WO2016106604A1 - 一种传输信号的方法和设备 - Google Patents

一种传输信号的方法和设备 Download PDF

Info

Publication number
WO2016106604A1
WO2016106604A1 PCT/CN2014/095666 CN2014095666W WO2016106604A1 WO 2016106604 A1 WO2016106604 A1 WO 2016106604A1 CN 2014095666 W CN2014095666 W CN 2014095666W WO 2016106604 A1 WO2016106604 A1 WO 2016106604A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
power
self
duplex
interference
Prior art date
Application number
PCT/CN2014/095666
Other languages
English (en)
French (fr)
Inventor
刘劲楠
张兴炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/095666 priority Critical patent/WO2016106604A1/zh
Priority to CN201480035459.3A priority patent/CN105934893B/zh
Publication of WO2016106604A1 publication Critical patent/WO2016106604A1/zh
Priority to US15/637,304 priority patent/US20170302337A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N2201/333Mode signalling or mode changing; Handshaking therefor
    • H04N2201/33307Mode signalling or mode changing; Handshaking therefor of a particular mode
    • H04N2201/33342Mode signalling or mode changing; Handshaking therefor of a particular mode of transmission mode
    • H04N2201/3335Speed or rate

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for transmitting signals.
  • the cellular communication system adopts two methods: Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • FDD is used for receiving and transmitting on two separate pair channels, and uses guard bands to separate uplink (uplink, base station, base station) and downlink (base station, terminal) channels.
  • TDD is used to implement uplink and downlink transmission on different subframes on the same frequency resource through different uplink and downlink ratios.
  • the wireless spectrum is getting more and more tense, and the business is flexible.
  • the shortcomings of FDD and TDD are more and more obvious.
  • FDD needs paired spectrum, and there are as many uplink and downlink resources, which makes spectrum division difficult. For asymmetric services, uplink resources may not be fully utilized.
  • FDD and TDD are also evolving.
  • One way is to implement uplink and downlink flexible configuration in the frequency band of TDD, and improve network throughput by controlling interference between cells.
  • Another method also allocates some uplink resources in the FDD uplink frequency band to match more types of services.
  • Wireless full-duplex technology differs from existing FDD or TDD technologies in enabling simultaneous transmission and reception of data on the same frequency band. Simultaneous reception and transmission operations on the same wireless channel, theoretically the spectrum efficiency of wireless full-duplex technology is twice that of FDD or TDD technology. If the full-duplex technology is introduced into the cellular network, it can be another method to solve the shortcomings of FDD and TDD, so it is very important.
  • the signal from the communication peer arrives at the receiving end (full-duplex device) when the uplink signal is relatively weak compared to the transmitted signal of the full-duplex device itself, for example, moving
  • the communication signal power difference of a communication node in a cellular communication system reaches 80dB ⁇ 140dB or even larger. Therefore, the self-interference of the transmitted signal of the full-duplex device to the received signal, even if the prior art adopts self-interference of the full-duplex device Eliminated measures, but existing techniques The self-interference of the full-duplex device cannot be completely eliminated, and there is still self-interference residue.
  • Embodiments of the present invention provide a method and apparatus for transmitting signals that can eliminate or reduce interference in a full duplex system.
  • the first aspect provides a method for transmitting a signal, including: determining, by a first device, uplink transmission power; the first device adopting the uplink transmission power to work on a first time-frequency resource to a second working in full-duplex mode
  • the device sends an uplink signal, where the uplink transmission power is a power determined according to the self-interference compensation amount of the second device, or the uplink transmission power is a maximum transmission power of the first device.
  • the first device determines an uplink transmission power, where the first device acquires power indication information sent by the second device, where the power indication information is used to indicate the first The self-interference compensation amount of the second device; the first device determines the uplink transmission power according to the self-interference compensation amount and the uplink open-loop power parameter.
  • the uplink open loop power parameter includes a first uplink open loop power parameter or a second uplink open loop power parameter
  • the first device is configured according to the Determining the uplink transmission power by the self-interference compensation amount and the uplink open-loop power parameter
  • the method includes: determining, by the first device, the uplink transmission power according to the self-interference compensation amount and the first uplink open-loop power parameter, or the first device according to the self The interference compensation amount and the second uplink open loop power parameter determine the uplink transmission power, and the first device determines the uplink transmission power according to the self-interference compensation amount and the second uplink open loop power parameter.
  • the method further includes: acquiring, by the first device, the second device The information indicating the second power; the first device uses the second power on the second time-frequency resource to send an uplink signal to the second device operating in the half-duplex mode.
  • the first device is a base station or a user equipment, and the second device is configured. Prepared as a relay.
  • the first device is a user equipment
  • the second device is a base station.
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the second device, where the first device and the third device are The second device predetermines a pair of devices whose interference between the first device and the third device is less than a preset threshold.
  • the interference between the first device and the third device is applied to the downlink frequency band in the FDD system by using the second device Measurement of half-duplex uplink time-frequency resources set in the downlink frequency band.
  • the method further includes: the first device according to the received second device Performing CRS-related measurement between the first device and the second device by using a cell-specific reference signal CRS sent by the first transmission parameter; the first device performing, according to the received CRS sent by the second device by using the second transmission parameter A CRS-related measurement between the first device and the second device.
  • the self-interference compensation amount is determined by the second device according to the following formula :
  • ⁇ SI represents the self-interference compensation amount
  • N the self-interference compensation amount
  • a method for transmitting a signal includes: generating, by a second device, power indication information, where the power indication information is used by a first device to determine, according to the power indication information, the second device that works in a full duplex mode And transmitting the uplink transmission power of the uplink signal, where the uplink transmission power is determined according to the self-interference compensation amount of the second device, or the uplink transmission power is the maximum transmission power of the first device;
  • the device sends the power indication information; the second device receives the uplink signal sent by the first device by using the uplink transmission power on the first time-frequency resource.
  • the method further includes: determining, by the second device, a self-interference compensation amount of the second device, where the second device generates power indication information, the packet The second device generates power indication information according to the self-interference compensation amount.
  • the second device generates power indication information according to the self-interference compensation amount, including: the second device according to the self-interference compensation amount The power indication information is generated, where the power indication information is used to indicate the self-interference compensation amount, so that the first device determines the uplink transmission power according to the self-interference compensation amount and the uplink open-loop power parameter.
  • the second device generates power indication information according to the self-interference compensation amount, including: the second device according to the self-interference compensation amount The power indication information is generated, where the power indication information is used to indicate the uplink transmission power.
  • the method further includes: generating, by the second device The second device sends the information indicating the second power to the first device, so that the second device working in the half-duplex mode receives the first device on the half-duplex time-frequency resource.
  • the second power transmits an uplink signal.
  • the method further includes: the second device setting a half-duplex downlink time-frequency resource in the uplink frequency band, where the half-duplex downlink time-frequency resource is used for measurement The self-interference compensation amount of the second device.
  • a period of setting a half-duplex downlink time-frequency resource in the uplink frequency band is greater than or equal to one radio frame.
  • the first device is a base station or a user equipment
  • the second device is a relay.
  • the first device is a user equipment
  • the second The device is a base station
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the second device, where the first device and the first device
  • the third device is the interference between the first device and the third device that is determined by the second device A pair of devices that are less than a preset threshold.
  • the method further includes: applying, by the second device, a half double in the downlink frequency band
  • the uplink time-frequency resource is used to measure interference between the first device and the third device.
  • any one of the first to the tenth possible implementation manners of the second aspect in an eleventh possible implementation manner, sends the first downlink signal on the full-duplex time-frequency resource, wherein the first transmitting parameter is that the interference between the second device and the adjacent station of the second device is less than a preset interference threshold; the second device Transmitting a second downlink signal on the half-duplex time-frequency resource according to the second transmission parameter.
  • the method further includes: determining, by the second device, that the SINR is greater than a preset threshold or the channel quality indicator CQI is greater than a preset channel quality threshold a fourth device, the fourth device includes at least one device; the second device determines a fifth device whose PH is greater than a preset margin threshold, the fifth device includes at least one device; and the second device is in the full duplex time-frequency And receiving, by the resource, the uplink signal sent by the fifth device, where the second device sends the first downlink signal on the full-duplex time-frequency resource according to the first transmission parameter, where the second device is configured according to the first The first downlink signal is sent to the at least one device in the fourth device at the full duplex time.
  • the second device determines the second device
  • the self-interference compensation amount includes: the second device determines the self-interference compensation amount of the second device according to the following formula
  • ⁇ SI represents the self-interference compensation amount
  • N the self-interference compensation amount
  • the third aspect provides a device for transmitting a signal, including: a determining unit, configured to determine an uplink transmission power; and a first sending unit, configured to use the uplink transmission power to work in a full duplex on the first time-frequency resource.
  • the second device in the mode sends an uplink signal, where the second device is a full-duplex device, the uplink transmission power is determined according to the self-interference compensation amount of the second device, or the uplink transmission power is the first The maximum transmit power of the device.
  • the determining unit acquires the second And the power indication information is used to indicate the self-interference compensation amount of the second device, and the uplink transmission power is determined according to the self-interference compensation amount and the uplink open-loop power parameter.
  • the uplink open loop power parameter includes a first uplink open loop power parameter or a second uplink open loop power parameter
  • the determining unit is configured according to The self-interference compensation amount and the first uplink open-loop power parameter determine the uplink transmission power, or the determining unit determines the uplink transmission power according to the self-interference compensation amount and the second uplink open-loop power parameter.
  • the method further includes: an acquiring unit, configured to acquire the first The second device sends the uplink signal to the second device working in the half duplex mode by using the second power on the second time-frequency resource.
  • the device is a base station or a user equipment
  • the second The device is a relay.
  • the device is a user equipment
  • the second device is Base station.
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the second device, the device and the third
  • the device is a pair of devices that are predetermined by the second device and whose interference between the device and the third device is less than a preset threshold.
  • the interference between the device and the third device is applied to the downlink frequency band in the FDD system.
  • the half-duplex uplink time-frequency resource set in the downlink frequency band is measured.
  • the method further includes: a first measuring unit, configured to The received second device uses the CRS sent by the first transmission parameter to perform CRS-related measurement between the device and the second device, and the second measurement unit is configured to adopt the second transmission parameter according to the received second device.
  • the transmitted CRS performs CRS-related measurements between the device and the second device.
  • any one of the first to eighth possible implementation manners of the third aspect may be determined by the second device according to the following formula:
  • ⁇ SI represents the self-interference compensation amount
  • N the self-interference compensation amount
  • a device for transmitting a signal comprising: a first generating unit, configured to generate power indication information, where the power indication information is used by the first device to determine to work according to the power indication information
  • the device in the duplex mode sends the uplink transmission power of the uplink signal, where the uplink transmission power is determined according to the self-interference compensation amount of the second device, or the uplink transmission power is the maximum transmission power of the first device;
  • a sending unit configured to send the power indication information to the first device, where the receiving unit is configured to receive an uplink signal sent by the first device by using the uplink transmission power on the first time-frequency resource.
  • the method further includes: a first determining unit, configured to determine a self-interference compensation amount of the device, where the first generating unit generates power indication information according to the self-interference compensation amount .
  • the generating unit generates power indication information according to the self-interference compensation amount, where the power indication information is used to indicate the self-interference compensation The amount is determined by the first device to determine the uplink transmission power according to the self-interference compensation amount and the uplink open-loop power parameter.
  • the generating unit generates power indication information according to the self-interference compensation amount, where the power indication information is used to indicate the uplink transmission power .
  • the device further includes: a second generating unit, Generating information indicating the second power; the second sending unit is configured to send the information indicating the second power to the first device, so that the device working in the half-duplex mode receives the second time-frequency resource The first device uses other uplink signals sent by the second power.
  • any one of the possible implementation manners of the first to the fourth possible implementation manners of the fourth aspect in a fifth possible implementation manner, in an uplink frequency band in an FDD system,
  • the device further includes: a first setting unit, configured to set a half-duplex downlink time-frequency resource in the uplink frequency band, where the half-duplex downlink time-frequency resource is used to measure a self-interference compensation amount of the second device.
  • a period of setting a half-duplex downlink time-frequency resource in the uplink frequency band is greater than or equal to one radio frame.
  • the first device is a base station or a user equipment,
  • the device is a relay.
  • the first device is a user equipment, and the device is Base station.
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the device, where the first device and the third device
  • the device is a pair of devices that are predetermined by the device and whose interference between the first device and the third device is less than a preset threshold.
  • the device further includes: a second setting unit, configured to be used in the downlink frequency band in the FDD system, A half-duplex uplink time-frequency resource is configured to measure interference between the first device and the third device.
  • the method further includes: a third sending unit, configured to: Transmitting, by the first transmit parameter, the first downlink signal on the full-duplex time-frequency resource, where the first transmit parameter is that the interference between the second device and the neighboring station of the second device is less than a preset interference threshold; And a fourth sending unit, configured to send the second downlink signal on the half-duplex time-frequency resource according to the second transmission parameter.
  • the method further includes: a second determining unit, configured to determine that the SINR is greater than a preset threshold or the CQI is greater than a preset channel quality threshold a fourth device, the fourth device includes at least one device, a third determining unit, configured to determine a fifth device whose PH is greater than a preset margin threshold, the fifth device includes at least one device, and a receiving unit, configured to The uplink signal sent by the fifth device is received on the duplex time-frequency resource, where the third sending unit sends the first signal to the at least one device in the fourth device according to the first transmit parameter. Downstream signal.
  • a second determining unit configured to determine that the SINR is greater than a preset threshold or the CQI is greater than a preset channel quality threshold
  • the fourth device includes at least one device
  • a third determining unit configured to determine a fifth device whose PH is greater than a preset margin threshold
  • the fifth device includes at least one device
  • a receiving unit configured to The uplink signal sent by the fifth
  • the first determining unit is according to the following Determining the self-interference compensation amount of the second device
  • ⁇ SI represents the self-interference compensation amount
  • N the self-interference compensation amount
  • the uplink transmission power used by the first device is determined according to the self-interference compensation amount of the second device, or the uplink transmission power is the power of the maximum transmission power of the first device.
  • the second device working in the full-duplex mode sends an uplink signal.
  • the embodiment of the present invention reduces the adverse effect of the self-interference residual amount of the second device on the uplink signal reception by using the self-interference compensation amount of the second device, or the first
  • the device uses the maximum transmit power to send the uplink signal to eliminate the adverse effect of the self-interference residual amount of the second device on the uplink signal receiving. Therefore, the embodiment of the present invention can eliminate or reduce the self-interference residual amount of the second device, which is disadvantageous to the uplink signal receiving. Impact can improve network performance.
  • FIG. 1 is a schematic diagram of a deployment scenario of a full-duplex system applicable to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a deployment scenario of a full-duplex system applicable to another embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method of transmitting a signal in accordance with one implementation of the present invention.
  • FIG. 4 is a schematic flow chart of a method of transmitting a signal according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an apparatus for transmitting signals in accordance with one embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WI-FI Wireless High Fidelity
  • WiMAX Worldwide Interoperability for Microwave Access
  • Embodiments of the present invention can be used in wireless networks of different standards.
  • a wireless access network may include different network elements in different systems. For example, it includes a base station, an access point (AP), a relay, and the like.
  • the network elements of the radio access network in the LTE and the LTE-A include an eNB (eNodeB, an evolved base station), and the network element of the radio access network in the WCDMA includes an RNC (Radio Network Controller) and NodeB, similarly, other wireless networks such as WiMax (Worldwide Interoperability for Microwave Access) can also use a solution similar to the embodiment of the present invention, but the related modules in the base station system may be different, and the present invention is implemented.
  • the example is not limited, but for convenience of description, the base station in the following embodiments will be described by taking an eNodeB and a NodeB as an example.
  • user equipment includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset).
  • MS Mobile Station
  • Mobile Terminal mobile terminal
  • Mobile Telephone mobile Telephone
  • handset mobile phone
  • the portable device the user equipment can communicate with one or more core networks via a radio access network (RAN), for example, the user equipment can be a mobile phone (or "cellular" Telephone), a computer with wireless communication function, etc., the user equipment can also be a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device
  • FIG. 1 is a schematic diagram of a deployment scenario of a full-duplex system applicable to an embodiment of the present invention.
  • the full duplex system scenario shown in FIG. 1 includes a base station 110, a user equipment 120, and a user equipment 130.
  • Base station 110 has full duplex capability and user equipment 120 has half duplex capability.
  • the base station 110 simultaneously transmits and receives the same frequency, it can schedule a part of the terminals in the coverage, for example, the user equipment 120 is in uplink transmission, and another part of the terminal, for example, the user equipment 130, is in downlink reception.
  • the base station 110 in FIG. 1 may be replaced by a small cell, an access point, or the like, which is not limited by the embodiment of the present invention.
  • base station 110 may also have a service on the same time-frequency resource. Neighboring base stations (sites) and user equipment (not shown).
  • FIG. 2 is a schematic diagram of a deployment scenario of a full-duplex system applicable to another embodiment of the present invention.
  • the full duplex system scenario shown in FIG. 2 includes a relay 210, a base station 220, and a user equipment 230.
  • the relay 210 has a full-duplex capability. When the relay 210 performs full-duplex transmission, the relay 210 receives the signal from the base station 220 and transmits the downlink signal to the user equipment 230 using the same time-frequency resource, or the relay 210 uses the same.
  • the time-frequency resource receives the signal from the user equipment 230 and transmits a downlink signal to the base station 220.
  • FIG. 3 is a schematic flow chart of a method of transmitting a signal in accordance with one implementation of the present invention.
  • the method of FIG. 3 is performed by the first device, and is applied to the scenario of FIG. 1.
  • the first device may be a user equipment, and is applied to the scenario in FIG. 2, where the first device may be a base station or a user equipment.
  • the method shown in FIG. 3 includes:
  • the first device determines an uplink transmission power.
  • the first device determines to transmit the uplink transmission power of the uplink signal to the second device.
  • the first device sends, by using the uplink transmission power, the uplink signal to the second device working in the full duplex mode on the first time-frequency resource, where the uplink transmission power is determined according to the self-interference compensation amount of the second device. Or the uplink transmission power is the maximum transmission power of the first device.
  • the second device is a full-duplex device having the capability of simultaneously transmitting and receiving signals at the same frequency.
  • the second device may be a base station or a relay or the like.
  • the first time-frequency resource may be a full-duplex time-frequency resource
  • the full-duplex time-frequency resource indicates that both the uplink service and the downlink service are carried on the resource at the same time.
  • the second device may also send a downlink signal to another device on the full-duplex time-frequency resource. That is to say, the second device can receive the uplink signal sent by the first device on the full-duplex time-frequency resource, and can also send a signal to another device.
  • a full-duplex device refers to a device having the capability of simultaneously transmitting and receiving signals at the same frequency.
  • a full-duplex device can have multiple working modes, such as a full-duplex mode and a half-duplex mode, and a full-duplex device. It can work in full-duplex mode, or it can be rolled back (switched) to half-duplex mode.
  • the full-duplex device can determine whether to work in full-duplex mode or half-duplex mode according to the system's interference, service, and user distribution.
  • the full-duplex device works in full-duplex mode and can be in two states.
  • One is full-duplex communication, and the corresponding resource is full-duplex time-frequency resource, that is, the full-duplex device is in full-duplex mode. Frequent capital
  • the source sends data and receives data.
  • the other type is full-duplex monitoring, and the corresponding resource is a half-duplex downlink resource, that is, the full-duplex device transmits data on the half-duplex downlink resource, and the receiving link only serves as a monitoring or measurement interference, and does not demodulate the received data.
  • the full-duplex device works in half-duplex mode, and the corresponding resource is a half-duplex time-frequency resource. The full-duplex device only transmits or receives signals on the half-duplex time-frequency resource.
  • the time-frequency resource may be a communication resource.
  • the time-frequency resource may refer to a communication resource having two dimensions of time and frequency.
  • the embodiment of the present invention does not limit the minimum unit of the time-frequency resource, for example, the time-frequency.
  • the minimum unit of resources may be a subframe, a frame, a time slot, etc. in time, and may be a resource block (Resource Block, RB), a subcarrier, a Resource Element (RE), a subband, or an entire working frequency band. .
  • the first device sends the signal to the second device by using the uplink transmission power
  • the uplink transmission power may be the power determined according to the self-interference compensation amount of the second device and the uplink open-loop power parameter of the first device.
  • the uplink open loop power parameter of the first device may be an open loop power of a Physical Uplink Control CHannel (PUCCH) or an open loop power of a Physical Uplink Shared Channel (PUSCH).
  • the uplink transmission power may be the power determined by the second device according to the uplink open loop power parameter of the first device and the self-interference compensation amount of the second device, or may be the uplink open loop of the first device according to the first device.
  • the power parameter and the power determined by the self-interference compensation amount of the second device, or the uplink transmission power is the maximum transmission power of the first device.
  • the uplink transmission power is determined by the first device according to the self-interference compensation amount of the second device, or the uplink transmission power is the maximum transmission power of the first device to work in the full-duplex mode.
  • the second device sends the uplink signal, because the embodiment of the present invention reduces the adverse effect of the self-interference residual amount of the second device on the uplink signal reception by using the self-interference compensation amount of the second device, or the first device uses the maximum transmit power to transmit
  • the uplink signal is used to eliminate the adverse effect of the self-interference residual amount of the second device on the uplink signal receiving. Therefore, the embodiment of the present invention can eliminate or reduce the adverse effect of the self-interference residual amount of the second device on the uplink signal receiving, and can improve the uplink signal. Receive signal to noise ratio to improve network performance.
  • the first device acquires power indication information sent by the second device, where the power indication information is used to indicate a self-interference compensation amount of the second device, and the first device is configured according to the self-interference compensation amount.
  • the uplink open loop power parameter determines the uplink transmission power.
  • the self-interference compensation amount is determined by the second device according to the following formula:
  • ⁇ SI 10 * log 10 (N + 1) dB
  • ⁇ SI represents the self-interference compensation amount, N > 0, indicating that the self-interference residual power is a multiple of the noise power.
  • the base station can schedule all subframes (time-frequency resources) for full-duplex transmission. Therefore, the first device needs to increase self-interference compensation on the open-loop parameters in each uplink subframe. The amount is adjusted to adjust the uplink transmission power of the first device. Specifically, the first device increases the self-interference compensation amount based on the open-loop power parameters of each channel, such as the open-loop power of the PUCCH channel in LTE and the open-loop power of the PUSCH, that is, the uplink transmission power of the first device is The power determined by the sum of the uplink open loop power parameter of one device and the self-interference compensation amount of the second device.
  • the relay may schedule all subframes (time-frequency resources) for full-duplex transmission.
  • the first device is a user equipment, and the relay is transmitting downlink to the base station.
  • Signal the case where an uplink signal is received from a terminal.
  • the terminal increases the self-interference compensation amount on the open loop or closed loop parameters to adjust the uplink transmission power of the user equipment.
  • the first device increases the self-interference compensation amount based on the open-loop power parameters of each channel, such as the open-loop power of the PUCCH channel in LTE and the open-loop power of the PUSCH, that is, the uplink transmission power of the first device is the first.
  • the first device is a base station
  • the relay is in a situation of transmitting a downlink signal to the user equipment and receiving an uplink signal from the base station.
  • the base station increases the self-interference residual compensation amount of the relay on the open loop or closed loop parameters to adjust the uplink transmit power of the base station.
  • the base station increases the self-interference residual offset based on the open-loop power of the open-loop or closed-loop parameter PUCCH channel and the open-loop power of the PUSCH, that is, the uplink transmission power of the first device is an uplink open loop according to the first device.
  • the power determined by the sum of the power parameter and the self-interference compensation amount of the second device.
  • the uplink power control of LTE is based on open loop power control plus closed loop correction.
  • the power of the i subframe of the PUSCH is defined as
  • P CMAX,c (i) represents the maximum transmit power of the terminal
  • M PUSCH,c (i) represents the number of RBs allocated based on the uplink grant
  • P O_PUSCH,c (j) represents the open loop power parameter
  • ⁇ c (j) represents Path loss factor
  • PL c downlink path loss estimator ⁇ TF,c (i) transmission mode compensation amount
  • f c (i) indicates power control dynamic offset
  • the values of j are 0, 1, and 2, respectively, indicating uplink transmission based on semi-persistent scheduling, dynamic scheduling, and random access.
  • P O_PUSCH,c (1) P O_NOMINAL_PUSCH,c (1)+P O_UE_PUSCH,c (1)
  • P O_NOMINAL_PUSCH,c (j) is indicated by higher layer signaling, and the parameters of the specific cell are broadcast to the terminal.
  • P O_UE_PUSCH,c (j) is an item configured by RRC signaling for a specific UE.
  • P O_PRE and ⁇ PREAMBLE_Msg3 are high-level parameters for random access.
  • the transmit power formula is modified to
  • P O_NOMINAL_PUSCH,c (j) Since P O_NOMINAL_PUSCH,c (j) is broadcast to the terminal by higher layer signaling, P O_UE_PUSCH,c (j) is configured by the RRC signaling to the terminal. Therefore ⁇ SI (j) can be signaled to the terminal by carrying P O_NOMINAL_PUSCH,c (j) or signaling carrying P O_UE_PUSCH,c (j), or newly configured signaling. The purpose of compensating for the open loop power parameter is reached.
  • the power of the i-subframe of the PUCCH is defined as
  • h(n CQI , n HARQ , n SR ) is a parameter according to the PUCCH format type, and is used for respectively transmitting CQI (Channel Quality Indication channel quality indicator), HARQ (Hybrid Automatic Repeat Request) feedback and SR (Scheduling Request Scheduling Request)
  • CQI Channel Quality Indication channel quality indicator
  • HARQ Hybrid Automatic Repeat Request
  • SR Service Request Scheduling Request
  • P O_PUCCH P O_NOMINAL_PUCCH + P O_UE_PUCCH
  • the open loop power parameter of P 0_PUCCH is affected by self-interference, which affects P PUCCH (i), after considering the self-interference compensation amount ⁇ SI
  • a similar P 0_PUCCH can also be carried by a variety of signaling. Therefore, ⁇ SI can be notified to the terminal by signaling carrying P O_NOMINAL_PUCCH or carrying P O_UE_PUCCH , or newly configured signaling. The purpose of compensating for the open loop power parameter is reached.
  • the base station when the neighbor base station of the full-duplex base station is also in the full-duplex mode, even if there is no self-interference, the base station receives more interference between the base stations than the half-duplex mode, thus causing the open loop power parameter in two cases. Differently, it is used for the uplink subframe when the half-pair uplink subframe or the base station works in the full-duplex mode.
  • the base station needs to notify the terminal of the two sets of open loop power parameters, and the terminal compensates the self-interference compensation amount on the open loop power parameter of the uplink subframe when the base station works in the full duplex mode.
