扰小区的基站通过回传链路 ( backhaul )或 S 1接口将被干 扰小区的子帧配比以及所生成的干扰指示信息发送给上层网络集中控制 器, 再由集中控制器转发给干扰小区的基站。
306 : 干扰小区根据被干扰小区的子帧配比和所述干扰指示信息进行 干扰协调。
示例性的, 干扰小区根据被干扰小区的子帧配比和所述干扰指示信息 进行干扰协调可以包括:
所述干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比确定所述干扰小区对所述被干扰小区造成上下行干扰的子帧;
示例性的, 具体方法同被干扰小区的匹配过程, 此处不再贅述。 所述干扰小区根据所述干扰指示信息, 调整对所述被干扰小区造成上 下行干扰的子帧上的发射功率, 或调整所述干扰小区服务的用户设备使用 的资源位置, 以减少或避免对被干扰小区造成的干扰。
例如, 当干扰指示信息是所述干扰小区相对所述被干扰小区的干扰影 响指示信息, 且干扰指示信息表示在某一资源粒度或者多个资源粒度的干 扰指示信息为 " 10" 时, 表示在该一个资源粒度或者多个资源粒度被干扰 小区信号受到干扰小区信号的 "强" 干扰影响, 则干扰小区可以在对应的 资源粒度位置降低干扰小区基站 (针对下对上干扰)或 UE (针对上对下干 扰) 的发射功率, 或者将下行信道或上行信道调度到其它不会产生强干扰 影响的资源粒度进行传输。 优选的, 还可以设置更新周期, 相应的, 被干扰小区根据被干扰小区 的子帧配比和干扰小区的子帧配比和设置的更新周期, 生成被干扰小区中 与干扰小区信号传输方向相反的子帧在每个更新周期内的所述干扰指示信 息; 再根据设置的更新周期, 在每个更新周期内将被干扰小区的子帧配比 及每个更新周期内的干扰指示信息发送给干扰小区; 干扰小区根据设置的 更新周期, 在每个更新周期内根据被干扰小区的子帧配比和每个更新周期 内的干扰指示信息进行干扰协调。
另外, 当干扰小区为两个或两个以上时, 参见图 5 , 小区 2为被干扰 小区, 小区 1和小区 3为干扰小区, 则小区 1和小区 3的干扰协调是相对 独立的, 例如, 小区 1和小区 3分别把各自的子帧分配发送给小区 2 , 小 区 2根据小区 2和小区 1的子帧配比确定与小区 1信号传输方向相反的子 帧并生成针对小区 1 的干扰指示信息, 再将小区 2的子帧配比以及小区 2 生成的针对小区 1 的干扰指示信息发送给小区 1 , 小区 1根据小区 2的子 帧配比以及小区 2生成的针对小区 1的干扰指示信息进行干扰处理; 小区 2还根据小区 2和小区 3的子帧配比确定与小区 3信号传输方向相反的子 帧并生成针对小区 3的干扰指示信息, 再将小区 2的子帧配比以及小区 2 生成的针对小区 3的干扰指示信息发送给小区 3 , 小区 3根据小区 2的子 帧配比以及小区 2生成的针对小区 3的干扰指示信息进行干扰处理。
本发明的实施例提供的时分双工系统的干扰协调方法, 被干扰小区根 据干扰小区的子帧配比能够区分上下行之间的干扰, 并将上下行之间的干 扰指示信息发送给干扰小区, 进而实现干扰小区对上下行之间的干扰进行 干扰协调。 解决了现有技术只能处理上行对上行和下行对下行的干扰, 无 法区分上下行之间的干扰, 也无法对上下行之间的干扰进行干扰协调的问 题。 本发明另一实施例提供的时分双工系统的干扰协调方法, 原理与图 3 所述方法相同, 不同的是被干扰小区根据被干扰小区的子帧配比和干扰小 区的子帧配比, 生成被干扰小区中与干扰小区信号传输方向相反的子帧的 干扰指示信息得同时, 还生成被干扰小区中与干扰小区信号传输方向相同 的子帧的干扰指示信息, 并把所有的干扰指示信息发送给干扰小区, 干扰 小区根据被干扰小区发送的干扰指示信息对干扰进行相应的处理。 参见图
6 , 该方法包括:
601 : 干扰小区向被干扰小区发送所述干扰小区的子帧配比;
602: 被干扰小区根据被干扰小区的子帧配比和干扰小区的子帧配比 将被干扰小区和干扰小区中对应的子帧的信号传输方向进行匹配;
603 : 被干扰小区确定被干扰小区中与干扰小区信号传输方向相反的 子帧以及信号传输方向相同的子帧; 示例性的, 参见图 3 , 被干扰小区的 0#子帧与干扰小区的 0#子帧同为 下行子帧, 为信号传输方向相同的子帧; 被干扰小区的 2#子帧与干扰小区 的 2#子帧同为上行子帧, 也为信号传输方向相同的子帧; 同上述实施例, 被干扰小区的 3#子帧与干扰小区的 3#子帧为信号传输不同方向的子帧。进 一步的, 被干扰小区还可以确定被干扰小区中与干扰小区中同为上行方向 的子帧以及同为下行方向的子帧。
604: 被干扰小区生成被干扰小区中与干扰小区信号传输方向相反的 子帧上的干扰指示信息以及信号传输方向相同的子帧上的干扰指示信息; 因为上一实施例已经详细说明信号传输方向相反的子帧上的干扰指 示信息, 所以在此只对信号传输方向相同的子帧上的干扰指示信息进行说 明, 例如, 可以包括:
1、 被干扰小区获取与干扰小区信号传输方向相同的子帧上的干扰测 量值;
示例性的, 信号传输方向相同的子帧包含两种情况, 下面分别对这两 种情况进行说明。
对于被干扰小区中的信号为上行, 且干扰小区的信号为上行的子帧, 被干扰小区的上行信号受到干扰小区上行信号的干扰(简称上对上干扰), 被干扰小区的基站进行干扰测量, 被干扰小区的基站通过测量干扰小区所 服务的 UE发送的上行数据信道、 或导频信号到达被干扰小区基站的接收 信号功率, 得到上对上的干扰测量值;
对于被干扰小区中的信号为下行, 且干扰小区的信号为下行的子帧, 被干扰小区的下行信号受到干扰小区下行信号的干扰(简称上对下干扰), 被干扰小区的通过其服务的 UE 进行干扰测量, 被干扰小区所服务的 UE 通过测量干扰小区的基站发送的下行数据信道、 或导频信号到达被干扰小 区所服务的 UE的接收信号功率, 得到下对下的干扰测量值;
被干扰小区所服务的 UE将干扰测量值发送给被干扰小区的基站。
2、 被干扰小区根据获取的干扰测量值生成干扰指示信息, 示例性的, 在信号传输方向相同的子帧上的干扰指示信息也可以包含每一个资源粒度 的干扰强度等级指示信息或者每一个资源粒度的所述干扰小区相对所述被 干扰小区的干扰影响指示信息, 具体表示方式同上述实施例, 此处不再贅 述。
另外, 当被干扰小区和干扰小区的子帧同为上行子帧时, 被干扰小区 的上行信号受到干扰小区上行信号的干扰, 干扰指示信息还可以包含基站 窄带发射功率限制(Relative Narrowband TX power indication, 简称 RNTP) 和高干扰指示 ( High Interference Indicator , 简称 HII)。
其中, RNTP指示被干扰小区的下行发射功率, 在 RNTP中, 可以以 资源粒度为单位, 每个资源粒度包含一个 PRB或者多个 PRB , 每个资源粒 度使用 4个信息比特, 指示该资源粒度上的发射功率等级, 其中发生功率 等级可 e {-∞,-l l,-10,-9,-8,-7,-6,-5,-4,-3,-2,-l,0,+l,+2,+3} [dB], 例如, 每个 干扰等级按照从低到高的顺序分别用信息比特" 0000" 、 "0001 " 、 "0010" 、 "001 1 " " 1 111 " 指示。
HII 用于指示被干扰小区在哪些资源粒度上会调度小区边缘用户, 在 这些资源粒度上可能会对邻区造成干扰。 在 ΗΠ 中, 也是以资源粒度为单 位, 每个资源粒度使用 1个比特 , 指示该资源粒度上会不会产生强干扰。
605、 被干扰小区将被干扰小区的子帧配比和生成的干扰指示信息发 送给干扰小区; 示例性的, 被干扰小区可以选择的发送方式同上一实施例, 此处不再 贅述。 606: 干扰小区根据被干扰小区的子帧配比以及所生成的干扰指示信 息进行干扰协调。
示例性的, 干扰小区根据被干扰小区的子帧配比和所述干扰指示信息 进行干扰协调可以包括:
所述干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比确定所述干扰小区对所述被干扰小区造成上下行干扰的子帧, 以及 上对上和下对下干扰的子帧;
示例性的, 具体方法同被干扰小区的匹配过程, 此处不再贅述。 所述干扰小区根据所述干扰指示信息, 调整对所述被干扰小区造成上 下行干扰、 上对上和下对下干扰的子帧上的发射功率, 或调整所述干扰小 区服务的用户设备使用的资源位置, 以减少或避免对被干扰小区造成的干 扰。
示例性的, 调整方法同上一实施例, 只是根据干扰方向的不同需要分 别调整基站或者 UE的发射功率。
例如, 当干扰指示信息是所述干扰小区相对所述被干扰小区的干扰影 响指示信息, 且干扰指示信息表示在某一资源粒度或者多个资源粒度的干 扰指示信息为 " 10" 时, 表示在该一个资源粒度或者多个资源粒度被干扰 小区信号受到干扰小区信号的 "强" 干扰影响, 则干扰小区可以在对应的 资源粒度位置降低干扰小区基站 (针对下对上干扰和上对上干扰) 或 UE (针对上对下干扰和下对下干扰) 的发射功率, 或者将下行信道或上行信 道调度到其它不会产生强干扰影响的资源粒度进行传输。
示例性的, 当干扰小区接收的干扰指示信息为包含 RNTP和 ΗΠ信息 的干扰指示时, 干扰小区通过将干扰小区服务的边缘用户调度到 RNTP和 HII信息中干扰强度低的资源粒度上来避免和被干扰小区之间产生强干扰。
同理, 当干扰小区为两个或两个以上时, 参见图 5 , 小区 2为被干扰 小区, 小区 1和小区 3为干扰小区, 则小区 1和小区 3的干扰协调也是相 对独立的, 例如, 小区 1和小区 3分别把各自的子帧分配发送给小区 2 , 小区 2根据小区 2和小区 1的子帧配比确定与小区 1信号传输方向相反以 及传输方向相同的子帧并生成针对小区 1的干扰指示信息, 再将小区 2的 子帧配比以及小区 2生成的针对小区 1 的干扰指示信息发送给小区 1 , 小 区 1根据小区 2的子帧配比以及小区 2生成的针对小区 1的干扰指示信息 进行干扰处理; 小区 2还根据小区 2和小区 3的子帧配比确定与小区 3信 号传输方向相反及传输方向相同的子帧并生成针对小区 3 的干扰指示信 息, 再将小区 2的子帧配比以及小区 2生成的针对小区 3的干扰指示信息 发送给小区 3 ,小区 3根据小区 2的子帧配比以及小区 2生成的针对小区 3 的干扰指示信息进行干扰处理。
本发明的实施例提供的时分双工系统的干扰协调方法, 被干扰小区根 据干扰小区的子帧配比能够区分上下行之间的干扰, 并将上下行之间的干 扰指示信息发送给干扰小区, 进而实现干扰小区对上下行之间的干扰进行 干扰协调。 解决了现有技术只能处理上行对上行和下行对下行的干扰, 无 法区分上下行之间的干扰, 也无法对上下行之间的干扰进行干扰协调的问 题。