  • the uplink open loop power parameter includes a first uplink open loop power parameter or a second uplink open loop power parameter, and in 310, the first device is configured according to the self interference compensation amount and the first uplink open loop power.
  • the parameter determines the uplink transmission power; or in 310, the first device determines the uplink transmission power according to the self-interference compensation amount and the second uplink open-loop power parameter.
  • the second device can configure two sets of uplink open loop power parameters for the first device, which are a first uplink open loop power parameter and a second uplink open loop power parameter, respectively.
  • the base station can determine the uplink transmission power according to different uplink open loop power parameters and self-interference compensation amount on different time-frequency resources.
  • the first device acquires power indication information sent by the second device, where the power indication information is used to indicate uplink transmission power.
  • the second device directly determines the uplink transmission power of the first device, and sends the uplink transmission power to the first device by using the power indication information, and the first device directly uses the uplink transmission power to send the uplink signal. No other calculations are required for the first device.
  • the power for transmitting the uplink signal on the full-duplex time-frequency resource is the power determined by the second device according to the self-interference compensation amount of the second device, where the uplink transmission power is based on the uplink open-loop power parameter of the first device.
  • the determined power of the sum of the self-interference compensation amounts of the second device is the power determined by the second device according to the self-interference compensation amount of the second device, where the uplink transmission power is based on the uplink open-loop power parameter of the first device.
  • the method of the embodiment of the present invention further includes: the first device acquiring information indicating the second power sent by the second device; and the first device working on the second time-frequency resource by using the second power
  • the second device in the half duplex mode transmits an uplink signal.
  • the second time-frequency resource may be a half-duplex time-frequency resource. It should be noted that when the full-duplex time-frequency resource is divided into subframes, the full-duplex time-frequency resource is equivalent to the full-duplex subframe (representing the same meaning). , Full-duplex time-frequency resources can be replaced with full-duplex subframes.
  • the half-duplex time-frequency resource indicates that the second device can only carry the uplink service or only the downlink service on the resource. Different from the full-duplex time-frequency resource, the second device can carry both the uplink service and the downlink service on the full-duplex time-frequency resource.
  • the power of the first device transmitting the uplink signal on the half-duplex time-frequency resource may be determined by the second device without determining the power determined by the self-interference compensation amount of the second device, and then the second device notifying the first device
  • the second uplink transmission power may be the power determined according to the uplink open loop power parameter of the first device.
  • the first device sends an uplink signal on the first time-frequency resource
  • the first device sends an uplink signal on the second time-frequency resource.
  • Two cases correspond to two different power adjustment parameters.
  • the first time-frequency resource may be a full-duplex time-frequency resource
  • the second resource may be a half-duplex time-frequency resource.
  • the base station may schedule a part of the subframes to be in full-duplex transmission, and still reserve part of the subframe resources for half-duplex uplink transmission. Since half-duplex uplink transmission and full-duplex transmission are subject to different interferences in uplink transmission, two sets of different power adjustment parameters are needed to separately handle power control of uplink transmission in half-duplex uplink transmission and full-duplex transmission. .
  • the uplink signal is sent to the second device by using the uplink transmission power on the full-duplex time-frequency resource; the first device sends the uplink signal to the second device by using the second power on the half-duplex time-frequency resource.
  • the interference level is completely different from that of a half-duplex sub-frame.
  • the full-duplex uplink subframe not only the interference of the self-interference signal residual amount but also the downlink interference of the neighbor station is also affected. Therefore, a set of power control parameters cannot be shared, and the self-interference residual offset is considered in the power control parameters on the full-duplex time-frequency resource.
  • the relay when the second device is a relay, in a possible case, the relay is in a state of transmitting data to the base station and receiving data from the terminal. If the terminal transmits the uplink data of the subframe resource, the relay part of the subframe is in the full duplex state, and some of the subframes are only in the half duplex state (the relay receiving terminal uplink signal). Since half-duplex uplink transmission and uplink transmission in full-duplex transmission are different in interference, the relay can use two different power adjustment parameters to separately handle uplink transmission in half-duplex uplink transmission and full-duplex transmission.
  • the power control of the first device sends the uplink signal to the second device by using the uplink transmission power on the full-duplex time-frequency resource; the first device sends the other uplink signal to the second device by using the second power on the half-duplex time-frequency resource.
  • the case where the relay is transmitting data to the user equipment and receiving data from the base station is similar to the above case, and is not described again to avoid repetition.
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the second device, where the first device and the third device are the first device and the third device that are determined by the second device.
  • the first device is the first terminal in the first terminal pair
  • the first terminal pair includes the first terminal and the second terminal
  • the first terminal pair is the terminal pair formed by the first terminal group and the second terminal group.
  • the terminal pair in the inter-terminal interference is less than the preset threshold, and the second terminal receives the downlink signal sent by the second device on the full-duplex time-frequency resource that sends the uplink signal to the second device.
  • the terminal sends an uplink control signal, or an uplink data signal, or an uplink sounding signal, in the half-duplex uplink transmission subframe, corresponding to the LTE system.
  • PUCCH, PUSCH, Sounding Rsference Signal (SRS) signal The base station will use the resource to schedule a part of the terminals in the first terminal group including the first device to be in the state of transmitting the uplink sounding signal, and the scheduling includes the third device in the second terminal group to receive the uplink sounding signal state.
  • the terminals in the second terminal group must have two different modulation modes, such as uplink use in LTE (single carrier frequency division multiple access ( Single-carrier Frequency-Division Multiple Access (SC-FDMA) modulation, and downlink uses Orthogonal Frequency Division Multiplexing (OFDM) modulation.
  • Terminals in the second terminal group need to have the capability of solving SC-FDMA modulation.
  • the receiving terminal (a part of the terminal in the second terminal group) measures the inter-terminal interference level from other terminals in the range of the second device. Therefore, the measurement of some terminals is arranged on the uplink resource, and the base station performs the auxiliary terminal.
  • the interference measurement carries the information of the SRS in the uplink detection signal, and the second device reserves the resource for reporting the inter-user interference information.
  • the device selects a pair of devices whose interference is less than the preset threshold.
  • the first device and the third device respectively transmit an uplink signal and a downlink signal on the same time-frequency resource.
  • the interference between the first device and the third device is a half-duplex uplink time-frequency resource measurement of the device in the downlink frequency band by the second device. of.
  • the base station or the relay in order to measure the self-interference residual condition, the base station or the relay must allocate a part of resources in the uplink frequency band as a half-duplex downlink resource for measuring the self-interference residual amount. And notify the terminal or base station and terminal. Consistent with the design in TDD, this downlink resource does not need to be in every frame. In order to reduce the handover of terminals or base stations and terminals in different frequency bands, the downlink frequency band will be downlinked. Source time division or frequency division channel for self-interference measurement and notification of self-interference compensation amount parameters.
  • the embodiment of the present invention further includes: receiving, by the first device, a first downlink signal that is sent by the second device on the full-duplex time-frequency resource according to the first transmit parameter, where the first transmit parameter Interacting interference between the adjacent devices of the second device and the second device is less than a preset interference threshold;
  • the first device receives a second downlink signal that is sent by the second device on the half-duplex time-frequency resource according to the second transmission parameter.
  • the second device may be a base station.
  • two sets of transmission parameters are used, including the first transmission parameter and the second transmission parameter.
  • the first transmission parameter may be used for the transmission parameter of the full-duplex device (the second device) operating in the full-duplex subframe, and the other is for the transmission parameter of the full-duplex device operating in the half-duplex subframe.
  • the transmission parameters may include parameters such as transmit power, antenna downtilt, propagation model, base station antenna height, and the like.
  • the base station may need to reserve part of the subframe for half-duplex downlink transmission.
  • the base station receives a large interference. Therefore, the base station needs to adopt different downlink parameters for the downlink and the half-duplex downlink subframe. .
  • the base station needs to calculate the maximum value of the transmit power, the downtilt angle through the cell spacing, the propagation model, and the base station antenna height, in order to reduce the interference of the inter-base station interference on the uplink data reception.
  • the above maximum value cannot be exceeded during full duplex subframe transmission.
  • the first device may send an uplink signal on a full-duplex time-frequency resource or a half-duplex time-frequency resource, and the first device may also be in another full-duplex time-frequency resource or half-duplex time.
  • the first device may send an uplink signal on a full-duplex time-frequency resource or a half-duplex time-frequency resource, but in another full-duplex time-frequency.
  • the device that receives the downlink signal of the second device on the resource or the half-duplex time-frequency resource may not be the first device, and is not limited to the other device.
  • the method of the embodiment of the present invention may further include:
  • the first downlink signal is a cell specific reference signal (CRS) sent by using the first transmission parameter, and the first device performs CRS correlation between the first device and the second device according to the CRS sent by using the first transmission parameter.
  • CRS cell specific reference signal
  • the second downlink signal is a CRS transmitted by using the second transmission parameter, and the first device adopts the second The CRS transmitted by the transmission parameter performs CRS-related measurements between the first device and the second device.
  • the first device performs CRS-related measurement between the first device and the second device according to the received cell-specific reference signal CRS sent by the second device by using the first transmission parameter; the first device receives the second The device uses the CRS transmitted by the second transmission parameter to perform CRS-related measurement between the first device and the second device.
  • the CRS Cell Specific Reference Signal
  • the downlink parameter used by the downlink signal of the second device in the half-duplex downlink subframe and the full-duplex subframe The related measurements cannot be made or smoothed in full-duplex sub-frames.
  • RSRP reference signal received power
  • RSRQ Reference Signal Received Qualify
  • the terminal performs path loss measurement by using the CRS sent by the base station, and the transmit power of the CRS is notified to the terminal through high-level signaling, and the terminal calculates the way according to the received CRS power and the power difference notified by the base station to the terminal. damage.
  • the base station may not have CRS in the full-duplex time-frequency resource, or the power used by the CRS and the power in the half-duplex time-frequency resource are different. If the measurements in the two types of sub-frames are smoothed between sub-frames, an estimation error will result. The situation is similar for RSRP and RSRQ. Therefore, the embodiment of the present invention measures CRS-related measurements on two different time-frequency resources (full-duplex time-frequency resources and half-duplex time-frequency resources), and does not perform smoothing between subframe sets.
  • the first device may send an uplink signal on a full-duplex time-frequency resource or a half-duplex time-frequency resource, and the first device may also be in another full-duplex time-frequency resource or half-duplex time-frequency.
  • the first device may send an uplink signal on a full-duplex time-frequency resource or a half-duplex time-frequency resource, but in another full-duplex time-frequency resource, as an example of receiving the downlink signal of the second device.
  • the device that receives the downlink signal of the second device on the half-duplex time-frequency resource may not be the first device, and may be another device that is scheduled to be downlink received by the base station, which is not limited in this embodiment of the present invention.
  • the CRS related measurement between the first device and the second device may be measured by the first device, and when the downlink signal of the second device is received by the other device, the CRS related by the other device is performed. measuring.
  • the first device is a device in the fourth device, where the fourth device includes at least one device, and the fourth device-to-inference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) is greater than a preset threshold.
  • SINR Signal to Interference plus Noise Ratio
  • the device that schedules the SINR greater than the preset threshold receives the downlink signal.
  • the SINR can pass the channel quality parameter reported by the terminal (Channel) Quality indication, CQI).
  • the base station adjusts the MCS (Modulation and coding scheme) level of the terminal through a channel quality indication (CQI) fed back by the terminal.
  • CQI channel quality indication
  • the base station works in full-duplex mode, some half-duplex terminals are in the receiving and transmitting states respectively, so inter-terminal interference may deteriorate the downlink receiving situation. If a terminal with a lower SINR is scheduled, the SINR is further deteriorated when the terminal is interfered by the terminal transmitting in the uplink, and the terminal cannot demodulate the downlink data. Therefore, selecting a larger SINR and lowering the modulation coding scheme (MCS) can play a role in preventing interference between users.
  • MCS modulation coding scheme
  • the second device may schedule a device with a power headroom (PH) greater than a preset margin threshold to send an uplink signal.
  • PH power headroom
  • the base station knows the PH of the terminal through an uplink power headroom report (PHR) fed back by the terminal.
  • PHR uplink power headroom report
  • the terminal can use the larger transmit power to transmit the uplink signal to compensate for the influence of self-interference.
  • the second device when scheduling the full-duplex subframe, may schedule the device to receive the downlink with the SINR being greater than the preset threshold or the channel quality indicator (CQI) being greater than the preset channel quality threshold. signal.
  • the second device may schedule the device whose PH is greater than the preset threshold to send the uplink signal.
  • FIG. 4 is a schematic flow chart of a method of transmitting a signal according to another embodiment of the present invention.
  • the method of FIG. 4 is performed by a second device, which is applied to the scenario of FIG. 1, the second device may be a base station, and the first device may be a user equipment.
  • the second device may be a relay, and the first device may be a base station or a user equipment.
  • FIG. 4 is a method of transmitting a signal according to an embodiment of the present invention described from the perspective of a second device
  • FIG. 3 is a transmission of an embodiment of the present invention described from the perspective of the first device.
  • the method of the signal, the method of transmitting the signal in FIG. 4 corresponds to the method of transmitting the signal in FIG. 3, and the description of the method of transmitting the signal in FIG. 4 can be referred to the description of the method for FIG. 3. To avoid repetition, the following is omitted as appropriate. A detailed description.
  • the method as shown in FIG. 4 includes:
  • the second device generates power indication information, where the power indication information is used by the first device according to the work.
  • the rate indication information determines the uplink transmission power for transmitting the uplink signal to the second device operating in the full duplex mode, the uplink transmission power is the power determined according to the self-interference compensation amount of the second device, or the uplink transmission power is the first device Maximum transmit power.
  • the second device sends power indication information to the first device.
  • the second device receives an uplink signal sent by the first device by using the uplink transmission power on the first time-frequency resource.
  • the second device is a full-duplex device having the capability of simultaneously transmitting and receiving signals at the same frequency.
  • the second device may be a base station or a relay or the like.
  • the first time-frequency resource may be a full-duplex time-frequency resource
  • the full-duplex time-frequency resource indicates that both the uplink service and the downlink service are carried on the resource at the same time.
  • the second device may also send a downlink signal to another device on the full-duplex time-frequency resource. That is to say, the second device can receive the uplink signal sent by the first device on the full-duplex time-frequency resource, and can also send a signal to another device.
  • a full-duplex device refers to a device having the capability of simultaneously transmitting and receiving signals at the same frequency.
  • a full-duplex device can have multiple working modes, such as a full-duplex mode and a half-duplex mode, and a full-duplex device. It can work in full-duplex mode, or it can be rolled back (switched) to half-duplex mode.
  • the full-duplex device can determine whether to work in full-duplex mode or half-duplex mode according to the system's interference, service, and user distribution.
  • the full-duplex device works in full-duplex mode and can be in two states.
  • One is full-duplex communication, and the corresponding resource is full-duplex time-frequency resource, that is, the full-duplex device is in full-duplex mode.
  • On the frequency resource the data is sent and the data is received.
  • the other type is full-duplex monitoring, and the corresponding resource is a half-duplex downlink resource, that is, the full-duplex device transmits data on the half-duplex downlink resource, and the receiving link only serves as a monitoring or measurement interference, and does not demodulate the received data.
  • the full-duplex device works in half-duplex mode, and the corresponding resource is a half-duplex time-frequency resource. The full-duplex device only transmits or receives signals on the half-duplex time-frequency resource.
  • the time-frequency resource may be a communication resource.
  • the time-frequency resource may refer to a communication resource having two dimensions of time and frequency.
  • the embodiment of the present invention does not limit the minimum unit of the time-frequency resource, for example, the time-frequency.
  • the minimum unit of resources may be subframes, frames, time slots, etc. in time, and may be RBs, subcarriers, REs, subbands, or entire operating bands, etc. in frequency.
  • the first device sends the signal to the second device by using the uplink transmission power
  • the uplink transmission power may be determined according to the self-interference compensation amount of the second device and the uplink open-loop power parameter of the first device.
  • the power is fixed.
  • the uplink open loop power parameter of the first device may be an open loop power of the PUCCH or an open loop power of the PUSCH.
  • the uplink transmission power may be the power determined by the second device according to the sum of the uplink open loop power parameter of the first device and the self-interference compensation amount of the second device, or may be determined by the first device according to the uplink of the first device.
  • the power determined by the sum of the open loop power parameter and the self-interference compensation amount of the second device, or the uplink transmit power is the maximum transmit power of the first device.
  • the power indication information indicating the uplink transmission power is generated by the second device, and the power indication information is sent to the first device, and the uplink sent by the first device by using the uplink transmission power on the first time-frequency resource is received. signal.
  • the embodiment of the present invention reduces the adverse effect of the self-interference residual amount of the second device on the uplink signal reception by using the self-interference compensation amount of the second device, or the first device sends the uplink signal by using the maximum transmit power to eliminate the second device.
  • the self-interference residual amount has an adverse effect on the uplink signal reception. Therefore, the embodiment of the present invention can eliminate or reduce the adverse effect of the self-interference residual amount of the second device on the uplink signal reception, improve the received signal-to-noise ratio of the uplink signal, and improve the network. performance.
  • the method for implementing the method further includes: determining, by the second device, a self-interference compensation amount of the second device,
  • the second device generates power indication information according to the self-interference compensation amount.
  • the second device determines the self-interference compensation amount of the second device according to the following formula
  • ⁇ SI represents the self-interference compensation amount
  • N the self-interference compensation amount
  • the second device first determines the self-interference compensation amount of the second device, and generates the success indication information according to the self-interference compensation amount, where the power indication information is used by the first device to determine, according to the power indication information, that the uplink signal is sent to the second device.
  • the uplink transmission power the second device receives the uplink signal sent by the first device by using the uplink transmission power.
  • the uplink transmission power is the sum of the uplink open loop power parameter of the first device and the self-interference compensation amount of the second device. Therefore, the first device adopts the uplink transmit power transmit signal to cancel or reduce the self-interference residual of the second device signal. Adverse effects on uplink signal reception.
  • the embodiment of the present invention determines the self-interference compensation amount of the second device by using the second device, generates power indication information according to the self-interference compensation amount, and sends power indication information to the first device, and finally receives the first device that uses the uplink transmission power to transmit.
  • Uplink signal The embodiment of the present invention reduces the self-interference residual amount of the second device by the self-interference compensation amount of the second device, which is disadvantageous to the uplink signal reception.
  • the effect is that the first device uses the maximum transmit power to send the uplink signal to eliminate the adverse effect of the self-interference residual amount of the second device on the uplink signal receiving. Therefore, the embodiment of the present invention can eliminate or reduce the self-interference residual amount of the second device.
  • the adverse effects of uplink signal reception can improve the received signal to noise ratio of the uplink signal and improve network performance.
  • the second device in 410, the second device generates power indication information according to the self-interference compensation amount, where the power indication information is used to indicate a self-interference compensation amount, so that the first device compensates according to the self-interference.
  • the amount and uplink open loop power parameters determine the uplink transmission power.
  • the base station can schedule all subframes (time-frequency resources) for full-duplex transmission. Therefore, the first device needs to increase self-interference compensation on the open-loop parameters in each uplink subframe. The amount is adjusted to adjust the uplink transmission power of the first device. Specifically, the first device increases the self-interference compensation amount based on the open-loop power parameters of each channel, such as the open-loop power of the PUCCH channel in LTE and the open-loop power of the PUSCH, that is, the uplink transmission power of the first device is The power determined by the sum of the uplink open loop power parameter of one device and the self-interference compensation amount of the second device.
  • the relay may schedule all subframes (time-frequency resources) for full-duplex transmission.
  • the first device is a user equipment, and the relay is transmitting downlink to the base station.
  • Signal the case where an uplink signal is received from a terminal.
  • the terminal increases the self-interference compensation amount on the open loop or closed loop parameters to adjust the uplink transmission power of the user equipment.
  • the first device increases the self-interference compensation amount based on the open-loop power parameters of each channel, such as the open-loop power of the PUCCH channel in LTE and the open-loop power of the PUSCH, that is, the uplink transmission power of the first device is the first.
  • the first device is a base station
  • the relay is in a situation of transmitting a downlink signal to the user equipment and receiving an uplink signal from the base station.
  • the base station increases the self-interference residual compensation amount of the relay on the open loop or closed loop parameters to adjust the uplink transmit power of the base station.
  • the base station increases the self-interference residual offset based on the open-loop power of the open-loop or closed-loop parameter PUCCH channel and the open-loop power of the PUSCH, that is, the uplink transmission power of the first device is an uplink open loop according to the first device.
  • the power determined by the sum of the power parameter and the self-interference compensation amount of the second device.
  • the uplink power control of LTE is based on open loop power control plus closed loop correction.
  • the power of the i subframe of the PUSCH is defined as
  • P CMAX,c (i) represents the maximum transmit power of the terminal
  • M PUSCH,c (i) represents the number of RBs allocated based on the uplink grant
  • P O_PUSCH,c (j) represents the open loop power parameter
  • ⁇ c (j) represents Path loss factor
  • PL c downlink path loss estimator ⁇ TF,c (i) transmission mode compensation amount
  • f c (i) indicates power control dynamic offset
  • the values of j are 0, 1, and 2, respectively, indicating uplink transmission based on semi-persistent scheduling, dynamic scheduling, and random access.
  • P O_PUSCH,c (1) P O_NOMINAL_PUSCH,c (1)+P O_UE_PUSCH,c (1)
  • P O_NOMINAL_PUSCH,c (j) is indicated by higher layer signaling, and the parameters of the specific cell are broadcast to the terminal.
  • P O_UE_PUSCH,c (j) is an item configured by RRC signaling for a specific UE.
  • P O_PRE and ⁇ PREAMBLE_Msg3 are high-level parameters for random access.
  • the transmit power formula is modified to
  • P O_NOMINAL_PUSCH, c (j) is broadcast to the terminal by higher layer signaling, P O_UE_PUSCH, c (j) is configured by RRC signaling to the terminal. Therefore ⁇ SI (j) can be signaled to the terminal by carrying P O_NOMINAL_PUSCH,c (j) or signaling carrying P O_UE_PUSCH,c (j), or newly configured signaling. The purpose of compensating for the open loop power parameter is reached.
  • the power of the i-subframe of the PUCCH is defined as
  • h(n CQI , n HARQ , n SR ) is a parameter according to the PUCCH format type, and is used for respectively transmitting CQI (Channel Quality Indication channel quality indicator), HARQ (Hybrid Automatic Repeat Request) feedback and SR (Scheduling Request Scheduling Request)
  • CQI Channel Quality Indication channel quality indicator
  • HARQ Hybrid Automatic Repeat Request
  • SR Service Request Scheduling Request
  • P O_PUCCH P O_NOMINAL_PUCCH + P O_UE_PUCCH
  • the open loop power parameter of P 0_PUCCH is affected by self-interference, which affects P PUCCH (i), after considering the self-interference compensation amount ⁇ SI
  • a similar P 0_PUCCH can also be carried by a variety of signaling. Therefore, ⁇ SI can be notified to the terminal by signaling carrying P O_NOMINAL_PUCCH or carrying P O_UE_PUCCH , or newly configured signaling. The purpose of compensating for the open loop power parameter is reached.
  • the base station when the neighbor base station of the full-duplex base station is also in the full-duplex mode, even if there is no self-interference, the base station receives more interference between the base stations than the half-duplex mode, thus causing the open loop power parameter in two cases. Differently, it is used for the uplink subframe when the half-pair uplink subframe or the base station works in the full-duplex mode.
  • the base station needs to notify the terminal of the two sets of open loop power parameters, and the terminal compensates the self-interference compensation amount on the open loop power parameter of the uplink subframe when the base station works in the full duplex mode.
  • the second device in 410, the second device generates power indication information according to the self-interference compensation amount, wherein the power indication information is used to indicate the uplink transmission power.
  • the second device directly determines the uplink transmission power of the first device, and sends the uplink transmission power to the first device by using the power indication information, and the first device directly uses the uplink transmission power to send the uplink signal. No other calculations are required for the first device.
  • the first device may send the uplink signal on the full-duplex time-frequency resource
  • the other device may send the uplink signal on the half-duplex time-frequency resource.
  • Two cases correspond to two different power parameters.
  • the power for transmitting the uplink signal on the full-duplex time-frequency resource is the power determined by the second device according to the self-interference compensation amount of the second device, where the uplink transmission power is the uplink open-loop power parameter of the first device and the first The sum of the self-interference compensation amounts of the two devices.
  • the power of the uplink signal transmitted on the half-duplex time-frequency resource may be determined by the second device without considering the power determined by the self-interference compensation amount of the second device, and then the second device informs the first device that the uplink transmission power may be the first device.
  • Uplink open loop power parameters are the parameters that are the parameters that are the parameters that are the parameters that are the parameters that are the parameters.
  • the second device receives the uplink signal sent by the first device by using the uplink transmission power on the full-duplex time-frequency resource;
  • the method of the embodiment of the present invention further includes: the second device generates information indicating the second power; and the second device sends the information indicating the second power to the first device, so as to work in the half duplex mode
  • the second device receives the other uplink signals sent by the first device by using the second power on the second time-frequency resource.
  • the first time-frequency resource may be a full-duplex time-frequency resource
  • the second time-frequency resource may be a half-duplex time-frequency resource
  • the base station may schedule a part of the subframes to be in full-duplex transmission, and still reserve part of the subframe resources for half-duplex uplink transmission. Since half-duplex uplink transmission and full-duplex transmission are subject to different interferences in uplink transmission, two sets of different power adjustment parameters are needed to separately handle power control of uplink transmission in half-duplex uplink transmission and full-duplex transmission. .
  • the uplink transmission power is used to transmit the uplink signal to the second device on the full-duplex time-frequency resource; the first device sends the uplink signal to the second device by using the second power on the half-duplex time-frequency resource.
  • the interference level is completely different from that of a half-duplex sub-frame.
  • the full-duplex uplink subframe not only the interference of the self-interference signal residual amount but also the downlink interference of the neighbor station is also affected. Therefore, a set of power control parameters cannot be shared, and the self-interference residual offset is considered in the power control parameters on the full-duplex time-frequency resource.
  • the relay when the second device is a relay, in a possible case, the relay is in a state of transmitting data to the base station and receiving data from the terminal. If the terminal transmits the uplink data of the subframe resource, the relay part of the subframe is in the full duplex state, and some of the subframes are only in the half duplex state (the receiving terminal uplink data). Since half-duplex uplink transmission and full-duplex transmission have different interferences for uplink transmission, two sets of different power adjustment parameters can be used to separately handle power control of uplink transmission in half-duplex uplink transmission and full-duplex transmission.
  • the uplink transmission power is used to transmit the uplink signal to the second device on the full-duplex time-frequency resource; the first device sends the other uplink signal to the second device by using the second power on the half-duplex time-frequency resource.
  • the case where the relay is transmitting data to the user equipment and receiving data from the base station is similar to the above case, and is not described again to avoid repetition.