另一方面, 本发明实施例提供一种基站, 用于被干扰小区, 参见图 7 , 该基站包括:
接收单元 701 , 用于接收干扰小区发送的所述干扰小区的子帧配比; 在 TDD 系统中, 上行信号和下行信号的传输是在同一频率信道的不 同时隙, 在单波系统中, 根据业务流量的不同, 可以半静态的切换系统中 所使用的上行与下行的子帧配比。 例如, LTE TDD系统定义了 7种上下行 子帧配比 (为了描述方面, 下文简称子帧配比) , 如表 1 所示。 其中 'D, 表示下行子帧, 'U,表示上行子帧, ' S,表示特殊子帧 (包括下行传输时隙, 保护时间和上行传输时隙) , 小区可以配置不同的子帧配比来与实际的上 下行数据业务需求匹配。
参见图 4 , 假设被干扰小区和干扰小区使用的上行与下行的子帧配比 分别为 1号和 2号子帧配置。 示例性的, 接收单元 701接收干扰小区的子帧配比的方式可以为: 通过 X2接口接收所述干扰小区的子帧配比; 或者, 通过空口, 在专用信道或者导频信号上, 接收所述干扰小区的基站发 送的所述干扰小区的子帧配比; 或者, 接收所述被干扰小区服务的用户设备发送的通过接收所述干扰小区 的系统消息获取的所述干扰小区的子帧配比; 或者,
接收上层网络转发的所述干扰小区的子帧配比。
生成单元 702 , 用于根据所述被干扰小区的子帧配比和所述干扰小区 的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的 子帧的干扰指示信息;
示例性的, 生成单元 702可以包括:
匹配模块 7021 ,用于根据所述被干扰小区的子帧配比和所述干扰小区 的子帧配比将所述被干扰小区和所述干扰小区中对应的子帧的信号传输方 向进行匹配; 示例性的, 匹配模块 7021 将被干扰小区和干扰小区中对应的子帧的 信号传输方向进行匹配。
例如, 参见图 4 , 对于 0#子帧, 被干扰小区的信号传输方向为下行, 干扰小区的信号传输方向为下行, 所以, 在 0#子帧, 被干扰小区和干扰小 区信号传输方向相同; 同理, 当被干扰小区的信号传输方向为上行, 干扰 小区的信号传输方向也为上行时, 被干扰小区和干扰小区信号传输方向也 相同, 干扰小区对被干扰小区产生的干扰为同方向的干扰, 例如, 干扰小 区发送的下行信号对被干扰小区发送的下行信号产生的干扰; 或者干扰小 区服务的用户设备发送的上行信号对被干扰小区服务的用户设备发送的上 行信号产生的干扰。
再例如, 对于 3#子帧, 被干扰小区的信号传输方向为上行, 干扰小区 的信号传输方向为下行, 所以, 在 3#子帧, 被干扰小区和干扰小区信号传 输方向相反, 同理, 当被干扰小区的信号传输方向为下行, 干扰小区的信 号传输方向为下行时, 被干扰小区和干扰小区信号传输方向也相反, 干扰 小区对被干扰小区产生的干扰为上下行的干扰, 例如, 干扰小区发送的下 行信号对被干扰小区服务的用户设备发送的上行信号产生的干扰; 或者干 扰小区服务的用户设备发送的上行信号对被干扰小区发送的下行信号产生 的干扰。
确定模块 7022 ,用于根据所述匹配模块的匹配结果确定所述被干扰小 区中与所述干扰小区信号传输方向相反的子帧; 示例性的, 确定模块 7022根据匹配模块 7021 匹配的结果, 确定被干 扰小区中与干扰小区信号传输方向相反的子帧, 可以包括:
被干扰小区中的信号为下行, 且干扰小区的信号为上行对应的子帧; 被干扰小区中的信号为上行, 且干扰小区的信号为下行对应的子帧。 生成模块 7023 ,用于生成所述确定模块确定的所述被干扰小区中与所 述干扰小区信号传输方向相反的子帧的干扰指示信息。 示例性的, 生成模块 7023可以包括, 获取子模块, 用于获取所述被干扰小区中与所述干扰小区信号传输方 向相反的子帧的干扰测量值;
示例性的, 对于被干扰小区中的信号为上行, 且干扰小区的信号为下 行的子帧, 被干扰小区的上行信号受到干扰小区下行信号的干扰 (简称下 对上干扰) , 由被干扰小区的基站进行干扰测量, 被干扰小区基站通过测 量干扰小区基站发送的下行数据信道、 或导频信号到达被干扰小区基站的 接收信号功率, 得到下对上干扰测量值; 对于被干扰小区中的信号为下行, 且干扰小区的信号为上行的子帧, 被干扰小区的下行信号受到干扰小区上行信号的干扰(简称上对下干扰), 被干扰小区通过其服务的的用户设备(UE ) 获取干扰测量值; 例如, 可以 包括:
被干扰小区的基站通过控制信令告知被干扰小区所服务的 UE存在上 对下干扰的子帧的位置; 或者,
被干扰小区的基站通过控制信令告知被干扰小区所服务的 UE干扰小 区的子帧配比, 以使得 UE通过被干扰小区和被干扰小区的子帧配比获知 存在上对下干扰的子帧; 被干扰小区所服务的 UE在存在上对下干扰的子帧上测量干扰小区所 服务的 UE发送的上行数据信道、或导频信号到达被干扰小区所服务的 UE 的接收信号功率, 得到上对下的干扰测量值;
被干扰小区所服务的 UE将干扰测量值发送给被干扰小区的基站。 优选的, 基站或 UE进行干扰测量时, 可以在特定测量时间窗内测量 各个可进行测量的子帧或部分可进行测量的子帧上的干扰强度, 再将多个 测量的干扰测量值进行平均, 最终得到测量时间窗对应的干扰测量值。 然 后在下一个测量时间窗重复操作。 生成子模块, 用于根据所述获取子模块获取的所述干扰测量值生成所 述被干扰小区中与所述干扰小区信号传输方向相反的子帧的干扰指示信 息。
示例性的, 所述干扰指示信息可以包括: 每一个资源粒度的干扰强度 等级指示信息或者每一个资源粒度的所述干扰小区相对所述被干扰小区的 干扰影响指示信息。
例如:
1、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰强度等级指示信息, 例如, 预先定义的干扰强度等级指示信息 可以用四个比特信息来指示功率等级, 功率等级可 e {-∞ , -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3}[dB], 其中每个干扰等 级按照从低到高的顺序分别用信息比特 "0000" 、 "0001" 、 "0010" 、 "0011" "1111" 指示, 被干扰小区的基站将获取的干扰测量值 进行量化, 量化后的结果对应哪个预先定义的干扰强度等级, 就采用相应 的比特指示信息作为干扰指示信息。 如果干扰测量值量化为 -7.8dB, 则使 用 "0010" 作为干扰指示信息。
2、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰小区相对被干扰小区的干扰影响指示信息, 例如, 可以使用两 个比特信息 "00" , "01" , "10" 表示干扰小区的干扰对被干扰小区的 干扰影响为 "弱" 、 "中" 、 "强" , 被干扰小区的基站将获取的干扰测 量值与被干扰小区的有效接收信号功率进行比较,得到接收信干比 ( Signal to Interference Ratio , 简称 SIR ) , 可以预先定义干扰影响门限值, 被干扰 小区根据得到的 SIR与门限值进行比较, 例如: 当 SIR超过门限值, 表示 强干扰, 用 "10" 表示干扰指示信息; 当 SIR低于门限值, 表示弱干扰, 用 "00" 表示干扰指示信息; 当 SIR接近门限值, 表示中干扰, 用 "01" 表示干扰指示信息。
示例性的, 干扰指示信息可以包括每一个资源粒度的干扰指示信息, 其中一个资源粒度可以包括一个物理资源块 ( Physical Resource Block , 简 称 PRB ) 或者几个 PRB , 干扰指示信息的具体表现形式不限, 例如, 干扰 指示信息可以为宽带干扰指示信息, 即整个系统带宽生成一个干扰指示信 息, 包含整个系统带宽每一个资源粒度的干扰指示信息; 或者干扰指示信 息为窄带干扰指示信息, 即整个系统带宽被划分为多个频带, 每个频带分 别生成一个干扰指示信息,包含该频带内每一个资源粒度的干扰指示信息, 由于干扰具有频率选择性, 所以多个窄带的干扰指示信息有利于针对不同 频带分别进行干扰协调; 或者干扰指示信息既包括宽带干扰指示信息又包 括窄带干扰指示信息。 所述生成单元 702还用于: 根据所述被干扰小区的子帧配比和所述干 扰小区的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向 相同的子帧的干扰指示信息。
示例性的, 参见图 4 , 被干扰小区的 0#子帧与干扰小区的 0#子帧同为 下行子帧, 为信号传输方向相同的子帧; 被干扰小区的 2#子帧与干扰小区 的 2#子帧同为上行子帧, 也为信号传输方向相同的子帧; 同上述实施例, 被干扰小区的 3#子帧与干扰小区的 3#子帧为信号传输不同方向的子帧。
示例性的, 生成单元 702根据所述被干扰小区的子帧配比和所述干扰 小区的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相 同的子帧的干扰指示信息的过程可以包括:
1、 生成单元 702 获取与干扰小区信号传输方向相同的子帧上的干扰 测量值;
示例性的, 信号传输方向相同的子帧包含两种情况, 下面分别对这两 种情况进行说明。
对于被干扰小区中的信号为上行, 且干扰小区的信号为上行的子帧, 被干扰小区的上行信号受到干扰小区上行信号的干扰(简称上对上干扰), 被干扰小区的基站进行干扰测量, 被干扰小区的基站通过测量干扰小区所 服务的 UE发送的上行数据信道、 或导频信号到达被干扰小区基站的接收 信号功率, 得到上对上的干扰测量值;
对于被干扰小区中的信号为下行, 且干扰小区的信号为下行的子帧, 被干扰小区的下行信号受到干扰小区下行信号的干扰(简称上对下干扰), 被干扰小区的通过其服务的 UE 进行干扰测量, 被干扰小区所服务的 UE 通过测量干扰小区的基站发送的下行数据信道、 或导频信号到达被干扰小 区所服务的 UE的接收信号功率, 得到下对下的干扰测量值;
被干扰小区所服务的 UE将干扰测量值发送给被干扰小区的基站。
2、 生成单元 702 根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相同的子 帧的干扰指示信息。
示例性的, 在信号传输方向相同的子帧上的干扰指示信息也可以包含 每一个资源粒度的干扰强度等级指示信息或者每一个资源粒度的所述干扰 小区相对所述被干扰小区的干扰影响指示信息, 具体表示方式同上所述, 此处不再贅述。
另外, 当被干扰小区和干扰小区的子帧同为上行子帧时, 被干扰小区 的上行信号受到干扰小区上行信号的干扰, 干扰指示信息还可以包含基站 窄带发射功率限制(Relative Narrowband TX power indication, 简称 RNTP) 和高干扰指示 ( High Interference Indicator , 简称 HII)。