  • the method is applied to the uplink frequency band in the FDD system, and before the second device determines the self-interference compensation amount of the second device, the method of the embodiment of the present invention further includes:
  • the second device sets a half-duplex downlink time-frequency resource in the uplink frequency band, and the half-duplex downlink time-frequency resource is used to measure the self-interference compensation amount of the second device.
  • the base station or relay In order to measure the self-interference residual condition, the base station or relay must add half-duplex downlink resources in the uplink frequency band to measure the self-interference residual amount. And notify the terminal or base station and terminal. And TDD The design is consistent, and this downlink resource does not need to be available for every frame.
  • the downlink resource in the uplink frequency band is time-divided or frequency-divided for the self-interference measurement and the channel for reporting the self-interference residual parameter.
  • the base station and the terminal have the receiving capability in the FDD uplink frequency band. Further, in view of the low-cost design consideration of the terminal, the terminal is in a half-duplex working mode in the FDD uplink frequency band. Therefore, the uplink and downlink switching time is reserved.
  • the period of the half-duplex downlink time-frequency resource is set to be greater than or equal to one radio frame in the uplink frequency band of the FDD uplink frequency band.
  • not half-duplex downlink time-frequency resources are set in the frames in the uplink frequency band of each FDD uplink frequency band.
  • the half-duplex downlink time-frequency resource may be set on each frame in the uplink frequency band of the FDD uplink frequency band or the half-duplex downlink time-frequency resource may be set in several frames.
  • the base station or the relay in order to measure the self-interference residual condition, the base station or the relay must allocate a part of resources in the uplink frequency band as a half-duplex downlink resource for measuring the self-interference residual amount. And notify the terminal or base station and terminal. Consistent with the design in TDD, this downlink resource does not need to be used in every frame.
  • the downlink resources in the uplink frequency band are time-division or frequency-separated for self-interference measurement and The channel that informs the self-interference compensation amount parameter.
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the second device, where the first device and the third device are the first device and the third device that are determined by the second device.
  • the first device is the first terminal in the first terminal pair
  • the first terminal pair includes the first terminal and the second terminal
  • the first terminal pair is the terminal pair formed by the first terminal group and the second terminal group.
  • the terminal pair in the inter-terminal interference is less than the preset threshold, and the second terminal receives the downlink signal sent by the second device on the full-duplex time-frequency resource that sends the uplink signal to the second device.
  • the terminal sends an uplink control signal, or an uplink data signal, or an uplink sounding signal, in the half-duplex uplink transmission subframe, corresponding to the LTE system.
  • the base station will use the resource to schedule a part of the terminals in the first terminal group including the first device to be in the state of transmitting the uplink sounding signal, and the scheduling includes the third device in the second terminal group to receive the uplink sounding signal state.
  • the terminals in the second terminal group must have two different modulation modes, such as SC-FDMA modulation in uplink and OFDM modulation in downlink. .
  • the terminal in the second terminal group needs to have a solution The ability of SC-FDMA modulation.
  • the terminal at the receiving end (a part of the terminals in the second terminal group) measures the inter-terminal interference level from other terminals within the range of the second device. Therefore, the measurement of the terminal is arranged on the uplink resource, and the base station carries the information for transmitting the SRS in the uplink sounding signal, and the second device reserves the resource for reporting the interference information between the users.
  • the base station selects a pair of devices (the first device and the third device) whose interference is less than the preset threshold, respectively, to send the uplink signal and the downlink signal on the same time-frequency resource.
  • the method further includes: applying, by the second device, a half-duplex uplink time-frequency resource in a downlink frequency band, and using a half-duplex uplink time-frequency resource for measuring, in the downlink frequency band in the FDD system. Interference between the first device and the third device.
  • the second device when the second device is a base station, it is applied to the downlink frequency band in the FDD system, and the second device needs to set a half-duplex uplink time-frequency resource in the downlink frequency band, and the half-duplex uplink time-frequency resource is used to measure the first device. Interference with the third device. The second device determines that the interference between the first device and the third device is less than a preset threshold, and then the second device receives, on the full-duplex time-frequency resource, the uplink signal sent by the first device by using the uplink transmission power, in the full duplex. The downlink signal sent by the time-frequency resource to the third device second device.
  • the embodiment of the present invention further includes:
  • the second device sends the first downlink signal on the full-duplex time-frequency resource according to the first transmission parameter, where the first transmission parameter is that the interference between the adjacent device of the second device and the second device is less than the preset interference threshold;
  • the second device sends the second downlink signal on the half-duplex time-frequency resource according to the second transmission parameter.
  • the second device may be a base station.
  • two sets of transmission parameters are used, including the first transmission parameter and the second transmission parameter.
  • the first transmission parameter may be used for the transmission parameter of the full-duplex device (the second device) operating in the full-duplex subframe, and the other is for the transmission parameter of the full-duplex device operating in the half-duplex subframe.
  • the transmission parameters may include parameters such as transmit power, antenna downtilt, propagation model, base station antenna height, and the like.
  • the base station may need to reserve part of the subframe for half-duplex downlink transmission.
  • the base station receives a large interference. Therefore, the base station needs to adopt different downlink parameters for the downlink and the half-duplex downlink subframe. .
  • the base station needs to calculate the maximum value of the transmit power, the downtilt angle through the cell spacing, the propagation model, and the base station antenna height, in order to reduce the interference of the inter-base station interference on the uplink data reception.
  • the above maximum value cannot be exceeded during full duplex subframe transmission.
  • the first device may send an uplink signal on a full-duplex time-frequency resource or a half-duplex time-frequency resource, and the first device may also be in another full-duplex time-frequency resource or half-duplex time.
  • the first device may send an uplink signal on a full-duplex time-frequency resource or a half-duplex time-frequency resource, but in another full-duplex time-frequency.
  • the device that receives the downlink signal of the second device on the resource or the half-duplex time-frequency resource may not be the first device, and is not limited to the other device.
  • the method of the embodiment of the present invention may further include:
  • the second device determines a fourth device whose SINR is greater than a preset threshold or whose CQI is greater than a preset channel quality threshold, the fourth device includes at least one device, and the second device determines a fifth device whose PH is greater than a preset margin threshold, where the fifth device includes At least one device; the second device receives the uplink signal sent by the fifth device on the full-duplex time-frequency resource;
  • the second device sends the first downlink signal on the full-duplex time-frequency resource according to the first transmission parameter, where the second device sends the at least one of the fourth device to the full-duplex time-frequency according to the first transmission parameter.
  • the device sends the first downlink signal.
  • the fifth device may be the same device as the first device, or may be a different device, which is not limited by the embodiment of the present invention.
  • the device that schedules the SINR greater than the preset threshold receives the downlink signal.
  • the second device may schedule, when scheduling the full-duplex subframe, the fifth device that sends the PH to be greater than the preset threshold to send the uplink signal.
  • the base station knows the PH of the terminal through the PHR fed back by the terminal. When the PH is high, the terminal can use the larger transmit power to transmit the uplink signal to compensate for the influence of self-interference.
  • the second device when the second device schedules a full-duplex subframe, the second device may schedule a downlink signal to be received by a device whose SINR is greater than a preset threshold or whose CQI is greater than a preset channel quality threshold.
  • the second device may also schedule any device to receive the downlink signal.
  • FIG. 5 is a schematic block diagram of an apparatus for transmitting signals in accordance with one embodiment of the present invention.
  • the device 500 shown in FIG. 5 in the scenario of FIG. 1 is a user equipment, and the second device is a base station.
  • the device 500 shown in FIG. 5 in the scenario of FIG. 2 is a base station or a user equipment, and the second device is a relay.
  • the device 500 shown in FIG. 5 includes a determining unit 510 and a first transmitting unit 520.
  • the determining unit 510 determines the uplink transmission power; the first sending unit 520 sends the uplink signal to the second device operating in the full-duplex mode on the first time-frequency resource by using the uplink transmission power, where the uplink transmission power is based on The power determined by the self-interference compensation amount of the second device, or the uplink transmission power is the maximum transmission power of the first device.
  • the device that transmits the signal uses the uplink transmission power to be determined according to the self-interference compensation amount of the second device, or the uplink transmission power is the maximum transmission power of the device to work in the full-duplex mode.
  • the second device sends the uplink signal.
  • the embodiment of the present invention reduces the adverse effect of the self-interference residual amount of the second device on the uplink signal reception by using the self-interference compensation amount of the second device, or the device sends the uplink signal by using the maximum transmit power.
  • the adverse effect of the self-interference residual amount of the second device on the uplink signal reception is eliminated. Therefore, the embodiment of the present invention can eliminate or reduce the adverse effect of the self-interference residual amount of the second device on the uplink signal reception, and can improve network performance.
  • the determining unit 510 acquires the power indication information sent by the second device, where the power indication information is used to indicate the self-interference compensation amount of the second device, and is determined according to the self-interference compensation amount and the uplink open-loop power parameter. Uplink transmission power.
  • the uplink open loop power parameter includes a first uplink open loop power parameter or a second uplink open loop power parameter
  • the determining unit 510 determines the uplink according to the self interference compensation amount and the first uplink open loop power parameter.
  • the transmission power, or determining unit 510 determines the uplink transmission power according to the self-interference compensation amount and the second uplink open-loop power parameter.
  • the determining unit 510 acquires power indication information sent by the second device, where the power indication information is used to indicate uplink transmission power.
  • the device further includes: an acquiring unit, configured to acquire information indicating the second power sent by the second device, and a second sending unit, configured to use the second time resource on the second time-frequency resource The power sends an uplink signal to the second device operating in the half-duplex mode.
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the second device, where the device and the third device are interferences between the device and the third device that are determined by the second device.
  • the interference between the device and the third device is measured by the half-duplex uplink time-frequency resource set by the second device in the downlink frequency band.
  • the device further includes: a first measurement unit, configured to perform CRS-related measurement between the device and the second device according to the received CRS sent by the second device by using the first transmission parameter; And a second measuring unit, configured to perform CRS-related measurement between the device and the second device according to the received CRS sent by the second device by using the second transmitting parameter.
  • a first measurement unit configured to perform CRS-related measurement between the device and the second device according to the received CRS sent by the second device by using the first transmission parameter
  • a second measuring unit configured to perform CRS-related measurement between the device and the second device according to the received CRS sent by the second device by using the second transmitting parameter.
  • the self-interference compensation amount is determined by the second device according to the following formula:
  • ⁇ SI represents the self-interference compensation amount
  • N the self-interference compensation amount
  • the device 500 shown in FIG. 5 can implement the processes performed by the first device in the methods shown in FIG. 3 and FIG. 4 .
  • the device 500 shown in FIG. 5 can implement the processes performed by the first device in the methods shown in FIG. 3 and FIG. 4 .
  • the description of the method shown in FIG. 3 and FIG. 4 I won't go into details here.
  • FIG. 6 is a schematic block diagram of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • the device 600 shown in FIG. 6 in the scenario of FIG. 1 is a base station, and the first device is a user equipment.
  • the device 600 shown in FIG. 6 in the scenario of FIG. 2 is a relay, and the first device is a base station or a user equipment.
  • the device 600 shown in FIG. 6 includes a first generating unit 610, a first transmitting unit 620, and a first receiving unit 630.
  • the first generating unit 610 generates power indication information, where the power indication information is used by the first device to determine, according to the power indication information, the uplink transmission power for transmitting the uplink signal to the device operating in the full duplex mode, where the uplink transmission power is based on The power determined by the self-interference compensation amount of the device, or the uplink transmission power is the maximum transmission power of the first device; the first sending unit 620 sends the power indication information to the first device; the first receiving unit 630 receives the uplink transmission power of the first device.
  • the power indication information indicating the uplink transmission power is generated by the device, and the power indication information is sent to the first device, and the uplink signal sent by the first device by using the uplink transmission power on the first time-frequency resource is received.
  • the embodiment of the present invention reduces the adverse effect of the self-interference residual amount of the device on the uplink signal reception by using the self-interference compensation amount of the device, or the first device uses the maximum transmit power to transmit the uplink signal to eliminate the self-interference residual amount of the second device.
  • Uplink signal reception The adverse effects of the present invention can eliminate or reduce the adverse effect of the self-interference residual amount of the second device on the uplink signal reception, and can improve the network performance.
  • the method further includes: a first determining unit, configured to determine a self-interference compensation amount of the device; wherein the first generating unit 610 generates power indication information according to the self-interference compensation amount.
  • the device for transmitting a signal determines the self-interference compensation amount of the device, generates power indication information according to the self-interference compensation amount, and sends power indication information to the first device, and finally receives the uplink sent by the first device by using the uplink transmission power. signal.
  • the embodiment of the present invention reduces the adverse effect of the self-interference residual amount on the uplink signal reception by the self-interference compensation amount of the device that transmits the signal, or the first device uses the maximum transmission power to transmit the uplink signal to eliminate the self-interference residual amount of the device.
  • the adverse effect of the signal reception therefore, the embodiment of the present invention can eliminate or reduce the adverse effect of the self-interference residual amount of the device on the uplink signal reception, and can improve the network performance.
  • the first generating unit 610 generates power indication information according to the self-interference compensation amount, where the power indication information is used to indicate the self-interference compensation amount, so that the first device according to the self-interference compensation amount and the uplink
  • the open loop power parameter determines the uplink transmit power.
  • the first generating unit 610 generates power indication information according to the self-interference compensation amount, wherein the power indication information is used to indicate the uplink transmission power.
  • the device further includes: a second generating unit, configured to generate information indicating the second power; and a second sending unit, configured to send information indicating the second power to the first device, so that The device operating in the half-duplex mode receives other uplink signals sent by the first device by using the second power on the second time-frequency resource.
  • a second generating unit configured to generate information indicating the second power
  • a second sending unit configured to send information indicating the second power to the first device, so that The device operating in the half-duplex mode receives other uplink signals sent by the first device by using the second power on the second time-frequency resource.
  • the device is further configured to: in the uplink frequency band of the FDD system, the device further includes: a first setting unit, configured to set a half-duplex downlink time-frequency resource in the uplink frequency band, and a half-duplex downlink time The frequency resource is used to measure the self-interference compensation amount of the second device.
  • a first setting unit configured to set a half-duplex downlink time-frequency resource in the uplink frequency band, and a half-duplex downlink time The frequency resource is used to measure the self-interference compensation amount of the second device.
  • the period of setting the half-duplex downlink time-frequency resource in the uplink frequency band is greater than or equal to one radio frame.
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the device, where the interference between the first device and the third device that is predetermined by the device is less than A pair of devices with preset thresholds.
  • the device is further configured to: in a downlink frequency band in the FDD system, the device further includes: a second setting unit, configured to set a half-duplex uplink time-frequency resource in the downlink frequency band, and a half-duplex uplink time The frequency resource is used to measure interference between the first device and the third device.
  • a second setting unit configured to set a half-duplex uplink time-frequency resource in the downlink frequency band, and a half-duplex uplink time The frequency resource is used to measure interference between the first device and the third device.
  • the device further includes: a third sending unit, configured to send, according to the first transmit parameter, the first downlink signal on the full-duplex time-frequency resource, where the first transmit parameter is The interference between the two devices and the adjacent devices of the second device is less than the preset interference threshold.
  • the fourth sending unit is configured to send the second downlink signal on the half-duplex time-frequency resource according to the second transmission parameter.
  • the device further includes: a second determining unit, configured to determine a fourth device that has a SINR greater than a preset threshold or a CQI greater than a preset channel quality threshold, where the fourth device includes at least one device; a third determining unit, configured to determine a fifth device whose PH is greater than a preset threshold, the fifth device includes at least one device, and the second receiving unit is configured to receive, by using the full-duplex time-frequency resource, the uplink signal sent by the fifth device The third sending unit sends the first downlink signal to the at least one device in the fourth device on the full duplex time frequency according to the first transmitting parameter.
  • a second determining unit configured to determine a fourth device that has a SINR greater than a preset threshold or a CQI greater than a preset channel quality threshold, where the fourth device includes at least one device
  • a third determining unit configured to determine a fifth device whose PH is greater than a preset threshold, the fifth device includes at least one device
  • the first determining unit 610 determines the self-interference compensation amount of the second device according to the following formula.
  • ⁇ SI represents the self-interference compensation amount
  • N the self-interference compensation amount
  • the device 600 shown in FIG. 6 can implement the processes performed by the second device in the methods shown in FIG. 3 and FIG. 4 .
  • the device 600 shown in FIG. 6 can implement the processes performed by the second device in the methods shown in FIG. 3 and FIG. 4 .
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • the device 700 shown in FIG. 7 in the scenario of FIG. 1 is a user equipment, and the second device is a base station.
  • the device 700 shown in FIG. 7 in the scenario of FIG. 2 is a base station or a user equipment, and the second device is a relay.
  • the device 700 shown in FIG. 7 includes a processor 710, a memory 720, a bus system 730, and a transceiver 740.
  • the processor 710 calls the code stored in the memory 720 through the bus system 730 to determine the uplink transmission power; the transceiver 740 uses the uplink transmission power to the second device operating in the full-duplex mode on the first time-frequency resource.
  • the uplink signal is sent, where the uplink transmission power is the power determined according to the self-interference compensation amount of the second device, or the uplink transmission power is the maximum transmission power of the first device.
  • the device that transmits the signal uses the uplink transmission power to be determined according to the self-interference compensation amount of the second device, or the uplink transmission power is the maximum transmission power of the device to work in the full-duplex mode.
  • the second device sends the uplink signal, because the self-interference residual amount of the second device is reduced by the self-interference compensation amount of the second device in the embodiment of the present invention.
  • the adverse effect of the receiving of the number, or the device transmitting the uplink signal by using the maximum transmitting power to eliminate the adverse effect of the self-interference residual amount of the second device on the uplink signal receiving. Therefore, the embodiment of the present invention can eliminate or reduce the self-interference residual of the second device.
  • the adverse effect of the amount on the uplink signal reception can improve network performance.
  • Processor 710 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in a form of software.
  • the processor 710 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (English Field Programmable Gate Array). , referred to as FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc. In the mature storage medium of the field.
  • the storage medium is located in the memory 720.
  • the processor 710 reads the information in the memory 720 and completes the steps of the foregoing method in combination with hardware.
  • the bus system 730 may include a power bus, a control bus, and a status signal bus in addition to the data bus. Wait. However, for clarity of description, various buses are labeled as bus system 730 in the figure.
  • the processor 710 acquires the power indication information sent by the second device, where the power indication information is used to indicate the self-interference compensation amount of the second device, and is determined according to the self-interference compensation amount and the uplink open-loop power parameter. Uplink transmission power.
  • the uplink open loop power parameter includes a first uplink open loop power parameter or a second uplink open loop power parameter
  • the processor 710 determines the uplink according to the self interference compensation amount and the first uplink open loop power parameter.
  • the power is transmitted, or the processor 710 determines the uplink transmission power according to the self-interference compensation amount and the second uplink open-loop power parameter.
  • the processor 710 acquires power indication information sent by the second device, where the power indication information is used to indicate uplink transmission power.
  • the transceiver 740 acquires information indicating the second power sent by the second device, and sends the second power to the second device working in the half duplex mode by using the second power on the second time-frequency resource. Uplink signal.
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the second device, where the device and the third device are interferences between the device and the third device that are determined by the second device.
  • the interference between the device and the third device is measured by the half-duplex uplink time-frequency resource set by the second device in the downlink frequency band.
  • the processor 710 performs CRS-related measurement between the device and the second device according to the received CRS sent by the second device by using the first transmission parameter; and performs CSR according to the received CRS sent by the second device by using the second transmission parameter. Measurement of CRS related between two devices.
  • the self-interference compensation amount is determined by the second device according to the following formula:
  • ⁇ SI represents the self-interference compensation amount
  • N the self-interference compensation amount
  • the device 700 shown in FIG. 7 corresponds to the device 500 shown in FIG. 5, and the processes performed by the first device in the methods shown in FIG. 3 and FIG. 4 can be implemented. For details, refer to FIG. 3 and FIG. The description of the method is not repeated here to avoid repetition.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • the device 800 shown in FIG. 8 in the scenario of FIG. 1 is a base station, and the first device is a user equipment.
  • the device 800 shown in FIG. 8 in the scenario of FIG. 2 is used as a relay, and the first device is a base station or a user equipment.
  • the device 800 as shown in FIG. 8 includes a processor 810, a memory 820, a bus system 830, and a transceiver 840.
  • the processor 810 calls the code stored in the memory 820 by the bus system 830 to generate power indication information, where the power indication information is used by the first device to determine, according to the power indication information, to send an uplink signal to the device operating in the full duplex mode.
  • the uplink transmission power, the uplink transmission power is the power determined according to the self-interference compensation amount of the device, or the uplink transmission power is the maximum transmission power of the first device;
  • the transceiver 840 transmits the power indication information to the first device;
  • the transceiver 840 receives the first A device uses an uplink signal transmitted by the uplink transmission power on the first time-frequency resource.
  • the power indication information indicating the uplink transmission power is generated by the device, and the power indication information is sent to the first device, and the uplink signal sent by the first device by using the uplink transmission power on the first time-frequency resource is received.
  • the embodiment of the present invention reduces the adverse effect of the self-interference residual amount of the device on the uplink signal reception by using the self-interference compensation amount of the device, or the first device uses the maximum transmit power to send the uplink signal to eliminate the self-interference residual amount of the device.
  • the adverse effect of the signal reception therefore, the embodiment of the present invention can eliminate or reduce the adverse effect of the self-interference residual amount of the second device on the uplink signal reception, and can improve the network performance.
  • Processor 810 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the processor 810 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (English Field Programmable Gate Array). , referred to as FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc. In the mature storage medium of the field.
  • the storage medium is located in the memory 820.
  • the processor 810 reads the information in the memory 820 and completes the steps of the foregoing method in combination with hardware.
  • the bus system 830 may include a power bus, a control bus, and a status signal bus in addition to the data bus. Wait. However, for clarity of description, various buses are labeled as bus system 830 in the figure.
  • the processor 810 determines a self-interference compensation amount of the device; wherein the first generation unit 610 generates power indication information according to the self-interference compensation amount.
  • the device for transmitting a signal determines the self-interference compensation amount of the device, generates power indication information according to the self-interference compensation amount, and sends power indication information to the first device, and finally receives the uplink sent by the first device by using the uplink transmission power. signal.
  • the embodiment of the present invention reduces the adverse effect of the self-interference residual amount on the uplink signal reception by the self-interference compensation amount of the device transmitting the signal.
  • the first device uses the maximum transmit power to transmit the uplink signal to eliminate the adverse effect of the self-interference residual amount of the device on the uplink signal receiving. Therefore, the embodiment of the present invention can eliminate or reduce the self-interference residual amount of the device to receive the uplink signal. Adverse effects can improve network performance.
  • the processor 810 generates power indication information according to the self-interference compensation amount, where the power indication information is used to indicate the self-interference compensation amount, so that the first device opens the ring according to the self-interference compensation amount and the uplink.
  • the power parameter determines the uplink transmission power.
  • the processor 810 generates power indication information according to the self-interference compensation amount, wherein the power indication information is used to indicate the uplink transmission power.
  • the transceiver 840 receives the uplink signal sent by the first device by using the uplink transmission power on the full-duplex time-frequency resource; the processor 810 generates the information indicating the second power; the transceiver 840 A device sends information indicating the second power, so that the device operating in the half-duplex mode receives other uplink signals sent by the first device by using the second power on the second time-frequency resource.
  • the processor 810 sets a half-duplex downlink time-frequency resource in the uplink frequency band, and the half-duplex downlink time-frequency resource is used to measure the second device. Self-interference compensation amount.
  • the period of setting the half-duplex downlink time-frequency resource in the uplink frequency band is greater than or equal to one radio frame.
  • the first time-frequency resource is used by the third device to receive the downlink signal sent by the device, where the interference between the first device and the third device that is predetermined by the device is less than A pair of devices with preset thresholds.
  • the processor 810 sets a half-duplex uplink time-frequency resource in the downlink frequency band, and the half-duplex uplink time-frequency resource is used to measure the first device and Interference between the third device.
  • the transceiver 840 sends the first downlink signal on the full-duplex time-frequency resource according to the first transmit parameter, where the first transmit parameter causes the second device to be adjacent to the second device.
  • the interference between the two is less than the preset interference threshold; the transceiver 840 transmits the second downlink signal on the half-duplex time-frequency resource according to the second transmission parameter.
  • the processor 810 is configured to determine a fourth device that has a SINR greater than a preset threshold or a CQI greater than a preset channel quality threshold, the fourth device includes at least one device, and the processor 810 determines that the PHR is greater than a preset. a fifth device having a margin threshold, the fifth device including at least one device
  • the transceiver 840 receives the uplink signal sent by the fifth device on the full-duplex time-frequency resource.
  • the transceiver 840 sends the first signal to the at least one device in the fourth device according to the first transmission parameter.
  • a downlink signal is configured to determine a fourth device that has a SINR greater than a preset threshold or a CQI greater than a preset channel quality threshold, the fourth device includes at least one device, and the processor 810 determines that the PHR is greater than a preset. a fifth device having a margin threshold, the fifth device including at least one device
  • the transceiver 840 receives the uplink signal sent
  • the processor 810 determines the self-interference compensation amount of the second device according to the following formula.
  • ⁇ SI represents the self-interference compensation amount
  • N the self-interference compensation amount
  • the device 800 shown in FIG. 8 corresponds to the device 600 shown in FIG. 6 , and can implement various processes performed by the second device in the methods shown in FIG. 3 and FIG. 4 .
  • the description of the method is not repeated here to avoid repetition.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and root According to A, B can be determined.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes computer storage media and Communication medium, wherein the communication medium includes any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • the desired program code and any other medium that can be accessed by the computer may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Abstract