其中, RNTP指示被干扰小区的下行发射功率, 在 RNTP中, 可以以 资源粒度为单位, 每个资源粒度包含一个 PRB或者多个 PRB , 每个资源粒 度使用 4个信息比特, 指示该资源粒度上的发射功率等级, 其中发生功率 等级可 e {-∞,-l l,-10,-9,-8,-7,-6,-5,-4,-3,-2,-l,0,+l,+2,+3} [dB], 例如, 每个 干扰等级按照从低到高的顺序分别用信息比特" 0000" 、 "0001 " 、 "0010" 、 "001 1 " " 1 111 " 指示。
HII 用于指示被干扰小区在哪些资源粒度上会调度小区边缘用户, 在 这些资源粒度上可能会对邻区造成干扰。 在 ΗΠ 中, 也是以资源粒度为单 位, 每个资源粒度使用 1个比特, 指示该资源粒度上会不会产生强干扰。 发送单元 703 , 用于将所述被干扰小区的子帧配比及所述干扰指示信 息发送给所述干扰小区, 以使得所述干扰小区根据所述被干扰小区的子帧 配比及所述干扰指示信息进行干扰协调。 示例性的, 发送单元 703可以通过下述方式将干扰指示信息发送给干 扰小区: 通过 X2接口将干扰指示信息发送给干扰小区; 或者, 通过空口, 在专用信道或导频信号上, 将干扰指示信息发送给 干扰小区的基站; 或者, 通过 backhaul或 S 1接口将干扰指示信息发送给上层网络集中 控制器, 再由集中控制器转发给干扰小区的基站。 所述基站还包括更新周期设置单元 704 , 用于设置更新周期, 相应的, 所述生成单元 702还用于: 根据所述被干扰小区的子帧配比和所述干 扰小区的子帧配比和所述更新周期设置单元设置的更新周期, 生成所述被 干扰小区中与所述干扰小区信号传输方向相反的子帧在每个更新周期内的 所述干扰指示信息;
所述发送单元 703还用于:根据所述更新周期设置单元设置的更新周 期, 在每个更新周期内将所述被干扰小区的子帧配比及每个更新周期内的 所述干扰指示信息发送给所述干扰小区, 以使得所述干扰小区在每个更新 周期内根据所述被干扰小区的子帧配比及每个更新周期内的所述干扰指示 信息进行干扰协调。
本发明的实施例提供的基站, 根据干扰小区的子帧配比能够区分上下 行之间的干扰, 并将上下行之间的干扰指示信息发送给干扰小区, 进而实 现干扰小区对上下行之间的干扰进行干扰协调。 解决了现有技术只能处理 上行对上行和下行对下行的干扰, 无法区分上下行之间的干扰, 也无法对
本发明另一实施例提供的基站, 可以执行图 1所示的全部步骤, 该基 站包括,
接收器 901 , 用于接收干扰小区发送的所述干扰小区的子帧配比; 在 TDD 系统中, 上行信号和下行信号的传输是在同一频率信道的不 同时隙, 在单波系统中, 根据业务流量的不同, 可以半静态的切换系统中 所使用的上行与下行的子帧配比。 例如, LTE TDD系统定义了 7种上下行 子帧配比 (为了描述方面, 下文简称子帧配比) , 如表 1 所示。 其中 'D, 表示下行子帧, 'U,表示上行子帧, 'S,表示特殊子帧 (包括下行传输时隙, 保护时间和上行传输时隙) , 小区可以配置不同的子帧配比来与实际的上 下行数据业务需求匹配。 参见图 4 , 假设被干扰小区和干扰小区使用的上行与下行的子帧配比 分别为 1号和 2号子帧配置。 示例性的, 接收器 901接收干扰小区的子帧配比的方式可以为: 通过 X2接口接收所述干扰小区的子帧配比; 或者, 通过空口, 在专用信道或者导频信号上, 接收所述干扰小区的基站发 送的所述干扰小区的子帧配比; 或者, 接收所述被干扰小区服务的用户设备发送的通过接收所述干扰小区 的系统消息获取的所述干扰小区的子帧配比; 或者,
接收上层网络转发的所述干扰小区的子帧配比。
处理器 902 , 用于根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧的干扰指示信息;
示例性的, 处理器 902可以用于根据所述被干扰小区的子帧配比和所 述干扰小区的子帧配比将所述被干扰小区和所述干扰小区中对应的子帧的 信号传输方向进行匹配; 再根据匹配结果确定所述被干扰小区中与所述干 扰小区信号传输方向相反的子帧; 然后再生成所述被干扰小区中与所述干 扰小区信号传输方向相反的子帧的干扰指示信息。 例如, 参见图 4 , 对于 0#子帧, 被干扰小区的信号传输方向为下行, 干扰小区的信号传输方向为下行, 所以, 在 0#子帧, 被干扰小区和干扰小 区信号传输方向相同; 同理, 当被干扰小区的信号传输方向为上行, 干扰 小区的信号传输方向也为上行时, 被干扰小区和干扰小区信号传输方向也 相同, 干扰小区对被干扰小区产生的干扰为同方向的干扰, 例如, 干扰小 区发送的下行信号对被干扰小区发送的下行信号产生的干扰; 或者干扰小 区服务的用户设备发送的上行信号对被干扰小区服务的用户设备发送的上 行信号产生的干扰。
再例如, 对于 3#子帧, 被干扰小区的信号传输方向为上行, 干扰小区 的信号传输方向为下行, 所以, 在 3#子帧, 被干扰小区和干扰小区信号传 输方向相反, 同理, 当被干扰小区的信号传输方向为下行, 干扰小区的信 号传输方向为下行时, 被干扰小区和干扰小区信号传输方向也相反, 干扰 小区对被干扰小区产生的干扰为上下行的干扰, 例如, 干扰小区发送的下 行信号对被干扰小区服务的用户设备发送的上行信号产生的干扰; 或者干 扰小区服务的用户设备发送的上行信号对被干扰小区发送的下行信号产生 的干扰。
示例性的, 被干扰小区中与干扰小区信号传输方向相反的子帧, 可以 包括:
被干扰小区中的信号为下行, 且干扰小区的信号为上行对应的子帧; 被干扰小区中的信号为上行, 且干扰小区的信号为下行对应的子帧。 示例性的, 对于被干扰小区中的信号为上行, 且干扰小区的信号为下 行的子帧, 被干扰小区的上行信号受到干扰小区下行信号的干扰 (简称下 对上干扰) , 由被干扰小区的基站进行干扰测量, 被干扰小区基站通过测 量干扰小区基站发送的下行数据信道、 或导频信号到达被干扰小区基站的 接收信号功率, 得到下对上干扰测量值; 对于被干扰小区中的信号为下行, 且干扰小区的信号为上行的子帧, 被干扰小区的下行信号受到干扰小区上行信号的干扰(简称上对下干扰), 被干扰小区通过其服务的的用户设备(UE ) 获取干扰测量值。
优选的, 基站或 UE进行干扰测量时, 可以在特定测量时间窗内测量 各个可进行测量的子帧或部分可进行测量的子帧上的干扰强度, 再将多个 测量的干扰测量值进行平均, 最终得到测量时间窗对应的干扰测量值。 然 后在下一个测量时间窗重复操作。 处理器 902再根据干扰测量值生成被干扰小区中与干扰小区信号传输 方向相反的子帧的干扰指示信息。
示例性的, 干扰指示信息可以包括: 每一个资源粒度的干扰强度等级 指示信息或者每一个资源粒度的所述干扰小区相对所述被干扰小区的干扰 影响指示信息。
例如:
1、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰强度等级指示信息, 例如, 预先定义的干扰强度等级指示信息 可以用四个比特信息来指示功率等级, 功率等级可 e { -∞ , -11 , -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3}[dB], 其中每个干扰等 级按照从低到高的顺序分别用信息比特 "0000" 、 "0001" 、 "0010" 、 "0011" "1111" 指示, 被干扰小区的基站将获取的干扰测量值 进行量化, 量化后的结果对应哪个预先定义的干扰强度等级, 就采用相应 的比特指示信息作为干扰指示信息。 如果干扰测量值量化为 -7.8dB, 则使 用 "0010" 作为干扰指示信息。
2、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰小区相对被干扰小区的干扰影响指示信息, 例如, 可以使用两 个比特信息 "00" , "01" , "10" 表示干扰小区的干扰对被干扰小区的 干扰影响为 "弱" 、 "中" 、 "强" , 被干扰小区的基站将获取的干扰测 量值与被干扰小区的有效接收信号功率进行比较,得到接收信干比 ( Signal to Interference Ratio , 简称 SIR ) , 可以预先定义干扰影响门限值, 被干扰 小区根据得到的 SIR与门限值进行比较, 例如: 当 SIR超过门限值, 表示 强干扰, 用 "10" 表示干扰指示信息; 当 SIR低于门限值, 表示弱干扰, 用 "00" 表示干扰指示信息; 当 SIR接近门限值, 表示中干扰, 用 "01" 表示干扰指示信息。
示例性的, 干扰指示信息可以包括每一个资源粒度的干扰指示信息, 其中一个资源粒度可以包括一个物理资源块 ( Physical Resource Block , 简 称 PRB) 或者几个 PRB, 干扰指示信息的具体表现形式不限, 例如, 干扰 指示信息可以为宽带干扰指示信息, 即整个系统带宽生成一个干扰指示信 息, 包含整个系统带宽每一个资源粒度的干扰指示信息; 或者干扰指示信 息为窄带干扰指示信息, 即整个系统带宽被划分为多个频带, 每个频带分 别生成一个干扰指示信息,包含该频带内每一个资源粒度的干扰指示信息, 由于干扰具有频率选择性, 所以多个窄带的干扰指示信息有利于针对不同 频带分别进行干扰协调; 或者干扰指示信息既包括宽带干扰指示信息又包 括窄带干扰指示信息。 进一步的, 所述处理器 902还用于: 根据所述被干扰小区的子帧配比 和所述干扰小区的子帧配比, 生成所述被干扰小区中与所述干扰小区信号 传输方向相同的子帧的干扰指示信息。
示例性的, 参见图 4, 被干扰小区的 0#子帧与干扰小区的 0#子帧同为 下行子帧, 为信号传输方向相同的子帧; 被干扰小区的 2#子帧与干扰小区 的 2#子帧同为上行子帧, 也为信号传输方向相同的子帧; 同上述实施例, 被干扰小区的 3#子帧与干扰小区的 3#子帧为信号传输不同方向的子帧。
示例性的, 处理器 902根据所述被干扰小区的子帧配比和所述干扰小 区的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相同 的子帧的干扰指示信息的过程可以包括:
1、 处理器 902 获取与干扰小区信号传输方向相同的子帧上的干扰测 量值;
示例性的, 信号传输方向相同的子帧包含两种情况, 下面分别对这两 种情况进行说明。
对于被干扰小区中的信号为上行, 且干扰小区的信号为上行的子帧, 被干扰小区的上行信号受到干扰小区上行信号的干扰(简称上对上干扰), 被干扰小区的基站进行干扰测量, 被干扰小区的基站通过测量干扰小区所 服务的 UE发送的上行数据信道、 或导频信号到达被干扰小区基站的接收 信号功率, 得到上对上的干扰测量值;