本发明实施例提供了一种传输信号的方法和设备,该方法包括第一设备确定上行传输功率;所述第一设备采用所述上行传输功率在第一时频资源上向工作在全双工模式下的第二设备发送上行信号,其中,所述上行传输功率是根据所述第二设备的自干扰补偿量确定的功率,或者所述上行传输功率为所述第一设备的最大发送功率。由于本发明实施例通过第二设备的自干扰补偿量来降低第二设备的自干扰残留量对上行信号接收的不利影响,或第一设备采用最大发送功率发送上行信号来消除第二设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低第二设备的自干扰残留量对上行信号接收的不利影响,能够提升网络性能。

Description

一种传输信号的方法和设备 技术领域
本发明涉及通信领域,特别涉及一种传输信号的方法和设备。
背景技术
目前蜂窝通信系统采用频分双工(Frequency division duplex,FDD)和时分双工(Time division duplex,TDD)两种方式。FDD是在分离的两个成对(pair)信道上进行接收和发送,并且用保护频段来分离上行(Uplink,终端发送,基站接收)和下行(downlink,基站发送,终端接收)信道。TDD是通过不同上下行配比实现在相同的频率资源上的不同子帧进行上下行传输。目前无线频谱越来越紧张,而且业务也灵活多变。FDD和TDD的缺点越来越突显,FDD需要成对频谱,并且上下行资源一样多,使得频谱划分较为困难,对于非对称业务,上行资源可能利用不充分。TDD在组网的时候,同频网络为了避免上下行干扰,必须采用相同配比,使得上下行资源不能完全按照小区的业务配置。为了解决FDD和TDD的缺点,FDD和TDD也不断演进。一种方式是在TDD的频段实现上下行灵活配置,通过控制小区间的干扰提高网络吞吐量。另一种方法FDD上行频段中也划分部分上行资源,匹配更多样的业务类型。
近年来,由斯坦福大学,莱斯大学等提出一种单信道全双工技术(single channel full duplex),也被称为同时同频收发技术(transmit and receive at the same time on the same frequency)或者无线全双工技术。无线全双工技术不同于现有的FDD或TDD技术,实现了在同一频段上同时发送和接收数据。在相同无线信道上同时进行接收与发送操作,理论上无线全双工技术的频谱效率是FDD或TDD技术的两倍。如果将全双工技术引入蜂窝网络,可以成为解决FDD和TDD缺点的另一种方法,因此具有很重要的意义。
然而,由于无线信号在无线信道中的衰减非常大,与全双工设备自身的发射信号相比,来自通信对端的上行信号到达接收端(全双工设备)时信号已非常微弱,例如,移动蜂窝通信系统中一个通信节点的收发信号功率差达到80dB~140dB甚至更大,因此,全双工设备存在的发射信号对接收信号的自干扰,即使现有技术采取了全双工设备的自干扰消除的措施,但是现有技 术无法完全消除全双工设备的自干扰,仍然存在自干扰残留。全双工引入蜂窝网络中会在现在的FDD或TDD系统上,自干扰残留问题仍然存在,对全双工设备接收的上行信号造成很大影响,造成上行信号的接收信号噪声比下降。因此,希望提供一种技术,能够消除或降低全双工系统中的自干扰残留对上行信号接收的不利影响。
发明内容
本发明实施例提供了一种传输信号的方法和设备,能够消除或降低全双工系统中的干扰。
第一方面,提供了一种传输信号的方法,包括:第一设备确定上行传输功率;该第一设备采用该上行传输功率在第一时频资源上向工作在全双工模式下的第二设备发送上行信号,其中,该上行传输功率是根据该第二设备的自干扰补偿量确定的功率,或者该上行传输功率为该第一设备的最大发送功率。
结合第一方面,在第一种可能的实现方式中,该第一设备确定上行传输功率,包括:该第一设备获取该第二设备发送的功率指示信息,该功率指示信息用于指示该第二设备的自干扰补偿量;该第一设备根据该自干扰补偿量和上行开环功率参数确定该上行传输功率。
结合第一种可能的实现方式,在第二种可能的实现方式中,该上行开环功率参数包括第一上行开环功率参数或第二上行开环功率参数,其中,该第一设备根据该自干扰补偿量和上行开环功率参数确定该上行传输功率,包括:该第一设备根据该自干扰补偿量和第一上行开环功率参数确定该上行传输功率,或者该第一设备根据该自干扰补偿量和第二上行开环功率参数确定该上行传输功率,包括:该第一设备根据该自干扰补偿量和该第二上行开环功率参数确定该上行传输功率。
结合第一方面、第一至第二种可能的实现方式中的任一种可能的实现方式,在第三种可能的实现方式中,该方法还包括:该第一设备获取该第二设备发送的指示第二功率的信息;该第一设备在第二时频资源上采用该第二功率向工作在半双工模式下的该第二设备发送上行信号。
结合第一方面、第一至第三种可能的实现方式中的任一种可能的实现方式,在第四种可能的实现方式中,该第一设备为基站或用户设备,该第二设 备为中继。
结合第一方面、第一至第三种可能的实现方式中的任一种可能的实现方式,在第五种可能的实现方式中,该第一设备为用户设备,该第二设备为基站。
结合第五种可能的实现方式,在第六种可能的实现方式中,该第一时频资源用于第三设备接收该第二设备发送的下行信号,该第一设备和该第三设备是该第二设备预先确定的该第一设备和该第三设备间的干扰小于预设阈值的一对设备。
结合第六种可能的实现方式,在第七种可能的实现方式中,应用于FDD系统中的下行频段中,该第一设备和该第三设备之间的干扰是通过该第二设备在该下行频段中设置的半双工上行时频资源测量的。
结合第一方面、第一至第七种可能的实现方式中的任一种可能的实现方式,在第八种可能的实现方式中,还包括:该第一设备根据接收到的该第二设备采用第一发射参数发送的小区特定参考信号CRS进行该第一设备与该第二设备间与CRS相关的测量;该第一设备根据接收到的该第二设备采用第二发射参数发送的CRS进行该第一设备与该第二设备间与CRS相关的测量。
结合第一方面、第一至第八种可能的实现方式中的任一种可能的实现方式,在第九种可能的实现方式中,该自干扰补偿量由该第二设备根据以下公式确定的:
ΔSI=10*log10(N+1)dB
其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
第二方面,提供了一种传输信号的方法包括:第二设备生成功率指示信息,该功率指示信息用于第一设备根据该功率指示信息确定向工作在全双工模式下的该第二设备发送上行信号的上行传输功率,该上行传输功率是根据该第二设备的自干扰补偿量确定的功率,或者该上行传输功率为该第一设备的最大发送功率;该第二设备向该第一设备发送该功率指示信息;该第二设备接收该第一设备采用该上行传输功率在第一时频资源上发送的上行信号。
结合第二方面,在第一种可能的实现方式中,该方法还包括:第二设备确定该第二设备的自干扰补偿量,其中,该第二设备生成功率指示信息,包 括:该第二设备根据该自干扰补偿量生成功率指示信息。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,该第二设备根据该自干扰补偿量生成功率指示信息,包括:该第二设备根据该自干扰补偿量生成功率指示信息,其中,该功率指示信息用于指示该自干扰补偿量,以便于该第一设备根据该自干扰补偿量和上行开环功率参数确定该上行传输功率。
结合第二方面的第一种可能的实现方式,在第三种可能的实现方式中,该第二设备根据该自干扰补偿量生成功率指示信息,包括:该第二设备根据该自干扰补偿量生成功率指示信息,其中,该功率指示信息用于指示该上行传输功率。
结合第二方面、第二方面的第一至第三种可能的实现方式中的任一种可能的实现方式,在第四种可能的实现方式中,该方法还包括:该第二设备生成指示第二功率的信息;该第二设备向该第一设备发送该指示第二功率的信息,以便于工作在半双工模式下的该第二设备在半双工时频资源上接收该第一设备采用该第二功率发送上行信号。
结合第二方面、第二方面的第一至第四种可能的实现方式中的任一种可能的实现方式,在第五种可能的实现方式中,应用于FDD系统中的上行频段中,在该第二设备确定该第二设备的自干扰补偿量之前,该方法还包括:该第二设备在该上行频段中设置半双工下行时频资源,该半双工下行时频资源用于测量该第二设备的自干扰补偿量。
结合第二方面的第五种可能的实现方式,在第六种可能的实现方式中,该上行频段中设置半双工下行时频资源的周期大于或等于一个无线帧。
结合第二方面、第二方面的第一至第六种可能的实现方式中的任一种可能的实现方式,在第七种可能的实现方式中,该第一设备为基站或用户设备,该第二设备为中继。
结合第二方面、第二方面的第一至第六种可能的实现方式中的任一种可能的实现方式,在第八种可能的实现方式中,该第一设备为用户设备,该第二设备为基站。
结合第二方面的第八种可能的实现方式,在第九种可能的实现方式中,该第一时频资源用于第三设备接收该第二设备发送的下行信号,该第一设备和该第三设备是该第二设备预先确定的该第一设备和该第三设备间的干扰 小于预设阈值的一对设备。
结合第二方面的第九种可能的实现方式,在第十种可能的实现方式中,应用于FDD系统中的下行频段中,该方法还包括:该第二设备在该下行频段中设置半双工上行时频资源,该半双工上行时频资源用于测量该第一设备与该第三设备间的干扰。
结合第二方面、第二方面的第一至第十种可能的实现方式中的任一种可能的实现方式,在第十一种可能的实现方式中,还包括:该第二设备根据第一发射参数在全双工时频资源上发送第一下行信号,其中,该第一发射参数使得该第二设备与该第二设备的临近站点间的干扰小于预设干扰阈值;该第二设备根据第二发射参数在半双工时频资源上发送第二下行信号。
结合第二方面的第十一种可能的实现方式,在第十二种可能的实现方式中,还包括:该第二设备确定SINR大于预设阈值或信道质量指示CQI大于预设信道质量阈值的第四设备,该第四设备包括至少一个设备;该第二设备确定PH大于预设余量阈值的第五设备,该第五设备包括至少一个设备;该第二设备在该全双工时频资源上接收该第五设备发送的上行信号;其中,该第二设备根据第一发射参数在全双工时频资源上发送第一下行信号,包括:该第二设备根据第一发射参数在该全双工时频上向该第四设备中的至少一个设备发送该第一下行信号。
结合第二方面、第二方面的第一至第十二种可能的实现方式中的任一种可能的实现方式,在第十三种可能的实现方式中,该第二设备确定该第二设备的自干扰补偿量,包括:该第二设备根据以下公式确定该第二设备的自干扰补偿量
ΔSI=10*log10(N+1)dB
其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
第三方面,提供了一种传输信号的设备,包括:确定单元,用于确定上行传输功率;第一发送单元,用于采用该上行传输功率在第一时频资源上向工作在全双工模式下的第二设备发送上行信号,其中,该第二设备为全双工设备,该上行传输功率是根据该第二设备的自干扰补偿量确定的功率,或者该上行传输功率为该第一设备的最大发送功率。
结合第三方面,在第一种可能的实现方式中,该确定单元获取该第二设 备发送的功率指示信息,该功率指示信息用于指示该第二设备的自干扰补偿量,根据该自干扰补偿量和上行开环功率参数确定该上行传输功率。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,该上行开环功率参数包括第一上行开环功率参数或第二上行开环功率参数,该确定单元根据该自干扰补偿量和第一上行开环功率参数确定该上行传输功率,或者该确定单元根据该自干扰补偿量和该第二上行开环功率参数确定该上行传输功率。
结合第三方面、第三方面的第一至第二种可能的实现方式中的任一种可能的实现方式,在第三种可能的实现方式中,还包括:获取单元,用于获取该第二设备发送的指示第二功率的信息;第二发送单元,用于在第二时频资源上采用该第二功率向工作在半双工模式下的该第二设备发送上行信号。
结合第三方面、第三方面的第一至第三种可能的实现方式中的任一种可能的实现方式,在第四种可能的实现方式中,该设备为基站或用户设备,该第二设备为中继。
结合第三方面、第三方面的第一至第三种可能的实现方式中的任一种可能的实现方式,在第五种可能的实现方式中,该设备为用户设备,该第二设备为基站。
结合第三方面的第五种可能的实现方式,在第六种可能的实现方式中,该第一时频资源用于第三设备接收该第二设备发送的下行信号,该设备和该第三设备是该第二设备预先确定的该设备和该第三设备间的干扰小于预设阈值的一对设备。
结合第三方面的第六种可能的实现方式,在第七种可能的实现方式中,应用于FDD系统中的下行频段中,该设备和该第三设备之间的干扰是通过该第二设备在该下行频段中设置的半双工上行时频资源测量的。
结合第三方面、第三方面的第一至第七种可能的实现方式中的任一种可能的实现方式,在第八种可能的实现方式中,还包括:第一测量单元,用于根据接收到的该第二设备采用第一发射参数发送的CRS进行该设备与该第二设备间与CRS相关的测量;第二测量单元,用于根据接收到的该第二设备采用第二发射参数发送的CRS进行该设备与该第二设备间与CRS相关的测量。
结合第三方面、第三方面的第一至第八种可能的实现方式中的任一种可 能的实现方式,在第九种可能的实现方式中,该自干扰补偿量由该第二设备根据以下公式确定的:
ΔSI=10*log10(N+1)dB
其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
第四方面,提供了一种传输信号的设备,其特征在于,包括:第一生成单元,用于生成功率指示信息,该功率指示信息用于第一设备根据该功率指示信息确定向工作在全双工模式下的该设备发送上行信号的上行传输功率,该上行传输功率是根据该第二设备的自干扰补偿量确定的功率,或者该上行传输功率为该第一设备的最大发送功率;第一发送单元,用于向该第一设备发送该功率指示信息;接收单元,用于接收该第一设备采用该上行传输功率在第一时频资源上发送的上行信号。
结合第四方面,在第一种可能的实现方式中,还包括:第一确定单元,用于确定该设备的自干扰补偿量;其中,第一生成单元根据该自干扰补偿量生成功率指示信息。
结合第四方面的第一种可能的实现方式,在第二中可能的实现方式中,该生成单元根据该自干扰补偿量生成功率指示信息,其中,该功率指示信息用于指示该自干扰补偿量,以便于该第一设备根据该自干扰补偿量和上行开环功率参数确定该上行传输功率。
结合第四方面的第一种可能的实现方式,在第三种可能的实现方式中,该生成单元根据该自干扰补偿量生成功率指示信息,其中,该功率指示信息用于指示该上行传输功率。
结合第四方面、第四方面的第一至第三种可能的实现方式中的任一种可能的实现方式,在第四种可能的实现方式中,该设备还包括:第二生成单元,用于生成指示第二功率的信息;第二发送单元,用于向该第一设备发送该指示第二功率的信息,以便于工作在半双工模式下的该设备在第二时频资源上接收该第一设备采用该第二功率发送的其它上行信号。
结合第四方面、第四方面的第一至第四种可能的实现方式中的任一种可能的实现方式,在第五种可能的实现方式中,应用于FDD系统中的上行频段中,该设备还包括:第一设置单元,用于在该上行频段中设置半双工下行时频资源,该半双工下行时频资源用于测量该第二设备的自干扰补偿量。
结合第四方面的第五种可能的实现方式,在第六种可能的实现方式中,该上行频段中设置半双工下行时频资源的周期大于或等于一个无线帧。
结合第四方面、第四方面的第一至第六种可能的实现方式中的任一种可能的实现方式,在第七种可能的实现方式中,该第一设备为基站或用户设备,该设备为中继。
结合第四方面、第四方面的第一至第六种可能的实现方式中的任一种可能的实现方式,在第八种可能的实现方式中,该第一设备为用户设备,该设备为基站。
结合第四方面的第八种可能的实现方式,在第九种可能的实现方式中,该第一时频资源用于第三设备接收该设备发送的下行信号,该第一设备和该第三设备是该设备预先确定的该第一设备和该第三设备间的干扰小于预设阈值的一对设备。
结合第四方面的第九种可能的实现方式,在第十种可能的实现方式中,应用于FDD系统中的下行频段中,该设备还包括:第二设置单元,用于在该下行频段中设置半双工上行时频资源,该半双工上行时频资源用于测量该第一设备与该第三设备间的干扰。
结合第四方面、第四方面的第一至第十种可能的实现方式中的任一种可能的实现方式,在第十一种可能的实现方式中,还包括:第三发送单元,用于根据第一发射参数在全双工时频资源上发送第一下行信号,其中,该第一发射参数使得该第二设备与该第二设备的临近站点间的干扰小于预设干扰阈值;第四发送单元,用于根据第二发射参数在半双工时频资源上发送第二下行信号。
结合第四方面的第十一种可能的实现方式,在第十二种可能的实现方式中,还包括:第二确定单元,用于确定SINR大于预设阈值或CQI大于预设信道质量阈值的第四设备,该第四设备包括至少一个设备;第三确定单元,用于确定PH大于预设余量阈值的第五设备,该第五设备包括至少一个设备;接收单元,用于在该全双工时频资源上接收该第五设备发送的上行信号;其中,该第三发送单元根据第一发射参数在该全双工时频上向该第四设备中的至少一个设备发送该第一下行信号。
结合第四方面、第四方面的第一至第十二种可能的实现方式中的任一种可能的实现方式,在第十三种可能的实现方式中,第一确定单元根据以下公 式确定该第二设备的自干扰补偿量
ΔSI=10*log10(N+1)dB
其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
基于上述技术方案,本发明实施例通过第一设备采用上行传输功率是根据所述第二设备的自干扰补偿量确定的功率,或者上行传输功率为所述第一设备的最大发送功率的功率向工作在全双工模式下的第二设备发送上行信号,由于本发明实施例通过第二设备的自干扰补偿量来降低第二设备的自干扰残留量对上行信号接收的不利影响,或第一设备采用最大发送功率发送上行信号来消除第二设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低第二设备的自干扰残留量对上行信号接收的不利影响,能够提升网络性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例可应用的全双工系统部署场景图。
图2是另一本发明实施例可应用的全双工系统部署场景图。
图3是根据本发明一个实施的传输信号的方法的示意性流程图。
图4是根据本发明另一实施的传输信号的方法的示意性流程图。
图5是根据本发明一个实施例的传输信号的设备的示意框图。
图6是根据本发明另一实施例的传输信号的设备的示意框图。
图7是根据本发明另一实施例的传输信号的设备的示意框图。
图8是根据本发明另一实施例的传输信号的设备的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不 是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线高保真(WIreless-Fidelity,WI-FI)通信系统或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
本发明实施例可以用于不同的制式的无线网络。无线接入网络在不同的系统中可包括不同的网元。例如,包括基站、接入点(Access Point,AP)、中继(Relay)等。具体地,例如,LTE和LTE-A中无线接入网络的网元包括eNB(eNodeB,演进型基站),WCDMA中无线接入网络的网元包括RNC(Radio Network Controller,无线网络控制器)和NodeB,类似地,WiMax(Worldwide Interoperability for Microwave Access,全球微波互联接入)等其它无线网络也可以使用与本发明实施例类似的方案,只是基站系统中的相关模块可能有所不同,本发明实施例并不限定,但为描述方便,下述实施例中的基站将以eNodeB和NodeB为例进行说明。
还应理解,在本发明实施例中,用户设备(UE,User Equipment)包括但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置
图1是本发明实施例可应用的全双工系统部署场景图。如图1所示的全双工系统场景包括基站110、用户设备120和用户设备130,
基站110具有全双工能力,用户设备120具有半双工能力。当基站110同时同频收发时,可以通过调度覆盖范围内的一部分终端,例如用户设备120处于上行发射,另一部分终端例如用户设备130处于下行接收。
应理解,图1中的基站110也可以用小站(small cell)或接入点(Access Point)等来代替,本发明实施例并不对此做限定。
应注意,图1所示的场景中仅示出了一个有一个基站(孤立基站)的情形,但本发明实施例并不限于此,基站110还可以有在相同的时频资源上传输业务的近邻基站(站点)和用户设备(图未示)。
图2是另一本发明实施例可应用的全双工系统部署场景图。如图2所示的全双工系统场景包括中继210、基站220和用户设备230。中继210具有全双工能力,中继210进行全双工传输时,中继210采用相同的时频资源接收来自基站220的信号和向用户设备230发送下行信号,或者中继210采用相同的时频资源接收来自用户设备230的信号和向基站220发送下行信号。
图3是根据本发明一个实施的传输信号的方法的示意性流程图。图3的方法由第一设备执行,应用于图1场景中,第一设备可以是用户设备,应用于图2场景中,第一设备可以是基站或用户设备。具体地,如图3所示的方法包括:
310,第一设备确定上行传输功率。
换句话说,第一设备确定向第二设备发送上行信号的上行传输功率。
320,第一设备采用上行传输功率在第一时频资源上向工作在全双工模式下的第二设备发送上行信号,其中,上行传输功率是根据第二设备的自干扰补偿量确定的功率,或者上行传输功率为第一设备的最大发送功率。
具体地,第二设备为具有同时同频发送信号和接收信号的能力的全双工设备。例如,第二设备可以为基站或中继等。
应理解,第一时频资源可以为全双工时频资源,全双工时频资源表示在该资源上既同时承载有上行业务和下行业务。第二设备在该全双工时频资源上也可以向另外的一个设备发送下行信号。也就是说第二设备在该全双工时频资源上即可以接收第一设备发送的上行信号,还可以向另外一个设备发送信号。
需要说明的一点是,全双工设备是指具有同时同频收发信号的能力的设备,全双工设备可以有多种工作模式,例如全双工模式和半双工模式等,全双工设备可以工作在全双工模式下,也可以回退(切换)到半双工模式下。全双工设备可以根据系统的中干扰,业务,用户分布等情况确定工作在全双工模式下还是半双工模式下。
其中,全双工设备工作在全双工模式下,也可以处于两种状态,一种是全双工通信,对应的资源为全双工时频资源,即全双工设备在全双工时频资 源上即发送数据又接收数据。另外一种为全双工监听,对应的资源为半双工下行资源,即全双工设备在半双工下行资源上发送数据,接收链路仅作为监听或测量干扰,并不解调接收数据。全双工设备工作在半双工模式下,对应的资源为半双工时频资源,全双工设备在半双工时频资源上仅发送或接收信号。
应注意,时频资源可以是泛指通信资源,例如时频资源可以是指具有时间和频率两个维度的通信资源,本发明实施例并不对时频资源的最小单位作限定,例如,时频资源的最小单位在时间上可以是子帧、帧、时隙等,在频率上可以资源块(Resource Block,RB)、子载波、资源单元(Resource Element,RE)、子频带或整个工作频带等。
具体地,第一设备采用上行传输功率向第二设备发送信号,上行传输功率可以是根据第二设备的自干扰补偿量和第一设备的上行开环功率参数确定的功率。第一设备的上行开环功率参数可以为物理层上行控制信道(Physical Uplink Control CHannel,PUCCH)开环功率或者物理层上行共享信道(Physical Uplink Shared Channel,PUSCH)的开环功率。应理解,上行传输功率可以是由第二设备根据第一设备的上行开环功率参数和第二设备的自干扰补偿量确定的功率,也可以是由第一设备根据第一设备的上行开环功率参数和第二设备的自干扰补偿量确定的功率,或者,上行传输功率为第一设备的最大发送功率。
因此,本发明实施例通过第一设备采用上行传输功率是根据第二设备的自干扰补偿量确定的功率,或者上行传输功率为第一设备的最大发送功率的功率向工作在全双工模式下的第二设备发送上行信号,由于,本发明实施例通过第二设备的自干扰补偿量来降低第二设备的自干扰残留量对上行信号接收的不利影响,或第一设备采用最大发送功率发送上行信号来消除第二设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低第二设备的自干扰残留量对上行信号接收的不利影响,能够提高上行信号的接收信号噪声比,提升网络性能。
可选地,作为另一实施例,在310中,第一设备获取第二设备发送的功率指示信息,功率指示信息用于指示第二设备的自干扰补偿量;第一设备根据自干扰补偿量和上行开环功率参数确定上行传输功率。
具体地,自干扰补偿量由第二设备根据以下公式确定的:
ΔSI=10*log10(N+1)dB其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
在第二设备为基站时,基站可以调度所有的子帧(时频资源)用于全双工传输,因此,第一设备在每个上行子帧上都需要在开环参数上增加自干扰补偿量,以调整第一设备的上行传输功率。具体的讲第一设备在影响各个信道的开环功率参数如LTE中PUCCH信道的开环功率、PUSCH的开环功率的基础上增加自干扰补偿量,即第一设备的上行传输功率为根据第一设备的上行开环功率参数和第二设备的自干扰补偿量之和确定的功率。
或者,在第二设备为中继时,中继可以调度所有的子帧(时频资源)都用于全双工传输,一种情形,第一设备为用户设备,中继处于向基站发送下行信号,从终端接收上行信号的情形。则终端在开环或闭环参数上增加自干扰补偿量,以调节用户设备的上行传输功率。具体的讲第一设备在影响各个信道的开环功率参数如LTE中PUCCH信道的开环功率、PUSCH的开环功率的基础上增加自干扰补偿量,即第一设备的上行传输功率为第一设备的上行开环功率参数和第二设备的自干扰补偿量之和。另一种情形,第一设备为基站,中继处于向用户设备发送下行信号,从基站接收上行信号的情形。同样的,基站在开环或闭环参数上增加中继的自干扰残留补偿量,以调整基站的上行发射功率。具体的讲基站在开环或闭环参数PUCCH信道的开环功率、PUSCH的开环功率的基础上增加自干扰残留偏移量,即第一设备的上行传输功率为根据第一设备的上行开环功率参数和第二设备的自干扰补偿量之和确定的功率。
例如,LTE的上行功控是根据开环功控加上闭环修正的方式。