对于被干扰小区中的信号为下行, 且干扰小区的信号为下行的子帧, 被干扰小区的下行信号受到干扰小区下行信号的干扰(简称上对下干扰), 被干扰小区的通过其服务的 UE 进行干扰测量, 被干扰小区所服务的 UE 通过测量干扰小区的基站发送的下行数据信道、 或导频信号到达被干扰小 区所服务的 UE的接收信号功率, 得到下对下的干扰测量值;
被干扰小区所服务的 UE将干扰测量值发送给被干扰小区的基站。
2、 处理器 902 根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相同的子帧 的干扰指示信息。
示例性的, 在信号传输方向相同的子帧上的干扰指示信息也可以包含 每一个资源粒度的干扰强度等级指示信息或者每一个资源粒度的所述干扰 小区相对所述被干扰小区的干扰影响指示信息, 具体表示方式同上所述, 此处不再贅述。 另外, 当被干扰小区和干扰小区的子帧同为上行子帧时, 被干扰小区 的上行信号受到干扰小区上行信号的干扰, 干扰指示信息还可以包含基站 窄带发射功率限制(Relative Narrowband TX power indication, 简称 RNTP) 和高干扰指示 ( High Interference Indicator , 简称 HII)。
其中, RNTP指示被干扰小区的下行发射功率, 在 RNTP中, 可以以 资源粒度为单位, 每个资源粒度包含一个 PRB或者多个 PRB, 每个资源粒 度使用 4个信息比特, 指示该资源粒度上的发射功率等级, 其中发生功率 等级可 e {-∞,-ll,-10,-9,-8,-7,-6,-5,-4,-3,-2,-l,0,+l,+2,+3}[dB], 例如, 每个 干扰等级按照从低到高的顺序分别用信息比特" 0000"、 "0001"、 "0010"、 "0011" "1111" 指示。
HII 用于指示被干扰小区在哪些资源粒度上会调度小区边缘用户, 在 这些资源粒度上可能会对邻区造成干扰。 在 ΗΠ 中, 也是以资源粒度为单 位, 每个资源粒度使用 1个比特, 指示该资源粒度上会不会产生强干扰。 发送器 903, 用于将所述被干扰小区的子帧配比及所述干扰指示信息 发送给所述干扰小区, 以使得所述干扰小区根据所述被干扰小区的子帧配 比及所述干扰指示信息进行干扰协调。 示例性的, 发送器 903可以通过下述方式将干扰指示信息发送给干扰 小区:
通过 X2接口将干扰指示信息发送给干扰小区的基站;
或者, 通过空口, 在专用信道或导频信号上, 将干扰指示信息发送给 干扰小区的基站;
或者, 通过 backhaul或 S1接口将干扰指示信息发送给上层网络集中 控制器, 再由集中控制器转发给干扰小区的基站。
本发明的实施例提供的基站, 根据干扰小区的子帧配比能够区分上下 行之间的干扰, 并将上下行之间的干扰指示信息发送给干扰小区, 进而实 现干扰小区对上下行之间的干扰进行干扰协调。 解决了现有技术只能处理 上行对上行和下行对下行的干扰, 无法区分上下行之间的干扰, 也无法对
本发明另一实施例提供的基站, 用于干扰小区, 可以执行图 2所示的 全部步骤, 参见图 10, 该基站包括,
发送单元 1001, 用于向被干扰小区发送所述干扰小区的子帧配比; 示例性的, 发送单元 1001 可以通过下述方式向被干扰小区发送子帧 配比:
通过 X2接口向所述被干扰小区的基站发送所述干扰小区的子帧配比; 或者,
通过空口, 在专用信道或者导频信号上, 向所述被干扰小区的基站发 送所述干扰小区的子帧配比; 或者,
向所述被干扰小区服务的用户设备发送系统消息, 以使得所述被干扰 小区服务的用户设备获取所述干扰小区的子帧配比, 并将所述干扰小区的 子帧配比发送给所述被干扰小区的基站; 或者, 通过上层网络向所述被干扰小区的基站转发所述干扰小区的子帧配 比。
接收单元 1002 ,用于接收所述被干扰小区发送的所述被干扰小区的子 帧配比以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小 区的子帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相 反的子帧的干扰指示信息;
进一步的, 所述接收单元 1002 还用于, 接收所述被干扰小区发送的 所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子帧配 比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相同的子帧的 干扰指示信息。 示例性的, 被干扰小区中与所述干扰小区信号传播方向相反的子帧包 括下述子帧中的至少一种:
被干扰小区中的信号下行, 且干扰小区的信号上行对应的的子帧; 被干扰小区中的信号上行, 且干扰小区的信号下行对应的的子帧。 被干扰小区中与所述干扰小区信号传播方向相同的子帧包括下述子 帧中的至少一种:
被干扰小区中的信号下行, 且干扰小区的信号下行对应的的子帧; 被干扰小区中的信号上行, 且干扰小区的信号上行对应的的子帧。 例如, 参见图 3 , 被干扰小区的 0#子帧与干扰小区的 0#子帧同为下行 子帧, 为信号传输方向相同的子帧; 被干扰小区的 2#子帧与干扰小区的 2# 子帧同为上行子帧, 也为信号传输方向相同的子帧; 被干扰小区的 3#子帧 与干扰小区的 3#子帧为信号传输不同方向的子帧。
示例性的, 所述干扰指示信息可以包括: 每一个资源粒度的干扰强度 等级指示信息或者每一个资源粒度的所述干扰小区相对所述被干扰小区的 干扰影响指示信息。
例如:
1、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰强度等级指示信息, 例如, 预先定义的干扰强度等级指示信息 可以用四个比特信息来指示功率等级, 功率等级可 e {-∞ , -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3}[dB], 其中每个干扰等 级按照从低到高的顺序分别用信息比特 "0000" 、 "0001" 、 "0010" 、 "0011" "1111" 指示, 被干扰小区的基站将获取的干扰测量值 进行量化, 量化后的结果对应哪个预先定义的干扰强度等级, 就采用相应 的比特指示信息作为干扰指示信息。 如果干扰测量值量化为 -7.8dB, 则使 用 "0010" 作为干扰指示信息。
2、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰小区相对被干扰小区的干扰影响指示信息, 例如, 可以使用两 个比特信息 "00" , "01" , "10" 表示干扰小区的干扰对被干扰小区的 干扰影响为 "弱" 、 "中" 、 "强" , 被干扰小区的基站将获取的干扰测 量值与被干扰小区的有效接收信号功率进行比较,得到接收信干比 ( Signal to Interference Ratio , 简称 SIR ) , 可以预先定义干扰影响门限值, 被干扰 小区根据得到的 SIR与门限值进行比较, 例如: 当 SIR超过门限值, 表示 强干扰, 用 "10" 表示干扰指示信息; 当 SIR低于门限值, 表示弱干扰, 用 "00" 表示干扰指示信息; 当 SIR接近门限值, 表示中干扰, 用 "01" 表示干扰指示信息。 示例性的, 干扰指示信息可以包括每一个资源粒度的干扰指示信息, 其中一个资源粒度可以包括一个物理资源块 ( Physical Resource Block , 简 称 PRB) 或者几个 PRB, 干扰指示信息的具体表现形式不限, 例如, 干扰 指示信息可以为宽带干扰指示信息, 即整个系统带宽生成一个干扰指示信 息, 包含整个系统带宽每一个资源粒度的干扰指示信息; 或者干扰指示信 息为窄带干扰指示信息, 即整个系统带宽被划分为多个频带, 每个频带分 别生成一个干扰指示信息,包含该频带内每一个资源粒度的干扰指示信息, 由于干扰具有频率选择性, 所以多个窄带的干扰指示信息有利于针对不同 频带分别进行干扰协调; 或者干扰指示信息既包括宽带干扰指示信息又包 括窄带干扰指示信息。 另外, 当被干扰小区和干扰小区的子帧同为上行子帧时, 被干扰小区 的上行信号受到干扰小区上行信号的干扰, 干扰指示信息还可以包含基站 窄带发射功率限制(Relative Narrowband TX power indication, 简称 RNTP) 和高干扰指示 ( High Interference Indicator , 简称 HII)。
其中, RNTP指示被干扰小区的下行发射功率, 在 RNTP中, 可以以 资源粒度为单位, 每个资源粒度包含一个 PRB或者多个 PRB , 每个资源粒 度使用 4个信息比特, 指示该资源粒度上的发射功率等级, 其中发生功率 等级可 e {-∞,-l l,-10,-9,-8,-7,-6,-5,-4,-3,-2,-l,0,+l,+2,+3} [dB], 例如, 每个 干扰等级按照从低到高的顺序分别用信息比特" 0000"、 "0001 "、 "0010"、 "001 1 " " 1 111 " 指示。
HII 用于指示被干扰小区在哪些资源粒度上会调度小区边缘用户, 在 这些资源粒度上可能会对邻区造成干扰。 在 ΗΠ 中, 也是以资源粒度为单 位, 每个资源粒度使用 1个比特 , 指示该资源粒度上会不会产生强干扰。 处理单元 1003 ,用于根据所述接收单元接收的所述被干扰小区的子帧 配比以及干扰指示信息进行干扰协调。 示例性的, 处理单元 1003可以包括: 确定模块 10031 , 用于根据所述被干扰小区的子帧配比和所述干扰小 区的子帧配比确定所述干扰小区对所述被干扰小区造成上下行干扰的子 帧, 以及上对上和下对下干扰的子帧; 处理模块 10032, 用于根据所述接收单元接收的所述干扰指示信息, 调整对所述被干扰小区造成上下行干扰的子帧上的发射功率, 或调整所述 干扰小区服务的用户设备使用的资源位置, 以减少或避免对被干扰小区造 成的干扰。
示例性的, 处理模块 10032根据干扰方向的不同需要分别调整基站或 者 UE的发射功率。 例如, 当干扰指示信息是所述干扰小区相对所述被干扰小区的干扰影 响指示信息, 且干扰指示信息表示在某一资源粒度或者多个资源粒度的干 扰指示信息为 " 10" 时, 表示在该一个资源粒度或者多个资源粒度被干扰 小区信号受到干扰小区信号的 "强" 干扰影响, 则干扰小区可以在对应的 资源粒度位置降低干扰小区基站 (针对下对上干扰和上对上干扰) 或 UE
(针对上对下干扰和下对下干扰) 的发射功率, 或者将下行信道或上行信 道调度到其它不会产生强干扰影响的资源粒度进行传输。