例如PUSCH的i子帧的功率定义为
Figure PCTCN2014095666-appb-000001
其中PCMAX,c(i)表示终端的最大发射功率;MPUSCH,c(i)表示基于上行授权分配的RB数;PO_PUSCH,c(j)表示开环功率参数;αc(j)表示路损因子;PLc下行路损估计量;ΔTF,c(i)传输方式补偿量;fc(i)表示功控动态偏移;
其中j的取值为0、1和2,分别表示基于半静态调度,动态调度和随机接入的上行传输。
PO_PUSCH,c(0)=PO_NOMINAL_PUSCH,c(0)+PO_UE_PUSCH,c(0)
PO_PUSCH,c(1)=PO_NOMINAL_PUSCH,c(1)+PO_UE_PUSCH,c(1)
PO_NOMINAL_PUSCH,c(2)=PO_PREPREAMBLE_Msg3
PO_NOMINAL_PUSCH,c(j)是由高层信令指示,对特定小区的参数,广播给终端。PO_UE_PUSCH,c(j)是由RRC信令配置,针对特定UE的项。PO_PRE和ΔPREAMBLE_Msg3是针对随机接入的高层参数。
当PUSCH和PUCCH同传上行信号时,
Figure PCTCN2014095666-appb-000002
其中
Figure PCTCN2014095666-appb-000003
为i子帧中PUCCH的功率。
其中PO_PUSCH,c(j)受到自干扰残留量的影响,从而影响PPUSCH,c(i)
考虑了基站的自干扰补偿量ΔSI(j)后发射功率公式修改为
Figure PCTCN2014095666-appb-000004
Figure PCTCN2014095666-appb-000005
高层信令:
由于PO_NOMINAL_PUSCH,c(j)是由高层信令广播给终端的,PO_UE_PUSCH,c(j)是由RRC信令配置给终端的。因此ΔSI(j)可以通过携带PO_NOMINAL_PUSCH,c(j)或携带PO_UE_PUSCH,c(j)的信令,或新配置的信令通知给终端。到达补偿开环功率参数的目的。
类似的在PUCCH信道上,PUCCH的i子帧的功率定义为
Figure PCTCN2014095666-appb-000006
其中h(nCQI,nHARQ,nSR)是根据PUCCH格式类型的参数,针对分别用于传输CQI(Channel Quality Indication信道质量指示),HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)反馈和SR(Scheduling Request调度请求)
PO_PUCCH=PO_NOMINAL_PUCCH+PO_UE_PUCCH
P0_PUCCH开环功率参数受到自干扰的影响,从而影响到PPUCCH(i),在考虑自干扰补偿量ΔSI
Figure PCTCN2014095666-appb-000007
类似的P0_PUCCH也可以通过多种信令携带。因此ΔSI可以通过携带PO_NOMINAL_PUCCH或携带PO_UE_PUCCH的信令,或新配置的信令通知给终端。到达补偿开环功率参数的目的。
另外当全双工基站的邻居基站也处于全双工的模式时,造成即使没有自干扰,基站也比半双工模式多收到基站间的干扰,因此造成开环功率参数在两种情况下不同,分别用于半双上行子帧或基站全双工模式工作时的上行子帧。基站需要将两套开环功率参数通知给终端,终端将自干扰补偿量补偿在基站全双工模式工作时的上行子帧的开环功率参数上。
进一步的,作为另一实施例,上行开环功率参数包括第一上行开环功率参数或第二上行开环功率参数,在310中,第一设备根据自干扰补偿量和第一上行开环功率参数确定上行传输功率;或者在310中,第一设备根据自干扰补偿量和第二上行开环功率参数确定上行传输功率。
换句话说,第二设备可以为第一设备配置两套上行开环功率参数,分别为第一上行开环功率参数和第二上行开环功率参数。在不同的时频资源上基站可以根据不同的上行开环功率参数和自干扰补偿量来确定上行传输功率。
可替代地,作为另一实施例,在310中,第一设备获取第二设备发送的功率指示信息,功率指示信息用于指示上行传输功率。
换句话说,第二设备直接确定出第一设备的上行传输功率,通过功率指示信息将上行传输功率发送给第一设备,第一设备直接使用该上行传输功率发送上行信号即可。无需第一设备进行其他的计算。
具体而言,在全双工时频资源上发送上行信号的功率是第二设备根据第二设备的自干扰补偿量确定的功率,该上行传输功率为根据第一设备的上行开环功率参数和第二设备的自干扰补偿量之和确定的功率。
可选地,作为另一实施例,本发明实施例方法还包括:第一设备获取第二设备发送的指示第二功率的信息;第一设备在第二时频资源上采用第二功率向工作在半双工模式下的第二设备发送上行信号。
第二时频资源可以是半双工时频资源,应注意,当全双工时频资源的划分以子帧为单位,则全双工时频资源与全双工子帧等价(表示相同意思), 全双工时频资源可以用全双工子帧来替代。
应理解,半双工时频资源表示第二设备在该资源上只能承载上行业务或者只能承载下行业务。不同于全双工时频资源,在全双工时频资源上第二设备既可以承载有上行业务也可以承载有下行业务。
具体地,第一设备在半双工时频资源上发送上行信号的功率可以无需考虑第二设备的自干扰补偿量确定的功率,由第二设备直接确定第二功率,然后第二设备告知第一设备,第二上行传输功率可以为根据第一设备的上行开环功率参数确定的功率。
换句话说,可以分两种情况来进行说,第一种情况,第一设备在第一时频资源上发送上行信号,另一种情况为第一设备在第二时频资源上发送上行信号。两种情况对应两种不同的功率调整参数。其中,第一时频资源可以是全双工时频资源,第二资源可以是半双工时频资源。
具体而言,当第二设备为基站时,基站可以调度一部分子帧处于全双工传输,仍然保留部分子帧资源用于半双工上行传输。由于半双工上行传输和全双工传输中上行传输所受到的干扰不同,因此,需要采用两套不同的功率调整参数,分别处理半双工上行传输和全双工传输中上行传输的功率控制。
在全双工时频资源上采用上行传输功率向第二设备发送上行信号;第一设备在半双工时频资源上采用第二功率向第二设备发送上行信号。
由于,全双工子帧中,受到的干扰水平完全和半双工子帧不同。在全双工上行子帧中,不仅受到自干扰信号残留量的干扰,还受到邻居站点的下行干扰。因此,不能共用一套功率控制参数,而且全双工时频资源上的功率控制参数中考虑了自干扰残留偏移量。
或者,第二设备为中继时,一种可能的情况,中继处于向基站发送数据,从终端接收数据的状态。如果终端发射上行数据的子帧资源中,中继部分子帧处于全双工状态,部分子帧仅处于半双工状态(中继接收终端上行信号)。由于半双工上行传输和全双工传输中的上行传输所受到的干扰不同,因此,中继可以采用两套不同的功率调整参数,分别处理半双工上行传输和全双工传输中上行传输的功率控制,即第一设备在全双工时频资源上采用上行传输功率向第二设备发送上行信号;第一设备在半双工时频资源上采用第二功率向第二设备发送其它上行信号。另一种可能的情况,中继处于向用户设备发送数据,从基站接收数据的的情况与上述情况类似,为避免重复不再赘述。
可选地,作为另一实施例,第一时频资源用于第三设备接收第二设备发送的下行信号,第一设备和第三设备是第二设备预先确定的第一设备和第三设备间的干扰小于预设阈值的一对设备。
换句话说,第一设备为第一终端对中的第一终端,第一终端对包括第一终端和第二终端,第一终端对为第一终端组和第二终端组构成的所有终端对中的终端间干扰小于预设阈值的终端对,第二终在与第一终端向第二设备发送上行信号的全双工时频资源上接收第二设备发送的下行信号。
具体地,第一设备在全双工时频资源发送上行信号之前,终端在该半双工上行传输子帧中发送上行控制信号,或上行数据信号,或上行探测信号,在LTE系统中分别对应PUCCH,PUSCH,探测参考信号(Sounding Rsference Signal,SRS)信号。基站将利用这类资源调度包括第一设备的第一终端组中的一部分终端处于发射上行探测信号状态同时,调度包括第三设备第二终端组中的一部分终端处于接收上行探测信号状态。需要说明的是,如果上行和下行采用不同的调制方式,那么第二终端组中的终端必须具有两种不同的调制方式的收发能力,如LTE中上行采用(单载波频分多址接入(Single-carrier Frequency-Division Multiple Access,SC-FDMA)调制,而下行采用正交频分多址(Orthogonal Frequency Division Multiplexing,OFDM)调制。第二终端组中的终端需要具有解SC-FDMA调制的能力。处于接收的终端(第二终端组中的一部分终端)测量来自第二设备范围内的其他终端的终端间干扰水平。因此有部分终端的测量被安排在上行资源上,并且基站为了辅助终端进行干扰测量,在上行探测信号中携带发送SRS的信息,并且第二设备预留出上报测量用户间干扰信息的资源。基站在调度全双工子帧时,选择干扰小于预设阈值的一对设备(第一设备和第三设备)分别在同一时频资源上发送上行信号和接收下行信号。
可选地,作为另一实施例,应用于FDD系统中的下行频段中,第一设备和第三设备之间的干扰是通过第二设备在下行频段中设备的半双工上行时频资源测量的。
具体地,为了测量自干扰残留情况,基站或中继必须在上行频段中划分出一部分资源作为半双工下行资源,用于测量自干扰残留量。并且通知给终端或基站和终端。和TDD中设计一致,这种下行资源不需要每个帧都有,为了减少终端或基站和终端接收在不同频段上的切换,将上行频段中下行资 源时分或频分的用于自干扰测量和通知自干扰补偿量参数的信道。
可选地,作为另一实施例,本发明实施例还包括第一设备接收第二设备根据第一发射参数在全双工时频资源上发送的第一下行信号,其中,第一发射参数使得第二设备与第二设备的临近站点间的干扰小于预设干扰阈值;
第一设备接收第二设备根据第二发射参数在半双工时频资源上发送的第二下行信号。
具体地,第二设备可以为基站。第二设备发送下行信号时采用两套传输参数,包括第一发射参数和第二发射参数。第一发射参数可以用于全双工设备(第二设备)工作在全双工子帧的传输参数,另外一类用于全双工设备工作在半双工子帧的传输参数。
应理解,发射参数可以包括发射功率、天线下倾角、传播模型、基站天线高度等参数。
如果所有的子帧都用于全双工传输,那么基站(第二设备)的下行覆盖不能保证,因此为了保证基站的覆盖,基站可能需要保留部分的子帧用于半双工下行传输。而且如果基站半双工下行和全双工子帧中下行采用相同的发射参数会对邻居上行接收产生很大的干扰,因此,基站在下行需要采用和半双工下行子帧采用不同的下行参数。
基站需要将发射功率,下倾角通过小区间距,传播模型,基站天线高度等参数提前计算最大值,为了减少基站间干扰对上行数据接收的干扰。在全双工子帧发射过程中不能超过上述最大值。
应理解,上述实施例中,以第一设备可以在某个全双工时频资源或半双工时频资源上发送上行信号,并且第一设备还可以在另一全双工时频资源或半双工时频资源上接收第二设备的下行信号的例子举例说明的,应注意,第一设备可以某个全双工时频资源或半双工时频资源上发送上行信号,但是在另一全双工时频资源或半双工时频资源上接收第二设备的下行信号的设备也可以不是第一设备,为其他的设备,本发明实施例并不对此做限定。
进一步地,作为另一实施例,本发明实施例方法还可以包括:
第一下行信号为采用第一发射参数发送的小区特定参考信号(Cell specific Reference Signal,CRS),第一设备根据采用第一发射参数发送的CRS进行第一设备与第二设备间与CRS相关的测量;
第二下行信号为采用第二发射参数发送的CRS,第一设备根据采用第二 发射参数发送的CRS进行第一设备与第二设备间与CRS相关的测量。
换句话说,第一设备根据接收到的第二设备采用第一发射参数发送的小区特定参考信号CRS进行第一设备与第二设备间与CRS相关的测量;第一设备根据接收到的第二设备采用第二发射参数发送的CRS进行第一设备与第二设备间与CRS相关的测量。
具体地,由于半双工下行子帧和全双工子帧中第二设备的下行信号采用的不同的下行参数,因此和半双工下行子帧中CRS(Cell specific Reference Signal小区特定的参考信号)相关的测量,都不能在全双工子帧中进行或平滑。如路损测量,参考信号接收功率(Reference Signal Received Power,RSRP)和参考信号接收质量(Reference Signal Received Qualify,RSRQ)的测量。
例如在半双工系统中,终端通过基站发送的CRS进行路损测量,而CRS的发射功率是通过高层信令通知给终端,终端根据接收到的CRS功率和基站通知给终端的功率差计算路损。但是基站处于全双工时频资源内可能没有CRS,或者有CRS采用的功率和半双工时频资源内的功率不同。如果两类子帧中的测量如果在子帧间平滑,会造成估计错误。对于RSRP和RSRQ情况类似。因此,本发明实施例针对两种不同的时频资源(全双工时频资源和半双工时频资源)上分别与CRS相关的测量,不进行子帧集合间平滑。
应理解,上述实施例中,以第一设备可以某个全双工时频资源或半双工时频资源上发送上行信号,并且第一设备还可以在另一全双工时频资源或半双工时频资源上接收第二设备的下行信号的例子举例说明的,应注意,第一设备可以某个全双工时频资源或半双工时频资源上发送上行信号,但是在另一全双工时频资源或半双工时频资源上接收第二设备的下行信号的设备也可以不是第一设备,可以为基站调度的另一个属于下行接收的设备,本发明实施例并不对此做限定。因此,当第一设备接收下行信号时可以由第一设备测量第一设备与第二设备间的CRS相关的测量,当由其他设备接收第二设备的下行信号时,由其他设备进行CRS相关的测量。
可选地,作为另一实施例,第一设备为第四设备中的设备,其中,第四设备包括至少一个设备,第四按设备的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)大于预设阈值。
具体地,第二设备在调度全双工子帧时,调度SINR大于预设阈值的设备接收下行信号。其中SINR可以通过终端上报的信道质量参数(Channel  quality indication,CQI)反映。
在半双工通信系统中,基站通过终端反馈的信道质量参数(Channel quality indication,CQI)调整终端的MCS(Modulation and coding scheme)等级。而基站工作在全双工情况下,部分半双工的终端分别处于接收和发射状态,因此终端间干扰会使得下行接收的情况恶化。如果调度SINR较低的终端,那么终端在受到处于上行发射的终端的干扰时,SINR进一步恶化,导致终端无法解调下行数据。因此选择SINR较大,降低编码调制等级(Modulation coding scheme,MCS),可以起到抗用户间干扰的作用。
另外,第二设备在调度全双工子帧时,可以调度发射功率余量(Power Headroom,PH)大于预设余量阈值的设备发送上行信号。具体地,在半双工通信系统中,基站通过终端反馈的上行功率余量报告(Power Headroom Report,PHR)了解终端的PH。当PH高,说明终端可以采用更大的发射功率发射上行信号,用来补偿自干扰的影响。
应理解,在较佳实施例中,第二设备在调度全双工子帧时,可以调度SINR大于预设阈值或信道质量指示(Channel Quality Indicator,CQI)大于预设信道质量阈值的设备接收下行信号。第二设备在调度全双工子帧时,可以调度PH大于预设阈值的设备发送上行信号。
上文中,结合图3从第一设备的角度详细描述了本发明实施例的传输信号的方法,下面将结合图4从第二设备的角度描述本发明实施例的传输信号的方法。
图4是根据本发明另一实施的传输信号的方法的示意性流程图。图4的方法由第二设备执行,应用于图1场景中,第二设备可以是基站,第一设备可以是用户设备。应用于图2场景中,第二设备可以是中继,第一设备可以是基站或用户设备。
应理解,图4和图3的区别在于,图4是从第二设备的角度描述的本发明实施例的传输信号的方法,图3是从第一设备的角度描述的本发明实施例的传输信号的方法,图4中的传输信号的方法与图3中的传输信号的方法相对应,图4传输信号的方法的相关描述可参见针对图3方法的描述,为避免重复,下文中适当省略详细描述。
具体地,如图4所示的方法包括:
410,第二设备生成功率指示信息,功率指示信息用于第一设备根据功 率指示信息确定向工作在全双工模式下的第二设备发送上行信号的上行传输功率,上行传输功率是根据第二设备的自干扰补偿量确定的功率,或者上行传输功率为第一设备的最大发送功率。
420,第二设备向第一设备发送功率指示信息。
430,第二设备接收第一设备采用上行传输功率在第一时频资源上发送的上行信号。
具体地,第二设备为具有同时同频发送信号和接收信号的能力的全双工设备。例如,第二设备可以为基站或中继等。
应理解,第一时频资源可以为全双工时频资源,全双工时频资源表示在该资源上既同时承载有上行业务和下行业务。第二设备在该全双工时频资源上也可以向另外的一个设备发送下行信号。也就是说第二设备在该全双工时频资源上即可以接收第一设备发送的上行信号,还可以向另外一个设备发送信号。
需要说明的一点是,全双工设备是指具有同时同频收发信号的能力的设备,全双工设备可以有多种工作模式,例如全双工模式和半双工模式等,全双工设备可以工作在全双工模式下,也可以回退(切换)到半双工模式下。全双工设备可以根据系统的中干扰,业务,用户分布等情况确定工作在全双工模式下还是半双工模式下。
其中,全双工设备工作在全双工模式下,也可以处于两种状态,一种是全双工通信,对应的资源为全双工时频资源,即全双工设备在全双工时频资源上即发送数据又接收数据。另外一种为全双工监听,对应的资源为半双工下行资源,即全双工设备在半双工下行资源上发送数据,接收链路仅作为监听或测量干扰,并不解调接收数据。全双工设备工作在半双工模式下,对应的资源为半双工时频资源,全双工设备在半双工时频资源上仅发送或接收信号。
应注意,时频资源可以是泛指通信资源,例如时频资源可以是指具有时间和频率两个维度的通信资源,本发明实施例并不对时频资源的最小单位作限定,例如,时频资源的最小单位在时间上可以是子帧、帧、时隙等,在频率上可以是RB、子载波、RE、子频带或整个工作频带等。
具体地,第一设备采用上行传输功率向第二设备发送信号,上行传输功率可以是根据第二设备的自干扰补偿量和第一设备的上行开环功率参数确 定的功率。第一设备的上行开环功率参数可以为PUCCH开环功率或者PUSCH的开环功率。应理解,上行传输功率可以是由第二设备根据第一设备的上行开环功率参数和第二设备的自干扰补偿量之和确定的功率,也可以是由第一设备根据第一设备的上行开环功率参数和第二设备的自干扰补偿量之和确定的功率,或者,上行传输功率为第一设备的最大发送功率。
因此,本发明实施例,通过第二设备生成指示上行传输功率的功率指示信息,并向第一设备发送该功率指示信息,接收第一设备采用上行传输功率在第一时频资源上发送的上行信号。由于,本发明实施例通过第二设备的自干扰补偿量来降低第二设备的自干扰残留量对上行信号接收的不利影响,或第一设备采用最大发送功率发送上行信号来消除第二设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低第二设备的自干扰残留量对上行信号接收的不利影响,能够提高上行信号的接收信号噪声比,提升网络性能。
可选地,作为另一实施例,在410之前,本发明实施方法还包括第二设备确定第二设备的自干扰补偿量,
其中,在410中,第二设备根据自干扰补偿量生成功率指示信息。
例如,第二设备根据以下公式确定第二设备的自干扰补偿量
ΔSI=10*log10(N+1)dB
其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
具体地,第二设备首先确定第二设备的自干扰补偿量,并根据自干扰补偿量生成成功率指示信息,功率指示信息用于第一设备根据功率指示信息确定向第二设备发送上行信号的上行传输功率,第二设备接收第一设备采用上行传输功率发送的上行信号。例如,上行传输功率为第一设备的上行开环功率参数和第二设备的自干扰补偿量之和,因此,第一设备采用上行传输功率发射信号能够消除或降低第二设备信号的自干扰残留对上行信号接收的不利影响。
因此,本发明实施例通过第二设备确定第二设备的自干扰补偿量,根据自干扰补偿量生成功率指示信息,向第一设备发送功率指示信息,最后接收第一设备采用上行传输功率发送的上行信号。由于本发明实施例通过第二设备的自干扰补偿量来降低第二设备的自干扰残留量对上行信号接收的不利 影响,或第一设备采用最大发送功率发送上行信号来消除第二设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低第二设备的自干扰残留量对上行信号接收的不利影响,能够提高上行信号的接收信号噪声比,提升网络性能。
可选地,作为另一实施例,在410中,所第二设备根据自干扰补偿量生成功率指示信息,其中,功率指示信息用于指示自干扰补偿量,以便于第一设备根据自干扰补偿量和上行开环功率参数确定上行传输功率。
在第二设备为基站时,基站可以调度所有的子帧(时频资源)用于全双工传输,因此,第一设备在每个上行子帧上都需要在开环参数上增加自干扰补偿量,以调整第一设备的上行传输功率。具体的讲第一设备在影响各个信道的开环功率参数如LTE中PUCCH信道的开环功率、PUSCH的开环功率的基础上增加自干扰补偿量,即第一设备的上行传输功率为根据第一设备的上行开环功率参数和第二设备的自干扰补偿量之和确定的功率。
或者,在第二设备为中继时,中继可以调度所有的子帧(时频资源)都用于全双工传输,一种情形,第一设备为用户设备,中继处于向基站发送下行信号,从终端接收上行信号的情形。则终端在开环或闭环参数上增加自干扰补偿量,以调节用户设备的上行传输功率。具体的讲第一设备在影响各个信道的开环功率参数如LTE中PUCCH信道的开环功率、PUSCH的开环功率的基础上增加自干扰补偿量,即第一设备的上行传输功率为第一设备的上行开环功率参数和第二设备的自干扰补偿量之和。另一种情形,第一设备为基站,中继处于向用户设备发送下行信号,从基站接收上行信号的情形。同样的,基站在开环或闭环参数上增加中继的自干扰残留补偿量,以调整基站的上行发射功率。具体的讲基站在开环或闭环参数PUCCH信道的开环功率、PUSCH的开环功率的基础上增加自干扰残留偏移量,即第一设备的上行传输功率为根据第一设备的上行开环功率参数和第二设备的自干扰补偿量之和确定的功率。
例如,LTE的上行功控是根据开环功控加上闭环修正的方式。
例如PUSCH的i子帧的功率定义为
Figure PCTCN2014095666-appb-000008
其中PCMAX,c(i)表示终端的最大发射功率;MPUSCH,c(i)表示基于上行授权分 配的RB数;PO_PUSCH,c(j)表示开环功率参数;αc(j)表示路损因子;PLc下行路损估计量;ΔTF,c(i)传输方式补偿量;fc(i)表示功控动态偏移;
其中j的取值为0、1和2,分别表示基于半静态调度,动态调度和随机接入的上行传输。
PO_PUSCH,c(0)=PO_NOMINAL_PUSCH,c(0)+PO_UE_PUSCH,c(0)
PO_PUSCH,c(1)=PO_NOMINAL_PUSCH,c(1)+PO_UE_PUSCH,c(1)
PO_NOMINAL_PUSCH,c(2)=PO_PREPREAMBLE_Msg3
PO_NOMINAL_PUSCH,c(j)是由高层信令指示,对特定小区的参数,广播给终端。PO_UE_PUSCH,c(j)是由RRC信令配置,针对特定UE的项。PO_PRE和ΔPREAMBLE_Msg3是针对随机接入的高层参数。
当PUSCH和PUCCH同传上行信号时,
Figure PCTCN2014095666-appb-000009
其中
Figure PCTCN2014095666-appb-000010
为i子帧中PUCCH的功率。
其中PO_PUSCH,c(j)受到自干扰残留量的影响,从而影响PPUSCH,c(i)
考虑了基站的自干扰补偿量ΔSI(j)后发射功率公式修改为
Figure PCTCN2014095666-appb-000011
Figure PCTCN2014095666-appb-000012
高层信令:
由于PO_NOMINAL_PUSCH,c(j)是由高层信令广播给终端的,PO_UE_PUSCH,c(j)是由RRC信令配置给终端的。因此ΔSI(j)可以通过携带PO_NOMINAL_PUSCH,c(j)或携带PO_UE_PUSCH,c(j)的信令,或新配置的信令通知给终端。到达补偿开环功率参数的目的。
类似的在PUCCH信道上,PUCCH的i子帧的功率定义为
Figure PCTCN2014095666-appb-000013
其中h(nCQI,nHARQ,nSR)是根据PUCCH格式类型的参数,针对分别用于传输 CQI(Channel Quality Indication信道质量指示),HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)反馈和SR(Scheduling Request调度请求)
PO_PUCCH=PO_NOMINAL_PUCCH+PO_UE_PUCCH
P0_PUCCH开环功率参数受到自干扰的影响,从而影响到PPUCCH(i),在考虑自干扰补偿量ΔSI
Figure PCTCN2014095666-appb-000014
类似的P0_PUCCH也可以通过多种信令携带。因此ΔSI可以通过携带PO_NOMINAL_PUCCH或携带PO_UE_PUCCH的信令,或新配置的信令通知给终端。到达补偿开环功率参数的目的。
另外当全双工基站的邻居基站也处于全双工的模式时,造成即使没有自干扰,基站也比半双工模式多收到基站间的干扰,因此造成开环功率参数在两种情况下不同,分别用于半双上行子帧或基站全双工模式工作时的上行子帧。基站需要将两套开环功率参数通知给终端,终端将自干扰补偿量补偿在基站全双工模式工作时的上行子帧的开环功率参数上。
可替代地,作为另一实施例,在410中,第二设备根据自干扰补偿量生成功率指示信息,其中,功率指示信息用于指示上行传输功率。
换句话说,第二设备直接确定出第一设备的上行传输功率,通过功率指示信息将上行传输功率发送给第一设备,第一设备直接使用该上行传输功率发送上行信号即可。无需第一设备进行其他的计算。
具体的,可以分两种情况来进行说,第一种情况,第一设备在全双工时频资源上发送上行信号,另一种情况为第一设备在半双工时频资源上发送上行信号。两种情况对应两种不同的功率参数。具体而言,在全双工时频资源上发送上行信号的功率是第二设备根据第二设备的自干扰补偿量确定的功率,该上行传输功率为第一设备的上行开环功率参数和第二设备的自干扰补偿量之和。在半双工时频资源上发送上行信号的功率可以无需考虑第二设备的自干扰补偿量确定的功率,由第二设备直接确定,然后第二设备告知第一设备该上行传输功率可以为第一设备的上行开环功率参数。
因此,对应第一种情形,作为另一实施例,在430中,第二设备在全双工时频资源上接收第一设备采用上行传输功率发送的上行信号;
对应第二种情况,本发明实施例方法还包括:第二设备生成指示第二功率的信息;第二设备向第一设备发送发送指示第二功率的信息,以便于工作在半双工模式下的第二设备在第二时频资源上接收第一设备采用第二功率发送的其它上行信号。
应理解,第一时频资源可以为全双工时频资源,第二时频资源可以为半双工时频资源。
具体而言,当第二设备为基站时,基站可以调度一部分子帧处于全双工传输,仍然保留部分子帧资源用于半双工上行传输。由于半双工上行传输和全双工传输中上行传输所受到的干扰不同,因此,需要采用两套不同的功率调整参数,分别处理半双工上行传输和全双工传输中上行传输的功率控制。
在全双工时频资源上采用上行传输功率向向第二设备发送上行信号;第一设备在半双工时频资源上采用第二功率向第二设备发送上行信号。
由于,全双工子帧中,受到的干扰水平完全和半双工子帧不同。在全双工上行子帧中,不仅受到自干扰信号残留量的干扰,还受到邻居站点的下行干扰。因此,不能共用一套功率控制参数,而且全双工时频资源上的功控控制参数中考虑了自干扰残留偏移量。
或者,第二设备为中继时,一种可能的情况,中继处于向基站发送数据,从终端接收数据的状态。如果终端发射上行数据的子帧资源中,中继部分子帧处于全双工状态,部分子帧仅处于半双工状态(接收终端上行数据)。由于半双工上行传输和全双工传输中上行传输所受到的干扰不同,因此,可以采用两套不同的功率调整参数,分别处理半双工上行传输和全双工传输中上行传输的功率控制,即在全双工时频资源上采用上行传输功率向向第二设备发送上行信号;第一设备在半双工时频资源上采用第二功率向第二设备发送其它上行信号。另一种可能的情况,中继处于向用户设备发送数据,从基站接收数据的的情况与上述情况类似,为避免重复不再赘述。
可选地,作为另一实施例,应用于FDD系统中的上行频段中,在第二设备确定第二设备的自干扰补偿量之前,本发明实施例方法还包括:
第二设备在上行频段中设置半双工下行时频资源,半双工下行时频资源用于测量第二设备的自干扰补偿量。
为了测量自干扰残留情况,基站或中继必须在上行频段中增加半双工下行资源,用于测量自干扰残留量。并且通知给终端或基站和终端。和TDD 中设计一致,这种下行资源不需要每个帧都有。
为了减少终端或基站和终端接收在不同频段上的切换,将上行频段中下行资源时分或频分的用于自干扰测量和通知自干扰残留参数的信道。
并且基站和终端具有在FDD上行频段接收能力。进一步,鉴于终端低成本的设计考虑,终端在FDD上行频段为半双工工作模式。因此,预留上下行切换时间。
进一步地,作为另一实施例,在FDD上行频段的上行频段中设置半双工下行时频资源的周期大于或等于一个无线帧。
换句话说,并不是每一个FDD上行频段的上行频段中的帧中设置半双工下行时频资源。可以在FDD上行频段的上行频段中的每个帧上设置半双工下行时频资源或者间隔几个帧设置半双工下行时频资源。
具体地,为了测量自干扰残留情况,基站或中继必须在上行频段中划分出一部分资源作为半双工下行资源,用于测量自干扰残留量。并且通知给终端或基站和终端。和TDD中设计一致,这种下行资源不需要每个帧都有,为了减少终端或基站和终端接收在不同频段上的切换,将上行频段中下行资源时分或频分的用于自干扰测量和通知自干扰补偿量参数的信道。
可选地,作为另一实施例,第一时频资源用于第三设备接收第二设备发送的下行信号,第一设备和第三设备是第二设备预先确定的第一设备和第三设备间的干扰小于预设阈值的一对设备。
换句话说,第一设备为第一终端对中的第一终端,第一终端对包括第一终端和第二终端,第一终端对为第一终端组和第二终端组构成的所有终端对中的终端间干扰小于预设阈值的终端对,第二终在与第一终端向第二设备发送上行信号的全双工时频资源上接收第二设备发送的下行信号。
具体地,第一设备在全双工时频资源发送上行信号之前,终端在该半双工上行传输子帧中发送上行控制信号,或上行数据信号,或上行探测信号,在LTE系统中分别对应PUCCH,PUSCH,SRS信号。基站将利用这类资源调度包括第一设备的第一终端组中的一部分终端处于发射上行探测信号状态同时,调度包括第三设备第二终端组中的一部分终端处于接收上行探测信号状态。需要说明的是,如果上行和下行采用不同的调制方式,那么第二终端组中的终端必须具有两种不同的调制方式的收发能力,如LTE中上行采用SC-FDMA调制,而下行采用OFDM调制。第二终端组中的终端需要具有解 SC-FDMA调制的能力。处于接收的终端(第二终端组中的一部分终端)测量来自第二设备范围内的其他终端的终端间干扰水平。因此有部分终端的测量被安排在上行资源上,并且基站为了辅助终端进行干扰测量,在上行探测信号中携带发送SRS的信息,并且第二设备预留出上报测量用户间干扰信息的资源。基站在调度全双工子帧时,选择干扰小于预设阈值的一对设备(第一设备和第三设备)分别在同一时频资源上发送上行信号和接收下行信号。
可选地,作为另一实施例,应用于FDD系统中的下行频段中,方法还包括:第二设备在下行频段中设置半双工上行时频资源,半双工上行时频资源用于测量第一设备与第三设备间的干扰。
具体地,第二设备为基站时,应用于FDD系统中的下行频段中,第二设备需要在下行频段中设置半双工上行时频资源,半双工上行时频资源用于测量第一设备与第三设备间的干扰。第二设备预先确定第一设备和第三设备是的干扰小于预设阈值,之后,第二设备在全双工时频资源上接收第一设备采用上行传输功率发送的上行信号,在全双工时频资源向第三设备第二设备发送的下行信号。
可选地,作为另一实施例,本发明实施例还包括:
第二设备根据第一发射参数在全双工时频资源上发送第一下行信号,其中,第一发射参数使得第二设备与第二设备的临近站点间的干扰小于预设干扰阈值;
第二设备根据第二发射参数在半双工时频资源上发送第二下行信号。
具体地,第二设备可以为基站。第二设备发送下行信号时采用两套传输参数,包括第一发射参数和第二发射参数。第一发射参数可以用于全双工设备(第二设备)工作在全双工子帧的传输参数,另外一类用于全双工设备工作在半双工子帧的传输参数。
应理解,发射参数可以包括发射功率、天线下倾角、传播模型、基站天线高度等参数。
如果所有的子帧都用于全双工传输,那么基站(第二设备)的下行覆盖不能保证,因此为了保证基站的覆盖,基站可能需要保留部分的子帧用于半双工下行传输。而且如果基站半双工下行和全双工子帧中下行采用相同的发射参数会对邻居上行接收产生很大的干扰,因此,基站在下行需要采用和半双工下行子帧采用不同的下行参数。
基站需要将发射功率,下倾角通过小区间距,传播模型,基站天线高度等参数提前计算最大值,为了减少基站间干扰对上行数据接收的干扰。在全双工子帧发射过程中不能超过上述最大值。
应理解,上述实施例中,以第一设备可以在某个全双工时频资源或半双工时频资源上发送上行信号,并且第一设备还可以在另一全双工时频资源或半双工时频资源上接收第二设备的下行信号的例子举例说明的,应注意,第一设备可以某个全双工时频资源或半双工时频资源上发送上行信号,但是在另一全双工时频资源或半双工时频资源上接收第二设备的下行信号的设备也可以不是第一设备,为其他的设备,本发明实施例并不对此做限定。
进一步地,作为另一实施例,本发明实施例方法还可以包括:
第二设备确定SINR大于预设阈值或CQI大于预设信道质量阈值的第四设备,第四设备包括至少一个设备;第二设备确定PH大于预设余量阈值的第五设备,第五设备包括至少一个设备;第二设备在全双工时频资源上接收第五设备发送的上行信号;
其中,第二设备根据第一发射参数在全双工时频资源上发送第一下行信号,包括:第二设备根据第一发射参数在全双工时频上向第四设备中的至少一个设备发送第一下行信号。
应理解,第五设备可以与第一设备为同一设备,也可以为不同的设备,本发明实施例并不对此作限定。
具体地,第二设备在调度全双工子帧时,调度SINR大于预设阈值的设备接收下行信号。
另外,第二设备可以在调度全双工子帧时,调度PH大于预设余量阈值的第五设备发送上行信号。在半双工通信系统中,基站通过终端反馈的PHR了解终端的PH。当PH高,说明终端可以采用更大的发射功率发射上行信号,用来补偿自干扰的影响。
应理解,在较佳实施例中,第二设备在调度全双工子帧时,可以调度SINR大于预设阈值或CQI大于预设信道质量阈值的设备接收下行信号。本发明实施例并不对此做限定,第二设备在调度全双工子帧时,也可以调度任一设备接收下行信号。
上文中,结合图1至图4详细描述了本发明实施例的传输信号的方法,下面将结合图5至图8详细描述本发明实施例的设备。
图5是根据本发明一个实施例的传输信号的设备的示意框图。应用图1的场景中图5所示的设备500为用户设备,第二设备为基站。应用图2的场景中图5所示的设备500为基站或用户设备,第二设备为中继。如图5所示的设备500包括:确定单元510和第一发送单元520。
具体地,确定单元510确定上行传输功率;第一发送单元520采用上行传输功率在第一时频资源上向工作在全双工模式下的第二设备发送上行信号,其中,上行传输功率是根据第二设备的自干扰补偿量确定的功率,或者上行传输功率为第一设备的最大发送功率。
因此,本发明实施例通过传输信号的设备采用上行传输功率是根据第二设备的自干扰补偿量确定的功率,或者上行传输功率为设备的最大发送功率的功率向工作在全双工模式下的第二设备发送上行信号,由于,本发明实施例通过第二设备的自干扰补偿量来降低第二设备的自干扰残留量对上行信号接收的不利影响,或设备采用最大发送功率发送上行信号来消除第二设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低第二设备的自干扰残留量对上行信号接收的不利影响,能够提升网络性能。
可选地,作为另一实施例,确定单元510获取第二设备发送的功率指示信息,功率指示信息用于指示第二设备的自干扰补偿量,根据自干扰补偿量和上行开环功率参数确定上行传输功率。
可选地,作为另一实施例,上行开环功率参数包括第一上行开环功率参数或第二上行开环功率参数,确定单元510根据自干扰补偿量和第一上行开环功率参数确定上行传输功率,或者确定单元510根据自干扰补偿量和第二上行开环功率参数确定上行传输功率。
可选地,作为另一实施例,确定单元510获取第二设备发送的功率指示信息,功率指示信息用于指示上行传输功率。
可选地,作为另一实施例,该设备还包括:获取单元,用于获取第二设备发送的指示第二功率的信息;第二发送单元,用于在第二时频资源上采用第二功率向工作在半双工模式下的第二设备发送上行信号。
可选地,作为另一实施例,第一时频资源用于第三设备接收第二设备发送的下行信号,该设备和第三设备是第二设备预先确定的设备和第三设备间的干扰小于预设阈值的一对设备。
可选地,作为另一实施例,应用于FDD系统中的下行频段中,该设备和第三设备之间的干扰是通过第二设备在下行频段中设置的半双工上行时频资源测量的。
可选地,作为另一实施例,该设备还包括:第一测量单元,用于根据接收到的第二设备采用第一发射参数发送的CRS进行设备与第二设备间与CRS相关的测量;第二测量单元,用于根据接收到的第二设备采用第二发射参数发送的CRS进行设备与第二设备间与CRS相关的测量。
可选地,作为另一实施例,自干扰补偿量由第二设备根据以下公式确定的:
ΔSI=10*log10(N+1)dB
其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
应理解,图5所示的设备500能够实现图3和图4所示的方法中由第一设备完成的各个过程,具体可参见图3和图4所示方法的描述,为避免重复,此处不再赘述。
图6是根据本发明另一实施例的传输信号的设备的示意框图。应用图1的场景中图6所示的设备600为基站,第一设备为用户设备。应用图2的场景中图6所示的设备600为中继,第一设备为基站或用户设备。如图6所示的设备600包括:第一生成单元610、第一发送单元620和第一接收单元630。
具体地,第一生成单元610生成功率指示信息,,功率指示信息用于第一设备根据功率指示信息确定向工作在全双工模式下的设备发送上行信号的上行传输功率,上行传输功率是根据设备的自干扰补偿量确定的功率,或者上行传输功率为第一设备的最大发送功率;第一发送单元620向第一设备发送功率指示信息;第一接收单元630接收第一设备采用上行传输功率在第一时频资源上发送的上行信号。
因此,本发明实施例,通过设备生成指示上行传输功率的功率指示信息,并向第一设备发送该功率指示信息,接收第一设备采用上行传输功率在第一时频资源上发送的上行信号。由于,本发明实施例通过设备的自干扰补偿量来降低设备的自干扰残留量对上行信号接收的不利影响,或第一设备采用最大发送功率发送上行信号来消除第二设备的自干扰残留量对上行信号接收 的不利影响,因此,本发明实施例能够消除或降低第二设备的自干扰残留量对上行信号接收的不利影响,能够提升网络性能。
可选地,作为另一实施例,还包括:第一确定单元,用于确定设备的自干扰补偿量;其中,第一生成单元610根据自干扰补偿量生成功率指示信息。
因此,本发明实施例通过传输信号的设备确定设备的自干扰补偿量,根据自干扰补偿量生成功率指示信息,向第一设备发送功率指示信息,最后接收第一设备采用上行传输功率发送的上行信号。由于本发明实施例通过传输信号的设备的自干扰补偿量来降低自干扰残留量对上行信号接收的不利影响,或第一设备采用最大发送功率发送上行信号来消除设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低设备的自干扰残留量对上行信号接收的不利影响,能够提升网络性能。
可选地,作为另一实施例,第一生成单元610根据自干扰补偿量生成功率指示信息,其中,功率指示信息用于指示自干扰补偿量,以便于第一设备根据自干扰补偿量和上行开环功率参数确定上行传输功率。
可替代地,作为另一实施例,第一生成单元610根据自干扰补偿量生成功率指示信息,其中,功率指示信息用于指示上行传输功率。
可选地,作为另一实施例,该设备还包括:第二生成单元,用于生成指示第二功率的信息;第二发送单元,用于向第一设备发送指示第二功率的信息,以便于工作在半双工模式下的设备在第二时频资源上接收第一设备采用第二功率发送的其它上行信号。
可选地,作为另一实施例,应用于FDD系统中的上行频段中,该设备还包括:第一设置单元,用于在上行频段中设置半双工下行时频资源,半双工下行时频资源用于测量第二设备的自干扰补偿量。
进一步地,作为另一实施例,上行频段中设置半双工下行时频资源的周期大于或等于一个无线帧。
可选地,作为另一实施例,第一时频资源用于第三设备接收设备发送的下行信号,第一设备和第三设备是设备预先确定的第一设备和第三设备间的干扰小于预设阈值的一对设备。
可选地,作为另一实施例,应用于FDD系统中的下行频段中,该设备还包括:第二设置单元,用于在下行频段中设置半双工上行时频资源,半双工上行时频资源用于测量第一设备与第三设备间的干扰。
可选地,作为另一实施例,该设备还包括:第三发送单元,用于根据第一发射参数在全双工时频资源上发送第一下行信号,其中,第一发射参数使得第二设备与第二设备的临近站点间的干扰小于预设干扰阈值;第四发送单元,用于根据第二发射参数在半双工时频资源上发送第二下行信号。
可选地,作为另一实施例,该设备还包括:第二确定单元,用于确定SINR大于预设阈值或CQI大于预设信道质量阈值的第四设备,第四设备包括至少一个设备;第三确定单元,用于确定PH大于预设余量阈值的第五设备,第五设备包括至少一个设备;第二接收单元,用于在全双工时频资源上接收第五设备发送的上行信号;其中,第三发送单元根据第一发射参数在全双工时频上向第四设备中的至少一个设备发送第一下行信号。
可选地,作为另一实施例,第一确定单元610根据以下公式确定第二设备的自干扰补偿量
ΔSI=10*log10(N+1)dB
其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
应理解,图6所示的设备600能够实现图3和图4所示的方法中由第二设备完成的各个过程,具体可参见图3和图4所示方法的描述,为避免重复,此处不再赘述。
图7是根据本发明另一实施例的传输信号的设备的示意框图。应用图1的场景中图7所示的设备700为用户设备,第二设备为基站。应用图2的场景中图7所示的设备700为基站或用户设备,第二设备为中继。如图7所示的设备700包括处理器710、存储器720、总线系统730和收发器740。
具体地,处理器710通过总线系统730调用存储在存储器720中的代码,确定上行传输功率;收发器740采用上行传输功率在第一时频资源上向工作在全双工模式下的第二设备发送上行信号,其中,上行传输功率是根据第二设备的自干扰补偿量确定的功率,或者上行传输功率为第一设备的最大发送功率。
因此,本发明实施例通过传输信号的设备采用上行传输功率是根据第二设备的自干扰补偿量确定的功率,或者上行传输功率为设备的最大发送功率的功率向工作在全双工模式下的第二设备发送上行信号,由于,本发明实施例通过第二设备的自干扰补偿量来降低第二设备的自干扰残留量对上行信 号接收的不利影响,或设备采用最大发送功率发送上行信号来消除第二设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低第二设备的自干扰残留量对上行信号接收的不利影响,能够提升网络性能。
上述本发明实施例揭示的方法可以应用于处理器710中,或者由处理器710实现。处理器710可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器710可以是通用处理器、数字信号处理器(英文Digital Signal Processor,简称DSP)、专用集成电路(英文Application Specific Integrated Circuit,简称ASIC)、现成可编程门阵列(英文Field Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(英文Random Access Memory,简称RAM)、闪存、只读存储器(英文Read-Only Memory,简称ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器720,处理器710读取存储器720中的信息,结合其硬件完成上述方法的步骤,该总线系统730除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统730。
可选地,作为另一实施例,处理器710获取第二设备发送的功率指示信息,功率指示信息用于指示第二设备的自干扰补偿量,根据自干扰补偿量和上行开环功率参数确定上行传输功率。
可选地,作为另一实施例,上行开环功率参数包括第一上行开环功率参数或第二上行开环功率参数,处理器710根据自干扰补偿量和第一上行开环功率参数确定上行传输功率,或者处理器710根据自干扰补偿量和第二上行开环功率参数确定上行传输功率。
可选地,作为另一实施例,处理器710获取第二设备发送的功率指示信息,功率指示信息用于指示上行传输功率。
可选地,作为另一实施例,收发器740获取第二设备发送的指示第二功率的信息,在第二时频资源上采用第二功率向工作在半双工模式下的第二设备发送上行信号。
可选地,作为另一实施例,第一时频资源用于第三设备接收第二设备发送的下行信号,该设备和第三设备是第二设备预先确定的设备和第三设备间的干扰小于预设阈值的一对设备。
可选地,作为另一实施例,应用于FDD系统中的下行频段中,该设备和第三设备之间的干扰是通过第二设备在下行频段中设置的半双工上行时频资源测量的。
可选地,作为另一实施例,
处理器710根据接收到的第二设备采用第一发射参数发送的CRS进行设备与第二设备间与CRS相关的测量;根据接收到的第二设备采用第二发射参数发送的CRS进行设备与第二设备间与CRS相关的测量。
可选地,作为另一实施例,自干扰补偿量由第二设备根据以下公式确定的:
ΔSI=10*log10(N+1)dB
其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
应理解,图7所示的设备700与图5所示的设备500对应,能够实现图3和图4所示的方法中由第一设备完成的各个过程,具体可参见图3和图4所示方法的描述,为避免重复,此处不再赘述。
图8是根据本发明另一实施例的传输信号的设备的示意框图。应用图1的场景中图8所示的设备800为基站,第一设备为用户设备。应用图2的场景中图8所示的设备800为中继,第一设备为基站或用户设备。如图8所示的设备800包括处理器810、存储器820、总线系统830和收发器840。
具体地,处理器810通过总线系统830调用存储在存储器820中的代码,生成功率指示信息,功率指示信息用于第一设备根据功率指示信息确定向工作在全双工模式下的设备发送上行信号的上行传输功率,上行传输功率是根据设备的自干扰补偿量确定的功率,或者上行传输功率为第一设备的最大发送功率;收发器840向第一设备发送功率指示信息;收发器840接收第一设备采用上行传输功率在第一时频资源上发送的上行信号。
因此,本发明实施例,通过设备生成指示上行传输功率的功率指示信息,并向第一设备发送该功率指示信息,接收第一设备采用上行传输功率在第一时频资源上发送的上行信号。由于,本发明实施例通过设备的自干扰补偿量来降低设备的自干扰残留量对上行信号接收的不利影响,或第一设备采用最大发送功率发送上行信号来消除设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低第二设备的自干扰残留量对上行信号接收的不利影响,能够提升网络性能。
上述本发明实施例揭示的方法可以应用于处理器810中,或者由处理器810实现。处理器810可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器810可以是通用处理器、数字信号处理器(英文Digital Signal Processor,简称DSP)、专用集成电路(英文Application Specific Integrated Circuit,简称ASIC)、现成可编程门阵列(英文Field Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(英文Random Access Memory,简称RAM)、闪存、只读存储器(英文Read-Only Memory,简称ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器820,处理器810读取存储器820中的信息,结合其硬件完成上述方法的步骤,该总线系统830除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统830。
可选地,作为另一实施例,处理器810确定设备的自干扰补偿量;其中,第一生成单元610根据自干扰补偿量生成功率指示信息。
因此,本发明实施例通过传输信号的设备确定设备的自干扰补偿量,根据自干扰补偿量生成功率指示信息,向第一设备发送功率指示信息,最后接收第一设备采用上行传输功率发送的上行信号。由于本发明实施例通过传输信号的设备的自干扰补偿量来降低自干扰残留量对上行信号接收的不利影 响,或第一设备采用最大发送功率发送上行信号来消除设备的自干扰残留量对上行信号接收的不利影响,因此,本发明实施例能够消除或降低设备的自干扰残留量对上行信号接收的不利影响,能够提升网络性能。
可选地,作为另一实施例,处理器810根据自干扰补偿量生成功率指示信息,其中,功率指示信息用于指示自干扰补偿量,以便于第一设备根据自干扰补偿量和上行开环功率参数确定上行传输功率。
可替代地,作为另一实施例,处理器810根据自干扰补偿量生成功率指示信息,其中,功率指示信息用于指示上行传输功率。
可选地,作为另一实施例,收发器840在全双工时频资源上接收第一设备采用上行传输功率发送的上行信号;处理器810生成指示第二功率的信息;收发器840向第一设备发送指示第二功率的信息,以便于工作在半双工模式下的设备在第二时频资源上接收第一设备采用第二功率发送的其它上行信号。
可选地,作为另一实施例,应用于FDD系统中的上行频段中,处理器810在上行频段中设置半双工下行时频资源,半双工下行时频资源用于测量第二设备的自干扰补偿量。
进一步地,作为另一实施例,上行频段中设置半双工下行时频资源的周期大于或等于一个无线帧。
可选地,作为另一实施例,第一时频资源用于第三设备接收设备发送的下行信号,第一设备和第三设备是设备预先确定的第一设备和第三设备间的干扰小于预设阈值的一对设备。
可选地,作为另一实施例,应用于FDD系统中的下行频段中,处理器810在下行频段中设置半双工上行时频资源,半双工上行时频资源用于测量第一设备与第三设备间的干扰。
可选地,作为另一实施例,收发器840根据第一发射参数在全双工时频资源上发送第一下行信号,其中,第一发射参数使得第二设备与第二设备的临近站点间的干扰小于预设干扰阈值;收发器840根据第二发射参数在半双工时频资源上发送第二下行信号。
可选地,作为另一实施例,处理器810用于确定SINR大于预设阈值或CQI大于预设信道质量阈值的第四设备,第四设备包括至少一个设备;处理器810确定PHR大于预设余量阈值的第五设备,第五设备包括至少一个设 备;收发器840在全双工时频资源上接收第五设备发送的上行信号;其中,收发器840根据第一发射参数在全双工时频上向第四设备中的至少一个设备发送第一下行信号。
可选地,作为另一实施例,处理器810根据以下公式确定第二设备的自干扰补偿量
ΔSI=10*log10(N+1)dB
其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
应理解,图8所示的设备800与图6所示的设备600对应,能够实现图3和图4所示的方法中由第二设备完成的各个过程,具体可参见图3和图4所示方法的描述,为避免重复,此处不再赘述。
应注意,上述例子是为了帮助本领域技术人员更好地理解本发明实施例,而非要限制本发明实施例的范围。本领域技术人员根据所给出的上述的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根 据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和 通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (48)