示例性的, 当接收单元 1002接收的干扰指示信息为包含 RNTP和 ΗΠ 信息的干扰指示时, 处理模块 10032通过将干扰小区服务的边缘用户调度 到 RNTP和 ΗΠ信息中干扰强度低的资源粒度上来避免和被干扰小区之间 产生强干扰。
所述基站还包括更新周期设置单元 1004,用于设置更新周期,相应的, 所述接收单元 1002还用于: 根据所述更新周期设置单元 1004设置的 更新周期, 在每个更新周期内接收所述被干扰小区发送的所述被干扰小区 的子帧配比以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干 扰小区的子帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方 向相反的子帧的每个更新周期内的所述干扰指示信息;
所述处理单元 1003 还用于, 根据所述更新周期设置单元设置的更新 周期, 在每个更新周期内根据所述被干扰小区的子帧配比和每个更新周期 内的所述干扰指示信息进行干扰协调。
本发明的实施例提供的基站, 将子帧配比发送给被干扰小区, 使被干 扰小区根据干扰小区的子帧配比能够区分上下行之间的干扰并生成上下行 之间的干扰指示信息, 基站根据上下行之间的干扰指示信息实现对上下行 之间的干扰进行干扰协调。 解决了现有技术只能处理上行对上行和下行对 下行的干扰, 无法区分上下行之间的干扰, 也无法对上下行之间的干扰进 行干扰协调的问题。 本发明另一实施例提供的基站, 用于干扰小区, 可以执行图 2所示的 全部步骤, 参见图 11 , 该基站包括, 发送器 1101 , 用于向被干扰小区发送所述干扰小区的子帧配比; 示例性的, 发送器 1 101 可以通过下述方式向被干扰小区发送子帧配 比:
通过 X2接口向所述被干扰小区的基站发送所述干扰小区的子帧配比; 或者,
通过空口, 在专用信道或者导频信号上, 向所述被干扰小区的基站发 送所述干扰小区的子帧配比; 或者,
向所述被干扰小区服务的用户设备发送系统消息, 以使得所述被干扰 小区服务的用户设备获取所述干扰小区的子帧配比, 并将所述干扰小区的 子帧配比发送给所述被干扰小区的基站; 或者, 通过上层网络向所述被干扰小区的基站转发所述干扰小区的子帧配 比。
接收器 1 102 ,用于接收所述被干扰小区发送的所述被干扰小区的子帧 配比以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区 的子帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反 的子帧的干扰指示信息;
进一步的, 所述接收器 1 102 还用于, 接收所述被干扰小区根据所述 被干扰小区的子帧配比和所述获取的所述干扰小区的子帧配比所获取的所 述被干扰小区中与所述干扰小区同步的子帧的干扰指示信息。 示例性的, 被干扰小区中与所述干扰小区信号传播方向相反的子帧包 括下述子帧中的至少一种:
被干扰小区中的信号下行, 且干扰小区的信号上行对应的的子帧; 被干扰小区中的信号上行, 且干扰小区的信号下行对应的的子帧。 被干扰小区中与所述干扰小区信号传播方向相同的子帧包括下述子 帧中的至少一种:
被干扰小区中的信号下行, 且干扰小区的信号下行对应的的子帧; 被干扰小区中的信号上行, 且干扰小区的信号上行对应的的子帧。 例如, 参见图 3 , 被干扰小区的 0#子帧与干扰小区的 0#子帧同为下行 子帧, 为信号传输方向相同的子帧; 被干扰小区的 2#子帧与干扰小区的 2# 子帧同为上行子帧, 也为信号传输方向相同的子帧; 被干扰小区的 3#子帧 与干扰小区的 3#子帧为信号传输不同方向的子帧。
示例性的, 所述干扰指示信息可以包括: 每一个资源粒度的干扰强度 等级指示信息或者每一个资源粒度的所述干扰小区相对所述被干扰小区的 干扰影响指示信息。
例如:
1、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰强度等级指示信息, 例如, 预先定义的干扰强度等级指示信息 可以用四个比特信息来指示功率等级, 功率等级可 e {-∞ , -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3}[dB], 其中每个干扰等 级按照从低到高的顺序分别用信息比特 "0000" 、 "0001" 、 "0010" 、
"0011" "1111" 指示, 被干扰小区的基站将获取的干扰测量值 进行量化, 量化后的结果对应哪个预先定义的干扰强度等级, 就采用相应 的比特指示信息作为干扰指示信息。 如果干扰测量值量化为 -7.8dB, 则使 用 "0010" 作为干扰指示信息。
2、 干扰小区和被干扰小区或者干扰小区和被干扰小区所在的系统预 先定义干扰小区相对被干扰小区的干扰影响指示信息, 例如, 可以使用两 个比特信息 "00" , "01" , "10" 表示干扰小区的干扰对被干扰小区的 干扰影响为 "弱" 、 "中" 、 "强" , 被干扰小区的基站将获取的干扰测 量值与被干扰小区的有效接收信号功率进行比较,得到接收信干比 ( Signal to Interference Ratio , 简称 SIR ) , 可以预先定义干扰影响门限值, 被干扰 小区根据得到的 SIR与门限值进行比较, 例如: 当 SIR超过门限值, 表示 强干扰, 用 "10" 表示干扰指示信息; 当 SIR低于门限值, 表示弱干扰, 用 "00" 表示干扰指示信息; 当 SIR接近门限值, 表示中干扰, 用 "01" 表示干扰指示信息。
示例性的, 干扰指示信息可以包括每一个资源粒度的干扰指示信息, 其中一个资源粒度可以包括一个物理资源块 ( Physical Resource Block , 简 称 PRB) 或者几个 PRB, 干扰指示信息的具体表现形式不限, 例如, 干扰 指示信息可以为宽带干扰指示信息, 即整个系统带宽生成一个干扰指示信 息, 包含整个系统带宽每一个资源粒度的干扰指示信息; 或者干扰指示信 息为窄带干扰指示信息, 即整个系统带宽被划分为多个频带, 每个频带分 别生成一个干扰指示信息,包含该频带内每一个资源粒度的干扰指示信息, 由于干扰具有频率选择性, 所以多个窄带的干扰指示信息有利于针对不同 频带分别进行干扰协调; 或者干扰指示信息既包括宽带干扰指示信息又包 括窄带干扰指示信息。 另外, 当被干扰小区和干扰小区的子帧同为上行子帧时, 被干扰小区 的上行信号受到干扰小区上行信号的干扰, 干扰指示信息还可以包含基站 窄带发射功率限制(Relative Narrowband TX power indication, 简称 RNTP) 和高干扰指示 ( High Interference Indicator , 简称 HII)。
其中, RNTP指示被干扰小区的下行发射功率, 在 RNTP中, 可以以 资源粒度为单位, 每个资源粒度包含一个 PRB或者多个 PRB , 每个资源粒 度使用 4个信息比特, 指示该资源粒度上的发射功率等级, 其中发生功率 等级可 e {-∞,-l l,-10,-9,-8,-7,-6,-5,-4,-3,-2,-l,0,+l,+2,+3} [dB], 例如, 每个 干扰等级按照从低到高的顺序分别用信息比特" 0000" 、 "0001 " 、 "0010" 、 "001 1 " " 1 111 " 指示。
HII 用于指示被干扰小区在哪些资源粒度上会调度小区边缘用户, 在 这些资源粒度上可能会对邻区造成干扰。 在 ΗΠ 中, 也是以资源粒度为单 位, 每个资源粒度使用 1个比特, 指示该资源粒度上会不会产生强干扰。 处理器 1103 ,用于根据所述接收单元接收的所述被干扰小区的子帧配 比以及干扰指示信息进行干扰协调。 示例性的, 处理单元 1003 可以根据所述被干扰小区的子帧配比和所 述干扰小区的子帧配比确定所述干扰小区对所述被干扰小区造成上下行干 扰的子帧, 以及上对上和下对下干扰的子帧; 再根据所述接收单元接收的 所述干扰指示信息, 调整对所述被干扰小区造成上下行干扰的子帧上的发 射功率, 或调整所述干扰小区服务的用户设备使用的资源位置, 以减少或 避免对被干扰小区造成的干扰。
示例性的, 处理器 1103 根据干扰方向的不同需要分别调整基站或者 UE的发射功率。
例如, 当干扰指示信息是所述干扰小区相对所述被干扰小区的干扰影 响指示信息, 且干扰指示信息表示在某一资源粒度或者多个资源粒度的干 扰指示信息为 " 10" 时, 表示在该一个资源粒度或者多个资源粒度被干扰 小区信号受到干扰小区信号的 "强" 干扰影响, 则干扰小区可以在对应的 资源粒度位置降低干扰小区基站 (针对下对上干扰和上对上干扰) 或 UE (针对上对下干扰和下对下干扰) 的发射功率, 或者将下行信道或上行信 道调度到其它不会产生强干扰影响的资源粒度进行传输。
示例性的, 当接收器 1102接收的干扰指示信息为包含 RNTP和 ΗΠ 信息的干扰指示时, 处理器 1103 通过将干扰小区服务的边缘用户调度到 RNTP和 ΗΠ信息中干扰强度低的资源粒度上来避免和被干扰小区之间产 生强干扰。
本发明的实施例提供的基站, 将子帧配比发送给被干扰小区, 使被干 扰小区根据干扰小区的子帧配比能够区分上下行之间的干扰并生成上下行 之间的干扰指示信息, 基站根据上下行之间的干扰指示信息实现对上下行 之间的干扰进行干扰协调。 解决了现有技术只能处理上行对上行和下行对 下行的干扰, 无法区分上下行之间的干扰, 也无法对上下行之间的干扰进 行干扰协调的问题。 本发明另一实施例提供一种时分双工系统, 包括: 分别应用于被干扰 小区和干扰小区的第一基站和第二基站, 其中, 所述第一基站用于, 接收干扰小区发送的所述干扰小区的子帧 配比, 根据所述被干扰小区的子帧配比和所述接收器接收的所述干扰小区 的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的 子帧的干扰指示信息, 将所述被干扰小区的子帧配比及所述处理器生成的 所述干扰指示信息发送给所述干扰小区;
所述第二基站用于, 向被干扰小区发送所述干扰小区的子帧配比, 接 收所述被干扰小区发送的所述被干扰小区的子帧配比以及所述被干扰小区 根据所述被干扰小区的子帧配比和所述干扰小区的子帧配比, 生成的所述 被干扰小区中与所述干扰小区信号传输方向相反的子帧的干扰指示信息, 根据所述被干扰小区的子帧配比和所述干扰指示信息进行干扰协调。
本发明的实施例提供的系统, 被干扰小区根据干扰小区的子帧配比能 够区分上下行之间的干扰, 并将上下行之间的干扰指示信息发送给干扰小 区, 进而实现干扰小区对上下行之间的干扰进行干扰协调。 解决了现有技 术只能处理上行对上行和下行对下行的干扰,无法区分上下行之间的干扰, 本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程 序代码的介质。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种时分双工系统的干扰协调方法, 其特征在于, 包括: 被干扰小区接收干扰小区发送的所述干扰小区的子帧配比; 所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧的干扰指示信息;
所述被干扰小区将所述被干扰小区的子帧配比及所述干扰指示信息 发送给所述干扰小区, 以使得所述干扰小区根据所述被干扰小区的子帧配 比及所述干扰指示信息进行干扰协调。
2、 根据权利要求 1所述的方法, 其特征在于, 所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 获取所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧的干扰指示信息, 包括:
所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比将所述被干扰小区和所述干扰小区中对应的子帧的信号传输方向 进行匹配; 所述被干扰小区确定所述被干扰小区中与所述干扰小区信号传输方 向相反的子帧;
所述被干扰小区生成所述被干扰小区中与所述干扰小区信号传输方 向相反的子帧的干扰指示信息。
3、 根据权利要求 2所述的方法, 其特征在于, 所述被干扰小区生成所述被干扰小区中与所述干扰小区信号传输方 向相反的子帧的干扰指示信息, 包括:
所述被干扰小区获取所述被干扰小区中与所述干扰小区信号传输方 向相反的子帧的干扰测量值;
所述被干扰小区根据所述干扰测量值生成所述被干扰小区中与所述 干扰小区信号传输方向相反的子帧的干扰指示信息。
4、 根据权利要求 3所述的方法, 其特征在于, 所述干扰指示信息包括: 每一个资源粒度的干扰强度等级指示信息或 者每一个资源粒度的所述干扰小区相对所述被干扰小区的干扰影响指示信 息。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述被干扰小区中与所述干扰小区信号传输方向相反的子帧包括下 述子帧中的至少一种:
所述被干扰小区中的信号为下行, 且所述干扰小区的信号为上行对应 的子帧;
所述被干扰小区中的信号为上行, 且所述干扰小区的信号为下行对应 的子帧。
6、 根据权利要求 1 -5任一项所述的方法, 其特征在于, 所述方法还包 括,
所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相同的子 帧的干扰指示信息。
7、 根据权利要求 1 -6任一项所述的方法, 其特征在于, 所述方法还包 括设置更新周期, 相应的,
所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧的干扰指示信息, 包括: 所述被干扰小区根据所述被干扰小区的子帧配 比和所述干扰小区的子帧配比和所述设置的更新周期, 生成所述被干扰小 区中与所述干扰小区信号传输方向相反的子帧在每个更新周期内的所述干 扰指示信息; 所述被干扰小区将所述被干扰小区的子帧配比及所述干扰指示信息 发送给所述干扰小区, 以使得所述干扰小区根据所述被干扰小区的子帧配 比及所述干扰指示信息进行干扰协调, 包括: 根据所述设置的更新周期, 所述被干扰小区在每个更新周期内将所述被干扰小区的子帧配比及每个更 新周期内的所述干扰指示信息发送给所述干扰小区, 以使得所述干扰小区 在每个更新周期内根据所述被干扰小区的子帧配比及每个更新周期内的所 述干扰指示信息进行干扰协调。
8、 根据权利要求 1 -7任一项所述的方法, 其特征在于, 所述被干扰小 区接收干扰小区发送的所述干扰小区的子帧配比, 包括:
所述被干扰小区的基站通过 X2接口接收所述干扰小区的基站发送的 所述干扰小区的子帧配比; 或者,
所述被干扰小区的基站通过空口, 在专用信道或者导频信号上, 接收 所述干扰小区的基站发送的所述干扰小区的子帧配比; 或者, 所述被干扰小区服务的用户设备通过接收所述干扰小区的系统消息 获取所述干扰小区的子帧配比, 并将所述干扰小区的子帧配比发送给被干 扰小区的基站; 或者, 所述被干扰小区的基站接收上层网络转发的所述干扰小区的子帧配 比。
9、 一种时分双工系统的干扰协调方法, 其特征在于, 包括: 干扰小区向被干扰小区发送所述干扰小区的子帧配比; 所述干扰小区接收所述被干扰小区发送的所述被干扰小区的子帧配 比以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反的 子帧的干扰指示信息;
所述干扰小区根据所述被干扰小区的子帧配比和所述干扰指示信息 进行干扰协调。
10、 根据权利要求 9所述的方法, 其特征在于, 所述干扰指示信息包括: 每一个资源粒度的干扰强度等级指示信息或 者每一个资源粒度的所述干扰小区相对所述被干扰小区的干扰影响指示信 息。
1 1、 根据权利要求 9或 10所述的方法, 其特征在于, 所述干扰小区根据所述所述被干扰小区的子帧配比和所述干扰指示 信息进行干扰协调, 包括:
所述干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比确定所述干扰小区对所述被干扰小区造成上下行干扰的子帧; 所述干扰小区根据所述干扰指示信息, 调整对所述被干扰小区造成上 下行干扰的子帧上的发射功率, 或调整所述干扰小区服务的用户设备使用 的资源位置, 以减少或避免对被干扰小区造成的干扰。
12、 根据权利要求 9-1 1任一项所述的方法, 其特征在于, 所述被干扰 小区中与所述干扰小区信号传输方向相反的子帧包括下述子帧中的至少一 种:
所述被干扰小区中的信号为下行, 且所述干扰小区的信号为上行对应 的子帧;
所述被干扰小区中的信号为上行, 且所述干扰小区的信号为下行对应 的子帧。
13、 根据权利要求 9-12任一项所述的方法, 其特征在于, 所述方法还 包括,
所述干扰小区接收所述被干扰小区发送的所述被干扰小区根据所述 被干扰小区的子帧配比和所述干扰小区的子帧配比, 生成的所述被干扰小 区中与所述干扰小区信号传输方向相同的子帧的干扰指示信息。
14、 根据权利要求 9-13任一项所述的方法, 其特征在于, 所述方法还 包括设置更新周期, 相应的,
所述干扰小区接收所述被干扰小区发送的所述被干扰小区的子帧配 比以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反的 子帧的干扰指示信息, 包括根据所述设置的更新周期, 所述干扰小区在每 个更新周期内接收所述被干扰小区发送的所述被干扰小区的子帧配比以及 所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子帧配 比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反的子帧的 每个更新周期内的所述干扰指示信息;
所述干扰小区根据所述被干扰小区的子帧配比和所述干扰指示信息 进行干扰协调, 包括: 根据所述设置的更新周期, 所述干扰小区在每个更 新周期内根据所述被干扰小区的子帧配比和每个更新周期内的所述干扰指 示信息进行干扰协调。
15、 根据权利要求 9-14任一项所述的方法, 其特征在于, 所述干扰小 区向被干扰小区发送所述干扰小区的子帧配比, 包括: 所述干扰小区的基站通过 X2接口向所述被干扰小区的基站发送所述 干扰小区的子帧配比; 或者, 所述干扰小区的基站通过空口, 在专用信道或者导频信号上, 向所述 被干扰小区的基站发送所述干扰小区的子帧配比; 或者, 所述干扰小区的基站向所述被干扰小区服务的用户设备发送系统消 息,以使得所述被干扰小区服务的用户设备获取所述干扰小区的子帧配比, 并将所述干扰小区的子帧配比发送给所述被干扰小区的基站; 或者,
所述干扰小区的基站通过上层网络向所述被干扰小区的基站转发所 述干扰小区的子帧配比。
16、 一种基站, 应用于被干扰小区, 其特征在于, 包括: 接收单元, 用于接收干扰小区发送的所述干扰小区的子帧配比; 生成单元, 用于根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的子帧 的干扰指示信息;
发送单元, 用于将所述被干扰小区的子帧配比及所述干扰指示信息发 送给所述干扰小区, 以使得所述干扰小区根据所述被干扰小区的子帧配比 及所述干扰指示信息进行干扰协调。
17、 根据权利要求 16所述的基站, 其特征在于, 所述生成单元包括: 匹配模块, 用于根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比将所述被干扰小区和所述干扰小区中对应的子帧的信号传输方向进 行匹配; 确定模块, 用于根据所述匹配模块的匹配结果确定所述被干扰小区中 与所述干扰小区信号传输方向相反的子帧; 生成模块, 用于生成所述确定模块确定的所述被干扰小区中与所述干 扰小区信号传输方向相反的子帧的干扰指示信息。
18、 根据权利要求 17所述的基站, 其特征在于, 所述生成模块包括: 获取子模块, 用于获取所述被干扰小区中与所述干扰小区信号传输方 向相反的子帧的干扰测量值; 生成子模块, 用于根据所述获取子模块获取的所述干扰测量值生成所 述被干扰小区中与所述干扰小区信号传输方向相反的子帧的干扰指示信 息。
19、 根据权利要求 18所述的基站, 其特征在于, 所述干扰指示信息包括: 每一个资源粒度的干扰强度等级指示信息或 者每一个资源粒度的所述干扰小区相对所述被干扰小区的干扰影响指示信 息。
20、 根据权利要求 16- 19任一项所述的基站, 其特征在于,
所述被干扰小区中与所述干扰小区信号传输方向相反的子帧包括下 述子帧中的至少一种:
所述被干扰小区中的信号为下行, 且所述干扰小区的信号为上行对应 的子帧;
所述被干扰小区中的信号为上行, 且所述干扰小区的信号为下行对应 的子帧。
21、 根据权利要求 16-20任一项所述的基站, 其特征在于, 所述生成单元还用于: 根据所述被干扰小区的子帧配比和所述干扰小 区的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相同 的子帧的干扰指示信息。
22、 根据权利要求 16-21任一项所述的基站, 其特征在于, 所述基站 还包括更新周期设置单元, 用于设置更新周期, 相应的,
所述生成单元还用于: 根据所述被干扰小区的子帧配比和所述干扰小 区的子帧配比和所述更新周期设置单元设置的更新周期, 生成所述被干扰 小区中与所述干扰小区信号传输方向相反的子帧在每个更新周期内的所述 干扰指示信息; 所述发送单元还用于: 根据所述更新周期设置单元设置的更新周期, 在每个更新周期内将所述被干扰小区的子帧配比及每个更新周期内的所述 干扰指示信息发送给所述干扰小区, 以使得所述干扰小区在每个更新周期 内根据所述被干扰小区的子帧配比及每个更新周期内的所述干扰指示信息 进行干扰协调。