  1. 一种传输信号的方法,其特征在于,包括:
    第一设备确定上行传输功率;
    所述第一设备采用所述上行传输功率在第一时频资源上向工作在全双工模式下的第二设备发送上行信号,
    其中,所述上行传输功率是根据所述第二设备的自干扰补偿量确定的功率,或者所述上行传输功率为所述第一设备的最大发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备确定上行传输功率,包括:
    所述第一设备获取所述第二设备发送的功率指示信息,所述功率指示信息用于指示所述第二设备的自干扰补偿量;
    所述第一设备根据所述自干扰补偿量和上行开环功率参数确定所述上行传输功率。
  3. 根据权利要求2所述的方法,其特征在于,所述上行开环功率参数包括第一上行开环功率参数或第二上行开环功率参数,
    其中,所述第一设备根据所述自干扰补偿量和上行开环功率参数确定所述上行传输功率,包括:
    所述第一设备根据所述自干扰补偿量和第一上行开环功率参数确定所述上行传输功率,
    或者
    所述第一设备根据所述自干扰补偿量和第二上行开环功率参数确定所述上行传输功率,包括:
    所述第一设备根据所述自干扰补偿量和所述第二上行开环功率参数确定所述上行传输功率。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备获取所述第二设备发送的指示第二功率的信息;
    所述第一设备在第二时频资源上采用所述第二功率向工作在半双工模式下的所述第二设备发送上行信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一 设备为基站或用户设备,所述第二设备为中继。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一设备为用户设备,所述第二设备为基站。
  7. 根据权利要求6中任一项所述的方法,其特征在于,所述第一时频资源用于第三设备接收所述第二设备发送的下行信号,所述第一设备和所述第三设备是所述第二设备预先确定的所述第一设备和所述第三设备间的干扰小于预设阈值的一对设备。
  8. 根据权利要求7所述的方法,其特征在于,应用于频分双工FDD系统中的下行频段中,所述第一设备和所述第三设备之间的干扰是通过所述第二设备在所述下行频段中设置的半双工上行时频资源测量的。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据接收到的所述第二设备采用第一发射参数发送的小区特定参考信号CRS进行所述第一设备与所述第二设备间与CRS相关的测量;
    所述第一设备根据接收到的所述第二设备采用第二发射参数发送的CRS进行所述第一设备与所述第二设备间与CRS相关的测量。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述自干扰补偿量由所述第二设备根据以下公式确定的:
    ΔSI=10*log10(N+1)dB
    其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
  11. 一种传输信号的方法,其特征在于,包括:
    第二设备生成功率指示信息,所述功率指示信息用于第一设备根据所述功率指示信息确定向工作在全双工模式下的第二设备发送上行信号的上行传输功率,所述上行传输功率是根据所述第二设备的自干扰补偿量确定的功率,或者所述上行传输功率为所述第一设备的最大发送功率;
    所述第二设备向所述第一设备发送所述功率指示信息;
    所述第二设备接收所述第一设备采用所述上行传输功率在第一时频资源上发送的上行信号。
  12. 根据权利要求11所述的方法,其特征在于,还包括:
    第二设备确定所述第二设备的自干扰补偿量,
    其中,所述第二设备生成功率指示信息,包括:
    所述第二设备根据所述自干扰补偿量生成功率指示信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第二设备根据所述自干扰补偿量生成功率指示信息,包括:
    所述第二设备根据所述自干扰补偿量生成功率指示信息,其中,所述功率指示信息用于指示所述自干扰补偿量,以便于所述第一设备根据所述自干扰补偿量和上行开环功率参数确定所述上行传输功率。
  14. 根据权利要求12所述的方法,其特征在于,
    所述第二设备根据所述自干扰补偿量生成功率指示信息,包括:
    所述第二设备根据所述自干扰补偿量生成功率指示信息,其中,所述功率指示信息用于指示所述上行传输功率。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备生成指示第二功率的信息;
    所述第二设备向所述第一设备发送所述指示第二功率的信息,以便于工作在半双工模式下的所述第二设备在第二时频资源上接收所述第一设备采用所述第二功率发送的上行信号。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,应用于FDD系统中的上行频段中,在所述第二设备确定所述第二设备的自干扰补偿量之前,所述方法还包括:
    所述第二设备在所述上行频段中设置半双工下行时频资源,所述半双工下行时频资源用于测量所述第二设备的自干扰补偿量。
  17. 根据权利要求16所述的方法,其特征在于,所述上行频段中设置半双工下行时频资源的周期大于或等于一个无线帧。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述第一设备为基站或用户设备,所述第二设备为中继。
  19. 根据权利要求11至17中任一项所述的方法,其特征在于,所述第一设备为用户设备,所述第二设备为基站。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一时频资源用于第三设备接收所述第二设备发送的下行信号,所 述第一设备和所述第三设备是所述第二设备预先确定的所述第一设备和所述第三设备间的干扰小于预设阈值的一对设备。
  21. 根据权利要求20所述的方法,其特征在于,应用于FDD系统中的下行频段中,所述方法还包括:
    所述第二设备在所述下行频段中设置半双工上行时频资源,所述半双工上行时频资源用于测量所述第一设备与所述第三设备间的干扰。
  22. 根据权利要求11至21中任一项所述的方法,其特征在于,还包括:
    所述第二设备根据第一发射参数在全双工时频资源上发送第一下行信号,其中,所述第一发射参数使得所述第二设备与所述第二设备的临近站点间的干扰小于预设干扰阈值;
    所述第二设备根据第二发射参数在半双工时频资源上发送第二下行信号。
  23. 根据权利要求22所述的方法,其特征在于,还包括:
    所述第二设备确定信号与干扰加噪声比SINR大于预设阈值或信道质量指示CQI大于预设信道质量阈值的第四设备,所述第四设备包括至少一个设备;
    所述第二设备确定发射功率余量PH大于预设余量阈值的第五设备,所述第五设备包括至少一个设备;
    所述第二设备在所述全双工时频资源上接收所述第五设备发送的上行信号;
    其中,所述第二设备根据第一发射参数在全双工时频资源上发送第一下行信号,包括:所述第二设备根据第一发射参数在全双工时频上向所述第四设备中的至少一个设备发送所述第一下行信号。
  24. 根据权利要求11至23中任一项所述的方法,其特征在于,所述第二设备确定所述第二设备的自干扰补偿量,包括:
    所述第二设备根据以下公式确定所述第二设备的自干扰补偿量
    ΔSI=10*log10(N+1)dB
    其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
  25. 一种传输信号的设备,其特征在于,包括:
    确定单元,用于确定上行传输功率;
    第一发送单元,用于采用所述上行传输功率在第一时频资源上向工作在全双工模式下的第二设备发送上行信号,
    其中,所述第二设备为全双工设备,所述上行传输功率是根据所述第二设备的自干扰补偿量确定的功率,或者所述上行传输功率为所述第一设备的最大发送功率。
  26. 根据权利要求25所述的设备,其特征在于,所述确定单元获取所述第二设备发送的功率指示信息,所述功率指示信息用于指示所述第二设备的自干扰补偿量,根据所述自干扰补偿量和上行开环功率参数确定所述上行传输功率。
  27. 根据权利要求25所述的设备,其特征在于,所述上行开环功率参数包括第一上行开环功率参数或第二上行开环功率参数,
    所述确定单元根据所述自干扰补偿量和第一上行开环功率参数确定所述上行传输功率,
    或者
    所述确定单元根据所述自干扰补偿量和所述第二上行开环功率参数确定所述上行传输功率。
  28. 根据权利要求25至27中任一项所述的设备,其特征在于,还包括:
    获取单元,用于获取所述第二设备发送的指示第二功率的信息;
    第二发送单元,用于在第二时频资源上采用所述第二功率向工作在半双工模式下的所述第二设备发送上行信号。
  29. 根据权利要求25至28中任一项所述的设备,其特征在于,所述设备为基站或用户设备,所述第二设备为中继。
  30. 根据权利要求25至28中任一项所述的设备,其特征在于,所述设备为用户设备,所述第二设备为基站。
  31. 根据权利要求30中任一项所述的设备,其特征在于,所述第一时频资源用于第三设备接收所述第二设备发送的下行信号,所述设备和所述第三设备是所述第二设备预先确定的所述设备和所述第三设备间的干扰小于预设阈值的一对设备。
  32. 根据权利要求31所述的设备,其特征在于,应用于FDD系统中的下行频段中,所述设备和所述第三设备之间的干扰是通过所述第二设备在所述下行频段中设置的半双工上行时频资源测量的。
  33. 根据权利要求25至32中任一项所述的设备,其特征在于,所述设备还包括:
    第一测量单元,用于根据接收到的所述第二设备采用第一发射参数发送的CRS进行所述设备与所述第二设备间与CRS相关的测量;
    第二测量单元,用于根据接收到的所述第二设备采用第二发射参数发送的CRS进行所述设备与所述第二设备间与CRS相关的测量。
  34. 根据权利要求25至34中任一项所述的设备,其特征在于,所述自干扰补偿量由所述第二设备根据以下公式确定的:
    ΔSI=10*log10(N+1)dB
    其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
  35. 一种传输信号的设备,其特征在于,包括:
    第一生成单元,用于生成功率指示信息,所述功率指示信息用于第一设备根据所述功率指示信息确定向工作在全双工模式下的所述设备发送上行信号的上行传输功率,所述上行传输功率是根据所述设备的自干扰补偿量确定的功率,或者所述上行传输功率为所述第一设备的最大发送功率;
    第一发送单元,用于向所述第一设备发送所述功率指示信息;
    接收单元,用于接收所述第一设备采用所述上行传输功率在第一时频资源上发送的上行信号。
  36. 根据权利要求35所述的设备,其特征在于,还包括:
    第一确定单元,用于确定所述设备的自干扰补偿量;
    其中,第一生成单元根据所述自干扰补偿量生成功率指示信息。
  37. 根据权利要求36所述的设备,其特征在于,所述生成单元根据所述自干扰补偿量生成功率指示信息,其中,所述功率指示信息用于指示所述自干扰补偿量,以便于所述第一设备根据所述自干扰补偿量和上行开环功率参数确定所述上行传输功率。
  38. 根据权利要求36所述的设备,其特征在于,所述生成单元根据所述自干扰补偿量生成功率指示信息,其中,所述功率指示信息用于指示所述上行传输功率。
  39. 根据权利要求35至38中任一项所述的设备,其特征在于,所述设备还包括:
    第二生成单元,用于生成指示第二功率的信息;
    第二发送单元,用于向所述第一设备发送所述指示第二功率的信息,以便于工作在半双工模式下的所述设备在第二时频资源上接收所述第一设备采用所述第二功率发送的上行信号。
  40. 根据权利要求35至39中任一项所述的设备,其特征在于,应用于FDD系统中的上行频段中,所述设备还包括:
    第一设置单元,用于在所述上行频段中设置半双工下行时频资源,所述半双工下行时频资源用于测量所述第二设备的自干扰补偿量。
  41. 根据权利要求40所述的设备,其特征在于,所述上行频段中设置半双工下行时频资源的周期大于或等于一个无线帧。
  42. 根据权利要求35至41中任一项所述的设备,其特征在于,所述第一设备为基站或用户设备,所述设备为中继。
  43. 根据权利要求35至41中任一项所述的设备,其特征在于,所述第一设备为用户设备,所述设备为基站。
  44. 根据权利要求43所述的设备,其特征在于,
    所述第一时频资源用于第三设备接收所述设备发送的下行信号,所述第一设备和所述第三设备是所述设备预先确定的所述第一设备和所述第三设备间的干扰小于预设阈值的一对设备。
  45. 根据权利要求44所述的设备,其特征在于,应用于FDD系统中的下行频段中,所述设备还包括:
    第二设置单元,用于在所述下行频段中设置半双工上行时频资源,所述半双工上行时频资源用于测量所述第一设备与所述第三设备间的干扰。
  46. 根据权利要求35至45中任一项所述的设备,其特征在于,还包括:
    第三发送单元,用于根据第一发射参数在全双工时频资源上发送第一下行信号,其中,所述第一发射参数使得所述第二设备与所述第二设备的临近站点间的干扰小于预设干扰阈值;
    第四发送单元,用于根据第二发射参数在半双工时频资源上发送第二下行信号。
  47. 根据权利要求46所述的设备,其特征在于,还包括:
    第二确定单元,用于确定SINR大于预设阈值或CQI大于预设信道质量阈值的第四设备,所述第四设备包括至少一个设备;
    第三确定单元,用于确定PH大于预设余量阈值的第五设备,所述第五设备包括至少一个设备;
    接收单元,用于在所述全双工时频资源上接收所述第五设备发送的上行信号;
    其中,所述第三发送单元根据第一发射参数在全双工时频上向所述第四设备中的至少一个设备发送所述第一下行信号。
  48. 根据权利要求35至47中任一项所述的设备,其特征在于,第一确定单元根据以下公式确定所述第二设备的自干扰补偿量
    ΔSI=10*log10(N+1)dB
    其中,ΔSI表示自干扰补偿量,N>0,表示自干扰残留功率是噪声功率的倍数。
PCT/CN2014/095666 2014-12-30 2014-12-30 一种传输信号的方法和设备 WO2016106604A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/095666 WO2016106604A1 (zh) 2014-12-30 2014-12-30 一种传输信号的方法和设备
CN201480035459.3A CN105934893B (zh) 2014-12-30 2014-12-30 一种传输信号的方法和设备
US15/637,304 US20170302337A1 (en) 2014-12-30 2017-06-29 Signal transmission method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095666 WO2016106604A1 (zh) 2014-12-30 2014-12-30 一种传输信号的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/637,304 Continuation US20170302337A1 (en) 2014-12-30 2017-06-29 Signal transmission method and device

Publications (1)

Publication Number Publication Date
WO2016106604A1 true WO2016106604A1 (zh) 2016-07-07

Family

ID=56283879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095666 WO2016106604A1 (zh) 2014-12-30 2014-12-30 一种传输信号的方法和设备

Country Status (3)

Country Link
US (1) US20170302337A1 (zh)
CN (1) CN105934893B (zh)
WO (1) WO2016106604A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3593481A4 (en) * 2017-03-09 2020-11-25 Nokia Technologies Oy PROCEDURE AND INFORMATION EXCHANGE MECHANISM FOR FULL DUPLEX TRANSMISSION
US11515991B2 (en) * 2016-09-29 2022-11-29 Panasonic Intellectual Property Corporation Of America User equipment, base station and wireless communication method

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10356723B2 (en) * 2014-05-13 2019-07-16 Lg Electronics Inc. Method and device for receiving signal in wireless access system supporting FDR transmission
EP3243358B1 (en) * 2015-01-08 2020-06-24 Telefonaktiebolaget LM Ericsson (publ) A network node, a wireless device and methods therein for selecting a communication mode in a wireless communications network
US10506610B2 (en) * 2015-02-08 2019-12-10 Lg Electronics Inc. Method for allocating resource by considering inter-device interference in full-duplex wireless communication system and apparatus therefor
CN107223314B (zh) * 2015-02-12 2019-07-19 华为技术有限公司 具有自适应接收功率降低的全双工无线电
US20180175902A1 (en) * 2015-06-25 2018-06-21 Abdul-Karim Lakhani Duplexer with signal cancellation
US10218487B2 (en) * 2015-12-21 2019-02-26 Intel Corporation Radio configuration optimization for full-duplex communications
US10009143B2 (en) * 2016-03-03 2018-06-26 Futurewei Technologies, Inc. System and method for multi-user full duplex link adaptation
CN109314936B (zh) * 2016-04-12 2021-08-31 瑞典爱立信有限公司 用于全双工通信的最大功率降低
US10993239B2 (en) * 2016-06-12 2021-04-27 Lg Electronics Inc. Method for performing HARQ procedure in environment operating in FDR mode and apparatus therefor
CN106793028B (zh) * 2016-11-29 2020-08-28 海能达通信股份有限公司 传输功率的控制方法及用户设备
TWI631833B (zh) * 2016-12-14 2018-08-01 財團法人工業技術研究院 資料傳輸模式設定方法及應用其之基站裝置以及終端裝置
US10389429B2 (en) * 2017-02-11 2019-08-20 Massachusetts Institute Of Technology Full-duplex, bi-directional, analog relay
MX2019014388A (es) * 2017-05-31 2020-01-23 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo y dispositivo para comunicacion por radio.
US11153826B2 (en) * 2017-08-10 2021-10-19 Qualcomm Incorporated Procedure-based uplink power control
US11700107B2 (en) * 2017-11-09 2023-07-11 Qualcomm Incorporated Duplexing modes based on power configurations for transmissions
CN109803311B (zh) * 2017-11-17 2022-10-28 展讯通信(上海)有限公司 用于上行功率控制的用户设备、基站中的方法和装置
JP7126562B2 (ja) * 2018-05-04 2022-08-26 テレフオンアクチーボラゲット エルエム エリクソン(パブル) アップリンク参照信号の送信
KR20210035321A (ko) * 2018-08-21 2021-03-31 삼성전자주식회사 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
US11696240B2 (en) * 2019-01-14 2023-07-04 Qualcomm Incorporated Power control in full duplex communication
JP7260762B2 (ja) * 2019-03-26 2023-04-19 日本電信電話株式会社 通信制御装置、通信制御方法、及びプログラム
US20220191800A1 (en) * 2019-04-06 2022-06-16 Qualcomm Incorporated Physical uplink shared channel transmit power configuration
WO2020206572A1 (en) * 2019-04-06 2020-10-15 Qualcomm Incorporated Communicating multiple transport formats in a slot with full-duplex
CN110381556B (zh) * 2019-08-13 2022-03-22 Oppo(重庆)智能科技有限公司 网络切换方法和装置
WO2021179303A1 (en) * 2020-03-13 2021-09-16 Qualcomm Incorporated Power headroom reporting for a full-duplex mode of operation of a device
WO2021196068A1 (en) * 2020-04-01 2021-10-07 Qualcomm Incorporated Channel state reporting types
US11838778B2 (en) * 2020-05-20 2023-12-05 Qualcomm Incorporated Wireless node self-interference measurements and uplink beam management for full duplex transmissions
WO2021237385A1 (en) * 2020-05-23 2021-12-02 Qualcomm Incorporated Sidelink interference monitoring for full-duplex and half-duplex operation
US11792736B2 (en) * 2020-06-24 2023-10-17 Qualcomm Incorporated Power control for uplink communications in full duplex mode
WO2022031144A1 (ko) * 2020-08-07 2022-02-10 엘지전자 주식회사 전력 제어 방법 및 상기 방법을 이용하는 무선 장치
US20220110072A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Power headroom reports assuming half duplex and/or full duplex
US11910328B2 (en) * 2021-07-01 2024-02-20 Qualcomm Incorporated Applying amplitude drooping for adjacent bands
WO2023184550A1 (zh) * 2022-04-02 2023-10-05 北京小米移动软件有限公司 干扰抑制方法及装置、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399572A (zh) * 2007-09-25 2009-04-01 鼎桥通信技术有限公司 上行链路发射功率的控制方法及系统
CN101741437A (zh) * 2008-11-19 2010-06-16 中国移动通信集团公司 一种上行功率控制方法、系统及设备
WO2013156174A1 (en) * 2012-04-19 2013-10-24 Nokia Siemens Networks Oy Scheduling mode selection in uplink data transmission

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292519B1 (en) * 1998-03-11 2001-09-18 Telefonaktiebolaget Lm Ericsson (Publ) Correction of signal-to-interference ratio measurements
CN101563851A (zh) * 2006-11-06 2009-10-21 诺基亚公司 用于自干扰消除的模拟信号路径建模
US20090190485A1 (en) * 2008-01-30 2009-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Method of Closed Loop Power Control Adjusted by Self-Interference
US8867420B2 (en) * 2010-03-15 2014-10-21 Qualcomm Incorporated Method and apparatus for enhancing high data rate uplink operations
CN102143568B (zh) * 2010-11-26 2015-02-04 华为技术有限公司 功率控制方法和基站
WO2013173251A2 (en) * 2012-05-13 2013-11-21 Invention Mine Llc Wireless transmission with channel state perturbation
US10567147B2 (en) * 2012-08-28 2020-02-18 Idac Holdings, Inc. Full duplex single channel communications
CN103685098B (zh) * 2012-09-07 2017-04-12 华为技术有限公司 一种干扰信号的处理方法、装置和系统
CN103945504B (zh) * 2013-01-18 2017-10-17 华为技术有限公司 功率控制方法及设备
JP6378326B2 (ja) * 2013-06-10 2018-08-22 エルジー エレクトロニクス インコーポレイティド 自己干渉チャネルを測定する方法及び端末
US9929851B2 (en) * 2013-09-16 2018-03-27 Qualcomm, Incorporated System and methods for full duplex communication over a wireless network
WO2015077990A1 (en) * 2013-11-29 2015-06-04 Telefonaktiebolaget L M Ericsson (Publ) A method in a network and network node for co-scheduling in a network
EP3089548B1 (en) * 2013-12-24 2018-08-01 Sony Corporation Wireless communication apparatus, communication control apparatus, wireless communication method, and communication control method
WO2015147570A1 (ko) * 2014-03-26 2015-10-01 엘지전자 주식회사 Fdr 전송을 지원하는 무선접속시스템에서 자원 할당 방법 및 장치
US10374682B2 (en) * 2014-04-17 2019-08-06 Lg Electronics Inc. Method and device for removing self-interference in wireless access system supporting full duplex radio scheme
WO2015171177A1 (en) * 2014-05-05 2015-11-12 The Regents Of The University Of California Full-duplex self-interference cancellation systems
US10356723B2 (en) * 2014-05-13 2019-07-16 Lg Electronics Inc. Method and device for receiving signal in wireless access system supporting FDR transmission
WO2015178640A1 (ko) * 2014-05-18 2015-11-26 엘지전자 주식회사 Fdr 전송을 지원하는 무선접속시스템에서 피드백 정보를 송수신하는 방법 및 장치
US9420606B2 (en) * 2014-06-25 2016-08-16 Qualcomm Incorporated Full duplex operation in a wireless communication network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399572A (zh) * 2007-09-25 2009-04-01 鼎桥通信技术有限公司 上行链路发射功率的控制方法及系统
CN101741437A (zh) * 2008-11-19 2010-06-16 中国移动通信集团公司 一种上行功率控制方法、系统及设备
WO2013156174A1 (en) * 2012-04-19 2013-10-24 Nokia Siemens Networks Oy Scheduling mode selection in uplink data transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515991B2 (en) * 2016-09-29 2022-11-29 Panasonic Intellectual Property Corporation Of America User equipment, base station and wireless communication method
EP3593481A4 (en) * 2017-03-09 2020-11-25 Nokia Technologies Oy PROCEDURE AND INFORMATION EXCHANGE MECHANISM FOR FULL DUPLEX TRANSMISSION
US11178554B2 (en) 2017-03-09 2021-11-16 Nokia Technologies Oy Method and information exchange mechanism for full duplex transmission

Also Published As

Publication number Publication date
US20170302337A1 (en) 2017-10-19
CN105934893A (zh) 2016-09-07
CN105934893B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2016106604A1 (zh) 一种传输信号的方法和设备
JP6569072B2 (ja) 通信システム及び送受信方法
US9572113B2 (en) System and method for direct mobile communications power control
JP6899446B2 (ja) 干渉測定方法及び関連するデバイス
JP5814041B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法
CN107277908B (zh) 一种功率控制方法及设备
US9509468B2 (en) Methods and arrangements for transmitting and receiving sub-frame specific power offset information
US10932200B2 (en) Uplink power control method and apparatus to reduce user equipment-to-user equipment cross interference
US8965436B2 (en) Method for controlling uplink transmit power in mobile communication system
US20120046064A1 (en) Method and Arrangement in a Wireless Telecommunications System
KR20120124442A (ko) 무선 통신 시스템, 이동국 장치, 무선 통신 방법 및 집적 회로
US11252674B2 (en) Methods and apparatuses for multi-panel power control
WO2013183491A1 (ja) 無線基地局、ユーザ端末、無線通信システム及び干渉推定方法
WO2014162796A1 (ja) 無線基地局、ユーザ端末および無線通信方法
CN102687552A (zh) 用于发送和接收功率余量报告的方法和设备
CN109155921B (zh) 用于设备到设备通信的方法和装置
WO2019026296A1 (ja) ユーザ端末及び無線通信方法
KR20180129423A (ko) 무선 통신 시스템에서 간섭을 관리하기 위한 장치 및 방법
US9313735B2 (en) Method and apparatus for efficiently controlling uplink control signal of user equipment in wireless communication system
EP3262884B1 (en) Tdd based prose optimization
US11716643B2 (en) User equipment-based link adaptation for 5G new radio
WO2022213985A1 (zh) Iab指示方法、装置、设备及介质
WO2022208490A1 (en) Ul power control for transport block transmission over multiple slots
EP4320745A1 (en) Systems and methods for handling limited set of path loss reference signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909414

Country of ref document: EP

Kind code of ref document: A1