23、 根据权利要求 16-22任一项所述的基站, 其特征在于, 所述接收 单元还用于:
通过 X2接口接收所述干扰小区的基站发送的所述干扰小区的子帧配 比; 或者,
通过空口, 在专用信道或者导频信号上, 接收所述干扰小区的基站发 送的所述干扰小区的子帧配比; 或者, 接收所述被干扰小区服务的用户设备发送的通过接收所述干扰小区 的系统消息获取的所述干扰小区的子帧配比; 或者,
接收上层网络转发的所述干扰小区的子帧配比。
24、 一种基站, 应用于被干扰小区, 其特征在于, 包括:
接收器, 用于接收干扰小区发送的所述干扰小区的子帧配比; 处理器, 用于根据所述被干扰小区的子帧配比和所述接收器接收的所 述干扰小区的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输 方向相反的子帧的干扰指示信息;
发送器, 用于将所述被干扰小区的子帧配比及所述处理器生成的所述 干扰指示信息发送给所述干扰小区, 以使得所述干扰小区根据所述被干扰 小区的子帧配比及所述干扰指示信息进行干扰协调。
25、 一种基站, 应用于干扰小区, 其特征在于, 包括: 发送单元, 用于向被干扰小区发送所述干扰小区的子帧配比; 接收单元, 用于接收所述被干扰小区发送的所述被干扰小区的子帧配 比以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的 子帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反的 子帧的干扰指示信息;
处理单元, 用于根据所述接收单元接收的所述被干扰小区的子帧配比 和所述干扰指示信息进行干扰协调。
26、 根据权利要求 25所述的基站, 其特征在于, 所述干扰指示信息包括: 每一个资源粒度的干扰强度等级指示信息或 者每一个资源粒度的所述干扰小区相对所述被干扰小区的干扰影响指示信 息。
27、 根据权利要求 24或 25所述的基站, 其特征在于,
所述处理单元包括: 确定模块, 用于根据所述干扰小区的子帧配比和所述接收单元接收的 所述被干扰小区的子帧配比确定所述干扰小区对所述被干扰小区造成上下 行干扰的子帧; 处理模块, 用于根据所述接收单元接收的所述干扰指示信息, 调整对 所述被干扰小区造成上下行干扰的子帧上的发射功率, 或调整所述干扰小 区使用的资源粒度位置, 以减少或避免对被干扰小区造成的干扰。
28、 根据权利要求 25-27任一项所述的基站, 其特征在于,
所述被干扰小区中与所述干扰小区信号传输方向相反的子帧包括下 述子帧中的至少一种:
所述被干扰小区中的信号为下行, 且所述干扰小区的信号为上行对应 的子帧;
所述被干扰小区中的信号为上行, 且所述干扰小区的信号为下行对应 的子帧。
29、 根据权利要求 25-28任一项所述的基站, 其特征在于, 所述接收单元还用于, 接收所述被干扰小区发送的所述被干扰小区根 据所述被干扰小区的子帧配比和所述干扰小区的子帧配比, 生成的所述被 干扰小区中与所述干扰小区信号传输方向相同的子帧的干扰指示信息。
30、 根据权利要求 25-29任一项所述的基站, 其特征在于, 所述基站 还包括更新周期设置单元, 用于设置更新周期, 相应的,
所述接收单元还用于: 根据所述更新周期设置单元设置的更新周期, 在每个更新周期内接收所述被干扰小区发送的所述被干扰小区的子帧配比 以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧的每个更新周期内的所述干扰指示信息;
所述处理单元还用于, 根据所述更新周期设置单元设置的更新周期, 在每个更新周期内根据所述被干扰小区的子帧配比和每个更新周期内的所 述干扰指示信息进行干扰协调。
31、 根据权利要求 25-30任一项所述的基站, 其特征在于, 所述发送 单元还用于:
通过 X2接口向所述被干扰小区的基站发送所述干扰小区的子帧配比; 或者,
通过空口, 在专用信道或者导频信号上, 向所述被干扰小区的基站发 送所述干扰小区的子帧配比; 或者,
向所述被干扰小区服务的用户设备发送系统消息, 以使得所述被干扰 小区服务的用户设备获取所述干扰小区的子帧配比, 并将所述干扰小区的 子帧配比发送给所述被干扰小区的基站; 或者, 通过上层网络向所述被干扰小区的基站转发所述干扰小区的子帧配 比。
32、 一种基站, 应用于干扰小区, 其特征在于, 包括: 发送器, 用于向被干扰小区发送所述干扰小区的子帧配比;
接收器, 用于接收所述被干扰小区发送的所述被干扰小区的子帧配比 以及所述被干扰小区根据所述被干扰小区的子帧配比和所述干扰小区的子 帧配比, 生成的所述被干扰小区中与所述干扰小区信号传输方向相反的子 帧的干扰指示信息;
处理器, 用于根据所述接收单元接收的所述被干扰小区的子帧配比和 所述干扰指示信息进行干扰协调。
33、 一种时分双工系统, 其特征在于, 包括: 分别应用于被干扰小区 和干扰小区的第一基站和第二基站, 其中, 所述第一基站用于, 接收干扰小区发送的所述干扰小区的子帧 配比, 根据所述被干扰小区的子帧配比和所述接收器接收的所述干扰小区 的子帧配比, 生成所述被干扰小区中与所述干扰小区信号传输方向相反的 子帧的干扰指示信息, 将所述被干扰小区的子帧配比及所述处理器生成的 所述干扰指示信息发送给所述干扰小区;
所述第二基站用于, 向被干扰小区发送所述干扰小区的子帧配比, 接 收所述被干扰小区发送的所述被干扰小区的子帧配比以及所述被干扰小区 根据所述被干扰小区的子帧配比和所述干扰小区的子帧配比, 生成的所述 被干扰小区中与所述干扰小区信号传输方向相反的子帧的干扰指示信息, 根据所述被干扰小区的子帧配比和所述干扰指示信息进行干扰协调。
PCT/CN2012/077803 2012-06-28 2012-06-28 一种时分双工系统的干扰协调方法、基站及系统 WO2014000236A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/077803 WO2014000236A1 (zh) 2012-06-28 2012-06-28 一种时分双工系统的干扰协调方法、基站及系统
EP12879670.3A EP2869619A4 (en) 2012-06-28 2012-06-28 METHOD, BASE STATION AND INTERFERENCE COORDINATION SYSTEM FOR TIME DIVISION DUPLEXING SYSTEM
CN201280000848.3A CN103650557A (zh) 2012-06-28 2012-06-28 一种时分双工系统的干扰协调方法、基站及系统
US14/573,862 US9622251B2 (en) 2012-06-28 2014-12-17 Method of interference coordination in time division duplexing system, base station, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/077803 WO2014000236A1 (zh) 2012-06-28 2012-06-28 一种时分双工系统的干扰协调方法、基站及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/573,862 Continuation US9622251B2 (en) 2012-06-28 2014-12-17 Method of interference coordination in time division duplexing system, base station, and system

Publications (1)

Publication Number Publication Date
WO2014000236A1 true WO2014000236A1 (zh) 2014-01-03

Family

ID=49782087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077803 WO2014000236A1 (zh) 2012-06-28 2012-06-28 一种时分双工系统的干扰协调方法、基站及系统

Country Status (4)

Country Link
US (1) US9622251B2 (zh)
EP (1) EP2869619A4 (zh)
CN (1) CN103650557A (zh)
WO (1) WO2014000236A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141764A (zh) * 2015-10-08 2018-06-08 华为技术有限公司 一种干扰指示方法及装置
US12009896B2 (en) 2023-02-28 2024-06-11 The Joan and Irwin Jacobs Technion-Cornell Institute System and method for improving connection stability via deceptive signal quality transmissions

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582000A (zh) * 2012-08-10 2014-02-12 北京三星通信技术研究有限公司 一种干扰协调方法
CN104066093B (zh) * 2013-03-18 2018-03-23 财团法人工业技术研究院 无线通信系统的干扰管理方法、锚点设备、基站及其系统
US10231191B2 (en) * 2015-06-16 2019-03-12 Lg Electronics Inc. Interference alleviation method and apparatus performed by base station in wireless communications system
US10244540B2 (en) * 2015-12-02 2019-03-26 Qualcomm Incorporated Systems and methods for mixed interference management
WO2017101119A1 (zh) 2015-12-18 2017-06-22 华为技术有限公司 干扰抑制方法、装置及系统
WO2017139970A1 (zh) * 2016-02-19 2017-08-24 富士通株式会社 信息传输装置、方法以及通信系统
CN108990153B (zh) 2017-06-02 2021-05-14 维沃移动通信有限公司 一种针对终端自干扰的传输方法、相关设备和系统
CN109151886B (zh) * 2017-06-16 2021-04-20 华为技术有限公司 一种用于上报的方法、设备和系统
US11502761B2 (en) * 2018-05-25 2022-11-15 Qualcomm Incorporated Enhanced RRM/CSI measurement for interference management
US11770851B2 (en) * 2018-06-06 2023-09-26 Qualcomm Incorporated Synchronized spectrum sharing across multiple adjacent carriers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646257A (zh) * 2008-08-07 2010-02-10 大唐移动通信设备有限公司 确定小区的资源使用方式的方法和装置
CN101795473A (zh) * 2009-02-03 2010-08-04 大唐移动通信设备有限公司 特殊子帧配置方式及时域资源使用方式的确定方法和装置
CN102026209A (zh) * 2010-12-21 2011-04-20 大唐移动通信设备有限公司 一种传输信息和配置子帧的方法、系统及设备
CN102149099A (zh) * 2011-04-08 2011-08-10 电信科学技术研究院 一种进行小区间干扰协调的方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1303928T3 (da) * 2000-07-27 2006-01-23 Interdigital Tech Corp Adaptiv tildeling af uplink/downlinktidsvindue i et trådlöst hybrid tidsopdelt-multipel adgangs-/kodeopdelt-multipel adgangskommunikationssystem
US8611331B2 (en) * 2009-02-27 2013-12-17 Qualcomm Incorporated Time division duplexing (TDD) configuration for access point base stations
CN101932100A (zh) * 2009-06-19 2010-12-29 大唐移动通信设备有限公司 eNB之间协调中继链路资源配置的方法和eNB
US8559343B2 (en) 2009-12-23 2013-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Flexible subframes
US20110176461A1 (en) 2009-12-23 2011-07-21 Telefonakatiebolaget Lm Ericsson (Publ) Determining configuration of subframes in a radio communications system
CN102457972B (zh) * 2010-11-01 2014-06-25 中国移动通信集团上海有限公司 一种不同时隙配比的同频组网方法及装置
CN102469466B (zh) * 2010-11-11 2015-05-06 华为技术有限公司 一种干扰处理方法与装置
US20120122472A1 (en) * 2010-11-12 2012-05-17 Motorola Mobility, Inc. Positioning Reference Signal Assistance Data Signaling for Enhanced Interference Coordination in a Wireless Communication Network
CN102158910B (zh) * 2011-04-14 2013-11-20 电信科学技术研究院 一种进行干扰协调的方法、系统和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646257A (zh) * 2008-08-07 2010-02-10 大唐移动通信设备有限公司 确定小区的资源使用方式的方法和装置
CN101795473A (zh) * 2009-02-03 2010-08-04 大唐移动通信设备有限公司 特殊子帧配置方式及时域资源使用方式的确定方法和装置
CN102026209A (zh) * 2010-12-21 2011-04-20 大唐移动通信设备有限公司 一种传输信息和配置子帧的方法、系统及设备
CN102149099A (zh) * 2011-04-08 2011-08-10 电信科学技术研究院 一种进行小区间干扰协调的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2869619A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141764A (zh) * 2015-10-08 2018-06-08 华为技术有限公司 一种干扰指示方法及装置
US10601568B2 (en) 2015-10-08 2020-03-24 Huawei Technologies Co., Ltd. Interference indication method and apparatus
US12009896B2 (en) 2023-02-28 2024-06-11 The Joan and Irwin Jacobs Technion-Cornell Institute System and method for improving connection stability via deceptive signal quality transmissions

Also Published As

Publication number Publication date
US20150103706A1 (en) 2015-04-16
EP2869619A4 (en) 2015-09-23
US9622251B2 (en) 2017-04-11
CN103650557A (zh) 2014-03-19
EP2869619A1 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
RU2749350C2 (ru) Способ измерения помех и сопутствующее устройство
JP6514283B2 (ja) 方法、ueデバイス及び装置
WO2014000236A1 (zh) 一种时分双工系统的干扰协调方法、基站及系统
JP6418432B2 (ja) 異種ネットワーク通信システム
TW201933895A (zh) 毫米波系統中的曝光偵測
WO2016106604A1 (zh) 一种传输信号的方法和设备
JP2020506583A (ja) 信号伝送方法及び装置
US10932200B2 (en) Uplink power control method and apparatus to reduce user equipment-to-user equipment cross interference
US9432159B2 (en) Method, apparatus and computer program for providing sounding reference signals for coordinated multipoint transmissions
CN111937449B (zh) 航空ue的依赖空中状态的上行链路功率控制方法及其装置
WO2014190848A1 (zh) 一种小区间协作进行干扰测量的方法和节点
US10880906B2 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (NOMA) scheme
JP2018501718A (ja) 秘匿ノード検出
JP2012514911A (ja) 中継を実施する基地局、中継局、移動端末およびその対応する方法
US10772051B2 (en) Inter-cell interference mitigation
CN115299003A (zh) 用于高速列车单频网络的频率预补偿
WO2012174813A1 (zh) 一种小区特定参考信号的配置方法及装置
EP3417651A1 (en) System and method for managing connections in a wireless communications system
US10172174B2 (en) Selection between cellular communication link and device-to-device (D2D) communication link using reference signals
TW201810987A (zh) 用於通道品質指標回饋以致能全雙工系統中接合下行-上行(dl-ul)排程之裝置與方法
CN111727647A (zh) 用于在非正交多址接入(noma)网络中对用户进行分组的装置、方法和计算机程序
CN109155921B (zh) 用于设备到设备通信的方法和装置
US11974313B2 (en) Using a supplementary uplink to mitigate a desensitization condition
JP2008193340A (ja) 無線基地局装置、無線端末装置、無線通信システム、及びチャネルクオリティインジケータ推定方法
KR20230065359A (ko) 서브-테라헤르츠 서브-대역 플래트닝 피드백

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012879670

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE